
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xxxiii

About the Technical Reviewers �� xxxv

Acknowledgments �� xxxvii

Introduction ��� xxxix

Chapter 1: Installing the Oracle Binaries ■ ���1

Chapter 2: Implementing a Database ■ ��25

Chapter 3: Configuring an Efficient Environment ■ ��55

Chapter 4: Tablespaces and Data Files ■ ��77

Chapter 5: Managing Control Files, Online Redo Logs, and Archiving ■ �����������������������������99

Chapter 6: Users and Basic Security ■ ���127

Chapter 7: Tables and Constraints ■ ���153

Chapter 8: Indexes ■ ���205

Chapter 9: Views, Synonyms, and Sequences ■ ���237

Chapter 10: Data Dictionary Fundamentals ■ ���259

Chapter 11: Large Objects ■ ���277

Chapter 12: Partitioning: Divide and Conquer ■ ���303

Chapter 13: Data Pump ■ ��343

Chapter 14: External Tables ■ ���387

Chapter 15: Materialized Views ■ ���403

Chapter 16: User-Managed Backup and Recovery ■ ��451

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

Chapter 17: Configuring RMAN ■ ��483

Chapter 18: RMAN Backups and Reporting ■ ���511

Chapter 19: RMAN Restore and Recovery ■ ���539

Chapter 20: Oracle Secure Backup ■ ��585

Chapter 21: Automating Jobs ■ ��613

Chapter 22: Database Troubleshooting ■ ��637

Chapter 23: Pluggable Databases ■ ���667

Index ���699

www.allitebooks.com

http://www.allitebooks.org

xxxix

Introduction

Many companies, large and small, use Oracle products. At the heart of this technology is an Oracle database.
Businesses use the technology to store and manage mission critical data. This information is the basis for making
smart business decisions. Companies that effectively transform data into business intelligence quickly gain a
competitive edge in the marketplace.

Oracle database administrators (DBAs) play a pivotal role in implementing and leveraging Oracle database
technology. DBAs add value by ensuring that databases are created in an efficient manner and optimally maintained.
DBAs are often queried for architectural advice on features, implementation, data migration, replication, SQL coding,
tuning, and so on. DBAs fill the role of the go-to person for anything related to Oracle.

The job of an Oracle DBA is frequently complex and challenging. This book focuses on practical examples and
techniques for providing a smoothly operating database environment. The content is drawn from years of experience
working with Oracle technology. The book shows you from the ground up how a senior DBA manages a multifaceted
database environment. I try to focus on demonstrating how to correctly implement features, with scalability and
maintainability in mind.

I hope you find the material in this book useful. The goal is to elevate you to a professional level as a DBA. Being
a DBA doesn’t have to be constantly painful. The key is to correctly implement the technology the first time, not paint
yourself into a corner with a badly implemented feature, and proactively manage your surroundings.

This book doesn’t show you the most complex and sophisticated techniques used in database administration.
I try to keep my techniques as simple as possible, yet robust enough to manage any level of chaos and complexity.
You should be able to take the concepts elucidated in this book and build on them to help you manage any type of
database environment.

Who This Book Is For
This book is for DBAs who want real-world guidance on how to efficiently configure and maintain complex database
environments. Whether you are a novice or an expert, this book contains practical examples of how to implement
Oracle database technology. This book is for those who want advice from a real DBA on how Oracle database
technology is effectively implemented and maintained.

How This Book Is Structured
The book is divided into several sections, each covering a logical group of database administration topics, as follows:

Part 1 concentrates on creating a working environment. This includes installing the Oracle
software and creating databases.

Part 2 deals with managing critical database files. Topics explored are tablespaces, data
files, control files, and online redo log files.

Part 3 discusses configuring users and database objects, such as tables, constraints,
indexes, views, synonyms, sequences, and so on.

www.allitebooks.com

http://www.allitebooks.org

■ IntroduCtIon

xl

Part 4 details how to create and maintain large database objects and partitioned tables and
indexes.

Part 5 shows how DBAs use tools such as Data Pump, external tables, and materialized
views to manage and distribute large amounts of data.

Part 6 takes a deep dive into backup-and-recovery (B&R) concepts. Both user-managed
backups and Oracle Recovery Manager (RMAN) B&R are presented in detail.

Part 7 focuses on techniques used to automate database jobs and how to troubleshoot
typical problems that DBAs encounter.

Part 8 describes how to implement and manage container and pluggable databases.

Conventions
The following typographical conventions are used in this book:

 $ is used to denote Linux/Unix commands that can be run by the operating system (OS) owner •
of the Oracle binaries (usually named oracle).

 # is used to denote Linux/Unix commands that should be run as the root OS user.•

 SQL > is used to denote one-line SQL*Plus statements.•

 • Monospaced font is used for code examples, utility names, file names, URLs, and directory
paths.

 • Italic is used to highlight a new concept or term.

 • UPPERCASE indicates names of database objects, such as views, tables, and corresponding
column names.

 < > is used where you need to provide input, such as a file name or password.•

Downloading the Code
The code for the examples shown in this book is available on the Apress web site (www.apress.com). A link can be
found on the book’s information page, under the Source Code/Downloads tab. This tab is located beneath the Related
Titles section of the page.

Contacting the Author
If you have any questions regarding the book, please feel free to contact me directly at the following e-mail address:
darl.kuhn@gmail.com.

www.allitebooks.com

www.apress.com
mailto:darl.kuhn@gmail.com
http://www.allitebooks.org

1

Chapter 1

Installing the Oracle Binaries

Oracle installations can be large, complex, and cumbersome. This is one reason you usually ask an Oracle database
administrator (DBA) to install the software. You want someone who has previously performed installations and who
knows how to troubleshoot when problems arise. Accordingly, installing the Oracle software (binaries) is a task at
which every DBA must be proficient.

Tip ■ If you’re fairly new to Oracle, this chapter may seem like an overwhelming way to start a book on database
administration. Don’t worry too much about this. If you’re already working in an Oracle environment, chances are that
another DBA has probably already installed the Oracle binaries. If you don’t need to install the Oracle binaries, make sure
you read the following section, “Understanding the Optimal Flexible Architecture,” and then feel free to proceed
to Chapter 2.

Many DBAs don’t use techniques for automating installations. Some are unaware of these methods; others
perceive them as unreliable. Therefore, most DBAs typically use the graphical mode of the Oracle Universal Installer
(OUI). Although the graphical installer is a good tool, it doesn’t lend itself to repeatability and automation. Running
the graphical installer is a manual process during which you’re presented with options to choose from on multiple
screens. Even if you know which options to select, you may still inadvertently click an undesired choice.

The graphical installer can also be problematic when you’re performing remote installations, and the network
bandwidth is insufficient. In these situations you can find yourself waiting for dozens of minutes for a screen to
repaint itself on your local screen. You need a different technique for efficient installation on remote servers.

This chapter focuses on techniques for installing Oracle in an efficient and repeatable manner. This includes
silent installations, which rely on a response file. A response file is a text file in which you assign values to variables
that govern the installation. DBAs often don’t realize the powerful repeatability and efficiency that can be achieved by
using response files.

Note ■ This chapter only covers installing the Oracle software. The task of creating a database is covered in Chapter 2.

Understanding the OFA
Before you install Oracle and start creating databases, you must understand Oracle’s Optimal Flexible Architecture
(OFA) standard. This standard is widely employed for specifying consistent directory structures and the file-naming
conventions used when installing and creating Oracle databases.

www.allitebooks.com

http://www.allitebooks.org

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

2

Note ■ One irony of this ubiquitous OFA “standard” is that almost every DBA, in some manner, customizes it to fit the
unique requirements of his or her environment.

Because most shops implement a form of the OFA standard, understanding this structure is critical. Figure 1-1
shows the directory structure and file names used with the OFA standard. Not all the directories and files found in an
Oracle environment appear in this figure (there isn’t enough room). However, the critical and most frequently used
directories and files are displayed.

oraInst.loc
oratab
oraset

10g diagnostic info (old databases)

Fast Recovery Area (optional FRA)

12c diagnostic info

/
root directory

/etc

/home

oracle
ORACLE_BASE

cfgtoollogs

diag

product
12.1.0

(version)
db_1

ORACLE_HOME

/u01…/u0N

oradata dbname1

app

oracle
HOME

network admin
TNS_ADMIN

dbs

bin
binaries: oracle, sqlplus,
rman , lsnrctl, expdp, oraenv,...

checkpoints

rdbms dbuname1 instname1
ADR_HOME

trace alert_instname1.log

oraInventory ContentsXML

logs

inventory.xml

datafiles, online redo logs, controlfiles:
tbspNN .dbf, redoNN.log, control.ctl

admin

alert

incident

log.xml

listener.ora
sqlnet .ora
tnsnames .ora

spfile or init.ora
orapw pwd file

diagnostic_dest
(init parameter)

dbname1

adump

bdump
cdump

udump
.bash_profile
.bashrc
.profile

installActions<date>.log

scripts

db_recovery_file_dest
(init parameter)

dbname1

YYYY_MM_DD

control file

online redo log

backup piecebackupset

controlfile

log_archive_dest_N
(init parameter)

archivelog archive redo log

YYYY_MM_DD

onlinelog

autobackup YYYY_MM_DD backup piece

archive redo log

alert_dbname1.log

flashback flashback log

datafile image copy

auditrdbms *.aud

admin sql files

tnslsnr host lsname alert log.xml

/var/opt/oracle
(Solaris)

oraInst.loc
oratab
oraset

Figure 1-1. Oracle’s OFA standard

The OFA standard includes several directories that you should be familiar with:

Oracle inventory directory•	

Oracle base directory (•	 ORACLE_BASE)

Oracle home directory (•	 ORACLE_HOME)

Oracle network files directory (•	 TNS_ADMIN)

Automatic Diagnostic Repository (•	 ADR_HOME)

These directories are discussed in the following sections.

www.allitebooks.com

http://www.allitebooks.org

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

3

Oracle Inventory Directory
The Oracle inventory directory stores the inventory of Oracle software installed on the server. This directory is
required and is shared among all installations of Oracle software on a server. When you first install Oracle, the installer
checks to see whether there is an existing OFA-compliant directory structure in the format /u[01–09]/app. If such a
directory exists, then the installer creates an Oracle inventory directory, such as

/u01/app/oraInventory

If the ORACLE_BASE variable is defined for the oracle operating system (OS) user, then the installer creates a
directory for the location of Oracle inventory, as follows:

ORACLE_BASE/../oraInventory

For example, if ORACLE_BASE is defined as /ora01/app/oracle, then the installer defines the location of Oracle
inventory as

/ora01/app/oraInventory

If the installer doesn’t find a recognizable OFA-compliant directory structure or an ORACLE_BASE variable, then
the location for Oracle inventory is created under the HOME directory of the oracle user. For instance, if the HOME
directory is /home/oracle, then the location of Oracle inventory is

/home/oracle/oraInventory

Oracle Base Directory
The Oracle base directory is the topmost directory for Oracle software installation. You can install one or more
versions of the Oracle software beneath this directory. The OFA standard for the Oracle base directory is as follows:

/<mount_point>/app/<software_owner>

Typical names for the mount point include /u01, /ora01, /oracle, and /oracle01. You can name the mount
point according to whatever your standard is for your environment. I prefer to use a mount-point name such as
/ora01. It’s short, and when I look at the mount points on a database server, I can immediately tell which are used
for the Oracle database. Also, a short mount-point name is easier to use when you’re querying the data dictionary to
report on the physical aspects of your database. Additionally, a shorter mount-point name makes for less typing when
you’re navigating through directories via OS commands.

The software owner is typically named oracle. This is the OS user you use to install the Oracle software
(binaries). Listed next is an example of a fully formed Oracle base directory path:

/u01/app/oracle

Oracle Home Directory
The Oracle home directory defines the installation location of software for a particular product, such as Oracle
Database 12c or Oracle Database 11g. You must install different products or different releases of a product in separate
Oracle homes. The recommended OFA-compliant Oracle home directory is as follows:

ORACLE_BASE/product/<version>/<install_name>

www.allitebooks.com

http://www.allitebooks.org

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

4

In the previous line of code, possible versions include 12.1.0.1 and 11.2.0.3. Possible install_name values include
db_1, devdb1, test2, and prod1. Here is an example of an Oracle home name for a 12.1 database:

/u01/app/oracle/product/12.1.0.1/db_1

Note ■ some DBAs dislike the db_1 string on the end of the ORACLE_HOME directory and see no need for it. The reason
for the db_1 is that you may have two separate installations of binaries: a development installation and a test installation.
If you don’t require that configuration in your environment, feel free to drop the extra string (db_1).

Oracle Network Files Directory
Some Oracle utilities use the value TNS_ADMIN to locate network configuration files. This directory is defined as
ORACLE_HOME/network/admin. It typically contains the tnsnames.ora and listener.ora Oracle Net files.

Tip ■ sometimes DBAs will set TNS_ADMIN to point at one central directory location (such as /etc or /var/opt/oracle).
This allows them to maintain one set of Oracle network files (instead of one for each ORACLE_HOME). This approach also
has the advantage of not requiring the copying or moving of files when a database upgrade occurs, potentially changing
the location of ORACLE_HOME.

Automatic Diagnostic Repository
Starting with Oracle Database 11g, the ADR_HOME directory specifies the location of the diagnostic files related to
Oracle. These files are crucial for troubleshooting problems with the Oracle database. This directory is defined as
ORACLE_BASE/diag/rdbms/lower(db_unique_name)/instance_name. You can query the V$PARAMETER view to get the
values of db_unique_name and instance_name.

For example, in the next line, the lowercase database unique name is o12c, and the instance name is O12C:

/u01/app/oracle/diag/rdbms/o12c/O12C

You can verify the location of the ADR_HOME directory via this query:

SQL> select value from v$diag_info where name='ADR Home';

Here is some sample output:

VALUE
--
/u01/app/oracle/diag/rdbms/o12c/O12C

Now that you understand the OFA standard, you’ll next see how it’s used when installing the Oracle binaries.
For instance, you’ll need to specify directory values for the ORACLE_BASE and ORACLE_HOME directories when running
the Oracle installer.

www.allitebooks.com

http://www.allitebooks.org

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

5

Tip ■ see the Oracle Database Installation Guide for full details on OFA. This document can be freely downloaded from
the Technology network area of the Oracle web site (http://otn.oracle.com).

Installing Oracle
Suppose you’re new on the job, and your manager asks you how long it will take to install a new set of Oracle Database
12c software on a server. You reply that it will take less than an hour. Your boss is incredulous and states that previous
DBAs always estimated at least a day to install the Oracle binaries on a new server. You reply, “Actually, it’s not that
complicated, but DBAs do tend to overestimate installations, because it’s hard to predict everything that could
go wrong.”

When you’re handed a new server and are given the task of installing the Oracle binaries, this usually refers to
the process of downloading and installing the software required before you can create an Oracle database. This process
involves several steps:

1. Create the appropriate OS groups. In Oracle Database 12c there are several OS groups that
you can form and use to manage the level of granularity of SYSDBA permissions. Minimally,
you’ll need to create an OS dba group and the OS oracle user.

2. Ensure that the OS is configured adequately for an Oracle database.

3. Obtain the database installation software from Oracle.

4. Unzip the database installation software.

5. If using the silent installer when first installing Oracle software on the box, create an
oraInst.loc file. This step only needs to be done once per server. Subsequent installations
do not require this step to be performed.

6. Configure the response file, and run the Oracle silent installer.

7. Troubleshoot any issues.

These steps are detailed in the following sections.

Note ■ Any version of the database that Oracle designates as a base release (10.1.0.2, 10.2.0.1, 11.1.0.6,
11.2.0.1, 12.1.0.1, and so on) can be freely downloaded from the Technology network area of the Oracle web site
(http://otn.oracle.com). however, be aware that any subsequent patch downloads require a purchased license.
In other words, downloading base software requires an Oracle Technology network (OTn) login (free), whereas
downloading a patch set requires a My Oracle support account (for fee).

Step 1. Create the OS Groups and User
If you work in a shop with a system administrator (SA), then steps 1 and 2 usually are performed by the SA. If you
don’t have an SA, then you have to perform these steps yourself (this is often the case in small shops, where you may
be required to perform many different job functions). You need root access to accomplish these steps.

In the old days, a typical Oracle installation would contain one OS group (dba) and one OS user (oracle). You can
still install the Oracle software, using this minimalistic, one-group, one-user approach; it works fine. If there is just one
DBA in your shop, and you don’t need a more granular division of privileges among team members, then go ahead,
and create only the dba group and the oracle OS user. There is nothing wrong with this method.

http://otn.oracle.com/
http://otn.oracle.com/

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

6

Nowadays, there are multiple OS groups that Oracle recommends you create—the idea being that you can add
different OS users and assign them to groups on an as-needed basis, depending on the job function. When an OS user
is assigned to a group, that assignment provides the user with specific database privileges. Table 1-1 documents the
OS groups and how each group maps to corresponding database privileges. For example, if you have a user that is only
responsible for monitoring database and that only needs privileges to start up and shut down the database, then that
user would be assigned the oper group (which ensures that subsequent connections to the database can be done with
sysoper privileges).

Table 1-1. Mapping of OS Groups to Privileges Related to Backup and Recovery

OS Group Database System Privilege Authorized Operations Where Referenced

oinstall none OS privileges to install and upgrade
Oracle binaries

inst_group variable in
oraInst.loc file; also defined
by UNIX_GROUP_NAME variable
in response file

dba sysdba All database privileges: start up,
shut down, alter database, create
and drop database, toggle archivelog
mode, back up, and recover database

DBA_GROUP variable in response
file or when prompted by OUI
graphical installer

oper sysoper Start up, shut down, alter database,
toggle archivelog mode, back up,
and recover database

OPER_GROUP variable in
response file or when prompted
by OUI graphical installer

asmdba sysdba for asm Administrative privileges to Oracle
automatic storage management
(ASM) instances

n/a

asmoper sysoper for asm Starting up and stopping the Oracle
ASM instance

n/a

asmadmin sysasm Mounting and dismounting of
disk groups and other storage
administration

n/a

backupdba sysbackup New in 12c; privilege allowing user
to start up, shut down, and perform
all backup and recovery operations

BACKUPDBA_GROUP in response
file or when prompted by OUI
graphical installer

dgdba sysdg New in 12c; associated with
privileges related to managing Data
Guard environments

DGDBA_GROUP variable
in response file or when
prompted by OUI graphical
installer

kmdba syskm New in 12c; associated with
privileges related to encryption
management

KMDBA_GROUP variable in
response file or when prompted
by OUI graphical installer

Table 1-1 contains recommended group names. You don’t have to use the group names listed; you can adjust per
your requirements. For example, if you have two separate groups using the same server, you may want to create two
separate Oracle installations, each managed by a different DBAs; the development DBA group might create and install
the Oracle binaries with a group named dbadev, whereas a test group using the same box might install a separate set

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

7

of Oracle binaries managed with a group named dbatest. Each group would have permissions to manipulate only its
set of binaries. Or, as mentioned earlier, you may decide to use just one group (dba) for everything. It all depends on
your environment.

Once you decide which groups you need, then you need access to the root user to run the groupadd command.
As root, add the OS groups that you need. Here, I add the three groups that I foresee will be needed:

groupadd oinstall
groupadd dba
groupadd oper

If you don’t have access to the root account, then you need to get your SA to run the previous commands. You
can verify that each group was added successfully by inspecting the contents of the /etc/group file. Here are typical
entries created in the /etc/group file:

oinstall:x:500:
dba:x:501:
oper:x:502:

Now, create the oracle OS user. The following example explicitly sets the group ID to 500 (your company may
require use of the same group ID for all installations), establishes the primary group as oinstall, and assigns the dba
and oper groups to the newly created oracle user:

useradd -u 500 -g oinstall -G dba,oper oracle

You can verify user account information by viewing the /etc/passwd file. Here is what you can expect to see for
the oracle user:

oracle:x:500:500::/home/oracle:/bin/bash

If you need to modify a group, as root, use the groupmod command. If, for any reason, you need to remove a
group (as root) use the groupdel command.

If you need to modify a user, as root, use the usermod command. If you need to remove an OS user, use the
userdel command. You need root privileges to run the userdel command. This example removes the oracle user
from the server:

userdel oracle

Step 2. Ensure That the OS Is Adequately Configured
The tasks associated with this step vary somewhat for each database release and OS. You must refer to the Oracle
installation manual for the database release and OS vendor to get the exact requirements. To perform this step, you’re
required to verify and configure OS components such as these:

Memory and swap space•	

System architecture (processor)•	

Free disk space (Oracle now takes almost 5GB of space to install)•	

Operating system version and kernel•	

Operating system software (required packages and patches)•	

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

8

Run the following command to confirm the memory size on a Linux server:

$ grep MemTotal /proc/meminfo

To verify the amount of memory and swap space, run the following command:

$ free -t

To verify the amount of space in the /tmp directory, enter this command:

$ df -h /tmp

To display the amount of free disk space, execute this command:

$ df -h

To verify the OS version, enter this command:

$ cat /proc/version

To verify kernel information, run the following command:

$ uname -r

To determine whether the required packages are installed, execute this query, and provide the required
package name:

$ rpm -q <package_name>

Again, database server requirements vary quite a bit by OS and database version. You can download the specific
installation manual from the Documentation page of the Oracle web site (www.oracle.com/documentation).

Note ■ The OUI displays any deficiencies in Os software and hardware. running the installer is covered in step 6.

Step 3. Obtain the Oracle Installation Software
Usually, the easiest way to obtain the Oracle software is to download it from the Oracle web site. Navigate to the
software download page (www.oracle.com/technology/software), and download the Oracle database version that is
appropriate for the type of OS and hardware on which you want to install it (Linux, Solaris, Windows, and so on).

Step 4. Unzip the Files
Before you unzip the files, I recommend that you create a standard directory where you can place the Oracle
installation media. You should do this for a couple of reasons:

When you come back to a box a week, month, or year later, you’ll want to be able to easily find •	
the installation media.

Standard directory structures help you organize and understand quickly what has or hasn’t •	
been installed on the box.

http://www.oracle.com/documentation
http://www.oracle.com/technology/software

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

9

Create a standard set of directories to contain the files used to install the Oracle software. I like to store the
installation media in a directory such as /home/oracle/orainst and then create a subdirectory there for each version
of the Oracle software that is installed on the box:

$ mkdir -p /home/oracle/orainst/11.2.0.2
$ mkdir -p /home/oracle/orainst/12.1.0.1

Now, move the installation files to the appropriate directory, and unzip them there:

$ mv linux_12c_database_1of2.zip /home/oracle/orainst/12.1.0.1
$ mv linux_12c_database_2of2.zip /home/oracle/orainst/12.1.0.1

Use the unzip command for unbundling zipped files. The Oracle Database 11g Release 2 software is unzipped,
as shown:

$ unzip linux_12cR1_database_1of2.zip
$ unzip linux_12cR1_database_2of2.zip

Tip ■ On some installations of Oracle, you may find that the distribution file is provided as a compressed cpio file. You can
uncompress and unbundle the file with one command, as follows: $ cat 10gr2_db_sol.cpio.gz | gunzip | cpio -idvm.

Step 5: Creating oraInst.loc File
If an oraInst.loc file already exists on your server, then you can skip this step. Creating the oraInst.loc file only
needs to be performed the first time you install binaries on a server, using the silent install method. If you’re using the
OUI graphical installer, then the oraInst.loc file is created automatically for you.

On Linux servers the oraInst.loc file is usually located in the /etc directory. On other Unix systems (such as
Solaris) this file is located in the /var/opt/oracle directory. The oraInst.loc file contains the following information:

Oracle inventory directory path•	

Name of OS group that has permissions for installing and upgrading Oracle software•	

The Oracle inventory directory path is the location of files associated with managing Oracle installations and
upgrades. Typically, there is one Oracle inventory per host. Within this directory structure is the inventory.xml file,
which contains a record of where various versions of Oracle have been installed on the server.

The Oracle inventory OS group has the OS permissions required for installing and upgrading Oracle software.
Oracle recommends that you name this group oinstall. You’ll find that sometimes DBAs assign the inventory group
to the dba group. If your environment doesn’t require a separate group (such as oinstall), then using the dba group
is fine.

You can create the oraInst.loc file with a utility such as vi. Here are some sample entries in the file:

inventory_loc=/u01/app/oraInventory
inst_group=oinstall

As root, ensure that the response file is owned by the oracle OS user and that it has the proper file
access privileges:

chown oracle:oinstall oraInst.loc
chmod 664 oraInst.loc

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

10

Step 6. Configure the Response File, and Run the Installer
You can run the OUI in one of two modes: graphical or silent. Typically, DBAs use the graphical installer. However,
I strongly prefer using the silent install option for the following reasons:

Silent installs don’t require the availability of X Window System software.•	

You avoid performance issues with remote graphical installs, which can be extremely slow •	
when trying to paint screens locally.

Silent installs can be scripted and automated. This means that every install can be performed •	
with the same, consistent standards, regardless of which team member is performing the
install (I even have the SA install the Oracle binaries this way).

The key to performing a silent install is to use a response file.
After unzipping the Oracle software, navigate to the database directory (which was created when you unzipped

the Oracle zip files previously, in step 4); for example,

$ cd /home/oracle/orainst/12.1.0.1/database

Next, find the sample response files that Oracle provides:

$ find . -name "*.rsp"

Depending on the version of Oracle and the OS platform, the names and number of response files that you find
may be quite different. The next two sections show two scenarios: an Oracle Database 11g Release 2 silent install and
an Oracle Database 12c Release 1 silent install.

Oracle Database 11g Release 2 Scenario
Navigate to the database directory, and issue the find command to locate sample response files. Here are the
response files provided with an Oracle Database 11g Release 2 on a Linux server:

$ find . -name "*.rsp"
./response/db_install.rsp
./response/dbca.rsp
./response/netca.rsp

Copy one of the response files so that you can modify it. This example copies the db_install.rsp file to the
current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Keep in mind that the format of response files can differ quite a bit, depending on the Oracle database version.
For example, there are major differences between Oracle Database 11g Release 1 and Oracle Database 11g Release 2.
When you install a new release, you have to inspect the response file and determine which parameters must be set.
Here is a partial listing of an Oracle Database 11g Release 2 response file (the first two lines are actually a single line
of code but have been placed on two lines in order to fit on the page). The lines of code are the only variables that I
modified. I removed the comments so that you could more clearly see which variables were modified:

oracle.install.responseFileVersion=
/oracle/install/rspfmt_dbinstall_response_schema_v11_2_0
oracle.install.option=INSTALL_DB_SWONLY

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

11

ORACLE_HOSTNAME=ora03
UNIX_GROUP_NAME=dba
oracle.install.db.DBA_GROUP=dba
oracle.install.db.OPER_GROUP=dba
INVENTORY_LOCATION=/ora01/orainst/11.2.0.1/database/stage/products.xml
SELECTED_LANGUAGES=en
ORACLE_HOME=/oracle/app/oracle/product/11.2.0/db_1
ORACLE_BASE=/oracle/app/oracle
DECLINE_SECURITY_UPDATES=true
oracle.install.db.InstallEdition=EE
oracle.install.db.isCustomInstall=true

Be sure to modify the appropriate parameters for your environment. If you’re unsure what to set the ORACLE_HOME
and ORACLE_BASE values to, see the section “Understanding the Optimal Flexible Architecture,” earlier in this chapter,
for a description of the OFA standard directories.

There are sometimes idiosyncrasies to these parameters that are specific to a release. For instance, in Oracle
Database 11g Release 2, if you don’t want to specify your My Oracle Support (MOS) login information, then you need
to set the following parameter as follows:

DECLINE_SECURITY_UPDATES=true

If you don’t set DECLINE_SECURITY_UPDATES to TRUE, then you will be expected to provide your MOS login
information. Failure to do so will cause the installation to fail.

After you’ve configured your response file, you can run the Oracle installer in silent mode. Note that you have to
enter the entire directory path for the location of your response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \
/ora01/orainst/11.2.0.1/database/inst.rsp

The previous command is entered on two lines. The first line is continued to the second line via the backward
slash (\).

Note ■ On Windows the setup.exe command is equivalent to the linux/Unix runInstaller command.

If you encounter errors with the installation process, you can view the associated log file. Each time you attempt
to run the installer, it creates a log file with a unique name that includes a timestamp. The log file is located in the
oraInventory/logs directory. You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

Here is an example of a log file name:

installActions2012-04-33 11-42-52AM.log

If everything runs successfully, in the output you’re notified that you need to run the root.sh script as the
root user:

#Root scripts to run
/oracle/app/oracle/product/11.2.0/db_1/root.sh

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

12

Run the root.sh script as the root OS user. Then, you should be able to create an Oracle database (database
creation is covered in Chapter 2).

Note ■ On linux/Unix platforms, the root.sh script contains commands that must be run as the root user. This script
needs to modify the owner and permissions of some of the Oracle executables (such as the nmo executable). some
 versions of root.sh prompt you as to whether you want to accept the default values. Usually, it’s suitable to do so.

Oracle Database 12c Release 1 Scenario
Navigate to the database directory, and issue the find command to locate sample response files. Here are the
response files provided with an Oracle Database 12c Release 1 on a Linux server:

$ find . -name "*.rsp"
./response/db_install.rsp
./response/netca.rsp
./response/dbca.rsp

Copy one of the response files so that you can modify it. This example copies the db_install.rsp file to the
current working directory and names the file inst.rsp:

$ cp response/db_install.rsp inst.rsp

Modify the inst.rsp file. Here is a partial listing of an Oracle Database 12c Release 1 response file (the first two
lines are actually a single line of code but have been placed on two lines in order to fit on the page). The lines of code
are the only variables that I modified. I removed the comments so that you could more clearly see which variables
were modified:

oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall_response_schema_v12.1.0
oracle.install.option=INSTALL_DB_SWONLY
ORACLE_HOSTNAME=oraserv1
UNIX_GROUP_NAME=oinstall
INVENTORY_LOCATION=/home/oracle/orainst/12.1.0.1/database/stage/products.xml
SELECTED_LANGUAGES=en
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
ORACLE_BASE=/u01/app/oracle
oracle.install.db.InstallEdition=EE
oracle.install.db.DBA_GROUP=dba
oracle.install.db.OPER_GROUP=oper
oracle.install.db.BACKUPDBA_GROUP=dba
oracle.install.db.DGDBA_GROUP=dba
oracle.install.db.KMDBA_GROUP=dba
DECLINE_SECURITY_UPDATES=true

Be sure to modify the appropriate parameters for your environment. If you’re unsure what to set the ORACLE_HOME
and ORACLE_BASE values to, see the section “Understanding the Optimal Flexible Architecture,” earlier in this chapter,
for a description of the OFA standard directories.

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

13

After you’ve configured your response file, you can run the Oracle installer in silent mode. Note that you have to
enter the entire directory path for the location of your response file:

$./runInstaller -ignoreSysPrereqs -force -silent -responseFile \
 /home/oracle/orainst/12.1.0.1/database/inst.rsp

The previous command is entered on two lines. The first line is continued to the second line via the backward
slash (\).

If you encounter errors with the installation process, you can view the associated log file. Each time you attempt
to run the installer, it creates a log file with a unique name that includes a timestamp. The log file is created in the
oraInventory/logs directory. You can stream the output to your screen as the OUI writes to it:

$ tail -f <logfile name>

Here is an example of a log file name:

installActions2012-11-04_02-57-29PM.log

If everything runs successfully, in the output you’re notified that you need to run the root.sh script as the
root user:

/u01/app/oracle/product/12.1.0.1/db_1/root.sh

Run the root.sh script as the root OS user. Then, you should be able to create an Oracle database (database
creation is covered in Chapter 2).

Step 7. Troubleshoot Any Issues
If you encounter an error, using a response file, 90 percent of the time it’s due to an issue with how you set the
variables in the file. Inspect those variables carefully, and ensure that they’re set correctly. Also, if you don’t fully
specify the command-line path to the response file, you receive errors such as this:

OUI-10203: The specified response file ... is not found.

Here is another common error when the path or name of the response file is incorrectly specified:

OUI-10202: No response file is specified for this session.

Listed next is the error message you receive if you enter a wrong path to your products.xml file within the
response file’s FROM_LOCATION variable:

OUI-10133: Invalid staging area

Also, be sure to provide the correct command-line syntax when running a response file. If you incorrectly specify
or misspell an option, you may receive a misleading error message, such as DISPLAY not set. When using a response
file, you don’t need to have your DISPLAY variable set. This message is confusing because, in this scenario, the error is
caused by an incorrectly specified command-line option and has nothing to do with the DISPLAY variable. Check all
options entered from the command line, and ensure that you haven’t misspelled an option.

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

14

Problems can also occur when you specify an ORACLE_HOME, and the silent installation “thinks” the given home
already exists:

Check complete: Failed <<<<
Recommendation: Choose a new Oracle Home for installing this product.

Check your inventory.xml file (in the oraInventory/ContentsXML directory), and make sure there isn’t a conflict
with an already existing Oracle home name.

When you’re troubleshooting issues with Oracle installations, remember that the installer uses two key files to
keep track of what software has been installed, and where: oraInst.loc and inventory.xml. Table 1-2 describes the
files used by the Oracle installer.

Table 1-2. Useful Files for Troubleshooting Oracle Installation Issues

File name Directory Location Contents

oraInst.loc The location of this file varies by OS. On Linux the file
is in /etc; on Solaris, it’s in /var/opt/oracle.

oraInventory directory location
and installation OS group

inst.loc \\HKEY_LOCAL_MACHINE\\Software\Oracle
(Windows registry)

Inventory information

inventory.xml oraInventory/ContentsXML/inventory.xml Oracle home names and
corresponding directory location

.log files oraInventory/logs Installation log files, which are
extremely useful for troubleshooting

Installing with a Copy of an Existing Installation
DBAs sometimes install Oracle software by using a utility such as tar to copy an existing installation of the Oracle
binaries to a different server (or a different location on the same server). This approach is fast and simple (especially
compared with downloading and running the Oracle installer). This technique allows DBAs to easily install the Oracle
software on multiple servers, while ensuring that each installation is identical.

Installing Oracle with an existing copy of the binaries is a two-part process:

1. Copy the binaries, using an OS utility.

2. Attach the Oracle home.

These steps are detailed in the next two sections.

Tip ■ see MOs note 300062.1 for instructions on how to clone an existing Oracle installation.

www.allitebooks.com

http://www.allitebooks.org

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

15

Step 1. Copy the Binaries, Using an OS Utility
You can use any OS copy utility to perform this step. The Linux/Unix tar, scp, and rsync utilities are commonly used
by DBAs to copy files. This example shows how to use the Linux/Unix tar utility to replicate an existing set of Oracle
binaries to a different server. First, locate the target Oracle home binaries that you want to copy:

$ echo $ORACLE_HOME
/ora01/app/oracle/product/12.1.0.1/db_1

In this example the tar utility copies every file and subdirectory in or below the db_1 directory:

$ cd $ORACLE_HOME
$ cd ..
$ tar -cvf orahome.tar db_1

Now, copy the orahome.tar file to the server on which you want to install the Oracle software. In this example the
tar file is copied to the /u01/app/oracle/product/12.1.0.1 directory on a different server. The tar file is extracted
there and creates a db_1 directory as part of the extract:

$ cd /u01/app/oracle/product/12.1.0.1

Make sure you have plenty of disk space available to extract the files. A typical Oracle installation can consume at
least 3–4GB of space. Use the Linux/Unix df command to verify that you have enough space:

$ df -h | sort

Next, extract the files:

$ tar -xvf orahome.tar

When the tar command completes, there should be a db_1 directory beneath the /u01/app/oracle/
product/12.1.0.1 directory.

Tip ■ Use the tar -tvf <tarfile_name> command to preview which directories and files are restored without
 actually restoring them.

Listed next is a powerful one-line combination of commands that allows you to bundle the Oracle files, copy
them to a remote server, and have them extracted remotely:

$ tar -cvf - <locDir> | ssh <remoteNode> "cd <remoteDir>; tar -xvf -"

For instance, the following command copies everything in the dev_1 directory to the remote ora03 server
/home/oracle directory:

$ tar -cvf - dev_1 | ssh ora03 "cd /home/oracle; tar -xvf -"

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

16

aBSOLUte pathS VS. reLatIVe pathS

some older, non-gnU versions of tar use absolute paths when extracting files. The next line of code shows an
example of specifying the absolute path when creating an archive file:

$ tar -cvf orahome.tar /home/oracle

specifying an absolute path with non-gnU versions of tar can be dangerous. These older versions of tar
restore the contents with the same directories and file names from which they were copied. This means that any
directories and file names that previously existed on disk are overwritten.

When using older versions of tar, it’s much safer to use a relative pathname. This example first changes to the
/home directory and then creates an archive of the oracle directory (relative to the current working directory):

$ cd /home
$ tar -cvf orahome.tar oracle

The previous example uses the relative pathname.

You don’t have to worry about absolute vs. relative paths on most linux systems. This is because these systems
use the gnU version of tar. This version strips off the forward slash (/) and restores files relative to where your
current working directory is located.

Use the man tar command if you’re not sure whether you have a gnU version of the tar utility. You can also use
the tar -tvf <tarfile name> command to preview which directories and files are restored to what locations.

Step 2. Attach the Oracle Home
One issue with using a copy of an existing installation to install the Oracle software is that if you later attempt to
upgrade the software, the upgrade process will throw an error and abort. This is because a copied installation isn’t
registered in oraInventory. Before you upgrade a set of binaries installed via a copy, you must first register the Oracle
home so that it appears in the inventory.xml file. This is called attaching an Oracle home.

To attach an Oracle home, you need to know the location of your oraInst.loc file on your server. On Linux
servers this file is usually located in the /etc directory. On Solaris this file can generally be found in the /var/opt/
oracle directory.

After you’ve located your oraInst.loc file, navigate to the ORACLE_HOME/oui/bin directory (on the server on
which you installed the Oracle binaries from a copy):

$ cd $ORACLE_HOME/oui/bin

Now, attach the Oracle home by running the runInstaller utility, as shown:

$./runInstaller -silent -attachHome -invPtrLoc /etc/oraInst.loc \
ORACLE_HOME="/u01/app/oracle/product/12.1.0.1/db_1" ORACLE_HOME_NAME="ONEW"

You should see this as the last message in the output, if successful:

'AttachHome' was successful.

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

17

You can also examine the contents of your oraInventory/ContentsXML/inventory.xml file. Here is a
snippet of the line inserted into the inventory.xml file as a result of running the runInstaller utility with the
attachHome option:

<HOME NAME="ONEW" LOC="/u01/app/oracle/product/12.1.0.1/db_1" TYPE="O" IDX="2"/>

Upgrading Oracle Software
You can also upgrade a version of the Oracle software, using the silent installation method. Begin by downloading the
upgrade version from the MOS web site (http://support.oracle.com) (you need a valid support contract to do this).
Read the upgrade documentation that comes with the new software. The upgrade procedure can vary quite a bit,
depending on what version of Oracle you’re using.

For the most recent upgrades that I’ve performed, the procedure was much like installing a new set of Oracle
binaries. You can use the OUI in either graphical or silent mode to install the software. See the section “Installing
Oracle,” earlier in this chapter, for information on using the silent mode installation method.

Note ■ Upgrading the Oracle software isn’t the same as upgrading an Oracle database. This section only deals with
using the silent install method for upgrading the Oracle software. Additional steps are involved for upgrading a database.
see MOs note 730365.1 for instructions on how to upgrade a database.

Depending on the version being upgraded, you may be presented with two different scenarios. Here is scenario A:

1. Shut down any databases using the Oracle home to be upgraded.

2. Upgrade the Oracle home binaries.

3. Start up the database, and run any required upgrade scripts.

Here are the steps for the scenario B approach to an upgrade:

1. Leave the existing Oracle home as it is—don’t upgrade it.

2. Install a new Oracle home that is the same version as the old Oracle home.

3. Upgrade the new Oracle home to the desired version.

4. When you’re ready, shut down the database using the old Oracle home; set the OS
variables to point to the new, upgraded Oracle home; start up the database; and run any
required upgrade scripts.

Which of the two previous scenarios is better? Scenario B has the advantage of leaving the old Oracle home as
it is; therefore, if, for any reason, you need to switch back to the old Oracle home, you have those binaries available.
Scenario B has the disadvantage of requiring extra disk space to contain two installations of Oracle home. This usually
isn’t an issue, because after the upgrade is complete, you can delete the old Oracle home when it’s convenient.

Tip ■ Consider using the Database Upgrade Assistant (DBUA) to upgrade an Oracle database.

http://support.oracle.com/

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

18

Reinstalling After Failed Installation
You may run into a situation in which you’re attempting to install Oracle, and for some reason the installation fails.
You correct the issue and attempt to rerun the Oracle installer. However, you receive this message:

 CAUSE: The chosen installation conflicted with software already
 installed in the given Oracle home.
 ACTION: Install into a different Oracle home.

In this situation, Oracle thinks that the software has already been installed, for a couple of reasons:

Files in the •	 ORACLE_HOME directory are specified in the response file.

An existing Oracle home and location in your •	 oraInventory/ContentsXML/inventory.xml file
match what you have specified in the response file.

Oracle doesn’t allow you to install a new set of binaries over an existing Oracle home. If you’re sure you don’t
need any of the files in the ORACLE_HOME directory, you can remove them (be very careful—ensure that you absolutely
want to do this). This example navigates to ORACLE_HOME and then removes the db_1 directory and its contents:

$ cd $ORACLE_HOME
$ cd ..
$ rm -rf db_1

Also, even if there are no files in the ORACLE_HOME directory, the installer inspects the inventory.xml file for
previous Oracle home names and locations. In the inventory.xml file you must remove the entry corresponding to
the Oracle home location that matches the Oracle home you’re trying to install to. To remove the entry, first, locate
your oraInst.loc file, which contains the directory of your oraInventory. Next, navigate to the oraInventory/
ContentsXML directory. Make a copy of inventory.xml before you modify it:

$ cp inventory.xml inventory.xml.old

Then, edit the inventory.xml file with an OS utility (such as vi), and remove the line that contains the Oracle
home information of your previously failed installation. You can now attempt to execute the runInstaller utility
again.

Applying Interim Patches
Sometimes, you’re required to apply a patch to resolve a database issue or eradicate a bug. You can usually obtain
patches from the MOS web site and install them with the opatch utility. Here are the basic steps for applying a patch:

1. Obtain the patch from MOS (requires a valid support contract).

2. Unzip the patch file.

3. Carefully read the README.txt file for special instructions.

4. Shut down any databases and processes using the Oracle home to which the patch is being
applied.

5. Apply the patch.

6. Verify that the patch was installed successfully.

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

19

A brief example will help illustrate the process of applying a patch. Here, the patch number 14390252 is applied
to an 11.2.0.3 database on a Solaris box. First, download the p14390252_112030_SOLARIS64.zip file from MOS
(https://support.oracle.com). Next, unzip the file on the server to which the patch is being applied:

$ unzip p14390252_112030_SOLARIS64.zip

The README.txt instructs you to change the directory, as follows:

$ cd 14390252

Make sure you follow the instructions included in the README.txt, such as shutting down any databases that use
the Oracle home to which the patch is being applied:

$ sqlplus / as sysdba
SQL> shutdown immediate;

Next, apply the patch. Ensure that you perform this step as the owner of the Oracle software (usually the oracle
OS account). Also make sure your ORACLE_HOME variable is set to point to the Oracle home to which you’re applying
the patch. In this example, because the opatch utility isn’t in a path included in the PATH directory, you specify the
entire path:

$ $ORACLE_HOME/OPatch/opatch napply -skip_subset -skip_duplicate

Finally, verify that the patch was applied by listing the inventory of patches:

$ $ORACLE_HOME/OPatch/opatch lsinventory

Here is some sample output for this example:

Patch 13742433 : applied on Sun Nov 04 13:49:07 MST 2012
Unique Patch ID: 15427576

Tip ■ see MOs note 242993.1 for more information regarding the opatch utility.

Installing Remotely with the Graphical Installer
In today’s global environment, DBAs often find themselves tasked with installing Oracle software on remote
Linux/Unix servers. In these situations I strongly suggest that you use the silent installation mode with a response file
(as mentioned earlier). However, if you want to install Oracle on a remote server via the graphical installer, this section
of the chapter describes the required steps.

Note ■ If you’re in a Windows-based environment, use the remote Desktop Connection or Virtual network Computing
(VnC) to install software remotely.

https://support.oracle.com/

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

20

One issue that frequently arises is how to run the Oracle installer on a remote server and have the graphical
output displayed to your local computer. Figure 1-2 shows the basic components and utilities required to run the
Oracle graphical installer remotely.

Listed next are the steps for setting up your environment to display the graphical screens on your local computer
while remotely running the Oracle installer:

1. Install software on the local computer that allows for X Window System emulation and
secure networking.

2. Start an X session on the local computer, and issue the startx command.

3. Copy the Oracle installation files to the remote server.

4. Run the xhost command.

5. Log in to the remote computer from an X terminal.

6. Ensure that the DISPLAY variable is set correctly on the remote computer.

7. Execute the runInstaller utility on the remote server.

8. Troubleshoot.

These steps are explained in the following sections.

Step 1. Install X Software and Networking Utilities on the Local PC
If you’re installing Oracle on a remote server, and you’re using your home personal computer (PC), then you first need
to install software on your PC that allows you to run X Window System software and to run commands such as ssh
(secure shell) and scp (secure copy). Several free tools are available that provide this functionality. One such tool is
Cygwin, which you can download from the Cygwin web site (http://x.cygwin.com). Be sure to install the packages
that provide the X emulation and secure networking utilities, such as ssh and scp.

1. Install X software
2. startx
3. Copy over files
4. xhost +
5. ssh -Y-l oracle <remote_server>

6. Verify DISPLAY variable
7. ./runisntaller
8. Troubleshoot

Figure 1-2. Components needed for a remote Oracle graphical installation

http://x.cygwin.com/

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

21

Step 2. Start an X Session on the Local Computer
After you install on your local computer the software that allows you to run X Window System software, you can open
an X terminal window and start the X server via the startx command:

$ startx

Here is a snippet of the output:

xauth: creating new authority file /home/test/.serverauth.3012
waiting for X server to begin accepting connections.

When the X software has started, run a utility such as xeyes to determine whether X is working properly:

$ xeyes

Figure 1-3 shows what a local terminal session looks like, using the Cygwin X terminal session tool.

If you can’t get a utility such as xeyes to execute, stop at this step until you get it working. You must have correctly
functioning X software before you can remotely install Oracle, using the graphical installer.

Step 3. Copy the Oracle Installation Media to the Remote Server
From the X terminal, run the scp command to copy the Oracle installation media to the remote server. Here is the
basic syntax for using scp:

$ scp <localfile> <username>@<remote_server>:<remote_directory>

The next line of code copies the Oracle installation media to a remote Oracle OS user on a remote server in the
home directory oracle:

$ scp linux_11gR2_database_1of2.zip oracle@shrek2:.

Figure 1-3. Running xeyes utility on a local computer

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

22

Step 4. Run the xhost Command
From the X screen, enable access to the remote host via the xhost command. This command must be run from your
local computer:

$ xhost +
access control disabled, clients can connect from any host.

The prior command allows any client to connect to the local X server. If you want to enable remote access
specifically for the remote computer on which you’re installing the software, provide an Internet protocol (IP) address
or hostname (of the remote server). In this example the remote hostname is tst-z1.central.sun.com

$ xhost +tst-z1.central.sun.com
tst-z1.central.sun.com being added to access control list

Step 5. Log In to the Remote Computer from X
From your local X terminal, use the ssh utility to log in to the remote server on which you want to install the Oracle
software:

$ ssh -Y -l oracle <hostname>

Step 6. Ensure that the DISPLAY Variable Is Set Correctly
on the Remote Computer
When you’ve logged in to the remote box, verify that your DISPLAY variable has been set:

$ echo $DISPLAY

You should see something similar to this:

localhost:10.0

If your DISPLAY variable is set to localhost:10.0, then proceed to the next step. Otherwise, follow the next set of
recommendations.

If your DISPLAY variable isn’t set, you must ensure that it’s set to a value that reflects your local home computer
location. From your local home computer, you can use the ping or arp utility to determine the IP address that
identifies your local computer. Run the following command on your home computer:

C:\> ping <local_computer>

Tip ■ If you don’t know your local home computer name, on Windows you can look in the Control panel, then system,
then reference the Computer name.

http://tst-z1.central.sun.com
http://tst-z1.central.sun.com
http://tst-z1.central.sun.com

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

23

Now, from the remote server, execute this command to set the DISPLAY variable to contain the IP address of the
local computer:

$ export DISPLAY=129.151.31.147:0.0

Note that you must append the :0.0 to the end of the IP address. If you’re using the C shell, use the setenv
command to set the DISPLAY variable:

$ setenv DISPLAY 129.151.31.147:0.0

If you’re unsure which shell you’re using, use the echo command to display the SHELL variable:

$ echo $SHELL

Step 7. Execute the runInstaller Utility
Navigate to the directory where you copied and unzipped the Oracle software on the remote server. Locate the
runInstaller utility, and run it, as shown:

$./runInstaller

If everything goes well, you should see a screen such as the one in Figure 1-4.

From here, you can point and click your way through an Oracle installation of the software. Many DBAs are
more comfortable installing the software through a graphical screen. This is a particularly good method if you aren’t
familiar with Oracle’s installation process and want to be prompted for input and presented with reasonable default
values.

Figure 1-4. OUI 12c initial screen

ChApTer 1 ■ InsTAllIng The OrACle BInArIes

24

Step 8. Troubleshoot
Most issues with remote installations occur in steps 4, 5, and 6. Make sure you’ve properly enabled remote-client
access to your local X server (running on your home computer) via the xhost command. The xhost command must
be run on the local computer on which you want the graphical display presented. Using the + (plus sign) with the
remote hostname adds a host to the local access list. This enables the remote server to display an X window on the
local host. If you type the xhost command by itself (with no parameters), it displays all remote hosts that can display X
sessions on the local computer:

$ xhost
access control disabled, clients can connect from any host

Setting the DISPLAY OS variable on the remote server is also crucial. This allows you to log in to another host
remotely and display an X application back to your local computer. The DISPLAY variable must be set on the remote
database server, to contain information that points it to the local computer on which you want the graphical screen
displayed.

Summary
This chapter detailed techniques for efficiently installing the Oracle binaries. These methods are especially useful
if you work in environments in which you are geographically separated from the database servers. The Oracle
silent installation method is efficient because it doesn’t require graphical software and uses a response file that
helps enforce consistency from one installation to the next. When working in chaotic and constantly changing
environments, you should benefit from the installation tips and procedures described here.

Many DBAs feel more comfortable using Oracle’s graphical installer for installing the database software.
However, the graphical installer can be troublesome when the server is in a remote location or embedded deeply
within a secure network. A slow network or a security feature can greatly impede the graphical installation process.
In these situations, make sure you correctly configure the required X software and OS variables (such as DISPLAY).

It’s critical as a DBA to be an expert in Oracle installation procedures. If the Oracle installation software isn’t
correctly installed, you won’t be able to successfully create a database. Once you have properly installed Oracle, you
can go on to the next step of starting the background processes and creating a database. The topics of starting Oracle
and issuing and creating a database are discussed next, in Chapter 2.

www.allitebooks.com

http://www.allitebooks.org

25

Chapter 2

Implementing a Database

Chapter 1 detailed how to efficiently install the Oracle binaries. After you’ve installed the Oracle software, the next
logical task is creating a database. There are two standard ways for creating Oracle databases:

Use the Database Configuration Assistant (•	 dbca) utility

Run a •	 CREATE DATABASE statement from SQL*Plus

Oracle’s dbca utility has a graphical interface from which you can configure and create databases. This visual tool
is easy to use and has a very intuitive interface. If you need to create a development database and get going quickly,
then this tool is more than adequate. Having said that, I normally don’t use the dbca utility to create databases. In
Linux/Unix environments the dbca tool depends on X software and an appropriate setting for the OS DISPLAY variable.
The dbca utility therefore requires some setup and can perform poorly if you’re installing on remote servers when the
network throughput is slow.

The dbca utility also allows you to create a database in silent mode, without the graphical component. Using dbca
in silent mode with a response file is an efficient way to create databases in a consistent and repeatable manner. This
approach also works well when you’re installing on remote servers, which could have a slow network connection or
not have the appropriate X software installed.

When you’re creating databases on remote servers, it’s usually easier and more efficient to use SQL*Plus. The
SQL*Plus approach is simple and inherently scriptable. In addition, SQL*Plus works no matter how slow the network
connection is, and it isn’t dependent on a graphical component. Therefore, I almost always use the SQL*Plus
technique to create databases.

This chapter starts by showing you how to quickly create a database using SQL*Plus, and also how to make your
database remotely available by enabling a listener process. Later, the chapter demonstrates how to use the dbca utility
in silent mode with a response file to create a database.

Setting OS Variables
Before creating a database, you need to know a bit about OS variables, often called environment variables. Before you
run SQL*Plus (or any other Oracle utility), you must set several OS variables:

•	 ORACLE_HOME

•	 ORACLE_SID

•	 LD_LIBRARY_PATH

•	 PATH

The ORACLE_HOME variable defines the starting point directory for the default location for the initialization
file, which is ORACLE_HOME/dbs on Linux/Unix. On Windows this directory is usually ORACLE_HOME\database.

Chapter 2 ■ ImplementIng a Database

26

The ORACLE_HOME variable is also important because it defines the starting point directory for locating the Oracle
binary files (such as sqlplus, dbca, netca, rman, and so on) that are in ORACLE_HOME/bin.

The ORACLE_SID variable defines the default name of the database you’re attempting to create. ORACLE_SID is also
used as the default name for the parameter file, which is init<ORACLE_SID>.ora or spfile<ORACLE_SID>.ora.

The LD_LIBRARY_PATH variable is important because it specifies where to search for libraries on Linux/Unix
boxes. The value of this variable is typically set to include ORACLE_HOME/lib.

The PATH variable specifies which directories are looked in by default when you type a command from the OS
prompt. In almost all situations, ORACLE_HOME/bin (the location of the Oracle binaries) must be included in your PATH
variable.

You can take several different approaches to setting the prior variables. This chapter discusses three, beginning
with a hard-coded manual approach and ending with the approach that I personally prefer.

A Manually Intensive Approach
In Linux/Unix, when you’re using the Bourne, Bash, or Korn shell, you can set OS variables manually from the OS
command line with the export command::

$ export ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
$ export ORACLE_SID=o12c
$ export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib
$ export PATH=$ORACLE_HOME/bin:$PATH

For the C or tcsh shell, use the setenv command to set variables:

$ setenv ORACLE_HOME <path>
$ setenv ORACLE_SID <sid>
$ setenv LD_LIBRARY_PATH <path>
$ setenv PATH <path>

Another way that DBAs set these variables is by placing the previous export or setenv commands into a
Linux/Unix startup file, such as .bash_profile, .bashrc, or .profile. That way, the variables are automatically set
upon login.

However, manually setting OS variables (either from the command line or by hard-coding values into a startup
file) isn’t the optimal way to instantiate these variables. For example, if you have multiple databases with multiple
Oracle homes on a box, manually setting these variables quickly becomes unwieldy and not very maintainable.

Oracle’s Approach to Setting OS Variables
A much better method for setting OS variables is use of a script that uses a file that contains the names of all Oracle
databases on a server and their associated Oracle homes. This approach is flexible and maintainable. For instance, if
a database’s Oracle home changes (e.g., after an upgrade), you only have to modify one file on the server and not hunt
down where the Oracle home variables may be hard-coded into scripts.

Oracle provides a mechanism for automatically setting the required OS variables. Oracle’s approach relies on two
files: oratab and oraenv.

Understanding oratab
You can think of the entries in the oratab file as a registry of what databases are installed on a box and their
corresponding Oracle home directories. The oratab file is automatically created for you when you install the Oracle
software. On Linux boxes, oratab is usually placed in the /etc directory. On Solaris servers the oratab file is placed

Chapter 2 ■ ImplementIng a Database

27

in the /var/opt/oracle directory. If, for some reason, the oratab file isn’t automatically created, you can manually
create the directory and file.

The oratab file is used in Linux/Unix environments for the following purposes:

Automating the sourcing of required OS variables•	

Automating the start and stop of Oracle databases on the server•	

The oratab file has three columns with this format:

<database_sid>:<oracle_home_dir>:Y|N

The Y or N indicates whether you want Oracle to restart automatically on reboot of the box; Y indicates yes, and N
indicates no. Automating the startup and shutdown of your database is covered in detail in Chapter 21.

Comments in the oratab file start with a pound sign (#). Here is a typical oratab file entry:

o12c:/u01/app/oracle/product/12.1.0.1/db_1:N
rcat:/u01/app/oracle/product/12.1.0.1/db_1:N

The names of the databases on the previous lines are o12c and rcat. The path of each database’s Oracle home
directory is next on the line (separated from the database name by a colon [:]).

Several Oracle-supplied utilities use the oratab file:

•	 oraenv uses oratab to set the OS variables.

•	 dbstart uses it to start the database automatically on server reboots (if the third field in
oratab is Y).

•	 dbshut uses it to stop the database automatically on server reboots (if the third field in
oratab is Y).

The oraenv tool is discussed in the following section.

Using oraenv
If you don’t properly set the required OS variables for an Oracle environment, then utilities such as SQL*Plus, Oracle
Recovery Manager (RMAN), Data Pump, and so on won’t work correctly. The oraenv utility automates the setting of
required OS variables (such as ORACLE_HOME, ORACLE_SID, and PATH) on an Oracle database server. This utility is used in
Bash, Korn, and Bourne shell environments (if you’re in a C shell environment, there is a corresponding coraenv utility).

The oraenv utility is located in the ORACLE_HOME/bin directory. You can run it manually, like this:

$. oraenv

Note that the syntax to run this from the command line requires a space between the dot (.) and the oraenv tool.
You’re prompted for ORACLE_SID and ORACLE_HOME values:

ORACLE_SID = [oracle] ?
ORACLE_HOME = [/home/oracle] ?

You can also run the oraenv utility in a noninteractive way by setting OS variables before you run it. This is useful
for scripting when you don’t want to be prompted for input:

$ export ORACLE_SID=o12c
$ export ORAENV_ASK=NO
$. oraenv

Chapter 2 ■ ImplementIng a Database

28

Keep in mind that if you set your ORACLE_SID to a value that isn’t found with the oratab file, then you may be
prompted for values such as ORACLE_HOME.

My Approach to Setting OS Variables
I don’t use Oracle’s oraenv file to set the OS variables (see the previous section, “Using oraenv,” for details of Oracle’s
approach). Instead, I use a script named oraset. The oraset script depends on the oratab file’s being in the correct
directory and expected format:

<database_sid>:<oracle_home_dir>:Y|N

As mentioned in the previous section, the Oracle installer should create an oratab file for you in the correct
directory. If it doesn’t, then you can manually create and populate the file. In Linux the oratab file is usually created
in the /etc directory. On Solaris servers the oratab file is located in the /var/opt/oracle directory.

Next, use a script that reads the oratab file and sets the OS variables. Here is an example of an oraset script that
reads the oratab file and presents a menu of choices (based on the database names in the oratab file):

#!/bin/bash
Sets Oracle environment variables.
Setup: 1. Put oraset file in /etc (Linux), in /var/opt/oracle (Solaris)
2. Ensure /etc or /var/opt/oracle is in $PATH
Usage: batch mode: . oraset <SID>
menu mode: . oraset
#==
if [−f /etc/oratab]; then
 OTAB=/etc/oratab
elif [−f /var/opt/oracle/oratab]; then
 OTAB=/var/opt/oracle/oratab
else
 echo 'oratab file not found.'
 exit
fi
#
if [−z $1]; then
 SIDLIST=$(egrep -v '#|*' ${OTAB} | cut -f1 -d:)
 # PS3 indicates the prompt to be used for the Bash select command.
 PS3='SID? '
 select sid in ${SIDLIST}; do
 if [−n $sid]; then
 HOLD_SID=$sid
 break
 fi
 done
else
 if egrep -v '#|*' ${OTAB} | grep -w "${1}:">/dev/null; then
 HOLD_SID=$1
 else
 echo "SID: $1 not found in $OTAB"
 fi
 shift

Chapter 2 ■ ImplementIng a Database

29

fi
#
export ORACLE_SID=$HOLD_SID
export ORACLE_HOME=$(egrep -v '#|*' $OTAB|grep -w $ORACLE_SID:|cut -f2 -d:)
export ORACLE_BASE=${ORACLE_HOME%%/product*}
export TNS_ADMIN=$ORACLE_HOME/network/admin
export ADR_BASE=$ORACLE_BASE/diag
export PATH=$ORACLE_HOME/bin:/usr/ccs/bin:/opt/SENSsshc/bin/\
:/bin:/usr/bin:.:/var/opt/oracle:/usr/sbin
export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib

You can run the oraset script either from the command line or from a startup file (such as .profile,
.bash_profile, or .bashrc). To run oraset from the command line, place the oraset file in a standard location,
such as /var/opt/oracle (Solaris) or /etc (Linux), and run, as follows:

$. /etc/oraset

Note that the syntax to run this from the command line requires a space between the dot (.) and the rest of the
command. When you run oraset from the command line, you should be presented with a menu such as this:

1) o12c
2) rcat
SID?

In this example you can now enter 1 or 2 to set the OS variables required for whichever database you want to use.
This allows you to set up OS variables interactively, regardless of the number of database installations on the server.

You can also call the oraset file from an OS startup file. Here is a sample entry in the .bashrc file:

. /etc/oraset

Now, every time you log in to the server, you’re presented with a menu of choices that you can use to indicate
the database for which you want the OS variables set. If you want the OS variables automatically set to a particular
database, then put an entry such as this in the .bashrc file:

. /etc/oraset o12c

The prior line will run the oraset file for the o12c database and set the OS variables appropriately.

Creating a Database
This section explains how to create an Oracle database manually with the SQL*Plus CREATE DATABASE statement.
These are the steps required to create a database:

1. Set the OS variables.

2. Configure the initialization file.

3. Create the required directories.

4. Create the database.

5. Create a data dictionary.

Each of these steps is covered in the following sections.

Chapter 2 ■ ImplementIng a Database

30

Step 1. Set the OS Variables
As mentioned previously, before you run SQL*Plus (or any other Oracle utility), you must set several OS variables. You
can either manually set these variables or use a combination of files and scripts to set the variables. Here’s an example
of setting these variables manually:

$ export ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
$ export ORACLE_SID=o12c
$ export LD_LIBRARY_PATH=/usr/lib:$ORACLE_HOME/lib
$ export PATH=$ORACLE_HOME/bin:$PATH

See the section “Setting OS Variables,” earlier in this chapter, for a complete description of these variables and
techniques for setting them.

Step 2: Configure the Initialization File
Oracle requires that you have an initialization file in place before you attempt to start the instance. The initialization file
is used to configure features such as memory and to control file locations. You can use two types of initialization files:

Server parameter binary file (•	 spfile)

•	 init.ora text file

Oracle recommends that you use an spfile for reasons such as these:

You can modify the contents of the •	 spfile with the SQL ALTER SYSTEM statement.

You can use remote-client SQL sessions to start the database without requiring a local (client) •	
initialization file.

These are good reasons to use an spfile. However, some shops still use the traditional init.ora file. The
init.ora file also has advantages:

You can directly edit it with an OS text editor.•	

You can place comments in it that detail a history of modifications.•	

When I first create a database, I find it easier to use an init.ora file. This file can be easily converted later to an
spfile if required (via the CREATE SPFILE FROM PFILE statement). In this example my database name is o12c, so I
place the following contents in a file named inito12c.ora and put the file in the ORACLE_HOME/dbs directory:

db_name=o12c
db_block_size=8192
memory_target=300M
memory_max_target=300M
processes=200
control_files=(/u01/dbfile/o12c/control01.ctl,/u02/dbfile/o12c/control02.ctl)
job_queue_processes=10
open_cursors=500
fast_start_mttr_target=500
undo_management=AUTO
undo_tablespace=UNDOTBS1
remote_login_passwordfile=EXCLUSIVE

Chapter 2 ■ ImplementIng a Database

31

Ensure that the initialization file is named correctly and located in the appropriate directory. This is critical
because when starting your instance, Oracle first looks in the ORACLE_HOME/dbs directory for parameter files with
specific formats, in this order:

•	 spfile<SID>.ora

•	 spfile.ora

•	 init<SID>.ora

In other words, Oracle first looks for a file named spfile<SID>.ora. If found, the instance is started; if not, Oracle
looks for spfile.ora and then init<SID>.ora. If one of these files is not found, Oracle throws an error.

This may cause some confusion if you’re not aware of the files that Oracle looks for, and in what order. For
example, you may make a change to an init<SID>.ora file and expect the parameter to be instantiated after stopping
and starting your instance. If there is an spfile<SID>.ora in place, the init<SID>.ora is completely ignored.

Note ■ You can manually instruct Oracle to look for a text parameter file in a directory, using the
pfile=<directory/filename> clause with the startup command; under normal circumstances, you shouldn’t need
to do this. You want the default behavior, which is for Oracle to find a parameter file in the ORACLE_HOME/dbs directory
(for linux/Unix). the default directory on Windows is ORACLE_HOME/database.

Table 2-1 lists best practices to consider when configuring an Oracle initialization file.

Table 2-1. Initialization File Best Practices

Best Practice Reasoning

Oracle recommends that you use a binary server
parameter file (spfile). However, I still use the old
text init.ora files in some cases.

Use whichever type of initialization parameter file
you’re comfortable with. If you have a requirement
to use an spfile, then by all means, implement one.

In general, don’t set initialization parameters if
you’re not sure of their intended purpose. When
in doubt, use the default.

Setting initialization parameters can have
far-reaching consequences in terms of
database performance. Only modify parameters
if you know what the resulting behavior will be.

For 11g and higher, set the memory_target and
memory_max_target initialization parameters.

Doing this allows Oracle to manage all memory
components for you.

For 10g, set the sga_target and sga_target_max
initialization parameters.

Doing this lets Oracle manage most memory
components for you.

For 10g, set pga_aggregate_target and
workarea_size_policy.

Doing this allows Oracle to manage the memory
used for the sort space.

Starting with 10g, use the automatic UNDO feature.
This is set using the undo_management and
undo_tablespace parameters.

Doing this allows Oracle to manage most features of
the UNDO tablespace.

Set open_cursors to a higher value than the default.
I typically set it to 500. Active online transaction processing
(OLTP) databases may need a much higher value.

The default value of 50 is almost never enough.
Even a small, one-user application can exceed
the default value of 50 open cursors.

(continued)

Chapter 2 ■ ImplementIng a Database

32

Step 3: Create the Required Directories
Any OS directories referenced in the parameter file or CREATE DATABASE statement must be created on the server
before you attempt to create a database. For instance, in the previous section’s initialization file, the control files are
defined as

control_files=(/u01/dbfile/o12c/control01.ctl,/u02/dbfile/o12c/control02.ctl)

From the previous line, ensure that you’ve created the directories /u01/dbfile/o12c and /u02/dbfile/o12c
(modify this according to your environment). In Linux/Unix you can create directories, including any parent
directories required, by using the mkdir command with the p switch:

$ mkdir -p /u01/dbfile/o12c
$ mkdir -p /u02/dbfile/o12c

Also make sure you create any directories required for data files and online redo logs referenced in the CREATE
DATABASE statement (see step 4). For this example, here are the additional directories required:

$ mkdir -p /u01/oraredo/o12c
$ mkdir -p /u02/oraredo/o12c

If you create the previous directories as the root user, ensure that the oracle user and dba groups are properly
set to own the directories, subdirectories, and files. This example recursively changes the owner and group of the
following directories:

chown -R oracle:dba /u01
chown -R oracle:dba /u02

Step 4: Create the Database
After you’ve established OS variables, configured an initialization file, and created any required directories, you can
now create a database. This step explains how to use the CREATE DATABASE statement to create a database.

Before you can run the CREATE DATABASE statement, you must start the background processes and allocate
memory via the STARTUP NOMOUNT statement:

$ sqlplus / as sysdba
SQL> startup nomount;

Best Practice Reasoning

Name the control files with the pattern
/<mount_point>/dbfile/<database_name>/control0N.ctl.

This deviates slightly from the OFA standard.
I find this location easier to navigate to, as
opposed to being located under ORACLE_BASE.

Use at least two control files, preferably in different
locations, using different disks.

If one control file becomes corrupt, it’s always a
good idea to have at least one other control file
available.

Table 2-1. (continued)

Chapter 2 ■ ImplementIng a Database

33

When you issue a STARTUP NOMOUNT statement, SQL*Plus attempts to read the initialization file in the
ORACLE_HOME/dbs directory (see step 2). The STARTUP NOMOUNT statement instantiates the background processes and
memory areas used by Oracle. At this point, you have an Oracle instance, but you have no database.

Note ■ an Oracle instance is defined as the background processes and memory areas. the Oracle database is defined
as the physical files (data files, control files, online redo logs) on disk.

Listed next is a typical Oracle CREATE DATABASE statement:

CREATE DATABASE o12c
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 680
 CHARACTER SET AL32UTF8
DATAFILE
'/u01/dbfile/o12c/system01.dbf'
 SIZE 500M REUSE
 EXTENT MANAGEMENT LOCAL
UNDO TABLESPACE undotbs1 DATAFILE
'/u01/dbfile/o12c/undotbs01.dbf'
 SIZE 800M
SYSAUX DATAFILE
'/u01/dbfile/o12c/sysaux01.dbf'
 SIZE 500M
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
'/u01/dbfile/o12c/temp01.dbf'
 SIZE 500M
DEFAULT TABLESPACE USERS DATAFILE
'/u01/dbfile/o12c/users01.dbf'
 SIZE 20M
LOGFILE GROUP 1
 ('/u01/oraredo/o12c/redo01a.rdo',
 '/u02/oraredo/o12c/redo01b.rdo') SIZE 50M,
 GROUP 2
 ('/u01/oraredo/o12c/redo02a.rdo',
 '/u02/oraredo/o12c/redo02b.rdo') SIZE 50M,
 GROUP 3
 ('/u01/oraredo/o12c/redo03a.rdo',
 '/u02/oraredo/o12c/redo03b.rdo') SIZE 50M
USER sys IDENTIFIED BY foo
USER system IDENTIFIED BY foo;

In this example the script is placed in a file named credb.sql and is run from the SQL*Plus prompt as the
sys user:

SQL> @credb.sql

Chapter 2 ■ ImplementIng a Database

34

If it’s successful, you should see the following message:

Database created.

Note ■ see Chapter 23 for details on creating a pluggable database.

If any errors are thrown while the CREATE DATABASE statement is running, check the alert log file. Typically, errors
occur when required directories don’t exist, the memory allocation isn’t sufficient, or an OS limit has been exceeded.
If you’re unsure of the location of your alert log, issue the following query:

SQL> select value from v$diag_info where name = 'Diag Trace';

The prior query should work even when your database is in the nomount state. Another way to quickly find the
alert log file is from the OS:

$ cd $ORACLE_BASE
$ find . -name "alert*.log"

Tip ■ the default format for the name of the alert log file is alert_<SID>.log.

There are few key things to point out about the prior CREATE DATABASE statement example. Note that the SYSTEM
data file is defined as locally managed. This means that any tablespace created in this database must be locally
managed (as opposed to dictionary managed). Oracle throws an error if you attempt to create a dictionary-managed
tablespace in this database. This is the desired behavior.

A dictionary-managed tablespace uses the Oracle data dictionary to manage extents and free space, whereas
a locally managed tablespace uses a bitmap in each data file to manage its extents and free space. Locally managed
tablespaces have these advantages:

Performance is increased.•	

No coalescing is required.•	

Contention for resources in the data dictionary is reduced.•	

Recursive space management is reduced.•	

Also note that the TEMP tablespace is defined as the default temporary tablespace. This means that any user
created in the database automatically has the TEMP tablespace assigned to him or her as the default temporary
tablespace. After you create the data dictionary (see step 5), you can verify the default temporary tablespace with
this query:

select *
from database_properties
where property_name = 'DEFAULT_TEMP_TABLESPACE';

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ ImplementIng a Database

35

Finally, note that the USERS tablespace is defined as the default permanent tablespace for any users created that
don’t have a default tablespace defined in a CREATE USER statement. After you create the data dictionary (see step 5)
you can run this query to determine the default temporary tablespace:

select *
from database_properties
where property_name = 'DEFAULT_PERMANENT_TABLESPACE';

Table 2-2 lists best practices to consider when you’re creating an Oracle database.

Table 2-2. Best Practices for Creating an Oracle Database

Best Practice Reasoning

Ensure that the SYSTEM tablespace is
locally managed.

Doing this enforces that all tablespaces created in this
database are locally managed.

Use the REUSE clause with caution. Normally,
you should use it only when you’re re-creating
a database.

The REUSE clause instructs Oracle to overwrite existing
files, regardless of whether they’re in use. This is
dangerous.

Create a default temporary tablespace with
TEMP somewhere in the name.

Every user should be assigned a temporary tablespace of
the type TEMP, including the SYS user. If you don’t specify a
default temporary tablespace, then the SYSTEM tablespace
is used. You never want a user to be assigned a temporary
tablespace of SYSTEM. If your database doesn’t have a
default temporary tablespace, use the ALTER DATABASE
DEFAULT TEMPORARY TABLESPACE statement to assign one.

Create a default permanent tablespace
named USERS.

This ensures that users are assigned a default permanent
tablespace other than SYSTEM. If your database doesn’t
have a default permanent tablespace, use the ALTER
DATABASE DEFAULT TABLESPACE statement to assign one.

Use the USER SYS and USER SYSTEM clauses
to specify nondefault passwords.

Doing this creates the database with nondefault
passwords for database accounts that are usually the
first targets for hackers.

Create at least three redo log groups,
with two members each.

At least three redo log groups provides time for the archive
process to write out archive redo logs between switches.
Two members mirror the online redo log members,
providing some fault tolerance.

Give the redo logs a name such as redoNA.rdo. This deviates slightly from the OFA standard, but I’ve
had files with the extension.log accidentally deleted
more than once (it shouldn’t ever happen, but it has).

Make the database name somewhat intelligent,
such as PAPRD, PADEV1, or PATST1.

This helps you determine what database you’re
operating in and whether it’s a production, development,
or test environment.

Use the ? variable when you’re creating the
data dictionary (see step 5). Don’t hard-code
the directory path.

SQL*Plus interprets the ? as the directory contained in
the OS ORACLE_HOME variable. This prevents you from
accidentally running scripts from the wrong version of
ORACLE_HOME.

Chapter 2 ■ ImplementIng a Database

36

Note that the CREATE DATABASE statement used in this step deviates slightly from the OFA standard in terms
of the directory structure. I prefer not to place the Oracle data files, online redo logs, and control files under
ORACLE_BASE (as specified by the OFA standard). I instead directly place files under directories named
/<mount_point>/<file_type>/<database_name>, because the path names are much shorter. The shorter path names
make command line navigation to directories easier, and the names fit more cleanly in the output of SQL SELECT
statements. Figure 2-1 displays this deviation from the OFA standard.

/
root directory

/u02

/u03

/u04

/u05

/u06

oradump

oraarch

oraredo

oraredo

dbname1

dbname1

dbname1

dbname1

dbname1

dbname1

dbname1

dbname1

dbfile

dbfile

dbfile

dbfile

/u07

/u08

/u09

system01.dbf, temp01.dbf, data01.dbf

sysaux01.dbf, undo01.dbf, index01.dbf, control01.ctl

data02.dbf, temp02.dbf, users01.dbf, control02.ctl

index02.dbf, undo02.dbf, control03.ctl

redo01a.rdo, redo02a.rdo, redo03a.rdo

redo01b.rdo, redo02b.rdo, redo03b.rdo

log archive_dest_1, log_archive_format <dbname1>_%t_%s_%r.arc

backup piecerman

datapump data pump backups

/u01 app oracle product 12.1.0 db_1 bin

If using FRA
db _recovery_file_dest

(init parameter)

dbname1

/u10 fra

YYYY_MM_DD

control file

online redo log

backup piecebackupset

controlfile

archivelog archive redo log

YYYY_MM_DD

onlinelog

autobackup YYYY_MM_DD backup piece

flashback flashback log

datafile image copy

/home orainstoracle
installation media

12.1.0

/etc oraInst.loc

oratab

oraset

database runInstallerbin

sql

Figure 2-1. A slight deviation from the OFA standard for laying out database files

It’s not my intention to have you use nonstandard OFA structures. Rather, do what makes sense for your
environment and requirements. Apply reasonable standards that foster manageability, maintainability, and
scalability.

Step 5. Create a Data Dictionary
After your database is successfully created, you can instantiate the data dictionary by running two scripts. These
scripts are created when you install the Oracle binaries. You must run these scripts as the SYS schema:

SQL> show user
USER is "SYS"

Chapter 2 ■ ImplementIng a Database

37

Before I create the data dictionary, I like to spool an output file that I can inspect in the event of
unexpected errors:

SQL> spool create_dd.lis

Now, create the data dictionary:

SQL> @?/rdbms/admin/catalog.sql
SQL> @?/rdbms/admin/catproc.sql

After you successfully create the data dictionary, as the SYSTEM schema, create the product user profile tables:

SQL> connect system/<password>
SQL> @?/sqlplus/admin/pupbld

These tables allow SQL*Plus to disable commands on a user-by-user basis. If the pupbld.sql script isn’t run, then
all non-sys users see the following warning when logging in to SQL*Plus:

Error accessing PRODUCT_USER_PROFILE
Warning: Product user profile information not loaded!
You may need to run PUPBLD.SQL as SYSTEM

These errors can be ignored. If you don’t want to see them when logging in to SQL*Plus, make sure you run the
pupbld.sql script.

At this point, you should have a fully functional database. You next need to configure and implement your
listener to enable remote connectivity and, optionally, set up a password file. These tasks are described in the next
two sections.

Configuring and Implementing the Listener
After you’ve installed binaries and created a database, you need to make the database accessible to remote-client
connections. You do this by configuring and starting the Oracle listener. Appropriately named, the listener is the
process on the database server that “listens” for connection requests from remote clients. If you don’t have a listener
started on the database server, then you can’t connect from a remote client. There are two methods for setting up a
listener: manually and using the Oracle Net Configuration Assistant (netca).

Manually Configuring a Listener
When you’re setting up a new environment, manually configuring the listener is a two-step process:

1. Configure the listener.ora file.

2. Start the listener.

The listener.ora file is located by default in the ORACLE_HOME/network/admin directory. This is the same
directory that the TNS_ADMIN OS variable should be set to. Here is a sample listener.ora file that contains network
configuration information for one database:

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =

Chapter 2 ■ ImplementIng a Database

38

 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = oracle12c)(PORT = 1521))
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = o12c)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0.1/db_1)
 (SID_NAME = o12c)
)
)

This code listing has two sections. The first defines the listener name; in this example the listener name is
LISTENER. The second defines the list of SIDs for which the listener is listening for incoming connections (to the
database). The format of the SID list name is SID_LIST_<name of listener>. The name of the listener must appear
in the SID list name. The SID list name in this example is SID_LIST_LISTENER.

Also, you don’t have to explicitly specify the SID_LIST_LISTENER section (the second section) in the prior code
listing. This is because the process monitor (PMON) background process will automatically register any running
databases as a service with the listener; this is known as dynamic registration. However, some DBAs prefer to explicitly
list which databases should be registered with the listener and therefore include the second section; this is known as
static registration.

After you have a listener.ora file in place, you can start the listener background process with the
lsnrctl utility:

$ lsnrctl start

You should see informational messages, such as the following:

Listening Endpoints Summary. . .
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracle12c)(PORT=1521)))
Services Summary. . .
Service "o12c" has 1 instance(s).

You can verify the services for which a listener is listening via

$ lsnrctl services

You can check the status of the listener with the following query:

$ lsnrctl status

For a complete listing of listener commands, issue this command:

$ lsnrctl help

Tip ■ Use the linux/Unix ps -ef | grep tns command to view any listener processes running on a server.

Chapter 2 ■ ImplementIng a Database

39

Implementing a Listener with the Net Configuration Assistant
The netca utility assists you with all aspects of implementing a listener. You can run the netca tool in either graphical
or silent mode. Using the netca in graphical mode is easy and intuitive. To use the netca in graphical mode, ensure
that you have the proper X software installed, then issue the xhost + command, and check that your DISPLAY variable
is set; for example,

$ xhost +
$ echo $DISPLAY
:0.0

You can now run the netca utility:

$ netca

Next, you will be guided through several screens from which you can choose options such as name of the listener,
desired port, and so on.

You can also run the netca utility in silent mode with a response file. This mode allows you to script the process
and ensure repeatability when creating and implementing listeners. First, find the default listener response file within
the directory structure that contains the Oracle install media:

$ find . -name "netca.rsp"
./12.1.0.1/database/response/netca.rsp

Now, make a copy of the file so that you can modify it:

$ cp 12.1.0.1/database/response/netca.rsp mynet.rsp

If you want to change the default name or other attributes, then edit the mynet.rsp file with an OS utility
such as vi:

$ vi mynet.rsp

For this example I haven’t modified any values within the mynet.rsp file. In other words, I’m using all the default
values already contained within the response file. Next, the netca utility is run in silent mode:

$ netca -silent -responsefile /home/oracle/orainst/mynet.rsp

The utility creates a listener.ora and sqlnet.ora file in the ORACLE_HOME/network/admin directory and starts a
default listener.

Connecting to a Database through the Network
Once the listener has been configured and started, you can test remote connectivity from a SQL*Plus client, as follows:

$ sqlplus user/pass@'server:port/service_name'

In the next line of code, the user and password are system/foo, connecting the oracle12c server, port 1521, to a
database named o12c:

$ sqlplus system/foo@'oracle12c:1521/o12c'

Chapter 2 ■ ImplementIng a Database

40

This example demonstrates what is known as the easy connect naming method of connecting to a database.
It’s easy because it doesn’t rely on any setup files or utilities. The only information you need to know is username,
password, server, port, and service name (SID).

Another common connection method is local naming. This method relies on connection information in the
ORACLE_HOME/network/admin/tnsnames.ora file. In this example the tnsnames.ora file is edited, and the following
Transparent Network Substrate (TNS) (Oracle’s network architecture) entry is added:

o12c =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = oracle12c)(PORT = 1521))
 (CONNECT_DATA = (SERVICE_NAME = o12c)))

Now, from the OS command line, you establish a connection by referencing the o12c TNS information that was
placed in the tnsnames.ora file:

$ sqlplus system/foo@o12c

This connection method is local because it relies on a local client copy of the tnsnames.ora file to determine the
Oracle Net connection details. By default, SQL*Plus inspects the directory defined by the TNS_ADMIN variable for a
file named tnsnames.ora. If not found, then the directory defined by ORACLE_HOME/network/admin is searched. If the
tnsnames.ora file is found, and if it contains the alias specified in the SQL*Plus connection string (in this example,
o12c), then the connection details are derived from the entry in the tnsnames.ora file.

The other connection-naming methods that Oracle uses are external naming and directory naming. See the
Oracle Net Services Administrator’s Guide, which can be freely downloaded from the Technology Network area of the
Oracle web site (http://otn.oracle.com), for further details.

Tip ■ You can use the netca utility to create a tnsnames.ora file. start the utility, and choose the local net service
name Configuration option. You will be prompted for input, such as the sID, hostname, and port.

Creating a Password File
Creating a password file is optional. There are some good reasons for requiring a password file:

You want to assign non-•	 sys users sys* privileges (sysdba, sysoper, sysbackup, and so on).

You want to connect remotely to your database via Oracle Net with •	 sys* privileges.

An Oracle feature or utility requires the use of a password file.•	

Perform the following steps to implement a password file:

1. Create the password file with the orapwd utility.

2. Set the initialization parameter REMOTE_LOGIN_PASSWORDFILE to EXCLUSIVE.

In a Linux/Unix environment, use the orapwd utility to create a password file, as follows:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapw<ORACLE_SID> password=<sys password>

http://otn.oracle.com/

Chapter 2 ■ ImplementIng a Database

41

In a Linux/Unix environment the password file is usually stored in ORACLE_HOME/dbs; in Windows it’s typically
placed in the ORACLE_HOME\database directory.

The format of the filename that you specify in the previous command may vary by OS. For instance, in Windows
the format is PWD<ORACLE_SID>.ora. The following example shows the syntax in a Windows environment:

c:\> cd %ORACLE_HOME%\database
c:\> orapwd file=PWD<ORACLE_SID>.ora password=<sys password>

To enable the use of the password file, set the initialization parameter REMOTE_LOGIN_PASSWORDFILE to EXCLUSIVE
(this is the default value). If the parameter is not set to EXCLUSIVE, then you’ll have to modify your parameter file:

SQL> alter system set remote_login_passwordfile='EXCLUSIVE' scope=spfile;

You need to stop and start the instance to instantiate the prior setting.
You can add users to the password file via the GRANT <any SYS privilege> statement. The following example

grants SYSDBA privileges to the heera user (and thus adds heera to the password file):

 VSQL> grant sysdba to heera;
Grant succeeded.

Enabling a password file also allows you to connect to your database remotely with SYS*-level privileges via an
Oracle Net connection. This example shows the syntax for a remote connection with SYSDBA-level privileges:

$ sqlplus <username>/<password>@<database connection string> as sysdba

This allows you to do remote maintenance with sys* privileges (sysdba, sysoper, sysbackup, and so on) that
would otherwise require your logging in to the database server physically. You can verify which users have sys*
privileges by querying the V$PWFILE_USERS view:

SQL> select * from v$pwfile_users;

Here is some sample output:

USERNAME SYSDB SYSOP SYSAS SYSBA SYSDG SYSKM CON_ID
------------------------------ ----- ----- ----- ----- ----- ----- ----------
SYS TRUE TRUE FALSE FALSE FALSE FALSE 0

The concept of a privileged user is also important to RMAN backup and recovery. Like SQL*Plus, RMAN uses OS
authentication and password files to allow privileged users to connect to the database. Only a privileged account is
allowed to back up, restore, and recover a database.

Starting and Stopping the Database
Before you can start and stop an Oracle instance, you must set the proper OS variables (previously covered in this
chapter). You also need access to either a privileged OS account or a privileged database user account. Connecting as
a privileged user allows you to perform administrative tasks, such as starting, stopping, and creating databases. You
can use either OS authentication or a password file to connect to your database as a privileged user.

Chapter 2 ■ ImplementIng a Database

42

Understanding OS Authentication
OS authentication means that if you can log in to a database server via an authorized OS account, you’re allowed to
connect to your database without the requirement of an additional password. A simple example demonstrates this
concept. First, the id command is used to display the OS groups to which the oracle user belongs:

$ id
uid=500(oracle) gid=506(oinstall) groups=506(oinstall),507(dba),508(oper)

Next, a connection to the database is made with SYSDBA privileges, purposely using a bad (invalid) username
and password:

$ sqlplus bad/notgood as sysdba

I can now verify that the connection as SYS was established:

SYS@o12c> show user
USER is "SYS"

How is it possible to connect to the database with an incorrect username and password? Actually, it’s not a bad
thing (as you might initially think). The prior connection works because Oracle ignores the username/password
provided, as the user was first verified via OS authentication. In that example the oracle OS user belongs to the dba
OS group and is therefore allowed to make a local connection to the database with SYSDBA privileges without having to
provide a correct username and password.

See Table 1-1, in Chapter 1, for a complete description of OS groups and the mapping to corresponding database
privileges. Typical groups include dba and oper; these groups correspond to sysdba and sysoper database privileges,
respectively. The sysdba and sysoper privileges allow you to perform administrative tasks, such as starting and
stopping your database.

In a Windows environment an OS group is automatically created (typically named ora_dba) and assigned to the
OS user that installs the Oracle software. You can verify which OS users belong to the ora_dba group as follows: select
Start ➤ Control Panel ➤ Administrative Tools ➤ Computer Management ➤ Local Users and Groups ➤ Groups. You
should see a group with a name such as ora_dba. You can click that group and view which OS users are assigned to
it. In addition, for OS authentication to work in Windows environments, you must have the following entry in your
sqlnet.ora file:

SQLNET.AUTHENTICATION_SERVICES=(NTS)

The sqlnet.ora file is usually located in the ORACLE_HOME/network/admin directory.

Starting the Database
Starting and stopping your database is a task that you perform frequently. To start/stop your database, connect with a
sysdba- or sysoper- privileged user account, and issue the startup and shutdown statements. The following example
uses OS authentication to connect to the database:

$ sqlplus / as sysdba

After you’re connected as a privileged account, you can start your database, as follows:

SQL> startup;

Chapter 2 ■ ImplementIng a Database

43

For the prior command to work, you need either an spfile or init.ora file in the ORACLE_HOME/dbs directory.
See the section “Step 2: Configure the Initialization File,” earlier in this chapter, for details.

Note ■ stopping and restarting your database in quick succession is known colloquially in the Dba world as bouncing
your database.

When your instance starts successfully, you should see messages from Oracle indicating that the system global
area (SGA) has been allocated. The database is mounted and then opened:

ORACLE instance started.

Total System Global Area 313159680 bytes
Fixed Size 2259912 bytes
Variable Size 230687800 bytes
Database Buffers 75497472 bytes
Redo Buffers 4714496 bytes
Database mounted.
Database opened.

From the prior output the database startup operation goes through three distinct phases in opening an Oracle
database:

1. Starting the instance

2. Mounting the database

3. Opening the database

You can step through these one at a time when you start your database. First, start the Oracle instance (background
processes and memory structures):

SQL> startup nomount;

Next, mount the database. At this point, Oracle reads the control files:

SQL> alter database mount;

Finally, open the data files and online redo log files:

SQL> alter database open;

This startup process is depicted graphically in Figure 2-2.

Chapter 2 ■ ImplementIng a Database

44

When you issue a STARTUP statement without any parameters, Oracle automatically steps through the three
startup phases (nomount, mount, open). In most cases, you will issue a STARTUP statement with no parameters to start
your database. Table 2-3 describes the meanings of parameters that you can use with the database STARTUP statement.

SQL > startup nomount;

SQL > alter database mount;

SQL > alter database open;

control files

online redo
logs

datafiles

memory
structures

background
processes

SQL > startup;

initialization
file

Figure 2-2. Phases of Oracle startup

Table 2-3. Parameters Available with the startup Command

Parameter Meaning

FORCE Shuts down the instance with ABORT before restarting it; useful for troubleshooting
startup issues; not normally used

RESTRICT Only allows users with the RESTRICTED SESSION privilege to connect to the database

PFILE Specifies the client parameter file to be used when starting the instance

QUIET Suppresses the display of SGA information when starting the instance

NOMOUNT Starts background processes and allocates memory; doesn’t read control files

MOUNT Starts background processes, allocates memory, and reads control files

OPEN Starts background processes, allocates memory, reads control files, and opens online
redo logs and data files

OPEN RECOVER Attempts media recovery before opening the database

OPEN READ ONLY Opens the database in read-only mode

UPGRADE Used when upgrading a database

DOWNGRADE Used when downgrading a database

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ ImplementIng a Database

45

Stopping the Database
Normally, you use the SHUTDOWN IMMEDIATE statement to stop a database. The IMMEDIATE parameter instructs Oracle
to halt database activity and roll back any open transactions:

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.

Table 2-4 provides a detailed definition of the parameters available with the SHUTDOWN statement. In most cases,
SHUTDOWN IMMEDIATE is an acceptable method of shutting down your database. If you issue the SHUTDOWN command
with no parameters, it’s equivalent to issuing SHUTDOWN NORMAL.

Table 2-4. Parameters Available with the SHUTDOWN Command

Parameter Meaning

NORMAL Wait for users to log out of active sessions before shutting down.

TRANSACTIONAL Wait for transactions to finish, and then terminate the session.

TRANSACTIONAL LOCAL Perform a transactional shutdown for local instance only.

IMMEDIATE Terminate active sessions immediately. Open transactions are rolled back.

ABORT Terminate the instance immediately. Transactions are terminated and aren’t rolled back.

Starting and stopping your database is a fairly simple process. If the environment is set up correctly, you should
be able to connect to your database and issue the appropriate STARTUP and SHUTDOWN statements.

Tip ■ If you experience any issues with starting or stopping your database, look in the alert log for details. the alert log
usually has a pertinent message regarding any problems.

You should rarely need to use the SHUTDOWN ABORT statement. Usually, SHUTDOWN IMMEDIATE is sufficient. Having
said that, there is nothing wrong with using SHUTDOWN ABORT. If SHUTDOWN IMMEDIATE isn’t working for any reason,
then use SHUTDOWN ABORT.

On a few, rare occasions the SHUTDOWN ABORT will fail to work. In those situations, you can use ps -ef | grep
smon to locate the Oracle system-monitor process and then use the Linux/Unix kill command to terminate the
instance. When you kill a required Oracle background process, this causes the instance to abort. Obviously, you
should use an OS kill command only as a last resort.

DataBaSe VS. INStaNCe

although Dbas often use the terms database and instance synonymously, these two terms refer to very different
architectural components. In Oracle the term database denotes the physical files that make up a database:
the data files, online redo log files, and control files. the term instance denotes the background processes and
memory structures.

Chapter 2 ■ ImplementIng a Database

46

For instance, you can create an instance without having a database present. before a database is physically
created, you must start the instance with the STARTUP NOMOUNT statement. In this state you have background
processes and memory structures without any associated data files, online redo logs, or control files. the
database files aren’t created until you issue the CREATE DATABASE statement.

another important point to remember is that an instance can only be associated with one database, whereas a
database can be associated with many different instances (as with Oracle real application Clusters [raC]). an
instance can mount and open a database one time only. each time you stop and start a database, a new instance
is associated with it. previously created background processes and memory structures are never associated with
a database.

to demonstrate this concept, close a database with the ALTER DATABASE CLOSE statement:

SQL> alter database close;

If you attempt to restart the database, you receive an error:

SQL> alter database open;
ERROR at line 1:
ORA-16196: database has been previously opened and closed

this is because an instance can only ever mount and open one database. You must stop and start a new instance
before you can mount and open the database.

Using the dbca to Create a Database
You can also use the dbca utility to create a database. This utility works in two modes: graphical and silent. To use the
dbca in graphical mode, ensure you have the proper X software installed, then issue the xhost + command, and make
certain your DISPLAY variable is set; for example,

$ xhost +
$ echo $DISPLAY
:0.0

To run the dbca in graphical mode, type in dbca from the OS command line:

$ dbca

The graphical mode is very intuitive and will walk you through all aspects of creating a database. You may prefer
to use this mode if you are new to Oracle and want to be explicitly prompted with choices.

You can also run the dbca in silent mode with a response file. In some situations, using dbca in graphical mode
isn’t feasible. This may be due to slow networks or the unavailability of X software. To create a database, using dbca in
silent mode, perform the following steps:

1. Locate the dbca.rsp file.

2. Make a copy of the dbca.rsp file.

3. Modify the copy of the dbca.rsp file for your environment.

4. Run the dbca utility in silent mode.

Chapter 2 ■ ImplementIng a Database

47

First, navigate to the location in which you copied the Oracle database installation software, and use the find
command to locate dbca.rsp:

$ find . -name dbca.rsp
./12.1.0.1/database/response/dbca.rsp

Copy the file so that you’re not modifying the original (in this way, you’ll always have a good, original file):

$ cp dbca.rsp mydb.rsp

Now, edit the mydb.rsp file. Minimally, you need to modify the following parameters: GDBNAME, SID, SYSPASSWORD,
SYSTEMPASSWORD, SYSMANPASSWORD, DBSNMPPASSWORD, DATAFILEDESTINATION, STORAGETYPE, CHARACTERSET, and
NATIONALCHARACTERSET. Following is an example of modified values in the mydb.rsp file:

[CREATEDATABASE]
GDBNAME = "O12DEV"
SID = "O12DEV"
TEMPLATENAME = "General_Purpose.dbc"
SYSPASSWORD = "foo"
SYSTEMPASSWORD = "foo"
SYSMANPASSWORD = "foo"
DBSNMPPASSWORD = "foo"
DATAFILEDESTINATION ="/u01/dbfile"
STORAGETYPE="FS"
CHARACTERSET = "AL32UTF8"
NATIONALCHARACTERSET= "UTF8"

Next, run the dbca utility in silent mode, using a response file:

$ dbca -silent -responseFile /home/oracle/orainst/mydb.rsp

You should see output such as

Copying database files
1% complete
. . .
Creating and starting Oracle instance
. . .
62% complete
Completing Database Creation
. . .
100% complete
Look at the log file . . . for further details.

If you look in the log files, note that the dbca utility uses the rman utility to restore the data files used for the
database. Then, it creates the instance and performs postinstallation steps. On a Linux server you should also have an
entry in the /etc/oratab file for your new database.

Many DBAs launch dbca and configure databases in the graphical mode, but a few exploit the options available to
them using the response file. With effective utilization of the response file, you can consistently automate the database
creation process. You can modify the response file to build databases on ASM and even create RAC databases. In
addition, you can control just about every aspect of the response file, similar to launching the dbca in graphical mode.

Chapter 2 ■ ImplementIng a Database

48

Tip ■ You can view all options of the dbca via the help parameter: dbca -help

USING DBCa tO GeNerate a Create DataBaSe StateMeNt

You can use the dbca utility to generate a CREATE DATABASE statement. You can perform this either interactively
with the graphical interface or via silent mode. the key is to choose the “custom database template” and also
specify the option to “generate database creation scripts.” this example uses the silent mode to generate a script
that contains a CREATE DATABASE statement:

$ dbca -silent -generateScripts -customCreate -templateName New_Database.dbt \
 -gdbName DKDEV

the prior line of code instructs the dbca to create a script named CreateDB.sql and place it in the
ORACLE_BASE/admin/DKDEV/scripts directory. the CreateDB.sql file contains a CREATE DATABASE statement
within it. also created is an init.ora file for initializing your instance.

In this example the scripts required to create a database are generated for you. no database is created until you
manually run the scripts.

this technique gives you an automated method for generating a CREATE DATABASE statement. this is especially
useful if you are new to Oracle and are unsure of how to construct a CREATE DATABASE statement or if you are
using a new version of the database and want a valid CREATE DATABASE statement generated by an Oracle utility.

Dropping a Database
If you have an unused database that you need to drop, you can use the DROP DATABASE statement to accomplish this.
Doing so removes all data files, control files, and online redo logs associated with the database.

Needless to say, use extreme caution when dropping a database. Before you drop a database, ensure that you’re
on the correct server and are connected to the correct database. On a Linux/Unix system, issue the following OS
command from the OS prompt:

$ uname -a

Next, connect to SQL*Plus, and be sure you’re connected to the database you want to drop:

SQL> select name from v$database;

After you’ve verified that you’re in the correct database environment, issue the following SQL commands from a
SYSDBA-privileged account:

SQ> shutdown immediate;
SQL> startup mount exclusive restrict;
SQL> drop database;

Chapter 2 ■ ImplementIng a Database

49

Caution ■ Obviously, you should be careful when dropping a database. You aren’t prompted when dropping the
database and, as of this writing, there is no UNDROP ACCIDENTALLY DROPPED DATABASE command. Use extreme caution
when dropping a database, because this operation removes data files, control files, and online redo log files.

The DROP DATABASE command is useful when you have a database that needs to be removed. It may be a test
database or an old database that is no longer used. The DROP DATABASE command doesn’t remove old archive redo log
files. You must manually remove those files with an OS command (such as rm, in Linux/Unix, or del, at the Windows
command prompt). You can also instruct RMAN to remove archive redo log files.

How Many Databases on One Server?
Sometimes, when you’re creating new databases, this question arises: How many databases should you put on one
server? One extreme is to have only one database running on each database server. This architecture is illustrated in
Figure 2-3, which shows two different database servers, each with its own installation of the Oracle binaries. This type
of setup is profitable for the hardware vendor but in many environments isn’t an economical use of resources.

server1

database1

Oracle
binaries

Oracle
binaries

appuser1instance1

server2

database2
appuser2instance2

Figure 2-3. Architecture with one server per database

If you have enough memory, central processing unit (CPU), and disk resources, then you should consider
creating multiple databases on one server. You can create a new installation of the Oracle binaries for each database
or have multiple databases share one set of Oracle binaries. Figure 2-4 shows a configuration using one set of Oracle
binaries that’s shared by multiple databases on one server. Of course, if you have requirements for different versions of
the Oracle binaries, you must have multiple Oracle homes to house those installations.

Chapter 2 ■ ImplementIng a Database

50

If you don’t have the CPU, memory, or disk resources to create multiple databases on one server, consider using
one database to host multiple applications and users, as shown in Figure 2-5. In environments such as this, be careful
not to use public synonyms, because there may be collisions between applications. It’s typical to create different
schemas and tablespaces to be used by different applications in such environments.

server1

pdb1
Oracle
binaries

appuser1

appuser2

container
database

pdb2

instance1

Figure 2-6. One container database with multiple pluggable databases

server1

database1
Oracle
binaries

appuser1instance1

database2
appuser2instance2

Figure 2-4. Multiple databases sharing one set of Oracle binaries on a server

server1

database1

appuser1
instance1

appuser2

Oracle
binaries

Figure 2-5. One database used by multiple applications and users

With Oracle Database 12c you have the option of using the pluggable database feature. This technology allows
you to house several pluggable databases within one container database. The pluggable databases share the instance,
background processes, undo, and Oracle binaries but function as completely separate databases. Each pluggable
database has its own set of tablespaces (including SYSTEM) that are not visible to any other pluggable databases within
the container database. This allows you to securely implement an isolated database that shares resources with other
databases. Figure 2-6 depicts this architecture (see Chapter 23 for details on how to implement a pluggable database).

Chapter 2 ■ ImplementIng a Database

51

You must consider several architectural aspects when determining whether to use one database to host multiple
applications and users:

Do the applications generate vastly different amounts of redo, which may necessitate •	
differently sized online redo logs?

Are the queries used by applications dissimilar enough to require different amounts of undo, •	
sorting space, and memory?

Does the type of application require a different database block size, such as 8KB, for an OLTP •	
database, or 32KB, for a data warehouse?

Are there any security, availability, replication, or performance requirements that require an •	
application to be isolated?

Does an application require any features available only in the Enterprise Edition of Oracle?•	

Does an application require the use of any special Oracle features, such as Data Guard, •	
partitioning, Streams, or RAC?

What are the backup and recovery requirements for each application? Does one application •	
require online backups and the other application not? Does one application require tape
backups?

Is any application dependent on an Oracle database version? Will there be different database •	
upgrade schedules and requirements?

Table 2-5 describes the advantages and disadvantages of these architectural considerations regarding how to use
Oracle databases and applications.

Table 2-5. Oracle Database Configuration Advantages and Disadvantages

Configuration Advantages Disadvantages

One database per server Dedicated resources
for the application using
the database; completely
isolates applications from
each other;

Most expensive; requires more
hardware

Multiple databases and
Oracle homes per server

requires fewer servers Multiple databases competing for
disk, memory, and CPU resources

Multiple databases and one
installation of Oracle binaries
on the server

Requires fewer servers; doesn’t
require multiple installations
of the Oracle binaries

Multiple databases competing for
disk, memory, and CPU resources

One database and one
Oracle home serving
multiple applications

Only requires one server
and one database;
inexpensive

Multiple databases competing
for disk, memory, and CPU
resources; multiple applications
dependent on one database;
one single point of failure

Container database
containing multiple
pluggable databases

Least expensive; allows
multiple pluggable
databases to use the
infrastructure of one parent
container database securely

Multiple databases competing
for disk, memory, and CPU
resources; multiple applications
dependent on one database;
one single point of failure

Chapter 2 ■ ImplementIng a Database

52

Understanding Oracle Architecture
This chapter introduced concepts such as database (data files, online redo log files, control files), instance
(background processes and memory structures), parameter file, password file, and listener. Now is a good time to
present an Oracle architecture diagram that shows the various files and processes that constitute a database and
instance. Some of the concepts depicted in Figure 2-7 have already been covered in detail, for example, database vs.
instance. Other aspects of Figure 2-7 will be covered in future chapters. However, it’s appropriate to include a high-
level diagram such as this in order to represent visually the concepts already discussed and to lay the foundation for
understanding upcoming topics in this book.

Database Buffer Cache
(Data Blocks Used in Memory)

Datafiles Online Redo
Log Files

Archived Redo
Log FilesControl Files

sqlplus
User

Process

Oracle Server
Processes

DBWn LGWR ARCn

Log Buffer

CKPT

Data

Checkpoint
SCN

PGA

SGA

Database

Instance

RVWR

Flashback
Logs

Parameter
File

Large Pool

Java Pool

MMON SMON PMON RECO MMNL Others

Streams
Pool

Shared Pool

Library Cache

DD Cache

listener

Password
File

listener.ora
File

DML
DDL

Data Blocks
Changed
Blocks

Checkpoint
SCN

Change
Vectors

Figure 2-7. Oracle database architecture

There are several aspects to note about Figure 2-7. Communication with the database is initiated through a
sqlplus user process. Typically, the user process connects to the database over the network. This requires that you
configure and start a listener process. The listener process hands off incoming connection requests to an Oracle server
process, which handles all subsequent communication with the client process. If a remote connection is initiated as a
sys*-level user, then a password file is required. A password file is also required for local sys* connections that don’t
use OS authentication.

The instance consists of memory structures and background processes. When the instance starts, it reads the
parameter file, which helps establish the size of the memory processes and other characteristics of the instance.
When starting a database, the instance goes through three phases: nomount (instance started), mount (control files
opened), and open (data files and online redo logs opened).

The number of background processes varies by database version (more than 300 in the latest version of Oracle).
You can view the names and descriptions of the processes via this query:

SQL> select name, description from v$bgprocess;

Chapter 2 ■ ImplementIng a Database

53

The major background processes include

DBWn: The database writer writes blocks from the database buffer cache to the data files.•	

CKPT: The checkpoint process writes checkpoint information to the control files and •	
data file headers.

LGWR: The log writer writes redo information from the log buffer to the online redo logs.•	

ARCn: The archiver copies the content of online redo logs to archive redo log files.•	

RVWR: The recovery writer maintains before images of blocks in the fast recovery area.•	

MMON: The manageability monitor process gathers automatic workload repository statistics.•	

MMNL: The manageability monitor lite process writes statistics from the active session history •	
buffer to disk.

SMON: The system monitor performs system level clean-up operations, including •	
instance recovery in the event of a failed instance, coalescing free space, and cleaning up
temporary space.

PMON: The process monitor cleans up abnormally terminated database connections and also •	
automatically registers a database instance with the listener process.

RECO: The recoverer process automatically resolves failed distributed transactions.•	

The structure of the SGA varies by Oracle release. You can view details for each component via this query:

SQL> select pool, name from v$sgastat;

The major SGA memory structures include

SGA: The SGA is the main read/write memory area and is composed of several buffers, such as •	
the database buffer cache, redo log buffer, shared pool, large pool, java pool, and streams pool.

Database buffer cache: The buffer cache stores copies of blocks read from data files. •	

Log buffer: The log buffer stores changes to modified data blocks.•	

Shared pool: The shared pool contains library cache information regarding recently executed •	
SQL and PL/SQL code. The shared pool also houses the data dictionary cache, which contains
structural information about the database, objects, and users.

Finally, the program global area (PGA) is a memory area separate from the SGA. The PGA is a process-specific
memory area that contains session-variable information.

Summary
After you’ve installed the Oracle binaries, you can create a database. Before creating a database, make sure you’ve
correctly set the required OS variables. You also need an initialization file and to pre-create any necessary directories.
You should carefully think about which initialization parameters should be set to a nondefault value. In general, I try
to use as many default values as possible and only change an initialization parameter when there is a good reason.

This chapter focused on using SQL*Plus to create databases. This is an efficient and repeatable method for
creating a database. When you’re crafting a CREATE DATABASE statement, consider the size of the data files and online
redo logs. You should also put some thought into how many groups of online redo logs you require and how many
members per group.

Chapter 2 ■ ImplementIng a Database

54

I’ve worked in some environments in which management dictated the requirement of one database per server.
Usually that is overkill. A fast server with large memory areas and many CPUs should be capable of hosting several
different databases. You have to determine what architecture meets your business requirements when deciding how
many databases to place on one box.

After you’ve created a database, the next step is to configure the environment so that you can efficiently navigate,
operate, and monitor the database. These tasks are described in the next chapter.

www.allitebooks.com

http://www.allitebooks.org

55

Chapter 3

Configuring an Efficient Environment

After you install the Oracle binaries and create a database, you should configure your environment to enable you
to operate efficiently. Regardless of the functionality of graphical database administration tools, DBAs still need to
perform many tasks from the OS command line and manually execute SQL statements. A DBA who takes advantage of
the OS and SQL has a clear advantage over a DBA who doesn’t.

In any database environment (Oracle, MySQL, and so on) an effective DBA uses advanced OS features to allow
you to quickly navigate the directory, locate files, repeat commands, display system bottlenecks, and so forth.
To achieve this efficiency, you must be knowledgeable about the OS that houses the database.

In addition to being proficient with the OS, you must also be skillful with the SQL interface into the database.
Although you can glean much diagnostic information from graphical interfaces, SQL enables you to take a deeper dive
into the internals to do advanced troubleshooting and derive database intelligence.

This chapter lays the foundation for efficient use of the OS and SQL to manage your databases. You can use the
following OS and database features to configure your environment for effectiveness:

OS variables•	

Shell aliases•	

Shell functions•	

Shell scripts•	

SQL scripts•	

When you’re in a stressful situation, it’s paramount to have an environment in which you can quickly discern
where you are and what accounts you’re using and to have tools that help you quickly identify problems. The
techniques described in this chapter are like levers: they provide leverage for doing large amounts of work fast.
These tools let you focus on the issues you may be facing instead of verifying your location or worrying about
command syntax.

This chapter begins by detailing OS techniques for enabling maximum efficiency. Later sections show how
you can use these tools to display environment details automatically, navigate the file system, monitor the database
proactively, and triage.

Tip ■ Consistently use one OS shell when working on your database servers. I recommend that you use the Bash shell;
it contains all the most useful features from the other shells (Korn and C), plus it has additional features that add to its
ease of use.

4

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

56

Customizing Your OS Command Prompt
Typically, DBAs work with multiple servers and multiple databases. In these situations, you may have numerous
terminals’ sessions open on your screen. You can run the following types of commands to identify your current
working environment:

$ hostname -a
$ id
$ who am i
$ echo $ORACLE_SID
$ pwd

To avoid confusion about which server you’re working on, it’s often desirable to configure your command prompt
to display information regarding its environment, such as the machine name and database SID. In this example the
command prompt name is customized to include the hostname, user, and Oracle SID:

$ PS1='[\h:\u:${ORACLE_SID}]$ '

The \h specifies the hostname. The \u specifies the current OS user. $ORACLE_SID contains the current setting for
your Oracle instance identifier. Here is the command prompt for this example:

[oracle12c:oracle:o12c]$

The command prompt contains three pieces of important information about the environment: server name,
OS username, and database name. When you’re navigating among multiple environments, setting the command
prompt can be an invaluable tool for keeping track of where you are and what environment you’re in.

If you want the OS prompt automatically configured when you log in, then you need to set it in a startup file.
In a Bash shell environment, you typically use the .bashrc file. This file is normally located in your HOME directory.
Place the following line of code in .bashrc:

PS1='[\h:\u:${ORACLE_SID}]$ '

When you place this line of code in the startup file, then any time you log in to the server, your OS prompt is set
automatically for you. In other shells, such as the Korn shell, the .profile file is the startup file.

Depending on your personal preference, you may want to modify the command prompt for your particular
needs. For example, many DBAs like the current working directory displayed in the command prompt. To display the
current working directory information, add the \w variable:

$ PS1='[\h:\u:\w:${ORACLE_SID}]$ '

As you can imagine, a wide variety of options are available for the information shown in the command prompt.
Here is another popular format:

$ PS1='[\u@${ORACLE_SID}@\h:\W]$ '

Table 3-1 lists many of the Bash shell variables you can use to customize the OS command prompt.

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

57

The variables available for use with your command prompt vary somewhat by OS and shell. For example, in a
Korn shell environment the hostname variable displays the server name in the OS prompt:

$ export PS1="['hostname']$ "

If you want to include the ORACLE_SID variable within that string, then set it as follows:

$ export PS1=['hostname'':"${ORACLE_SID}"]$ '

Try not to go overboard in terms of how much information you display in the OS prompt. Too much information
limits your ability to type in and view commands on one line. As a rule of thumb, minimally you should include the
server name and database name displayed in the OS prompt. Having that information readily available will save you
from making the mistake of thinking that you’re in one environment when you’re really in another.

Table 3-1. Bash Shell Backslash-Escaped Variables Used for Customizing the Command Prompt

Variable Description

\a ASCII bell character

\d Date in “weekday month day-of-month” format

\h Hostname

\e ASCII escape character

\j Number of jobs managed by the shell

\l Base name of the shell’s terminal device

\n Newline

\r Carriage return

\s Name of the shell

\t Time in 24-hour HH:MM:SS format

\T Time in 12-hour HH:MM:SS format

\@ Time in 12-hour am/pm format

\A Time in 24-hour HH:MM format

\u Current shell

\v Version of the Bash shell

\V Release of the Bash shell

\w Current working directory

\W Base name of the current working directory (not the full path)

\! History number of command

\$ If the effective user identifier (UID) is 0, then displays #; otherwise, displays $

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

58

Customizing Your SQL Prompt
DBAs frequently use SQL*Plus to perform daily administrative tasks. Often, you’ll work on servers that contain
multiple databases. Obviously, each database contains multiple user accounts. When connected to a database, you
can run the following commands to verify information such as your username, database connection, and hostname:

SQL> show user;
SQL> select name from v$database;

A more efficient way to determine your username and SID is to set your SQL prompt to display that information;
for example,

SQL> SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

An even more efficient way to configure your SQL prompt is to have it automatically run the SET SQLPROMPT
command when you log in to SQL*Plus. Follow these steps to fully automate this:

1. Create a file named login.sql, and place in it the SET SQLPROMPT command.

2. Set your SQLPATH OS variable to include the directory location of login.sql. In this
example the SQLPATH OS variable is set in the .bashrc OS file, which is executed each time
a new shell is logged in to or started. Here is the entry:

export SQLPATH=$HOME/scripts

3. Create a file named login.sql in the HOME/scripts directory. Place the following line in
the file:

SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

4. To see the result, you can either log out and log back in to your server or source the
.bashrc file directly:

$. ./.bashrc

Now, log in to SQL. Here is an example of the SQL*Plus prompt:

SYS@devdb1>

If you connect to a different user, this should be reflected in the prompt:

SQL> conn system/foo

The SQL*Plus prompt now displays

SYSTEM@devdb1>

Setting your SQL prompt is an easy way to remind yourself which environment and user you’re currently
connected as. This will help prevent you from accidentally running an SQL statement in the wrong environment.
The last thing you want is to think you’re in a development environment and then discover that you’ve run a script to
delete objects while connected in a production environment.

Table 3-2 contains a complete list of SQL*Plus variables that you can use to customize your prompt.

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

59

Creating Shortcuts for Frequently Used Commands
In Linux/Unix environments, you can use two common methods to create shortcuts to other commands: create
aliases for often repeated commands and use functions to form shortcuts for groups of commands. The following
sections describe ways in which you can deploy these two techniques.

Using Aliases
An alias is a simple mechanism for creating a short piece of text that will execute other shell commands. Here is the
general syntax:

$ alias <alias_name>='<shell command>'

For instance, when faced with database problems, it’s often useful to create an alias that runs a cd command
that places you in the directory containing the database alert log. This example creates an alias (named bdump) that
changes the current working directory to where the alert log is located:

$ alias bdump='cd /u01/app/oracle/diag/rdbms/o12c/o12c/trace'

Now, instead of having to type the cd command, along with a lengthy (and easily forgettable) directory path,
you can simply type in bdump and are placed in the specified directory:

$ bdump
$ pwd
/u01/app/oracle/diag/rdbms/o12c/o12c/trace

The prior technique allows you to navigate to the directory of interest efficiently and accurately. This is especially
handy when you manage many different databases on different servers. You simply have to set up a standard set of
aliases that allow you to navigate and work more efficiently.

To show all aliases that have been defined, use the alias command, with no arguments:

$ alias

Table 3-2. Predefined SQL*Plus Variables

Variable Description

_CONNECT_IDENTIFIER Connection identifier, such as the Oracle SID

_DATE Current date

_EDITOR Editor used by the SQL EDIT command

_O_VERSION Oracle version

_O_RELEASE Oracle release

_PRIVILEGE Privilege level of the current connected session

_SQLPLUS_RELEASE SQL*Plus release number

_USER Current connected user

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

60

Listed next are some common examples of alias definitions you can use:

alias l.='ls -d .*'
alias ll='ls -l'
alias lsd='ls -altr | grep ^d'
alias sqlp='sqlplus "/ as sysdba"'
alias shutdb='echo "shutdown immediate;" | sqlp'
alias startdb='echo "startup;" | sqlp'

If you want to remove an alias definition from your current environment, use the unalias command.
The following example removes the alias for lsd:

$ unalias lsd

LOCatING the aLert LOG

In Oracle Database 11g and higher, the alert log directory path has this structure:

ORACLE_BASE/diag/rdbms/LOWER(<db_unique_name>)/<instance_name>/trace

usually (but not always) the db_unique_name is the same as the instance_name. In Data guard environments
the db_unique_name will often not be the same as the instance_name. You can verify the directory path with this
query:

SQL> select value from v$diag_info where name = 'Diag Trace';

the name of the alert log follows this format:

alert_<ORACLE_SID>.log

You can also locate the alert log from the OS (whether the database is started or not) via these OS commands:

$ cd $ORACLE_BASE
$ find . -name alert_<ORACLE_SID>.log

In the prior find command you’ll need to replace the <OraCLe_SID> value with the name of your database.

Using a Function
Much like an alias, you can also use a function to form command shortcuts. A function is defined with this general
syntax:

$ function <function_name> {
 shell commands
}

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

61

For example, the following line of code creates a simple function (named bdump) that allows you to change the
current working directory, dependent on the name of the database passed in:

function bdump {
if ["$1" = "engdev"]; then
 cd /orahome/app/oracle/diag/rdbms/engdev/ENGDEV/trace
elif ["$1" = "stage"]; then
 cd /orahome/app/oracle/diag/rdbms/stage/STAGE/trace
fi
echo "Changing directories to $1 Diag Trace directory"
pwd
}

You can now type bdump, followed by a database name at the command line, to change your working directory to
the Oracle background dump directory:

$ bdump stage
Changing directories to stage Diag Trace directory
/orahome/app/oracle/diag/rdbms/stage/STAGE/trace

Using functions is usually preferable to using aliases. Functions are more powerful than aliases because of
features such as the ability to operate on parameters passed in on the command line and allowing for multiple lines of
code and therefore more complex coding.

DBAs commonly establish functions by setting them in the HOME/.bashrc file. A better way to manage functions
is to create a file that stores only function code and call that file from the .bashrc file. It’s also better to store special
purpose files in directories that you’ve created for these files. For instance, create a directory named bin under HOME.
Then, in the bin directory, create a file named dba_fcns, and place in it your function code. Now, call the dba_fcns file
from the .bashrc file. Here is an example of an entry in a .bashrc file:

. $HOME/bin/dba_fcns

Listed next is a small sample of some of the types of functions you can use:

show environment variables in sorted list
 function envs {
 if test -z "$1"
 then /bin/env | /bin/sort
 else /bin/env | /bin/sort | /bin/grep -i $1
 fi
 } # envs
#---#
find largest files below this point
function flf {
 find . -ls | sort -nrk7 | head −10
}
#---#
find largest directories consuming space below this point
function fld {
 du -S . | sort -nr | head −10
}
#---#
function bdump {

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

62

 if [$ORACLE_SID = "o12c"]; then
 cd /u01/app/oracle/diag/rdbms/o12c/o12c/trace
 elif [$ORACLE_SID = "CDB1"]; then
 cd /u01/app/oracle/diag/rdbms/cdb1/CDB1/trace
 elif [$ORACLE_SID = "rcat"]; then
 cd /u01/app/oracle/diag/rdbms/rcat/rcat/trace
 fi
 pwd
} # bdump

If you ever wonder whether a shortcut is an alias or a function, use the type command to verify a command’s
origin. This example verifies that bdump is a function:

$ type bdump

Rerunning Commands Quickly
When there are problems with a database server, you need to be able to quickly run commands from the OS prompt.
You may be having some sort of performance issue and want to run commands that navigate you to directories that
contain log files, or you may want to display the top consuming processes from time to time. In these situations,
you don’t want to waste time having to retype command sequences.

One time-saving feature of the Bash shell is that it has several methods for editing and rerunning previously executed
commands. The following list highlights several options available for manipulating previously typed commands:

Scrolling with the up and down arrow keys•	

Using Ctrl+P and Ctrl+N•	

Listing the command history•	

Searching in reverse•	

Setting the command editor•	

Each of these techniques is described briefly in the following sections.

Scrolling with the Up and Down Arrow Keys
You can use the up arrow to scroll up through your recent command history. As you scroll through previously run
commands, you can rerun a desired command by pressing the Enter or Return key.

If you want to edit a command, use the Backspace key to erase characters, or use the left arrow to navigate to
the desired location in the command text. After you’ve scrolled up through command stack, use the down arrow to
scroll back down through previously viewed commands.

Note ■ If you’re familiar with Windows, scrolling through the command stack is similar to using the DOSKeY utility.

Using Ctrl+P and Ctrl+N
The Ctrl+P keystroke (pressing the Ctrl and P keys at the same time) displays your previously entered command.
If you’ve pressed Ctrl+P several times, you can scroll back down the command stack by pressing Ctrl+N (pressing
the Ctrl and N keys at the same time).

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

63

Listing the Command History
You can use the history command to display commands that the user previously entered:

$ history

Depending on how many commands have previously been executed, you may see a lengthy stack. You can
limit the output to the last n number of commands by providing a number with the command. For example,
the following query lists the last five commands that were run:

$ history 5

Here is some sample output:

273 cd -
274 grep -i ora alert.log
275 ssh -Y -l oracle 65.217.177.98
276 pwd
277 history 5

To run a previously listed command in the output, use an exclamation point (!) (sometimes called the bang)
followed by the history number. In this example, to run the pwd command on line 276, use !, as follows:

$!276

To run the last command you ran, use !!, as shown here:

$!!

Searching in Reverse
Press Ctrl+R, and you’re presented with the Bash shell reverse-search utility:

$ (reverse-i-search)'':

From the reverse-i-search prompt, as you type each letter, the tool automatically searches through previously
run commands that have text similar to the string you entered. As soon as you’re presented with the desired command
match, you can rerun the command by pressing the Enter or Return key. To view all commands that match a string,
press Ctrl+R repeatedly. To exit the reverse search, press Ctrl+C.

Setting the Command Editor
You can use the set -o command to make your command-line editor be either vi or emacs. This example sets the
command-line editor to be vi:

$ set -o vi

Now, when you press Esc+K, you’re placed in a mode in which you can use vi commands to search through the
stack of previously entered commands.

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

64

For example, if you want to scroll up the command stack, you can use the K key; similarly, you can scroll down
using the J key. When in this mode you can use the slash (/) key and then type a string to be searched for in the entire
command stack.

Tip ■ Before you attempt to use the command editor feature, be sure you’re thoroughly familiar with either the vi or
emacs editor.

A short example will illustrate the power of this feature. Say you know that you ran the ls -altr command about
an hour ago. You want to run it again, but this time without the r (reverse-sort) option. To enter the command stack,
press Esc+K:

$ Esc+K

You should now see the last command you executed. To search the command stack for the ls command,
type /ls, and then press Enter or Return:

$ /ls

The most recently executed ls command appears at the prompt:

$ ls -altr

To remove the r option, use the right arrow key to place the prompt over the r on the screen, and press X to
remove the r from the end of the command. After you’ve edited the command, press the Enter or Return key to
execute it.

Developing Standard Scripts
I’ve worked in shops where the database administration team developed hundreds of scripts and utilities to
help manage an environment. One company had a small squad of DBAs whose job function was to maintain the
environmental scripts. I think that’s overkill. I tend to use a small set of focused scripts, with each script usually
less than 50 lines long. If you develop a script that another DBA can’t understand or maintain, then it loses its
effectiveness.

Note ■ all the scripts in this chapter are available for download from the Source Code/Download area of the apress
web site (www.apress.com).

This section contains several short shell functions, shell scripts, and SQL scripts that can help you manage a
database environment. This is by no means a complete list of scripts—rather, it provides a starting point from which
you can build. Each subsection heading is the name of a script.

Note ■ Before you attempt to run a shell script, ensure that it’s executable. use the chmod command to achieve this:
chmod 750 <script>.

www.allitebooks.com

http://www.apress.com/
http://www.allitebooks.org

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

65

dba_setup
Usually, you’ll establish a common set of OS variables and aliases in the same manner for every database server.
When navigating among servers, you should set these variables and aliases in a consistent and repeatable manner.
Doing so helps you (or your team) operate efficiently in every environment. For example, it’s extremely useful to have
the OS prompt set in a consistent way when you work with dozens of different servers. This helps you quickly identify
what box you’re on, which OS user you’re logged in as, and so on.

One technique is to store these standard settings in a script and then have that script executed automatically
when you log in to a server. I usually create a script named dba_setup to set these OS variables and aliases. You can
place this script in a directory such as HOME/bin and automatically execute the script via a startup script (see the
section “Organizing Scripts,” later in this chapter). Here are the contents of a typical dba_setup script:

set prompt
PS1='[\h:\u:${ORACLE_SID}]$ '
#
export EDITOR=vi
export VISUAL=$EDITOR
export SQLPATH=$HOME/scripts
set -o vi
#
list directories only
alias lsd="ls -p | grep /"
show top cpu consuming processes
alias topc="ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head"
show top memory consuming processes
alias topm="ps -e -o pmem,pid,user,tty,args | sort -n -k 1 -r | head"
#
alias sqlp='sqlplus "/ as sysdba"'
alias shutdb='echo "shutdown immediate;" | sqlp'
alias startdb='echo "startup;" | sqlp'

dba_fcns
Use this script to store OS functions that help you navigate and operate in your database environment. Functions tend
to have more functionality than do aliases. You can be quite creative with the number and complexity of functions you
use. The idea is that you want a consistent and standard set of functions that you can call, no matter which database
server you’re logged in to.

Place this script in a directory such as HOME/bin. Usually, you’ll have this script automatically called when
you log in to a server via a startup script (see the section “Organizing Scripts,” later in this chapter). Here are some
typical functions you can use:

#---#
show environment variables in sorted list
 function envs {
 if test -z "$1"
 then /bin/env | /bin/sort
 else /bin/env | /bin/sort | /bin/grep -i $1
 fi
 } # envs
#---#
login to sqlplus

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

66

 function sp {
 time sqlplus "/ as sysdba"
 } # sp
#---#
find largest files below this point
function flf {
 find . -ls | sort -nrk7 | head −10
}
#---#
find largest directories consuming space below this point
function fld {
 du -S . | sort -nr | head −10
}
#---#
change directories to directory containing alert log file
function bdump {
 cd /u01/app/oracle/diag/rdbms/o12c/o12c/trace
 } # bdump
#---#

tbsp_chk.bsh
This script checks to see if any tablespaces are surpassing a certain fullness threshold. Store this script in a directory
such as HOME/bin. Make sure you modify the script to contain the correct username, password, and e-mail address for
your environment.

You also need to establish the required OS variables, such as ORACLE_SID and ORACLE_HOME. You can either
hard-code those variables into the script or call a script that sources the variables for you. The next script calls a script
(named oraset) that sets the OS variables (see Chapter 2 for the details of this script). You don’t have to use this
script—the idea is to have a consistent and repeatable way of establishing OS variables for your environment.

You can run this script from the command line. In this example I passed it the database name (o12c) and wanted
to see what tablespaces had less than 20 percent space left:

$ tbsp_chk.bsh o12c 20

The output indicates that two tablespaces for this database have less than 20 percent space left:
space not okay

0 % free UNDOTBS1, 17 % free SYSAUX,

Here are the contents of the tbsp_chk.bsh script:

#!/bin/bash
#
if [$# -ne 2]; then
 echo "Usage: $0 SID threshold"
 exit 1
fi
either hard code OS variables or source them from a script.
see Chapter 2 for details on using oraset to source oracle OS variables
. /var/opt/oracle/oraset $1
#

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

67

crit_var=$(
sqlplus -s <<EOF
system/foo
SET HEAD OFF TERM OFF FEED OFF VERIFY OFF
COL pct_free FORMAT 999
SELECT (f.bytes/a.bytes)*100 pct_free,'% free',a.tablespace_name||','
FROM
(SELECT NVL(SUM(bytes),0) bytes, x.tablespace_name
FROM dba_free_space y, dba_tablespaces x
WHERE x.tablespace_name = y.tablespace_name(+)
AND x.contents != 'TEMPORARY' AND x.status != 'READ ONLY'
AND x.tablespace_name NOT LIKE 'UNDO%'
GROUP BY x.tablespace_name) f,
(SELECT SUM(bytes) bytes, tablespace_name
FROM dba_data_files
GROUP BY tablespace_name) a
WHERE a.tablespace_name = f.tablespace_name
AND (f.bytes/a.bytes)*100 <= $2
ORDER BY 1;
EXIT;
EOF)
if ["$crit_var" = ""]; then
 echo "space okay"
else
 echo "space not okay"
 echo $crit_var
 echo $crit_var | mailx -s "tbsp getting full on $1" dkuhn@gmail.com
fi
exit 0

Usually, you run a script such as this automatically, on a periodic basis, from a scheduling utility, such as cron.
Here is a typical cron entry that runs the script once an hour:

Tablespace check
2 * * * * /orahome/bin/tbsp_chk.bsh INVPRD 10 1>/orahome/bin/log/tbsp_chk.log 2>&1

This cron entry runs the job and stores any informational output in the tbsp_chk.log file.
When running tbsp_chk.bsh in an Oracle Database 12c pluggable database environment from the root

container, you’ll need to reference the CDB_* views rather than the DBA_* views for the script to properly report on
space regarding all pluggable databases (within the container database). You should also consider adding the NAME
and CON_ID to the query so that you can view which pluggable database is potentially having space issues;
for example,

SET LINES 132 PAGES 100
COL name FORM A10
COL tablespace_name FORM A15
COL file_name FORM A40
--
SELECT
 c.name, t.tablespace_name,
 NVL(SUM(f.bytes),0) free_bytes, SUM(d.bytes) alloc_bytes, d.file_name

mailto:dkuhn@gmail.com

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

68

FROM v$containers c
 ,cdb_tablespaces t
 ,cdb_free_space f
 ,cdb_data_files d
WHERE t.tablespace_name = f.tablespace_name(+)
AND c.con_id = t.con_id
AND c.con_id = f.con_id
AND c.con_id = d.con_id
AND t.tablespace_name = d.tablespace_name
GROUP BY c.name, t.tablespace_name, d.file_name
ORDER BY 1,2,5;

conn.bsh
You need to be alerted if there are issues with connecting to databases. This script checks to see if a connection can be
established to the database. If a connection can’t be established, an e-mail is sent. Place this script in a directory such
as HOME/bin. Make sure you modify the script to contain the correct username, password, and e-mail address for your
environment.

You also need to establish the required OS variables, such as ORACLE_SID and ORACLE_HOME. You can either
hard-code those variables into the script or call a script that sources the variables for you. Like the previous script,
this script calls a script (named oraset) that sets the OS variables (see Chapter 2).

The script requires that the ORACLE_SID be passed to it; for example,

$ conn.bsh INVPRD

If the script can establish a connection to the database, the following message is displayed:

success
db ok

Here are the contents of the conn.bsh script:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
either hard code OS variables or source them from a script.
see Chapter 2 for details on oraset script to source OS variables
. /etc/oraset $1
#
echo "select 'success' from dual;" | sqlplus -s system/foo@o12c | grep success
if [[$? -ne 0]]; then
 echo "problem with $1" | mailx -s "db problem" dkuhn@gmail.com
else
 echo "db ok"
fi
#
exit 0

mailto:dkuhn@gmail.com

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

69

This script is usually automated via a utility such as cron. Here is a typical cron entry:

Check to connect to db.
18 * * * * /home/oracle/bin/conn.bsh o12c 1>/home/oracle/bin/log/conn.log 2>&1

This cron entry runs the script once per hour. Depending on your availability requirements, you may want to run
a script such as this on a more frequent basis.

filesp.bsh
Use the following script to check for an operating point that is filling up. Place the script in a directory such as
HOME/bin. You need to modify the script so that the mntlist variable contains a list of mount points that exist on your
database server. Because this script isn’t running any Oracle utilities, there is no reason to set the Oracle-related OS
variables (as with the previous shell scripts):

#!/bin/bash
mntlist="/orahome /ora01 /ora02 /ora03"
for ml in $mntlist
do
echo $ml
usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)
BOX=$(uname -a | awk '{print $2}')
#
case $usedSpc in
[0–9])
arcStat="relax, lots of disk space: $usedSpc"
;;
[1–7][0–9])
arcStat="disk space okay: $usedSpc"
;;
[8][0–9])
arcStat="space getting low: $usedSpc"
echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com
;;
[9][0–9])
arcStat="warning, running out of space: $usedSpc"
echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com
;;
[1][0][0])
arcStat="update resume, no space left: $usedSpc"
echo $arcStat | mailx -s "space on: $BOX" dkuhn@gmail.com
;;
*)
arcStat="huh?: $usedSpc"
esac
#
BOX=$(uname -a | awk '{print $2}')
echo $arcStat
#
done
#
exit 0

mailto:dkuhn@gmail.com
mailto:dkuhn@gmail.com
mailto:dkuhn@gmail.com

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

70

You can run this script manually from the command line, like this:

$ filesp.bsh

Here is the output for this database server:

/orahome
disk space okay: 79
/ora01
space getting low: 84
/ora02
disk space okay: 41
/ora03
relax, lots of disk space: 9

This is the type of script you should run on an automated basis from a scheduling utility such as cron. Here is a
typical cron entry:

Filesystem check
7 * * * * /orahome/bin/filesp.bsh 1>/orahome/bin/log/filesp.log 2>&1

Keep in mind that the shell script used in this section (filesp.bsh) may require modification for your
environment. The shell script is dependent on the output of the df -h command, which does vary by OS and version.
For instance, on a Solaris box the output of df -h appears as follows:

$ df -h
Filesystem size used avail capacity Mounted on
/ora01 50G 42G 8.2G 84% /ora01
/ora02 50G 20G 30G 41% /ora02
/ora03 50G 4.5G 46G 9% /ora03
/orahome 30G 24G 6.5G 79% /orahome

This line in the shell script selectively reports on the “capacity” in the output of the df -h command:

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -)

For your environment you’ll have to modify the prior line to correctly extract the information related to disk space
remaining per mount point. For example, say you’re on a Linux box and issue a df -h command, and you observe the
following output:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
 222G 162G 49G 77% /

There’s only one mount point, and the disk space percentage is associated with the “Use%” column. Therefore,
to extract the pertinent information, you’ll need to modify the code associated with usedSpc within the shell script;
for example,

df -h / | grep % | grep -v Use | awk '{print $4}' | cut -d "%" -f1 -

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

71

The shell script will thus need to have the following lines modified, as shown:

mntlist="/"
for ml in $mntlist
do
echo $ml
usedSpc=$(df -h / | grep % | grep -v Use | awk '{print $4}' | cut -d "%" -f1 -)

login.sql
Use this script to customize aspects of your SQL*Plus environment. When logging in to SQL*Plus in Linux/Unix,
the login.sql script is automatically executed if it exists in a directory contained within the SQLPATH variable. If the
SQLPATH variable hasn’t been defined, then SQL*Plus looks for login.sql in the current working directory from which
SQL*Plus was invoked. For instance, here is how the SQLPATH variable is defined in my environment:

$ echo $SQLPATH
/home/oracle/scripts

I created the login.sql script in the /home/oracle/scripts directory. It contains the following lines:

-- set SQL prompt
SET SQLPROMPT '&_USER.@&_CONNECT_IDENTIFIER.> '

Now, when I log in to SQL*Plus, my prompt is automatically set:

$ sqlplus / as sysdba
SYS@o12c>

top.sql
The following script lists the top CPU-consuming SQL processes. It’s useful for identifying problem SQL statements.
Place this script in a directory such as HOME/scripts:

select * from(
select
 sql_text
,buffer_gets
,disk_reads
,sorts
,cpu_time/1000000 cpu_sec
,executions
,rows_processed
from v$sqlstats
order by cpu_time DESC)
where rownum < 11;

This is how you execute this script:

SQL> @top

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

72

Here is a snippet of the output, showing an SQL statement that is consuming a large amount of database
resources:

INSERT INTO "REP_MV"."GEM_COMPANY_MV"
SELECT CASE GROUPING_ID(trim(upper(nvl(ad.organization_name,u.company))))
WHEN 0 THEN
trim(upper(nvl(ad.organization_name,u.company)))

11004839 20937562 136 21823.59 17 12926019

lock.sql
This script displays sessions that have locks on tables that are preventing other sessions from completing work.
The script shows details about the blocking and waiting sessions. You should place this script in a directory such as
HOME/scripts. Here are the contents of lock.sql:

SET LINES 83 PAGES 30
COL blkg_user FORM a10
COL blkg_machine FORM a10
COL blkg_sid FORM 99999999
COL wait_user FORM a10
COL wait_machine FORM a10
COL wait_sid FORM 9999999
COL obj_own FORM a10
COL obj_name FORM a10
--
SELECT
 s1.username blkg_user
,s1.machine blkg_machine
,s1.sid blkg_sid
,s1.serial# blkg_serialnum
,s1.sid || ',' || s1.serial# kill_string
,s2.username wait_user
,s2.machine wait_machine
,s2.sid wait_sid
,s2.serial# wait_serialnum
,lo.object_id blkd_obj_id
,do.owner obj_own
,do.object_name obj_name
FROM v$lock l1
 ,v$session s1
 ,v$lock l2
 ,v$session s2
 ,v$locked_object lo
 ,dba_objects do
WHERE s1.sid = l1.sid
AND s2.sid = l2.sid
AND l1.id1 = l2.id1
AND s1.sid = lo.session_id

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

73

AND lo.object_id = do.object_id
AND l1.block = 1
AND l2.request > 0;

The lock.sql script is useful for determining what session has a lock on an object and also for showing the
blocked session. You can run this script from SQL*Plus, as follows:

SQL> @lock.sql

Here is a partial listing of the output (truncated so that it fits on one page):

BLKG_USER BLKG_MACHI BLKG_SID BLKG_SERIALNUM
---------- ---------- --------- --------------
KILL_STRING
--
WAIT_USER WAIT_MACHI WAIT_SID WAIT_SERIALNUM BLKD_OBJ_ID OBJ_OWN OBJ_NAME
---------- ---------- -------- -------------- ----------- ---------- ----------
MV_MAINT speed 24 11
24,11
MV_MAINT speed 87 7 19095 MV_MAINT INV

When running lock.sql in an Oracle Database 12c pluggable database environment from the root container,
you’ll need to change DBA_OBJECTS to CDB_OBJECTS for the script to properly report locks throughout the entire
database. You should also consider adding the NAME and CON_ID to the query so that you can view the container in
which the lock is occurring. Here’s a snippet of the modified query (you’ll need to replace the “…” with columns you
want to report on):

SELECT
 u.name
,s1.username blkg_user
. . .
,do.object_name obj_name
FROM v$lock l1
 ,v$session s1
 ,v$lock l2
 ,v$session s2
 ,v$locked_object lo
 ,cdb_objects do
 ,v$containers u
WHERE s1.sid = l1.sid
AND s2.sid = l2.sid
AND l1.id1 = l2.id1
AND s1.sid = lo.session_id
AND lo.object_id = do.object_id
AND l1.block = 1
AND l2.request > 0
AND do.con_id = u.con_id;

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

74

users.sql
This script displays information about when users were created and whether their account is locked. The script is
useful when you’re troubleshooting connectivity issues. Place the script in a directory such as HOME/scripts.
Here is a typical users.sql script for displaying user account information:

SELECT
 username
 ,account_status
 ,lock_date
 ,created
FROM dba_users
ORDER BY username;

You can execute this script from SQL*Plus, as follows:

SQL> @users.sql

Here is some sample output:

USERNAME ACCOUNT_ST LOCK_DATE CREATED
--------------- ---------- ------------ ------------
SYS OPEN 09-NOV-12
SYSBACKUP OPEN 09-NOV-12
SYSDG OPEN 09-NOV-12

When running users.sql in an Oracle Database 12c pluggable database environment from the root container,
you’ll need to change DBA_USERS to CDB_USERS and add the NAME and CON_ID columns to report on all users in all
pluggable databases; for example,

SELECT
 c.name
 ,u.username
 ,u.account_status
 ,u.lock_date
 ,u.created
FROM cdb_users u
 ,v$containers c
WHERE u.con_id = c.con_id
ORDER BY c.name, u.username;

Organizing Scripts
When you have a set of scripts and utilities, you should organize them such that they’re consistently implemented for
each database server. Follow these steps to implement the preceding DBA utilities for each database server in your
environment:

1. Create OS directories in which to store the scripts.

2. Copy your scripts and utilities to the directories created in step 1.

3. Configure your startup file to initialize the environment.

These steps are detailed in the following sections.

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

75

Step 1: Create Directories
Create a standard set of directories on each database server to store your custom scripts. A directory beneath the
HOME directory of the oracle user is usually a good location. I generally create the following three directories:

•	 HOME/bin. Standard location for shell scripts that are run in an automated fashion (such as
from cron).

•	 HOME/bin/log. Standard location for log files generated from the scheduled shell scripts.

•	 HOME/scripts. Standard location for storing SQL scripts.

You can use the mkdir command to create the previous directories, as follows:

$ mkdir -p $HOME/bin/log
$ mkdir $HOME/scripts

It doesn’t matter where you place the scripts or what you name the directories, as long as you have a standard
location so that when you navigate from server to server, you always find the same files in the same locations. In other
words, it doesn’t matter what the standard is, only that you have a standard.

Step 2: Copy Files to Directories
Place your utilities and scripts in the appropriate directories. Copy the following files to the HOME/bin directory:

dba_setup
dba_fcns
tbsp_chk.bsh
conn.bsh
filesp.bsh

Place the following SQL scripts in the HOME/scripts directory:

login.sql
top.sql
lock.sql
users.sql

Step 3: Configure the Startup File
Place the following code in the .bashrc file or the equivalent startup file for the shell you use (.profile for the Korn
shell). Here is an example of how to configure the .bashrc file:

Source global definitions
if [−f /etc/bashrc]; then
 . /etc/bashrc
fi
#
source oracle OS variables
. /etc/oraset <default_database>
#

Chapter 3 ■ COnfIgurIng an effICIent envIrOnment

76

User specific aliases and functions
. $HOME/bin/dba_setup
. $HOME/bin/dba_fcns

Now, each time you log in to an environment, you have full access to all the OS variables, aliases, and functions
established in the dba_setup and dba_fcns files. If you don’t want to log off and back in, then run the file manually,
using the dot (.) command. This command executes the lines contained within a file. The following example runs the
.bashrc file:

$. $HOME/.bashrc

The dot instructs the shell to source the script. Sourcing tells the shell process you’re currently logged in to,
to inherit any variables set with an export command in an executed script. If you don’t use the dot notation, then
the variables set within the script are visible only in the context of the subshell that is spawned when the script is
executed.

Note■ In the Bash shell the source command is equivalent to the dot (.) command.

Summary
This chapter described how to configure an efficient environment. This is especially important for DBAs who manage
multiple databases on multiple servers. Regular maintenance and troubleshooting activities require you to log in
directly to the database server. To promote efficiency and sanity, you should develop a standard set of OS tools and
SQL scripts that help you maintain multiple environments. You can use standard features of the OS to assist with
navigating, repeating commands, showing system bottlenecks, quickly finding critical files, and so on.

The techniques for configuring a standard OS are especially useful when you’re working on multiple servers with
multiple databases. When you have multiple terminal sessions running simultaneously, it’s easy to lose your bearings
and forget which session is associated with a particular server and database. With just a small amount of setup, you
can make certain that your OS prompt always shows information such as the host and database. Likewise, you can
always set your SQL prompt to show the username and database connection. These techniques help ensure that you
don’t accidentally run a command or script in the wrong environment.

After you have installed the Oracle binaries, created a database, and configured your environment, you are ready
to perform additional database administration tasks, such as creating tablespaces for the applications. The topic of
tablespace creation and maintenance is discussed in the next chapter.

77

Chapter 4

Tablespaces and Data Files

The term tablespace is something of a misnomer, in that it’s not just a space for tables. Rather, a tablespace is a logical
container that allows you to manage groups of data files, the physical files on disk that consume space. Once a
tablespace is created, you can then create database objects (tables and indexes) within tablespaces, which results in
space allocated on disk in the associated data files.

A tablespace is logical in the sense that it is only visible through data dictionary views (such as DBA_TABLESPACES);
you manage tablespaces through SQL*Plus or graphical tools (such as Enterprise Manager), or both. Tablespaces only
exist while the database is up and running.

Data files can also be viewed through data dictionary views (such as DBA_DATA_FILES) but additionally have
a physical presence, as they can be viewed outside the database through OS utilities (such as ls). Data files persist
whether the database is open or closed.

Oracle databases typically contain several tablespaces. A tablespace can have one or more data files associated
with it, but a data file can be associated with only one tablespace. In other words, a data file can’t be shared between
two (or more) tablespaces.

Objects (such as tables and indexes) are owned by users and created within tablespaces. An object is logically
instantiated as a segment. A segment consists of extents of space within the tablespace. An extent consists of a set of
database blocks. Figure 4-1 shows the relationships between these logical and physical constructs used to manage
space within an Oracle database.

data files

extents

database

database
blocks

OS blocks

users
(owners)

schemas

segments:
- tables
- indexes
- partitions
- rollback
- and so on...

physical storage

logical storage

tablespaces

Figure 4-1. Relationships of logical storage objects and physical storage

Chapter 4 ■ tablespaCes and data Files

78

As you saw in Chapter 2, when you create a database, typically five tablespaces are created when you execute the
CREATE DATABASE statement:

•	 SYSTEM

•	 SYSAUX

•	 UNDO

•	 TEMP

•	 USERS

These five tablespaces are the minimal set of storage containers you need to operate a database (one could argue,
however, you don’t need the USERS tablespace; more on that in the next section). As you open a database for use, you
should quickly create additional tablespaces for storing application data. This chapter discusses the purpose of the
standard set of tablespaces, the need for additional tablespaces, and how to manage these critical database storage
containers. The chapter focuses on the most common and critical tasks associated with creating and maintaining
tablespaces and data files, progressing to more advanced topics, such as moving and renaming data files.

Understanding the First Five
The SYSTEM tablespace provides storage for the Oracle data dictionary objects. This tablespace is where all objects
owned by the SYS user are stored. The SYS user should be the only user that owns objects created in the SYSTEM
tablespace.

Starting with Oracle Database 10g, the SYSAUX (system auxiliary) tablespace is created when you create the
database. This is an auxiliary tablespace used as a data repository for Oracle database tools, such as Enterprise
Manager, Statspack, LogMiner, Logical Standby, and so on.

The UNDO tablespace stores the information required to undo the effects of a transaction (insert, update,
delete, or merge). This information is required in the event a transaction is purposely rolled back (via a ROLLBACK
statement). The undo information is also used by Oracle to recover from unexpected instance crashes and to provide
read consistency for SQL statements. Additionally, some database features, such as Flashback Query, use the undo
information.

Some Oracle SQL statements require a sort area, either in memory or on disk. For example, the results of a query
may need to be sorted before being returned to the user. Oracle first uses memory to sort the query results, and when
there is no longer sufficient memory, the TEMP tablespace is used as a sorting area on disk. Extra temporary storage
may also be required when creating or rebuilding indexes. When you create a database, typically you create the TEMP
tablespace and specify it to be the default temporary tablespace for any users you create.

The USERS tablespace is not absolutely required but is often used as a default permanent tablespace for table and
index data for users. As shown in Chapter 2, you can create a default permanent tablespace for users when you create
your database. This means that when a user attempts to create a table or index, if no tablespace is specified during
object creation, by default the object is created in the default permanent tablespace.

Understanding the Need for More
Although you could put every database user’s data in the USERS tablespace, this usually isn’t scalable or maintainable
for any type of serious database application. Instead, it’s more efficient to create additional tablespaces for
application users. You typically create at least two tablespaces specific to each application using the database: one
for the application table data and one for the application index data. For example, for the APP user, you can create
tablespaces named APP_DATA and APP_INDEX for table and index data, respectively.

Chapter 4 ■ tablespaCes and data Files

79

DBAs used to separate table and index data for performance reasons. The thinking was that separating table data
from index data would reduce input/ouput (I/O) contention. This is because the data files (for each tablespace) could
be placed on different disks, with separate controllers.

With modern storage configurations, which have multiple layers of abstraction between the application and
the underlying physical storage devices, it’s debatable whether you can realize any performance gains by creating
multiple separate tablespaces. But, there still are valid reasons for creating multiple tablespaces for table and
index data:

Backup and recovery requirements may be different for the tables and indexes.•	

The indexes may have storage requirements different from those of the table data.•	

In addition to separate tablespaces for data and indexes, you sometimes create separate tablespaces for objects
of different sizes. For instance, if an application has very large tables, you can create an APP_DATA_LARGE tablespace
that has a large extent size and a separate APP_DATA_SMALL tablespace that has a smaller extent size. This concept
also extends to binary/character large object (LOB) data types. You may want to separate a LOB column in its own
tablespace because you want to manage the LOB tablespace storage characteristics differently from those of the
regular table data.

Depending on your requirements, you should consider creating separate tablespaces for each application using
the database. For example, for an inventory application, create INV_DATA and INV_INDEX; for a human resources
application, create HR_DATA and HR_INDEX. Here are some reasons to consider creating separate tablespaces for each
application using the database:

Applications may have different availability requirements. Separate tablespaces lets you take •	
tablespaces offline for one application without affecting another application.

Applications may have different backup and recovery requirements. Separate tablespaces lets •	
tablespaces be backed up and recovered independently.

Applications may have different storage requirements. Separate tablespaces allows for •	
different settings for space quotas, extent sizes, and segment management.

You may have some data that is purely read-only. Separate tablespaces lets you put a •	
tablespace that contains only read-only data into read-only mode.

The next section discusses creating tablespaces.

Creating Tablespaces
You use the CREATE TABLESPACE statement to create tablespaces. The Oracle SQL Reference Manual contains more
than a dozen pages of syntax and examples for creating tablespaces. In most scenarios, you need to use only a few of
the features available, namely, locally managed extent allocation, and automatic segment space management. The
following code snippet demonstrates how to create a tablespace that employs the most common features:

create tablespace tools
 datafile '/u01/dbfile/o12c/tools01.dbf'
 size 100m
 extent management local
 uniform size 128k
 segment space management auto;

You need to modify this script for your environment. For example, the directory path, data file size, and uniform
extent size should be changed per environment requirements.

Chapter 4 ■ tablespaCes and data Files

80

You create tablespaces as locally managed by using the EXTENT MANAGEMENT LOCAL clause. A locally managed
tablespace uses a bitmap in the data file to efficiently determine whether an extent is in use. The storage parameters
NEXT, PCTINCREASE, MINEXTENTS, MAXEXTENTS, and DEFAULT aren’t valid for extent options in locally managed
tablespaces.

Note ■ a locally managed tablespace with uniform extents must be minimally sized for at least five database blocks
per extent.

As you add data to objects in tablespaces, Oracle automatically allocates more extents to an associated tablespace
data file as needed to accommodate the growth. You can instruct Oracle to allocate a uniform size for each extent via
the UNIFORM SIZE [size] clause. If you don’t specify a size, then the default uniform extent size is 1MB.

The uniform extent size that you use varies, depending on the storage requirements of your tables and indexes. In
some scenarios, I create several tablespaces for a given application. For instance, you can create a tablespace for small
objects that has a uniform extent size of 512KB, a tablespace for medium-sized objects that has a uniform extent size
of 4MB, a tablespace for large objects with a uniform extent size of 16MB, and so on.

Alternatively, you can specify that Oracle determine the extent size via the AUTOALLOCATE clause. Oracle allocates
extent sizes of 64KB, 1MB, 8MB, or 64MB. Using AUTOALLOCATE is appropriate when you think objects in one
tablespace will be of varying sizes.

The SEGMENT SPACE MANAGEMENT AUTO clause instructs Oracle to manage the space within the block. When
you use this clause, there is no need to specify parameters, such as PCTUSED, FREELISTS, and FREELIST GROUPS.
The alternative to AUTO space management is MANUAL. When you use MANUAL, you can adjust the parameters to the
requirements of your application. I recommend that you use AUTO and not MANUAL. Using AUTO vastly reduces the
number of parameters you need to configure and manage.

When a data file fills up, you can instruct Oracle to increase the size of the data file automatically, with the
AUTOEXTEND feature. I recommend that you don’t use this feature. Instead, you should monitor tablespace growth
and add space as necessary. Manually adding space is preferable to having a runaway SQL process that accidentally
grows a tablespace until it has consumed all the space on a mount point. If you inadvertently fill up a mount point that
contains a control file or the Oracle binaries, you can hang your database.

If you do use the AUTOEXTEND feature, I suggest that you always specify a corresponding MAXSIZE so that a
runaway SQL process doesn’t accidentally fill up a tablespace that in turn fills up a mount point. Here is an example of
creating an autoextending tablespace with a cap on its maximum size:

create tablespace tools
 datafile '/u01/dbfile/o12c/tools01.dbf'
 size 100m
 autoextend on maxsize 1000m
 extent management local
 uniform size 128k
 segment space management auto;

When you’re using CREATE TABLESPACE scripts in different environments, it’s useful to be able to parameterize
portions of the script. For instance, in development you may size the data files at 100MB, whereas in production the
data files may be 100GB. Use ampersand (&) variables to make CREATE TABLESPACE scripts more portable among
environments.

Chapter 4 ■ tablespaCes and data Files

81

The next listing defines ampersand variables at the top of the script, and those variables determine the sizes of
data files created for the tablespaces:

define tbsp_large=5G
define tbsp_med=500M
--
create tablespace reg_data
 datafile '/u01/dbfile/o12c/reg_data01.dbf'
 size &&tbsp_large
 extent management local
 uniform size 128k
 segment space management auto;
--
create tablespace reg_index
 datafile '/u01/dbfile/o12c/reg_index01.dbf'
 size &&tbsp_med
 extent management local
 uniform size 128k
 segment space management auto;

Using ampersand variables allows you to modify the script once and have the variables reused throughout the
script. You can parameterize all aspects of the script, including data file mount points and extent sizes.

You can also pass the values of the ampersand variables in to the CREATE TABLESPACE script from the SQL*Plus
command line. This lets you avoid hard-coding a specific size in the script and instead provide the sizes at runtime.
To accomplish this, first define at the top of the script the ampersand variables to accept the values being passed in:

define tbsp_large=&1
define tbsp_med=&2
--
create tablespace reg_data
 datafile '/u01/dbfile/o12c/reg_data01.dbf'
 size &&tbsp_large
 extent management local
 uniform size 128k
 segment space management auto;
--
create tablespace reg_index
 datafile '/u01/dbfile/o12c/reg_index01.dbf'
 size &&tbsp_med
 extent management local
 uniform size 128k
 segment space management auto;

Now, you can pass variables in to the script from the SQL*Plus command line. The following example executes a
script named cretbsp.sql and passes in two values that set the ampersand variables to 5G and 500M, respectively:

SQL> @cretbsp 5G 500M

Table 4-1 summarizes the best practices for creating and managing tablespaces.

Chapter 4 ■ tablespaCes and data Files

82

If you ever need to verify the SQL required to re-create an existing tablespace, you can do so with the
DBMS_METADATA package. First, set the LONG variable to a large value:

SQL> set long 1000000

Next, use the DBMS_METADATA package to display the CREATE TABLESPACE data definition language (DDL) for all
tablespaces within the database:

select dbms_metadata.get_ddl('TABLESPACE',tablespace_name)
from dba_tablespaces;

Tip ■ You can also use data pump to extract the ddl of database objects. see Chapter 13 for details.

Renaming a Tablespace
Sometimes, you need to rename a tablespace. You may want to do this because a tablespace was initially erroneously
named, or you may want the tablespace name to better conform to your database naming standards. Use the ALTER
TABLESPACE statement to rename a tablespace. This example renames a tablespace from TOOLS to TOOLS_DEV:

SQL> alter tablespace tools rename to tools_dev;

When you rename a tablespace, Oracle updates the name of the tablespace in the data dictionary, control files,
and data file headers. Keep in mind that renaming a tablespace doesn’t rename any associated data files. See the
section “Renaming or Relocating a Data File,” later in this chapter, for information on renaming data files.

Table 4-1. Best Practices for Creating and Managing Tablespaces

Best Practice Reasoning

Create separate tablespaces for different
applications using the same database.

If a tablespace needs to be taken offline,
it affects only one application.

For an application, separate table data
from index data in different tablespaces.

Table and index data may have different
storage requirements.

Don’t use the AUTOEXTEND feature for data files.
 If you do use AUTOEXTEND, specify a maximum size.

Specifying a maximum size prevents a runaway
SQL statement from filling up a storage device.

Create tablespaces as locally managed.
You shouldn’t create a tablespace as
dictionary managed.

This provides better performance and
manageability.

For a tablespace’s data file naming convention,
use a name that contains the tablespace name
followed by a two-digit number that’s unique
within data files for that tablespace.

Doing this makes it easy to identify which data
files are associated with which tablespaces.

Try to minimize the number of data files
associated with a tablespace.

You have fewer data files to manage.

In tablespace CREATE scripts, use ampersand
variables to define aspects such as storage
characteristics.

This makes scripts more reusable among
various environments.

Chapter 4 ■ tablespaCes and data Files

83

Note ■ You can’t rename the SYSTEM tablespace or the SYSAUX tablespace.

Controlling the Generation of Redo
For some types of applications, you may know beforehand that you can easily re-create the data. An example might
be a data warehouse environment in which you perform direct path inserts or use SQL*Loader to load data. In these
scenarios you can turn off the generation of redo for direct path loading. You use the NOLOGGING clause to do this:

create tablespace inv_mgmt_data
 datafile '/u01/dbfile/o12c/inv_mgmt_data01.dbf' size 100m
 extent management local
 uniform size 128k
 segment space management auto
 nologging;

If you have an existing tablespace and want to alter its logging mode, use the ALTER TABLESPACE statement:

SQL> alter tablespace inv_mgmt_data nologging;

You can confirm the tablespace logging mode by querying the DBA_TABLESPACES view:

SQL> select tablespace_name, logging from dba_tablespaces;

The generation of redo logging can’t be suppressed for regular INSERT, UPDATE, and DELETE statements.
For regular data manipulation language (DML) statements, the NOLOGGING clause is ignored. The NOLOGGING clause
does apply, however, to the following types of DML:

Direct path •	 INSERT statements

Direct path SQL*Loader•	

The NOLOGGING clause also applies to the following types of DDL statements:

•	 CREATE TABLE . . . AS SELECT (NOLOGGING only affects the initial create, not subsequent
regular DML, statements against the table)

•	 ALTER TABLE . . . MOVE

•	 ALTER TABLE . . . ADD/MERGE/SPLIT/MOVE/MODIFY PARTITION

•	 CREATE INDEX

•	 ALTER INDEX . . . REBUILD

•	 CREATE MATERIALIZED VIEW

•	 ALTER MATERIALIZED VIEW . . . MOVE

•	 CREATE MATERIALIZED VIEW LOG

•	 ALTER MATERIALIZED VIEW LOG . . . MOVE

Be aware that if redo isn’t logged for a table or index, and you have a media failure before the object is backed up,
then you can’t recover the data; you receive an ORA-01578 error, indicating that there is logical corruption of the data.

Chapter 4 ■ tablespaCes and data Files

84

Note ■ You can also override the tablespace level of logging at the object level. For example, even if a tablespace is
specified as NOLOGGING, you can create a table with the LOGGING clause.

Changing a Tablespace’s Write Mode
In environments such as data warehouses, you may need to load data into tables and then never modify the data
again. To enforce that no objects in a tablespace can be modified, you can alter the tablespace to be read-only. To do
this, use the ALTER TABLESPACE statement:

SQL> alter tablespace inv_mgmt_rep read only;

One advantage of a read-only tablespace is that you only have to back it up once. You should be able to restore
the data files from a read-only tablespace no matter how long ago the backup was made.

If you need to modify the tablespace out of read-only mode, you do so as follows:

SQL> alter tablespace inv_mgmt_rep read write;

Make sure you reenable backups of a tablespace after you place it in read/write mode.

Note ■ You can’t make a tablespace that contains active rollback segments read-only. For this reason, the SYSTEM
tablespace can’t be made read-only, because it contains the SYSTEM rollback segment.

Be aware that in Oracle Database 11g and above, you can modify individual tables to be read-only. This allows
you to control the read-only at a much more granular level (than at the tablespace level); for example,

SQL> alter table my_tab read only;

While in read-only mode, you can’t issue any insert, update, or delete statements against the table. Making
individual tables read/write can be advantageous when you’re doing maintenance (such as a data migration) and you
want to ensure that users don’t update the data.

This example modifies a table back to read/write mode:

SQL> alter table my_tab read write;

Dropping a Tablespace
If you have a tablespace that is unused, it’s best to drop it so it doesn’t clutter your database, consume unnecessary
resources, and potentially confuse DBAs who aren’t familiar with the database. Before dropping a tablespace,
it’s a good practice to first take it offline:

SQL> alter tablespace inv_data offline;

Chapter 4 ■ tablespaCes and data Files

85

You may want to wait to see if anybody screams that an application is broken because it can’t write to a table or
index in the tablespace to be dropped. When you’re sure the tablespace isn’t required, drop it, and delete its data files:

SQL> drop tablespace inv_data including contents and datafiles;

Tip ■ You can drop a tablespace whether it’s online or offline. the exception to this is the SYSTEM tablespace, which
can’t be dropped. it’s always a good idea to take a tablespace offline before you drop it. by doing so, you can better
determine if an application is using any objects in the tablespace. if you attempt to query a table in an offline tablespace,
you receive this error: ORA-00376: file can't be read at this time.

Dropping a tablespace using INCLUDING CONTENTS AND DATAFILES permanently removes the tablespace and any
of its data files. Make certain the tablespace doesn’t contain any data you want to keep before you drop it.

If you attempt to drop a tablespace that contains a primary key that is referenced by a foreign key associated with
a table in a tablespace different from the one you’re trying to drop, you receive this error:

ORA-02449: unique/primary keys in table referenced by foreign keys

Run this query first to determine whether any foreign key constraints will be affected:

select p.owner,
 p.table_name,
 p.constraint_name,
 f.table_name referencing_table,
 f.constraint_name foreign_key_name,
 f.status fk_status
from dba_constraints p,
 dba_constraints f,
 dba_tables t
where p.constraint_name = f.r_constraint_name
and f.constraint_type = 'R'
and p.table_name = t.table_name
and t.tablespace_name = UPPER('&tablespace_name')
order by 1,2,3,4,5;

If there are referenced constraints, you need to first drop the constraints or use the CASCADE CONSTRAINTS clause
of the DROP TABLESPACE statement. This statement uses CASCADE CONSTRAINTS to drop any affected constraints
automatically:

SQL> drop tablespace inv_data including contents and data files cascade constraints;

This statement drops any referential integrity constraints from tables outside the tablespace being dropped that
reference tables within the dropped tablespace.

If you drop a tablespace that has required objects in a production system, the results can be catastrophic. You
must perform some sort of recovery to get the tablespace and its objects back. Needless to say, be very careful when
dropping a tablespace. Table 4-2 lists recommendations to consider when you do this.

Chapter 4 ■ tablespaCes and data Files

86

Using Oracle Managed Files
The Oracle Managed File (OMF) feature automates many aspects of tablespace management, such as file placement,
naming, and sizing. You control OMF by setting the following initialization parameters:

•	 DB_CREATE_FILE_DEST

•	 DB_CREATE_ONLINE_LOG_DEST_N

•	 DB_RECOVERY_FILE_DEST

If you set these parameters before you create the database, Oracle uses them for the placement of the data files,
control files, and online redo logs. You can also enable OMF after your database has been created. Oracle uses the
values of the initialization parameters for the locations of any newly added files. Oracle also determines the name of
the newly added file.

The advantage of using OMF is that creating tablespaces is simplified. For example, the CREATE TABLESPACE
statement doesn’t need to specify anything other than the tablespace name. First, enable the OMF feature by setting
the DB_CREATE_FILE_DEST parameter:

SQL> alter system set db_create_file_dest='/u01';

Now, issue the CREATE TABLESPACE statement:

SQL> create tablespace inv1;

Table 4-2. Best Practices for Dropping Tablespaces

Best Practice Reasoning

Before dropping a tablespace, run a script such as this
to determine if any objects exist in the tablespace:

select owner, segment_name, segment_type
from dba_segments
where tablespace_name=upper('&&tbsp_name');

Doing this ensures that no tables or indexes exist
in the tablespace before you drop it.

Consider renaming tables in a tablespace before you
drop it.

If any applications are using tables within the tablespace
to be dropped, the application throws an error when a
required table is renamed.

If there are no objects in the tablespace, resize the
associated data files to a very small number, such as
10MB.

Reducing the size of the data files to a miniscule
amount of space quickly shows whether any
applications are trying to access objects that
require space in a tablespace.

Make a backup of your database before dropping a
tablespace.

This ensures that you have a way to recover objects that
are discovered to be in use after you drop the tablespace.

Take the tablespace and data files offline before you
drop the tablespace. Use the ALTER TABLESPACE
statement to take the tablespace offline.

This helps determine if any applications or users are using
objects in the tablespace. They can’t access the objects if
the tablespace and data files are offline.

When you’re sure a tablespace isn’t in use, use the
DROP TABLESPACE . . . INCLUDING CONTENTS AND
DATAFILES statement.

This removes the tablespace and physically removes
any data files associated with it. Some DBAs don’t like
this approach, but you should be fine if you’ve taken the
necessary precautions.

Chapter 4 ■ tablespaCes and data Files

87

This statement creates a tablespace named INV1, with a default data file size of 100MB. Keep in mind that you can
override the default size of 100MB by specifying a size:

SQL> create tablespace inv2 datafile size 20m;

To view the details of the associated data files, query the V$DATAFILE view, and note that Oracle has created
subdirectories beneath the /u01 directory and named the file with the OMF format:

SQL> select name from v$datafile where name like '%inv%';
NAME
--
/u01/O12C/datafile/o1_mf_inv1_8b5l63q6_.dbf
/u01/O12C/datafile/o1_mf_inv2_8b5lflfc_.dbf

One limitation of OMF is that you’re limited to one directory for the placement of data files. If you want to add
data files to a different directory, you can alter the location dynamically:

SQL> alter system set db_create_file_dest='/u02';

Although this procedure isn’t a huge deal, I find it easier not to use OMF. Most of the environments I’ve worked
in have many mount points assigned for database use. You don’t want to have to modify an initialization parameter
every time you need a data file added to a directory that isn’t in the current definition of DB_CREATE_FILE_DEST. It’s
easier to issue a CREATE TABLESPACE statement or ALTER TABLESPACE statement that has the file location and storage
parameters in the script. It isn’t cumbersome to provide directory names and file names to the
tablespace-management statements.

Creating a Bigfile Tablespace
The bigfile feature allows you to create a tablespace with a very large data file assigned to it. The advantage of using
the bigfile feature is this potential to create very large files. With an 8KB block size, you can create a data file as large as
32TB. With a 32KB block size, you can create a data file up to 128TB.

Use the BIGFILE clause to create a bigfile tablespace:

create bigfile tablespace inv_big_data
 datafile '/u01/dbfile/o12c/inv_big_data01.dbf'
 size 10g
 extent management local
 uniform size 128k
 segment space management auto;

As long as you have plenty of space associated with the filesystem supporting the bigfile tablespace data file, you
can store massive amounts of data in a tablespace.

One potential disadvantage of using a bigfile tablespace is that if, for any reason, you run out of space on a
filesystem that supports the data file associated with the bigfile, you can’t expand the size of the tablespace (unless
you can add space to the filesystem). You can’t add more data files to a bigfile tablespace if they’re placed on separate
mount points. A bigfile tablespace allows only one data file to be associated with it.

You can make the bigfile tablespace the default type of tablespace for a database, using the ALTER DATABASE SET
DEFAULT BIGFILE TABLESPACE statement. However, I don’t recommend doing that. You could potentially create a
tablespace, not knowing it was a bigfile tablespace (because you forgot it was the default or because you’re a new DBA on
the project and didn’t realize it), and create a tablespace on a mount point. Then, when you discovered that you needed
more space, you wouldn’t know that you couldn’t add another data file on a different mount point for this tablespace.

Chapter 4 ■ tablespaCes and data Files

88

Enabling Default Table Compression within a Tablespace
When working with large databases, you may want to consider compressing the data. Compressed data results in
less disk space, less memory, and fewer I/O operations. Queries reading compressed data potentially execute faster
because fewer blocks are required to satisfy the result of the query. But, compression does have a cost; it requires
more CPU resources, as the data are compressed and uncompressed while reading and writing.

When creating a tablespace, you can enable data compression features. Doing so doesn’t compress the
tablespace. Rather, any tables you create within the tablespace inherit the compression characteristics of the
tablespace. This example creates a tablespace with ROW STORE COMPRESS ADVANCED:

CREATE TABLESPACE tools_comp
 DATAFILE '/u01/dbfile/o12c/tools_comp01.dbf'
 SIZE 100m
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 512k
 SEGMENT SPACE MANAGEMENT AUTO
 DEFAULT ROW STORE COMPRESS ADVANCED;

Note ■ if you’re using Oracle database 11g, then use the COMPRESS FOR OLTP clause instead of ROW STORE COMPRESS
ADVANCED.

Now when a table is created within this tablespace, it will automatically be created with the ROW STORE COMPRESS
ADVANCED feature. You can verify the compression characteristics of a tablespace via this query:

select tablespace_name, def_tab_compression, compress_for
from dba_tablespaces;

Tip ■ see Chapter 7 for full details on table compression.

If a tablespace is already created, you can alter its compression characters, as follows:

SQL> alter tablespace tools_comp default row store compress advanced;

Here’s an example that alters a tablespace’s default compress to BASIC:

SQL> alter tablespace tools_comp default compress basic;

You can disable tablespace compression via the NOCOMPRESS clause:

SQL> alter tablespace tools_comp default nocompress;

Note ■ Most compression features require the enterprise edition of Oracle and the advanced Compression
option (for a fee).

Chapter 4 ■ tablespaCes and data Files

89

Displaying Tablespace Size
DBAs often use monitoring scripts to alert them when they need to increase the space allocated to a tablespace.
Depending on whether or not you’re in a pluggable database environment, your SQL for determining space usage
will vary. For a regular database (nonpluggable), you can use the regular DBA-level views to determine space usage.
The following script displays the percentage of free space left in a tablespace and data file:

SET PAGESIZE 100 LINES 132 ECHO OFF VERIFY OFF FEEDB OFF SPACE 1 TRIMSP ON
COMPUTE SUM OF a_byt t_byt f_byt ON REPORT
BREAK ON REPORT ON tablespace_name ON pf
COL tablespace_name FOR A17 TRU HEAD 'Tablespace|Name'
COL file_name FOR A40 TRU HEAD 'Filename'
COL a_byt FOR 9,990.999 HEAD 'Allocated|GB'
COL t_byt FOR 9,990.999 HEAD 'Current|Used GB'
COL f_byt FOR 9,990.999 HEAD 'Current|Free GB'
COL pct_free FOR 990.0 HEAD 'File %|Free'
COL pf FOR 990.0 HEAD 'Tbsp %|Free'
COL seq NOPRINT
DEFINE b_div=1073741824
--
SELECT 1 seq, b.tablespace_name, nvl(x.fs,0)/y.ap*100 pf, b.file_name file_name,
 b.bytes/&&b_div a_byt, NVL((b.bytes-SUM(f.bytes))/&&b_div,b.bytes/&&b_div) t_byt,
 NVL(SUM(f.bytes)/&&b_div,0) f_byt, NVL(SUM(f.bytes)/b.bytes*100,0) pct_free
FROM dba_free_space f, dba_data_files b
 ,(SELECT y.tablespace_name, SUM(y.bytes) fs
 FROM dba_free_space y GROUP BY y.tablespace_name) x
 ,(SELECT x.tablespace_name, SUM(x.bytes) ap
 FROM dba_data_files x GROUP BY x.tablespace_name) y
WHERE f.file_id(+) = b.file_id
AND x.tablespace_name(+) = y.tablespace_name
and y.tablespace_name = b.tablespace_name
AND f.tablespace_name(+) = b.tablespace_name
GROUP BY b.tablespace_name, nvl(x.fs,0)/y.ap*100, b.file_name, b.bytes
UNION
SELECT 2 seq, tablespace_name,
 j.bf/k.bb*100 pf, b.name file_name, b.bytes/&&b_div a_byt,
 a.bytes_used/&&b_div t_byt, a.bytes_free/&&b_div f_byt,
 a.bytes_free/b.bytes*100 pct_free
FROM v$temp_space_header a, v$tempfile b
 ,(SELECT SUM(bytes_free) bf FROM v$temp_space_header) j
 ,(SELECT SUM(bytes) bb FROM v$tempfile) k
WHERE a.file_id = b.file#
ORDER BY 1,2,4,3;

If you don’t have any monitoring in place, you’re alerted via the SQL statement that is attempting to perform
an insert or update operation that the tablespace requires more space but isn’t able to allocate more. At that point,
an ORA-01653 error is thrown, indicating the object can’t extend.

After you determine that a tablespace needs more space, you need to either increase the size of a data file or
add a data file to the tablespace. See the section “Altering Tablespace Size,” later in this chapter, for a discussion of
these topics.

Chapter 4 ■ tablespaCes and data Files

90

DISpLaYING OraCLe errOr MeSSaGeS aND aCtIONS

You can use the oerr utility to quickly display the cause of an error and simple instructions on what actions to
take; for example,

$ oerr ora 01653

here is the output for this example:

01653, 00000, "unable to extend table %s.%s by %s in tablespace %s"
// *Cause: Failed to allocate an extent of the required number of blocks for
// a table segment in the tablespace indicated.
// *Action: Use ALTER TABLESPACE ADD DATAFILE statement to add one or more
// files to the tablespace indicated.

the oerr utility’s output gives you a fast and easy way to triage problems. if the information provided isn’t
enough, then Google is a good second option.

Altering Tablespace Size
When you’ve determined which data file you want to resize, first make sure you have enough disk space to increase
the size of the data file on the mount point on which the data file exists:

$ df -h | sort

Use the ALTER DATABASE DATAFILE . . . RESIZE command to increase the data file’s size. This example resizes
the data file to 1GB:

SQL> alter database datafile '/u01/dbfile/o12c/users01.dbf' resize 1g;

If you don’t have space on an existing mount point to increase the size of a data file, then you must add a data file.
To add a data file to an existing tablespace, use the ALTER TABLESPACE . . . ADD DATAFILE statement:

SQL> alter tablespace users
 add datafile '/u02/dbfile/o12c/users02.dbf' size 100m;

With bigfile tablespaces, you have the option of using the ALTER TABLESPACE statement to resize the data file. This
works because only one data file can be associated with a bigfile tablespace:

SQL> alter tablespace inv_big_data resize 1T;

Tip ■ see Chapter 23 for full details on reporting on space within a pluggable database environment using the
container database (Cdb) level views.

Chapter 4 ■ tablespaCes and data Files

91

Resizing data files can be a daily task when you’re managing databases with heavy transaction loads. Increasing
the size of an existing data file allows you to add space to a tablespace without adding more data files. If there isn’t
enough disk space left on the storage device that contains an existing data file, you can add a data file in a different
location to an existing tablespace.

To add space to a temporary tablespace, first query the V$TEMPFILE view to verify the current size and location of
temporary data files:

SQL> select name, bytes from v$tempfile;

Then, use the TEMPFILE option of the ALTER DATABASE statement:

SQL> alter database tempfile '/u01/dbfile/o12c/temp01.dbf' resize 500m;

You can also add a file to a temporary tablespace via the ALTER TABLESPACE statement:

SQL> alter tablespace temp add tempfile '/u01/dbfile/o12c/temp02.dbf' size 5000m;

Toggling Data Files Offline and Online
Sometimes, when you’re performing maintenance operations (such as renaming data files), you may need to first take
a data file offline. You can use either the ALTER TABLESPACE or the ALTER DATABASE DATAFILE statement to toggle data
files offline and online.

Tip ■ as of Oracle database 12c, you can move and rename data files while they are online and open for use. see
“renaming or relocating a data File,” later in this chapter, for a discussion of this.

Use the ALTER TABLESPACE . . . OFFLINE NORMAL statement to take a tablespace and its associated data files
offline. You don’t need to specify NORMAL, because it’s the default:

SQL> alter tablespace users offline;

When you place a tablespace offline in normal mode, Oracle performs a checkpoint on the data files associated
with the tablespace. This ensures that all modified blocks in memory that are associated with the tablespace are
flushed and written to the data files. You don’t need to perform media recovery when you bring the tablespace and its
associated data files back online.

You can’t use the ALTER TABLESPACE statement to place tablespaces offline when the database is in mount
mode. If you attempt to take a tablespace offline while the database is mounted (but not open), you receive the
following error:

ORA-01109: database not open

Note ■ When in mount mode, you must use the ALTER DATABASE DATAFILE statement to take a data file offline.

When taking a tablespace offline, you can also specify ALTER TABLESPACE . . . OFFLINE TEMPORARY. In this
scenario, Oracle initiates a checkpoint on all data files associated with the tablespace that are online. Oracle doesn’t
initiate a checkpoint on offline data files associated with the tablespace.

Chapter 4 ■ tablespaCes and data Files

92

You can specify ALTER TABLESPACE . . . OFFLINE IMMEDIATE when taking a tablespace offline. Your database
must be in archivelog mode in this situation, or the following error is thrown:

ORA-01145: offline immediate disallowed unless media recovery enabled

When using OFFLINE IMMEDIATE, Oracle doesn’t issue a checkpoint on the data files. You must perform media
recovery on the tablespace before bringing it back online.

Note ■ You can’t take the SYSTEM or UNDO tablespace offline while the database is open.

You can also use the ALTER DATABASE DATAFILE statement to take a data file offline. If your database is open for
use, then it must be in archivelog mode in order for you to take a data file offline with the ALTER DATABASE DATAFILE
statement. If you attempt to take a data file offline using the ALTER DATABASE DATAFILE statement, and your database
isn’t in archivelog mode, the ORA-01145 error is thrown.

If your database isn’t in archivelog mode, you must specify ALTER DATABASE DATAFILE . . . OFFLINE FOR DROP
when taking a data file offline. You can specify the entire file name or provide the file number. In this example, data
file 4 is taken offline:

SQL> alter database datafile 4 offline for drop;

Now, if you attempt to bring online the offline data file, you receive the following error:

SQL> alter database datafile 4 online;
ORA-01113: file 4 needs media recovery

When you use the OFFLINE FOR DROP clause, no checkpoint is taken on the data file. This means you need to
perform media recovery on the data file before bringing it online. Performing media recovery applies any changes
to the data file that are recorded in the online redo logs that aren’t in the data files themselves. Before you can bring
online a data file that was taken offline with the OFFLINE FOR DROP clause, you must perform media recovery on it.
You can specify either the entire file name or the file number:

SQL> recover datafile 4;

If the redo information that Oracle needs is contained in the online redo logs, you should see this message:

Media recovery complete.

If your database isn’t in archivelog mode, and if Oracle needs redo information not contained in the online redo
logs to recover the data file, then you can’t recover the data file and place it back online.

If your database is in archivelog mode, you can take it offline without the FOR DROP clause. In this scenario, Oracle
overlooks the FOR DROP clause. Even when your database is in archivelog mode, you need to perform media recovery
on a data file that has been taken offline with the ALTER DATABASE DATAFILE statement. Table 4-3 summarizes the
options you must consider when taking a tablespace/data files offline.

Note ■ While the database is in mount mode (and not open), you can use the ALTER DATABASE DATAFILE command to
take any data file offline, including SYSTEM and UNDO.

Chapter 4 ■ tablespaCes and data Files

93

Renaming or Relocating a Data File
You may occasionally need to move or rename a data file. For example, you may need to move data files because of
changes in the storage devices or because the files were created in the wrong location or with a nonstandard name.
As of Oracle Database 12c, you have the option of renaming or moving data files, or both, while they are online.
Otherwise, you will have to take data files offline for maintenance operations.

Performing Online Data File Operations
New in Oracle Database 12c is the ALTER DATABASE MOVE DATAFILE command. This command allows you to rename
or move data files without any downtime. This vastly simplifies the task of moving or renaming a data file, as there
is no need to manually place data files offline/online and use OS commands to physically move the files. This once
manually intensive (and error-prone) operation has now been simplified to a single SQL command.

A data file must be online for the online move or rename to work. Here is an example of renaming an online
data file:

SQL> alter database move datafile '/u01/dbfile/o12c/users01.dbf' to
 '/u01/dbfile/o12c/users_dev01.dbf';

Here is an example of moving a data file to a new mount point:

SQL> alter database move datafile '/u01/dbfile/o12c/system01.dbf' to
 '/u02/dbfile/o12c/system01.dbf';

You can also specify the data file number when renaming or moving a data file; for example,

SQL> alter database move datafile 2 to '/u02/dbfile/o12c/sysuax01.dbf';

In the previous example, you are specifying that data file 2 be moved.
If you’re moving a data file and, for any reason, want to keep a copy of the original file, you can use the

KEEP option:

SQL> alter database move datafile 4 to '/u02/dbfile/o12c/users01.dbf' keep;

Table 4-3. Options for Taking Tablespaces/Data Files Offline

Statement Archivelog Mode
Required?

Media Recovery Required
When Toggling Online?

Works in
Mount Mode?

ALTER TABLESPACE . . . OFFLINE NORMAL No No No

ALTER TABLESPACE . . . OFFLINE TEMPORARY No Maybe: Depends
on whether any
data files already
have offline status

No

ALTER TABLESPACE . . . OFFLINE IMMEDIATE No Yes No

ALTER DATABASE DATAFILE . . . OFFLINE Yes Yes Yes

ALTER DATABASE DATAFILE . . . OFFLINE
FOR DROP

No Yes Yes

Chapter 4 ■ tablespaCes and data Files

94

You can specify the REUSE clause to overwrite an existing file:

SQL> alter database move datafile 4 to '/u01/dbfile/o12c/users01.dbf' reuse;

Oracle will not allow you to overwrite (reuse) a data file that is currently being used by the database. That’s a
good thing.

Performing Offline Data File Operations
If you are using Oracle Database 11g or lower, before you rename or move a data file, you must take the data file
offline. There are two somewhat different approaches to moving and renaming offline data files:

Use a combination of SQL commands and OS commands.•	

Use a combination of re-creating the control file and OS commands.•	

These two techniques are discussed in the next two bsections.

Using SQL and OS Commands
Here are the steps for renaming a data file using SQL commands and OS commands:

1. Use the following query to determine the names of existing data files:

SQL> select name from v$datafile;

2. Take the data file offline, using either the ALTER TABLESPACE or ALTER DATABASE DATAFILE
statement (see the previous section, "Performing Offline Data File Operations," for details
on how to do this). You can also shut down your database and then start it in mount mode;
the data files can be moved while in this mode because they aren't open for use.

3. Physically move the data file to the new location, using either an OS command (like mv or cp)
or the COPY_FILE procedure of the DBMS_FILE_TRANSFER built-in PL/SQL package.

4. Use either the ALTER TABLESPACE . . . RENAME DATAFILE . . . TO statement or the ALTER
DATABASE RENAME FILE . . . TO statement to update the control file with the new data
file name.

5. Alter the data file online.

Note ■ if you need to rename data files associated with the SYSTEM or UNDO tablespace, you must shut down your
database and start it in mount mode. When your database is in mount mode, you can rename these data files via the
ALTER DATABASE RENAME FILE statement.

The following example demonstrates how to move the data files associated with a single tablespace. First, take
the data files offline with the ALTER TABLESPACE statement:

SQL> alter tablespace users offline;

t

Chapter 4 ■ tablespaCes and data Files

95

Now, from the OS prompt, move the data files to a new location, using the Linux/Unix mv command:

$ mv /u01/dbfile/o12c/users01.dbf /u02/dbfile/o12c/users01.dbf

Update the control file with the ALTER TABLESPACE statement:

alter tablespace users
rename datafile
'/u01/dbfile/o12c/users01.dbf'
to
'/u02/dbfile/o12c/users01.dbf';

Finally, bring the data files within the tablespace back online:

SQL> alter tablespace users online;

If you want to rename data files from multiple tablespaces in one operation, you can use the ALTER DATABASE
RENAME FILE statement (instead of the ALTER TABLESPACE. . .RENAME DATAFILE statement). The following example
renames several data files in the database. Because the SYSTEM and UNDO tablespaces’ data files are being moved, you
must shut down the database first and then place it in mount mode:

SQL> conn / as sysdba
SQL> shutdown immediate;
SQL> startup mount;

Because the database is in mount mode, the data files aren’t open for use, and thus there is no need to take the
data files offline. Next, physically move the files via the Linux/Unix mv command:

$ mv /u01/dbfile/o12c/system01.dbf /u02/dbfile/o12c/system01.dbf
$ mv /u01/dbfile/o12c/sysaux01.dbf /u02/dbfile/o12c/sysaux01.dbf
$ mv /u01/dbfile/o12c/undotbs01.dbf /u02/dbfile/o12c/undotbs01.dbf

Note ■ You must move the files before you update the control file. the ALTER DATABASE RENAME FILE command expects
the file to be in the renamed location. if the file isn’t there, an error is thrown: ORA-27037: unable to obtain file status.

Now, you can update the control file to be aware of the new file name:

alter database rename file
'/u01/dbfile/o12c/system01.dbf',
'/u01/dbfile/o12c/sysaux01.dbf',
'/u01/dbfile/o12c/undotbs01.dbf'
to
'/u02/dbfile/o12c/system01.dbf',
'/u02/dbfile/o12c/sysaux01.dbf',
'/u02/dbfile/o12c/undotbs01.dbf';

Chapter 4 ■ tablespaCes and data Files

96

You should be able to open your database:

SQL> alter database open;

Re-Creating the Control File and OS Commands
Another way you can relocate all data files in a database is to use a combination of a re-created control file and OS
commands. The steps for this operation are as follows:

1. Create a trace file that contains a CREATE CONTROLFILE statement.

2. Modify the trace file to display the new location of the data files.

3. Shut down the database.

4. Physically move the data files, using an OS command.

5. Start the database in nomount mode.

6. Run the CREATE CONTROLFILE command.

Note■ When you re-create a control file, be aware that anyrMan information that was contained in the file will be
lost. if you’re not using a recovery catalog, you can repopulate the control file with rMan backup information, using the
RMAN CATALOG command.

The following example walks through the previous steps. First, you write a CREATE CONTROLFILE statement to a
trace file via an ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement:

SQL> alter database backup controlfile to trace as '/tmp/mv.sql' noresetlogs;

There are a couple of items to note about the prior statement. First, a file named mv.sql is created in the /tmp
directory; this file contains a CREATE CONTROLFILE statement. Second, the prior statement uses the NORESETLOGS
clause; this instructs Oracle to write only one SQL statement to the trace file. If you don’t specify NORESETLOGS, Oracle
writes two SQL statements to the trace file: one to re-create the control file with the NORESETLOGS option and one to
re-create the control file with RESETLOGS. Normally, you know whether you want to reset the online redo logs as
part of re-creating the control file. In this case, you know that you don’t need to reset the online redo logs when you
re-create the control file (because the online redo logs haven’t been damaged and are still in the normal location for
the database).

Next, edit the /tmp/mv.sql file, and change the names of the directory paths to the new locations. Here is a
CREATE CONTROLFILE statement for this example:

CREATE CONTROLFILE REUSE DATABASE "O12C" NORESETLOGS NOARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 876
LOGFILE

Chapter 4 ■ tablespaCes and data Files

97

 GROUP 1 (
 '/u01/oraredo/o12c/redo01a.rdo',
 '/u02/oraredo/o12c/redo01b.rdo'
) SIZE 50M BLOCKSIZE 512,
 GROUP 2 (
 '/u01/oraredo/o12c/redo02a.rdo',
 '/u02/oraredo/o12c/redo02b.rdo'
) SIZE 50M BLOCKSIZE 512,
 GROUP 3 (
 '/u01/oraredo/o12c/redo03a.rdo',
 '/u02/oraredo/o12c/redo03b.rdo'
) SIZE 50M BLOCKSIZE 512
DATAFILE
 '/u01/dbfile/o12c/system01.dbf',
 '/u01/dbfile/o12c/sysaux01.dbf',
 '/u01/dbfile/o12c/undotbs01.dbf',
 '/u01/dbfile/o12c/users01.dbf'
CHARACTER SET AL32UTF8;

Now, shut down the database:

SQL> shutdown immediate;

Physically move the files from the OS prompt. This example uses the Linux/Unix mv command to move the files:

$ mv /u02/dbfile/o12c/system01.dbf /u01/dbfile/o12c/system01.dbf
$ mv /u02/dbfile/o12c/sysaux01.dbf /u01/dbfile/o12c/sysaux01.dbf
$ mv /u02/dbfile/o12c/undotbs01.dbf /u01/dbfile/o12c/undotbs01.dbf
$ mv /u02/dbfile/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf

Start up the database in nomount mode:

SQL> startup nomount;

Then, execute the file that contains the CREATE CONTROLFILE statement (in this example, mv.sql):

SQL> @/tmp/mv.sql

If the statement is successful, you see the following message:

Control file created.

Finally, alter your database open:

SQL> alter database open;

Chapter 4 ■ tablespaCes and data Files

98

Summary
This chapter discussed managing tablespaces and data files. Tablespaces are logical containers for a group of data
files. Data files are the physical files on disk that contain data. You should plan carefully when creating tablespaces
and the corresponding data files.

Tablespaces allow you to separate the data of different applications. You can also separate tables from indexes.
These allow you to customize storage characteristics of the tablespace for each application. Furthermore, tablespaces
provide a way to better manage applications that have different availability and backup and recovery requirements.
As a DBA you must be proficient in managing tablespaces and data files. In any type of environment, you have to add,
rename, relocate, and drop these storage containers.

Oracle requires three types of files for a database to operate: data files, control files, and online redo log files.
The next chapter focuses on control file and online redo log file management.

99

Chapter 5

Managing Control Files,
Online Redo Logs, and Archiving

An Oracle database consists of three types of mandatory files: data files, control files, and online redo logs.
Chapter 4 focused on tablespaces and data files. This chapter looks at managing control files and online redo logs
and implementing archiving (of the online redo logs). The first part of the chapter discusses typical control file
maintenance tasks, such adding, moving, and removing control files. The middle part of the chapter examines DBA
activities related to online redo log files, such as renaming, adding, dropping, and relocating these critical files.
Finally, the architectural aspects of enabling and implementing archiving are covered.

Managing Control Files
A control file is a small binary file that stores the following types of information:

Database name•	

Names and locations of data files•	

Names and locations of online redo log files•	

Current online redo log sequence number•	

Checkpoint information•	

Names and locations of RMAN backup files (if using)•	

You can query much of the information stored in the control file from data dictionary views. This example
displays the types of information stored in the control file by querying V$CONTROLFILE_RECORD_SECTION:

SQL> select distinct type from v$controlfile_record_section;

Here is a partial listing of the output:

TYPE

FILENAME
TABLESPACE
RMAN CONFIGURATION
BACKUP CORRUPTION
PROXY COPY

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

100

FLASHBACK LOG
REMOVABLE RECOVERY FILES
AUXILIARY DATAFILE COPY
DATAFILE

You can view database-related information stored in the control file via the V$DATABASE view:

SQL> select name, open_mode, created, current_scn from v$database;

Here is the output for this example:

NAME OPEN_MODE CREATED CURRENT_SCN
--------- -------------------- --------- -----------
O12C READ WRITE 28-SEP-12 2573820

Every Oracle database must have at least one control file. When you start your database in nomount mode,
the instance is aware of the location of the control files from the CONTROL_FILES initialization parameter in the
spfile or init.ora file. When you issue a STARTUP NOMOUNT command, Oracle reads the parameter file and starts
the background processes and allocates memory structures:

-- locations of control files are known to the instance
SQL> startup nomount;

At this point, the control files haven’t been touched by any processes. When you alter your database into mount
mode, the control files are read and opened for use:

-- control files opened
SQL> alter database mount;

If any of the control files listed in the CONTROL_FILES initialization parameter aren’t available, then you can’t
mount your database.

When you successfully mount your database, the instance is aware of the locations of the data files and online
redo logs but hasn’t yet opened them. After you alter your database into open mode, the data files and online redo
logs are opened:

-- datafiles and online redo logs opened
SQL> alter database open;

Note ■ Keep in mind that when you issue the STARTUP command (with no options), the previously described three
phases are automatically performed in this order: nomount, mount, open. When you issue a SHUTDOWN command,
the phases are reversed: close the database, unmount the control file, stop the instance.

The control file is created when the database is created. As you saw in Chapter 2, you should create at least two
control files when you create your database (to avoid a single point of failure). If possible you should have multiple
control files stored on separate storage devices controlled by separate controllers.

After the database has been opened, Oracle will frequently write information to the control files, such as when
you make any physical modifications (e.g., creating a tablespace, adding/removing/resizing a data file). Oracle writes

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

101

to all control files specified by the CONTROL_FILES initialization parameter. If Oracle can’t write to one of the control
files, an error is thrown:

ORA-00210: cannot open the specified control file

If one of your control files becomes unavailable, shut down your database, and resolve the issue before restarting
(see Chapter 19 for using RMAN to restore a control file). Fixing the problem may mean resolving a storage-device
failure or modifying the CONTROL_FILES initialization parameter to remove the control file entry for the control file that
isn’t available.

DISpLaYING the CONteNtS OF a CONtrOL FILe

You can use the ALTER SESSION statement to display the physical contents of the control file; for example,

SQL> oradebug setmypid
SQL> oradebug unlimit
SQL> alter session set events 'immediate trace name controlf level 9';
SQL> oradebug tracefile_name

the prior line of code displays the following name of the trace file:

/ora01/app/oracle/diag/rdbms/o12c/o12c/trace/o12c_ora_4153.trc

in oracle database 11g and above, the trace file is written to the $ADR_HOME/trace directory. You can also view
the trace directory name via this query:

SQL> select value from v$diag_info where name='Diag Trace';

in oracle 10g and below, the trace directory is defined by the USER_DUMP_DEST initialization parameter.

here is a partial listing of the contents of the trace file:

DATABASE ENTRY

 (size = 316, compat size = 316, section max = 1, section in-use = 1,
 last-recid= 0, old-recno = 0, last-recno = 0)
 (extent = 1, blkno = 1, numrecs = 1)
 09/28/2012 16:04:54
 DB Name "O12C"
 Database flags = 0x00404001 0x00001200
 Controlfile Creation Timestamp 09/28/2012 16:04:57
 Incmplt recovery scn: 0x0000.00000000

You can inspect the contents of the control file when troubleshooting or when you’re trying to gain a better
understanding of oracle internals.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

102

Viewing Control File Names and Locations
If your database is in a nomount state, a mounted state, or an open state, you can view the names and locations of the
control files, as follows:

SQL> show parameter control_files

You can also view control file location and name information by querying the V$CONTROLFILE view. This query
works while your database is mounted or open:

SQL> select name from v$controlfile;

If, for some reason, you can’t start your database at all, and you need to know the names and locations of the
control files, you can inspect the contents of the initialization (parameter) file to see where they’re located. If you’re
using an spfile, even though it’s a binary file, you can still open it with a text editor. The safest approach is to make a
copy of the spfile and then inspect its contents with an OS editor:

$ cp $ORACLE_HOME/dbs/spfileo12c.ora $ORACLE_HOME/dbs/spfileo12c.copy
$ vi $ORACLE_HOME/dbs/spfileo12c.copy

You can also use the strings command to search for values in a binary file:

$ strings spfileo12c.ora | grep -i control_files

If you’re using a text-based initialization file, you can view the file directly, with an OS editor, or use
the grep command:

$ grep -i control_files $ORACLE_HOME/dbs/inito12c.ora

Adding a Control File
Adding a control file means copying an existing control file and making your database aware of the copy by modifying
your CONTROL_FILES parameter. This task must be done while your database is shut down. This procedure only works
when you have a good existing control file that can be copied. Adding a control file isn’t the same thing as creating or
restoring a control file.

Tip ■ see Chapter 4 for an example of re-creating a control file for the purpose of renaming and moving data files.
see Chapter 19 for an example of re-creating a control file for the purpose of renaming a database.

If your database uses only one control file, and that control file becomes damaged, you need to either restore a
control file from a backup (if available) and perform a recovery or re-create the control file. If you’re using two or more
control files, and one becomes damaged, you can use the remaining good control file(s) to quickly get your database
into an operating state.

If a database is using only one control file, the basic procedure for adding a control file is as follows:

1. Alter the initialization file CONTROL_FILES parameter to include the new location and name
of the control file.

2. Shut down your database.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

103

3. Use an OS command to copy an existing control file to the new location and name.

4. Restart your database.

Depending on whether you use an spfile or an init.ora file, the previous steps vary slightly. The next two
sections detail these different scenarios.

Spfile Scenario
If your database is open, you can quickly determine whether you’re using an spfile with the following SQL
statement:

SQL> show parameter spfile

Here is some sample output:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
spfile string /ora01/app/oracle/product/12.1
 .0.1/db_1/dbs/spfileo12c.ora

When you’ve determined that you’re using an spfile, use the following steps to add a control file:

1. Determine the CONTROL_FILES parameter’s current value:

SQL> show parameter control_files

The output shows that this database is using only one control file:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
control_files string /u01/dbfile/o12c/control01.ctl

2. Alter your CONTROL_FILES parameter to include the new control file that you want to add,
but limit the scope of the operation to the spfile (you can’t modify this parameter in
memory). Make sure you also include any control files listed in step 1:

SQL> alter system set control_files='/u01/dbfile/o12c/control01.ctl',
'/u01/dbfile/o12c/control02.ctl' scope=spfile;

3. Shut down your database:

SQL> shutdown immediate;

4. Copy an existing control file to the new location and name. In this example a new control
file named control02.ctl is created via the OS cp command:

$ cp /u01/dbfile/o12c/control01.ctl /u01/dbfile/o12c/control02.ctl

5. Start up your database:

SQL> startup;

You can verify that the new control file is being used by displaying the CONTROL_FILES parameter:

SQL> show parameter control_files

i

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

104

Here is the output for this example:

NAME TYPE VALUE
-------------------------- ----------- ------------------------------
control_files string /u01/dbfile/o12c/control01.ctl
 ,/u01/dbfile/o12c/control02.ctl

Init.ora Scenario
Run the following statement to verify that you’re using an init.ora file. If you’re not using an spfile, the VALUE
column is blank:

SQL> show parameter spfile
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
spfile string

To add a control file when using a text init.ora file, perform the following steps:

1. Shut down your database:

SQL> shutdown immediate;

2. Edit your init.ora file with an OS utility (such as vi), and add the new control file location
and name to the CONTROL_FILES parameter. This example opens the init.ora file, using
vi, and adds control02.ctl to the CONTROL_FILES parameter:

$ vi $ORACLE_HOME/dbs/inito12c.ora

Listed next is the CONTROL_FILES parameter after control02.ctl is added:

control_files='/u01/dbfile/o12c/control01.ctl',
 '/u01/dbfile/o12c/control02.ctl'

3. From the OS, copy the existing control file to the location, and name of the control file
being added:

$ cp /u01/dbfile/o12c/control01.ctl /u01/dbfile/o12c/control02.ctl

4. Start up your database:

SQL> startup;

You can view the control files in use by displaying the CONTROL_FILES parameter:

SQL> show parameter control_files

For this example, here is the output:

NAME TYPE VALUE
-------------------------- ----------- ------------------------------
control_files string /u01/dbfile/o12c/control01.ctl
 ,/u01/dbfile/o12c/control02.ctl

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

105

Moving a Control File
You may occasionally need to move a control file from one location to another. For example, if new storage is added to
the database server, you may want to move an existing control file to the newly available location.

The procedure for moving a control file is very similar to adding a control file. The only difference is that you
rename the control file instead of copying it. This example shows how to move a control file when you’re using
an spfile:

1. Determine the CONTROL_FILES parameter’s current value:

SQL> show parameter control_files

The output shows that this database is using only one control file:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
control_files string /u01/dbfile/o12c/control01.ctl

 2. Alter your CONTROL_FILES parameter to reflect that you’re moving a control file. In this
example the control file is currently in this location:

/u01/dbfile/o12c/control01.ctl

 You’re moving the control file to this location:

/u02/dbfile/o12c/control01.ctl

 Alter the spfile to reflect the new location for the control file. You have to specify
SCOPE=SPFILE because the CONTROL_FILES parameter can’t be modified in memory:

SQL> alter system set
 control_files='/u02/dbfile/o12c/control01.ctl' scope=spfile;

3. Shut down your database:

SQL> shutdown immediate;

4. At the OS prompt, move the control file to the new location. This example uses the OS mv
command:

$ mv /u01/dbfile/o12c/control01.ctl /u02/dbfile/o12c/control01.ctl

5. Start up your database:

SQL> startup;

You can verify that the new control file is being used by displaying the CONTROL_FILES parameter:

SQL> show parameter control_files

Here is the output for this example:

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
control_files string /u02/dbfile/o12c/control01.ctl

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

106

Removing a Control File
You may run into a situation in which you experience a media failure with a storage device that contains one of your
multiplexed control files:

ORA-00205: error in identifying control file, check alert log for more info

In this scenario, you still have at least one good control file. To remove a control file, follow these steps:

1. Identify which control file has experienced media failure by inspecting the alert.log for
information:

ORA-00210: cannot open the specified control file
ORA-00202: control file: '/u01/dbfile/o12c/control02.ctl'

2. Remove the unavailable control file name from the CONTROL_FILES parameter. If you’re
using an init.ora file, modify the file directly with an OS editor (such as vi). If you’re
using an spfile, modify the CONTROL_FILES parameter with the ALTER SYSTEM statement.
In this spfile example the control02.ctl control file is removed from the CONTROL_FILES
parameter:

SQL> alter system set control_files='/u01/dbfile/o12c/control01.ctl'
 scope=spfile;

 This database now has only one control file associated with it. You should never run a
production database with just one control file. See the section “Adding a Control File,”
earlier in this chapter, for details on how to add more control files to your database.

3. Stop and start your database:

SQL> shutdown immediate;
SQL> startup;

Note■ if SHUTDOWN IMMEDIATE doesn’t work, use SHUTDOWN ABORT to shut down your database. there’s nothing
wrong with using SHUTDOWN ABORT to quickly close a database when SHUTDOWN IMMEDIATE hangs.

Managing Online Redo Logs
Online redo logs store a record of transactions that have occurred in your database. These logs serve the following
purposes:

Provide a mechanism for recording changes to the database so that in the event of a media •	
failure, you have a method of recovering transactions.

Ensure that in the event of total instance failure, committed transactions can be recovered •	
(crash recovery) even if committed data changes have not yet been written to the data files.

Allow administrators to inspect historical database transactions through the Oracle LogMiner •	
utility.

They are read by Oracle tools such as GoldenGate or Streams to replicate data. •	

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

107

You’re required to have at least two online redo log groups in your database. Each online redo log group must
contain at least one online redo log member. The member is the physical file that exists on disk. You can create
multiple members in each redo log group, which is known as multiplexing your online redo log group.

Tip ■ i highly recommend that you multiplex your online redo log groups and, if possible, have each member on a
separate physical device governed by a separate controller.

The log writer is the background process responsible for writing transaction information from the redo log buffer
(in the SGA) to the online redo log files (on disk). Log writer flushes the contents of the redo log buffer when any of the
following are true:

A •	 COMMIT is issued.

A log switch occurs.•	

Three seconds go by.•	

The redo log buffer is one-third full.•	

The redo log buffer fills to one megabyte.•	

The online redo log group that the log writer is actively writing to is the current online redo log group. The log
writer writes simultaneously to all members of a redo log group. The log writer needs to successfully write to only one
member in order for the database to continue operating. The database ceases operating if the log writer can’t write
successfully to at least one member of the current group.

When the current online redo log group fills up, a log switch occurs, and the log writer starts writing to the next
online redo log group. The log writer writes to the online redo log groups in a round-robin fashion. Because you have
a finite number of online redo log groups, eventually the contents of each online redo log group are overwritten.
If you want to save a history of the transaction information, you must place your database in archivelog mode
(see the section “Implementing Archivelog Mode,” later in this chapter).

When your database is in archivelog mode, after every log switch the archiver background process copies the
contents of the online redo log file to an archived redo log file. In the event of a failure the archived redo log files allow
you to restore the complete history of transactions that have occurred since your last database backup.

Figure 5-1 displays a typical setup for the online redo log files. This figure shows three online redo log groups,
each containing two members. The database is in archivelog mode. In the figure, group 2 has recently been filled with
transactions, a log switch has occurred, and the log writer is now writing to group 3. The archiver process is copying
the contents of group 2 to an archived redo log file. When group 3 fills up, another log switch will occur, and the log
writer will begin writing to group 1. At the same time, the archiver process will copy the contents of group 3 to archive
log sequence 3 (and so forth).

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

108

The online redo log files aren’t intended to be backed up. These files contain only the most recent redo
transaction information generated by the database. When you enable archiving, the archived redo log files are the
mechanism for protecting your database transaction history.

The contents of the current online redo log files aren’t archived until a log switch occurs. This means that if you
lose all members of the current online redo log file, you lose transactions. Listed next are several mechanisms you can
implement to minimize the chance of failure with the online redo log files:

Multiplex the groups.•	

If possible, never allow two members of the same group to share the same controller.•	

If possible, never put two members of the same group on the same physical disk.•	

Ensure that OS file permissions are set appropriately (restrictive, that only the owner of the •	
Oracle binaries has permissions to write and read).

Use physical storage devices that are redundant (i.e., RAID [redundant array of inexpensive disks]).•	

Appropriately size the log files, so that they switch and are archived at regular intervals.•	

Consider setting the •	 ARCHIVE_LAG_TARGET initialization parameter to ensure that the online
redo logs are switched at regular intervals.

/u01/oraredo/o12c/
redo01a.rdo

/u02/oraredo/o12c/
redo01b.rdo

/u01/oraredo/o12c/
redo02a.rdo

/u02/oraredo/o12c/
redo02b.rdo

/u01/oraredo/o12c/
redo03a.rdo

/u02/oraredo/o12c/
redo03b.rdo

Log writer

Archiver

Archive Log Sequence 2Archive Log Sequence 1

Group 1 Group 2 Group 3

Figure 5-1. Online redo log configuration

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

109

Note ■ the only tool provided by oracle that can protect you and preserve all committed transactions in the event you
lose all members of the current online redo log group is oracle data guard, implemented in maximum protection mode.
see Mos note 239100.1 for more details regarding oracle data guard protection modes.

The online redo log files are never backed up by an RMAN backup or by a user-managed hot backup. If you did
back up the online redo log files, it would be meaningless to restore them. The online redo log files contain the latest
redo generated by the database. You wouldn’t want to overwrite them from a backup with old redo information.
For a database in archivelog mode the online redo log files contain the most recently generated transactions that
are required to perform a complete recovery.

Displaying Online Redo Log Information
Use the V$LOG and V$LOGFILE views to display information about online redo log groups and corresponding members:

COL group# FORM 99999
COL thread# FORM 99999
COL grp_status FORM a10
COL member FORM a30
COL mem_status FORM a10
COL mbytes FORM 999999
--
SELECT
 a.group#
,a.thread#
,a.status grp_status
,b.member member
,b.status mem_status
,a.bytes/1024/1024 mbytes
FROM v$log a,
 v$logfile b
WHERE a.group# = b.group#
ORDER BY a.group#, b.member;

Here is some sample output:

GROUP# THREAD# GRP_STATUS MEMBER MEM_STATUS MBYTES
------ ------- ---------- ------------------------------ ---------- -------
 1 1 INACTIVE /u01/oraredo/o12c/redo01a.rdo 50
 1 1 INACTIVE /u02/oraredo/o12c/redo01b.rdo 50
 2 1 CURRENT /u01/oraredo/o12c/redo02a.rdo 50
 2 1 CURRENT /u02/oraredo/o12c/redo02b.rdo 50

When you’re diagnosing online redo log issues, the V$LOG and V$LOGFILE views are particularly helpful. You can
query these views while the database is mounted or open. Table 5-1 briefly describes each view.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

110

The STATUS column of the V$LOG view is especially useful when you’re working with online redo log groups.
Table 5-2 describes each status and its meaning for the V$LOG view.

Table 5-2. Status for Online Redo Log Groups in the V$LOG View

Status Meaning

CURRENT The log group is currently being written to by the log writer.

ACTIVE The log group is required for crash recovery and may or may not have been archived.

CLEARING The log group is being cleared out by an ALTER DATABASE CLEAR LOGFILE command.

CLEARING_CURRENT The current log group is being cleared of a closed thread.

INACTIVE The log group isn’t required for crash recovery and may or may not have been archived.

UNUSED The log group has never been written to; it was recently created.

Table 5-1. Useful Views Related to Online Redo Logs

View Description

V$LOG Displays the online redo log group information stored in the control file

V$LOGFILE Displays online redo log file member information

The STATUS column of the V$LOGFILE view also contains useful information. This view offers information about
each physical online redo log file member of a log group. Table 5-3 provides descriptions of the each status and its
meaning for each log file member.

Table 5-3. Status for Online Redo Log File Members in the V$LOGFILE View

Status Meaning

INVALID The log file member is inaccessible or has been recently created.

DELETED The log file member is no longer in use.

STALE The log file member’s contents aren’t complete.

NULL The log file member is being used by the database.

It’s important to differentiate between the STATUS column in V$LOG and the STATUS column in V$LOGFILE. The
STATUS column in V$LOG reflects the status of the log group. The STATUS column in V$LOGFILE reports the status of the
physical online redo log file member. Refer to these tables when diagnosing issues with your online redo logs.

Determining the Optimal Size of Online Redo Log Groups
Try to size the online redo logs so that they switch anywhere from two to six times per hour. The V$LOG_HISTORY
contains a history of how frequently the online redo logs have switched. Execute this query to view the number of log
switches per hour:

select count(*)
,to_char(first_time,'YYYY:MM:DD:HH24')

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

111

from v$log_history
group by to_char(first_time,'YYYY:MM:DD:HH24')
order by 2;

Here is a snippet of the output:

 COUNT(*) TO_CHAR(FIRST
---------- -------------
 1 2012:10:23:23
 3 2012:10:24:03
 28 2012:10:24:04
 23 2012:10:24:05
 68 2012:10:24:06
 84 2012:10:24:07
 15 2012:10:24:08

From the previous output, you can see that a great deal of log switch activity occurred from approximately
4:00 am to 7:00 am. This could be due to a nightly batch job or users’ in different time zones updating data.
For this database the size of the online redo logs should be increased. You should try to size the online redo logs
to accommodate peak transaction loads on the database.

The V$LOG_HISTORY derives its data from the control file. Each time there is a log switch, an entry is recorded
in this view that details information such as the time of the switch and the system change number (SCN). As stated,
a general rule of thumb is that you should size your online redo log files so that they switch approximately two to
six times per hour. You don’t want them switching too often because there is overhead with the log switch. Oracle
initiates a checkpoint as part of a log switch. During a checkpoint the database writer background process writes
modified (also called dirty) blocks to disk, which is resource intensive.

Then again, you don’t want online redo log files never to switch, because the current online redo log contains
transactions that you may need in the event of a recovery. If a disaster causes a media failure in your current online
redo log, you can lose those transactions that haven’t been archived.

Tip ■ Use the ARCHIVE_LAG_TARGET initialization parameter to set a maximum amount of time (in seconds) between
log switches. a typical setting for this parameter is 1,800 seconds (30 minutes). a value of 0 (default) disables this
feature. this parameter is commonly used in oracle data guard environments to force log switches after the specified
amount of time elapses.

You can also query the OPTIMAL_LOGFILE_SIZE column from the V$INSTANCE_RECOVERY view to determine if your
online redo log files have been sized correctly:

SQL> select optimal_logfile_size from v$instance_recovery;

Here is some sample output:

OPTIMAL_LOGFILE_SIZE

349

This column reports the redo log file size (in megabytes) that is considered optimal, based on the initialization
parameter setting of FAST_START_MTTR_TARGET. Oracle recommends that you configure all online redo logs to

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

112

be at least the value of OPTIMAL_LOGFILE_SIZE. However, when sizing your online redo logs, you must take into
consideration information about your environment (such as the frequency of the switches).

Determining the Optimal Number of Redo Log Groups
Oracle requires at least two redo log groups in order to function. But, having just two groups sometimes isn’t enough.
To understand why this is so, remember that every time a log switch occurs, it initiates a checkpoint. As part of a
checkpoint the database writer writes all modified (dirty) blocks from the SGA to the data files on disk. Also recall
that the online redo logs are written to in a round-robin fashion and that eventually the information in a given log is
overwritten. Before the log writer can begin to overwrite information in an online redo log, all modified blocks in the
SGA associated with the redo log must first be written to a data file. If not all modified blocks have been written to the
data files, you see this message in the alert.log file:

Thread 1 cannot allocate new log, sequence <sequence number>
Checkpoint not complete

Another way to explain this issue is that Oracle needs to store in the online redo logs any information that would
be required to perform a crash recovery. To help you visualize this, see Figure 5-2.

Data file AA Online redo
log 1

Data buffer cache Log buffer

LGWR

Modified
Block A
01010

DBWR

Original
Block A

1111

Online redo
log 2

Change
vectors for

Block A

Oracle
process

Oracle
process

Change
vectors for

Block A

2

3 4

1

Figure 5-2. Redo protected until the modified (dirty) buffer is written to disk

At time 1, Block A is read from Data File AA into the buffer cache and modified. At time 2 the redo-change vector
information (how the block changed) is written to the log buffer. At time 3 the log-writer process writes the Block A
change-vector information to online redo log 1. At time 4 a log switch occurs, and online redo log 2 becomes the
current online redo log.

Now, suppose that online redo log 2 fills up quickly and another log switch occurs, at which point the log writer
attempts to write to online redo log 1. The log writer isn’t allowed to overwrite information in online redo log 1 until

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

113

the database writer writes Block A to Data File AA. Until Block A is written to Data File AA, Oracle needs information
in the online redo logs to recover this block in the event of a power failure or shutdown abort. Before Oracle overwrites
information in the online redo logs, it ensures that blocks protected by redo have been written to disk. If these
modified blocks haven’t been written to disk, Oracle temporarily suspends processing until this occurs. There are a
few ways to resolve this issue:

Add more redo log groups.•	

Lower the value of •	 FAST_START_MTTR_TARGET. Doing so causes the database writer process to
write older modified blocks to disk in a shorter time frame.

Tune the database-writer process (modify •	 DB_WRITER_PROCESSES).

If you notice that the Checkpoint not complete message is occurring often (say, several times a day), I recommend
that you add one or more log groups to resolve the issue. Adding an extra redo log gives the database writer more
time to write modified blocks in the database buffer cache to the data files before the associated redo with a block is
overwritten. There is little downside to adding more redo log groups. The main concern is that you could bump up
against the MAXLOGFILES value that was used when you created the database. If you need to add more groups and have
exceeded the value of MAXLOGFILES, then you must re-create your control file and specify a high value for this parameter.

If adding more redo log groups doesn’t resolve the issue, you should carefully consider lowering the value
of FAST_START_MTTR_TARGET. When you lower this value, you can potentially see more I/O because the database
writer process is more actively writing modified blocks to data files. Ideally, it would be nice to verify the impact of
modifying FAST_START_MTTR_TARGET in a test environment before making the change in production. You can modify
this parameter while your instance is up; this means you can quickly modify it back to its original setting if there are
unforeseen side effects.

Finally, consider increasing the value of the DB_WRITER_PROCESSES parameter. Carefully analyze the impact of
modifying this parameter in a test environment before you apply it to production. This value requires that you stop
and start your database; therefore, if there are adverse effects, downtime is required to change this value back to the
original setting.

Adding Online Redo Log Groups
If you determine that you need to add an online redo log group, use the ADD LOGFILE GROUP statement. In this
example the database already contains two online redo log groups that are sized at 50M each. An additional log group
is added that has two members and is sized at 50MB:

alter database add logfile group 3
('/u01/oraredo/o12c/redo03a.rdo',
 '/u02/oraredo/o12c/redo03b.rdo') SIZE 50M;

In this scenario I highly recommend that the log group you add be the same size and have the same number of
members as the existing online redo logs. If the newly added group doesn’t have the same physical characteristics as
the existing groups, it’s harder to accurately determine performance issues.

For example, if you have two log groups sized at 50MB, and you add a new log group sized at 500MB, this is very
likely to produce the Checkpoint not complete issue described in the previous section. This is because flushing all
modified blocks from the SGA that are protected by the redo in a 500MB log file can potentially take much longer than
flushing modified blocks from the SGA that are protected by a 50MB log file.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

114

Resizing and Dropping Online Redo Log Groups
You may need to change the size of your online redo logs (see the section “Determining the Optimal Size of Online
Redo Log Groups,” earlier in this chapter). You can’t directly modify the size of an existing online redo log (as you can
a data file). To resize an online redo log, you have to first add online redo log groups that are the size you want,
and then drop the online redo logs that are the old size.

Say you want to resize the online redo logs to be 200MB each. First, you add new groups that are 200MB, using
the ADD LOGFILE GROUP statement. The following example adds log group 4, with two members sized at 200MB:

alter database add logfile group 4
('/u01/oraredo/o12c/redo04a.rdo',
 '/u02/oraredo/o12c/redo04b.rdo') SIZE 200M;

Note ■ You can specify the size of the log file in bytes, kilobytes, megabytes, or gigabytes.

After you’ve added the log files with the new size, you can drop the old online redo logs. A log group must have an
INACTIVE status before you can drop it. You can check the status of the log group, as shown here:

SQL> select group#, status, archived, thread#, sequence# from v$log;

You can drop an inactive log group with the ALTER DATABASE DROP LOGFILE GROUP statement:

SQL> alter database drop logfile group <group #>;

If you attempt to drop the current online log group, Oracle returns an ORA-01623 error, stating that you can’t drop
the current group. Use the ALTER SYSTEM SWITCH LOGFILE statement to switch the logs and make the next group the
current group:

SQL> alter system switch logfile;

After a log switch the log group that was previously the current group retains an active status as long as it contains
redo that Oracle requires to perform crash recovery. If you attempt to drop a log group with an active status, Oracle
throws an ORA-01624 error, indicating that the log group is required for crash recovery. Issue an ALTER SYSTEM
CHECKPOINT command to make the log group inactive:

SQL> alter system checkpoint;

Additionally, you can’t drop an online redo log group if doing so leaves your database with only one log group.
If you attempt to do this, Oracle throws an ORA-01567 error and informs you that dropping the log group isn’t
permitted because it would leave you with fewer than two log groups for your database (as mentioned earlier, Oracle
requires at least two redo log groups in order to function).

Dropping an online redo log group doesn’t remove the log files from the OS. You have to use an OS command to
do this (such as the rm Linux/Unix command). Before you remove a file from the OS, ensure that it isn’t in use and that
you don’t remove a live online redo log file. For every database on the server, issue this query to view which online
redo log files are in use:

SQL> select member from v$logfile;

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

115

Before you physically remove a log file, first switch the online redo logs enough times that all online redo log
groups have recently been switched; doing so causes the OS to write to the file and thus give it a new timestamp.
For example, if you have three groups, make sure you perform at least three log switches:

SQL> alter system switch logfile;
SQL> /
SQL> /

Now, verify at the OS prompt that the log file you intend to remove doesn’t have a new timestamp. First, go to the
directory containing the online redo log files:

$ cd /u01/oraredo/o12c

Then, list the files to view the latest modification date:

$ ls -altr

When you’re absolutely sure the file isn’t in use, you can remove it. The danger in removing a file is that if it
happens to be an in-use online redo log, and the only member of a group, you can cause serious damage to your
database. Ensure that you have a good backup of your database and that the file you’re removing isn’t used by any
databases on the server.

Adding Online Redo Log Files to a Group
You may occasionally need to add a log file to an existing group. For example, if you have an online redo log group
that contains only one member, you should consider adding a log file (to provide a higher level of protection against a
single–log file member failure). Use the ALTER DATABASE ADD LOGFILE MEMBER statement to add a member file to an
existing online redo log group. You need to specify the new member file location, name, and group to which you want
to add the file:

SQL> alter database add logfile member '/u02/oraredo/o12c/redo01b.rdo'
 to group 1;

Make certain you follow standards with regard to the location and names of any newly added redo log files.

Removing Online Redo Log Files from a Group
Occasionally, you may need to remove an online redo log file from a group. For example, your database may have
experienced a failure with one member of a multiplexed group, and you want to remove the apostate member.
First, make sure the log file you want to drop isn’t in the current group:

SELECT a.group#, a.member, b.status, b.archived, SUM(b.bytes)/1024/1024 mbytes
FROM v$logfile a, v$log b
WHERE a.group# = b.group#
GROUP BY a.group#, a.member, b.status, b.archived
ORDER BY 1, 2;

If you attempt to drop a log file that is in the group with the CURRENT status, you receive the following error:

ORA-01623: log 2 is current log for instance o12c (thread 1) - cannot drop

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

116

If you’re attempting to drop a member from the current online redo log group, then force a switch, as follows:

SQL> alter system switch logfile;

Use the ALTER DATABASE DROP LOGFILE MEMBER statement to remove a member file from an existing online redo
log group. You don’t need to specify the group number because you’re removing a specific file:

SQL> alter database drop logfile member '/u01/oraredo/o12c/redo04a.rdo';

You also can’t drop the last remaining log file of a group. A group must contain at least one log file. If you attempt
to drop the last remaining log file of a group, you receive the following error:

ORA-00361: cannot remove last log member . . .

Moving or Renaming Redo Log Files
Sometimes, you need to move or rename online redo log files. For example, you may have added some new mount
points to the system, and you want to move the online redo logs to the new storage. You can use two methods to
accomplish this task:

Add the new log files in the new location, and drop the old log files.•	

Physically rename the files from the OS.•	

If you can’t afford any downtime, consider adding new log files in the new location and then dropping the old log
files. See the section “Adding Online Redo Log Groups,” earlier in this chapter, for details on how to add a log group.
See also the section “Resizing and Dropping Online Redo Log Groups,” earlier in this chapter, for details on how to
drop a log group.

Alternatively, you can physically move the files from the OS. You can do this with the database open or closed.
If your database is open, ensure that the files you move aren’t part of the current online redo log group (because those
are actively written to by the log writer background process). It’s dangerous to try to do this task while your database is
open because on an active system, the online redo logs may be switching at a rapid rate, which creates the possibility
of attempting to move a file while it’s being switched to be the current online redo log. Therefore, I recommend that
you only try to do this while your database is closed.

The next example shows how to move the online redo log files with the database shut down. Here are the steps:

1. Shut down your database:

SQL> shutdown immediate;

2. From the OS prompt, move the files. This example uses the mv command to accomplish
this task:

$ mv /u02/oraredo/o12c/redo02b.rdo /u01/oraredo/o12c/redo02b.rdo

3. Start up your database in mount mode:

SQL> startup mount;

4. Update the control file with the new file locations and names:

SQL> alter database rename file '/u02/oraredo/o12c/redo02b.rdo'
 to '/u01/oraredo/o12c/redo02b.rdo';

5. Open your database:

SQL> alter database open;

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

117

You can verify that your online redo logs are in the new locations by querying the V$LOGFILE view. I recommend
as well that you switch your online redo logs several times and then verify from the OS that the files have recent
timestamps. Also check the alert.log file for any pertinent errors.

Implementing Archivelog Mode
Recall from the discussion earlier in this chapter that archive redo logs are created only if your database is in
archivelog mode. If you want to preserve your database transaction history to facilitate point-in-time and other types
of recovery, you need to enable that mode.

In normal operation, changes to your data generate entries in the database redo log files. As each online redo
log group fills up, a log switch is initiated. When a log switch occurs, the log writer process stops writing to the most
recently filled online redo log group and starts writing to a new online redo log group. The online redo log groups
are written to in a round-robin fashion—meaning the contents of any given online redo log group will eventually be
overwritten. Archivelog mode preserves redo data for the long term by employing an archiver background process to
copy the contents of a filled online redo log to what is termed an archive redo log file. The trail of archive redo log files
is crucial to your ability to recover the database with all changes intact, right up to the precise point of failure.

Making Architectural Decisions
When you implement archivelog mode, you also need a strategy for managing the archived log files. The archive
redo logs consume disk space. If left unattended, these files will eventually use up all the space allocated for them.
If this happens, the archiver can’t write a new archive redo log file to disk, and your database will stop processing
transactions. At that point, you have a hung database. You then need to intervene manually by creating space for
the archiver to resume work. For these reasons, there are several architectural decisions you must carefully consider
before you enable archiving:

Where to place the archive redo logs and whether to use the fast recovery area to store them•	

How to name the archive redo logs•	

How much space to allocate to the archive redo log location•	

How often to back up the archive redo logs•	

When it’s okay to permanently remove archive redo logs from disk•	

How to remove archive redo logs (e.g., have RMAN remove the logs, based on a retention •	
policy)

Whether multiple archive redo log locations should be enabled•	

When to schedule the small amount of downtime that’s required (if a production database)•	

As a general rule of thumb, you should have enough space in your primary archive redo location to hold at least
a day’s worth of archive redo logs. This lets you back them up on a daily basis and then remove them from disk after
they’ve been backed up.

If you decide to use a fast recovery area (FRA) for your archive redo log location, you must ensure that it contains
sufficient space to hold the number of archive redo logs generated between backups. Keep in mind that the FRA
typically contains other types of files, such as RMAN backup files, flashback logs, and so on. If you use a FRA, be aware
that the generation of other types of files can potentially impact the space required by the archive redo log files.

You need a strategy for automating the backup and removal of archive redo log files. For user-managed backups,
this can be implemented with a shell script that periodically copies the archive redo logs to a backup location and
then removes them from the primary location. As you will see in later chapters, RMAN automates the backup and
removal of archive redo log files.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

118

If your business requirements are such that you must have a certain degree of high availability and redundancy,
then you should consider writing your archive redo logs to more than one location. Some shops set up jobs to copy
the archive redo logs periodically to a different location on disk or even to a different server.

Setting the Archive Redo File Location
Before you set your database mode to archiving, you should specifically instruct Oracle where you want the archive
redo logs to be placed. You can set the archive redo log file destination with the following techniques:

Set the •	 LOG_ARCHIVE_DEST_N database initialization parameter.

Implement a FRA.•	

These two approaches are discussed in detail in the following sections.

Tip ■ if you don’t specifically set the archive redo log location via an initialization parameter or by enabling the Fra,
then the archive redo logs are written to a default location. For linux/Unix the default location is ORACLE_HOME/dbs. For
Windows the default location is ORACLE_HOME\database. For active production database systems, the default archive
redo log location is rarely appropriate.

Setting the Archive Location to a User-Defined Disk Location (non-FRA)
If you’re using an init<SID>.ora file, modify the file with an OS utility (such as vi). In this example the archive redo
log location is set to /u01/oraarch/o12c:

log_archive_dest_1='location=/u01/oraarch/o12c'
log_archive_format='o12c_%t_%s_%r.arc'

In the prior line of code, my standard for naming archive redo log files includes the ORACLE_SID (in this example,
o12c to start the string); the mandatory parameters %t, %s, and %r; and the string .arc, to end. I like to embed the
name of the ORACLE_SID in the string to avoid confusion when multiple databases are housed on one server. I like to
use the extension .arc to differentiate the files from other types of database files.

Tip ■ if you don’t specify a value for LOG_ARCHIVE_FORMAT, oracle uses a default, such as %t_%s_%r.dbf. one aspect
of the default format that i don’t like is that it ends with the extension .dbf, which is widely used for data files. this
can cause confusion about whether a particular file can be safely removed because it’s an old archive redo log file or
shouldn’t be touched because it’s a live data file. Most dBas are reluctant to issue commands such as rm *.dbf for fear
of accidentally removing live data files.

If you’re using an spfile, use ALTER SYSTEM to modify the appropriate initialization variables:

SQL> alter system set log_archive_dest_1='location=/u01/oraarch/o12c' scope=both;
SQL> alter system set log_archive_format='o12c_%t_%s_%r.arc' scope=spfile;

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

119

You can dynamically change the LOG_ARCHIVE_DEST_n parameters while your database is open. However,
you have to stop and start your database for the LOG_ARCHIVE_FORMAT parameter to take effect.

reCOVerING FrOM SettING a BaD SpFILe paraMeter

take care not to set the LOG_ARCHIVE_FORMAT to an invalid value; for example,

SQL> alter system set log_archive_format='%r_%y_%dk.arc' scope=spfile;

if you do so, when you attempt to stop and start your database, you won’t even get to the nomount phase
(because the spfile contains an invalid parameter):

SQL> startup nomount;
ORA-19905: log_archive_format must contain %s, %t and %r

in this situation, if you’re using an spfile, you can’t start your instance. You have a couple of options here.
if you’re using rMan and are backing up the spfile, then restore the spfile from a backup.

if you’re not using rMan, you can also try to edit the spfile directly with an os editor (such as vi), but oracle
doesn’t recommend or support this.

the alternative is to create an init.ora file manually from the contents of the spfile. First, rename the spfile
that contains a bad value:

$ cd $ORACLE_HOME/dbs
$ mv spfile<SID>.ora spfile<SID>.old.ora

then, open the renamed spfile with a text editor, such as vi:

$ vi spfile<SID>.old.ora

now, use your mouse to copy the visible initialization parameters. exit out of editing the old file, and open a file
named init<SID>.ora; for example,

$ vi inito12c.ora

Finally, paste in the parameters you copied from the old spfile. Modify the bad parameter to contain a valid
value. You may also have to do cleanup with some of the parameters that contain unwanted characters. exit out of
the init<SID>.ora file. You should now be able to start up your database.

When you specify LOG_ARCHIVE_FORMAT, you must include %t (or %T), %s (or %S), and r% in the format string.
Table 5-4 lists the valid variables you can use with the LOG_ARCHIVE_FORMAT initialization parameter.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

120

You can view the value of the LOG_ARCHIVE_DEST_N parameter by running the following:

SQL> show parameter log_archive_dest

Here is a partial listing of the output:

NAME TYPE VALUE
------------------------------------ ----------- --------------------------
log_archive_dest string
log_archive_dest_1 string location=/u01/oraarch/o12c
log_archive_dest_10 string

For Oracle Database 11g and higher you can enable up to 31 different locations for the archive redo log file
destination. For most production systems one archive redo log destination location is usually sufficient. If you
need a higher degree of protection, you can enable multiple destinations. Keep in mind that when you use multiple
destinations, the archiver must be able to write to at least one location successfully. If you enable multiple mandatory
locations and set LOG_ARCHIVE_MIN_SUCCEED_DEST to be higher than 1, then your database may hang if the archiver
can’t write to all mandatory locations.

You can check the details regarding the status of archive redo log locations via this query:

select
 dest_name
,destination
,status
,binding
from v$archive_dest;

Here is a small sample of the output:

DEST_NAME DESTINATION STATUS BINDING
-------------------- ------------------------------ --------- ---------
LOG_ARCHIVE_DEST_1 /u01/oraarch/o12c VALID OPTIONAL
LOG_ARCHIVE_DEST_2 INACTIVE OPTIONAL

Table 5-4. Valid Variables for the Log Archive Format String

Format String Meaning

%s Log sequence number

%S Log sequence number padded to the left with zeros

%t Thread number

%T Thread number padded to the left with zeros

%a Activation ID

%d Database ID

%r Resetlogs ID required to ensure uniqueness across multiple incarnations of the database

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

121

Using the FRA for Archive Log Files
The FRA is an area on disk—specified via database initialization parameters—that can be used to store files, such as
archive redo logs, RMAN backup files, flashback logs, and multiplexed control files and online redo logs. To enable the
use of a FRA, you must set two initialization parameters (in this order):

•	 DB_RECOVERY_FILE_DEST_SIZE specifies the maximum space to be used for all files that are
stored in the FRA for a database.

•	 DB_RECOVERY_FILE_DEST specifies the base directory for the FRA.

When you create a FRA, you’re not really creating anything—you’re telling Oracle which directory to use when
storing files that go in the FRA. For example, say 200GB of space are reserved on a mount point, and you want the base
directory for the FRA to be /u01/fra. To enable the FRA, first set DB_RECOVERY_FILE_DEST_SIZE:

SQL> alter system set db_recovery_file_dest_size=200g scope=both;

Next, set the DB_RECOVERY_FILE_DEST parameter:

SQL> alter system set db_recovery_file_dest='/u01/fra' scope=both;

If you’re using an init.ora file, modify it with an OS utility (such as vi) with the appropriate entries.
After you enable a FRA, by default, Oracle writes archive redo logs to subdirectories in the FRA.

Note ■ if you’ve set the LOG_ARCHIVE_DEST_N parameter to be a location on disk, archive redo logs aren’t written
to the Fra.

You can verify that the archive location is using a FRA:

SQL> archive log list;

If archive files are being written to the FRA, you should see output like this:

Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST

You can display the directory associated with the FRA like this:

SQL> show parameter db_recovery_file_dest

When you first implement a FRA, there are no subdirectories beneath the base FRA directory (specified with
DB_RECOVERY_FILE_DEST). The first time Oracle needs to write a file to the FRA, it creates any required directories
beneath the base directory. For example, after you implement a FRA, if archiving for your database is enabled, then
the first time a log switch occurs, Oracle creates the following directories beneath the base FRA directory:

<SID>/archivelog/<YYYY_MM_DD>

Each day that archive redo logs are generated results in a new directory’s being created in the FRA, using the
directory name format YYYY_MM_DD. Archive redo logs written to the FRA use the OMF format naming convention
(regardless of whether you’ve set the LOG_ARCHIVE_FORMAT parameter).

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

122

If you want archive redo logs written to both a FRA and a non-FRA location, you can enable that, as follows:

SQL> alter system set log_archive_dest_1='location=/u01/oraarch/o12c';
SQL> alter system set log_archive_dest_2='location=USE_DB_RECOVERY_FILE_DEST';

Thinking “Un-Oraclethodox” FRA Thoughts
Oracle recommends that you use a FRA for archive redo logs and RMAN backups. However, I usually don’t implement
a FRA in production environments—not for the archive redo logs, not for the RMAN backup files, not for any types of
files. Why is that?

When you enable a FRA, if you don’t set the initialization parameter LOG_ARCHIVE_DEST_N, then, by default,
the archive redo logs are written to the FRA. It’s the same with RMAN backups: if you don’t specifically configure an
RMAN channel disk location, then, by default, the RMAN backup files are written to the FRA.

When you use a FRA (as described earlier), the disk space consumed by the archive redo logs and RMAN backups
must fit in the disk space assigned to the FRA. What happens if you have an unexpected spike in the amount of redo
generated for a database or if an unforeseen issue arises with the RMAN backups that results in the consuming of
unanticipated amounts of disk space?

With regard to the RMAN backups, if the FRA fills up, the RMAN backups abort. An RMAN backup failure isn’t
catastrophic, because usually you can quickly resolve space issues and manually run another backup. In most
situations this doesn’t compromise your database availability; in the event of a backup failure, you still have a previous
RMAN backup that you can use to restore and recover your database.

However, in the event that the archive redo log destination fills up, and the archiver can’t write to the file system,
your database will hang. In many 24–7 mission-critical environments, this type of downtime is unacceptable and will
jeopardize your ability to keep your job.

I find it easier to control the space allocated to the archive redo logs by using a dedicated mount point for
these critical files. If possible, don’t share the disk space allocated to the archive redo logs with the RMAN backups.
A problem with the RMAN backups can cause disk space issues for the archive redo logs, and you want the space
consumed by the archive redo logs to be as stable and predictable as possible.

For production environments, set the LOG_ARCHIVE_DEST_1 parameter to be a specific location that is separate
from any other types of database files. This isn’t always possible: you may have a server for which you have no choice
but to share mount points for the various file types. But, whenever possible, try to isolate your archive redo logs from
other types of database files. The archive redo log files are the mechanism for recovering your database.

You should be able to estimate how much space is consumed and allow for some wiggle room. Yet, the reality is
that sometimes very unpredictable events happen, such as an application process’s erroneously getting stuck in a loop
and generating enormous amounts of redo. This can quickly consume more disk space than anticipated. It shouldn’t
happen, but it does, and when you’re the DBA who’s called at 2:30 am, you design defensively.

I’m not saying, “Don’t use a FRA.” Rather, you should think carefully about any database feature that you enable
and what impact it may have on database availability.

aNOther perSpeCtIVe ON the Fra

the technical editor for this book has provided a different perspective on using the Fra. i think it’s worth hearing
what he has to say. he prefers storing the archivelog files in the Fra, because some aspects of database
administration are automated. For example, once the Fra is enabled, rMan backups and archive redo logs are
automatically placed in a Fra within directory structures identifiable by database and date. (one caveat to the
prior statement is that you can override that automatic behavior by specifying rMan backup set locations through
channel settings and archive redo log placement via LOG_ARCHIVE_DEST_N parameters.)

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

123

another feature he likes is that archivelog files that are already beyond the retention policy (set via rMan) are
automatically deleted when space is needed in the Fra. the technical editor has voiced a valid opinion here,
and you should be aware of it.

however, the Fra can be a single point of failure and a potential performance bottleneck if the archivelog files,
rMan backups/copies, control files, and redo log files are all stored in the Fra. What to do isn’t always an easy
decision. the technical editor and i agree that the storage location of the archivelog files, whether inside or
outside the Fra, is the production dBa’s prerogative.

Enabling Archivelog Mode
After you’ve set the location for your archive redo log files, you can enable archiving. To enable archiving, you need to
connect to the database as SYS (or a user with the SYSDBA privilege) and do the following:

$ sqlplus / as sysdba
SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database archivelog;
SQL> alter database open;

You can confirm archivelog mode with this query:

SQL> archive log list;

You can also confirm it as follows:

SQL> select log_mode from v$database;

LOG_MODE

ARCHIVELOG

Disabling Archivelog Mode
Usually, you don’t disable archivelog mode for a production database. However, you may be doing a big data load
and want to reduce any overhead associated with the archiving process, and so you want to turn off archivelog
mode before the load begins and then reenable it after the load. If you do this, be sure you make a backup as soon as
possible after reenabling archiving.

To disable archiving, do the following as SYS (or a user with the SYSDBA privilege):

$ sqlplus / as sysdba
SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database noarchivelog;
SQL> alter database open;

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

124

You can confirm archivelog mode with this query:

SQL> archive log list;

You can also confirm the log mode, as follows:

SQL> select log_mode from v$database;

LOG_MODE

NOARCHIVELOG

Reacting to a Lack of Disk Space in Your Archive Log Destination
The archiver background process writes archive redo logs to a location that you specify. If, for any reason, the archiver
process can’t write to the archive location, your database hangs. Any users attempting to connect receive this error:

ORA-00257: archiver error. Connect internal only, until freed.

As a production-support DBA, you never want to let your database get into that state. Sometimes, unpredictable
events happen, and you have to deal with unforeseen issues.

Note ■ dBas who support production databases have a mindset completely different from that of architect dBas,
who get new ideas from flashy presentations or regurgitated documentation.

In this situation your database is as good as down and completely unavailable. To fix the issue, you have to
act quickly:

Move files to a different location.•	

Compress old files in the archive redo log location.•	

Permanently remove old files.•	

Switch the archive redo log destination to a different location (this can be changed •	
dynamically, while the database is up and running).

Moving files is usually the quickest and safest way to resolve the archiver error. You can use an OS utility such as
mv to move old archive redo logs to a different location. If they’re needed for a subsequent restore and recovery, you
can let the recovery process know about the new location. Be careful not to move an archive redo log that is currently
being written to. If an archived redo log file appears in V$ARCHIVED_LOG, that means it has been completely archived.

You can use an OS utility such as gzip to compress archive redo log files in the current archive destination. If you
do this, you have to remember to uncompress any files that may be later needed for a restore and recovery. Be careful
not to compress an archive redo log that is currently being written to.

Another option is to use an OS utility such as rm to remove archive redo logs from disk permanently. This
approach is dangerous because you may need those archive redo logs for a subsequent recovery. If you do remove
archive redo log files, and you don’t have a backup of them, you should make a full backup of your database as soon
as possible. Again, this approach is risky and should only be done as a last resort; if you delete archive redo logs that
haven’t been backed up, then you chance not being able to perform a complete recovery.

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

125

If another location on your server has plenty of space, you can consider changing the location to which the
archive redo logs are being written. You can perform this operation while the database is up and running; for example,

SQL> alter system set log_archive_dest_1='location=/u02/oraarch/o12c';

After you’ve resolved the issue with the primary location, you can switch back the original location.

Note ■ When a log switch occurs, the archiver determines where to write the archive redo logs, based on the
current Fra setting or a LOG_ARCHIVE_DEST_N parameter. it doesn’t matter to the archiver if the destination has
recently changed.

When the archive redo log file destination is full, you have to scramble to resolve it. This is why a good deal of
thought should precede enabling archiving for 24–7 production databases.

For most databases, writing the archive redo logs to one location is sufficient. However, if you have any type of
disaster recovery or high-availability requirement, then you should write to multiple locations. Sometimes, DBAs
set up a job to back up the archive redo logs every hour and copy them to an alternate location or even to an
alternate server.

Backing Up Archive Redo Log Files
Depending on your business requirements, you may need a strategy for backing up archive redo log files. Minimally,
you should back up any archive redo logs generated during a backup of a database in archivelog mode. Additional
strategies may include

periodically copying archive redo logs to an alternate location and then removing them from •	
the primary destination

copying the archive redo logs to tape and then deleting them from disk•	

using two archive redo log locations•	

using Data Guard for a robust disaster recovery solution•	

Keep in mind that you need all archive redo logs generated since the begin time of the last good backup to ensure
that you can completely recover your database. Only after you’re sure you have a good backup of your database
should you consider removing archive redo logs that were generated prior to the backup.

If you’re using RMAN as a backup and recovery strategy, then you should use RMAN to backup the archive redo
logs. Additionally, you should specify an RMAN retention policy for these files and have RMAN remove the archive
redo logs only after the retention policy requirements are met (e.g., back up files at least once before removing from
disk) (see Chapter 18 for details on using RMAN).

Summary
This chapter described how to configure and manage control files and online redo log files and enable archiving.
Control files and online redo logs are critical database files; a normally operating database can’t function without them.

Control files are small binary files that contain information about the structure of the database. Any control files
specified in the parameter file must be available in order for you to mount the database. If a control file becomes
unavailable, then your database will cease operating until you resolve the issue. I highly recommend that you

Chapter 5 ■ Managing Control Files, online redo logs, and arChiving

126

configure your database with at least three control files. If one control file becomes unavailable, you can replace it
with a copy of a good existing control file. It’s critical that you know how to configure, add, and remove these files.

Online redo logs are crucial files that record the database’s transaction history. If you have multiple instances
connected to one database, then each instance generates its own redo thread. Each database must be created with
two or more online redo log groups. You can operate a database with each group’s having just one online redo log
member. However, I highly recommend that you create your online redo log groups with two members in each group.
If an online redo log has at least one member that can be written to, your database will continue to function. If all
members of an online redo log group are unavailable, then your database will cease to operate. As a DBA you must be
extremely proficient in creating, adding, moving, and dropping these critical database files.

Archiving is the mechanism for ensuring you have all the transactions required to recover the database. Once
enabled, the archiver needs to successfully copy the online redo log after a log switch occurs. If the archiver can’t write
to the primary archive destination, then your database will hang. Therefore, you need to map out carefully the amount
of disk space required and how often to back up and subsequently remove these files.

The chapters up to this point in the book have covered tasks such as installing the Oracle software; creating
databases; and managing tablespaces, data files, control files, online redo log files, and archiving. The next several
chapters concentrate on how to configure a database for application use and include topics such as creating users and
database objects.

127

Chapter 6

Users and Basic Security

After you’ve installed the binaries, implemented a database, and created tablespaces, the next logical task is to secure
your database and begin creating new users. When you create a database, several default user accounts are created by
default. As a DBA you must be aware of these accounts and how to manage them. The default accounts are frequently
the first place a hacker will look to gain access to a database; therefore, you must take precautions to secure these
users. Depending on what options you install and which version of the database you implement, there could be 20 or
more default accounts.

As applications and users need access to the database, you’ll need to create and manage new accounts. This
includes choosing an appropriate authentication method, implementing password security, and allocating privileges
to users. These topics are discussed in detail in this chapter.

Managing Default Users
As stated, when you create a database, Oracle creates several default database users. One of your first tasks should be
to identify these users and establish basic security procedures, such as locking and expiring passwords. The specific
users that are created vary by database version. If you’ve just created your database, you can view the default user
accounts, as follows:

SQL> select username from dba_users order by 1;

Here is a partial listing of some default database user accounts:

USERNAME
--
ANONYMOUS
APPQOSSYS
AUDSYS
DBSNMP
DIP
GSMADMIN_INTERNAL
GSMCATUSER
GSMUSER
ORACLE_OCM
OUTLN
SYS
SYSTEM
...

Chapter 6 ■ Users and BasiC seCUrity

128

What DBAs find frustrating about the prior list is that it’s hard to keep track of what the default accounts are and if
they’re really required. Some DBAs may be tempted to drop default accounts so as not to clutter up the database.
I wouldn’t advise that. It’s safer to lock these accounts (as shown in the next section). If you drop an account, it can be
difficult to figure out exactly how it was originally created, whereas if you lock an account, you can simply unlock
it to reactivate it.

Note ■ if you’re working in a pluggable database environment, you can view all users while connected as a privileged
account to the root container by querying CDB_USERS. Unless otherwise noted in this chapter, the queries assume that
you’re not working in a pluggable environment (and that you’re therefore using the DBA-level views). if you’re in a
 pluggable environment, to view information across all pluggable databases, you’ll need to use the CDB level views while
connected to the root container.

SYS VS. SYSteM

Oracle novices sometimes ask, “What’s the difference between the SYS and SYSTEM schemas?” the SYS schema
is the super-user of the database, owns all internal data dictionary objects, and is used for tasks such as creating
a database, starting or stopping the instance, backup and recovery, and adding or moving data files. these types
of tasks typically require the SYSDBA or SYSOPER role. security for these roles is often controlled through access
to the Os account owner of the Oracle software. additionally, security for these roles can be administered via a
password file, which allows remote client/server access.

in contrast, the SYSTEM schema isn’t very special. it’s just a schema that has been granted the DBA role. Many
shops lock the SYSTEM schema after database creation and never use it because it’s often the first schema a
hacker will try to access when attempting to break into a database.

rather than risking an easily guessable entry point to the database, you can create a separate schema (named
something other than SYSTEM) that has the DBA role granted to it. this DBA schema is used for administrative
tasks, such as creating users, changing passwords, and granting database privileges.

having one or more separate DBA schemas for administrators provides more options for security and auditing.
if you require auditing that shows which dBa logged on and when, then create a separate privileged account
for each dBa on the team (and turn on database auditing). Otherwise, one generic dBa-privileged account is
usually sufficient.

Locking Accounts and Expiring Passwords
To begin securing your database, you should minimally change the password for every default account and then lock
any accounts that you’re not using. Locking an account means that a user won’t be able to access it unless a DBA
explicitly unlocks it. Also consider expiring the password for each account. Expiring the password means that when
a user first attempts to access an account, that user will be forced to change the password.

After creating a database, I usually lock every default account and change their passwords to expired; I unlock
default users only as they’re needed. The following script generates the SQL statements that lock all users and set their
passwords to expired:

select
 'alter user ' || username || ' password expire account lock;'
from dba_users;

Chapter 6 ■ Users and BasiC seCUrity

129

A locked user can only be accessed by altering the user to an unlocked state; for example,

SQL> alter user outln account unlock;

A user with an expired password is prompted for a new password when first connecting to the database as that
user. When connecting to a user, Oracle checks to see if the current password is expired and, if so, prompts the user,
as follows:

ORA-28001: the password has expired
Changing password for ...
New password:

After entering the new password, the user is prompted to enter it again:

Retype new password:
Password changed
Connected.

Note ■ you can lock the SYS account, but this has no influence on your ability to connect as the SYS user through Os
authentication or when using a password file.

There is no alter user <user_name> password unexpire command. To unexpire a password, you simply need
to change it. The user can change the password (as demonstrated in the prior bits of code), or, as a DBA, you can
change the password for a user:

SQL> alter user <username> identified by <new password>;

However, if you have a user with an expired password, and you don’t know the current password and are hesitant
to change it (because it’s in use in a production environment, and you’re not sure in how many places within the
application code the old password has been hard-coded), what do you do?

Consider this technique to unexpire a password without changing it. In this example the user is MV_MAINT:

1. As a DBA-privileged database user, first note the current profile of the user:

SQL> select username, profile from dba_users where username='MV_MAINT';

USERNAME PROFILE
-------------------- ----------
MV_MAINT DEFAULT

2. Next, create a temporary profile:

CREATE PROFILE temp_prof LIMIT
PASSWORD_REUSE_MAX unlimited
PASSWORD_REUSE_TIME unlimited;

Chapter 6 ■ Users and BasiC seCUrity

130

3. Now, assign the temporary profile to the user:

SQL> alter user mv_maint profile temp_prof;

4. Then, view the obfuscated password:

SQL> select password from user$ where name='MV_MAINT';

Here is the output for this example:

PASSWORD

E88FDA313EC0F3F4

5. Now, set the password to what it was; this unexpires it:

SQL> alter user mv_maint identified by values 'E88FDA313EC0F3F4';

6. Finally, assign the original profile back to the user:

SQL> alter user mv_maint profile default; ;

The prior technique allows you to unexpire a password without knowing the password and also avoids issues
with passwords that cannot be reused (ORA-28007: the password cannot be reused) because of restrictive profile
settings (such as PASSWORD_REUSE_MAX).

Identifying DBA-Created Accounts
If you’ve inherited a database from another DBA, then sometimes it’s useful to determine whether the DBA created a
user or if a user is a default account created by Oracle. As mentioned earlier, usually several user accounts are created
for you when you create a database. The number of accounts varies somewhat by database version and options
installed. Run this query to display users that have been created by another DBA versus those created by Oracle (such
as those created by default when the database is created):

select distinct u.username
,case when d.user_name is null then 'DBA created account'
 else 'Oracle created account'
 end
from dba_users u
 ,default_pwd$ d
where u.username=d.user_name(+);

For default users, there should be a record in the DEFAULT_PWD$ view. So, if a user doesn’t exist in DEFAULT_PWD$,
then you can assume it’s not a default account. Given that logic, another way to identify just the default users would
be this:

select distinct(user_name)
from default_pwd$
where user_name in (select username from dba_users);

The prior queries aren’t 100 percent accurate, as there are users that exist in DEFAULT_PWD$ that can be created
manually by a DBA. Having said that, the prior queries do provide a starting point for separating the default accounts
from ones created by you (or another DBA).

Chapter 6 ■ Users and BasiC seCUrity

131

Note ■ the DEFAULT_PWD$ view is available starting with Oracle database 11g. see MOs note 227010.1 for more
details about guidelines on checking for default passwords.

Checking Default Passwords
You should also check your database to determine whether any accounts are using default passwords. If you’re using
an Oracle Database 11g or higher, you can check the DBA_USERS_WITH_DEFPWD view to see whether any Oracle-created
user accounts are still set to the default password:

SQL> select * from dba_users_with_defpwd;

If you aren’t using Oracle Database 11g or higher, then you have to check the passwords manually or use a script.
Listed next is a simple shell script that attempts to connect to the database, using default passwords:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
Source oracle OS variables via oraset script.
See chapter 2 for more details on setting OS variables.
. /etc/oraset $1
#
userlist="system sys dbsnmp dip oracle_ocm outln"
for u1 in $userlist
do
#
case $u1 in
system)
pwd=manager
cdb=$1
;;
sys)
pwd="change_on_install"
cdb="$1 as sysdba"
;;
*)
pwd=$u1
cdb=$1
esac
#
echo "select 'default' from dual;" | \
 sqlplus -s $u1/$pwd@$cdb | grep default >/dev/null
if [[$? -eq 0]]; then
 echo "ALERT: $u1/$pwd@$cdb default password"
 echo "def pwd $u1 on $cdb" | mailx -s "$u1 pwd default" dkuhn@gmail.com

mailto:dkuhn@gmail.com

Chapter 6 ■ Users and BasiC seCUrity

132

else
 echo "cannot connect to $u1 with default password."
fi
done
exit 0

If the script detects a default password, an e-mail is sent to the appropriate DBA. This script is just a simple
example, the point being that you need some sort of mechanism for detecting default passwords. You can create your
own script or modify the previous script to suit your requirements.

Creating Users
When you’re creating a user, you need to consider the following factors:

Username and authentication method•	

Basic privileges•	

Default permanent tablespace and space quotas•	

Default temporary tablespace•	

These aspects of creating a user are discussed in the following sections.

Note ■ new in Oracle database 12c, pluggable database environments have common users and local users. Common
users span all pluggable databases within a container database. Local users exist within one pluggable database. see
Chapter 23 for details on managing common users and local users.

Choosing a Username and Authentication Method
Pick a username that gives you an idea as to what application the user will be using. For example, if you have an
inventory management application, a good choice for a username is INV_MGMT. Choosing a meaningful username
helps identify the purpose of a user. This can be especially useful if a system isn’t documented properly.

Authentication is the method used to confirm that the user is authorized to use the account. Oracle supports
a robust set of authentication methods:

Database authentication (username and password stored in database)•	

OS authentication•	

Network authentication•	

Global user authentication and authorization•	

External service authentication•	

A simple, easy, and reliable form of authentication is through the database. In this form of authentication, the
username and password are stored within the database. The password is not stored in plain text; it is stored in
a secure, encrypted format. When connecting to the database, the user provides a username and password.
The database checks the entered username and password against information stored in the database, and if there’s
a match, the user is allowed to connect to the database with the privileges associated with the account.

Chapter 6 ■ Users and BasiC seCUrity

133

Another commonly implemented authentication method is through the OS. OS authentication means that if you
can successfully log in to a server, then it’s possible to establish a connection to a local database without providing
username and password details. In other words, you can associate database privileges with an OS account or and
associated OS group, or both.

Examples of database and OS authentication are discussed in the next two sections. If you have more
sophisticated authentication requirements, then you should investigate network, global, or external service
authentication. See the Oracle Database Security Guide and the Oracle Database Advanced Security Administrator’s
Guide, which can be freely downloaded from the Technology Network area of the Oracle web site
(http://otn.oracle.com), for more details regarding these methods.

Creating a User with Database Authentication
Database authentication is established with the CREATE USER SQL statement. When you’re creating users as a
DBA, your account must have the CREATE USER system privilege. This example creates a user named HEERA with
the password CHAYA and assigns the default permanent tablespace USERS, default temporary tablespace TEMP , and
unlimited space quota on the USERS tablespace:

create user heera identified by chaya
default tablespace users
temporary tablespace temp
quota unlimited on users;

This creates a bare-bones schema that has no privileges to do anything in the database. To make the user useful,
you must minimally grant it the CREATE SESSION system privilege:

SQL> grant create session to heera;

If the new schema needs to be able to create tables, you need to grant it additional privileges, such as
CREATE TABLE:

SQL> grant create table to heera;

You can also use the GRANT...IDENTIFIED BY statement to create a user; for example,

grant create table, create session
to heera identified by chaya;

If the user doesn’t exist, the account is created by the prior statement. If the user does exist, the password is
changed to the one specified by the IDENTIFIED BY clause (and any specified grants are also applied).

Note ■ sometimes, when dBas create a user, they’ll assign default roles to a schema, such as CONNECT and RESOURCE.
these roles contain system privileges, such as CREATE SESSION and CREATE TABLE (and several others privileges,
which vary by database release). i recommend against doing this, because Oracle has stated that those roles may not be
 available in future releases.

http://otn.oracle.com/

Chapter 6 ■ Users and BasiC seCUrity

134

Creating a User with OS Authentication
OS authentication assumes that if the user can log in to the database server, then database privileges can be
associated with and derived from the OS user account. There are two types of OS authentication:

Authentication through assigning specific OS roles to users (allows database privileges to be •	
mapped to users)

Authentication for regular database users via the •	 IDENTIFIED EXTERNALLY clause

Authentication through OS roles is detailed in Chapter 2. This type of authentication is used by DBAs and allows
them to connect to an OS account, such as oracle, and then connect to the database with SYSDBA privileges without
having to specify a username and password.

After logging in to the database server, users created with the IDENTIFIED EXTERNALLY clause can connect to
the database without having to specify a username or password. This type of authentication has some interesting
advantages:

Users with access to the server don’t have to maintain a database username and password.•	

Scripts that log in to the database don’t have to use hard-coded passwords if executed by •	
OS-authenticated users.

Another database user can’t hack into a user by trying to guess the username and password •	
connection string. The only way to log in to an OS-authenticated user is from the OS.

When using OS authentication, Oracle prefixes the value contained in OS_AUTHENT_PREFIX database initialization
parameter to the OS user connecting to the database. The default value for this parameter is OPS$. Oracle strongly
recommends that you set the OS_AUTHENT_PREFIX parameter to a null string; for example,

SQL> alter system set os_authent_prefix='' scope=spfile;

You have to stop and start your database for this modification to take effect. After you’ve set the
OS_AUTHENT_PREFIX parameter, you can create an externally authenticated user. For instance, say you have an OS
user named jsmith, and you want anybody with access to this OS user to be able to log in to the database without
supplying a password. Use the CREATE EXTERNALLY statement to do this:

SQL> create user jsmith identified externally;
SQL> grant create session to jsmith;

Now, when jsmith logs in to the database server, this user can connect to SQL*Plus, as follows:

$ sqlplus /

No username or password is required, because the user has already been authenticated by the OS.

Understanding Schemas vs. Users
A schema is a collection of database objects (such as tables and indexes). A schema is owned by a user and has
the same name as the user. The terms user and schema are often used synonymously by DBAs and developers.
Distinguishing between the two terms isn’t usually important, but there are some subtle differences.

When you log in to an Oracle database, you connect using a username and password. In this example, the user is
INV_MGMT, and the password is f00bar:

SQL> connect inv_mgmt/f00bar

Chapter 6 ■ Users and BasiC seCUrity

135

When you connect as a user, by default you can manipulate objects in the schema owned by the user with which
you connected to the database. For example, when you attempt to describe a table, Oracle by default accesses the
current user’s schema. Therefore, there is no reason to preface the table name with the currently connected user
(owner). Suppose the currently connected user is INV_MGMT. Consider the following DESCRIBE command:

SQL> describe inventory;

The prior statement is identical in function to the following statement:

SQL> desc inv_mgmt.inventory;

You can alter your current user’s session to point at a different schema via the ALTER SESSION statement:

SQL> alter session set current_schema = hr;

This statement doesn’t grant the current user (in this example, INV_MGMT) any extra privileges. The statement
does instruct Oracle to use the schema qualifier HR for any subsequent SQL statements that reference database
objects. If the appropriate privileges have been granted, the INV_MGMT user can access the HR user’s objects without
having to prefix the schema name to the object name.

Note ■ Oracle does have a CREATE SCHEMA statement. ironically, CREATE SCHEMA does not create a schema or a
user. rather, this statement provides a method for creating several objects (tables, views, grants) in a schema as one
 transaction. i’ve rarely seen the CREATE SCHEMA statement used, but it’s something to be aware of in case you’re
in a shop that does use it.

Assigning Default Permanent and Temporary Tablespaces
Ensuring that users have a correct default permanent tablespace and temporary tablespace helps prevent issues
of inadvertently filling up the SYSTEM tablespace, which could cause the database to become unavailable as well as
engendering performance problems. The concern is that when you don’t define a default permanent and temporary
tablespace for your database, when you create a user, by default the SYSTEM tablespace is used. This is never a good
thing.

As outlined in Chapter 2, you should establish a default permanent tablespace and temporary tablespace when
creating the database. Also shown in Chapter 2 were the SQL statements for identifying and altering the default
permanent tablespace and temporary tablespace. This ensures that when you create a user and don’t specify default
permanent and temporary tablespaces, the database defaults will be applied. The SYSTEM tablespace will therefore
never be used for the default permanent and temporary tablespaces.

Having said that, the reality is that you’ll most likely encounter databases that were not set up this way. When
maintaining a database, you should verify the default permanent and temporary tablespace settings to make certain
they meet your database standards. You can look at user information by selecting from the DBA_USERS view:

select
 username
,password
,default_tablespace
,temporary_tablespace
from dba_users;

Chapter 6 ■ Users and BasiC seCUrity

136

Here is small sample of the output:

USERNAME PASSWORD DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
-------------------- ---------- ------------------------- --------------------
JSMITH EXTERNAL USERS TEMP
MV_MAINT USERS TEMP
AUDSYS USERS TEMP
GSMUSER USERS TEMP
XS$NULL USERS TEMP

None of your users, other than the SYS user, should have a default permanent tablespace of SYSTEM. You don’t
want any users other than SYS creating objects in the SYSTEM tablespace. The SYSTEM tablespace should be reserved
for the SYS user’s objects. If other users’ objects existed in the SYSTEM tablespace, you’d run the risk of filling up that
tablespace and compromising the availability of your database.

All your users should be assigned a temporary tablespace that has been created as type temporary. Usually, this
tablespace is named TEMP (see Chapter 4 for more details).

If you find any users with inappropriate default tablespace settings, you can modify them with the ALTER USER
statement:

SQL> alter user inv_mgmt default tablespace users temporary tablespace temp;

You never want any users with a temporary tablespace of SYSTEM. If a user has a temporary tablespace of SYSTEM,
then any sort area for which the user requires temporary disk storage acquires extents in the SYSTEM tablespace. This
can lead to the SYSTEM tablespace’s filling up. You don’t want this ever to occur, because a SYS schema’s inability
to acquire more space as its objects grow can lead to a nonfunctioning database. To check for users that have a
temporary tablespace of SYSTEM, run this script:

SQL> select username from dba_users where temporary_tablespace='SYSTEM';

Typically, I use the script name creuser.sql when creating a user. This script uses variables that define the
usernames, passwords, default tablespace name, and so on. For each environment in which the script is executed
(development, test, quality assurance (QA), beta, production), you can change the ampersand variables, as required.
For instance, you can use a different password and different tablespaces for each separate environment.

Here’s an example creuser.sql script:

DEFINE cre_user=inv_mgmt
DEFINE cre_user_pwd=inv_mgmt_pwd
DEFINE def_tbsp=inv_data
DEFINE idx_tbsp=inv_index
DEFINE def_temp_tbsp=temp
DEFINE smk_ttbl=zzzzzzz
--
CREATE USER &&cre_user IDENTIFIED BY &&cre_user_pwd
DEFAULT TABLESPACE &&def_tbsp
TEMPORARY TABLESPACE &&def_temp_tbsp;
--
GRANT CREATE SESSION TO &&cre_user;
GRANT CREATE TABLE TO &&cre_user;
--
ALTER USER &&cre_user QUOTA UNLIMITED ON &&def_tbsp;
ALTER USER &&cre_user QUOTA UNLIMITED ON &&idx_tbsp;
--

Chapter 6 ■ Users and BasiC seCUrity

137

-- Smoke test
CONN &&cre_user/&&cre_user_pwd
CREATE TABLE &&smk_ttbl(test_id NUMBER) TABLESPACE &&def_tbsp;
CREATE INDEX &&smk_ttbl._idx1 ON &&smk_ttbl(test_id) TABLESPACE &&idx_tbsp;
INSERT INTO &&smk_ttbl VALUES(1);
DROP TABLE &&smk_ttbl;

 SMOKe teSt

Smoke test is a term used in occupations such as plumbing, electronics, and software development. the term
refers to the first check done after initial assembly or repairs in order to provide some level of assurance that the
system works properly.

in plumbing a smoke test forces smoke through the drainage pipes. the forced smoke helps quickly identify
cracks or leaks in the system. in electronics a smoke test occurs when power is first connected to a circuit. this
sometimes produces smoke if the wiring is faulty.

in software development a smoke test is a simple test of the system to ensure that it has some level of workability.
Many managers have reportedly been seen to have smoke coming out their ears when the smoke test fails.

Modifying Passwords
Use the ALTER USER command to modify an existing user’s password. This example changes the HEERA user’s
password to FOOBAR:

SQL> alter user HEERA identified by FOOBAR;

You can change the password of another account only if you have the ALTER USER privilege granted to your user.
This privilege is granted to the DBA role. After you change a password for a user, any subsequent connection to the
database by that user requires the password indicated by the ALTER USER statement.

In Oracle Database 11g or higher, when you modify a password, it’s case sensitive. If you’re using Oracle Database
10g or lower, the password isn’t case sensitive.

SQL*pLUS paSSWOrD COMMaND

you can change the password for a user with the sQL*plus PASSWORD command. (Like all sQL*plus commands, it
can be abbreviated.) after issuing the command, you’re prompted for a new password:

SQL> passw heera
Changing password for heera
New password:
Retype new password:
Password changed

this method has the advantage of changing a password for a user without displaying the new password on
the screen.

Chapter 6 ■ Users and BasiC seCUrity

138

Logging In as a Different User
This section details how to log in to a different user without having the clear-text form of the user’s password. You may
wish to do this in a couple of situations:

You’re copying a user from one environment (such as production) to a different environment •	
(such as test), and you want to retain the original password.

You’re working in a production environment, and you need to be able to connect as the •	
user that owns objects to execute CREATE TABLE statements, issue grants, and so on. In a
production environment you may not know the user’s password because of poor maintenance
procedures.

You need access to a DBA-privileged account to be able to log in as a different user without knowing the
password. Here are the steps to do this:

1. As a DBA, temporarily store a user’s obfuscated password.

2. Change the user’s password.

3. Connect to the user with the new password, and run DDL statements.

4. Connect as a DBA, and change the password back to the original.

Be very careful when changing a user’s password as described in the previous steps. First, the application can’t
connect to the database while the password has been changed to a temporary setting. If, when attempting to connect
the application, you exceed the FAILED_LOGIN_ATTEMPTS limit of a user’s profile (the default is ten failed attempts), the
account will lock.

Furthermore, if you’ve modified the values of PASSWORD_REUSE_MAX (the number of days before a password can be
reused) and PASSWORD_REUSE_TIME (the number of times a password must change before a password can be reused),
then you can’t change the password back to its original value.

Listed next is an example that shows how to temporarily change a user’s password and then change the password
back to its original value. First, select the statement required to restore a user’s password to its original setting. In this
example, the username is APPUSR:

select 'alter user appusr identified by values ' ||
'''' || password || '''' || ';'
from user$ where name='APPUSR';

Here is the output for this example:

alter user appusr identified by values 'A0493EBF86198724';

Now, modify the user’s password to a known value (in this example, foo):

SQL> alter user appusr identified by foo;

Connect to the APPUSR user:

SQL> conn appusr/foo

After you’re finished using the APPUSR user, change its password back to the original value:

SQL> alter user appusr identified by values 'A0493EBF86198724';

Chapter 6 ■ Users and BasiC seCUrity

139

Again, be very cautious when performing this procedure, because you don’t want to put yourself in a situation in
which a password profile setting won’t allow you to reset the password:

ORA-28007: the password cannot be reused

If you get this error, one option is to set the password to a brand new value. However, doing so may have
an undesirable impact on the application. If developers have hard-coded the password into response files, the
application can’t log in without changing the hard-coded password to the new password.

Your other option is to temporarily change the user’s profile to allow the password to be reused. First, check to
see what the current profile is for the user:

SQL> select username, profile from dba_users where username = UPPER('&&username');

Here is some sample output:

USERNAME PROFILE
------------------------------ ------------------------------
APPUSR SECURE

Then, create a profile that specifically allows a password to be reused without any restrictions:

CREATE PROFILE temp_prof LIMIT
PASSWORD_REUSE_MAX unlimited
PASSWORD_REUSE_TIME unlimited;

Next, assign the user the profile that doesn’t limit the reuse of passwords:

SQL> alter user appusr profile temp_prof;

You should be able to modify the password, as shown previously:

SQL> alter user appusr identified by values 'A0493EBF86198724';

If successful, you see this message:

User altered.

Make sure you set the profile back to the original value for the user:

SQL> alter user appusr profile secure;

Finally, drop the temporary profile so that it isn’t accidentally used in the future:

SQL> drop profile temp_prof;

Modifying Users
Sometimes you need to modify existing users, for the following types of reasons:

Change a user’s password•	

Lock or unlock a user•	

Chapter 6 ■ Users and BasiC seCUrity

140

Change the default permanent or temporary tablespace, or both•	

Change a profile or role•	

Change system or object privileges•	

Modify quotas on tablespaces•	

Use the ALTER USER statement to modify users. Listed next are several SQL statements that modify a user. This
example changes a user’s password, using the IDENTIFIED BY clause:

SQL> alter user inv_mgmt identified by i2jy22a;

If you don’t set a default permanent tablespace and temporary tablespace when you initially create the user, you
can modify them after creation, as shown here:

SQL> alter user inv_mgmt default tablespace users temporary tablespace temp;

This example locks a user account:

SQL> alter user inv_mgmt account lock;

And, this example alters the user’s quota on the USERS tablespace:

SQL> alter user inv_mgmt quota 500m on users;

Dropping Users
Before you drop a user, I recommend that you first lock the user. Locking the user prevents others from connecting
to a locked database account. This allows you to better determine whether someone is using the account before it’s
dropped. Here is an example of locking a user:

SQL> alter user heera account lock;

Any user or application attempting to connect to this user now receives the following error:

ORA-28000: the account is locked

To view the users and lock dates in your database, issue this query:

SQL> select username, lock_date from dba_users;

To unlock an account, issue this command:

SQL> alter user heera account unlock;

Locking users is a very handy technique for securing your database and discovering which users are active.
Be aware that by locking a user, you aren’t locking access to a user’s objects. For instance, if a USER_A has select,

insert, update, and delete privileges on tables owned by USER_B, if you lock the USER_B account, USER_A can still issue
DML statements against the objects owned by USER_B.

Chapter 6 ■ Users and BasiC seCUrity

141

Tip ■ if a user’s objects don’t consume inordinate amounts of disk space, then before you drop the user, it’s prudent
to make a quick backup. see Chapter 13 for details on using data pump to back up a single user.

After you’re sure that a user and its objects aren’t needed, use the DROP USER statement to remove a database
account. This example drops the user HEERA:

SQL> drop user heera;

The prior command won’t work if the user owns any database objects. Use the CASCADE clause to remove a user
and have its objects dropped:

SQL> drop user heera cascade;

Note ■ the DROP USER statement may take a great deal of time to execute if the user being dropped owns a vast
number of database objects. in these situations, you may want to consider dropping the user’s objects before dropping
the user.

When you drop a user, any tables that it owns are also dropped. Additionally, all indexes, triggers, and referential
integrity constraints are removed. If referential integrity constraints exist in other schemas that depend on any
dropped primary key and unique key constraints, the referential constraints in those schemas are also dropped.
Oracle invalidates but doesn’t drop any views, synonyms, procedures, functions, or packages that are dependent on
the dropped user’s objects.

Enforcing Password Security and Resource Limits
When you’re creating users, sometimes requirements call for passwords to adhere to a set of security rules, for
example, necessitating that the password be of a certain length and contain numeric characters. Also, when you set up
database users, you may want to ensure that a certain user isn’t capable of consuming an inordinate amount of CPU
resources.

You can use a database profile to meet these types of requirements. An Oracle profile is a database object that
serves two purposes:

Enforces password security settings•	

Limits system resources that a user consumes•	

These topics are discussed in the next several sections.

Tip ■ don’t confuse a database profile with a sQL profile. a database profile is an object assigned to a user that
enforces password security and that constrains database resource usage, whereas a sQL profile is associated with a sQL
statement and contains corrections to statistics that help the optimizer generate a more efficient execution plan.

Chapter 6 ■ Users and BasiC seCUrity

142

Basic Password Security
When you create a user, if no profile is specified, the DEFAULT profile is assigned to the newly created user. To view the
current settings for a profile, issue the following SQL:

select profile, resource_name, resource_type, limit
from dba_profiles
order by profile, resource_type;

Here is a partial listing of the output:

PROFILE RESOURCE_NAME RESOURCE LIMIT
------------ --------------------------- -------- ---------------
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL

A profile’s password restrictions are in effect as soon as the profile is assigned to a user. For example, from the
previous output, if you’ve assigned the DEFAULT profile to a user, that user is allowed only ten consecutive failed login
attempts before the user account is automatically locked by Oracle. See Table 6-1 for a description of the password
profile security settings.

Table 6-1. Password Security Settings

Password Setting Description Default

FAILED_LOGIN_ATTEMPTS Number of failed login attempts before the schema is locked 10 attempts

PASSWORD_GRACE_TIME Number of days after a password expires that the owner can
log in with an old password

7 days

PASSWORD_LIFE_TIME Number of days a password is valid 180 days

PASSWORD_LOCK_TIME Number of days an account is locked after
FAILED_LOGIN_ATTEMPTS has been reached

1 day

PASSWORD_REUSE_MAX Number of days before a password can be reused Unlimited

PASSWORD_REUSE_TIME Number of times a password must change before a password
can be reused

Unlimited

PASSWORD_VERIFY_FUNCTION Database function used to verify the password Null

Chapter 6 ■ Users and BasiC seCUrity

143

Tip ■ see MOs note 454635.1 for details on Oracle database DEFAULT profile changes.

You can alter the DEFAULT profile to customize it for your environment. For instance, say you want to enforce a
cap on the maximum number of days a password can be used. The next line of code sets the PASSWORD_LIFE_TIME of
the DEFAULT profile to 300 days:

SQL> alter profile default limit password_life_time 300;

The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX settings must be used in conjunction. If you specify an
integer for one parameter (it doesn’t matter which one) and UNLIMITED for the other parameter, the then current
password can never be reused.

If you want to specify that the DEFAULT profile password must be changed ten times within 100 days before it can
be reused, use a line of code similar to this:

SQL> alter profile default limit password_reuse_time 100 password_reuse_max 10;

Although using the DEFAULT profile is sufficient for many environments, you may need tighter security
management. I recommend that you create custom security profiles and assign them to users, as required. For
example, create a profile specifically for application users:

CREATE PROFILE SECURE_APP LIMIT
PASSWORD_LIFE_TIME 200
PASSWORD_GRACE_TIME 10
PASSWORD_REUSE_TIME 1
PASSWORD_REUSE_MAX 1
FAILED_LOGIN_ATTEMPTS 3
PASSWORD_LOCK_TIME 1;

After you create the profile, you can assign it to users, as appropriate. The following SQL generates a SQL script,
named alt_prof_dyn.sql, that you can use to assign the newly created profile to users:

set head off;
spo alt_prof_dyn.sql
select 'alter user ' || username || ' profile secure_app;'
from dba_users where username like '%APP%';
spo off;

Be careful when assigning profiles to application accounts that use the database. If you want to enforce that a
password change at a regular frequency, be sure you understand the impact on production systems. Passwords tend
to get hard-coded into response files and code. Enforcing password changes in these environments can wreak havoc,
as you try to chase down all the places where the password is referenced. If you don’t want to enforce the periodic
changing of the password, you can set PASSWORD_LIFE_TIME to a high value, such as 10,000 or unlimited.

Chapter 6 ■ Users and BasiC seCUrity

144

When you’re determining if a password is secure, it’s useful to check to see whether the password for a user has
ever been changed. if the password for a user has never been changed, this may be viewed as a security risk.
this example performs such a check:

select
 name
,to_char(ctime,'dd-mon-yy hh24:mi:ss')
,to_char(ptime,'dd-mon-yy hh24:mi:ss')
,length(password)
from user$
where password is not null
and password not in ('GLOBAL','EXTERNAL')
and ctime=ptime;

in this script the CTIME column contains the timestamp of when the user was created. the PTIME column contains
the timestamp of when the password was changed. if the CTIME and PTIME are identical, then the password has
never changed.

Password Strength
A password that cannot be easily guessed is considered a strong password. The strength of a password can be
quantified in terms of length, use of upper/lower case, nondictionary based words, numeric characters, and so on. For
example, a password of L5K0ta890g would be considered strong, whereas a password of pass would be considered
weak. There are a couple schools of thought on enforcing password strength:

Use easily remembered passwords so that you don’t have them written down or recorded in a •	
file somewhere. Because the passwords aren’t sophisticated, they aren’t very secure.

Enforce a level of sophistication (strength) for passwords. Such passwords aren’t easily •	
remembered and thus must be recorded somewhere, which isn’t secure.

You may choose to enforce a degree of password strength because you think it’s the most secure option. Or you
may be required to enforce password security sophistication by your corporate security team (and thus have no
choice in the matter). This section isn’t about debating which of the prior methods is preferable. Should you choose to
impose a degree of strength for a password, this section describes how to enforce the rules.

You can enforce a minimum standard of password complexity by assigning a password verification function to a
user’s profile. Oracle supplies a default password verification function that you create by running the following script
as the SYS schema:

SQL> @?/rdbms/admin/utlpwdmg

The prior script creates the following password verification functions:

•	 ora12c_verify_function (Oracle Database 12c)

•	 ora12c_strong_verify_function (very secure Oracle Database 12c)

•	 verify_function_11G (Oracle Database 11g)

•	 verify_function (Oracle Database 10g)

haS the paSSWOrD eVer ChaNGeD?

Chapter 6 ■ Users and BasiC seCUrity

145

Once the password verify function has been created, you can use the ALTER PROFILE command to associate the
password verify function with all users to which a given profile is assigned. For instance, in Oracle Database 12c, to set
the password verify function of the DEFAULT profile, issue this command:

SQL> alter profile default limit PASSWORD_VERIFY_FUNCTION ora12c_verify_function;

If, for any reason, you need to back out of the new security modifications, run this statement to disable the
password function:

SQL> alter profile default limit PASSWORD_VERIFY_FUNCTION null;

When enabled, the password verification function ensures that users are correctly creating or modifying their
passwords. The utlpwdmgsql script creates a function that checks a password to make certain it meets basic security
standards, such as minimum password length and password not the same as username. You can verify that the new
security function is in effect by attempting to change the password of a user to which the DEFAULT profile has been
assigned. This example tries to change the password to less than the minimum length:

SQL> password
Changing password for HEERA
Old password:
New password:
Retype new password:
ERROR:
ORA-28003: password verification for the specified password failed
ORA-20001: Password length less than 8

Note ■ For Oracle database 12c and 11g, when using the standard password verify function, the minimum password
length is eight characters. For Oracle database 10g the minimum length is four characters.

Keep in mind that it’s possible to modify the code used to create the password verification function. For example,
you can open and modify the script used to create this function:

$ vi $ORACLE_HOME/rdbms/admin/utlpwdmg.sql

If you feel that the Oracle-supplied verification function is too strong, or overly restrictive, you can create your
own function and assign the appropriate database profiles to it.

Note ■ as of Oracle database 12g, the SEC_CASE_SENSITIVE_LOGON parameter has been deprecated. setting this
initialization parameter to FALSE allows you to make passwords case insensitive.

Limiting Database Resource Usage
As mentioned earlier, the password profile settings take effect as soon as you assign the profile to a user. Unlike
password settings, kernel resource profile restrictions don’t take effect until you set the RESOURCE_LIMIT initialization
parameter to TRUE for your database; for example,

SQL> alter system set resource_limit=true scope=both;

Chapter 6 ■ Users and BasiC seCUrity

146

To view the current setting of the RESOURCE_LIMIT parameter, issue this query:

SQL> select name, value from v$parameter where name='resource_limit';

When you create a user, if you don’t specify a profile, then the DEFAULT profile is assigned to the user. You can
modify the DEFAULT profile with the ALTER PROFILE statement. The next example modifies the DEFAULT profile to limit
CPU_PER_SESSION to 240,000 (in hundredths of seconds):

SQL> alter profile default limit cpu_per_session 240000;

This limits any user with the DEFAULT profile to 2,400 seconds of CPU use. You can set various limits in a profile.
Table 6-2 describes the database resource settings you can limit via a profile.

Table 6-2. Database Resource Profile Settings

Profile Resource Meaning

COMPOSITE_LIMIT Limit, based on a weighted-sum algorithm for these resources:
CPU_PER_SESSION, CONNECT_TIME, LOGICAL_READS_PER_SESSION, and
PRIVATE_SGA

CONNECT_TIME Connect time, in minutes

CPU_PER_CALL CPU time limit per call, in hundredths of seconds

CPU_PER_SESSION CPU time limit per session, in hundredths of seconds

IDLE_TIME Idle time, in minutes

LOGICAL_READS_PER_CALL Blocks read per call

LOGICAL_READS_PER_SESSION Blocks read per session

PRIVATE_SGA Amount of space consumed in the shared pool

SESSIONS_PER_USER Number of concurrent sessions

You can also create a custom profile and assign it to users via the CREATE PROFILE statement. You can then assign
that profile to any existing database users. The following SQL statement creates a profile that limits resources, such as
the amount of CPU an individual session can consume:

create profile user_profile_limit
limit
sessions_per_user 20
cpu_per_session 240000
logical_reads_per_session 1000000
connect_time 480
idle_time 120;

After you create a profile, you can assign it to a user. In the next example, the user HEERA is assigned
USER_PROFILE_LIMIT:

SQL> alter user heera profile user_profile_limit;

Chapter 6 ■ Users and BasiC seCUrity

147

Note ■ Oracle recommends that you use database resource Manager to manage database resource limits.
 however, for basic resource management needs, i find database profiles (implemented via sQL) to be an effective and
easy mechanism for managing resource usage. if you have more sophisticated resource management requirements,
 investigate the database resource Manager feature.

As part of the CREATE USER statement, you can specify a profile other than DEFAULT:

SQL> create user heera identified by foo profile user_profile_limit;

When should you use database profiles? You should always take advantage of the password security settings of
the DEFAULT profile. You can easily modify the default settings of this profile, as required by your business rules.

A profile’s kernel resource limits are useful when you have power users who need to connect directly to the
database and run queries. For example, you can use the kernel resource settings to limit the amount of CPU time a user
consumes, which is handy when a user writes a bad query that inadvertently consumes excessive database resources.

Note ■ you can only assign one database profile to a user, so if you need to manage both password security and
resource limits, make certain you set both within the same profile.

Managing Privileges
A database user must be granted privileges before the user can perform any tasks in the database. In Oracle, you
assign privileges either by granting a specific privilege to a user or by granting the privilege to a role and then granting
the role that contains the privilege to a user. There are two types of privileges: system privileges and object privileges.
The following sections discuss these privileges in detail.

Assigning Database System Privileges
Database system privileges allow you to do tasks such as connecting to the database and creating and modifying objects.
There are hundreds of different system privileges. You can view system privileges by querying the DBA_SYS_PRIVS view:

SQL> select distinct privilege from dba_sys_privs;

You can grant privileges to other users or roles. To be able to grant privileges, a user needs the GRANT ANY
PRIVILEGE privilege or must have been granted a system privilege with ADMIN OPTION.

Use the GRANT statement to assign a system privilege to a user. For instance, minimally a user needs CREATE
SESSION to be able to connect to the database. You grant this system privilege as shown:

SQL> grant create session to inv_mgmt;

Usually, a user needs to do more than just connect to the database. For instance, a user may need to create
tables and other types of database objects. This example grants a user the CREATE TABLE and CREATE DATABASE LINK
system privileges:

SQL> grant create table, create database link to inv_mgmt;

Chapter 6 ■ Users and BasiC seCUrity

148

If you need to take away privileges, use the REVOKE statement:

SQL> revoke create table from inv_mgmt;

Oracle has a feature that allows you to grant a system privilege to a user and also give that user the ability to
administer a privilege. You do this with the WITH ADMIN OPTION clause:

SQL> grant create table to inv_mgmt with admin option;

I rarely use WITH ADMIN OPTION when granting privileges. Usually, a user with the DBA role is used to grant
privileges, and that privilege isn’t generally meted out to non-DBA users in the database. This is because it would be
hard to keep track of who assigned what system privileges, for what reason, and when. In a production environment,
this would be untenable.

You can also grant system privileges to the PUBLIC user group (I don’t recommend doing this). For example, you
could grant CREATE SESSION to all users that ever need to connect to the database, as follows:

SQL> grant create session to public;

Now, every user that is created can automatically connect to the database. Granting system privileges to the
PUBLIC user group is almost always a bad idea. As a DBA, one of your main priorities is to ensure that the data in the
database are safe and secure. Granting privileges to the PUBLIC role is a sure way of not being able to manage who is
authorized to perform specific actions within the database.

Assigning Database Object Privileges
Database object privileges allow you to access and manipulate other users’ objects. The types of database objects to
which you can grant privileges include tables, views, materialized views, sequences, packages, functions, procedures,
user-defined types, and directories. To be able to grant object privileges, one of the following must be true:

You own the object.•	

You’ve been granted the object privilege with •	 GRANT OPTION.

You have the •	 GRANT ANY OBJECT PRIVILEGE system privilege.

This example grants object privileges (as the object owner) to the INV_MGMT_APP user:

SQL> grant insert, update, delete, select on registrations to inv_mgmt_app;

The GRANT ALL statement is equivalent to granting INSERT, UPDATE, DELETE, and SELECT to an object. The next
statement is equivalent to the prior statement:

SQL> grant all on registrations to inv_mgmt_app;

You can also grant INSERT and UPDATE privileges to tables, at the column level. The next example grants INSERT
privileges to specific columns in the INVENTORY table:

SQL> grant insert (inv_id, inv_name, inv_desc) on inventory to inv_mgmt_app;

If you want a user that is being granted object privileges to be able to subsequently grant those same object
privileges to other users, then use the WITH GRANT OPTION clause:

SQL> grant insert on registrations to inv_mgmt_app with grant option;

Chapter 6 ■ Users and BasiC seCUrity

149

Now, the INV_MGMT_APP user can grant insert privileges on the REGISTRATIONS table to other users.
I rarely use the WITH GRANT OPTION when granting object privileges. Allowing other users to propagate object

privileges to users makes it hard to keep track of who assigned what object privileges, for what reason, when, and so
on. In a production environment this would be untenable. When you’re managing a production environment, when
problems arise, you need to know what changed, when, and for what reason.

You can also grant object privileges to the PUBLIC user group (I don’t recommend doing this). For example, you
could grant select privileges on a table to PUBLIC:

SQL> grant select on registrations to public;

Now, every user can select from the REGISTRATIONS table. Granting object privileges to the PUBLIC role is almost
always a bad idea. As a DBA, one of your main priorities is to ensure that the data in the database are safe and secure.
Granting object privileges to the PUBLIC role is a sure way of not being able to manage who can access what data in the
database.

If you need to take away object privileges, use the REVOKE statement. This example revokes DML privileges from
the INV_MGMT_APP user:

SQL> revoke insert, update, delete, select on registrations from inv_mgmt_app;

Grouping and Assigning Privileges
A role is a database object that allows you to group together system or object privileges, or both, in a logical manner
so that you can assign those privileges in one operation to a user. Roles help you manage aspects of database security
in that they provide a central object that has privileges assigned to it. You can subsequently assign the role to multiple
users or other roles.

To create a role, connect to the database as a user that has the CREATE ROLE system privilege. Next, create a role
and assign to it the system or object privileges that you want to group together. This example uses the CREATE ROLE
statement to create the JR_DBA role:

SQL> create role jr_dba;

The next several lines of SQL grant system privileges to the newly created role:

SQL> grant select any table to jr_dba;
SQL> grant create any table to jr_dba;
SQL> grant create any view to jr_dba;
SQL> grant create synonym to jr_dba;
SQL> grant create database link to jr_dba;

Next, grant the role to any schema you want to possess those privileges:

SQL> grant jr_dba to lellison;
SQL> grant jr_dba to mhurd;

The users LELLISON and MHURD can now perform tasks such as creating synonyms and views. To see the users to
which a role is assigned, query the DBA_ROLE_PRIVS view:

SQL> select grantee, granted_role from dba_role_privs order by 1;

Chapter 6 ■ Users and BasiC seCUrity

150

To see roles granted to your currently connected user, query from the USER_ROLE_PRIVS view:

SQL> select * from user_role_privs;

To revoke a privilege from a role, use the REVOKE command:

SQL> revoke create database link from jr_dba;

Similarly, use the REVOKE command to remove a role from a user:

SQL> revoke jr_dba from lellison;

Note ■ Unlike other database objects, roles don’t have owners. a role is defined by the privileges assigned to it.

pL/SQL aND rOLeS

if you work with pL/sQL, sometimes you get this error when attempting to compile a procedure or a function:

PL/SQL: ORA-00942: table or view does not exist

What’s confusing is that you can describe the table:

SQL> desc app_table;

Why doesn’t pL/sQL seem to be able to recognize the table? it’s because pL/sQL requires that the owner of the
package, procedure, or function be explicitly granted privileges to any objects referenced in the code. the owner
of the pL/sQL code can’t have obtained the grants through a role.

When confronted with this issue, try this as the owner of the pL/sQL code:

SQL> set role none;

now, try to run a sQL statement that accesses the table in question:

SQL> select count(*) from app_table;

if you can no longer access the table, then you’ve been granted access through a role. to resolve the issue,
explicitly grant access to any tables to the owner of the pL/sQL code (as the owner of the table):

SQL> connect owner/pass
SQL> grant select on app_table to proc_owner;

you should be able to connect as the owner of the pL/sQL code and successfully compile your code.

Chapter 6 ■ Users and BasiC seCUrity

151

Summary
After you create a database, one of your first tasks is to secure any default user accounts. One valid approach is to lock
all the default accounts and open them only as they’re required. Other approaches include changing or expiring the
password, or both. After the default users’ accounts have been secured, you’re responsible for creating users that need
access to the database. This often includes application users, DBAs, and developers.

You should consider using a secure profile for any users you create. Additionally, think about password security
when creating users. Oracle provides a password function that enforces a certain level of password strength.
I recommend that you use a combination of profiles and a password function as a first step in creating
a secure database.

As the databases ages, you need to maintain the user accounts. Usually, the requirements for database accounts
change over time. You’re responsible for ensuring that the correct system and object privileges are maintained for
each account. With any legacy system, you’ll eventually need to lock and drop users. Dropping unused accounts helps
ensure that your environment is more secure and maintainable.

The next logical step after creating users is to create database objects. Chapter 7 deals with concepts related to
table creation.

153

Chapter 7

Tables and Constraints

The previous chapters in this book covered topics that prepare you for the next logical step in creating database objects.
For example, you need to install the Oracle binaries and create a database, tablespaces, and users before you start
creating tables. Usually, the first objects created for an application are the tables, constraints, and indexes. This chapter
focuses on the management of tables and constraints. The administration of indexes is covered in Chapter 8.

A table is the basic storage container for data in a database. You create and modify the table structure via DDL
statements, such as CREATE TABLE and ALTER TABLE. You access and manipulate table data via DML statements
(INSERT, UPDATE, DELETE, MERGE, SELECT).

Tip ■ One important difference between DDL and DML statements is that DDL statements are implicitly committed,
whereas with DML statements, you must explicitly issue a COMMIT or ROLLBACK to end the transaction.

A constraint is a mechanism for enforcing that data adhere to business rules. For example, you may have a
business requirement that all customer IDs be unique within a table. In this scenario, you can use a primary key
constraint to guarantee that all customer IDs inserted or updated in a CUSTOMER table are unique. Constraints inspect
data as they’re inserted, updated, and deleted to ensure that no business rules are violated.

This chapter deals with common techniques for creating and maintaining tables and constraints. Almost always,
when you create a table, the table needs one or more constraints defined; therefore, it makes sense to cover constraint
management along with tables. The first part of the chapter focuses on common table creation and maintenance
tasks. The latter part of the chapter details constraint management.

Understanding Table Types
The Oracle database supports a vast and robust variety of table types. These various types are described in Table 7-1.

Table 7-1. Oracle Table Type Descriptions

Table Type Description Typical Use

Heap organized The default table type and the most
commonly used

Table type to use unless you have a specific
reason to use a different type

Temporary Session private data, stored for the duration
of a session or transaction; space allocated in
temporary segments

Program needs a temporary table structure to
store and sort data; table isn’t required after
program ends

(continued)

Chapter 7 ■ tabLes anD COnstraints

154

This chapter focuses on the table types that are most often used, in particular heap organized, index organized,
and temporary tables. Partitioned tables are used extensively in data warehouse environments and are covered
separately, in Chapter 12. External tables are covered in Chapter 14. For details on table types not covered in this
book, see the SQL Language Reference Guide, which is available for download from the Oracle Technology Network
web site (http://otn.oracle.com).

Understanding Data Types
When creating a table, you must specify the columns names and corresponding data types. As a DBA you should
understand the appropriate use of each data type. I’ve seen many application issues (performance and accuracy of
data) caused by the wrong choice of data type. For instance, if a character string is used when a date data type should
have been used, this causes needless conversions and headaches when attempting to do date math and reporting.
Compounding the problem, after an incorrect data type is implemented in a production environment, it can be very
difficult to modify data types, as this introduces a change that might possibly break existing code. Once you go wrong,
it’s extremely tough to recant and backtrack and choose the right course. It’s more likely you will end up with hack
upon hack as you attempt to find ways to force the ill-chosen data type to do the job it was never intended to do.

Having said that, Oracle supports the following groups of data types:

Character•	

Numeric•	

Date/Time•	

•	 RAW

•	 ROWID

LOB•	

A brief description and usage recommendation are provided in the following sections.

Table Type Description Typical Use

Index organized Data stored in a B-tree (balanced tree) index
structure sorted by primary key

Table is queried mainly on primary key
columns; provides fast random access

Partitioned A logical table that consists of separate
physical segments

Type used with large tables with millions of
rows

External Tables that use data stored in OS files outside
the database

Type lets you efficiently access data in a file
outside the database (such as a CSV file)

Clustered A group of tables that share the same data
blocks

Type used to reduce I/O for tables that are
often joined on the same columns

Hash clustered A table with data that is stored and retrieved
using a hash function

Reduces the I/O for tables that are mostly static
(not growing after initially loaded)

Nested A table with a column with a data type that is
another table

Rarely used

Object A table with a column with a data type that is
an object type

Rarely used

Table 7-1. (continued)

http://otn.oracle.com/

Chapter 7 ■ tabLes anD COnstraints

155

Note ■ specialized data types, such as XML types, any types, spatial types, media types, and user-defined types,
are not covered in this book. For more details regarding these data types, see the sQL Language reference guide
available from the Oracle technology network web site (http://otn.oracle.com).

Character
Use a character data type to store characters and string data. The following character data types are available
in Oracle:

•	 VARCHAR2

•	 CHAR

•	 NVARCHAR2 and NCHAR

VARCHAR2
The VARCHAR2 data type is what you should use in most scenarios to hold character/string data. A VARCHAR2 only
allocates space based on the number of characters in the string. If you insert a one-character string into a column
defined to be VARCHAR2(30), Oracle will only consume space for the one character. The following example verifies
this behavior:

create table d(d varchar2(30));
insert into d values ('a');
select dump(d) from d;

Here is a snippet of the output, verifying that only 1B has been allocated:

DUMP(D)

Typ=1 Len=1

Note ■ Oracle does have another data type, the VARCHAR (without the “2”). i only mention this because you’re bound to
encounter this data type at some point in your Oracle Dba career. Oracle currently defines VARCHAR as synonymous with
VARCHAR2. Oracle strongly recommends that you use VARCHAR2 (and not VARCHAR), as Oracle’s documentation states that
VARCHAR might serve a different purpose in the future.

When you define a VARCHAR2 column, you must specify a length. There are two ways to do this: BYTE and
CHAR. BYTE specifies the maximum length of the string in bytes, whereas CHAR specifies the maximum number of
characters. For example, to specify a string that contains at the most 30B, you define it as follows:

varchar2(30 byte)

http://otn.oracle.com/

Chapter 7 ■ tabLes anD COnstraints

156

To specify a character string that can contain at most 30 characters, you define it as follows:

varchar2(30 char)

Many DBAs do not realize that if you don’t specify either BYTE or CHAR, then the default length is calculated in
bytes. In other words, VARCHAR2(30) is the same as VARCHAR2(30 byte).

In almost all situations you’re safer specifying the length using CHAR. When working with multibyte character sets,
if you specified the length to be VARCHAR2(30 byte), you may not get predictable results, because some characters
require more than 1B of storage. In contrast, if you specify VARCHAR2(30 char), you can always store 30 characters in
the string, regardless of whether some characters require more than1B.

CHAR
In almost every scenario a VARCHAR2 is preferable to a CHAR. The VARCHAR2 data type is more flexible and space efficient
than CHAR. This is because a CHAR is a fixed-length character field. If you define a CHAR(30) and insert a string that
consists of only one character, Oracle will allocate 30B of space. This can be an inefficient use of space. The following
example verifies this behavior:

create table d(d char(30));
insert into d values ('a');
select dump(d) from d;

Here is a snippet of the output, verifying that 30B have been consumed:

DUMP(D)

Typ=96 Len=30

NVARCHAR2 and NCHAR
The NVARCHAR2 and NCHAR data types are useful if you have a database that was originally created with a single-byte,
fixed-width character set, but sometime later you need to store multibyte character set data in the same database.
You can use the NVARCHAR2 and NCHAR data types to support this requirement.

Note ■ For Oracle Database 11g and lower, 4,000 was the largest size allowed for a VARCHAR2 or NVARCHAR2 data type.
in Oracle Database 12c and higher, you can specify up to 32,767 characters in a VARCHAR2 or NVARCHAR2 data type. prior
to 12c, if you wanted to store character data larger greater than 4,000 characters, the logical choice was a CLOB (see the
section “LOb,” later in this chapter, for more details).

Numeric
Use a numeric data type to store data that you’ll potentially need to use with mathematic functions, such as SUM,
AVG, MAX, and MIN. Never store numeric information in a character data type. When you use a VARCHAR2 to store data
that are inherently numeric, you’re introducing future failures into your system. Eventually, you’ll want to report or
run calculations on numeric data, and if they’re not a numeric data type, you’ll get unpredictable and oftentimes
wrong results.

Chapter 7 ■ tabLes anD COnstraints

157

Oracle supports three numeric data types:

•	 NUMBER

•	 BINARY_DOUBLE

•	 BINARY_FLOAT

For most situations, you’ll use the NUMBER data type for any type of number data. Its syntax is

NUMBER(scale, precision)

where scale is the total number of digits, and precision is the number of digits to the right of the decimal point.
So, with a number defined as NUMBER(5, 2) you can store values +/–999.99. That’s a total of five digits, with two used
for precision to the right of the decimal point.

Tip■ Oracle allows a maximum of 38 digits for a NUMBER data type. this is almost always sufficient for any type of
numeric application.

What sometimes confuses DBAs is that you can create a table with columns defined as INT, INTEGER, REAL,
DECIMAL, and so on. These data types are all implemented by Oracle with a NUMBER data type. For example, a column
specified as INTEGER is implemented as a NUMBER(38).

The BINARY_DOUBLE and BINARY_FLOAT data types are used for scientific calculations. These map to the DOUBLE
and FLOAT Java data types. Unless your application is performing rocket science calculations, then use the NUMBER data
type for all your numeric requirements.

Date/Time
When capturing and reporting on date-related information, you should always use a DATE or TIMESTAMP data type
(and not VARCHAR2). Using the correct date-related data type allows you to perform accurate Oracle date calculations
and aggregations and dependable sorting for reporting. If you use a VARCHAR2 for a field that contains date
information, you are guaranteeing future reporting inconsistencies and needless conversion functions (such as
TO_DATE and TO_CHAR).

Oracle supports three date-related data types:

•	 DATE

•	 TIMESTAMP

•	 INTERVAL

The DATE data type contains a date component as well as a time component that is granular to the second. By default,
if you don’t specify a time component when inserting data, then the time value defaults to midnight (0 hour at the 0 second).
If you need to track time at a more granular level than the second, then use TIMESTAMP; otherwise, feel free to use DATE.

The TIMESTAMP data type contains a date component and a time component that is granular to fractions of a
second. When you define a TIMESTAMP, you can specify the fractional second precision component. For instance,
if you wanted five digits of fractional precision to the right of the decimal point, you would specify that as

TIMESTAMP(5)

The maximum fractional precision is 9; the default is 6. If you specify 0 fractional precision, then you have the
equivalent of the DATE data type.

Chapter 7 ■ tabLes anD COnstraints

158

The TIMESTAMP data type comes in two additional variations: TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE. These are time zone–aware data types, meaning that when the user selects the data, the time value
is adjusted to the time zone of the user’s session.

Oracle also provides an INTERVAL data type. This is meant to store a duration, or interval, of time. There are two
types: INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Use the former when precision to the year and month
is required. Use the latter when you need to store interval data granular to the day and second.

ChOOSING YOUr INterVaL tYpe

When choosing an interval type, let your choice be driven by the level of granularity you desire in your results.
For example, you can use INTERVAL DAY TO SECOND to store intervals several years in length—it is just that you
will express such intervals in terms of days, perhaps of several hundreds of days. if you record only a number of
years and months, then you can never actually get to the correct number of days, because the number of days
represented by a year or a month depends on which specific year and month are under discussion.

similarly, if you need granularity in terms of months, you can’t back into the correct number of months based on
the number of days. so, choose the type to match the granularity needed in your application.

RAW
The RAW data type allows you to store binary data in a column. This type of data is sometimes used for storing globally
unique identifiers or small amounts of encrypted data.

Note ■ prior to Oracle Database 12c, the maximum size for a RAW column was 2,000 bytes. as of Oracle Database
12c you can declare a RAW to have a maximum size of 32,767 bytes. if you have large amounts of binary data to store,
then use a BLOB.

If you select data from a RAW column, SQL*Plus implicitly applies the built-in RAWTOHEX function to the data
retrieved. The data are displayed in hexadecimal format, using characters 0–9 and A–F. When inserting data into a RAW
column, the built-in HEXTORAW is implicitly applied.

This is important because if you create an index on a RAW column, the optimizer may ignore the index, as
SQL*Plus is implicitly applying functions where the RAW column is referenced in the SQL. A normal index may be of no
use, whereas a function-based index using RAWTOHEX may result in a substantial performance improvement.

ROWID
When DBAs hear the word ROWID (row identifier), they often think of a pseudocolumn provided with every table row
that contains the physical location of the row on disk; that is correct. However, many DBAs do not realize that Oracle
supports an actual ROWID data type, meaning that you can create a table with a column defined as the type ROWID.

There are a few practical uses for the ROWID data type. One valid application would be if you’re having problems
when trying to enable a referential integrity constraint and want to capture the ROWID of rows that violate a constraint.
In this scenario, you could create a table with a column of the type ROWID and store in it the ROWIDs of offending
records within the table. This affords you an efficient way to capture and resolve issues with the offending data
(see the section “Enabling Constraints,” later in this chapter, for more details).

Chapter 7 ■ tabLes anD COnstraints

159

Tip ■ never be tempted to use a ROWID data type and the associated ROWID of a row within the table for the primary
key value. this is because the ROWID of a row in a table can change. For example, an ALTER TABLE...MOVE command will
potentially change every ROWID within a table. normally, the primary key values of rows within a table should never change.
For this reason, instead of using ROWID for a primary key value, use a sequence-generated nonmeaningful number (see the
section “Creating a table with an autoincrementing (identity) Column,” later in this chapter, for further discussion).

LOB
Oracle supports storing large amounts of data in a column via a LOB data type. Oracle supports the following types
of LOBs:

•	 CLOB

•	 NCLOB

•	 BLOB

•	 BFILE

Tip ■ the LONG and LONG RAW data types are deprecated and should not be used.

If you have textual data that don’t fit within the confines of a VARCHAR2, then you should use a CLOB to store these
data. A CLOB is useful for storing large amounts of character data, such as log files. An NCLOB is similar to a CLOB but
allows for information encoded in the nation character set of the database.

BLOBs store large amounts of binary data that usually aren’t meant to be human readable. Typical BLOB data
include images, audio, and video files.

CLOBs, NCLOBs, and BLOBs are known as internal LOBs. This is because they are stored inside the Oracle database.
These data types reside within data files associated with the database.

BFILEs are known as external LOBs. BFILE columns store a pointer to a file on the OS that is outside the database.
When it’s not feasible to store a large binary file within the database, then use a BFILE. BFILEs don’t participate in
database transactions and aren’t covered by Oracle security or backup and recovery. If you need those features,
then use a BLOB and not a BFILE.

Tip ■ see Chapter 11 for a full discussion of LObs.

Extended Character Types
Prior to Oracle Database 12c, the maximum length for a VARCHAR2 and NVARCHAR2 was 4,000 bytes, and the maximum
length of a RAW column was 2,000 bytes. Starting with Oracle Database 12c, these data types have been extended to
accommodate a length of 32,767 bytes.

Chapter 7 ■ tabLes anD COnstraints

160

Check with the current Oracle documentation for the release you’re using to find the exact steps for
implementing an extended character type. The procedure for implementing extended character types (as of this
writing) is documented in the following list:

1. As SYS, shut down the database:

SQL> shutdown immediate;

2. Start the database in upgrade mode:

SQL> startup upgrade;

3. Change the setting of MAX_STRING_SIZE to EXTENDED:

SQL> alter system set max_string_size=extended scope=both;

4. As SYS, run the utl32k.sql script:

SQL> @?/rdbms/admin/utl32k.sql

5. Restart the database normally:

SQL> shutdown immediate;
SQL> startup;

Now, you should be able to create an extended column as follows:

SQL> create table d1(dext varchar2(32727)) tablespace users;

The extended character type is actually implemented internally as a LOB, and you can view the LOB details via
the USER_LOBS view; for example:

SQL> select table_name, column_name, segment_name, tablespace_name, in_row from user_lobs;

Here is some sample output:

TABLE_NAME COLUMN_NAME SEGMENT_NAME TABLESPACE IN_ROW
---------- --------------- ------------------------------ ---------- ----------
D1 DEXT SYS_LOB0000043206C00001$$ USERS YES

Following normal LOB storage rules, Oracle stores the first 4,000 bytes inline within the table. Anything greater
than 4,000 bytes goes into a LOB segment.

Creating a Table
The number of table features expands with each new version of Oracle. Consider this: the 12c version of the
Oracle SQL Language Reference Guide presents more than 80 pages of syntax associated with the CREATE TABLE
statement. Moreover, the ALTER TABLE statement takes up another 90-plus pages of details related to table
maintenance. For most situations, you typically need to use only a fraction of the table options available.

Listed next are the general factors you should consider when creating a table:

Type of table (heap organized, temporary, index organized, partitioned, and so on)•	

Naming conventions•	

Column data types and sizes•	

Constraints (primary key, foreign keys, and so on)•	

Chapter 7 ■ tabLes anD COnstraints

161

Index requirements (see Chapter 8 for details)•	

Initial storage requirements•	

Special features (virtual columns, read-only, parallel, compression, no logging, invisible •	
columns, and so on)

Growth requirements•	

Tablespace(s) for the table and its indexes•	

Before you run a CREATE TABLE statement, you need to give some thought to each item in the previous list.
To that end, DBAs often use data modeling tools to help manage the creation of DDL scripts that are used to make
database objects. Data modeling tools allow you to define visually tables and relationships and the underlying
database features.

Creating a Heap-Organized Table
You use the CREATE TABLE statement to create tables. When creating a table, at minimum you must specify the table
name, column name(s), and data types and lengths associated with the columns. The Oracle default table type is heap
organized. The term heap means that the data aren’t stored in a specific order in the table (instead, they’re a heap of
data). Here is a simple example of creating a heap-organized table:

CREATE TABLE dept
(deptno NUMBER(10)
,dname VARCHAR2(14 CHAR)
,loc VARCHAR2(14 CHAR));

If you don’t specify a tablespace, then the table is created in the default permanent tablespace of the user that
creates the table. Allowing the table to be created in the default permanent tablespace is fine for a few small test
tables. For anything more sophisticated, you should explicitly specify the tablespace in which you want tables created.
For reference (in future examples), here are the creation scripts for two sample tablespaces: HR_DATA and HR_INDEX:

CREATE TABLESPACE hr_data
 DATAFILE '/u01/dbfile/O12C/hr_data01.dbf' SIZE 1000m
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;
--
CREATE TABLESPACE hr_index
 DATAFILE '/u01/dbfile/O12C/hr_index01.dbf' SIZE 100m
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

Usually, when you create a table, you should also specify constraints, such as the primary key. The following
code shows the most common features you use when creating a table. This DDL defines primary keys, foreign keys,
tablespace information, and comments:

CREATE TABLE dept
(deptno NUMBER(10)
,dname VARCHAR2(14 CHAR)
,loc VARCHAR2(14 CHAR)
,CONSTRAINT dept_pk PRIMARY KEY (deptno)
 USING INDEX TABLESPACE hr_index
) TABLESPACE hr_data;

Chapter 7 ■ tabLes anD COnstraints

162

--
COMMENT ON TABLE dept IS 'Department table';
--
CREATE UNIQUE INDEX dept_uk1 ON dept(dname)
TABLESPACE hr_index;
--
CREATE TABLE emp
(empno NUMBER(10)
,ename VARCHAR2(10 CHAR)
,job VARCHAR2(9 CHAR)
,mgr NUMBER(4)
,hiredate DATE
,sal NUMBER(7,2)
,comm NUMBER(7,2)
,deptno NUMBER(10)
,CONSTRAINT emp_pk PRIMARY KEY (empno)
 USING INDEX TABLESPACE hr_index
) TABLESPACE hr_data;
--
COMMENT ON TABLE emp IS 'Employee table';
--
ALTER TABLE emp ADD CONSTRAINT emp_fk1
FOREIGN KEY (deptno)
REFERENCES dept(deptno);
--
CREATE INDEX emp_fk1 ON emp(deptno)
TABLESPACE hr_index;

When creating a table, I usually don’t specify table-level physical space properties. If you don’t specify table-level
space properties, then the table inherits its space properties from the tablespace in which it’s created. This simplifies
administration and maintenance. If you have tables that require different physical space properties, then you can
create separate tablespaces to hold tables with differing needs. For instance, you might create a HR_DATA_LARGE
tablespace with extent sizes of 16MB and a HR_DATA_SMALL tablespace with extent sizes of 128KB and choose where a
table is created based on its storage requirements. See Chapter 4 for details regarding the creation of tablespaces.

Table 7-2 lists some guidelines to consider when creating tables. These aren’t hard-and-fast rules; adapt them as
needed for your environment. Some of these guidelines may seem like obvious suggestions. However, after inheriting
many databases over the years, I’ve seen each of these recommendations violated in some way that makes database
maintenance difficult and unwieldy.

Table 7-2. Guidelines to Consider When Creating Tables

Recommendation Reasoning

Use standards when naming tables, columns, constraints,
triggers, indexes, and so on.

Helps document the application and simplifies
maintenance

If a column always contains numeric data, make it a
number data type.

Enforces a business rule and allows for the greatest
flexibility, performance, and consistency when using
Oracle SQL math functions (which may behave
differently for a “01” character versus a “1” number)

(continued)

Chapter 7 ■ tabLes anD COnstraints

163

Recommendation Reasoning

If you have a business rule that defines the length and
precision of a number field, then enforce it; for example,
NUMBER(7,2). If you don’t have a business rule, make it
NUMBER(38).

Enforces a business rule and keeps the data cleaner

For character data that are of variable length, use
VARCHAR2 (and not VARCHAR).

Follows Oracle’s recommendation of using VARCHAR2
for character data (instead of VARCHAR). The Oracle
documentation states that in the future, VARCHAR will be
redefined as a separate data type.

For character data, specify the size in CHAR; for example,
VARCHAR(30 CHAR).

When working with multibyte data, you’ll get more
predictable results, as multibyte characters are usually
stored in more than1B.

If you have a business rule that specifies the maximum
length of a column, then use that length, as opposed to
making all columns VARCHAR2(4000).

Enforces a business rule and keeps the data cleaner

Use DATE and TIMESTAMP data types appropriately. Enforces a business rule, ensures that the data are of the
appropriate format, and allows for the greatest flexibility
when using SQL date functions

Specify a separate tablespace for the table and indexes.
Let the table and indexes inherit storage attributes from
the tablespaces.

Simplifies administration and maintenance

Most tables should be created with a primary key. Enforces a business rule and allows you to uniquely
identify each row

Create a numeric surrogate key to be the primary key for
each table. Populate the surrogate key from a sequence.

Makes joins easier and more efficient

Create primary key constraints out of line. Allows you more flexibility when creating the primary
key, especially if you have a situation in which the
primary key consists of multiple columns

Create a unique key for the logical user—a recognizable
combination of columns that makes a row one of a kind.

Enforces a business rule and keeps the data cleaner

Create comments for the tables and columns. Helps document the application and eases maintenance

Avoid LOB data types if possible. Prevents maintenance issues associated with LOB
columns, such as unexpected growth and performance
issues when copying.

If a column should always have a value, then enforce it
with a NOT NULL constraint.

Enforces a business rule and keeps the data cleaner

Create audit-type columns, such as CREATE_DTT and
UPDATE_DTT, that are automatically populated with default
values or triggers, or both.

Helps with maintenance and determining when data
were inserted or updated, or both. Other types of audit
columns to consider include the users that inserted and
updated the row.

Use check constraints where appropriate. Enforces a business rule and keeps the data cleaner

Define foreign keys where appropriate. Enforces a business rule and keeps the data cleaner

Table 7-2. (continued)

Chapter 7 ■ tabLes anD COnstraints

164

Implementing Virtual Columns
With Oracle Database 11g and higher, you can create a virtual column as part of your table definition. A virtual
column is based on one or more existing columns from the same table or a combination of constants, SQL functions,
and user-defined PL/SQL functions, or both. Virtual columns aren’t stored on disk; they’re evaluated at runtime,
when the SQL query executes. Virtual columns can be indexed and can have stored statistics.

Prior to Oracle Database 11g, you could simulate a virtual column via a SELECT statement or in a view definition.
For example, this next SQL SELECT statement generates a virtual value when the query is executed:

select inv_id, inv_count,
 case when inv_count <= 100 then 'GETTING LOW'
 when inv_count > 100 then 'OKAY'
 end
from inv;

Why use a virtual column? The advantages of doing so are as follows:

You can create an index on a virtual column; internally, Oracle creates a function-based index.•	

You can store statistics in a virtual column that can be used by the cost-based optimizer •	
(CBO).

Virtual columns can be referenced in •	 WHERE clauses.

Virtual columns are permanently defined in the database; there is one central definition of •	
such a column.

Here is an example of creating a table with a virtual column:

create table inv(
 inv_id number
,inv_count number
,inv_status generated always as (
 case when inv_count <= 100 then 'GETTING LOW'
 when inv_count > 100 then 'OKAY'
 end)
);

In the prior code listing, specifying GENERATED ALWAYS is optional. For example, this listing is equivalent to the
previous one:

create table inv(
 inv_id number
,inv_count number
,inv_status as (
 case when inv_count <= 100 then 'GETTING LOW'
 when inv_count > 100 then 'OKAY'
 end)
);

I prefer to add GENERATED ALWAYS because it reinforces in my mind that the column is always virtual.
The GENERATED ALWAYS helps document inline what you’ve done. This aids in maintenance for other DBAs who
come along long after you.

Chapter 7 ■ tabLes anD COnstraints

165

To view values generated by virtual columns, first insert some data into the table:

SQL> insert into inv (inv_id, inv_count) values (1,100);

Next, select from the table to view the generated value:

SQL> select * from inv;

Here is some sample output:

 INV_ID INV_COUNT INV_STATUS
---------- ---------- -----------
 1 100 GETTING LOW

Note ■ if you insert data into the table, nothing is stored in a column set to GENERATED ALWAYS AS. the virtual value is
generated when you select from the table.

You can also alter a table to contain a virtual column:

alter table inv add(
inv_comm generated always as(inv_count * 0.1) virtual
);

And, you can change the definition of an existing virtual column:

alter table inv modify inv_status generated always as(
case when inv_count <= 50 then 'NEED MORE'
 when inv_count >50 and inv_count <=200 then 'GETTING LOW'
 when inv_count > 200 then 'OKAY'
end);

You can access virtual columns in SQL queries (DML or DDL). For instance, suppose you want to update a
permanent column based on the value in a virtual column:

SQL> update inv set inv_count=100 where inv_status='OKAY';

A virtual column itself can’t be updated via the SET clause of an UPDATE statement. However, you can reference a
virtual column in the WHERE clause of an UPDATE or DELETE statement.

Optionally, you can specify the data type of a virtual column. If you omit the data type, Oracle derives it from the
expression you use to define the virtual column.

Several caveats are associated with virtual columns:

You can only define a virtual column on a regular, heap-organized table. You can’t define a •	
virtual column on an index-organized table, an external table, a temporary table, object tables,
or cluster tables.

Virtual columns can’t reference other virtual columns.•	

Virtual columns can only reference columns from the table in which the virtual column is defined.•	

The output of a virtual column must be a scalar value (i.e., a single value, not a set of values).•	

Chapter 7 ■ tabLes anD COnstraints

166

To view the definition of a virtual column, use the DBMS_METADATA package to see the DDL associated with
the table. If you’re selecting from SQL*Plus, you need to set the LONG variable to a value large enough to show all
data returned:

SQL> set long 10000;
SQL> select dbms_metadata.get_ddl('TABLE','INV') from dual;

Here is a snippet of the output:

 CREATE TABLE "INV_MGMT"."INV"
 ("INV_ID" NUMBER,
 "INV_COUNT" NUMBER,
 "INV_STATUS" VARCHAR2(11) GENERATED ALWAYS AS (CASE WHEN "INV_COUNT"<=50 THEN
'NEED MORE' WHEN ("INV_COUNT">50 AND "INV_COUNT"<=200) THEN 'GETTING LOW' WHEN
"INV_COUNT">200 THEN 'OKAY' END) VIRTUAL ...

Implementing Invisible Columns
Starting with Oracle Database 12c, you can create invisible columns. When a column is invisible, it cannot be
viewed via

•	 DESCRIBE command

•	 SELECT * (to access all of a table’s columns)

•	 %ROWTYPE (in PL/SQL)

Describes within an Oracle Call Interface (OCI)•	

However, the column can be accessed if explicitly specified in a SELECT clause or referenced directly in a DML
statement (INSERT, UPDATE, DELETE, or MERGE). Invisible columns can also be indexed (just like visible columns).

The main use for an invisible column is to ensure that adding a column to a table won’t disrupt any of the
existing application code. If the application code doesn’t explicitly access the invisible column, then it appears to the
application as if the column doesn’t exist.

A table can be created with invisible columns, or a column can be added or altered so as to be invisible. A column
that is defined as invisible can also be altered so as to be visible. Here is an example of creating a table with an invisible
column:

create table inv
(inv_id number
,inv_desc varchar2(30 char)
,inv_profit number invisible);

Now, when the table is described, note that the invisible column is not displayed:

SQL> desc inv
 Name Null? Type
 --- -------- ----------------------------
 INV_ID NUMBER
 INV_DESC VARCHAR2(30 CHAR)

Chapter 7 ■ tabLes anD COnstraints

167

A column that has been defined as invisible is still accessible if you specify it directly in a SELECT statement or any
DML operations. For example, when selecting from a table, you can view the invisible column by specifying it in the
SELECT clause:

SQL> select inv_id, inv_desc, inv_profit from inv;

Note■ When you create a table that has invisible columns, at least one column must be visible.

Making Read-Only Tables
Starting with Oracle Database 11g, you can place individual tables in read-only mode. Doing so prevents any INSERT,
UPDATE, or DELETE statements from running against a table. In versions prior to Oracle Database 11g, the only way to
make a table read-only was to either place the entire database in read-only mode or place a tablespace in read-only
mode (making all tables in the tablespace read-only).

There are several reasons why you may require the read-only feature at the table level:

The data in the table are historical and should never be updated in normal circumstances.•	

You’re performing some maintenance on the table and want to ensure that it doesn’t change •	
while it’s being updated.

You want to drop the table, but before you do, you want to better determine if any users are •	
attempting to update the table.

Use the ALTER TABLE statement to place a table in read-only mode:

SQL> alter table inv read only;

You can verify the status of a read-only table by issuing the following query:

SQL> select table_name, read_only from user_tables where read_only='YES';

To modify a read-only table to read/write, issue the following SQL:

SQL> alter table inv read write;

Note■ the read-only table feature requires that the database initialization COMPATIBLE parameter be set to 11.1.0
or higher.

Understanding Deferred Segment Creation
Starting with Oracle Database 11g Release 2, when you create a table, the creation of the associated segment is
deferred until the first row is inserted into the table. This feature has some interesting implications. For instance, if you
have thousands of objects that you’re initially creating for an application (such as when you first install it), no space is
consumed by any of the tables (or associated indexes) until data are inserted into the application tables. This means
that the initial DDL runs more quickly when you create a table, but the first INSERT statement runs slightly slower.

Chapter 7 ■ tabLes anD COnstraints

168

To illustrate the concept of deferred segments, first create a table:

SQL> create table inv(inv_id number, inv_desc varchar2(30 CHAR));

You can verify that the table has been created by inspecting USER_TABLES:

select
 table_name
,segment_created
from user_tables
where table_name='INV';

Here is some sample output:

TABLE_NAME SEG
------------------------------ ---
INV NO

Next, query USER_SEGMENTS to verify that a segment hasn’t yet been allocated for the table:

select
 segment_name
,segment_type
,bytes
from user_segments
where segment_name='INV'
and segment_type='TABLE';

Here is the corresponding output for this example:

no rows selected

Now, insert a row into a table:

SQL> insert into inv values(1,'BOOK');

Rerun the query, selecting from USER_SEGMENTS, and note that a segment has been created:

SEGMENT_NAME SEGMENT_TYPE BYTES
--------------- ------------------ ----------
INV TABLE 65536

If you’re used to working with older versions of Oracle, the deferred–segment creation feature can cause
confusion. For example, if you have space-related monitoring reports that query DBA_SEGMENTS or DBA_EXTENTS,
be aware that these views aren’t populated for a table or any indexes associated with a table until the first row is
inserted into the table.

Note ■ You can disable the deferred–segment creation feature by setting the database initialization parameter
DEFERRED_SEGMENT_CREATION to FALSE. the default for this parameter is TRUE.

Chapter 7 ■ tabLes anD COnstraints

169

Creating a Table with an Autoincrementing (Identity) Column
Starting with Oracle Database 12c, you can define a column that is automatically populated and incremented when
inserting data. This feature is ideal for automatically populating primary key columns.

Tip ■ prior to Oracle Database 12c, you would have to create a sequence manually and then access the sequence
when inserting into the table. sometimes, Dbas would create triggers on tables to simulate an autoincrementing column
based on a sequence (see Chapter 9 for details).

You define an autoincrementing (identity) column with the GENERATED AS IDENTITY clause. This example
creates a table with primary key column that will be automatically populated and incremented:

create table inv(
 inv_id number generated as identity
,inv_desc varchar2(30 char));
--
alter table inv add constraint inv_pk primary key (inv_id);

Now, you can populate the table without having to specify the primary key value:

insert into inv (inv_desc) values ('Book');
insert into inv (inv_desc) values ('Table');

Selecting from the table shows that the INV_ID column has been automatically populated:

select * from inv;

Here is some sample output:

 INV_ID INV_DESC
---------- ------------------------------
 1 Book
 2 Table

When you create an identity column, Oracle automatically creates a sequence and associates the sequence with
the column. You can view the sequence information in USER_SEQUENCES:

SQL> select sequence_name, min_value, increment_by from user_sequences;

Here is some sample output for this example:

SEQUENCE_NAME MIN_VALUE INCREMENT_BY
-------------------- ---------- ------------
ISEQ$$_43216 1 1

Chapter 7 ■ tabLes anD COnstraints

170

You can identify identity columns via this query:

select table_name, identity_column
from user_tab_columns
where identity_column='YES';

When creating a table with an identity column (such as in the prior example), you can’t directly specify a value
for the identity column; for example, if you try this:

insert into inv values(3,'Chair');

you’ll receive an error:

ORA-32795: cannot insert into a generated always identity column

If, for some reason, you need to occasionally insert values into an identity column, then use the following syntax
when creating:

create table inv(
 inv_id number generated by default on null as identity
,inv_desc varchar2(30 char));

Because the underlying mechanism for populating an identity column is a sequence, you have some control
over how the sequence is created (just like you would if you manually created a sequence). For instance, you can
specify at what number to start the sequence and by how much the sequence increments each time. This example
specifies that the underlying sequence start at the number 50 and increment by two each time:

create table inv(
 inv_id number generated as identity (start with 50 increment by 2)
,inv_desc varchar2(30 char));

There are some caveats to be aware of when using autoincrementing (identity) columns:

Only one per table is allowed.•	

They must be numeric.•	

They can’t have default values.•	

•	 NOT NULL and NOT DEFERRABLE constraints are implicitly applied.

•	 CREATE TABLE ... AS SELECT will not inherit identity column properties.

Also keep in mind that after inserting into a column that is autoincremented, if you issue a rollback, the
transaction is rolled back, but not the autoincremented values from the sequence. This is the expected behavior of a
sequence. You can roll back such an insert, but the sequence values are used and gone.

Tip ■ see Chapter 9 for details on how to manage a sequence.

Chapter 7 ■ tabLes anD COnstraints

171

Where are aLL the p_0 prOCeSSeS COMING FrOM?

Allowing for Default Parallel SQL Execution
If you work with large tables, you may want to consider creating your tables as PARALLEL. This instructs Oracle to set
the degree of parallelism for queries and any subsequent INSERT, UPDATE, DELETE, MERGE, and query statements.
This example creates a table with a PARALLEL clause of 2:

create table inv
(inv_id number,
 inv_desc varchar2(30 char),
 create_dtt date default sysdate)
parallel 2;

You can specify PARALLEL, NOPARALLEL, or PARALLEL N. If you don’t specify N, Oracle sets the degree of parallelism
based on the PARALLEL_THREADS_PER_CPU initialization parameter. You can verify the degree of parallelism with this
query:

SQL> select table_name, degree from user_tables;

The main issue to be aware of here is that if a table has been created with a default degree of parallelism, any
subsequent queries will execute with parallel threads. You may wonder why a query or a DML statement is executing
in parallel (without explicitly invoking a parallel operation).

i once got a call from a production support person who reported that nobody could connect to the database
because of an ORA-00020 maximum number of processes error. i logged into the box and noted that there were
hundreds of ora_p parallel query processes running.

i had to kill some of the processes manually so that i could connect to the database. Upon further inspection,
i traced the parallel query sessions to an sQL statement and table. the table, in this case, had been created with
a default parallel degree of 64 (don’t ask me why), which in turn spawned hundreds of processes and sessions
when the table was queried. this maxed out the number of allowed connections to the database and caused the
issue. i resolved the problem by setting the table parallel setting to 1.

You can also alter a table to modify its default degree of parallelism:

SQL> alter table inv parallel 1;

Tip ■ Keep in mind that PARALLEL_THREADS_PER_CPU is platform dependent and can vary from a development
environment to a production environment. therefore, if you don’t specify the degree of parallelism, the behavior of parallel
operations can vary, depending on the environment.

Chapter 7 ■ tabLes anD COnstraints

172

Compressing Table Data
As your database grows, you may want to consider table level compression. Compressed data have the benefit of using
less disk space and less memory and reduced I/O. Queries that read compressed data potentially run faster because
there are fewer blocks to process. However, CPU usage increases as the data are compressed and uncompressed as
writes and reads occur, so there is a tradeoff.

Starting with Oracle Database 12c, there are four types of compression available:

Basic compression•	

Advanced row compression (in 11g this was referred to as OLTP compression)•	

Warehouse compression (hybrid columnar compression)•	

Archive compression (hybrid columnar compression)•	

Basic compression is enabled with the COMPRESS or COMPRESS BASIC clause (they are synonymous). This example
creates a table with basic compression:

create table inv
(inv_id number,
 inv_desc varchar2(300 char),
 create_dtt timestamp)
compress basic;

Basic compression provides compression as data are direct-path inserted into the table. By default, tables created
with COMPRESS BASIC have a PCTFREE setting of 0. You can override this by specifying PCTFREE when creating the table.

Note ■ basic compression requires the Oracle enterprise edition, but doesn’t require an extra license.

Advanced row compression is enabled with the ROW STORE COMPRESS ADVANCED (in 11g this was enabled with
COMPRESS FOR OLTP) clause:

create table inv
(inv_id number,
 inv_desc varchar2(300 char),
 create_dtt timestamp)
row store compress advanced;

Note ■ if you’re using Oracle Database 11g, then use the COMPRESS FOR OLTP clause instead of
ROW STORE COMPRESS ADVANCED.

Advanced row compression provides compression when initially inserting data into the table as well as in any
subsequent DML operations. You can verify the compression for a table via the following SELECT statement:

select table_name, compression, compress_for
from user_tables
where table_name='INV';

Chapter 7 ■ tabLes anD COnstraints

173

Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
INV ENABLED ADVANCED

Note ■ OLtp table compression is a feature of the Oracle advanced Compression option. this option requires an
 additional license from Oracle and is only available with the Oracle enterprise edition.

You can also create a tablespace with the compression clause. Any table created in that tablespace will inherit the
tablespace compression settings. For example, here is how to set the default level of compression for a tablespace:

CREATE TABLESPACE hr_data
 DEFAULT ROW STORE COMPRESS ADVANCED
 DATAFILE '/u01/dbfile/O12C/hr_data01.dbf' SIZE 100m
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 512k SEGMENT SPACE MANAGEMENT AUTO;

If you have a table that already exists, you can alter it to allow compression (either basic or advanced):

SQL> alter table inv row store compress advanced;

Note ■ Oracle does not support compression for tables with more than 255 columns.

Altering to allow compression doesn’t compress the existing data in the table. You’ll need to rebuild the table
with Data Pump or move the table to compress the data that were in it prior to enabling compression:

SQL> alter table inv move;

Note ■ if you move the table, then you’ll also need to rebuild any associated indexes.

You can disable compression via the NOCOMPRESS clause. This doesn’t affect existing data within the table. Rather,
it affects future inserts (basic and advanced row compression) and future DML (advanced row compression);
for example,

SQL> alter table inv nocompress;

Oracle also has a warehouse and archive hybrid columnar compression feature that is available when using
certain types of storage (such as Exadata). This type of compression is enabled with the COLUMN STORE COMPRESS FOR
QUERY LOW|HIGH or COLUMN STORE COMPRESS FOR ARCHIVE LOW|HIGH clause. For more details regarding this type of
compression, see the Oracle Technology Network web site (http://otn.oracle.com).

http://otn.oracle.com/

Chapter 7 ■ tabLes anD COnstraints

174

Avoiding Redo Creation
When you’re creating a table, you have the option of specifying the NOLOGGING clause. The NOLOGGING feature can
greatly reduce the amount of redo generation for certain types of operations. Sometimes, when you’re working with
large amounts of data, it’s desirable, for performance reasons, to reduce the redo generation when you initially create
and insert data into a table.

The downside to eliminating redo generation is that you can’t recover the data created via NOLOGGING in the
event a failure occurs after the data are loaded (and before you can back up the table). If you can tolerate some
risk of data loss, then use NOLOGGING, but back up the table soon after the data are loaded. If your data are critical,
then don’t use NOLOGGING. If your data can be easily recreated, then NOLOGGING is desirable when you’re trying to
improve performance of large data loads.

One perception is that NOLOGGING eliminates redo generation for the table for all DML operations. That isn’t
correct. The NOLOGGING feature never affects redo generation for normal DML statements (regular INSERT, UPDATE,
and DELETE).

The NOLOGGING feature can significantly reduce redo generation for the following types of operations:

SQL*Loader direct-path load•	

Direct-path •	 INSERT /*+ append */

•	 CREATE TABLE AS SELECT

•	 ALTER TABLE MOVE

Creating or rebuilding an index•	

You need to be aware of some quirks (features) when using NOLOGGING. If your database is in FORCE LOGGING
mode, then redo is generated for all operations, regardless of whether you specify NOLOGGING. Likewise, when you’re
loading a table, if the table has a referential foreign key constraint defined, then redo is generated regardless of
whether you specify NOLOGGING.

You can specify NOLOGGING at one of the following levels:

Statement•	

•	 CREATE TABLE or ALTER TABLE

•	 CREATE TABLESPACE or ALTER TABLESPACE

I prefer to specify the NOLOGGING clause at the statement or table level. In these scenarios it’s obvious to the DBA
executing the statement or DDL that NOLOGGING is used. If you specify NOLOGGING at the tablespace level, then each
DBA who creates objects within that tablespace must be aware of this tablespace-level setting. In teams with multiple
DBAs, it’s easy for one DBA to be unaware that another DBA has created a tablespace with NOLOGGING.

This example first creates a table with the NOLOGGING option:

create table inv(inv_id number)
tablespace users
nologging;

Next, do a direct-path insert with some test data, and commit the data:

insert /*+ append */ into inv select level from dual
connect by level <= 10000;
--
commit;

Chapter 7 ■ tabLes anD COnstraints

175

What happens if you have a media failure after you’ve populated a table in NOLOGGING mode (and before you’ve
made a backup of the table)? After a restore and recovery operation, it will appear that the table has been restored:

SQL> desc inv
Name Null? Type
--- -------- ----------------------------
INV_ID NUMBER

However, try to execute a query that scans every block in the table:

SQL> select * from inv;

Here, an error is thrown, indicating that there is logical corruption in the data file:

ORA-01578: ORACLE data block corrupted (file # 5, block # 203)
ORA-01110: data file 5: '/u01/dbfile/O12C/users01.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

In other words, the data are unrecoverable, because the redo doesn’t exist to restore them. Again, the NOLOGGING
option is suitable for large batch loading of data that can easily be reproduced in the event a failure occurs before a
backup of the database can be taken after a NOLOGGING operation.

If you specify a logging clause at the statement level, it overrides any table or tablespace setting. If you specify
a logging clause at the table level, it sets the default mode for any statements that don’t specify a logging clause and
overrides the logging setting at the tablespace. If you specify a logging clause at the tablespace level, it sets the default
logging for any CREATE TABLE statements that don’t specify a logging clause.

You verify the logging mode of the database as follows:

SQL> select name, log_mode, force_logging from v$database;

The next statement verifies the logging mode of a tablespace:

SQL> select tablespace_name, logging from dba_tablespaces;

And, this example verifies the logging mode of a table:

SQL> select owner, table_name, logging from dba_tables where logging = 'NO';

You can view the effects of NOLOGGING in a few different ways. One way is to enable autotracing with statistics and
view the redo size:

SQL> set autotrace trace statistics;

Then, run a direct-path INSERT statement, and view the redo size statistic:

insert /*+ append */ into inv select level from dual
connect by level <= 10000;

Here is a snippet of the output:

Statistics
--
 13772 redo size

Chapter 7 ■ tabLes anD COnstraints

176

With logging disabled, for direct-path operations, you should see a much smaller redo size number than with a
regular INSERT statement, such as,

insert into inv select level from dual
connect by level <= 10000;

Here is the partial output, indicating that the redo size is much greater:

Statistics
--
 159152 redo size

Another method for determining the effects of NOLOGGING is to measure the amount of redo generated for an
operation with logging enabled versus operating in NOLOGGING mode. If you have a development environment that you
can test in, you can monitor how often the redo logs switch while the operation is taking place. Another simple test is
to time how long the operation takes with and without logging. The operation performed in NOLOGGING mode should
be faster (because a minimal amount of redo is being generated).

Creating a Table from a Query
Sometimes. it’s convenient to create a table based on the definition of an existing table. For instance, say you want
to create a quick backup of a table before you modify the table’s structure or data. Use the CREATE TABLE AS SELECT
statement (CTAS) to achieve this; for example,

create table inv_backup
as select * from inv;

The previous statement creates an identical table, complete with data. If you don’t want the data included—you
just want the structure of the table replicated—then provide a WHERE clause that always evaluates to false (in this
example, 1 will never equal 2):

create table inv_empty
as select * from inv
where 1=2;

You can also specify that no redo be logged when a CTAS table is created. For large data sets, this can reduce the
amount of time required to create the table:

create table inv_backup
nologging
as select * from inv;

Be aware that using the CTAS technique with the NOLOGGING clause creates the table as NOLOGGING and doesn’t
generate the redo required to recover the data that populate the table as the result of the SELECT statement. Also,
if the tablespace (in which the CTAS table is being created) is defined as NOLOGGING, then no redo is generated.
In these scenarios, you can’t restore and recover your table in the event a failure occurs before you’re able to back
up the table. If your data are critical, then don’t use the NOLOGGING clause.

Chapter 7 ■ tabLes anD COnstraints

177

eNaBLING DDL LOGGING

You can also specify parallelism and storage parameters. Depending on the number of CPUs, you may see some
performance gains:

create table inv_backup
nologging
tablespace hr_data
parallel 2
as select * from inv;

Note■ the Ctas technique doesn’t create any indexes or triggers. You have to create indexes and triggers separately
if you need those objects from the original table.

Oracle allows you to enable the logging of DDL statements to a log file. this type of logging is switched on with
the ENABLE_DDL_LOGGING parameter (the default is FALSE). You can set this at the session or system level. this
feature provides you with an audit trail regarding which DDL statements have been issued and when they were
run. here is an example of setting this parameter at the system level:

SQL> alter system set enable_ddl_logging=true scope=both;

after this parameter is set to TRUE, DDL statements will be logged to a log file. Oracle doesn’t log every type of
DDL statement, only the most common ones to a log file. the exact location of the DDL logging file and number of
files vary by database version. in 11g the logging file is named log.xml. the location (directory path) of this file
can be determined via this query:

SQL> select value from v$diag_info where name='Diag Alert';
VALUE
--
/orahome/app/oracle/diag/rdbms/o11r2/O11R2/alert

You can search the log.xml file in the prior directory for any DDL statements issued after DDL logging has been
enabled.

in Oracle Database 12c there are multiple files that capture DDL logging. to find these files, first determine the
location of your diagnostic home directory:

SQL> select value from v$diag_info where name='ADR Home';
VALUE

/ora01/app/oracle/diag/rdbms/o12c/O12C

now, change your current working directory to the prior directory and the subdirectory of log; for example,

$ cd /ora01/app/oracle/diag/rdbms/o12c/O12C/log

Chapter 7 ■ tabLes anD COnstraints

178

Within this directory, there will be a file with the format ddl_<SID>.log. this contains a log of DDL statements
that have been issued after DDL logging has been enabled. You can also view DDL logging in the log.xml file.
this file is located in the ddl subdirectory beneath the previously mentioned log directory; for example,

$ cd /ora01/app/oracle/diag/rdbms/o12c/O12C/log/ddl

Once you navigate to the prior directory, you can view the log.xml file with an Os utility such as vi.

Modifying a Table
Altering a table is a common task. New requirements frequently mean that you need to rename, add, drop, or change
column data types. In development environments, changing a table can be a trivial task: you don’t often have
large quantities of data or hundreds of users simultaneously accessing a table. However, for active production
systems, you need to understand the ramifications of trying to change tables that are currently being accessed or that
are already populated with data, or both.

Obtaining the Needed Lock
When you modify a table, you must have an exclusive lock on the table. One issue is that if a DML transaction has a
lock on the table, you can’t alter it. In this situation, you receive this error:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

The prior error message is somewhat confusing in that it leads you to believe that you can resolve the problem by
acquiring a lock with NOWAIT. However, this is a generic message that is generated when the DDL you’re issuing can’t
obtain an exclusive lock on the table. In this situation, you have a few options:

After issuing the DDL command and receiving the •	 ORA-00054 error, rapidly press the forward
slash (/) key repeatedly in hopes of modifying the table between transactions.

Shut down the database and start it in restricted mode, modify the table, and then open the •	
database for normal use.

In Oracle Database 11g and higher, set the •	 DDL_LOCK_TIMEOUT parameter.

The last item in the previous list instructs Oracle to repeatedly attempt to run a DDL statement until it obtains
the required lock on the table. You can set the DDL_LOCK_TIMEOUT parameter at the system or session level. This next
example instructs Oracle to repeatedly try to obtain a lock for 100 seconds:

SQL> alter session set ddl_lock_timeout=100;

The default value for the system-level DDL_LOCK_TIMEOUT initialization parameter is 0. If you want to modify the
default behavior for every session in the system, issue an ALTER SYSTEM SET statement. The following command sets
the default time-out value to 10 seconds for the system:

SQL> alter system set ddl_lock_timeout=10 scope=both;

Chapter 7 ■ tabLes anD COnstraints

179

Renaming a Table
There are a couple of reasons for renaming a table:

Make the table conform to standards•	

Better determine whether the table is being used before you drop it•	

This example renames a table, from INV to INV_OLD:

SQL> rename inv to inv_old;

If successful, you should see this message:

Table renamed.

Adding a Column
Use the ALTER TABLE ... ADD statement to add a column to a table. This example adds a column to the INV table:

SQL> alter table inv add(inv_count number);

If successful, you should see this message:

Table altered.

Altering a Column
Occasionally, you need to alter a column to adjust its size or change its data type. Use the ALTER TABLE ... MODIFY
statement to adjust the size of a column. This example changes the size of a column to 256 characters:

SQL> alter table inv modify inv_desc varchar2(256 char);

If you decrease the size of a column, first ensure that no values exist that are greater than the decreased
size value:

SQL> select max(length(<column_name>)) from <table_name>;

When you change a column to NOT NULL, there must be a valid value for each column. First, verify that there are
no NULL values:

SQL> select <column_name> from <table_name> where <column_name> is null;

If any rows have a NULL value for the column you’re modifying to NOT NULL, then you must first update the
column to contain a value. Here is an example of modifying a column to NOT NULL:

SQL> alter table inv modify(inv_desc not null);

You can also alter the column to have a default value. The default value is used any time a record is inserted into
the table, but no value is provided for a column:

SQL> alter table inv modify(inv_desc default 'No Desc');

Chapter 7 ■ tabLes anD COnstraints

180

If you want to remove the default value of a column, then set it to NULL:

SQL> alter table inv modify(inv_desc default NULL);

Sometimes, you need to change a table’s data type; for example, a column that was originally incorrectly defined
as a VARCHAR2 needs to be changed to a NUMBER. Before you change a column’s data type, first verify that all values for
an existing column are valid numeric values. Here is a simple PL/SQL script to do this:

create or replace function isnum(v_in varchar2)
 return varchar is
 val_err exception;
 pragma exception_init(val_err, -6502); -- char to num conv. error
 scrub_num number;
begin
 scrub_num := to_number(v_in);
 return 'Y';
 exception when val_err then
 return 'N';
end;
/

You can use the ISNUM function to detect whether data in a column are numeric. The function defines a PL/SQL
pragma exception for the ORA-06502 character-to-number conversion error. When this error is encountered, the
exception handler captures it and returns an N. If the value passed in to the ISNUM function is a number, then a Y is
returned. If the value can’t be converted to a number, then an N is returned. Here is a simple example illustrating the
prior concepts:

SQL> create table stage(hold_col varchar2(30));
SQL> insert into stage values(1);
SQL> insert into stage values('x');
SQL> select hold_col from stage where isnum(hold_col)='N';

HOLD_COL

X

Similarly, when you modify a character column to a DATE or TIMESTAMP data type, it’s prudent to check first to see
whether the data can be successfully converted. Here is a function that does that:

create or replace function isdate(p_in varchar2, f_in varchar2)
return varchar is
scrub_dt date;
begin
scrub_dt := to_date(p_in, f_in);
return 'Y';
exception when others then
return 'N';
end;
/

Chapter 7 ■ tabLes anD COnstraints

181

When you call the ISDATE function, you need to pass it a valid date-format mask, such as YYYYMMDD. Here is a
simple example to demonstrate the prior concept:

SQL> create table stage2 (hold_col varchar2(30));
SQL> insert into stage2 values('20130103');
SQL> insert into stage2 values('03-JAN-13');
SQL> select hold_col from stage2 where isdate(hold_col,'YYYYMMDD')='N';

HOLD_COL

03-JAN-13

Renaming a Column
There are a couple of reasons to rename a column:

Sometimes, requirements change, and you may want to modify the column name to better •	
reflect what the column is used for.

If you’re planning to drop a column, it doesn’t hurt to rename the column first to better •	
determine whether any users or applications are accessing it.

Use the ALTER TABLE ... RENAME statement to rename a column:

SQL> alter table inv rename column inv_count to inv_amt;

Dropping a Column
Tables sometimes end up having columns that are never used. This may be because the initial requirements changed
or were inaccurate. If you have a table that contains an unused column, you should consider dropping it. If you leave
an unused column in a table, you may run into issues with future DBAs’ not knowing what the column is used for,
and the column can potentially consume space unnecessarily.

Before you drop a column, I recommend that you first rename it. Doing so gives you an opportunity to determine
whether any users or applications are using the column. After you’re confident the column isn’t being used, first make
a backup of the table, using Data Pump export, and then drop the column. These strategies provide you with options if
you drop a column and then subsequently realize that it’s needed.

To drop a column, use the ALTER TABLE ... DROP statement:

SQL> alter table inv drop (inv_name);

Be aware that the DROP operation may take some time if the table from which you’re removing the column
contains a large amount of data. This time lag may result in the delay of transactions while the table is being modified
(because the ALTER TABLE statement locks the table). In scenarios such as this, you may want to first mark the column
unused and then later drop it, when you have a maintenance window:

SQL> alter table inv set unused (inv_name);

When you mark a column unused, it no longer shows up in the table description. The SET UNUSED clause doesn’t incur
the overhead associated with dropping the column. This technique allows you to quickly stop the column from being seen
or used by SQL queries or applications. Any query that attempts to access an unused column receives the following error:

ORA-00904: ... invalid identifier

Chapter 7 ■ tabLes anD COnstraints

182

You can later drop any unused columns when you’ve scheduled some downtime for the application. Use the
DROP UNUSED clause to remove any columns marked UNUSED.

SQL> alter table inv drop unused columns;

Displaying Table DDL
Sometimes, DBAs do a poor job of documenting what DDL is used when creating or modifying a table. Normally,
you should maintain the database DDL code in a source control repository or in some sort of modeling tool. If your
shop doesn’t have the DDL source code, there are a few ways that you can manually reproduce DDL:

Query the data dictionary.•	

Use the •	 exp and imp utilities.

Use Data Pump.•	

Use the •	 DBMS_METADATA package.

Back in the olden days, say, version 7 and earlier, DBAs often wrote SQL that queried the data dictionary in an
attempt to extract the DDL required to recreate objects. Although this method was better than nothing, it was often
prone to errors because the SQL didn’t account for every object creation feature.

The exp and imp utilities are useful for generating DDL. The basic idea is that you export the object in question
and then use the imp utility with the SCRIPT or SHOW option to display the DDL. This is a good method, but you often
have to edit the output of the imp utility manually to produce the desired DDL.

The Data Pump utility is an excellent method for generating the DDL used to create database objects. Using Data
Pump to generate DDL is covered in detail in Chapter 13.

The GET_DDL function of the DBMS_METADATA package is usually the quickest way to display the DDL required to
create an object. This example shows how to generate the DDL for a table named INV:

SQL> set long 10000
SQL> select dbms_metadata.get_ddl('TABLE','INV') from dual;

Here is some sample output:

DBMS_METADATA.GET_DDL('TABLE','INV')

 CREATE TABLE "MV_MAINT"."INV"
 ("INV_ID" NUMBER,
 "INV_DESC" VARCHAR2(30 CHAR),
 "INV_COUNT" NUMBER
) SEGMENT CREATION DEFERRED
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 TABLESPACE "USERS"

The following SQL statement displays all the DDL for the tables in a schema:

select
dbms_metadata.get_ddl('TABLE',table_name)
from user_tables;

Chapter 7 ■ tabLes anD COnstraints

183

If you want to display the DDL for a table owned by another user, add the SCHEMA parameter to the GET_DDL
procedure:

select
dbms_metadata.get_ddl(object_type=>'TABLE', name=>'INV', schema=>'INV_APP')
from dual;

Note ■ You can display the DDL for almost any database object type, such as INDEX, FUNCTION, ROLE, PACKAGE,
MATERIALIZED VIEW, PROFILE, CONSTRAINT, SEQUENCE, and SYNONYM.

Dropping a Table
If you want to remove an object, such as a table, from a user, use the DROP TABLE statement. This example drops a
table named INV:

SQL> drop table inv;

You should see the following confirmation:

Table dropped.

If you attempt to drop a parent table that has a primary key or unique keys referenced as a foreign key in a child
table, you see an error such as

ORA-02449: unique/primary keys in table referenced by foreign keys

You need to either drop the referenced foreign key constraint(s) or use the CASCADE CONSTRAINTS option when
dropping the parent table:

SQL> drop table inv cascade constraints;

You must be the owner of the table or have the DROP ANY TABLE system privilege to drop a table. If you have
the DROP ANY TABLE privilege, you can drop a table in a different schema by prepending the schema name to the
table name:

SQL> drop table inv_mgmt.inv;

If you don’t prepend the table name to a user name, Oracle assumes you’re dropping a table in your current
schema.

Tip ■ if you’re using Oracle Database 10g or higher, keep in mind that you can flash back a table to before drop for an
accidentally dropped table.

Chapter 7 ■ tabLes anD COnstraints

184

Undropping a Table
Suppose you accidentally drop a table, and you want to restore it. First, verify that the table you want to restore is in
the recycle bin:

SQL> show recyclebin;

Here is some sample output:

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
INV BIN$0F27WtJGbXngQ4TQTwq5Hw==$0 TABLE 2012-12-08:12:56:45

Next, use the FLASHBACK TABLE...TO BEFORE DROP statement to recover the dropped table:

SQL> flashback table inv to before drop;

Note ■ You can’t use the FLASHBACK TABLE...TO BEFORE DROP statement for a table created in the SYSTEM
 tablespace.

In Oracle Database 10g and higher, when you issue a DROP TABLE statement (without PURGE), the table is actually
renamed (to a name that starts with BIN$) and placed in the recycle bin. The recycle bin is a mechanism that allows
you to view some of the metadata associated with a dropped object. You can view complete metadata regarding
renamed objects by querying DBA_SEGMENTS:

select
 owner
,segment_name
,segment_type
,tablespace_name
from dba_segments
where segment_name like 'BIN$%';

The FLASHBACK TABLE statement simply renames the table its original name. By default, the RECYCLEBIN feature
is enabled in Oracle Database 10g and higher. You can change the default by setting the RECYCLEBIN initialization
parameter to OFF.

I recommend that you not disable the RECYCLEBIN feature. It’s safer to leave this feature enabled and purge
the RECYCLEBIN to remove objects that you want permanently deleted. This means that the space associated with a
dropped table isn’t released until you purge your RECYCLEBIN. If you want to purge the entire contents of the currently
connected user’s recycle bin, use the PURGE RECYCLEBIN statement:

SQL> purge recyclebin;

If you want to purge the recycle bin for all users in the database, then do the following, as a DBA-privileged user:

SQL> purge dba_recyclebin;

Chapter 7 ■ tabLes anD COnstraints

185

If you want to bypass the RECYCLEBIN feature and permanently drop a table, use the PURGE option of the
DROP TABLE statement:

SQL> drop table inv purge;

You can’t use the FLASHBACK TABLE statement to retrieve a table dropped with the PURGE option. All space used by
the table is released, and any associated indexes and triggers are also dropped.

Removing Data from a Table
You can use either the DELETE statement or the TRUNCATE statement to remove records from a table. You need to be
aware of some important differences between these two approaches. Table 7-3 summarizes the attributes of the
DELETE and TRUNCATE statements.

Table 7-3. Features of DELETE and TRUNCATE

DELETE TRUNCATE

Choice of COMMIT or ROLLBACK YES NO

Generates undo YES NO

Resets the high-water mark to 0 NO YES

Affected by referenced and enabled foreign key constraints NO YES

Performs well with large amounts of data NO YES

Using DELETE
One big difference is that the DELETE statement can be either committed or rolled back. Committing a DELETE
statement makes the changes permanent:

SQL> delete from inv;
SQL> commit;

If you issue a ROLLBACK statement instead of COMMIT, the table contains data as they were before the DELETE
was issued.

Using TRUNCATE
TRUNCATE is a DDL statement. This means that Oracle automatically commits the statement (and the current
transaction) after it runs, so there is no way to roll back a TRUNCATE statement. If you need the option of choosing
to roll back (instead of committing) when removing data, then you should use the DELETE statement. However, the
DELETE statement has the disadvantage of generating a great deal of undo and redo information. Thus, for large tables,
a TRUNCATE statement is usually the most efficient way to remove data.

This example uses a TRUNCATE statement to remove all data from the COMPUTER_SYSTEMS table:

SQL> truncate table computer_systems;

Chapter 7 ■ tabLes anD COnstraints

186

By default, Oracle deallocates all space used for the table, except the space defined by the MINEXTENTS table-storage
parameter. If you don’t want the TRUNCATE statement to deallocate the extents, use the REUSE STORAGE parameter:

SQL> truncate table computer_systems reuse storage;

The TRUNCATE statement sets the high-water mark of a table back to 0. When you use a DELETE statement to
remove data from a table, the high-water mark doesn’t change. One advantage of using a TRUNCATE statement and
resetting the high-water mark is that full table scans only search for rows in blocks below the high-water mark.
This can have significant performance implications.

You can’t truncate a table that has a primary key defined that is referenced by an enabled foreign key constraint
in a child table—even if the child table contains zero rows. Oracle prevents you from doing this because in a multiuser
system, there is the possibility that another session can populate the child table with rows in between the time you
truncate the child table and the time you subsequently truncate the parent table. In this scenario, you must temporarily
disable the referenced foreign key constraints, issue the TRUNCATE statement, and then reenable the constraints.

Because a TRUNCATE statement is DDL, you can’t truncate two separate tables as one transaction. Compare
this behavior with that of DELETE. Oracle does allow you to use the DELETE statement to remove rows from a parent
table while the constraints are enabled that reference a child table. This is because DELETE generates undo, is read
consistent, and can be rolled back.

Note ■ another way to remove data from a table is to drop and recreate the table. however, this means that you also
have to recreate any indexes, constraints, grants, and triggers that belong to the table. additionally, when you drop a
table, it’s unavailable until you recreate it and reissue any required grants. Usually, dropping and recreating a table are
acceptable only in a development or test environment.

Viewing and Adjusting the High-Water Mark
Oracle defines the high-water mark of a table as the boundary between used and unused space in a segment.
When you create a table, Oracle allocates a number of extents to the table, defined by the MINEXTENTS table-storage
parameter. Each extent contains a number of blocks. Before data are inserted into the table, none of the blocks have
been used, and the high-water mark is 0.

As data are inserted into a table, and extents are allocated, the high-water mark boundary is raised. A DELETE
statement doesn’t reset the high-water mark.

You need to be aware of a couple of performance-related issues
regarding the high-water mark

SQL query full-table scans•	

Direct-path load-space usage•	

Oracle sometimes needs to scan every block of a table (under the high-water mark) when performing a query.
This is known as a full-table scan. If a significant amount of data have been deleted from a table, a full-table scan can
take a long time to complete, even for a table with zero rows.

Also, when doing direct-path loads, Oracle inserts data above the high-water mark line. Potentially, you can
end up with a large amount of unused space in a table that is regularly deleted from and that is also loaded via a
direct-path mechanism.

Chapter 7 ■ tabLes anD COnstraints

187

There are several methods for detecting space below the high-water mark:

Autotrace tool•	

•	 DBMS_SPACE package

Selecting from the data dictionary extents view•	

The autotrace tool offers a simple method for detecting high-water mark issues. Autotrace is advantageous
because it’s easy to use, and the output is simple to interpret.

You can use the DBMS_SPACE package to determine the high-water mark of objects created in tablespaces that
use autospace segment management. The DBMS_SPACE package allows you to check for high-water mark problems
programmatically. The downside to this approach is that the output is somewhat cryptic and sometimes difficult to
derive concrete answers from.

Selecting from DBA/ALL/USER_EXTENTS provides you with information such as the number of extents and bytes
consumed. This is a quick and easy way to detect high-water mark issues.

Tracing to Detect Space Below the High-Water Mark
You can run this simple test to detect whether you have an issue with unused space below the high-water mark:

1. SQL> set autotrace trace statistics.

2. Run the query that performs the full-table scan.

3. Compare the number of rows processed with the number of logical I/Os (memory and
disk accesses).

If the number of rows processed is low, but the number of logical I/Os is high, you may have an issue with the
number of free blocks below the high-water mark. Here is a simple example to illustrate this technique:

SQL> set autotrace trace statistics

The next query generates a full-table scan on the INV table:

SQL> select * from inv;

Here is a snippet of the output from AUTOTRACE:

no rows selected

Statistics
--
 4 recursive calls
 0 db block gets
 7371 consistent gets
 2311 physical reads

The number of rows returned is zero, yet there are 7,371consistent gets (memory accesses) and 2,311 physical
reads from disk, indicating free space beneath the high-water mark.

Next, truncate the table, and run the query again:

SQL> truncate table inv;
SQL> select * from inv;

Chapter 7 ■ tabLes anD COnstraints

188

Here is a partial listing from the output of AUTOTRACE:

no rows selected

Statistics
--
 6 recursive calls
 0 db block gets
 12 consistent gets
 0 physical reads

Note that the number of memory accesses and physical reads are now quite small.

Using DBMS_SPACE to Detect Space Below the High-Water Mark
You can use the DBMS_SPACE package to detect free blocks beneath the high-water mark. Here is an anonymous block
of PL/SQL that you can call from SQL*Plus:

set serverout on size 1000000
declare
 p_fs1_bytes number;
 p_fs2_bytes number;
 p_fs3_bytes number;
 p_fs4_bytes number;
 p_fs1_blocks number;
 p_fs2_blocks number;
 p_fs3_blocks number;
 p_fs4_blocks number;
 p_full_bytes number;
 p_full_blocks number;
 p_unformatted_bytes number;
 p_unformatted_blocks number;
begin
 dbms_space.space_usage(
 segment_owner => user,
 segment_name => 'INV',
 segment_type => 'TABLE',
 fs1_bytes => p_fs1_bytes,
 fs1_blocks => p_fs1_blocks,
 fs2_bytes => p_fs2_bytes,
 fs2_blocks => p_fs2_blocks,
 fs3_bytes => p_fs3_bytes,
 fs3_blocks => p_fs3_blocks,
 fs4_bytes => p_fs4_bytes,
 fs4_blocks => p_fs4_blocks,
 full_bytes => p_full_bytes,
 full_blocks => p_full_blocks,
 unformatted_blocks => p_unformatted_blocks,
 unformatted_bytes => p_unformatted_bytes
);

Chapter 7 ■ tabLes anD COnstraints

189

 dbms_output.put_line('FS1: blocks = '||p_fs1_blocks);
 dbms_output.put_line('FS2: blocks = '||p_fs2_blocks);
 dbms_output.put_line('FS3: blocks = '||p_fs3_blocks);
 dbms_output.put_line('FS4: blocks = '||p_fs4_blocks);
 dbms_output.put_line('Full blocks = '||p_full_blocks);
end;
/

In this scenario, you want to check the INV table for free space below the high-water mark. Here is the output of
the previous PL/SQL:

FS1: blocks = 0
FS2: blocks = 0
FS3: blocks = 0
FS4: blocks = 3646
Full blocks = 0

In the prior output the FS1 parameter shows that 0 blocks have 0 to 25 percent free space. The FS2 parameter
shows that 0 blocks have 25 to 50 percent free space. The FS3 parameter shows that 0 blocks have 50 to 75 percent
free space. The FS4 parameter shows there are 3,646 blocks with 75 to 100 percent free space. Finally, there are 0 full
blocks. Because there are no full blocks, and a large number of blocks are mostly empty, you can see that free space
exists below the high-water mark.

Selecting from Data Dictionary Extents View
You can also detect tables with high-water mark issues by selecting from DBA/ALL/USER_EXTENTS views. If a table has
a large number of extents allocated to it, but has zero rows, that’s an indication that an extensive amount of data have
been deleted from the table; for example,

SQL> select count(*) from user_extents where segment_name='INV';

 COUNT(*)

 44

Now, inspect the number of rows in the table:

SQL> select count(*) from inv;

 COUNT(*)

 0

The prior table most likely has had data inserted into it, which resulted in extents’ being allocated. And,
subsequently, data were deleted, and the extents remained.

Chapter 7 ■ tabLes anD COnstraints

190

Lowering the High-Water Mark
How can you reduce a table’s high-water mark? You can use several techniques to set the high-water mark back to0:

A •	 TRUNCATE statement

•	 ALTER TABLE ... SHRINK SPACE

•	 ALTER TABLE ... MOVE

Using the TRUNCATE statement was discussed earlier in this chapter (see the section “Using TRUNCATE”).
Shrinking a table and moving a table are discussed in the following sections.

Shrinking a Table
To readjust the high-water mark, you must enable row movement for the table and then use the
ALTER TABLE...SHRINK SPACE statement. The tablespace in which the table is created must have been built with
automatic segment space management enabled. You can determine the tablespace segment space management
type via this query:

SQL> select tablespace_name, segment_space_management from dba_tablespaces;

The SEGMENT_SPACE_MANAGEMENT value must be AUTO for the tablespace in which the table is created. Next,
you need to enable row movement for the table to be shrunk. This example enables row movement for the INV table:

SQL> alter table inv enable row movement;

Now, you can shrink the space used by the table:

SQL> alter table inv shrink space;

You can also shrink the space associated with any index segments via the CASCADE clause:

SQL> alter table inv shrink space cascade;

Moving a Table
Moving a table means either rebuilding the table in its current tablespace or building it in a different tablespace.
You may want to move a table because its current tablespace has disk space storage issues or because you want to
lower the table’s high-water mark.

Use the ALTER TABLE ... MOVE statement to move a table from one tablespace to another. This example moves
the INV table to the USERS tablespace:

SQL> alter table inv move tablespace users;

You can verify that the table has been moved by querying USER_TABLES:

SQL> select table_name, tablespace_name from user_tables where table_name='INV';

TABLE_NAME TABLESPACE_NAME
-------------------- ------------------------------
INV USERS

Chapter 7 ■ tabLes anD COnstraints

191

OraCLe rOWID

Note ■ the ALTER TABLE ... MOVE statement doesn’t allow DML to execute while it’s running.

You can also specify NOLOGGING when you move a table:

SQL> alter table inv move tablespace users nologging;

Moving a table with NOLOGGING eliminates most of the redo that would normally be generated when the table is
relocated. The downside to using NOLOGGING is that if a failure occurs immediately after the table is moved (and hence,
you don’t have a backup of the table after it’s moved), then you can’t restore the contents of the table. If the data in the
table are critical, then don’t use NOLOGGING when moving them.

When you move a table, all its indexes are rendered unusable. This is because a table’s index includes the ROWID
as part of the structure. The table ROWID contains information about the physical location. Given that the ROWID of
a table changes when the table moves from one tablespace to another (because the table rows are now physically
located in different data files), any indexes on the table contain incorrect information. To rebuild the index, use the
ALTER INDEX ... REBUILD command.

every row in every table has an address. the address of a row is determined from a combination of the following:

Datafile number
Block number
Location of the row within the block
Object number

You can display the address of a row in a table by querying the ROWID pseudocolumn; for example,

SQL> select rowid, emp_id from emp;

here is some sample output:

ROWID EMP_ID
------------------ ----------
AAAFJAAAFAAAAJfAAA 1

the ROWID pseudocolumn value isn’t physically stored in the database. Oracle calculates its value when you query
it. the ROWID contents are displayed as base 64 values that can contain the characters a–Z, a–z, 0–9, +, and /.
You can translate the ROWID value into meaningful information via the DMBS_ROWID package. For instance, to
display the relative file number in which a row is stored, issue this statement:

SQL> select dbms_rowid.rowid_relative_fno(rowid), emp_id from emp;

Chapter 7 ■ tabLes anD COnstraints

192

here is some sample output:

DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) EMP_ID
------------------------------------ ----------
 5 1

You can use the ROWID value in the SELECT and WHERE clauses of an sQL statement. in most cases, the ROWID
uniquely identifies a row. however, it’s possible to have rows in different tables that are stored in the same cluster
and that therefore contain rows with the same ROWID.

Creating a Temporary Table
Use the CREATE GLOBAL TEMPORARY TABLE statement to create a table that stores data only provisionally. You can
specify that the temporary table retain the data for a session or until a transaction commits. Use ON COMMIT PRESERVE
ROWS to specify that the data be deleted at the end of the user’s session. In this example, the rows will be retained until
the user either explicitly deletes the data or terminates the session:

create global temporary table today_regs
on commit preserve rows
as select * from f_registrations
where create_dtt > sysdate - 1;

Specify ON COMMIT DELETE ROWS to indicate that the data should be deleted at the end of the transaction.
The following example creates a temporary table named TEMP_OUTPUT and specifies that records should be deleted
at the end of each committed transaction:

create global temporary table temp_output(
 temp_row varchar2(30))
on commit delete rows;

Note ■ if you don’t specify a commit method for a global temporary table, then the default is ON COMMIT DELETE ROWS.

You can create a temporary table and grant other users access to it. However, a session can only view the data that
it inserts into a table. In other words, if two sessions are using the same temporary table, a session can’t select any data
inserted into the temporary table by a different session.

A global temporary table is useful for applications that need to briefly store data in a table structure. After
you create a temporary table, it exists until you drop it. In other words, the definition of the temporary table is
“permanent”—it’s the data that are short-lived (in this sense, the term temporary table can be misleading).

You can view whether a table is temporary by querying the TEMPORARY column of DBA/ALL/USER_TABLES:

SQL> select table_name, temporary from user_tables;

Temporary tables are designated with a Y in the TEMPORARY column. Regular tables contain an N in the
TEMPORARY column.

Chapter 7 ■ tabLes anD COnstraints

193

teMpOrarY taBLe reDO

When you create records in a temporary table, space is allocated in your default temporary tablespace. You can
verify this by running the following SQL:

SQL> select username, contents, segtype from v$sort_usage;

If you’re working with a large number of rows and need better performance for selectively retrieving rows,
you may want to consider creating an index on the appropriate columns in your temporary table:

SQL> create index temp_index on temp_output(temp_row);

Use the DROP TABLE command to drop a temporary table:

SQL> drop table temp_output;

no redo data are generated for changes to blocks of a global temporary table. however, rollback (undo) data are
generated for a transaction against a temporary table. because the rollback data generate redo, some redo data
are associated with a transaction for a temporary table. You can verify this by turning on statistics tracing and
viewing the redo size as you insert records into a temporary table:

SQL> set autotrace on

next, insert a few records into the temporary table:

SQL> insert into temp_output values(1);

here is a snippet of the output (only showing the redo size):

140 redo size

the redo load is less for temporary tables than normal tables because the redo generated is only associated with
the rollback (undo) data for a temporary table transaction.

additionally, starting with Oracle Database 12c, the undo for temporary objects is stored in the temporary
tablespace, not the undo tablespace.

Creating an Index-Organized Table
Index-organized tables (IOTs) are efficient objects when the table data are typically accessed through querying on the
primary key. Use the ORGANIZATION INDEX clause to create an IOT:

create table prod_sku
(prod_sku_id number,
sku varchar2(256),
create_dtt timestamp(5),
constraint prod_sku_pk primary key(prod_sku_id)
)

Chapter 7 ■ tabLes anD COnstraints

194

organization index
including sku
pctthreshold 30
tablespace inv_data
overflow
tablespace inv_data;

An IOT stores the entire contents of the table’s row in a B-tree index structure. IOTs provide fast access for queries
that have exact matches or range searches, or both, on the primary key.

All columns specified, up to and including the column specified in the INCLUDING clause, are stored in the same
block as the PROD_SKU_ID primary key column. In other words, the INCLUDING clause specifies the last column to keep
in the table segment. Columns listed after the column specified in the INCLUDING clause are stored in the overflow
data segment. In the previous example, the CREATE_DTT column is stored in the overflow segment.

PCTTHRESHOLD specifies the percentage of space reserved in the index block for the IOT row. This value can be
from 1 to 50 and defaults to 50 if no value is specified. There must be enough space in the index block to store the
primary key.

The OVERFLOW clause details which tablespace should be used to store overflow data segments. Note that
DBA/ALL/USER_TABLES includes an entry for the table name used when creating an IOT. Additionally,
DBA/ALL/USER_INDEXES contains a record with the name of the primary key constraint specified. The INDEX_TYPE
column contains a value of IOT - TOP for IOTs:

SQL> select index_name,table_name,index_type from user_indexes;

Managing Constraints
The next several sections in this chapter deal with constraints. Constraints provide a mechanism for ensuring that
data conform to certain business rules. You must be aware of what types of constraints are available and when it’s
appropriate to use them. Oracle offers several types of constraints:

Primary key•	

Unique key•	

Foreign key•	

Check•	

•	 NOT NULL

Implementing and managing these constraints are discussed in the following sections.

Creating Primary Key Constraints
When you implement a database, most tables you create require a primary key constraint to guarantee that every
record in the table can be uniquely identified. There are multiple techniques for adding a primary key constraint to a
table. The first example creates the primary key inline with the column definition:

create table dept(
 dept_id number primary key
,dept_desc varchar2(30));

Chapter 7 ■ tabLes anD COnstraints

195

If you select the CONSTRAINT_NAME from USER_CONSTRAINTS, note that Oracle generates a cryptic name for the
constraint (such as SYS_C003682). Use the following syntax to explicitly give a name to a primary key constraint:

create table dept(
dept_id number constraint dept_pk primary key using index tablespace users,
dept_desc varchar2(30));

Note ■ When you create a primary key constraint, Oracle also creates a unique index with the same name as the
 constraint. You can control which tablespace the unique index is placed in via the USING INDEX TABLESPACE clause.

You can also specify the primary key constraint definition after the columns have been defined. The advantage of
doing this is that you can define the constraint on multiple columns. The next example creates the primary key when
the table is created, but not inline with the column definition:

create table dept(
dept_id number,
dept_desc varchar2(30),
constraint dept_pk primary key (dept_id)
using index tablespace users);

If the table has already been created, and you want to add a primary key constraint, use the ALTER TABLE
statement. This example places a primary key constraint on the DEPT_ID column of the DEPT table:

alter table dept
add constraint dept_pk primary key (dept_id)
using index tablespace users;

When a primary key constraint is enabled, Oracle automatically creates a unique index associated with the
primary key constraint. Some DBAs prefer to first create a nonunique index on the primary key column and then
define the primary key constraint:

SQL> create index dept_pk on dept(dept_id) tablespace users;
SQL> alter table dept add constraint dept_pk primary key (dept_id);

The advantage of this approach is that you can drop or disable the primary key constraint independently of the
index. When you’re working with large data sets, you may want that sort of flexibility. If you don’t create the index
before creating the primary key constraint, then whenever you drop or disable the primary key constraint, the index is
automatically dropped.

Confused about which method to use to create a primary key? All the methods are valid and have their merits.
Table 7-4 summarizes the primary key and unique key constraint creation methods. I’ve used all these methods to
create primary key constraints. Usually, I use the ALTER TABLE statement, which adds the constraint after the table has
been created.

Chapter 7 ■ tabLes anD COnstraints

196

Enforcing Unique Key Values
In addition to creating a primary key constraint, you should create unique constraints on any combinations of
columns that should always be unique within a table. For example, for the primary key for a table, it’s common to use
a numeric key (sometimes called a surrogate key) that is populated via a sequence. Besides the surrogate primary key,
sometimes users have a column (or columns) that the business uses to uniquely identify a record (also called a logical
key). Using both a surrogate key and a logical key

lets you efficiently join parent and child tables on a single numeric column•	

allows updates to logical key columns without changing the surrogate key•	

A unique key guarantees uniqueness on the defined column(s) within a table. There are some subtle differences
between primary key and unique key constraints. For example, you can define only one primary key per table, but
there can be several unique keys. Also, a primary key doesn’t allow a NULL value in any of its columns, whereas a
unique key allows NULL values.

As with the primary key constraint, you can use several methods to create a unique column constraint. This
method uses the UNIQUE keyword inline with the column:

create table dept(
 dept_id number
,dept_desc varchar2(30) unique);

If you want to explicitly name the constraint, use the CONSTRAINT keyword:

create table dept(
 dept_id number
,dept_desc varchar2(30) constraint dept_desc_uk1 unique);

Table 7-4. Primary Key and Unique Key Constraint Creation Methods

Constraint Creation Method Advantages Disadvantages

Inline, no name Very simple Oracle-generated name makes
troubleshooting harder; less control
over storage attributes; only applied
to a single column

Inline, with name Simple; user-defined name makes
troubleshooting easier

Requires more thought than inline
without name

Inline, with name and
tablespace definition

User-defined name and tablespace;
makes troubleshooting easier

Less simple

After column definition
(out of line)

User-defined name and tablespace; can
operate on multiple columns

Less simple

ALTER TABLE add just
constraint

Lets you manage constraints in statements
(and files) separate from table creation scripts;
can operate on multiple columns

More complicated

CREATE INDEX, ALTER TABLE
add constraint

Separates the index and constraint, so you
can drop/disable constraints without affecting
the index; can operate on multiple columns

Most complicated: more to
maintain, more moving parts

Chapter 7 ■ tabLes anD COnstraints

197

As with primary keys, Oracle automatically creates an index associated with the unique key constraint. You can
specify inline the tablespace information to be used for the associated unique index:

create table dept(
 dept_id number
,dept_desc varchar2(30) constraint dept_desc_uk1
 unique using index tablespace users);

You can also alter a table to include a unique constraint:

alter table dept
add constraint dept_desc_uk1 unique (dept_desc)
using index tablespace users;

And you can create an index on the columns of interest before you define a unique key constraint:

SQL> create index dept_desc_uk1 on dept(dept_desc) tablespace users;
SQL> alter table dept add constraint dept_desc_uk1 unique(dept_desc);

This can be helpful when you’re working with large data sets, and you want to be able to disable or drop the
unique constraint without dropping the associated index.

Tip■ You can also enforce a unique key constraint with a unique index. see Chapter 8 for details on using unique
indexes to enforce unique constraints.

Creating Foreign Key Constraints
Foreign key constraints are used to ensure that a column value is contained within a defined list of values. Using a
foreign key constraint is an efficient way of enforcing that data be a predefined value before an insert or update is
allowed. This technique works well for the following scenarios:

The list of values contains many entries.•	

Other information about the lookup value needs to be stored.•	

It’s easy to select, insert, update, or delete values via SQL.•	

For example, suppose the EMP table is created with a DEPT_ID column. To ensure that each employee is assigned
a valid department, you can create a foreign key constraint that enforces the rule that each DEPT_ID in the EMP table
must exist in the DEPT table.

Tip■ if the condition you want to check for consists of a small list that doesn’t change very often, consider using a
check constraint instead of a foreign key constraint. For instance, if you have a column that will always be defined as
containing either a 0 or a 1, a check constraint is an efficient solution.

Chapter 7 ■ tabLes anD COnstraints

198

For reference, here’s how the parent table DEPT table was created for these examples:

create table dept(
dept_id number primary key,
dept_desc varchar2(30));

A foreign key must reference a column in the parent table that has a primary key or a unique key defined on it.
DEPT is the parent table and has a primary key defined on DEPT_ID.

You can use several methods to create a foreign key constraint. The following example creates a foreign key
constraint on the DEPT_ID column in the EMP table:

create table emp(
emp_id number,
name varchar2(30),
dept_id constraint emp_dept_fk references dept(dept_id));

Note that the DEPT_ID data type isn’t explicitly defined. The foreign key constraint derives the data type from the
referenced DEPT_ID column of the DEPT table. You can also explicitly specify the data type when you define a column
(regardless of the foreign key definition):

create table emp(
emp_id number,
name varchar2(30),
dept_id number constraint emp_dept_fk references dept(dept_id));

You can also specify the foreign key definition out of line from the column definition in the CREATE TABLE
statement:

create table emp(
emp_id number,
name varchar2(30),
dept_id number,
constraint emp_dept_fk foreign key (dept_id) references dept(dept_id)
);

And, you can alter an existing table to add a foreign key constraint:

alter table emp
add constraint emp_dept_fk foreign key (dept_id)
references dept(dept_id);

Note ■ Unlike with primary key and unique key constraints, Oracle doesn’t automatically add an index to foreign key
columns; you must explicitly create indexes on them. see Chapter 8 for a discussion on why it’s important to create
indexes on foreign key columns and how to detect foreign key columns that don’t have associated indexes.

Chapter 7 ■ tabLes anD COnstraints

199

Checking for Specific Data Conditions
A check constraint works well for lookups when you have a short list of fairly static values, such as a column that can
be either Y or N. In this situation the list of values most likely won’t change, and no information needs to be stored
other than Y or N, so a check constraint is the appropriate solution. If you have a long list of values that needs to be
periodically updated, then a table and a foreign key constraint are a better solution.

Also, a check constraint works well for a business rule that must always be enforced and that can be written with
a simple SQL expression. If you have sophisticated business logic that must be validated, then the application code is
more appropriate.

You can define a check constraint when you create a table. The following enforces the ST_FLG column to contain
either a 0 or 1:

create table emp(
emp_id number,
emp_name varchar2(30),
st_flg number(1) CHECK (st_flg in (0,1))
);

A slightly better method is to give the check constraint a name:

create table emp(
emp_id number,
emp_name varchar2(30),
st_flg number(1) constraint st_flg_chk CHECK (st_flg in (0,1))
);

A more descriptive way to name the constraint is to embed information in the constraint name that describes the
condition that was violated; for example,

create table emp(
emp_id number,
emp_name varchar2(30),
st_flg number(1) constraint "st_flg must be 0 or 1" check (st_flg in (0,1))
);

You can also alter an existing column to include a constraint. The column must not contain any values that
violate the constraint being enabled:

SQL> alter table emp add constraint
 "st_flg must be 0 or 1" check (st_flg in (0,1));

Note ■ the check constraint must evaluate to a true or unknown (NULL) value in the row being inserted or updated.
You can’t use subqueries or sequences in a check constraint. also, you can’t reference the sQL functions UID, USER,
SYSDATE, or USERENV or the pseudocolumns LeVeL or rOWnUM.

Chapter 7 ■ tabLes anD COnstraints

200

Enforcing Not Null Conditions
Another common condition to check for is whether a column is null; you use the NOT NULL constraint to do this.
The NOT NULL constraint can be defined in several ways. The simplest technique is shown here:

create table emp(
emp_id number,
emp_name varchar2(30) not null);

A slightly better approach is to give the NOT NULL constraint a name that makes sense to you:

create table emp(
emp_id number,
emp_name varchar2(30) constraint emp_name_nn not null);

Use the ALTER TABLE command if you need to modify a column for an existing table. For the following command
to work, there must not be any NULL values in the column being defined as NOT NULL:

SQL> alter table emp modify(emp_name not null);

Note ■ if there are currently NULL values in a column that is being defined as NOT NULL, you must first update the table
so that the column has a value in every row.

Disabling Constraints
One nice feature of Oracle is that you can disable and enable constraints without dropping and recreating them. This
means that you avoid having to know the DDL statements that would be required to recreate the dropped constraints.

Occasionally, you need to disable constraints. For example, you may be trying to truncate a table but receive the
following error message:

ORA-02266: unique/primary keys in table referenced by enabled foreign keys

Oracle doesn’t allow a truncate operation on a parent table with a primary key that is referenced by an enabled
foreign key in a child table. If you need to truncate a parent table, you first have to disable all the enabled foreign key
constraints that reference the parent table’s primary key. Run this query to determine the names of the constraints
that need to be disabled:

col primary_key_table form a18
col primary_key_constraint form a18
col fk_child_table form a18
col fk_child_table_constraint form a18
--
select
 b.table_name primary_key_table
,b.constraint_name primary_key_constraint
,a.table_name fk_child_table
,a.constraint_name fk_child_table_constraint
from dba_constraints a

Chapter 7 ■ tabLes anD COnstraints

201

,dba_constraints b
where a.r_constraint_name = b.constraint_name
and a.r_owner = b.owner
and a.constraint_type = 'R'
and b.owner = upper('&table_owner')
and b.table_name = upper('&pk_table_name');

For this example, there is only one foreign key dependency:

PRIMARY_KEY_TAB PRIMARY_KEY_CON FK_CHILD_TABLE FK_CHILD_TABLE_
--------------- --------------- --------------- ---------------
DEPT DEPT_PK EMP EMP_DEPT_FK

Use the ALTER TABLE statement to disable constraints on a table. In this case, there is only one foreign key to
disable:

SQL> alter table emp disable constraint emp_dept_fk;

You can now truncate the parent table:

SQL> truncate table dept;

Don’t forget to reenable the foreign key constraints after the truncate operation has completed, like this:

SQL> alter table emp enable constraint emp_dept_fk;

You can disable a primary key and all dependent foreign key constraints with the CASCADE option of the DISABLE
clause. For example, the next line of code disables all foreign key constraints related to the primary key constraint:

SQL> alter table dept disable constraint dept_pk cascade;

This statement doesn’t cascade through all levels of dependencies; it only disables the foreign key constraints
directly dependent on DEPT_PK. Also keep in mind that there is no ENABLE...CASCADE statement. To reenable the
constraints, you have to query the data dictionary to determine which constraints have been disabled and then
reenable them individually.

Sometimes, you run into situations, when loading data, in which it’s convenient to disable all the foreign keys
before loading the data (perhaps from a schema-level import, using the imp utility). In these situations the imp utility
imports the tables in alphabetical order and doesn’t ensure that child tables are imported before parent tables.
You may also want to run several import jobs in parallel to take advantage of parallel hardware. In such scenarios,
you can disable the foreign keys, perform the import, and then reenable the foreign keys.

Here is a script that uses SQL to generate SQL to disable all foreign key constraints for a user:

set lines 132 trimsp on head off feed off verify off echo off pagesize 0
spo dis_dyn.sql
select 'alter table ' || a.table_name
|| ' disable constraint ' || a.constraint_name || ';'
from dba_constraints a
,dba_constraints b
where a.r_constraint_name = b.constraint_name
and a.r_owner = b.owner

Chapter 7 ■ tabLes anD COnstraints

202

and a.constraint_type = 'R'
and b.owner = upper('&table_owner');
spo off;

This script generates a file, named dis_dyn.sql, that contains the SQL statements to disable all the foreign key
constraints for a user.

Enabling Constraints
This section contains a few scripts to help you enable constraints that you’ve disabled. Listed next is a script
that creates a file with the SQL statements required to reenable any foreign key constraints for tables owned by a
specified user:

set lines 132 trimsp on head off feed off verify off echo off pagesize 0
spo enable_dyn.sql
select 'alter table ' || a.table_name
|| ' enable constraint ' || a.constraint_name || ';'
from dba_constraints a
,dba_constraints b
where a.r_constraint_name = b.constraint_name
and a.r_owner = b.owner
and a.constraint_type = 'R'
and b.owner = upper('&table_owner');
spo off;

When enabling constraints, by default, Oracle checks to ensure that the data don’t violate the constraint
definition. If you’re fairly certain that the data integrity is fine and that you don’t need to incur the performance hit by
revalidating the constraint, you can use the NOVALIDATE clause when reenabling the constraints. Here is an example:

select 'alter table ' || a.table_name
|| ' modify constraint ' || a.constraint_name || ' enable novalidate;'
from dba_constraints a
,dba_constraints b
where a.r_constraint_name = b.constraint_name
and a.r_owner = b.owner
and a.constraint_type = 'R'
and b.owner = upper('&table_owner');

The NOVALIDATE clause instructs Oracle not to validate the constraints being enabled, but it does enforce that any
new DML activities adhere to the constraint definition.

In multiuser systems the possibility exists that another session has inserted data into the child table while the
foreign key constraint was disabled. If that happens, you see the following error when you attempt to reenable the
foreign key:

ORA-02298: cannot validate (<owner>.<constraint>) - parent keys not found

In this scenario, you can use the ENABLE NOVALIDATE clause:

SQL> alter table emp enable novalidate constraint emp_dept_fk;

Chapter 7 ■ tabLes anD COnstraints

203

To clean up the rows that violate the constraint, first ensure that you have an EXCEPTIONS table created in your
currently connected schema. If you don’t have an EXCEPTIONS table, use this script to create one:

SQL> @?/rdbms/admin/utlexcpt.sql

Next, populate the EXCEPTIONS table with the rows that violate the constraint, using the EXCEPTIONS INTO clause:

SQL> alter table emp modify constraint emp_dept_fk validate
exceptions into exceptions;

This statement still throws the ORA-02298 error as long as there are rows that violate the constraint. The
statement also inserts records into the EXCEPTIONS table for any bad rows. You can now use the ROW_ID column of the
EXCEPTIONS table to remove any records that violate the constraint.

Here, you see that one row needs to be removed from the EMP table:

SQL> select * from exceptions;

Here is some sample output:

ROW_ID OWNER TABLE_NAME CONSTRAINT
------------------ -------- ---------- --------------------
AAAFKQAABAAAK8JAAB MV_MAINT EMP EMP_DEPT_FK

To remove the offending record, issue a DELETE statement:

SQL> delete from emp where rowid = 'AAAFKQAABAAAK8JAAB';

If the EXCEPTIONS table contains many records, you can run a query such as the following to delete by OWNER and
TABLE_NAME:

delete from emp where rowid in
(select row_id
from exceptions
where owner=upper('&owner') and table_name = upper('&table_name'));

You may also run into situations in which you need to disable primary key or unique key constraints, or both.
For instance, you may want to perform a large data load and for performance reasons want to disable the primary key
and unique key constraints. You don’t want to incur the overhead of having every row checked as it’s inserted.

The same general techniques used for disabling foreign keys are applicable for disabling primary and unique
keys. Run this query to display the primary key and unique key constraints for a user:

select
a.table_name
,a.constraint_name
,a.constraint_type
from dba_constraints a
where a.owner = upper('&table_owner')
and a.constraint_type in ('P','U')
order by a.table_name;

Chapter 7 ■ tabLes anD COnstraints

204

When the table name and constraint name are identified, use the ALTER TABLE statement to disable the
constraint:

SQL> alter table dept disable constraint dept_pk;

Note ■ Oracle doesn’t let you disable a primary key or unique key constraint that is referenced in an enabled foreign
key constraint. You first have to disable the foreign key constraint.

Summary
This chapter focused on basic activities related to creating and maintaining tables. Tables are the containers that
store the data within the database. Key table management tasks include modifying, moving, deleting from, shrinking,
and dropping. You must also be familiar with how to implement and use special table types, such as temporary, IOT,
and read-only.

Oracle also provides various constraints to help you manage the data within tables. Constraints form the bedrock
of data integrity. In most cases, each table should include a primary key constraint that ensures that every row is
uniquely identifiable. Additionally, any parent–child relationships should be enforced with foreign key constraints.
You can use unique constraints to implement business rules that require a column or combination of columns to be
unique. Check and NOT NULL constraints ensure that columns contain business-specified data requirements.

After you create tables, the next logical activity is to create indexes where appropriate. Indexes are optional database
objects that help improve performance. Index creation and maintenance tasks are covered in the next chapter.

205

Chapter 8

Indexes

An index is an optionally created database object used primarily to increase query performance. The purpose of a database
index is similar to that of an index in the back of a book. A book index associates a topic with a page number. When you’re
locating information in a book, it’s usually much faster to examine the index first, find the topic of interest, and identify
associated page numbers. With this information, you can navigate directly to specific page numbers in the book.

If a topic only appears on a few pages within the book, then the number of pages to read is minimal. In this manner,
the usefulness of the index decreases with an increase in the number of times a topic appears in a book. In other
words, if a subject entry appears on every page of the book, there would be no benefit to creating an index on it. In this
scenario, regardless of the presence of an index, it would be more efficient for the reader to scan every page of the book.

Note ■ In database parlance, searching all blocks of a table is known as a full-table scan. Full-table scans occur when
there is no available index or when the query optimizer determines a full-table scan is a more efficient access path
than using an existing index.

Similar to a book index (topic and page number), a database index stores the column value of interest, along with
its row identifier (ROWID). The ROWID contains the physical location of the table row on disk that stores the column
value. With the ROWID in hand, Oracle can efficiently retrieve table data with a minimum of disk reads. In this way,
indexes function as a shortcut to the table data. If there is no available index, then Oracle reads each row in the table
to determine if the row contains the desired information.

Note ■ In addition to improving performance, Oracle uses indexes to help enforce enabled primary key and unique
key constraints. Additionally, Oracle can better manage certain table-locking scenarios when indexes are placed
on foreign key columns.

Whereas it’s possible to build a database application devoid of indexes, without them you’re almost guaranteeing
poor performance. Indexes allow for excellent scalability, even with very large data sets. If indexes are so important to
database performance, why not place them on all tables and column combinations? The answer is short: indexes are not
free. They consume disk space and system resources. As column values are modified, any corresponding indexes must
also be updated. In this way, indexes use storage, I/O, CPU, and memory resources. A poor choice of indexes leads to
wasted disk usage and excessive consumption of system resources. This results in a decrease in database performance.

For these reasons, when you design and build an Oracle database application, consideration must be given to
your indexing strategy. As an application architect, you must understand the physical properties of an index, what
types of indexes are available, and strategies for choosing which table and column combinations to index. A correct
indexing methodology is central to achieving maximum performance for your database.

ChApter 8 ■ Indexes

206

Deciding When to Create an Index
There are usually two different situations in which DBAs and developers decide to create indexes:

Proactively, when first deploying an application; the DBAs/developers make an educated •	
guess as to which tables and columns to index.

Reactively, when application performance bogs down, and users complain of poor •	
performance; then, the DBAs/developers attempt to identify slow-executing SQL queries and
how indexes might be a solution.

The prior two topics are discussed in the next two sections.

Proactively Creating Indexes
When creating a new database application, part of the process involves identifying primary keys, unique keys, and
foreign keys. The columns associated with those keys are usually candidates for indexes. Here are some guidelines:

Define a primary key constraint for each table. This results in an index automatically being •	
created on the columns specified in the primary key.

Create unique key constraints on columns that are required to be unique and that are different •	
from the primary key columns. Each unique key constraint results in an index automatically
being created on the columns specified in the constraint.

Manually create indexes on foreign key columns. This is done for better performance, to avoid •	
certain locking issues.

In other words, some of the decision process on what tables and columns to index is automatically done for you
when determining the table constraints. When creating primary and unique key constraints, Oracle automatically
creates indexes for you. There is some debate about whether or not to create indexes on foreign key columns. See the
section “Indexing Foreign Key Columns,” later in this chapter, for further discussion.

In addition to creating indexes related to constraints, if you have enough knowledge of the SQL contained within
the application, you can create indexes related to tables and columns referenced in SELECT, FROM, and WHERE clauses.
In my experience, DBAs and developers are not adept at proactively identifying such indexes. Rather, these indexing
requirements are usually identified reactively.

Reactively Creating Indexes
Rarely do DBAs and developers accurately create the right mix of indexes when first deploying an application.
And, that’s not a bad thing or unexpected; it’s hard to predict everything that occurs in a large database system.
Furthermore, as the application matures, changes are introduced to the database (new tables, new columns, new
constraints, database upgrades that add new features/behaviors, and so on). The reality is that you will have to react
to unforeseen situations in your database that warrant adding indexes to improve performance.

Here is a typical process for reactively identifying poorly performing SQL statements and improving performance
with indexes:

1. A poorly performing SQL statement is identified (a user complains about a specific
statement, the DBA runs automatic database diagnostic monitor (ADDM) or automatic
workload repository (AWR) reports to identify resource-consuming SQL, and so on).

2. DBA checks the table and index statistics to ensure that out-of-date statistics aren’t
causing the optimizer to make bad choices.

3. DBA/developer determines that the query can’t be rewritten in a way that alleviates
performance issues.

ChApter 8 ■ Indexes

207

4. DBA/developer examines the SQL statement and determines which tables and columns
are being accessed, by inspecting the SELECT, FROM, and WHERE clauses.

5. DBA/developer performs testing and recommends that an index be created, based on
a table and one or more columns.

Once you’ve identified a poorly performing SQL query, consider creating indexes for the following situations:

Create indexes on columns used often as predicates in the •	 WHERE clause; when multiple
columns from a table are used in the WHERE clause, consider using a concatenated
(multicolumn) index.

Create a covering index (i.e., an index on all columns) in the •	 SELECT clause.

Create indexes on columns used in the •	 ORDER BY, GROUP BY, UNION, and DISTINCT clauses.

Oracle allows you to create an index that contains more than one column. Multicolumn indexes are known as
concatenated indexes (also called composite indexes). These indexes are especially effective when you often use
multiple columns in the WHERE clause when accessing a table. Concatenated indexes are, in many instances, more
efficient in this situation than creating separate, single-column indexes (See the section “Creating Concatenated
Indexes,” later in this chapter, for more details).

Columns included in the SELECT and WHERE clauses are also potential candidates for indexes. Sometimes,
a covering index in a SELECT clause results in Oracle’s using the index structure itself (and not the table) to satisfy the
results of the query. Also, if the column values are selective enough, Oracle can use an index on columns referenced
in the WHERE clause to improve query performance.

Also consider creating indexes on columns used in the ORDER BY, GROUP BY, UNION, and DISTINCT clauses. This
may result in greater efficiency for queries that frequently use these SQL constructs.

It’s okay to have multiple indexes per table. However, the more indexes you place on a table, the slower DML
statements will run (as Oracle has more and more indexes to maintain when the table column values change). Don’t
fall into the trap of randomly adding indexes to a table until you stumble upon the right combination of indexed
columns. Rather, verify the performance of an index before you create it in a production environment.

Also keep in mind that it’s possible to add an index that increases the performance of one statement, while
hurting the performance of others. You must be sure that the statements that are improved warrant the penalty being
applied to other statements. You should only add an index when you’re certain it will improve performance.

Planning for Robustness
After you’ve decided that you need to create an index, it’s prudent to make a few foundational decisions that will affect
maintainability and availability. Oracle provides a wide assortment of indexing features and options. As a DBA or a
developer, you need to be aware of the various features and how to use them. If you choose the wrong type of index or
use a feature incorrectly, there may be serious, detrimental performance implications. Listed next are manageability
features to consider before you create an index:

Type of index•	

Initial space required and growth•	

Temporary tablespace usage while the index is being created (for large indexes)•	

Tablespace placement•	

Naming conventions•	

Which column(s) to include•	

Whether to use a single column or a combination of columns•	

Special features, such as the •	 PARALLEL clause, NOLOGGING, compression, and invisible indexes

ChApter 8 ■ Indexes

208

Uniqueness•	

Impact on performance of •	 SELECT statements (improvement)

Impact on performance of •	 INSERT, UPDATE, and DELETE statements

These topics are discussed in subsequent sections in this chapter.

Determining Which Type of Index to Use
Oracle provides a wide range of index types and features. The correct use of indexes results in a well-performing and
scalable database application. Conversely, if you incorrectly or unwisely implement a feature, there may be detrimental
performance implications. Table 8-1 summarizes the various Oracle index types available. At first glance, this is a long
list and may be somewhat overwhelming to somebody new to Oracle. However, deciding which index type to use isn’t
as daunting as it might initially seem. For most applications, you should simply use the default B-tree index type.

Table 8-1. Oracle Index Type and Usage Descriptions

Index Type Usage

B-tree Default index; good for columns with high cardinality (i.e., high degree of distinct values). Use a
normal B-tree index unless you have a concrete reason to use a different index type or feature.

IOT This index is efficient when most of the column values are included in the primary key. You
access the index as if it were a table. The data are stored in a B-tree-like structure. See Chapter 7
for details on this type of index.

Unique A form of B-tree index; used to enforce uniqueness in column values; often used with
primary key and unique key constraints but can be created independently of constraints.

Reverse key A form of B-tree index; useful for balancing I/O in an index that has many sequential inserts.

Key compressed Good for concatenated indexes in which the leading column is often repeated; compresses
leaf block entries; applies to B-tree and IOT indexes.

Descending A form of B-tree index; used with indexes in which corresponding column values are sorted
in a descending order (the default order is ascending). You can’t specify descending for a
reverse-key index, and Oracle ignores descending if the index type is bitmap.

Bitmap Excellent in data warehouse environments with low cardinality (i.e., low degree of distinct
values) columns and SQL statements using many AND or OR operators in the WHERE clause.
Bitmap indexes aren’t appropriate for OLTP databases in which rows are frequently updated.
You can’t create a unique bitmap index.

Bitmap join Useful in data warehouse environments for queries that use star schema structures that join
fact and dimension tables.

Function based Good for columns that have SQL functions applied to them; can be used with either a B-tree
or bitmap index.

Indexed virtual
column

An index defined on a virtual column (of a table); useful for columns that have SQL functions
applied to them; a viable alternative to a function-based index.

Virtual Allows you to create an index with no physical segment or extents via the NOSEGMENT clause
of CREATE INDEX; useful in tuning SQL without consuming resources required to build the
physical index. Any index type can be created as virtual.

(continued)

ChApter 8 ■ Indexes

209

Note ■ several of the index types listed in table 8-1 are actually just variations on the B-tree index. A reverse-key
index, for example, is merely a B-tree index optimized for evenly spreading I/O when the index value is sequentially
generated and inserted with similar values.

This chapter focuses on the most commonly used indexes and features—B-tree, function based, unique, bitmap,
reverse key, and key compressed—and the most used options. IOTs are covered in Chapter 7, and partitioned indexes are
covered in Chapter 12. If you need more information about index types or features, see the Oracle SQL Reference Guide,
which is available for download from the Technology Network area of the Oracle web site (http://otn.oracle.com).

Estimating the Size of an Index Before Creation
If you don’t work with large databases, then you don’t need to worry about estimating the amount of space an index
will initially consume. However, for large databases, you absolutely need an estimate on how much space it will take
to create an index. If you have a large table in a data warehouse environment, a corresponding index could easily be
hundreds of gigabytes in size. In this situation, you need to ensure that the database has adequate disk space available.

The best way to predict the size of an index is to create it in a test environment that has a representative set
of production data. If you can’t build a complete replica of production data, a subset of data can often be used to
extrapolate the size required in production. If you don’t have the luxury of using a cut of production data, you can
also estimate the size of an index using the DBMS_SPACE.CREATE_INDEX_COST procedure.

For reference, here is the table creation script that the index used in the subsequent examples is based on:

CREATE TABLE cust
(cust_id NUMBER
,last_name VARCHAR2(30)
,first_name VARCHAR2(30)
) TABLESPACE users;

Index Type Usage

Invisible The index is not visible to the query optimizer. However, the structure of the index is
maintained as table data are modified. Useful for testing an index before making it visible to
the application. Any index type can be created as invisible.

Global
partitioned

Global index across all partitions in a partitioned or regular table; can be a B-tree index type and
can’t be a bitmap index type.

Local
partitioned

Local index based on individual partitions in a partitioned table; can be either a B-tree or
bitmap index type.

Domain Specific for an application or cartridge.

B-tree cluster Used with clustered tables.

Hash cluster Used with hash clusters.

Table 8-1. (continued)

http://otn.oracle.com/

ChApter 8 ■ Indexes

210

Next, several thousand records are inserted into the prior table. Here is a snippet of the insert statements:

insert into cust values(7,'ACER','SCOTT');
insert into cust values(5,'STARK','JIM');
insert into cust values(3,'GREY','BOB');
insert into cust values(11,'KAHN','BRAD');
insert into cust values(21,'DEAN','ANN');
...

Now, suppose you want to create an index on the CUST table like this:

SQL> create index cust_idx1 on cust(last_name);

Here is the procedure for estimating the amount of space the index will initially consume:

SQL> set serverout on
SQL> exec dbms_stats.gather_table_stats(user,'CUST');
SQL> variable used_bytes number
SQL> variable alloc_bytes number
SQL> exec dbms_space.create_index_cost('create index cust_idx1 on cust(last_name)', -
 :used_bytes, :alloc_bytes);
SQL> print :used_bytes

Here is some sample output for this example:

USED_BYTES

 19800000

SQL> print :alloc_bytes

ALLOC_BYTES

 33554432

The used_bytes variable gives you an estimate of how much room is required for the index data. The alloc_bytes
variable provides an estimate of how much space will be allocated within the tablespace.

Next, go ahead and create the index.

SQL> create index cust_idx1 on cust(last_name);

The actual amount of space consumed is shown by this query:

SQL> select bytes from user_segments where segment_name='CUST_IDX1';

The output indicates that the estimated amount of allocated bytes is in the ballpark of the amount of space
actually consumed:

 BYTES

 34603008

ChApter 8 ■ Indexes

211

Your results may vary, depending on the number of records, the number of columns, the data types, and the
accuracy of statistics.

In addition to the initial sizing, keep in mind that the index will grow as records are inserted into the table. You’ll
have to monitor the space consumed by the index and ensure that there’s enough disk space to accommodate future
growth requirements.

CreatING INDeXeS aND teMpOrarY taBLeSpaCe SpaCe

related to space usage, sometimes dBAs forget that Oracle often requires space in either memory or disk to sort
an index as it’s created. If the available memory area is consumed, then Oracle allocates disk space as required
within the default temporary tablespace. If you’re creating a large index, you may need to increase the size of
your temporary tablespace.

Another approach is to create an additional temporary tablespace and then assign it to be the default temporary
tablespace of the user creating the index. After the index is created, you can drop the temporary tablespace (that
was created just for the new index) and reassign the user’s default temporary tablespace back to the original
temporary tablespace.

Creating Separate Tablespaces for Indexes
For critical applications, you must give some thought to how much space tables and indexes will consume and
how fast they grow. Space consumption and object growth have a direct impact on database availability. If you run
out of space, your database will become unavailable. The best way to manage space in the database is by creating
tablespaces tailored to space requirements and then creating objects in specified tablespaces that you’ve designed
for those objects. With that in mind, I recommend that you separate tables and indexes into different tablespaces.
Consider the following reasons:

Doing so allows for differing backup and recovery requirements. You may want the flexibility •	
of backing up the indexes at a different frequency than the tables. Or, you may choose not to
back up indexes because you know that you can recreate them.

If you let the table or index inherit its storage characteristics from the tablespace, when using •	
separate tablespaces, you can tailor storage attributes for objects created within the tablespace.
Tables and indexes often have different storage requirements (such as extent size and logging).

When running maintenance reports, it’s sometimes easier to manage tables and indexes when •	
the reports have sections separated by tablespace.

If these reasons are valid for your environment, it’s probably worth the extra effort to employ different tablespaces
for tables and indexes. If you don’t have any of the prior needs, then it’s fine to put tables and indexes together in the
same tablespace.

I should point out that DBAs often consider placing indexes in separate tablespaces for performance reasons.
If you have the luxury of creating a storage system from scratch and can set up mount points that have their own sets
of disks and controllers, you may see some I/O benefits from separating tables and indexes into different tablespaces.
Nowadays, storage administrators often give you a large slice of storage in a storage area network (SAN), and there’s
no way to guarantee that data and indexes will be stored physically, on separate disks (and controllers). Thus, you
typically don’t gain any performance benefits by separating tables and indexes into different tablespaces.

The following code shows an example of building separate tablespaces for tables and indexes. It creates locally
managed tablespaces, using a fixed extent size and automatic segment space management:

CREATE TABLESPACE reporting_data
 DATAFILE '/u01/dbfile/O12C/reporting_data01.dbf' SIZE 1G
 EXTENT MANAGEMENT LOCAL

ChApter 8 ■ Indexes

212

 UNIFORM SIZE 1M
 SEGMENT SPACE MANAGEMENT AUTO;
--
CREATE TABLESPACE reporting_index
 DATAFILE '/u01/dbfile/O12C/reporting_index01.dbf' SIZE 500M
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 128K
 SEGMENT SPACE MANAGEMENT AUTO;

I prefer to use uniform extent sizes because that ensures that all extents within the tablespace will be of the same
size, which reduces fragmentation as objects are created and dropped. The automatic segment space management
feature allows Oracle to manage automatically many storage attributes that previously had to be monitored and
maintained by the DBA manually.

Inheriting Storage Parameters from the Tablespace
When creating a table or an index, there are a few tablespace-related technical details to be aware of. For instance,
if you don’t specify storage parameters when creating tables and indexes, then they inherit storage parameters
from the tablespace. This is the desired behavior in most circumstances; it saves you from having to specify these
parameters manually. If you need to create an object with storage parameters different from those of its tablespace,
then you can do so within the CREATE TABLE/INDEX statement.

Also keep in mind that if you don’t explicitly specify a tablespace, by default, indexes are created in the default
permanent tablespace for the user. This is acceptable for development and test environments. For production
environments, you should consider explicitly naming tablespaces in the CREATE TABLE/INDEX statement.

Placing Indexes in Tablespaces, Based on Extent Size
If you know how large an index may initially be or what its growth requirements are, consider placing the index in
a tablespace that is appropriate in terms of the size of the tablespace and the size of the extents. I’ll sometimes create
two or more index tablespaces per application. Here is an example:

create tablespace inv_idx_small
 datafile '/u01/dbfile/O12C/inv_idx_small01.dbf' size 100m
 extent management local
 uniform size 128k
 segment space management auto;
--
create tablespace inv_idx_med
 datafile '/u01/dbfile/O12C/inv_idx_med01.dbf' size 1000m
 extent management local
 uniform size 4m
 segment space management auto;

Indexes that have small space and growth requirements are placed in the INV_IDX_SMALL tablespace, and indexes
that have medium storage requirements would be created in INV_IDX_MED. If you discover that an index is growing at
an unpredicted rate, consider dropping the index and recreating it in a different tablespace or rebuilding the index in
a more appropriate tablespace.

ChApter 8 ■ Indexes

213

Creating Portable Scripts
I oftentimes find myself working in multiple database environments, such as development, testing, and production.
Typically, I’ll create a tablespace first in development, then later in testing, and finally in production. Frequently, there
are aspects of the script that need to change as it is promoted through the environments. For instance, development
may need only 100MB of space, but production may need 10GB.

In these situations it’s handy to use ampersand variables to make the scripts somewhat portable among
environments. For example, this next script uses an ampersand variable at the top of the script to define the
tablespace size. The ampersand variable is then referenced within the CREATE TABLESPACE statement:

define reporting_index_size=100m
--
create tablespace reporting_index
 datafile '/u01/dbfile/O12C/reporting_index01.dbf' size &&reporting_index_size
 extent management local
 uniform size 128k
 segment space management auto;

If you’re only working with one tablespace, then there’s not much to gain from using the prior technique. But, if
you’re creating dozens of tablespaces within numerous environments, then it pays to build in the reusability. Keep in
mind that you can use ampersand variables anywhere within the script for any values you think may differ from one
environment to the next.

Establishing Naming Standards
When you’re creating and managing indexes, it’s highly desirable to develop some standards regarding naming.
Consider the following motives:

Diagnosing issues is simplified when error messages contain information that indicates the •	
table, index type, and so on.

Reports that display index information are more easily grouped and therefore are more •	
readable, making it easier to spot patterns and issues.

Given those needs, here are some sample index-naming guidelines:

Primary key index names should contain the table name and a suffix such as •	 _PK.

Unique key index names should contain the table name and a suffix such as •	 _UKN, where N is a
number.

Indexes on foreign key columns should contain the foreign key table and a suffix such as •	 _FKN,
where N is a number.

Indexes that aren’t used for constraints should contain the table name and a suffix such as •	
_IDXN, where N is a number.

Function-based index names should contain the table name and a suffix such as •	 _FNXN, where
N is a number.

Bitmap index names should contain the table name and a suffix such as •	 _BMXN, where N is
a number.

Some shops use prefixes when naming indexes. For example, a primary key index would be named PK_CUST
(instead of CUST_PK). All these various naming standards are valid.

ChApter 8 ■ Indexes

214

Tip ■ It doesn’t matter what the standard is, as long as everybody on the team follows the same standard.

Creating Indexes
As described previously, when you think about creating tables, you must think about the corresponding index
architecture. Creating the appropriate indexes and using the correct index features will usually result in dramatic
performance improvements. Conversely, creating indexes on the wrong columns or using features in the wrong
situations can cause dramatic performance degradation.

Having said that, after giving some thought to what kind of index you need, the next logical step is to create the
index. Creating indexes and implementing specific features are discussed in the next several sections.

Creating B-tree Indexes
The default index type in Oracle is a B-tree index. To create a B-tree index on an existing table, use the CREATE INDEX
statement. This example creates an index on the CUST table, specifying LAST_NAME as the column:

SQL> CREATE INDEX cust_idx1 ON cust(last_name);

By default, Oracle will create an index in your default permanent tablespace. Sometimes, that may be the desired
behavior. But often, for manageability reasons, you want to create the index in a specific tablespace. Use the following
syntax to instruct Oracle to build an index in a specific tablespace:

SQL> CREATE INDEX cust_idx1 ON cust(last_name) TABLESPACE reporting_index;

Tip ■ If you don’t specify any physical storage properties for an index, the index inherits its properties from the
tablespace in which it’s created. this is usually an acceptable method for managing index storage.

Because B-tree indexes are the default type and are used extensively with Oracle applications, it’s worth taking
some time to explain how this particular type of index works. A good way to understand the workings of an index
is to show its conceptual structure, along with its relationship with a table (an index can’t exist without a table). Take
a look at Figure 8-1; the top section illustrates the CUST table, with some data. The table data are stored in two separate
data files, and each data file contains two blocks. The bottom part of the diagram shows a balanced, treelike structure
of a B-tree index named CUST_IDX1, created on a LAST_NAME of the CUST table. The index is stored in one data file and
consists of four blocks.

ChApter 8 ■ Indexes

215

The index definition is associated with a table and column(s). The index structure stores a mapping of the table’s
ROWID and the column data on which the index is built. A ROWID usually uniquely identifies a row within a database
and contains information to physically locate a row (data file, block, and row position within block). The two dotted
lines in Figure 8-1 depict how the ROWID (in the index structure) points to the physical row in the table for the column
values of ACER.

The B-tree index has a hierarchical tree structure. When Oracle accesses the index, it starts with the top node,
called the root (or header) block. Oracle uses this block to determine which second-level block (also called a branch
block) to read next. The second-level block points to several third-level blocks (leaf nodes), which contain a ROWID
and the name value. In this structure it will take three I/O operations to find the ROWID. Once the ROWID is determined,
Oracle will use it to read the table block that contains the ROWID.

A couple of examples will help illustrate how an index works. Consider this query:

SQL> select last_name from cust where last_name = 'ACER';

Oracle accesses the index, first reading the root, block 20; then, determines that the branch block 30 needs
to be read; and, finally, reads the index values from the lead node block 39. Conceptually, that would be three
I/O operations. In this case, Oracle doesn’t need to read the table because the index contains sufficient information to
satisfy the result of the query. You can verify the access path of a query by using the autotrace utility; for example,

SQL> set autotrace trace explain;
SQL> select last_name from cust where last_name = 'ACER';

CUST
table

CUST_IDX1
B-tree index

datafile 22

datafile 10

block 11
7 ACER SCOTT
5 STARK JIM
3 GREY BOB
11 KAHN BRAD
21 DEAN ANN

block 500
27 COSTLY ROB
56 VOWLE KARI
38 WADE MIKE
28 MUTHE KIT
99 PINKER JOE

datafile 15

block 1000

100 VEE JAY
310 QUE DOE
211 HARDY MIKE
111 RAY JAKE
152 BOSE MIKE

block 2500

999 LEE ROB
567 WOE TAE
328 SCAY BILL
732 FENG JON
555 XIU BILL

block 20
root (header)

block 30
branch

block 44
branch

block 535
branch

block 643
branch

block 39
leaf node

block 332
leaf node

block 565
leaf node

block 909
leaf node

A-Z

A-F G-M N-T U-Z

ROWID: ACER

ROWID: BOSE
ROWID: COSTLY
ROWID: DEAN
ROWID: FENG

ROWID: GREY
ROWID: HARDY
ROWID: KAHN
ROWID: LEE
ROWID: MUTHE

ROWID: PINKER
ROWID: QUE
ROWID: RAY
ROWID: SCAY
ROWID: STARK

ROWID: VEE
ROWID: VOWLE
ROWID: WADE
ROWID: WOE
ROWID: XIU

274 ACER SID

ROWID: ACER

Figure 8-1. Oracle B-tree hierarchical index structure and associated table

ChApter 8 ■ Indexes

216

arBOrIStIC VIeWS

Note that only the index was accessed (and not the table) to return the data:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 6 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 1 | 6 | 1 (0)| 00:00:01 |
--

Also consider this query:

SQL> select first_name, last_name from cust where last_name = 'ACER';

Here, Oracle would follow the same index access path by reading blocks 20, 30, and 39. However, because the index
structure does not contain the FIRST_NAME value, Oracle must also use the ROWID to read the appropriate rows in the CUST
table (blocks 11 and 2500). Here is a snippet of the output from autotrace, indicating that the table has also been accessed:

| Id | Operation | Name | Rows | Bytes | Cost

| 0 | SELECT STATEMENT | | 1 | 44 | 2
| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| CUST | 1 | 44 | 2
|* 2 | INDEX RANGE SCAN | CUST_IDX1 | 1 | | 1

Also note at the bottom of Figure 8-1 the bidirectional arrows between the leaf nodes. This illustrates that the leaf
nodes are connected via a doubly linked list, thus making index range scans possible. For instance, suppose you have
this query:

SQL> select last_name from cust where last_name >= 'A' and last_name <= 'J';

To determine where to start the range scan, Oracle would read the root, block 20; then, the branch block 30; and,
finally, the leaf node block 39. Because the leaf node blocks are linked, Oracle can navigate forward as needed to find
all required blocks (and doesn’t have to navigate up and down through branch blocks). This is a very efficient traversal
mechanism for range scans.

Oracle provides two types of views containing details about the structure of B-tree indexes:

•	 INDEX_STATS

•	 DBA/ALL/USER_INDEXES

the INDEX_STATS view contains information regarding the HEIGHT (number of blocks from root to leaf blocks),
LF_ROWS (number of index entries), and so on. the INDEX_STATS view is only populated after you analyze the
structure of the index; for example,

 SQL> analyze index cust_idx1 validate structure;

the DBA/ALL/USER_INDEXES views contain statistics, such as BLEVEL (number of blocks from root to branch
blocks; this equals HEIGHT – 1); LEAF_BLOCKS (number of leaf blocks); and so on. the DBA/ALL/USER_INDEXES
views are populated automatically when the index is created and refreshed via the DBMS_STATS package.

ChApter 8 ■ Indexes

217

Creating Concatenated Indexes
Oracle allows you to create an index that contains more than one column. Multicolumn indexes are known as
concatenated indexes. These indexes are especially effective when you often use multiple columns in the WHERE
clause when accessing a table.

Suppose you have this scenario, in which two columns from the same table are used in the WHERE clause:

select first_name, last_name
from cust
where first_name = 'JIM'
and last_name = 'STARK';

Because both FIRST_NAME and LAST_NAME are often used in WHERE clauses for retrieving data, it may be efficient to
create a concatenated index on the two columns:

SQL> create index cust_idx2 on cust(first_name, last_name);

Often, it’s not clear whether a concatenated index is more efficient than a single-column index. For the previous
SQL statement, you may wonder whether it’s more efficient to create two single-column indexes on FIRST_NAME and
LAST_NAME, such as

SQL> create index cust_idx3 on cust(first_name);
SQL> create index cust_idx4 on cust(last_name);

In this scenario, if you’re consistently using the combination of columns that appear in the WHERE clause, then the
optimizer will most likely use the concatenated index and not the single-column indexes. Using a concatenated index,
in these situations, is usually much more efficient. You can verify that the optimizer chooses the concatenated index
by generating an explain plan; for example:

SQL> set autotrace trace explain;

Then, run this query:

select first_name, last_name
from cust
where first_name = 'JIM'
and last_name = 'STARK';

Here is some sample output, indicating that the optimizer uses the concatenated index on CUST_IDX2 to retrieve data:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 44 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX2 | 1 | 44 | 1 (0)| 00:00:01 |
--

In older versions of Oracle (circa version 8), the optimizer would use a concatenated index only if the leading-edge
column (or columns) appeared in the WHERE clause. In modern versions the optimizer can use a concatenated index
even if the leading-edge column (or columns) isn’t present in the WHERE clause. This ability to use an index without
reference to leading-edge columns is known as the skip-scan feature.

ChApter 8 ■ Indexes

218

A concatenated index that is used for skip scanning can, in certain situations, be more efficient than a full-table scan.
However, you should try to create concatenated indexes that use the leading column. If you’re consistently using only a
lagging-edge column of a concatenated index, then consider creating a single-column index on the lagging column.

prior to Oracle database 12c, you could not have multiple indexes defined on the exact same combination of
columns in one table. this has changed in 12c. You can now have multiple indexes on the same set of columns.
however, you can only do this if there is something physically different about the indexes, for example, one index
is created as a B-tree index, and the second, as a bitmap index.

Also, there can be only one visible index for the same combination of columns. Any other indexes created on that
same set of columns must be declared invisible; for example,

SQL> create index cust_idx2 on cust(first_name, last_name);
SQL> create bitmap index cust_bmx1 on cust(first_name, last_name) invisible;

prior to Oracle database 12c, if you attempted the previous operation, the second creation statement would throw
an error such as ORA-01408: such column list already indexed.

Why would you want two indexes defined on the same set of columns? You might want to do this if you originally
implemented B-tree indexes and now wanted to change them to bitmap—the idea being, you create the new
indexes as invisible, then drop the original indexes and make the new indexes visible. In a large database
environment this would enable you to make the change quickly.

Implementing Function-Based Indexes
Function-based indexes are created with SQL functions or expressions in their definitions. Sometimes, function-based
indexes are required when queries use SQL functions. For example, consider the following query, which uses an SQL
UPPER function:

SQL> select first_name from cust where UPPER(first_name) = 'JIM';

In this scenario there may be a normal B-tree index on the FIRST_NAME column, but Oracle won’t use a regular
index that exists on a column when a function is applied to it.

In this situation, you can create a function-based index to improve performance of queries that use an SQL
function in the WHERE clause. This example creates a function-based index:

SQL> create index cust_fnx1 on cust(upper(first_name));

Function-based indexes allow index lookups on columns referenced by functions in the WHERE clause of an SQL query.
The index can be as simple as the preceding example, or it can be based on complex logic stored in a PL/SQL function.

Note ■ Any user-created sQL functions must be declared deterministic before they can be used in a function-based
index. Deterministic means that for a given set of inputs, the function always returns the same results. You must use the
keyword DETERMINISTIC when creating a user-defined function that you want to use in a function-based index.

CreatING MULtIpLe INDeXeS ON the SaMe Set OF COLUMNS

ChApter 8 ■ Indexes

219

If you want to see the definition of a function-based index, select from the DBA/ALL/USER_IND_EXPRESSIONS
view to display the SQL associated with the index. If you’re using SQL*Plus, be sure to issue a SET LONG command
first; for example,

SQL> SET LONG 500
SQL> select index_name, column_expression from user_ind_expressions;

The SET LONG command in this example tells SQL*Plus to display up to 500 characters from the COLUMN_EXPRESSION
column, which is of type LONG.

Creating Unique Indexes
When you create a B-tree index, you can also specify that the index be unique. Doing so ensures that non-NULL values
are unique when you insert or update columns in a table.

Suppose you’ve identified a column (or combination of columns) in the table (outside the primary key) that is used
heavily in the WHERE clause. In addition, this column (or combination of columns) has the requirement that it be unique
within a table. This is a good scenario in which to use a unique index. Use the UNIQUE clause to create a unique index:

SQL> create unique index cust_uk1 on cust(first_name, last_name);

Note ■ the unique index doesn’t enforce uniqueness for NULL values inserted into the table. In other words, you can
insert the value NULL into the indexed column for multiple rows.

You must be aware of some interesting nuances regarding unique indexes, primary key constraints, and unique
key constraints (see Chapter 7 for a detailed discussion of primary key constraints and unique key constraints). When
you create a primary key constraint or a unique key constraint, Oracle automatically creates a unique index and a
corresponding constraint that is visible in DBA/ALL/USER_CONSTRAINTS.

When you only create a unique index explicitly (as in the example in this section), Oracle creates a unique index
but doesn’t add an entry for a constraint in DBA/ALL/USER_CONSTRAINTS. Why does this matter? Consider this scenario:

SQL> create unique index cust_uk1 on cust(first_name, last_name);
SQL> insert into cust values(500,'JOHN','DEERE');
SQL> insert into cust values(501,'JOHN','DEERE');

Here is the corresponding error message that is thrown:

ERROR at line 1:
ORA-00001: unique constraint (MV_MAINT.CUST_UK1) violated

If you’re asked to troubleshoot this issue, the first place you look is in DBA_CONSTRAINTS for a constraint named
CUST_IDX1. However, there is no information:

select constraint_name
from dba_constraints
where constraint_name='CUST_UK1';

Here is the output:

no rows selected

ChApter 8 ■ Indexes

220

The no rows selected message can be confusing: the error message thrown when you insert into the table
indicates that a unique constraint has been violated, yet there is no information in the constraint-related data
dictionary views. In this situation, you have to look at DBA_INDEXES and DBA_IND_COLUMNS to view the details of the
unique index that has been created:

select a.owner, a.index_name, a.uniqueness, b.column_name
from dba_indexes a, dba_ind_columns b
where a.index_name='CUST_UK1'
and a.table_owner = b.table_owner
and a.index_name = b.index_name;

If you want to have information related to the constraint in the DBA/ALL/USER_CONSTRAINTS views, you can
explicitly associate a constraint after the index has been created:

SQL> alter table cust add constraint cust_idx1 unique(first_name, last_name);

In this situation, you can enable and disable the constraint independent of the index. However, because the index
was created as unique, the index still enforces uniqueness regardless of whether the constraint has been disabled.

When should you explicitly create a unique index versus creating a constraint and having Oracle automatically
create the index? There are no hard-and-fast rules. I prefer to create a unique key constraint and let Oracle
automatically create the unique index, because then I get information in both the DBA/ALL/USER_CONSTRAINTS and
DBA/ALL/USER_INDEXES views.

But, Oracle’s documentation recommends that if you have a scenario in which you’re strictly using a unique
constraint to improve query performance, it’s preferable to create only the unique index. This is appropriate. If you take
this approach, just be aware that you may not find any information in the constraint-related data dictionary views.

Implementing Bitmap Indexes
Bitmap indexes are recommended for columns with a relatively low degree of distinct values (low cardinality). You
shouldn’t use bitmap indexes in OLTP databases with high INSERT/UPDATE/DELETE activities, owing to locking issues;
the structure of the bitmap index results in many rows’ potentially being locked during DML operations, which causes
locking problems for high-transaction OLTP systems.

Bitmap indexes are commonly used in data warehouse environments. A typical star schema structure consists of
a large fact table and many small dimension (lookup) tables. In these scenarios it’s common to create bitmap indexes
on fact table foreign key columns. The fact tables are typically inserted into on a daily basis and usually aren’t updated
or deleted from.

Listed next is a simple example that demonstrates the creation and structure of a bitmap index. First, create a
LOCATIONS table:

create table locations(
 location_id number
,region varchar2(10));

Now, insert the following rows into the table:

insert into locations values(1,'NORTH');
insert into locations values(2,'EAST');
insert into locations values(3,'NORTH');
insert into locations values(4,'WEST');
insert into locations values(5,'EAST');
insert into locations values(6,'NORTH');
insert into locations values(7,'NORTH');

ChApter 8 ■ Indexes

221

Table 8-2. Structure of the LOCATIONS_BMX1 Bitmap Index

Value/Row Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

EAST 0 1 0 0 1 0 0

NORTH 1 0 1 0 0 1 1

WEST 0 0 0 1 0 0 0

Table 8-3. Results of an OR Operation

Value/Row Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

EAST 0 1 0 0 1 0 0

WEST 0 0 0 1 0 0 0

Boolean OR on
EAST and WEST

0 1 0 1 1 0 0

You use the BITMAP keyword to create a bitmap index. The next line of code creates a bitmap index on the REGION
column of the LOCATIONS tsable:

SQL> create bitmap index locations_bmx1 on locations(region);

A bitmap index stores information about the ROWID of a row and a corresponding bitmap. You can think of the
bitmap as a combination of ones and zeros that point at multiple rows (this is quite different from a B-tree index, in
which one index entry points at one row). A 1 indicates the presence of a value, and a 0 indicates that the value doesn’t
exist. Table 8-2 shows the resulting structure of the bitmap index.

For each value of REGION (EAST, NORTH, WEST), an array of values is stored that indicates which rows contain a
value for a particular REGION. For instance, the EAST location has bit settings in row 2 and row 5 (meaning that the EAST
location is present for those two rows).

Bitmap indexes are effective at retrieving rows when multiple AND and OR conditions appear in the WHERE clause.
For example, to perform the task find all rows with a region of EAST or WEST, a Boolean algebra OR operation
is performed on the EAST and WEST bitmaps to quickly return rows 2, 4, and 5. The last row of Table 8-3 shows the OR
operation on the EAST and WEST bitmap.

Note ■ Bitmap indexes and bitmap join indexes are available only with the Oracle enterprise edition of the database.
Also, you can’t create a unique bitmap index.

Creating Bitmap Join Indexes
Bitmap join indexes store the results of a join between two tables in an index. Bitmap join indexes are beneficial
because they avoid joining tables to retrieve results. The syntax for a bitmap join index differs from that of a regular
bitmap index in that it contains FROM and WHERE clauses. Here is the basic syntax for creating a bitmap join index:

create bitmap index <index_name>
on <fact_table> (<dimension_table.dimension_column>)
from <fact_table>, <dimension_table>
where <fact_table>.<foreign_key_column> = <dimension_table>.<primary_key_column>;

ChApter 8 ■ Indexes

222

Bitmap join indexes are appropriate in situations in which you’re joining two tables, using the foreign key
column (or columns) in one table relating to the primary key column (or columns) in the other table. For example,
suppose you typically retrieve the FIRST_NAME and LAST_NAME from the CUST dimension table while joining to a large
F_SHIPMENTS fact table. This next example creates a bitmap join index between the F_SHIPMENTS and CUST tables:

create bitmap index f_shipments_bmx1
on f_shipments(cust.first_name, cust.last_name)
from f_shipments, cust
where f_shipments.cust_id = cust.cust_id;

Now, consider a query such as this:

select c.first_name, c.last_name
from f_shipments s, cust c
where s.cust_id = c.cust_id
and c.first_name = 'JIM'
and c.last_name = 'STARK';

The optimizer can choose to use the bitmap join index, thus avoiding the expense of having to join the tables.
For small amounts of data, the optimizer will most likely choose not to use the bitmap join index, but as the data in
the table grow, using the bitmap join index becomes more cost-effective than full-table scans or using other indexes.

Implementing Reverse-Key Indexes
Reverse-key indexes are similar to B-tree indexes, except that the bytes of the index key are reversed when an index entry
is created. For example, if the index values are 201, 202, and 203, the reverse-key index values are 102, 202, and 302:

Index value Reverse key value
------------- --------------------
201 102
202 202
203 302

Reverse-key indexes can perform better in scenarios in which you need a way to evenly distribute index data that
would otherwise have similar values clustered together. Thus, when using a reverse-key index, you avoid having I/O
concentrated in one physical disk location within the index during large inserts of sequential values.

Use the REVERSE clause to create a reverse-key index:

SQL> create index cust_idx1 on cust(cust_id) reverse;

You can verify that an index is reverse key by running the following query:

SQL> select index_name, index_type from user_indexes;

Here is some sample output, showing that the CUST_IDX1 index is reverse key:

INDEX_NAME INDEX_TYPE
-------------------- ---------------------------
CUST_IDX1 NORMAL/REV

ChApter 8 ■ Indexes

223

Note ■ You can’t specify REVERSE for a bitmap index or an IOt.

Creating Key-Compressed Indexes
Index compression is useful for indexes that contain multiple columns in which the leading index column value is
often repeated. Compressed indexes, in these situations, have the following advantages:

Reduced storage•	

More rows stored in leaf blocks, which can result in less I/O when accessing a compressed index•	

Suppose you have a table defined as follows:

create table users(
 last_name varchar2(30)
,first_name varchar2(30)
,address_id number);

You want to create a concatenated index on the LAST_NAME and FIRST_NAME columns. You know from examining
the data that there is duplication in the LAST_NAME column. Use the COMPRESS N clause to create a compressed index:

SQL> create index users_idx1 on users(last_name, first_name) compress 2;

The prior line of code instructs Oracle to create a compressed index on two columns. You can verify that an index
is compressed as follows:

select index_name, compression
from user_indexes
where index_name like 'USERS%';

Here is some sample output, indicating that compression is enabled for the index:

INDEX_NAME COMPRESS
------------------------------ --------
USERS_IDX1 ENABLED

Note ■ You can’t create a key-compressed index on a bitmap index.

Parallelizing Index Creation
In large database environments in which you’re attempting to create an index on a table that is populated with many
rows, you may be able to greatly increase the index creation speed by using the PARALLEL clause:

create index cust_idx1 on cust(cust_id)
parallel 2
tablespace reporting_index;

If you don’t specify a degree of parallelism, Oracle selects a degree, based on the number of CPUs on the box
times the value of PARALLEL_THREADS_PER_CPU.

ChApter 8 ■ Indexes

224

You can run this query to verify the degree of parallelism associated with an index:

SQL> select index_name, degree from user_indexes;

Avoiding Redo Generation When Creating an Index
You can optionally create an index with the NOLOGGING clause. Doing so has these implications:

The redo isn’t generated that would be required to recover the index in the event of a media failure.•	

Subsequent direct-path operations also won’t generate the redo required to recover the index •	
information in the event of a media failure.

Here is an example of creating an index with the NOLOGGING clause:

create index cust_idx1 on cust(cust_id)
nologging
tablespace users;

The main advantage of NOLOGGING is that when you create the index, a minimal amount of redo information is
generated, which can have significant performance implications for a large index. The disadvantage is that if you
experience a media failure soon after the index is created (or have records inserted via a direct-path operation), and you
restore and recover the database from a backup that was taken prior to the index creation, you’ll see this error when the
index is accessed:

ORA-01578: ORACLE data block corrupted (file # 4, block # 1044)
ORA-01110: data file 4: '/u01/dbfile/O12C/users01.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

This error indicates that the index is logically corrupt. In this scenario, you must recreate the index before it’s
usable. In most scenarios it’s acceptable to use the NOLOGGING clause when creating an index, because the index can
be recreated without affecting the table on which the index is based.

You can run this query to view whether an index has been created with NOLOGGING:

SQL> select index_name, logging from user_indexes;

Implementing Invisible Indexes
In Oracle Database 11g and higher, you have the option of making an index invisible to the optimizer. Oracle still
maintains an invisible index (as DML occurs on the table) but doesn’t make it available for use by the optimizer. You
can use the OPTIMIZER_USE_INVISIBLE_INDEXES database parameter to make an invisible index visible to the optimizer.

Invisible indexes have a couple of interesting uses:

Altering an index to be invisible before dropping it allows you to quickly recover if you later •	
determine that the index is required.

You can add an invisible index to a third-party application without affecting existing code or •	
support agreements.

These two scenarios are discussed in the following sections.

ChApter 8 ■ Indexes

225

Making an Existing Index Invisible
Suppose you’ve identified an index that isn’t being used and are considering dropping it. In earlier releases of Oracle,
you could mark the index UNUSABLE and then later drop indexes that you were certain weren’t being used. If you later
determined that you needed an unusable index, the only way to reenable the index was to rebuild it. For large indexes
this could take a great amount of time and database resources.

Making an index invisible has the advantage of telling only the optimizer not to use the index. The invisible index
is still maintained as the underlying table has records inserted, updated, and deleted. If you decide that you later need
the index, there is no need to rebuild it; you simply make it visible again.

You can create an index as invisible or alter an existing index to be invisible; for example,

SQL> create index cust_idx2 on cust(first_name) invisible;
SQL> alter index cust_idx1 invisible;

You can verify the visibility of an index via this query:

SQL> select index_name, status, visibility from user_indexes;

Here is some sample output:

INDEX_NAME STATUS VISIBILITY
-------------------- -------- ----------
CUST_IDX1 VALID INVISIBLE
CUST_IDX2 VALID INVISIBLE
USERS_IDX1 VALID VISIBLE

Use the VISIBLE clause to make an invisible index visible to the optimizer again:

SQL> alter index cust_idx1 visible;

Caution ■ If you have a B-tree index on a foreign key column, and you decide to make it invisible, Oracle can still
use the index to prevent certain locking issues. Before you drop an index on a column associated with a foreign key
constraint, ensure that it’s not used by Oracle to prevent locking issues. see the section “Indexing Foreign Key
Columns,” later in this chapter, for details.

Guaranteeing Application Behavior Is Unchanged When You Add an Index
You can also use an invisible index when you’re working with third-party applications. Often, third-party vendors
don’t support customers’ adding their own indexes to an application. However, there may be a scenario in which
you’re certain you can increase a query’s performance without affecting other queries in the application.

You can create the index as invisible and then use the OPTIMIZER_USE_INVISIBLE_INDEXES parameter to instruct
the optimizer to consider invisible indexes. This parameter can be set at the system or session level. Here is an example:

SQL> create index cust_idx1 on cust(cust_id) invisible;

Now, set the OPTIMIZER_USE_INVISIBLE_INDEXES database parameter to TRUE. This instructs the optimizer to
consider invisible indexes for the currently connected session:

SQL> alter session set optimizer_use_invisible_indexes=true;

ChApter 8 ■ Indexes

226

You can verify that the index is being used by setting AUTOTRACE to on and running the SELECT statement:

SQL> set autotrace trace explain;
SQL> select cust_id from cust where cust_id = 3;

Here is some sample output, indicating that the optimizer chose to use the invisible index:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 5 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 1 | 5 | 1 (0)| 00:00:01 |
--

Keep in mind that invisible index simply means an index the optimizer can’t see. Just like any other index, an
invisible index consumes space and resources during DML statements.

Maintaining Indexes
As applications age, you invariably have to perform some maintenance activities on existing indexes. You may need
to rename an index to conform to newly implemented standards, or you may need to rebuild a large index to move
it to a different tablespace that better suits the index’s storage requirements. The following list shows common tasks
associated with index maintenance:

Renaming an index•	

Displaying the DDL for an index•	

Rebuilding an index•	

Setting indexes to •	 unusable

Monitoring an index•	

Dropping an index•	

Each of these items is discussed in the following sections.

Renaming an Index
Sometimes you need to rename an index. The index may have been erroneously named when it was created, or
perhaps you want a name that better conforms to naming standards. Use the ALTER INDEX . . . RENAME TO statement
to rename an index:

SQL> alter index cust_idx1 rename to cust_index1;

You can verify that the index was renamed by querying the data dictionary:

select
 table_name
 ,index_name
 ,index_type
 ,tablespace_name
 ,status
from user_indexes
order by table_name, index_name;

ChApter 8 ■ Indexes

227

Displaying Code to Recreate an Index
You may be performing routine maintenance activities, such as moving an index to a different tablespace, and before
you do so, you want to verify the current storage settings. You can use the DBMS_METADATA package to display the DDL
required to recreate an index. If you’re using SQL*Plus, set the LONG variable to a value large enough to display all the
output. Here is an example:

SQL> set long 10000
SQL> select dbms_metadata.get_ddl('INDEX','CUST_IDX1') from dual;

Here is a partial listing of the output:

CREATE INDEX "MV_MAINT"."CUST_IDX1" ON "MV_MAINT"."CUST" ("CUST_ID")
 PCTFREE 10 INITRANS 2 MAXTRANS 255 INVISIBLE COMPUTE STATISTICS

To show all index DDL for a user, run this query:

SQL> select dbms_metadata.get_ddl('INDEX',index_name) from user_indexes;

You can also display the DDL for a particular user. You must provide as input to the GET_DDL function the object
type, object name, and schema; example,

select
dbms_metadata.get_ddl(object_type=>'INDEX', name=>'CUST_IDX1', schema=>'INV')
from dual;

Rebuilding an Index
There are a couple of good reasons to rebuild an index:

Modifying storage characteristics, such as changing the tablespace.•	

Rebuilding an index that was previously marked •	 unusable to make it usable again.

Use the REBUILD clause to rebuild an index. This example rebuilds an index named CUST_IDX1:

SQL> alter index cust_idx1 rebuild;

Oracle attempts to acquire a lock on the table and rebuild the index online. If there are any active transactions
that haven’t committed, Oracle won’t be able to obtain a lock, and the following error will be thrown:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

In this scenario, you can either wait until there is little activity in the database or try setting the DDL_LOCK_TIMEOUT
parameter:

SQL> alter session set ddl_lock_timeout=15;

The DDL_LOCK_TIMEOUT initialization parameter is available in Oracle Database 11g and higher. It instructs Oracle
to repeatedly attempt to obtain a lock (for 15 seconds, in this case).

ChApter 8 ■ Indexes

228

If no tablespace is specified, Oracle rebuilds the index in the tablespace in which the index currently exists.
Specify a tablespace if you want the index rebuilt in a different tablespace:

SQL> alter index cust_idx1 rebuild tablespace reporting_index;

If you’re working with a large index, you may want to consider using features such as NOLOGGING or PARALLEL, or
both. This next example rebuilds an index in parallel, while generating a minimal amount of redo:

SQL> alter index cust_idx1 rebuild parallel nologging;

Note ■ see the sections “Avoiding redo Generation When Creating an Index” and “parallelizing Index Creation,” earlier
in this chapter, for details on using these features with indexes.

In the olden days (version 7 or so), in the name of performance, dBAs religiously rebuilt indexes on a regular
basis. every dBA and his (or her) dog had a script similar to the one listed next, which uses sQL to generate the
sQL required to rebuild indexes for a schema:

SPO ind_build_dyn.sql
SET HEAD OFF PAGESIZE 0 FEEDBACK OFF;
SELECT 'ALTER INDEX ' || index_name || ' REBUILD;'
FROM user_indexes;
SPO OFF;
SET FEEDBACK ON;

however, it’s debatable whether rebuilding an index with the newer versions of Oracle achieves any performance
gain. Usually, the only valid reason for rebuilding an index is that the index has become corrupt or unusable or
that you want to modify storage characteristics (such as the tablespace).

Making Indexes Unusable
If you’ve identified an index that is no longer being used, you can mark it UNUSABLE. From that point forward, Oracle
won’t maintain the index, nor will the optimizer consider the index for use in SELECT statements. The advantage of
marking the index UNUSABLE (rather than dropping it) is that if you later determine that the index is being used, you
can alter it to a USABLE state and rebuild it without needing the DDL on hand to recreate it.

Here is an example of marking an index UNUSABLE:

SQL> alter index cust_idx1 unusable;

You can verify that it’s unusable via this query:

SQL> select index_name, status from user_indexes;

reBUILDING FOr perFOrMaNCe reaSONS

ChApter 8 ■ Indexes

229

The index has an UNUSABLE status:

INDEX_NAME STATUS
-------------------- --------
CUST_IDX1 UNUSABLE

If you determine that the index is needed (before you drop it), then it must be rebuilt to become usable again:

SQL> alter index cust_idx1 rebuild;

Another common scenario for marking indexes UNUSABLE is that you’re performing a large data load. When you
want to maximize table-loading performance, you can mark the indexes UNUSABLE before performing the load. After
you’ve loaded the table, you must rebuild the indexes to make them usable again.

Note ■ the alternative to setting an index to UNUSABLE is to drop and recreate it. this approach requires the CREATE
INDEX ddL.

Monitoring Index Usage
You may have inherited a database, and as part of getting to know the database and application, you want to
determine which indexes are being used (or not). The idea is that you can identify indexes that aren’t being used and
drop them, thus eliminating the extra overhead and storage required.

Use the ALTER INDEX . . . MONITORING USAGE statement to enable basic index monitoring. The following example
enables monitoring an index:

SQL> alter index cust_idx1 monitoring usage;

The first time the index is accessed, Oracle records this; you can view whether an index has been accessed via the
DBA_OBJECT_USAGE view. To report which indexes are being monitored and have been used, run this query:

SQL> select * from dba_object_usage;

Tip ■ prior to Oracle database 12c, index usage was recorded in the V$OBJECT_USAGE view.

Most likely, you won’t monitor only one index. Rather, you’ll want to monitor all indexes for a user. In this situation,
use SQL to generate SQL to create a script you that can run to turn on monitoring for all indexes. Here is such a script:

select
 'alter index ' || index_name || ' monitoring usage;'
from user_indexes;

The DBA_OBJECT_USAGE view only shows information for the currently connected user. If you inspect the TEXT
column of DBA_VIEWS, note the following line:

where io.owner# = userenv('SCHEMAID')

ChApter 8 ■ Indexes

230

If you’re logged in as a DBA-privileged user and want to view the status of all indexes that have monitoring
enabled (regardless of the user), execute this query:

select io.name, t.name,
 decode(bitand(i.flags, 65536), 0, 'NO', 'YES'),
 decode(bitand(ou.flags, 1), 0, 'NO', 'YES'),
 ou.start_monitoring,
 ou.end_monitoring
from sys.obj$ io, sys.obj$ t, sys.ind$ i, sys.object_usage ou
 where i.obj# = ou.obj#
 and io.obj# = ou.obj#
 and t.obj# = i.bo#;

The prior query removes the line from the query that restricts the currently logged-in user. This provides you with
a convenient way to view all monitored indexes.

Caution ■ Keep in mind that Oracle can use an index defined on a foreign key column to prevent certain locking issues
(see the sections “determining if Foreign Key Columns Are Indexed” and “Implementing an Index on a Foreign Key Column,”
 later in this chapter, for further discussion). Oracle’s internal use of the index is not recorded in DBA_OBJECT_USAGE or
V$OBJECT_USAGE. Be very careful before dropping an index defined on a foreign key column.

Dropping an Index
If you’ve determined that an index isn’t being used, then it’s a good idea to drop it. Unused indexes take up space and
can potentially slow down DML statements (because the index must be maintained as part of those DML operations).
Use the DROP INDEX statement to drop an index:

SQL> drop index cust_idx1;

Dropping an index is a permanent DDL operation; there is no way to undo an index drop other than to rebuild
the index. Before you drop an index, it doesn’t hurt to quickly capture the DDL required to rebuild the index. Doing
so will allow you to recreate the index in the event you subsequently discover that you did need it after all.

Indexing Foreign Key Columns
Foreign key constraints ensure that when inserting into a child table, a corresponding parent table record exists.
This is the mechanism for guaranteeing that data conform to parent–child business relationship rules. Foreign keys
are also known as referential integrity constraints.

Unlike primary key and unique key constraints, Oracle doesn’t automatically create indexes on foreign key columns.
Therefore, you must create a foreign key index manually, based on the columns defined as the foreign key constraint. In
most scenarios, you should create indexes on columns associated with a foreign key. Here are two good reasons:

Oracle can often make use of an index on foreign key columns to improve the performance of •	
queries that join a parent table and child table (using the foreign key columns).

ChApter 8 ■ Indexes

231

If no B-tree index exists on the foreign key columns, when you insert or delete a record from a •	
child table, all rows in the parent table are locked. For applications that actively modify both the
parent and child tables, this will cause locking and deadlock issues (see the section “Determining
if Foreign Key Columns Are Indexed,” later in this chapter, for an example of this locking issue).

One could argue that if you know your application well enough and can predict that queries won’t be issued that
join tables on foreign key columns and that certain update/delete scenarios will never be encountered (that result
in entire tables’ being locked), then, by all means, don’t place an index on foreign key columns. In my experience,
however, this is seldom the case: developers rarely think about how the “black box database” might lock tables; some
DBAs are equally unaware of common causes of locking; teams experience high turnover rates, and the DBA de jour is
left holding the bag for issues of poor database performance and hung sessions. Considering the time and resources
spent chasing down locking and performance issues, it doesn’t cost that much to put an index on each foreign key
column in your application. I know some purists will argue against this, but I tend to avoid pain, and an unindexed
foreign key column is a ticking bomb.

Having made my recommendation, I’ll first cover creating a B-tree index on a foreign key column. Then, I’ll show
you some techniques for detecting unindexed foreign key columns.

Implementing an Index on a Foreign Key Column
Say you have a requirement that every record in the ADDRESS table be assigned a corresponding CUST_ID column from
the CUST table. To enforce this relationship, you create the ADDRESS table and a foreign key constraint, as follows:

create table address(address_id number
,cust_address varchar2(2000)
,cust_id number);
--
alter table address add constraint addr_fk1
foreign key (cust_id) references cust(cust_id);

Note ■ A foreign key column must reference a column in the parent table that has a primary key or unique key
constraint defined on it. Otherwise, you’ll receive the error ORA-02270: no matching unique or primary key for
this column-list.

You realize that the foreign key column is used extensively when joining the CUST and ADDRESS tables and that an
index on the foreign key column will increase performance. In this situation, you have to create an index manually.
For instance, a regular B-tree index is created on the foreign key column of CUST_ID in the ADDRESS table.

create index addr_fk1
on address(cust_id);

You don’t have to name the index the same name as the foreign key (as I did in these lines of code). It’s a
personal preference as to whether you do that. I feel it’s easier to maintain environments when the constraint and
corresponding index have the same name.

When creating an index, if you don’t specify the tablespace name, Oracle places the index in the user’s default
tablespace. It’s usually a good idea to explicitly specify which tablespace the index should be placed in; for example,

create index addr_fk1
on address(cust_id)
tablespace reporting_index;

ChApter 8 ■ Indexes

232

Note ■ An index on foreign key columns doesn’t have to be of the type B-tree. In data warehouse environments it’s
common to use bitmap indexes on foreign key columns in star schema fact tables. Unlike B-tree indexes, bitmap indexes
on foreign key columns don’t resolve parent–child table-locking issues. Applications that use star schemas typically are
not deleting or modifying the child record from fact tables; therefore, locking is less of an issue, in this situation, regardless
of the use bitmap indexes on foreign key columns.

Determining if Foreign Key Columns Are Indexed
If you’re creating an application from scratch, it’s fairly easy to create the code and ensure that each foreign key
constraint has a corresponding index. However, if you’ve inherited a database, it’s prudent to check if the foreign
key columns are indexed.

You can use data dictionary views to verify if all columns of a foreign key constraint have a corresponding index.
The task isn’t as simple as it might first seem. For example, here is a query that gets you started in the right direction:

SELECT DISTINCT
 a.owner owner
 ,a.constraint_name cons_name
 ,a.table_name tab_name
 ,b.column_name cons_column
 ,NVL(c.column_name,'***Check index****') ind_column
FROM dba_constraints a
 ,dba_cons_columns b
 ,dba_ind_columns c
WHERE constraint_type = 'R'
AND a.owner = UPPER('&&user_name')
AND a.owner = b.owner
AND a.constraint_name = b.constraint_name
AND b.column_name = c.column_name(+)
AND b.table_name = c.table_name(+)
AND b.position = c.column_position(+)
ORDER BY tab_name, ind_column;

This query, while simple and easy to understand, doesn’t correctly report on unindexed foreign keys for all
situations. For example, in the case of multicolumn foreign keys, it doesn’t matter if the constraint is defined in an
order different from that of the index columns, as long as the columns defined in the constraint are in the leading edge
of the index. In other words, if the constraint is defined as COL1 and then COL2, then it’s okay to have a B-tree index
defined on leading-edge COL2 and then COL1.

Another issue is that a B-tree index protects you from locking issues, but a bitmap index does not. In this situation,
the query should also check the index type.

In these scenarios, you’ll need a more sophisticated query to detect indexing issues related to foreign key
columns. The following example is a more complex query that uses the LISTAGG analytical function to compare
columns (returned as a string in one row) in a foreign key constraint with corresponding indexed columns:

SELECT
 CASE WHEN ind.index_name IS NOT NULL THEN
 CASE WHEN ind.index_type IN ('BITMAP') THEN
 '** Bitmp idx **'

ChApter 8 ■ Indexes

233

 ELSE
 'indexed'
 END
 ELSE
 '** Check idx **'
 END checker
,ind.index_type
,cons.owner, cons.table_name, ind.index_name, cons.constraint_name, cons.cols
FROM (SELECT
 c.owner, c.table_name, c.constraint_name
 ,LISTAGG(cc.column_name, ',') WITHIN GROUP (ORDER BY cc.column_name) cols
 FROM dba_constraints c
 ,dba_cons_columns cc
 WHERE c.owner = cc.owner
 AND c.owner = UPPER('&&schema')
 AND c.constraint_name = cc.constraint_name
 AND c.constraint_type = 'R'
 GROUP BY c.owner, c.table_name, c.constraint_name) cons
LEFT OUTER JOIN
(SELECT
 table_owner, table_name, index_name, index_type, cbr
 ,LISTAGG(column_name, ',') WITHIN GROUP (ORDER BY column_name) cols
 FROM (SELECT
 ic.table_owner, ic.table_name, ic.index_name
 ,ic.column_name, ic.column_position, i.index_type
 ,CONNECT_BY_ROOT(ic.column_name) cbr
 FROM dba_ind_columns ic
 ,dba_indexes i
 WHERE ic.table_owner = UPPER('&&schema')
 AND ic.table_owner = i.table_owner
 AND ic.table_name = i.table_name
 AND ic.index_name = i.index_name
 CONNECT BY PRIOR ic.column_position-1 = ic.column_position
 AND PRIOR ic.index_name = ic.index_name)
 GROUP BY table_owner, table_name, index_name, index_type, cbr) ind
ON cons.cols = ind.cols
AND cons.table_name = ind.table_name
AND cons.owner = ind.table_owner
ORDER BY checker, cons.owner, cons.table_name;

This query will prompt you for a schema name and then will display foreign key constraints that don’t have
corresponding indexes. This query also checks for the index type; as previously stated, bitmap indexes may exist on
foreign key columns but don’t prevent locking issues.

ChApter 8 ■ Indexes

234

here is a simple example that demonstrates the locking issue when foreign key columns are not indexed. First,
create two tables (DEPT and EMP), and associate them with a foreign key constraint:

create table emp(emp_id number primary key, dept_id number);
create table dept(dept_id number primary key);
alter table emp add constraint emp_fk1 foreign key (dept_id) references dept(dept_id);

next, insert some data:

insert into dept values(10);
insert into dept values(20);
insert into dept values(30);
insert into emp values(1,10);
insert into emp values(2,20);
insert into emp values(3,10);
commit;

Open two terminal sessions. From one, delete one record from the child table (don't commit):

delete from emp where dept_id = 10;

then, attempt to delete from the parent table some data not affected by the child table delete:

delete from dept where dept_id = 30;

the delete from the parent table hangs until the child table transaction is committed. Without a regular B-tree
index on the foreign key column in the child table, any time you attempt to insert or delete in the child table, a
table-wide lock is placed on the parent table; this prevents deletes or updates in the parent table until the child
table transaction completes.

now, run the prior experiment, except this time, additionally create an index on the foreign key column of the
child table:

create index emp_fk1 on emp(dept_id);

You should be able to run the prior two delete statements independently. When you have a B-tree index on the
foreign key columns, if deleting from the child table, Oracle will not excessively lock all rows in the parent table.

Summary
Indexes are critical objects separate from tables; they vastly increase the performance of a database application.
Your index architecture should be well planned, implemented, and maintained. Carefully choose which tables
and columns are indexed. Although they dramatically increase the speed of queries, indexes can slow down DML

taBLe LOCKS aND FOreIGN KeYS

ChApter 8 ■ Indexes

235

statements, because the index has to be maintained as the table data changes. Indexes also consume disk space. Thus,
indexes should be created only when required.

Oracle’s B-tree index is the default index type and is sufficient for most applications. However, you should be
aware of other index types and their uses. Specific features, such as bitmap and function-based indexes, should
be implemented where applicable. This chapter has discussed various aspects of implementing and maintaining
indexes. Table 8-4 summarizes the guidelines and techniques covered in this chapter.

Table 8-4. Summary of Guidelines for Creating Indexes

Guideline Reasoning

Create as many indexes as you need, but try to keep the
number to a minimum. Add indexes judiciously. Test
first to determine quantifiable performance gains.

Indexes increase performance, but also consume disk
space and processing resources. Don’t add indexes
unnecessarily.

The required performance of queries you execute against
a table should form the basis of your indexing strategy.

Indexing columns used in SQL queries will help
performance the most.

Consider using the SQL Tuning Advisor or the SQL
Access Advisor for indexing recommendations.

These tools provide recommendations and a second set
of “eyes” on your indexing decisions.

Create primary key constraints for all tables. This will automatically create a B-tree index (if the
columns in the primary key aren’t already indexed).

Create unique key constraints where appropriate. This will automatically create a B-tree index (if the
columns in the unique key aren’t already indexed).

Create indexes on foreign key columns. Foreign key columns are usually included in the
WHERE clause when joining tables and thus improve
performance of SQL SELECT statements. Creating a B-tree
index on foreign key columns also reduces locking issues
when updating and inserting into child tables.

Carefully select and test indexes on small tables
(small being fewer than a few thousand rows).

Even on small tables, indexes can sometimes perform
better than full-table scans.

Use the correct type of index. Correct index usage maximizes performance. See Table 8-1
for more details.

Use the basic B-tree index type if you don’t have a
verifiable performance gain from using a different
index type.

B-tree indexes are suitable for most applications in which
you have high-cardinality column values.

Consider using bitmap indexes in data warehouse
environments.

These indexes are ideal for low-cardinality columns in which
the values aren’t updated often. Bitmap indexes work well on
foreign key columns on star schema fact tables in which you
often run queries that use AND and OR join conditions.

Consider using a separate tablespace for indexes
(i.e., separate from tables).

Table and index data may have different storage or backup
and recovery requirements, or both. Using separate
tablespaces lets you manage indexes separately from tables.

Let the index inherit its storage properties from the
tablespace.

This makes it easier to manage and maintain index storage.

Use consistent naming standards. This makes maintenance and troubleshooting easier.

(continued)

ChApter 8 ■ Indexes

236

Guideline Reasoning

Don’t rebuild indexes unless you have a solid reason
to do so.

Rebuilding indexes is generally unnecessary unless an
index is corrupt or unusable or you want to move an
index to different tablespace.

Monitor your indexes, and drop those that aren’t used. Doing this frees up physical space and improves the
performance of DML statements.

Before dropping an index, consider marking it
unusable or invisible.

This allows you to better determine if there are any
performance issues before you drop the index. These
options let you rebuild or reenable the index without
requiring the DDL creation statement.

Table 8-4. (continued)

Refer to these guidelines as you create and manage indexes in your databases. These recommendations are
intended to help you correctly use index technology.

After you build a database and users and configure the database with tables and indexes, the next step is to create
additional objects needed by the application and users. Besides tables and indexes, typical objects include views,
synonyms, and sequences. Building these database objects is detailed in the next chapter.

237

Chapter 9

Views, Synonyms, and Sequences

This chapter focuses on views, synonyms, and sequences. Views are used extensively in reporting applications and
also to present subsets of data to users. Synonyms provide a method of transparently allowing users to display and use
other users’ objects. Sequences are often utilized to generate unique integers that are used to populate primary key
and foreign key values.

Note■ Although views, synonyms, and sequences may not seem as important as tables and indexes, the truth
of the matter is that they’re almost equally important to understand. An application with any level of sophistication will
encompass what’s discussed in this chapter.

Implementing Views
In one sense, you can think of a view as an SQL statement stored in the database. Conceptually, when you select from
a view, Oracle looks up the view definition in the data dictionary, executes the query the view is based on, and returns
the results.

In addition to selecting from a view, in some scenarios it’s possible to execute INSERT, UPDATE, and DELETE
statements against the view, which results in modifications to the underlying table data. So, in this sense, instead of
simply describing a view as a stored SQL statement, it’s more accurate to conceptualize a view as a logical table built
on other tables or views, or both.

Having said that, listed next are the common uses for views:

Create an efficient method of storing an SQL query for reuse.•	

Provide an interface layer between an application and physical tables.•	

Hide the complexity of an SQL query from an application.•	

Report to a user only a subset of columns or rows, or both.•	

With all this in mind, the next step is to create a view and observe some of its characteristics.

Creating a View
You can create views on tables, materialized views, or other views. To create a view, your user account must have the
CREATE VIEW system privilege. If you want to create a view in another user’s schema, then you must have the CREATE
ANY VIEW privilege.

ChApter 9 ■ Views, synonyms, And sequenCes

238

For reference, the view creation example in this section depends on the following base table:

create table sales(
 sales_id number primary key
,amnt number
,state varchar2(2)
,sales_person_id number);

Also assume that the table has the following data initially inserted into it:

insert into sales values(1, 222, 'CO', 8773);
insert into sales values(20, 827, 'FL', 9222);

Then, the CREATE VIEW statement is used to create a view. The following code creates a view (or replaces it if the
view already exists) that selects a subset of columns and rows from the SALES table:

create or replace view sales_rockies as
select sales_id, amnt, state
from sales
where state in ('CO','UT','WY','ID','AZ');

Note ■ if you don’t want to accidentally replace an existing view definition, then use CREATE VIEW, and not CREATE OR
REPLACE VIEW. the CREATE VIEW statement will throw an ORA-00955 error if the view already exists, whereas the CREATE
OR REPLACE VIEW overwrites the existing definition.

Now, when you select from SALES_ROCKIES, it executes the view query and returns data from the SALES table as
appropriate:

SQL> select * from sales_rockies;

Given the view query, it’s intuitive that the output show only the following columns and one row:

 SALES_ID AMNT ST
---------- ---------- --
 1 222 CO

What isn’t as apparent is that you can also issue UPDATE, INSERT, and DELETE statements against a view, which
results in modification of the underlying table data. For example, the following insert statement against the view
results in the insertion of a record in the SALES table:

insert into sales_rockies(
 sales_id, amnt, state)
values
(2,100,'CO');

Additionally, as the owner of the table and view (or as a DBA), you can grant DML privileges to other users on the
view. For instance, you can grant SELECT, INSERT, UPDATE, and DELETE privileges on the view to another user, which
will allow the user to select and modify data referencing the view. However, having privileges on the view does not
give the user direct SQL access to the underlying table(s).

ChApter 9 ■ Views, synonyms, And sequenCes

239

Thus, any users granted privileges on the view will be able to manipulate data through the view but not issue SQL
against the objects the view is based on.

Note that you can insert a value into the view that results in a row in the underlying table that isn’t selectable by
the view:

insert into sales_rockies(
 sales_id, amnt, state)
values (3,123,'CA');

SQL> select * from sales_rockies;

 SALES_ID AMNT ST
---------- ---------- --
 1 222 CO
 2 100 CO

In contrast, the query on the underlying table shows that rows exist that aren’t returned by the view:

SQL> select * from sales;

 SALES_ID AMNT ST SALES_PERSON_ID
---------- ---------- -- ---------------
 1 222 CO 8773
 20 827 FL 9222
 2 100 CO
 3 123 CA

If you want the view to only allow insert and update statements that result in data modifications that are
selectable by the view statement, then use the WITH CHECK OPTION (see the next section, “Checking Updates”).

Checking Updates
You can specify that a view should allow modifications to the underlying table data only if those data are selectable by
the view. This behavior is enabled with the WITH CHECK OPTION:

create or replace view sales_rockies as
select sales_id, amnt, state
from sales
where state in ('CO','UT','WY','ID','AZ')
with check option;

Using the WITH CHECK OPTION means that you can only insert or update rows that would be returned by the view
query. For example, this UPDATE statement works because the statement isn’t changing the underlying data in a way
would result in the row’s not being returned by the view query:

SQL> update sales_rockies set state='ID' where sales_id=1;

However, this next update statement fails because it attempts to update the STATE column to a value that isn’t
selectable by the query on which the view is based:

SQL> update sales_rockies set state='CA' where sales_id=1;

ChApter 9 ■ Views, synonyms, And sequenCes

240

In this example, the following error is thrown:

ORA-01402: view WITH CHECK OPTION where-clause violation

I’ve rarely seen the WITH CHECK OPTION used. Having said that, if your business requirements mandate that
updatable views only have the ability to update data selectable by the view query, then, by all means, use this feature.

Creating Read-Only Views
If you don’t want a user to be able to perform INSERT, UPDATE, or DELETE operations on a view, then don’t grant those
object privileges on the view to that user. Furthermore, you should also create a view with the WITH READ ONLY clause
for any views for which you don’t want the underlying tables to be modified. The default behavior is that a view is
updatable (assuming the object privileges exist).

This example creates a view with the WITH READ ONLY clause:

create or replace view sales_rockies as
select sales_id, amnt, state
from sales
where state in ('CO','UT','WY','ID','AZ')
with read only;

Even if a user (including the owner) has privileges to delete, insert, or update the underlying table, if such an
operation is attempted, the following error is thrown:

ORA-42399: cannot perform a DML operation on a read-only view

If you use views for reporting, and never intend for the views to be used as a mechanism for modifying the
underlying table’s data, then you should always create the views with the WITH READ ONLY clause. Doing so prevents
accidental modifications to the underlying tables through a view that was never intended to be used to modify data.

Updatable Join Views
If you have multiple tables defined in the FROM clause of the SQL query on which the view is based, it’s still possible to
update the underlying tables. This is known as an updatable join view.

For reference purposes, here are the CREATE TABLE statements for the two tables used in the examples in this section:

create table emp(
 emp_id number primary key
,emp_name varchar2(15)
,dept_id number);
--
create table dept(
 dept_id number primary key
,dept_name varchar2(15),
 constraint emp_dept_fk
 foreign key(dept_id) references dept(dept_id));

ChApter 9 ■ Views, synonyms, And sequenCes

241

And, here are some seed data for the two tables:

insert into dept values(1,'HR');
insert into dept values(2,'IT');
insert into dept values(3,'SALES');
insert into emp values(10,'John',2);
insert into emp values(20,'Bob',1);
insert into emp values(30,'Craig',2);
insert into emp values(40,'Joe',3);
insert into emp values(50,'Jane',1);
insert into emp values(60,'Mark',2);

Here is an example of an updatable join view, based on the two prior base tables:

create or replace view emp_dept_v
as
select a.emp_id, a.emp_name, b.dept_name, b.dept_id
from emp a, dept b
where a.dept_id = b.dept_id;

There are some restrictions regarding the columns on which DML operations are permitted. For instance,
columns in the underlying tables can be updated only if the following conditions are true:

The DML statement must modify only one underlying table.•	

The view must be created without the •	 READ ONLY clause.

The column being updated belongs to the key-preserved table in the join view (there is only •	
one key-preserved table in a join view).

An underlying table in a view is key preserved if the table’s primary key can also be used to uniquely identify
rows returned by the view. An example with data will help illustrate whether an underlying table is key preserved. In
this scenario the primary key of the EMP table is the EMP_ID column; the primary key of the DEPT table is the DEPT_ID
column. Here are some sample data returned by querying the view listed previously in this section:

 EMP_ID EMP_NAME DEPT_NAME DEPT_ID
---------- --------------- --------------- ----------
 10 John IT 2
 20 Bob HR 1
 30 Craig IT 2
 40 Joe SALES 3
 50 Jane HR 1
 60 Mark IT 2

As you can see from the output of the view, the EMP_ID column is always unique. Therefore, the EMP table is key
preserved (and its columns can be updated). In contrast, the view’s output shows that it’s possible for the DEPT_ID
column to be not unique. Therefore, the DEPT table isn’t key preserved (and its columns can’t be updated).

When you update the view, any modifications that result in columns that map to the underlying EMP table should
be allowed because the EMP table is key preserved in this view. For example, this UPDATE statement is successful:

SQL> update emp_dept_v set emp_name = 'Jon' where emp_name = 'John';

ChApter 9 ■ Views, synonyms, And sequenCes

242

However, statements that result in updating the DEPT table’s columns aren’t allowed. The next statement attempts
to update a column in the view that maps to the DEPT table:

SQL> update emp_dept_v set dept_name = 'HR West' where dept_name = 'HR';

Here is the resulting error message that’s thrown:

ORA-01779: cannot modify a column which maps to a non key-preserved table

To summarize, an updatable join view can select from many tables, but only one of the tables in the join view
is key preserved. The primary key and foreign key relationships of the tables in the query determine which table is
key preserved.

Creating an INSTEAD OF Trigger
For views that aren’t read-only, when you issue a DML statement against a view, Oracle attempts to modify the data
in the table that the view is based on. It’s also possible to instruct Oracle to ignore the DML statement and instead
execute a block of PL/SQL. This feature is known as an INSTEAD OF trigger. It allows you to modify the underlying base
tables in ways that you can’t with regular join views.

I’m not a huge fan of INSTEAD OF triggers. In my opinion, if you’re considering using them, you should rethink
how you’re issuing DML statements to modify base tables. Maybe you should allow the application to issue INSERT,
UPDATE, and DELETE statements directly against the base tables instead of trying to build PL/SQL INSTEAD OF triggers
on a view.

Think about how you’ll maintain and troubleshoot issues with INSTEAD OF triggers. Will it be difficult for the
next DBA to figure out how the base tables are being modified? Will it be easy for the next DBA or developer to make
modifications to the INSTEAD OF triggers? When an INSTEAD OF trigger throws an error, will it be obvious what code is
throwing the error and how to resolve the problem?

Having said that, if you determine that you require an INSTEAD OF trigger on a view, use the INSTEAD OF clause to
create it, and embed within it the required PL/SQL. This example creates an INSTEAD OF trigger on the EMP_DEPT_V view:

create or replace trigger emp_dept_v_updt
instead of update on emp_dept_v
for each row
begin
 update emp set emp_name=UPPER(:new.emp_name)
 where emp_id=:old.emp_id;
end;
/

Now, when an update is issued against EMP_DEPT_V, instead of the DML’s being executed, Oracle intercepts the
statement and runs the INSTEAD OF PL/SQL code; for example,

SQL> update emp_dept_v set emp_name='Jonathan' where emp_id = 10;
1 row updated.

Then, you can verify that the trigger correctly updated the table by selecting the data:

SQL> select * from emp_dept_v;

ChApter 9 ■ Views, synonyms, And sequenCes

243

 EMP_ID EMP_NAME DEPT_NAME DEPT_ID
---------- --------------- --------------- ----------
 10 JONATHAN IT 2
 20 Bob HR 1
 30 Craig IT 2
 40 Joe SALES 3
 50 Jane HR 1
 60 Mark IT 2

This code is a simple example, but it illustrates that you can have PL/SQL execute instead of the DML that was
run on the view. Again, be careful when using INSTEAD OF triggers; be sure you’re confident that you can efficiently
diagnose and resolve any related issues that may arise.

Implementing an Invisible Column
Starting with Oracle Database 12c, you can create or modify a column in a table or view to be invisible (see Chapter 7
for details on adding an invisible column to a table). One good use for an invisible column is to ensure that adding a
column to a table or view won’t disrupt any of the existing application code. If the application code doesn’t explicitly
access the invisible column, then it appears to the application as if the column doesn’t exist.

A small example will demonstrate the usefulness of an invisible column. Suppose you have a table created and
populated with some data as follows:

create table sales(
 sales_id number primary key
,amnt number
,state varchar2(2)
,sales_person_id number);
--
insert into sales values(1, 222, 'CO', 8773);
insert into sales values(20, 827, 'FL', 9222);

And, furthermore, you have a view based on the prior table, created as shown:

create or replace view sales_co as
select sales_id, amnt, state
from sales where state = 'CO';

For the purpose of this example, suppose you also have a reporting table such as this:

create table rep_co(
 sales_id number
,amnt number
,state varchar2(2));

And, it is populated with this insert statement, which uses SELECT *:

SQL> insert into rep_co select * from sales_co;

ChApter 9 ■ Views, synonyms, And sequenCes

244

Sometime later, a new column is added to the view:

create or replace view sales_co as
select sales_id, amnt, state, sales_person_id
from sales where state = 'CO';

Now, consider what happens to the statement that is inserting into REP_CO. Because it uses a SELECT *, it breaks
because there hasn’t been a corresponding column added to the REP_CO table:

SQL> insert into rep_co select * from sales_co;

ORA-00913: too many values

The prior insert statement no longer is able to populate the REP_CO table because the statement doesn’t account
for the additional column that has been added to the view.

Now, consider the same scenario, but with the column added to the SALES_CO view with an invisible column:

 create or replace view sales_co
(sales_id, amnt, state, sales_person_id invisible)
as
select
 sales_id, amnt, state, sales_person_id
from sales
where state = 'CO';

When a view column is defined as invisible, this means that the column will not show up when describing the
view or in the output of SELECT *. This ensures that the insert statement based on a SELECT * will continue to work.

One could successfully argue that you should never create an insert statement based on a SELECT * and that
you therefore would never encounter this issue. Or, one could argue that the REP_CO table in this example should also
have a column added to it to avoid the problem. However, when working with third-party applications, you oftentimes
have no control over poorly written code. In this scenario, you can add an invisible column to a view without fear of
breaking any existing code.

Having said that, the invisible column isn’t entirely invisible. If you know the name of an invisible column, you
can select from it directly; for example,

SQL> select sales_id, amnt, state, sales_person_id from sales_co;

In this sense, the invisible column is only unseen to poorly written application code or to users that don’t know
the column exists.

Modifying a View Definition
If you need to modify the SQL query on which a view is based, then either drop and recreate the view, or use the
CREATE OR REPLACE syntax, as in the previous examples. For instance, say you add a REGION column to the SALES
table:

SQL> alter table sales add (region varchar2(30));

ChApter 9 ■ Views, synonyms, And sequenCes

245

Now, to add the REGION column to the SALES_ROCKIES view, run the following command to replace the existing
view definition:

create or replace view sales_rockies as
select sales_id, amnt, state, region
from sales
where state in ('CO','UT','WY','ID','AZ')
with read only;

The advantage of using the CREATE OR REPLACE method is that you don’t have to reestablish access to the
view for users with previously granted permissions. The alternative to CREATE OR REPLACE is to drop and recreate the
view with the new definition. If you drop and recreate the view, you must regrant privileges to any users or roles that
were previously granted access to the dropped and recreated object. For this reason, I almost never use the
drop-and-recreate method when altering the structure of a view.

What happens if you remove a column from a table, and there is a corresponding view that references the
removed column?; for example,

SQL> alter table sales drop (region);

If you attempt to select from the view, you’ll receive an ORA-04063 error. When modifying underlying tables,
you can check to see if a view is affected by the table change by compiling the view; for example,

SQL> alter view sales_rockies compile;

Warning: View altered with compilation errors.

In this way, you can proactively determine whether or not a table change affects dependent views. In this
situation, you should recreate the view sans the dropped table column:

create or replace view sales_rockies as
select sales_id, amnt, state
from sales
where state in ('CO','UT','WY','ID','AZ')
with read only;

Displaying the SQL Used to Create a View
Sometimes, when you’re troubleshooting issues with the information a view returns, you need to see the SQL query
on which the view is based. The view definition is stored in the TEXT column of the DBA/USER/ALL_VIEWS views. Note
that the TEXT column of the DBA/USER/ALL_VIEWS views is a LONG data type and that, by default, SQL*Plus only shows
80 characters of this type. You can set it longer, as follows:

SQL> set long 5000

Now, use the following script to display the text associated with a particular view for a user:

select view_name, text
from dba_views
where owner = upper('&owner')
and view_name like upper('&view_name');

ChApter 9 ■ Views, synonyms, And sequenCes

246

You can also query ALL_VIEWS for the text of any view you have access to:

select text
from all_views
where owner='MV_MAINT'
and view_name='SALES_ROCKIES';

If you want to display the view text that exists within your schema, use USER_VIEWS:

select text
from user_views
where view_name=upper('&view_name');

Note ■ the TEXT column of DBA/ALL/USER_VIEWS does not hide information regarding columns that were defined as
invisible.

You can also use the DBMS_METADATA package’s GET_DDL function to display a view’s code. The data type returned
from GET_DDL is a CLOB; therefore, if you run it from SQL*Plus, make sure you first set your LONG variable to a sufficient
size to display all the text. For example, here is how to set LONG to 5,000 characters:

SQL> set long 5000

Now, you can display the view definition by invoking DBMS_METADATA.GET_DDL with a SELECT statement,
as follows:

SQL> select dbms_metadata.get_ddl('VIEW','SALES_ROCKIES') from dual;

If you want to display the DDL for all views for the currently connected user, run this SQL:

SQL> select dbms_metadata.get_ddl('VIEW', view_name) from user_views;

Renaming a View
There are a couple of good reasons to rename a view. You may want to change the name so that it better conforms to
standard, or you may want to rename a view before dropping it so that you can better determine whether it’s in use.
Use the RENAME statement to change the name of a view. This example renames a view:

SQL> rename sales_rockies to sales_rockies_old;

You should see this message:

Table renamed.

The prior message would make more sense if it said, “View renamed”; just be aware that the message, in this
case, doesn’t exactly match the operation.

ChApter 9 ■ Views, synonyms, And sequenCes

247

Dropping a View
Before you drop a view, consider renaming it. If you’re certain that a view isn’t being used anymore, then it makes
sense to keep your schema as clean as possible and drop any unused objects. Use the DROP VIEW statement to drop a
view:

SQL> drop view sales_rockies_old;

Keep in mind that when you drop a view, any dependent views, materialized views, and synonyms become
invalid. Additionally, any grants associated with the dropped view are also removed.

Managing Synonyms
Synonyms provide a mechanism for creating an alternate name or alias for an object. For example, say USER1 is the
currently connected user, and USER1 has select access to USER2’s EMP table. Without a synonym, USER1 must select from
USER2’s EMP table, as follows:

SQL> select * from user2.emp;

Assuming it has the CREATE SYNONYM system privilege, USER1 can do the following:

SQL> create synonym emp for user2.emp;

Now, USER1 can transparently select from USER2’s EMP table:

SQL> select * from emp;

You can create synonyms for the following types of database objects:

Tables•	

Views, object views•	

Other synonyms•	

Remote objects via a database link•	

PL/SQL packages, procedures, and functions•	

Materialized views•	

Sequences•	

Java class schema object•	

User-defined object types•	

Creating a synonym that points to another object eliminates the need to specify the schema owner and also
allows you to specify a name for the synonym that does not match the object name. This lets you create a layer of
abstraction between an object and the user, often referred to as object transparency. Synonyms allow you to manage
objects transparently and separately from the users that access the objects. You can also seamlessly relocate objects
to different schemas or even different databases. The application code that references the synonym doesn’t need to
change—only the definition of the synonym.

ChApter 9 ■ Views, synonyms, And sequenCes

248

Tip ■ you can use synonyms to set up multiple application environments within one database. each environment has
its own synonyms that point to a different user’s objects, allowing you to run the same code against several different
schemas within one database. you may do this because you can’t afford to build a separate box or database for
development, testing, quality assurance, production, and so on.

Creating a Synonym
A user must be granted the CREATE SYNONYM system privilege before creating a synonym. Once that privilege
is granted, use the CREATE SYNONYM command to create an alias for another database object. You can specify
CREATE OR REPLACE SYNONYM if you want the statement to create the synonym, if it doesn’t exist, or replace the
synonym definition, if it does. This is usually acceptable behavior.

In this example, a synonym will be created that provides access to a view. First, the owner of the view must grant
select access to the view. Here, the owner of the view is MV_MAINT:

SQL> show user;
USER is "MV_MAINT"

SQL> grant select on sales_rockies to app_user;

Next, connect to the database as the user that will create the synonym.

SQL> conn app_user/foo

While connected as APP_USER, a synonym is created that points to a view named SALES_ROCKIES, owned by
MV_MAINT:

SQL> create or replace synonym sales_rockies for mv_maint.sales_rockies;

Now, the APP_USER can directly reference the SALES_ROCKIES view:

SQL> select * from sales_rockies;

With the CREATE SYNONYM command, if you don’t specify OR REPLACE (as shown in the example), and the
synonym already exists, then an ORA-00955 error is thrown. If it’s okay to overwrite any prior existing synonym
definitions, then specify the OR REPLACE clause.

The creation of the synonym doesn’t also create the privilege to access an object. Such privileges must be granted
separately, usually before you create the synonym (as shown in the example).

By default, when you create a synonym, it’s a private synonym. This means that it’s owned by the user that
created the synonym and that other users can’t access it unless they’re granted the appropriate object privileges.

Creating Public Synonyms
You can also define a synonym as public (see the previous section, “Creating a Synonym,” for a discussion of private
synonyms), which means that any user in the database has access to the synonym. Sometimes, an inexperienced DBA
does the following:

SQL> grant all on sales to public;
SQL> create public synonym sales for mv_maint.sales;

ChApter 9 ■ Views, synonyms, And sequenCes

249

Now, any user that can connect to the database can perform any INSERT, UPDATE, DELETE, or SELECT operation
on the SALES table that exists in the MV_MAINT schema. You may be tempted to do this so that you don’t have to bother
setting up individual grants and synonyms for each schema that needs access. This is almost always a bad idea. There
are a few issues with using public synonyms:

Troubleshooting can be problematic if you’re not aware of globally defined (public) •	
synonyms; DBAs tend to forget or are unaware that public synonyms were created.

Applications that share one database can have collisions on object names if multiple •	
applications use public synonyms that aren’t unique within the database.

Security should be administered as needed, not on a wholesale basis.•	

I usually try to avoid using public synonyms. However, there may be scenarios that warrant their use. For
example, when Oracle creates the data dictionary, public synonyms are used to simplify the administration of access
to internal database objects. To display any public synonyms in your database, run this query:

select owner, synonym_name
from dba_synonyms
where owner='PUBLIC';

Dynamically Generating Synonyms
Sometimes, it’s useful to dynamically generate synonyms for all tables or views for a schema that needs private
synonyms. The following script uses SQL*Plus commands to format and capture the output of an SQL script that
generates synonyms for all tables within a schema:

CONNECT &&master_user/&&master_pwd
--
SET LINESIZE 132 PAGESIZE 0 ECHO OFF FEEDBACK OFF
SET VERIFY OFF HEAD OFF TERM OFF TRIMSPOOL ON
--
SPO gen_syns_dyn.sql
--
select 'create or replace synonym ' || table_name ||
 ' for ' || '&&master_user..' ||
 table_name || ';'
from user_tables;
--
SPO OFF;
--
SET ECHO ON FEEDBACK ON VERIFY ON HEAD ON TERM ON;

Look at the &master_user variable with the two dots appended to it in the SELECT statement: what is the purpose
of double-dot syntax? A single dot at the end of an ampersand variable instructs SQL*Plus to concatenate anything
after the single dot to the ampersand variable. When you place two dots together, that tells SQL*Plus to concatenate
a single dot to the string contained in the ampersand variable.

ChApter 9 ■ Views, synonyms, And sequenCes

250

Displaying Synonym Metadata
The DBA/ALL/USER_SYNONYMS views contain information about synonyms in the database. Use the following SQL to
view synonym metadata for the currently connected user:

select synonym_name, table_owner, table_name, db_link
from user_synonyms
order by 1;

The ALL_SYNONYMS view displays all private synonyms, all public synonyms, and any private synonyms owned by
different users for which your currently connected user has select access to the underlying base table. You can display
information for all private and public synonyms in your database by querying the DBA_SYNONYMS view.

The TABLE_NAME column in the DBA/ALL/USER_SYNONYMS views is a bit of a misnomer because TABLE_NAME
can reference many types of database objects, such as another synonym, view, package, function, procedure, or
materialized view. Similarly, TABLE_OWNER refers to the owner of the object (and that object may not necessarily be
a table).

When you’re diagnosing data integrity issues, sometimes you first want to identify what table or object is being
accessed. You can select from what appears to be a table, but in reality it may be a synonym that points to a view that
selects from a synonym, which in turn points to a table in a different database.

The following query is often a starting point for figuring out whether an object is a synonym, a view, or a table:

select owner, object_name, object_type, status
from dba_objects
where object_name like upper('&object_name%');

Note that using the wildcard character the percentage sign (%) in this query allows you to enter the object’s partial
name. Therefore, the query has the potential to return information regarding any object that partially matches the text
string you enter.

You can also use the GET_DDL function of the DBMS_METADATA package to display synonym metadata. If you want
to display the DDL for all synonyms for the currently connected user, run this SQL:

SQL> set long 5000
SQL> select dbms_metadata.get_ddl('SYNONYM', synonym_name) from user_synonyms;

You can also display the DDL for a particular user. You must provide as input to the GET_DDL function the object
type, object name, and schema:

SQL> select dbms_metadata.get_ddl(object_type=>'SYNONYM',
 name=>'SALES_ROCKIES', schema=>'APP_USER') from dual;

Renaming a Synonym
You may want to rename a synonym so that it conforms to naming standards or in order to determine whether it’s
being used. Use the RENAME statement to change the name of a synonym:

SQL> rename inv_s to inv_st;

Note that the output displays this message:

Table renamed.

ChApter 9 ■ Views, synonyms, And sequenCes

251

The prior message is somewhat misleading. It indicates that a table has been renamed, when, in this scenario,
it was a synonym.

Dropping a Synonym
If you’re certain that you no longer need a synonym, then you can drop it. Unused synonyms can be confusing
to others called on to enhance or debug existing applications. Use the DROP SYNONYM statement to drop a private
synonym:

SQL> drop synonym inv;

If it’s a public synonym, then you need to specify PUBLIC when you drop it:

SQL> drop public synonym inv_pub;

If successful, you should see this message:

Synonym dropped.

Managing Sequences
A sequence is a database object that users can access to select unique integers. Sequences are typically used to
generate integers for populating primary key and foreign key columns. You increment a sequence by accessing it via a
SELECT, INSERT, or UPDATE statement. Oracle guarantees that a sequence number is unique when selected; no two user
sessions can choose the same sequence number.

There is no way to guarantee that occasional gaps won’t occur in the numbers generated by a sequence. Usually,
some number of sequence values are cached in memory, and in the event of an instance failure (power failure,
shutdown abort), any unused values still in memory are lost. Even if you don’t cache the sequence, nothing stops a
user from acquiring a sequence as part of a transaction and then rolling back that transaction (the transaction is rolled
back, but not the sequence). For most applications, it’s acceptable to have a mostly gap-free, unique integer generator.
Just be aware that gaps can exist.

Creating a Sequence
For many applications, creating a sequence can be as simple as this:

SQL> create sequence inv_seq;

By default the starting number is 1, the increment is 1, the default number of sequences cached in memory is 20,
and the maximum value is 10^27. You can verify the default values via this query:

select sequence_name, min_value, increment_by, cache_size, max_value
from user_sequences;

You have a great deal of latitude in changing aspects of a sequence when creating it. For example, this command
creates a sequence with a starting value of 1,000 and a maximum value of 1,000,000:

SQL> create sequence inv_seq2 start with 10000 maxvalue 1000000;

Table 9-1 lists the various options available when you’re creating a sequence.

ChApter 9 ■ Views, synonyms, And sequenCes

252

Using Sequence Pseudocolumns
After a sequence is created, you can use two pseudocolumns to access the sequence’s value:

•	 NEXTVAL

•	 CURRVAL

You can reference these pseudocolumns in any SELECT, INSERT, or UPDATE statements. To retrieve a value from
the INV_SEQ sequence, access the NEXTVAL value, as shown:

SQL> select inv_seq.nextval from dual;

Now that a sequence number has been retrieved for this session, you can use it multiple times by accessing the
CURRVAL value:

SQL> select inv_seq.currval from dual;

The following example uses a sequence to populate the primary key value of a parent table and then uses the
same sequence to populate the corresponding foreign key values in a child table. The sequence can be accessed
directly in the INSERT statement. The first time you access the sequence, use the NEXTVAL pseudocolumn.

SQL> insert into inv(inv_id, inv_desc) values (inv_seq.nextval, 'Book');

Table 9-1. Sequence Creation Options

Option Description

INCREMENT BY Specifies the interval between sequence numbers

START WITH Specifies the first sequence number generated

MAXVALUE Specifies the maximum value of the sequence

NOMAXVALUE Sets the maximum value of a sequence to a really big number (10^28 -1)

MINVALUE Specifies the minimum value of sequence

NOMINVALUE Sets the minimum value to 1 for an ascending sequence; sets the value to –(10^28–1) for
a descending sequence

CYCLE Specifies that when the sequence hits a maximum or minimum value, it should start generating
numbers from the minimum value for an ascending sequence and from the maximum value for
a descending sequence

NOCYCLE Tells the sequence to stop generating numbers after a maximum or minimum value is reached

CACHE Specifies how many sequence numbers to preallocate and keep in memory. If CACHE and
NOCACHE aren’t specified, the default is CACHE 20.

NOCACHE Specifies that sequence numbers aren’t to be cached

ORDER Guarantees that the numbers are generated in the order of request

NOORDER Used if it isn’t necessary to guarantee that sequence numbers are generated in the order of
request. This is usually acceptable and is the default.

ChApter 9 ■ Views, synonyms, And sequenCes

253

If you want to reuse the same sequence value, you can reference it via the CURRVAL pseudocolumn. Next, a record
is inserted into a child table that uses the same value for the foreign key column as its parent primary key value:

insert into inv_lines
 (inv_line_id,inv_id,inv_item_desc)
 values
 (1, inv_seq.currval, 'Tome1');
--
insert into inv_lines
 (inv_line_id,inv_id,inv_item_desc)
 values
 (2, inv_seq.currval, 'Tome2');

Autoincrementing Columns

Tip ■ starting with oracle database 12c, you can create a table with identity columns that are automatically populated
with sequence values. see Chapter 7 for details.

I occasionally get this request from a developer: “I used to work with another database, and it had a really cool feature
that would allow you to create a table and, as part of the table definition, specify that a column should always be
populated with an automatically incrementing number.” Prior to Oracle Database 12c, I would reply something like,
“Oracle has no such feature. If you have an issue with this, please send an e-mail to Larry at . . .” Or, I would inform
the developer that he or she could either use the sequence number directly in an INSERT statement (as shown in the
previous section, “Using Sequence Pseudocolumns”) or select the sequence value into a variable and then reference
the variable as needed.

If you’re not able to use the identity column feature in Oracle Database 12c, then you can simulate this automatic
incrementing functionality by using triggers. For instance, say you create a table and sequence, as follows:

SQL> create table inv(inv_id number, inv_desc varchar2(30));
SQL> create sequence inv_seq;

Next, create a trigger on the INV table that automatically populates the INV_ID column from the sequence:

create or replace trigger inv_bu_tr
before insert on inv
for each row
begin
 select inv_seq.nextval into :new.inv_id from dual;
end;
/

Now, insert a couple of records into the INV table:

SQL> insert into inv (inv_desc) values('Book');
SQL> insert into inv (inv_desc) values('Pen');

ChApter 9 ■ Views, synonyms, And sequenCes

254

Select from the table to verify that the INV_ID column is indeed populated automatically by the sequence:

SQL> select * from inv;
 INV_ID INV_DESC
---------- ------------------------------
 1 Book
 2 Pen

I generally don’t like using this technique. Yes, it makes it easier for the developers, in that they don’t have to
worry about populating the key columns. However, it’s more work for the DBA to generate the code required to
maintain the columns to be automatically populated. Because I’m the DBA, and I like to keep the database code
that I maintain as simple as possible, I usually tell the developers that we aren’t using this autoincrementing column
approach and that we’ll instead use the technique of directly calling the sequence in the DML statements (as shown in
the previous section, “Using Sequence Pseudocolumns”).

Gap-Free SeQUeNCeS

people sometimes worry unduly about ensuring that not a single sequence value is lost as rows are inserted into
a table. in a few cases, i’ve seen applications fail because of gaps in sequence values. i have two thoughts on
these issues:

if you’re worried about gaps, you aren’t thinking correctly about the problem you’re solving.•	

if your application fails because of gaps, you’re doing it wrong.•	

my words are strong, i know, but few, if any, applications need gap-free sequences. if you really and truly need
gap-free sequences, then using oracle sequence objects is the wrong approach. you must instead implement
your own sequence generator. you’ll need to go through agonizing contortions to make sure no gaps exist. those
contortions will impair your code’s performance. And, in the end, you’ll probably fail.

Implementing Multiple Sequences That Generate Unique Values
I once had a developer ask if it was possible to create multiple sequences for an application and to guarantee that each
sequence would generate numbers unique across all sequences. If you have this type of requirement, you can handle
it a few different ways:

If you’re feeling grumpy, tell the developer that it’s not possible and that the standard is to use •	
one sequence per application (this is usually the approach I take).

Set sequences to start and increment at different points.•	

Use ranges of sequence numbers.•	

If you’re not feeling grumpy, you can set up a small, finite number of sequences that always generate unique
values by specifying an odd or even starting number and then incrementing the sequence by two. For example, you
can set up two odd and two even sequence generators; for example,

SQL> create sequence inv_seq_odd start with 1 increment by 2;
SQL> create sequence inv_seq_even start with 2 increment by 2;
SQL> create sequence inv_seq_odd_dwn start with -1 increment by -2;
SQL> create sequence inv_seq_even_dwn start with -2 increment by -2;

ChApter 9 ■ Views, synonyms, And sequenCes

255

The numbers generated by these four sequences should never intersect. However, this approach is limited by its
ability to use only four sequences.

If you need more than four unique sequences, you can use ranges of numbers; for example,

SQL> create sequence inv_seq_low start with 1 increment by 1 maxvalue 10000000;
SQL> create sequence inv_seq_ml start with 10000001 increment by 1 maxvalue 20000000;
SQL> create sequence inv_seq_mh start with 20000001 increment by 1 maxvalue 30000000;
SQL> create sequence inv_seq_high start with 30000001 increment by 1 maxvalue 40000000;

With this technique, you can set up numerous different ranges of numbers to be used by each sequence.
The downside is that you’re limited by the number of unique values that can be generated by each sequence.

Creating One Sequence or Many
Say you have an application with 20 tables. One question that comes up is whether you should use 20 different
sequences to populate the primary key and foreign key columns for each table or just 1 sequence.

I recommend using just 1 sequence; 1 sequence is easier to manage than multiple sequences, and it means less
DDL code to manage and fewer places to investigate when there are issues.

Sometimes, developers raise issues such as

performance problems with only 1 sequence•	

sequence numbers that become too high•	

If you cache the sequence values, usually there are no performance issues with accessing sequences. The
maximum number for a sequence is 10^28–1, so if the sequence is incrementing by one, you’ll never reach the
maximum value (at least, not in this lifetime).

However, in scenarios in which you’re generating surrogate keys for the primary and child tables, it’s sometimes
convenient to use more than 1 sequence. In these situations multiple sequences per application may be warranted.
When you use this approach, you must remember to add a sequence when tables are added and potentially drop
sequences as tables are removed. This isn’t a big deal, but it means a little more maintenance for the DBA, and the
developers must ensure that they use the correct sequence for each table.

Viewing Sequence Metadata
If you have DBA privileges, you can query the DBA_SEQUENCES view to display information about all sequences in the
database. To view sequences that your schema owns, query the USER_SEQUENCES view:

select sequence_name, min_value, max_value, increment_by
from user_sequences;

To view the DDL code required to recreate a sequence, access the DBMS_METADATA view. If you’re using SQL*Plus
to execute DBMS_METADATA, first ensure that you set the LONG variable:

SQL> set long 5000

This example extracts the DDL for INV_SEQ:

SQL> select dbms_metadata.get_ddl('SEQUENCE','INV_SEQ') from dual;

ChApter 9 ■ Views, synonyms, And sequenCes

256

If you want to display the DDL for all sequences for the currently connected user, run this SQL:

SQL> select dbms_metadata.get_ddl('SEQUENCE',sequence_name) from user_sequences;

You can also generate the DDL for a sequence owned by a particular user by providing the SCHEMA parameter:

select
dbms_metadata.get_ddl(object_type=>'SEQUENCE', name=>'INV_SEQ', schema=>'INV_APP')
from dual;

Renaming a Sequence
Occasionally, you may need to rename a sequence. For instance, a sequence may have been created with an
erroneous name, or you may want to rename the sequence before dropping it from the database. Use the RENAME
statement to do this. This example renames INV_SEQ to INV_SEQ_OLD:

SQL> rename inv_seq to inv_seq_old;

You should see the following message:

Table renamed.

In this case, even though the message says, “Table renamed,” it was the sequence that was renamed.

Dropping a Sequence
Usually, you want a drop a sequence either because it’s not used or you want to recreate it with a new starting number.
To drop a sequence, use the DROP SEQUENCE statement:

SQL> drop sequence inv_seq;

When an object is dropped, all the associated grants on the object are dropped as well. So, if you need to recreate
the sequence, then remember to reissue select grants to other users that may need to use the sequence.

Tip ■ see the next section, “resetting a sequence,” for an alternative approach to dropping and recreating a sequence.

Resetting a Sequence
You may occasionally be required to change the current value of a sequence number. For example, you may work in a
test environment in which the developers periodically want the database reset to a previous state. A typical scenario
is one in which the developers have scripts that truncate the tables and reseed them with test data and, as part of that
exercise, want a sequence set back to a value such as 1.

Oracle’s documentation states, “to restart a sequence at a different number, you must drop and re-create
it.” That’s not entirely accurate. In most cases, you should avoid dropping a sequence because you must regrant
permissions on the object to users that currently have select permissions on the sequence. This can lead to temporary
downtime for your application while you track down those users.

ChApter 9 ■ Views, synonyms, And sequenCes

257

The following technique demonstrates how to set the current value to a higher or lower value, using the ALTER
SEQUENCE statement. The basic procedure is as follows:

1. Alter INCREMENT BY to a large number.

2. Select from the sequence to increment it by the large positive or negative value.

3. Set INCREMENT BY back to its original value (usually 1).

This example sets the next value of a sequence number to 1,000 integers higher than the current value:

SQL> alter sequence myseq increment by 1000;
SQL> select myseq.nextval from dual;
SQL> alter sequence myseq increment by 1;

Verify that the sequence is set to the value you desire:

SQL> select myseq.nextval from dual;

You can also use this technique to set the sequence number to a much lower number than the current value. The
difference is that the INCREMENT BY setting is a large negative number. For example, this example sets the sequence
back 1,000 integers:

SQL> alter sequence myseq increment by -1000;
SQL> select myseq.nextval from dual;
SQL> alter sequence myseq increment by 1;

Verify that the sequence is set to the value you desire:

SQL> select myseq.nextval from dual;

Additionally, you can automate the task of resetting a sequence number back to a value via an SQL script. This
technique is shown in the next several lines of SQL code. The code will prompt you for the sequence name and the
value you want the sequence set back to:

UNDEFINE seq_name
UNDEFINE reset_to
PROMPT "sequence name" ACCEPT '&&seq_name'
PROMPT "reset to value" ACCEPT &&reset_to
COL seq_id NEW_VALUE hold_seq_id
COL min_id NEW_VALUE hold_min_id
--
SELECT &&reset_to - &&seq_name..nextval - 1 seq_id
FROM dual;
--
SELECT &&hold_seq_id - 1 min_id FROM dual;
--
ALTER SEQUENCE &&seq_name INCREMENT BY &hold_seq_id MINVALUE &hold_min_id;
--
SELECT &&seq_name..nextval FROM dual;
--
ALTER SEQUENCE &&seq_name INCREMENT BY 1;

ChApter 9 ■ Views, synonyms, And sequenCes

258

To ensure that the sequence has been set to the value you want, select the NEXTVAL from it:

SQL> select &&seq_name..nextval from dual;

This approach can be quite useful when you’re moving applications through various development, test, and
production environments. It allows you to reset the sequence without having to reissue object grants.

Summary
Views, synonyms, and sequences are used extensively in Oracle database applications. These objects (along with
tables and indexes) afford the technology for creating sophisticated applications.

Views offer a way to create and store complex multitable join queries that can then be used by database
users and applications. Views can be used to update the underlying base tables or can be created read-only for
reporting requirements.

Synonyms (along with appropriate privileges) provide a mechanism for transparently allowing a user to access
objects that are owned by a separate schema. The user accessing a synonym needs to know only the synonym name,
regardless of the underlying object type and owner. This lets the application designer seamlessly separate the owner
of the objects from the users that access the objects.

Sequences generate unique integers that are often used by applications to populate primary key and foreign
key columns. Oracle guarantees that when a sequence is accessed, it will always return a unique value to the
selecting user.

After installing the Oracle binaries and creating a database and tablespaces, usually you create an application
that consists of the owning user and corresponding tables, constraints, indexes, views, synonyms, and sequences.
Metadata regarding these objects are stored internally in the data dictionary. The data dictionary is used extensively
for monitoring, troubleshooting, and diagnosing issues. You must be thoroughly fluent with retrieving information
from the data dictionary. Retrieving and analyzing data dictionary information is the topic of the next chapter.

259

Chapter 10

Data Dictionary Fundamentals

The previous chapters in this book focused on topics such as creating a database, strategically implementing
tablespaces, managing users, basic security, tables, indexes, and constraints. In those chapters, you were presented
with several SQL queries, which accessed the data dictionary views in order to

show what users are in the database and if any of their passwords expired•	

display the owners of each table and associated privileges•	

show the settings of various database parameters•	

determine which columns have foreign key constraints defined on them•	

display tablespaces and associated data files and space usage•	

In this regard, Oracle’s data dictionary is vast and robust. Almost every conceivable piece of information
about your database is available for retrieval. The data dictionary stores critical information about the physical
characteristics of the database, users, objects, and dynamic performance metrics. A senior-level DBA must possess an
expert knowledge of the data dictionary.

This chapter is a turning point in the book, dividing it between basic DBA tasks and more advanced topics.
It’s appropriate at this time to dive into the details of the inner workings of the data dictionary. Knowledge of these
workings will provide a foundation for understanding your environment, extracting pertinent information, and doing
your job.

The first few sections of this chapter detail the architecture of the data dictionary and how it is created. Also
shown are the relationships between logical objects and physical structures and how they relate to specific data
dictionary views. These understandings will serve as a basis for writing SQL queries to extract the information that
you’ll need to be a more efficient and effective DBA. Finally, several examples are presented, illustrating how DBAs
use the data dictionary.

Data Dictionary Architecture
If you inherit a database and are asked to maintain and manage it, typically you’ll inspect the contents of the data
dictionary to determine the physical structure of the database and see what events are currently transacting. Toward
this end, Oracle provides two general categories of read-only data dictionary views:

The contents of your database, such as users, tables, indexes, constraints, and privileges. •	
These are sometimes referred to as the static CDB/DBA/ALL/USER data dictionary views, and
they’re based on internal tables stored in the SYSTEM tablespace. The term static, in this sense,
means that the information within these views only changes as you make changes to your
database, such as adding a user, creating a table, or modifying a column.

Chapter 10 ■ Data DiCtionary FunDamentals

260

A real-time view of activity in the database, such as users connected to the database, •	
SQL currently executing, memory usage, locks, and I/O statistics. These views are based on
virtual memory tables and are referred to as the dynamic performance views. The information
in these views is continuously updated by Oracle as events take place within the database. The
views are also sometimes called the V$ or GV$ views.

These types of data dictionary views are described in further detail in the next two sections.

Static Views
Oracle refers to a subset of the data dictionary views as static. These views are based on physical tables maintained
internally by Oracle. Oracle’s documentation states that these views are static in the sense that the data they contain
don’t change at a rapid rate (at least, not compared with the dynamic V$ and GV$ views).

The term static can sometimes be a misnomer. For example, the DBA_SEGMENTS and DBA_EXTENTS views change
dynamically as the amount of data in your database grows and shrinks. Regardless, Oracle has made the distinction
between static and dynamic, and it’s important to understand this architectural nuance when querying the data
dictionary. Prior to Oracle Database 12c, there were only three levels of static views:

•	 USER

•	 ALL

•	 DBA

Starting with Oracle Database 12c, there is a fourth level that is applicable when using the container/pluggable
database feature:

•	 CDB

The USER views contain information available to the current user. For example, the USER_TABLES view
contains information about tables owned by the current user. No special privileges are required to select from
the USER-level views.

At the next level are the ALL static views. The ALL views show you all object information the current user has
access to. For example, the ALL_TABLES view displays all database tables on which the current user can perform any
type of DML operation. No special privileges are required to query from the ALL-level views.

Next are the DBA static views. The DBA views contain metadata describing all objects in the database (regardless
of ownership or access privilege). To access the DBA views, a DBA role or SELECT_CATALOG_ROLE must be granted to the
current user.

The CDB-level views are only applicable if you’re using the pluggable database feature. This level provides
information about all pluggable databases within a container database (hence the acronym CDB). Starting with Oracle
Database 12c, you’ll notice that many of the static data dictionary and dynamic performance views have a new
column, CON_ID. This column uniquely identifies each pluggable database within a container database.

Tip ■ see Chapter 23 for a full discussion of pluggable databases. unless otherwise noted, this chapter focuses on the
DBA/ALL/USER-level views. Just keep in mind that if you’re working with oracle Database 12c and pluggable databases,
you may need to access the CDB-level views when reporting on all pluggable databases within a container database.

The static views are based on internal Oracle tables, such as USER$, TAB$, and IND$. If you have access to the SYS
schema, you can view underlying tables directly via SQL. For most situations, you only need to access the static views
that are based on the underlying internal tables.

Chapter 10 ■ Data DiCtionary FunDamentals

261

The data dictionary tables (such as USER$, TAB$, IND$) are created during the execution of the CREATE DATABASE
command. As part of creating a database, the sql.bsq file is executed, which builds these internal data dictionary
tables. The sql.bsq file is generally located in the ORACLE_HOME/rdbms/admin directory; you can view it via an OS
editing utility (such as vi, in Linux/Unix, or Notepad, in Windows).

The static views are created when you run the catalog.sql script (usually, you run this script once the CREATE
DATABASE operation succeeds). The catalog.sql script is located in the ORACLE_HOME/rdbms/admin directory.
Figure 10-1 shows the process of creating the static data dictionary views.

CREATE
DATABASE

ORACLE_HOME/rdbms/admin/
sql.bsq

static tables
USER$
TAB$...

ORACLE_HOME/rdbms/admin/
catalog.sql

static views
DBA_USERS

DBA_TABLES...

DBA: step 1

DBA: step 2

Figure 10-1. Creating the static data dictionary views

You can view the creation scripts of the static views by querying the TEXT column of DBA_VIEWS; for example,

SQL > set long 5000
SQL > select text from dba_views where view_name = 'DBA_VIEWS';

Here is the output:

select u.name, o.name, v.textlength, v.text, t.typetextlength, t.typetext,
 t.oidtextlength, t.oidtext, t.typeowner, t.typename,
 decode(bitand(v.property, 134217728), 134217728,
 (select sv.name from superobj$ h, "_CURRENT_EDITION_OBJ" sv
 where h.subobj# = o.obj# and h.superobj# = sv.obj#), null),
 decode(bitand(v.property, 32), 32, 'Y', 'N'),
 decode(bitand(v.property, 16384), 16384, 'Y', 'N'),
 decode(bitand(v.property/4294967296, 134217728), 134217728, 'Y', 'N'),
 decode(bitand(o.flags,8),8,'CURRENT_USER','DEFINER')
from sys."_CURRENT_EDITION_OBJ" o, sys.view$ v, sys.user$ u, sys.typed_view$ t
where o.obj# = v.obj#
 and o.obj# = t.obj#(+)
 and o.owner# = u.user#

Note ■ if you manually create a database (not using the dbca utility), you must be connected as the SYS schema when
you run the catalog.sql and catproc.sql scripts. the SYS schema is the owner of all objects in the data dictionary.

Chapter 10 ■ Data DiCtionary FunDamentals

262

Dynamic Performance Views
The dynamic performance data dictionary views are colloquially referred to as the V$ and GV$ views. These views
are constantly updated by Oracle and reflect the current condition of the instance and database. Dynamic views are
critical for diagnosing real-time performance issues.

The V$ and GV$ views are indirectly based on underlying X$ tables, which are internal memory structures that are
instantiated when you start your Oracle instance. Some of the V$ views are available the moment the Oracle instance
is started. For example, V$PARAMETER contains meaningful data after the STARTUP NOMOUNT command has been issued,
and doesn’t require the database to be mounted or open. Other dynamic views (such as V$CONTROLFILE) depend
on information in the control file and therefore contain significant information only after the database has been
mounted. Some V$ views (such as V$BH) provide kernel-processing information and thus have useful results only after
the database has been opened.

At the top layer, the V$ views are actually synonyms that point to underlying SYS.V_$ views. At the next layer
down, the SYS.V_$ objects are views created on top of another layer of SYS.V$ views. The SYS.V$ views in turn are
based on the SYS.GV$ views. At the bottom layer, the SYS.GV$ views are based on the X$ memory structures.

The top-level V$ synonyms and SYS.V_$ views are created when you run the catalog.sql script, which
you usually do after the database is initially created. Figure 10-2 shows the process for creating the V$ dynamic
performance views.

Start
Instance

ORACLE_HOME/rdbms/admin/
catalog.sql

DBA: Step 1

DBA: Step 2

X$
Memory

Structures

Dynamic
Performance
GV$ Views

Dynamic
Performance

V$ views

V_$ views
V$ syns

GV_$ views
GV$ syns

Figure 10-2. Creating the V$ dynamic performance data dictionary views

Accessing the V$ views through the topmost synonyms is usually adequate for dynamic performance information
needs. On rare occasions, you’ll want to query internal information that may not be available through the V$ views.
In these situations it’s critical to understand the X$ underpinnings.

If you work with Oracle RAC, you should be familiar with the GV$ global views. These views provide global
dynamic performance information regarding all instances in a cluster (whereas the V$ views are instance specific).
The GV$ views contain an INST_ID column for identifying specific instances in a clustered environment.

You can display the V$ and GV$ view definitions by querying the VIEW_DEFINITION column of the V$FIXED_VIEW_
DEFINITION view. For instance, this query displays the definition of the V$CONTROLFILE:

select view_definition
from v$fixed_view_definition
where view_name = 'V$CONTROLFILE';

Here is the output:

select STATUS, NAME, IS_RECOVERY_DEST_FILE, BLOCK_SIZE, FILE_SIZE_BLKS,
CON_ID from GV$CONTROLFILE where inst_id = USERENV('Instance')

Chapter 10 ■ Data DiCtionary FunDamentals

263

A Different View of Metadata
DBAs commonly face the following types of database issues:

An insert into a table fails because a tablespace can’t extend.•	

The database is refusing connections because the maximum number of sessions is exceeded.•	

An application is hung, apparently because of some sort of locking issue.•	

A PL/SQL statement is failing, with a memory error.•	

RMAN backups haven’t succeeded for 2 days.•	

A user is trying to update a record, but a unique key constraint violation is thrown.•	

An SQL statement has been running for hours longer than normal.•	

Application users have reported that performance seems sluggish and that something must be •	
wrong with the database.

The prior list is a small sample of the typical issues a DBA encounters on a daily basis. A certain amount of
knowledge is required to be able to efficiently diagnose and handle these types of problems. A fundamental piece of
that knowledge is an understanding of Oracle’s physical structures and corresponding logical components.

For example, if a table can’t extend because a tablespace is full, what knowledge do you rely on to solve this
problem? You need to understand that when a database is created, it contains multiple logical space containers called
tablespaces. Each tablespace consists of one or more physical data files. Each data file consists of many OS blocks.
Each table consists of a segment, and every segment contains one or more extents. As a segment needs space, it
allocates additional extents within a physical data file.

Once you understand the logical and physical concepts involved, you intuitively look in data dictionary views
such as DBA_TABLES, DBA_SEGMENTS, DBA_TABLESPACES, and DBA_DATA_FILES to pinpoint the issue and add space as
required. In a wide variety of troubleshooting scenarios, your understanding of the relationships of various logical and
physical constructs will allow you to focus on querying views that will help you quickly resolve the problem at hand.
To that end, inspect Figure 10-3. This diagram describes the relationships between logical and physical structures in
an Oracle database. The rounded rectangle shapes represent logical constructs, and the sharp-cornered rectangles
are physical files.

Chapter 10 ■ Data DiCtionary FunDamentals

264

Tip ■ logical objects are only viewable from sQl after the database has been started. in contrast, physical objects can
be viewed via os utilities even if the instance is not started.

Figure 10-3 doesn’t show all the relationships of all logical and physical aspects of an Oracle database. Rather,
it focuses on components that you’re most likely to encounter on a daily basis. This base relational diagram forms a
foundation for leveraging of Oracle’s data dictionary infrastructure.

Keep an image of Figure 10-3 open in your mind; now, juxtapose it with Figure 10-4.

smon

database

tablespaces

users

schemas

extents database
blocks

SGA
memory

physical
database

segments

others

triggers

pmon

lgwr

arch

dbwr

ckpt

PGA

instance

Oracle
sessions

objects

views

synonymssource

sequences indexes

tables

privileges

constraints

profiles

Oracle
processes

RMAN
backup

trace files

alert log

copy
parameter

initialization
file

Oracle
binaries

Oracle
net files

pwd file

flashback
logs

control
files

data files

OS
blocks

FRA (optional)
RMAN backup sets
RMAN image copies
archive redo logs
onine redo logs
control files
flashback logs

backup
piece

archive
redo
logs

redo
logs

log buffer

buffer cache

shared pool
library cache

SQL

DD cache

backup
set

Figure 10-3. Oracle database logical and physical structure relationships

Chapter 10 ■ Data DiCtionary FunDamentals

265

Voila, these data dictionary views map very closely to almost all the logical and physical elements of an Oracle
database. Figure 10-4 doesn’t show every data dictionary view. Indeed, the figure barely scratches the surface.
However, this diagram does provide you with a secure foundation on which to build your understanding of how to
leverage the data dictionary views to get the data you need to do your job.

The diagram does show relationships between views, but it doesn’t specify which columns to use when joining
views together. You’ll have to describe the tables and make an educated guess as to how the views should be joined.
For example, suppose you want to display the data files associated with tablespaces that aren’t locally managed. That
requires joining DBA_TABLESPACES to DBA_DATA_FILES. If you inspect those two views, you’ll notice that each contains
a TABLESPACE_NAME column, which allows you to write a query as follows:

select a.tablespace_name, a.extent_management, b.file_name
from dba_tablespaces a,
 dba_data_files b
where a.tablespace_name = b.tablespace_name
and a.extent_management != 'LOCAL';

It’s generally somewhat obvious how to join the views. Use the diagram as a guide for where to start looking
for information and how to write SQL queries that will provide answers to problems and expand your knowledge of
Oracle’s internal architecture and inner workings. This anchors your problem-solving skills on a solid foundation.
Once you firmly understand the relationships of Oracle’s logical and physical components and how this relates to the
data dictionary, you can confidently address any type of database issue.

v$database

dba_tablespaces
v$tablespace

dba_users

dba_extents

v$sga

dba_segments
v$segstat

other views

dba_triggers

v$bgprocess

v$pgastat

v$instance

v$session

dba_objects

dba_views

dba_synonymsdba_source

dba_sequences dba_indexes

dba_tables

dba_tab_privs

dba_constraints

dba_profiles

v$process

v$sgastat
v$sysstat
v$sesstat

v$lock

v$mystat

v$pdbsdictionary

v$fixed_view_definition

dict_columns

meta-meta
data

v$containers

dba_hist_*
gv$*

v$waitstat

v$backup_set

v$parameter

v$diag_info

v$backup_piece
v$backup_datafile

v$recovery_file_dest
v$flash_recovery_area_usage

v$pwfile_users

v$flashback_database_log
v$flashback_database_logfile

v$archive
v$archived_log

v$log
v$logfile

v$controlfile

dba_data_files
dba_free_space

v$datafile
v$datafile_header

v$tempfile

v$bh

v$librarycache
v$sql v$sqlarea

v$rowcache

v$backup_copy_details

Figure 10-4. Relationships of commonly used data dictionary views

Chapter 10 ■ Data DiCtionary FunDamentals

266

Note ■ as of oracle Database 12c, there are several thousand CDB/DBA/ALL/USER static views and more than 700 V$
dynamic performance views.

A Few Creative Uses of the Data Dictionary
In nearly every chapter of this book, you’ll find several SQL examples of how to leverage the data dictionary to better
understand concepts and resolve problems. Having said that, it’s worth showing a few offbeat examples of how
DBAs leverage the data dictionary. The next few sections do just that. Keep in mind that this is just the tip of the
iceberg: there are an endless number of queries and techniques that DBAs employ to extract and use data dictionary
information.

Derivable Documentation
Sometimes, if you’re troubleshooting an issue and are under pressure, you need to quickly extract information from
the data dictionary to help resolve the problem. However, you may not know the exact name of a data dictionary view
or its associated columns. If you’re like me, it’s impossible to keep all the data dictionary view names and column
names in your head. Additionally, I work with databases from versions 8 through 12c, and it’s difficult to keep track of
which particular view may be available with a given release of Oracle.

Books and posters can provide this information, but if you can’t find exactly what you’re looking for, you can use
the documentation contained in the data dictionary itself. You can query from three views, in particular:

•	 DBA_OBJECTS

•	 DICTIONARY

•	 DICT_COLUMNS

If you know roughly the name of the view from which you want to select information, you can first query from
DBA_OBJECTS. For instance, if you’re troubleshooting an issue regarding materialized views, and you can’t remember
the exact names of the data dictionary views associated with materialized views, you can do this:

select object_name
from dba_objects
where object_name like '%MV%'
and owner = 'SYS';

That may be enough to get you in the ballpark. But, often you need more information about each view. This is
when the DICTIONARY and DICT_COLUMNS views can be invaluable. The DICTIONARY view stores the names of the data
dictionary views. It has two columns:

SQL > desc dictionary

Name Null? Type
--- -------- ----------------------------
TABLE_NAME VARCHAR2(30)
COMMENTS VARCHAR2(4000)

Chapter 10 ■ Data DiCtionary FunDamentals

267

For example, say you’re troubleshooting an issue with materialized views, and you want to determine the names
of data dictionary views related to the materialized view feature. You can run a query such as this:

select table_name, comments
from dictionary
where table_name like '%MV%';

Here is a snippet of the output:

TABLE_NAME COMMENTS
------------------------- ---
DBA_MVIEW_LOGS All materialized view logs in the database
DBA_MVIEWS All materialized views in the database
DBA_MVIEW_ANALYSIS Description of the materialized views accessible to dba
DBA_MVIEW_COMMENTS Comments on all materialized views in the database

In this manner, you can quickly determine which view you need to access. If you want further information about
the view, you can describe it; for example,

SQL > desc dba_mviews

If that doesn’t give you enough information regarding the column names, you can query the DICT_COLUMNS view.
This view provides comments about the columns of a data dictionary view; for example,

select column_name, comments
from dict_columns
where table_name = 'DBA_MVIEWS';

Here is a fraction of the output:

COLUMN_NAME COMMENTS
----------------------- ---
OWNER Owner of the materialized view
MVIEW_NAME Name of the materialized view
CONTAINER_NAME Name of the materialized view container table
QUERY The defining query that the materialized view instantiates

In this way, you can generate and view documentation regarding most data dictionary objects. The technique
allows you to quickly identify appropriate views and the columns that may help you in a troubleshooting situation.

Displaying User Information
You may find yourself in an environment that contains hundreds of databases located on dozens of different servers.
In such a scenario, you want to ensure that you don’t run the wrong commands or connect to the wrong database,
or both. When performing DBA tasks, it’s prudent to verify that you’re connected as the appropriate account and to
the correct database. You can run the following types of SQL commands to verify the currently connected user and
database information:

SQL > show user;
SQL > select * from user_users;
SQL > select name from v$database;
SQL > select instance_name, host_name from v$instance;

Chapter 10 ■ Data DiCtionary FunDamentals

268

As shown in Chapter 3, an efficient way of staying aware of your environment is to set your SQL*Plus prompt
automatically, via the login.sql script, to display user and instance information. This example manually sets the SQL
prompt:

SQL > set sqlprompt '&_USER.@&_CONNECT_IDENTIFIER. > '

Here is what the SQL prompt now looks like:

SYS@O12C>

You can also use the SYS_CONTEXT built-in SQL function to extract information from the data dictionary regarding
details about your currently connected session. The general syntax for this function is as follows:

SYS_CONTEXT(' <namespace > ',' <parameter > ',[length])

This example displays the user, authentication method, host, and instance:

select
 sys_context('USERENV','CURRENT_USER') usr
,sys_context('USERENV','AUTHENTICATION_METHOD') auth_mth
,sys_context('USERENV','HOST') host
,sys_context('USERENV','INSTANCE_NAME') inst
from dual;

USERENV is a built-in Oracle namespace. More than 50 parameters are available when you use the USERENV
namespace with the SYS_CONTEXT function. Table 10-1 describes some of the more useful parameters. See the Oracle
SQL Language Reference Guide, which can be freely downloaded from the Technology Network area of the Oracle web
site (http://otn.oracle.com), for a complete list of parameters.

Table 10-1. Useful USERENV Parameters Available with SYS_CONTEXT

Parameter Name Description

AUTHENTICATED_IDENTITY Identity used in authentication

AUTHENTICATION_METHOD Method of authentication

CON_ID Container identifier

CON_NAME Container name

CURRENT_USER Username for the currently active session

DB_NAME Name specified by the DB_NAME initialization parameter

DB_UNIQUE_NAME Name specified by the DB_UNIQUE_NAME initialization parameter

HOST Hostname for the machine on which the client initiated the database connection

INSTANCE_NAME Instance name

IP_ADDRESS IP address of the machine on which the client initiated the database connection

ISDBA TRUE if the user authenticated with DBA privileges through the OS or password file

NLS_DATE_FORMAT Date format for the session

OS_USER OS user from the machine on which the client initiated the database connection

(continued)

http://otn.oracle.com/

Chapter 10 ■ Data DiCtionary FunDamentals

269

DeterMINING YOUr eNVIrONMeNt’S DetaILS

Parameter Name Description

SERVER_HOST Hostname of the machine on which the database instance is running

SERVICE_NAME Service name for the connection

SID Session identifier

TERMINAL OS identifier for the client terminal

Table 10-1. (continued)

sometimes, when deploying code through various development, test, beta, and production environments, it’s
handy to be prompted as to whether you’re in the correct environment. the technique for accomplishing this
requires two files: answer_yes.sql and answer_no.sql. here are the contents of answer_yes.sql:

-- answer_yes.sql
PROMPT
PROMPT Continuing...

and, here is answer_no.sql:

-- answer_no.sql
PROMPT
PROMPT Quitting and discarding changes...
ROLLBACK;
EXIT;

now, you can insert the following code into the first part of your deployment script; the code will prompt you as to
whether you’re in the right environment and if you want to continue:

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;
select host_name from v$instance;
select name as db_name from v$database;
SHOW user;
SET ECHO OFF;
PROMPT
ACCEPT answer PROMPT 'Correct environment? Enter yes to continue: '
@@answer_&answer..sql

if you type in yes, then the answer_yes.sql script will execute, and you will continue to run any other scripts you
call. if you type in no, then the answer_no.sql script will run, and you will exit from sQl*plus and end up at the
os prompt. if you press the enter key without typing either, you will also exit and return to the os prompt.

Chapter 10 ■ Data DiCtionary FunDamentals

270

Displaying Table Row Counts
When you’re investigating performance or space issues, it’s useful to display each table’s row count. To calculate row
counts manually, you would write a query such as this for each table that you own:

SQL > select count(*) from < table_name>;

Manually crafting the SQL is time-consuming and error prone. In this situation it’s more efficient to use SQL to
generate the SQL required to solve the problem. To that end, this next example dynamically selects the required text,
based on information in the DBA_TABLES view. An output file is spooled that contains the dynamically generated SQL.
Run the following SQL code as a DBA-privileged schema. Note that this script contains SQL*Plus-specific commands,
such as UNDEFINE and SPOOL. The script prompts you each time for a username:

UNDEFINE user
SPOOL tabcount_&&user..sql
SET LINESIZE 132 PAGESIZE 0 TRIMSPO OFF VERIFY OFF FEED OFF TERM OFF
SELECT
 'SELECT RPAD(' || '''' || table_name || '''' ||',30)'
 || ',' || ' COUNT(*) FROM &&user..' || table_name || ';'
FROM dba_tables
WHERE owner = UPPER('&&user')
ORDER BY 1;
SPO OFF;
SET TERM ON
@@tabcount_&&user..sql
SET VERIFY ON FEED ON

This code generates a file, named tabcount_ < user > .sql, that contains the SQL statements that select row
counts from all tables in the specified schema. If the username you provide to the script is INVUSER, then you can
manually run the generated script as follows:

SQL > @tabcount_invuser.sql

Keep in mind that if the table row counts are high, this script can take a long time to run (several minutes).
Developers and DBAs often use SQL to generate SQL statements. This is a useful technique when you need to

apply the same SQL process (repetitively) to many different objects, such as all tables in a schema. If you don’t have
access to DBA-level views, you can query the USER_TABLES view; for example,

SPO tabcount.sql
SET LINESIZE 132 PAGESIZE 0 TRIMSPO OFF VERIFY OFF FEED OFF TERM OFF
SELECT
 'SELECT RPAD(' || '''' || table_name || '''' ||',30)'
 || ',' || ' COUNT(*) FROM ' || table_name || ';'
FROM user_tables
ORDER BY 1;
SPO OFF;
SET TERM ON
@@tabcount.sql
SET VERIFY ON FEED ON

Chapter 10 ■ Data DiCtionary FunDamentals

271

If you have accurate statistics, you can query the NUM_ROWS column of the CDB/DBA/ALL/USER_TABLES views.
This column normally has a close row count if statistics are generated on a regular basis. The following query selects
NUM_ROWS from the USER_TABLES view:

SQL > select table_name, num_rows from user_tables;

One final note: if you have partitioned tables and want to show row counts by partition, use the next few lines of
SQL and PL/SQL code to generate the SQL required:

UNDEFINE user
SET SERVEROUT ON SIZE 1000000 VERIFY OFF
SPO part_count_&&user..txt
DECLARE
 counter NUMBER;
 sql_stmt VARCHAR2(1000);
 CURSOR c1 IS
 SELECT table_name, partition_name
 FROM dba_tab_partitions
 WHERE table_owner = UPPER('&&user');
BEGIN
 FOR r1 IN c1 LOOP
 sql_stmt := 'SELECT COUNT(*) FROM &&user..' || r1.table_name
 ||' PARTITION ('||r1.partition_name ||')';
 EXECUTE IMMEDIATE sql_stmt INTO counter;
 DBMS_OUTPUT.PUT_LINE(RPAD(r1.table_name
 ||'('||r1.partition_name||')',30) ||' '||TO_CHAR(counter));
 END LOOP;
END;
/
SPO OFF

MaNUaLLY GeNeratING StatIStICS

if you want to generate statistics for a table, use the DBMS_STATS package. this example generates statistics for a
user and a table:

SQL > exec dbms_stats.gather_table_stats(ownname=> 'MV_MAINT',-
 tabname= > 'F_SALES',-
 cascade= > true,estimate_percent=> 20,degree=> 4);

you can generate statistics for all objects for a user with the following code:

SQL > exec dbms_stats.gather_schema_stats(ownname = > 'MV_MAINT',-
 estimate_percent = > DBMS_STATS.AUTO_SAMPLE_SIZE,-
 degree = > DBMS_STATS.AUTO_DEGREE,-
 cascade = > true);

the prior code instructs oracle to estimate the percentage of the table to be sampled with the ESTIMATE_PERCENT
parameter, using DBMS_STATS.AUTO_SAMPLE_SIZE. oracle also chooses the appropriate degree of parallelism with
the DEGREE parameter setting of DBMS_STATS.AUTO_DEGREE. the CASCADE parameter instructs oracle to generate
statistics for indexes.

Chapter 10 ■ Data DiCtionary FunDamentals

272

Keep in mind that it’s possible that oracle won’t choose the optimal auto sample size. oracle may choose
10 percent, but you may have experience with setting a low percentage, such as 5 percent, and know that is an
acceptable number. in these situations, don’t use the AUTO_SAMPLE_SIZE; explicitly provide a number instead.

Showing Primary Key and Foreign Key Relationships
Sometimes when you’re diagnosing constraint issues, it’s useful to display data dictionary information regarding what
primary key constraint is associated with a foreign key constraint. For example, perhaps you’re attempting to insert
into a child table, and an error is thrown indicating that the parent key doesn’t exist, and you want to display more
information about the parent key constraint.

The following script queries the DBA_CONSTRAINTS data dictionary view to determine the parent primary key
constraints that are related to child foreign key constraints. You need to provide as input to the script the owner of the
table and the child table for which you wish to display primary key constraints:

select
 a.constraint_type cons_type
,a.table_name child_table
,a.constraint_name child_cons
,b.table_name parent_table
,b.constraint_name parent_cons
,b.constraint_type cons_type
from dba_constraints a
 ,dba_constraints b
where a.owner = upper('&owner')
and a.table_name = upper('&table_name')
and a.constraint_type = 'R'
and a.r_owner = b.owner
and a.r_constraint_name = b.constraint_name;

The preceding script prompts you for two SQL*Plus ampersand variables (OWNER, TABLE_NAME); if you aren’t using
SQL*Plus, then you may need to modify the script with the appropriate values before you run it.

The following output shows that there are two foreign key constraints. It also shows the parent table primary key
constraints:

C CHILD_TABLE CHILD_CONS PARENT_TABLE PARENT_CONS C
- --------------- ------------------- --------------- ------------------- -
R REG_COMPANIES REG_COMPANIES_FK2 D_COMPANIES D_COMPANIES_PK P
R REG_COMPANIES REG_COMPANIES_FK1 CLUSTER_BUCKETS CLUSTER_BUCKETS_PK P

When the CONSTRAINT_TYPE column (of DBA/ALL/USER_CONSTRAINTS) contains an R value, this indicates that the
row describes a referential integrity constraint, which means that the child table constraint references a primary key
constraint. You use the technique of joining to the same table twice to retrieve the primary key constraint information.
The child constraint columns (R_OWNER, R_CONSTRAINT_NAME) match with another row in the DBA_CONSTRAINTS view
that contains the primary key information.

Chapter 10 ■ Data DiCtionary FunDamentals

273

You can also do the reverse of the prior query in this section; for a primary key constraint, you want to find the foreign
key columns (if any) that correlate to it. The next script takes the primary key record and looks to see if it has any child
records with a constraint type of R. When you run this script, you’re prompted for the primary key table owner and name:

select
 b.table_name primary_key_table
 ,a.table_name fk_child_table
 ,a.constraint_name fk_child_table_constraint
from dba_constraints a
 ,dba_constraints b
where a.r_constraint_name = b.constraint_name
and a.r_owner = b.owner
and a.constraint_type = 'R'
and b.owner = upper('&table_owner')
and b.table_name = upper('&table_name');

Here is some sample output:

PRIMARY_KEY_TABLE FK_CHILD_TABLE FK_CHILD_TABLE_CONSTRAINT
-------------------- -------------------- ------------------------------
CLUSTER_BUCKETS CB_AD_ASSOC CB_AD_ASSOC_FK1
CLUSTER_BUCKETS CLUSTER_CONTACTS CLUSTER_CONTACTS_FK1
CLUSTER_BUCKETS CLUSTER_NOTES CLUSTER_NOTES_FK1

Displaying Object Dependencies
Say you need to drop a table, but before you drop it, you want to display any objects that are dependent on it. For
example, you may have a table that has synonyms, views, materialized views, functions, procedures, and triggers that
rely on it. Before making the change, you want to review what other objects are dependent on the table. You can use
the DBA_DEPENDENCIES data dictionary view to display object dependencies. The following query prompts you for a
username and an object name:

select ' + ' || lpad(' ',level + 2) || type || ' ' || owner || '.' || name dep_tree
from dba_dependencies
connect by prior owner = referenced_owner and prior name = referenced_name
and prior type = referenced_type
start with referenced_owner = upper('&object_owner')
and referenced_name = upper('&object_name')
and owner is not null;

In the output each object listed has a dependency on the object you entered. Lines are indented to show the
dependency of an object on the object in the preceding line:

DEP_TREE
--
+ TRIGGER STAR2.D_COMPANIES_BU_TR1
+ MATERIALIZED VIEW CIA.CB_RAD_COUNTS
+ SYNONYM STAR1.D_COMPANIES
+ SYNONYM CIA.D_COMPANIES
+ MATERIALIZED VIEW CIA.CB_RAD_COUNTS

Chapter 10 ■ Data DiCtionary FunDamentals

274

In this example the object being analyzed is a table named D_COMPANIES. Several synonyms, materialized views,
and one trigger are dependent on this table. For instance, the materialized view CB_RAD_COUNTS, owned by CIA, is
dependent on the synonym D_COMPANIES, owned by CIA, which in turn is dependent on the D_COMPANIES synonym,
owned by STAR1.

The DBA_DEPENDENCIES view contains a hierarchical relationship between the OWNER, NAME and TYPE columns and
their referenced column names of REFERENCED_OWNER, REFERENCED_NAME, and REFERENCED_TYPE. Oracle provides
a number of constructs to perform hierarchical queries. For instance, START WITH and CONNECT BY allow you to
identify a starting point in a tree and walk either up or down the hierarchical relationship.

The previous SQL query in this section operates on only one object. If you want to inspect every object in
a schema, you can use SQL to generate SQL to create scripts that display all dependencies for a schema’s objects.
The piece of code in the next example does that. For formatting and output, the code uses some constructs specific to
SQL*Plus, such as setting the page sizes and line size and spooling the output:

UNDEFINE owner
SET LINESIZE 132 PAGESIZE 0 VERIFY OFF FEEDBACK OFF TIMING OFF
SPO dep_dyn_&&owner..sql
SELECT 'SPO dep_dyn_&&owner..txt' FROM DUAL;
--
SELECT
'PROMPT ' || '_____________________________'|| CHR(10) ||
'PROMPT ' || object_type || ': ' || object_name || CHR(10) ||
'SELECT ' || '''' || ' + ' || '''' || ' ' || '|| LPAD(' || '''' || ' '
|| '''' || ',level + 3)' || CHR(10) || ' || type || ' || '''' || ' ' || '''' ||
' || owner || ' || '''' || '.' || '''' || ' || name' || CHR(10) ||
' FROM dba_dependencies ' || CHR(10) ||
' CONNECT BY PRIOR owner = referenced_owner AND prior name = referenced_name '
|| CHR(10) ||
' AND prior type = referenced_type ' || CHR(10) ||
' START WITH referenced_owner = ' || '''' || UPPER('&&owner') || '''' || CHR(10) ||
' AND referenced_name = ' || '''' || object_name || '''' || CHR(10) ||
' AND owner IS NOT NULL;'
FROM dba_objects
WHERE owner = UPPER('&&owner')
AND object_type NOT IN ('INDEX','INDEX PARTITION','TABLE PARTITION');
--
SELECT 'SPO OFF' FROM dual;
SPO OFF
SET VERIFY ON LINESIZE 80 FEEDBACK ON

You should now have a script named dep_dyn_ <owner > .sql, created in the same directory from which you run
the script. This script contains all the SQL required to display dependencies on objects in the owner you entered. Run
the script to display object dependencies. In this example, the owner is CIA:

SQL > @dep_dyn_cia.sql

When the script runs, it spools a file with the format dep_dyn_ < owner > .txt. You can open that text file with an
OS editor to view its contents. Here is a sample of the output from this example:

TABLE: DOMAIN_NAMES
+ FUNCTION STAR2.GET_DERIVED_COMPANY
+ TRIGGER STAR2.DOMAIN_NAMES_BU_TR1
+ SYNONYM CIA_APP.DOMAIN_NAMES

Chapter 10 ■ Data DiCtionary FunDamentals

275

the DUaL taBLe

the DUAL table is part of the data dictionary. this table contains one row and one column and is useful when you
want to return a row and you don’t have to retrieve data from a particular table. in other words, you just want to
return a value. For example, you can perform arithmetic operations, as follows:

SQL > select 34*.15 from dual;
 34*.15

 5.1

other common uses are selecting from DUAL to show the current date or to display some text within an
sQl script.

Summary
Sometimes, you’re handed an old database that has been running for years, and it’s up to you to manage and maintain
it. In some scenarios, you aren’t given any documentation regarding the users and objects in the database. Even if you
have documentation, it may not be accurate or up-to-date. In these situations, the data dictionary quickly becomes
your source of documentation. You can use it to extract user information, the physical structure of the database,
security information, objects and owners, currently connected users, and so on.

Oracle provides static and dynamic views in the data dictionary. The static views contain information about the
objects in the database. The dynamic performance views offer a real-time window into events currently transacting in
the database. These views provide information about currently connected users, SQL executing, where resources are
being consumed, and so on. DBAs use these views extensively to monitor and troubleshoot performance issues.

The book now turns its attention toward specialized Oracle features, such as large objects, partitioning, Data
Pump, and external tables. These topics are covered in the next several chapters.

This output shows that the table DOMAIN_NAMES has three objects that are dependent on it: a function, a trigger,
and a synonym.

277

Chapter 11

Large Objects

Organizations often deal with substantial files that need to be stored and viewed by business users. Generally, LOBs
are a data type that is suited to storing large and unstructured data, such as text, log, image, video, sound, and spatial
data. Oracle supports the following types of LOBs:

Character large object (•	 CLOB)

National character large object (•	 NCLOB)

Binary large object (•	 BLOB)

Binary file (•	 BFILE)

Prior to Oracle 8, the LONG and LONG RAW data types were your only options for storing large amounts of data in a
column. You should no longer use these data types. The only reason I mention LONG and LONG RAW is because many
legacy applications (e.g., Oracle’s data dictionary) still use them. You should otherwise use a CLOB instead of LONG and
a BLOB instead of LONG RAW.

Also, don’t confuse a RAW data type with a LONG RAW. The RAW data type stores small amounts of binary data. The
LONG RAW data type has been deprecated for more than a decade.

Another caveat: Don’t unnecessarily use a LOB data type. For example, for character data, if your application
requires fewer than 4,000 characters, use a VARCHAR2 data type (and not a CLOB). For binary data, if you’re dealing with
fewer than 2,000 bytes of binary data, use a RAW data type (and not a BLOB). If you’re still not sure which data type your
application needs, see Chapter 7 for a description of appropriate uses of Oracle data types.

Tip ■ Starting with Oracle Database 12c, you can define VARCHAR2 and RAW data types as being as large as 32,767
bytes. See Chapter 7 for more details on this enhancement.

Before lobbing you into the details of implementing LOBs, it’s prudent to review each LOB data type and its
appropriate use. After that, examples are provided of creating and working with LOBs and relevant features that you
should understand.

Describing LOB Types
Starting with Oracle version 8, the ability to store large files in the database vastly improved with the CLOB, NCLOB,
BLOB, and BFILE data types. These additional LOB data types let you store much more data, with greater functionality.
Table 11-1 summarizes the types of Oracle LOBs available and their descriptions.

Chapter 11 ■ Large ObjeCtS

278

A CLOB is capable of storing large amounts of character data, such as XML, text, and log files. An NCLOB is treated
the same as a CLOB but can contain characters in the multibyte national character set for a database.

BLOBs store large amounts of binary data that typically aren’t human readable. Typical uses for a BLOB are
spreadsheets, word-processing documents, images, and audio and video data.

CLOBs, NCLOBs, and BLOBs are known as internal LOBs. This is because these data types are stored inside the
Oracle database in data files. Internal LOBs participate in transactions and are covered by Oracle’s database security
as well as its backup and recovery features.

BFILEs are known as external LOBs. BFILE columns store a pointer to a file on the OS that is outside the database.
You can think of a BFILE as a mechanism for providing read-only access to large binary files outside the database on
the OS filesystem.

Sometimes, the question arises as to whether you should use a BLOB or a BFILE. BLOBs participate in database
transactions and can be backed up, restored, and recovered by Oracle. BFILEs don’t participate in database
transactions; are read-only; and aren’t covered by any Oracle security, backup and recovery, replication, or disaster
recovery mechanisms. BFILEs are more appropriate for large binary files that are read-only and that don’t change
while an application is running. For instance, you may have large binary video files that are referenced by a database
application. In this scenario the business determines that you don’t need to create and maintain a 500TB database
when all the application really needs is a pointer (stored in the database) to the locations of the large files on disk.

Illustrating LOB Locators, Indexes, and Chunks
Internal LOBs (CLOB, NCLOB, BLOB) store data in pieces called chunks. A chunk is the smallest unit of allocation for a
LOB and is made up of one or more database blocks. LOB locators are stored in rows containing a LOB column. The
LOB locator points to a LOB index. The LOB index stores information regarding the location of LOB chunks. When a
table is queried, the database uses the LOB locator and associated LOB index to locate the appropriate LOB chunks.
Figure 11-1 shows the relationship between a table, a row, a LOB locator, and a LOB locator’s associated index and
chunks.

Table 11-1. Oracle Large Object Data Types

Data Type Description Maximum Size

CLOB Character large object for storing character documents,
such as big text files, log files, XML files, and so on

(4GB–1) * block size

NCLOB National character large object; stores data in national
character set format; supports characters with varying widths

(4GB–1) * block size

BLOB Binary large object for storing unstructured bitstream data
(images, video, and so on)

(4GB–1) * block size

BFILE Binary file large object stored on the filesystem outside of
database; read-only

2^64–1 bytes (OS may impose
a size limit that is less than this)

Chapter 11 ■ Large ObjeCtS

279

The LOB locator for a BFILE stores the directory path and file name on the OS. Figure 11-2 shows a BFILE LOB
locator that references a file on the OS.

LOB
Index

table

row
LOB column
(CLOB, NCLOB,
or BLOB)

LOB
locator

up to 4000 bytes
in-row

tablespace
(same or
different
from the
table’s

tablespace)

tablespace

database

chunk2

chunkN

LOB
segmentchunk1

Figure 11-1. Relationship of table, row, LOB locator, LOB index, and LOB segment

table

row BFILE column LOB locator: directory path
and filename

file on operating system

tablespace

database

Figure 11-2. The BFILE LOB locator contains information for locating a file on the OS

Chapter 11 ■ Large ObjeCtS

280

Note ■ the DBMS_LOB package performs operations on LObs through the LOb locator.

Distinguishing Between BasicFiles and SecureFiles
Several significant improvements were made to LOBs in Oracle Database 11g. Oracle now distinguishes between two
different types of underlying LOB architecture:

BasicFiles•	

SecureFiles•	

These two LOB architectures are discussed in the following sections.

BasicFiles
BasicFiles is the name Oracle gives to the LOB architecture available prior to Oracle Database 11g. It’s still important
to understand the BasicFiles LOBs because many shops use Oracle versions that don’t support SecureFiles. Be aware
that in Oracle Database 11g, the default type of LOB is still BasicFiles. However, in Oracle Database 12c, the default
type of LOB is now SecureFiles.

SecureFiles
With Oracle Database 11g and higher, you have the option of using the SecureFiles LOB architecture. It includes the
following enhancements (over BasicFiles LOBs):

Encryption (requires Oracle Advanced Security option)•	

Compression (requires Oracle Advanced Compression option)•	

Deduplication (requires Oracle Advanced Compression option)•	

SecureFiles encryption lets you transparently encrypt LOB data (just like other data types). The compression
feature allows for significant space savings. The deduplication feature eliminates duplicate LOBs that otherwise would
be stored multiple times.

You need to do a small amount of planning before using SecureFiles. Specifically, use of SecureFiles requires the
following:

A SecureFiles LOB must be stored in a tablespace, using ASSM.•	

The •	 DB_SECUREFILE initialization parameter controls whether a SecureFiles file can be used
and also defines the default LOB architecture for your database.

A SecureFiles LOB must be created within a tablespace using ASSM. To create an ASSM-enabled tablespace,
specify the SEGMENT SPACE MANAGEMENT AUTO clause; for example,

create tablespace lob_data
 datafile '/u01/dbfile/o12c/lob_data01.dbf'
 size 1000m
 extent management local
 uniform size 1m
 segment space management auto;

Chapter 11 ■ Large ObjeCtS

281

If you have existing tablespaces, you can verify the use of ASSM by querying the DBA_TABLESPACES view. The
SEGMENT_SPACE_MANAGEMENT column should have a value of AUTO for any tablespaces that you want to use with
SecureFiles:

select tablespace_name, segment_space_management
from dba_tablespaces;

Also, SecureFiles usage is governed by the DB_SECUREFILE database parameter. You can use either ALTER SYSTEM
or ALTER SESSION to modify the value of DB_SECUREFILE. Table 11-2 describes the valid values for DB_SECUREFILE.

Creating a Table with a LOB Column
By default, in Oracle Database 11g and lower, when you create a LOB, it’s a BasicFiles type. Starting with Oracle
Database 12c, the default underlying LOB architecture is SecureFiles. If you’re using Oracle Database 11g or higher, I
recommend that you always create a LOB as a SecureFiles type. As discussed previously, SecureFiles allows you to use
features such as compression and encryption.

Creating a BasicFiles LOB Column
To create a LOB column, you have to specify a LOB data type. Here is a pre-11g example of creating a table with a CLOB
data type:

create table patchmain(
 patch_id number
,patch_desc clob)
tablespace users;

If you’re using Oracle Database 11g or higher, I recommend that you explicitly specify the STORE AS BASICFILE
clause in order to avoid confusion as to which LOB architecture is implemented. Listed next is such an example:

create table patchmain(
 patch_id number
,patch_desc clob)
tablespace users
lob(patch_desc) store as basicfile;

Table 11-2. Description of DB_SECUREFILE Settings

DB_SECUREFILE Setting Description

NEVER Creates the LOB as a BasicFiles type, regardless of whether the SECUREFILE option is
specified

PERMITTED Default value in 11g; allows creation of SecureFiles LOBs

PREFERRED New in Oracle Database 12c, and the default value; specifies that all LOBs are created as a
SecureFiles type, unless otherwise stated

ALWAYS Creates the LOB as a SecureFiles type, unless the underlying tablespace isn’t using ASSM

IGNORE Ignores the SecureFiles option, along with any SecureFiles settings

Chapter 11 ■ Large ObjeCtS

282

When you create a table with a LOB column, you must be aware of some technical underpinnings. Review the
following list, and be sure you understand each point:

Prior to Oracle Database 12c, LOBs, by default, are created as the BasicFiles type.•	

Oracle creates a LOB segment and a LOB index for each LOB column.•	

The LOB segment has a name of this format: •	 SYS_LOB<string>.

The LOB index has a name of this format: •	 SYS_IL<string>.

The •	 <string> is the same for each LOB segment and its associated index.

The LOB segment and index are created in the same tablespace as the table, unless you specify •	
a different tablespace.

By default nearly 4,000 bytes of a LOB are stored in the table row (inline).•	

With Oracle Database 11g Release 2 and higher a LOB segment and a LOB index aren’t created •	
until a record is inserted into the table (the so-called deferred segment creation feature). This
means that DBA/ALL/USER_SEGMENTS and DBA/ALL/USER_EXTENTS have no information in them
until a row is inserted into the table.

Oracle creates a LOB segment and a LOB index for each LOB column. The LOB segment stores the data. The LOB
index keeps track of where the chunks of LOB data are physically stored and in what order they should be accessed.

You can query the DBA/ALL/USER_LOBS view to display the LOB segment and LOB index names:

select table_name, segment_name, index_name, securefile, in_row
from user_lobs;

Here is the output for this example:

TABLE_NAME SEGMENT_NAME INDEX_NAME SEC IN_
------------ ------------------------- ------------------------- --- ---
PATCHMAIN SYS_LOB0000022332C00002$$ SYS_IL0000022332C00002$$ NO YES

You can also query DBA/USER/ALL_SEGMENTS to view information regarding LOB segments. As mentioned earlier,
if you create a table in Oracle Database 11g Release 2 or higher, an initial segment isn’t created until you insert a row
into the table (deferred segment creation). This can be confusing because you may expect a row to be present in
DBA/ALL/USER_SEGMENTS immediately after you create the table:

select segment_name, segment_type, segment_subtype, bytes/1024/1024 meg_bytes
from user_segments
where segment_name IN ('&&table_just_created',
 '&&lob_segment_just_created',
 '&&lob_index_just_created');

The prior query prompts for the segment names. The output shows no rows:

no rows selected

Next, insert a record into the table that contains the LOB column:

SQL> insert into patchmain values(1,'clob text');

Chapter 11 ■ Large ObjeCtS

283

Rerunning the query against USER_SEGMENTS shows that three segments have been created—one for the table,
one for the LOB segment, and one for the LOB index:

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU MEG_BYTES
------------------------- ------------------ ---------- ----------
PATCHMAIN TABLE ASSM .0625
SYS_IL0000022332C00002$$ LOBINDEX ASSM .0625
SYS_LOB0000022332C00002$$ LOBSEGMENT ASSM .0625

Implementing a LOB in a Specific Tablespace
By default the LOB segment is stored in the same tablespace as its table. You can specify a separate tablespace for
a LOB segment by using the LOB...STORE AS clause of the CREATE TABLE statement. The next table creation script
creates the table in a tablespace and creates separate tablespaces for the CLOB and BLOB columns:

create table patchmain
(patch_id number
,patch_desc clob
,patch blob
) tablespace users
 lob (patch_desc) store as (tablespace lob_data)
,lob (patch) store as (tablespace lob_data);

The following query verifies the associated tablespaces for this table:

select table_name, tablespace_name, 'N/A' column_name
from user_tables
where table_name='PATCHMAIN'
union
select table_name, tablespace_name, column_name
from user_lobs
where table_name='PATCHMAIN';

Here is the output:

TABLE_NAME TABLESPACE_NAME COLUMN_NAME
-------------------- -------------------- --------------------
PATCHMAIN LOB_DATA PATCH
PATCHMAIN LOB_DATA PATCH_DESC
PATCHMAIN USERS N/A

If you think the LOB segment will require different storage characteristics (such as size and growth patterns),
then I recommend that you create the LOB in a tablespace separate from that of the table data. This allows you to
manage the LOB column storage separately from the regular table data storage.

Chapter 11 ■ Large ObjeCtS

284

Creating a SecureFiles LOB Column
As discussed previously, starting with Oracle Database 12c, the default LOB architecture is SecureFiles. Having said
that, I recommend that you explicitly state which LOB architecture to implement in order to avoid any confusion.
As mentioned earlier, the tablespace that contains the SecureFile LOB must be ASSM managed. Here is an example
that creates a SecureFiles LOB:

create table patchmain(
 patch_id number
,patch_desc clob)
lob(patch_desc) store as securefile (tablespace lob_data);

Before viewing the data dictionary details regarding the LOB column, insert a record into the table to ensure that
segment information is available (owing to the deferred segment allocation feature in Oracle Database 11g Release 2
and higher); for example,

SQL> insert into patchmain values(1,'clob text');

You can now verify a LOB’s architecture by querying the USER_SEGMENTS view:

select segment_name, segment_type, segment_subtype
from user_segments;

Here is some sample output, indicating that a LOB segment is a SecureFiles type:

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU
------------------------- ------------------ ----------
PATCHMAIN TABLE ASSM
SYS_IL0000022340C00002$$ LOBINDEX ASSM
SYS_LOB0000022340C00002$$ LOBSEGMENT SECUREFILE

You can also query the USER_LOBS view to verify the SecureFiles LOB architecture:

select table_name, segment_name, index_name, securefile, in_row
from user_lobs;

Here is the output:

TABLE_NAME SEGMENT_NAME INDEX_NAME SEC IN_
------------ ------------------------- ------------------------- --- ---
PATCHMAIN SYS_LOB0000022340C00002$$ SYS_IL0000022340C00002$$ YES YES

Note ■ With the SecureFiles architecture, you no longer need to specify the following options: CHUNK, PCTVERSION,
FREEPOOLS, FREELIST, and FREELIST GROUPS.

Chapter 11 ■ Large ObjeCtS

285

Implementing a Partitioned LOB
You can create a partitioned table that has a LOB column. Doing so lets you spread a LOB across multiple tablespaces.
Such partitioning helps with balancing I/O, maintenance, and backup and recovery operations.

You can partition LOBs by RANGE, LIST, or HASH. The next example creates a LIST-partitioned table in which LOB
column data are stored in tablespaces separate from those of the table data:

CREATE TABLE patchmain(
 patch_id NUMBER
,region VARCHAR2(16)
,patch_desc CLOB)
LOB(patch_desc) STORE AS (TABLESPACE patch1)
PARTITION BY LIST (REGION) (
PARTITION p1 VALUES ('EAST')
LOB(patch_desc) STORE AS SECUREFILE
(TABLESPACE patch1 COMPRESS HIGH)
TABLESPACE inv_data1
,
PARTITION p2 VALUES ('WEST')
LOB(patch_desc) STORE AS SECUREFILE
(TABLESPACE patch2 DEDUPLICATE NOCOMPRESS)
TABLESPACE inv_data2
,
PARTITION p3 VALUES (DEFAULT)
LOB(patch_desc) STORE AS SECUREFILE
(TABLESPACE patch3 COMPRESS LOW)
TABLESPACE inv_data3
);

Note that each LOB partition is created with its own storage options (see the section “Implementing SecureFiles
Advanced Features,” later in this chapter, for details on SecureFiles features). You can view the details about the LOB
partitions as shown:

select table_name, column_name, partition_name, tablespace_name
,compression, deduplication
from user_lob_partitions;

Here is some sample output:

TABLE_NAME COLUMN_NAME PARTITION_ TABLESPACE_NAME COMPRE DEDUPLICATION
------------ --------------- ---------- --------------- ------ --------------
PATCHMAIN PATCH_DESC P1 PATCH1 HIGH NO
PATCHMAIN PATCH_DESC P2 PATCH2 NO LOB
PATCHMAIN PATCH_DESC P3 PATCH3 LOW NO

Tip ■ You can also view DBA/ALL_USER_PART_LOBS for information about partitioned LObs.

Chapter 11 ■ Large ObjeCtS

286

You can change the storage characteristics of a partitioned LOB column after it’s been created. To do so, use
the ALTER TABLE...MODIFY PARTITION statement. This example alters a LOB partition to have a high degree of
compression:

alter table patchmain modify partition p2
lob (patch_desc) (compress high);

The next example modifies a partitioned LOB not to keep duplicate values (via the DEDUPLICATE clause):

alter table patchmain modify partition p3
lob (patch_desc) (deduplicate lob);

Note ■ partitioning is an extracost option that is available only with the Oracle enterprise edition.

Maintaining LOB Columns
The following sections describe some common maintenance tasks that are performed on LOB columns or that otherwise
involve LOB columns, including moving columns between tablespaces, and adding new LOB columns to a table.

Moving a LOB Column
As mentioned previously, if you create a table with a LOB column and don’t specify a tablespace, then, by default, the
LOB is created in the same tablespace as its table. This happens sometimes in environments in which the DBAs don’t
plan ahead very well; only after the LOB column has consumed large amounts of disk space does the DBA wonder
why the table has grown so big.

You can use the ALTER TABLE...MOVE...STORE AS statement to move a LOB column to a tablespace separate
from that of the table. Here is the basic syntax:

alter table <table_name> move lob(<lob_name>) store as (tablespace <new_tablespace>);

The next example moves the LOB column to the LOB_DATA tablespace:

alter table patchmain
move lob(patch_desc)
store as securefile (tablespace lob_data);

You can verify that the LOB was moved by querying USER_LOBS:

SQL> select table_name, column_name, tablespace_name from user_lobs;

To summarize, if the LOB column is populated with large amounts of data, you almost always want to store the
LOB in a tablespace separate from that of the rest of the table data. In these scenarios the LOB data have different
growth and storage requirements and are best maintained in their own tablespace.

Chapter 11 ■ Large ObjeCtS

287

Adding a LOB Column
If you have an existing table to which you want to add a LOB column, use the ALTER TABLE...ADD statement. The next
statement adds the INV_IMAGE column to a table:

SQL> alter table patchmain add(inv_image blob);

This statement is fine for quickly adding a LOB column to a development environment. For anything else, you
should specify the storage characteristics. For instance, this command specifies that a SecureFiles LOB be created in
the LOB_DATA tablespace:

alter table patchmain add(inv_image blob)
lob(inv_image) store as securefile(tablespace lob_data);

Removing a LOB Column
You may have a scenario in which your business requirements change, and you no longer need a column. Before
you remove a column, consider renaming it so that you can better identify whether any applications or users are still
accessing it:

SQL> alter table patchmain rename column patch_desc to patch_desc_old;

After you determine that nobody is using the column, use the ALTER TABLE...DROP statement to drop it:

SQL> alter table patchmain drop(patch_desc_old);

You can also remove a LOB column by dropping and recreating a table (without the LOB column). This, of
course, permanently removes any data as well.

Also keep in mind that in Oracle Database 10g and higher, if your recycle bin is enabled, then when you don’t
drop a table with the PURGE clause, space is still consumed by the dropped table. If you want to remove the space
associated with the table, use the PURGE clause, or purge the recycle bin after dropping the table.

Caching LOBs
By default, when reading and writing LOB columns, Oracle doesn’t cache LOBs in memory. You can change the
default behavior by setting the cache-related storage options. This example specifies that Oracle should cache a LOB
column in memory:

create table patchmain(
 patch_id number
,patch_desc clob)
lob(patch_desc) store as (tablespace lob_data cache);

You can verify the LOB caching with this query:

SQL> select table_name, column_name, cache from user_lobs;

Chapter 11 ■ Large ObjeCtS

288

Here is some sample output:

TABLE_NAME COLUMN_NAME CACHE
-------------------- -------------------- ----------
PATCHMAIN PATCH_DESC YES

Table 11-3 describes the memory cache settings related to LOBs. If you have LOBs that are frequently read and
written to, consider using the CACHE option. If your LOB column is read frequently but rarely written to, then the CACHE
READS setting is more appropriate. If the LOB column is infrequently read or written to, then the NOCACHE setting is
suitable.

Storing LOBs In- and Out of Line
By default up to approximately 4,000 characters of a LOB column are stored inline with the table row. If the LOB is
more than 4,000 characters, then Oracle automatically stores it outside the row data. The main advantage of storing
a LOB in row is that small LOBs (fewer than 4,000 characters) require less I/O, because Oracle doesn’t have to search
out of row for the LOB data.

However, storing LOB data in row isn’t always desirable. The disadvantage of storing LOBs in row is that the
table row sizes are potentially longer. This can affect the performance of full-table scans, range scans, and updates to
columns other than the LOB column. In these situations, you may want to disable storage in the row. For example, you
explicitly instruct Oracle to store the LOB outside the row with the DISABLE STORAGE IN ROW clause:

create table patchmain(
 patch_id number
,patch_desc clob
,log_file blob)
lob(patch_desc, log_file)
store as (
tablespace lob_data
disable storage in row);

If you want to store up to 4,000 characters of a LOB in the table row, use the ENABLE STORAGE IN ROW clause when
creating the table:

create table patchmain(
 patch_id number
,patch_desc clob
,log_file blob)
lob(patch_desc, log_file)

Table 11-3. Cache Descriptions Regarding LOB Columns

Cache Setting Meaning

CACHE Oracle should place LOB data in the buffer cache for faster access.

CACHE READS Oracle should place LOB data in the buffer cache for reads but not writes.

NOCACHE LOB data shouldn’t be placed in the buffer cache. This is the default for both SecureFiles
and BasicFiles LOBs.

Chapter 11 ■ Large ObjeCtS

289

store as (
tablespace lob_data
enable storage in row);

Note ■ the LOb locator is always stored inline with the row.

You can’t modify the LOB storage in a row after the table has been created. The only ways to alter storage in row
are to move the LOB column or drop and recreate the table. This example alters the storage in row by moving the LOB
column:

alter table patchmain
move lob(patch_desc)
store as (enable storage in row);

You can verify the in-row storage via the IN_ROW column of USER_LOBS:

select table_name, column_name, tablespace_name, in_row
from user_lobs;

A value of YES indicates that the LOB is stored in row:

TABLE_NAME COLUMN_NAME TABLESPACE_NAME IN_ROW
--------------- --------------- --------------- ------
PATCHMAIN LOG_FILE LOB_DATA YES
PATCHMAIN PATCH_DESC LOB_DATA YES

Implementing SecureFiles Advanced Features
As mentioned earlier, the SecureFiles LOB architecture allows you to compress LOB columns, eliminate duplicates,
and transparently encrypt LOB data. These features provide high performance and manageability of LOB data and are
available in Oracle Database 11g and higher. The next few sections cover features specific to SecureFiles.

Compressing LOBs
If you’re using SecureFiles LOBs, then you can specify a degree of compression. The benefit is that the LOBs consume
much less space in the database. The downside is that reading and writing the LOBs may take longer. See Table 11-4
for a description of the compression values.

Table 11-4. Degrees of Compression Available with SecureFiles LOBs

Compression Type Description

HIGH Highest degree of compression; incurs higher latency when reading and writing the LOB

MEDIUM Medium level of compression; default value if compression is specified, but with no degree

LOW Lowest level of compression; provides the lowest latency when reading and writing the LOB

Chapter 11 ■ Large ObjeCtS

290

This example creates a CLOB column with a low degree of compression:

CREATE TABLE patchmain(
 patch_id NUMBER
,patch_desc CLOB)
LOB(patch_desc) STORE AS SECUREFILE
(COMPRESS LOW)
TABLESPACE lob_data;

If a LOB has been created as a SecureFiles type, you can alter its compression level. For instance, this command
changes the compression to HIGH:

SQL> alter table patchmain modify lob(patch_desc) (compress high);

If you create a LOB with compression but decide that you don’t want to use the feature, you can alter the LOB to
have no compression via the NOCOMPRESS clause:

SQL> alter table patchmain modify lob(patch_desc) (nocompress);

Tip ■ try to enable compression, deduplication, and encryption through a CREATE TABLE statement. If you use an
ALTER TABLE statement, the table is locked while the LOb is modified.

Deduplicating LOBs
If you have an application in which identical LOBs are associated with two or more rows, you should consider using
the SecureFiles deduplication feature. When enabled, this instructs Oracle to check when a new LOB is inserted into a
table to see whether that LOB is already stored in another row (for the same LOB column). If the LOB is already stored,
then Oracle stores a pointer to the existing identical LOB. This can potentially mean huge space savings for your
application.

Note ■ Deduplication requires the Oracle advanced Compression option. See the Oracle Database Licensing Information
guide, available from the technology Network area of the Oracle web site (http://otn.oracle.com), for more information.

This example creates a LOB column, using the deduplication feature:

CREATE TABLE patchmain(
 patch_id NUMBER
,patch_desc CLOB)
LOB(patch_desc) STORE AS SECUREFILE
(DEDUPLICATE)
 TABLESPACE lob_data;

http://otn.oracle.com/

Chapter 11 ■ Large ObjeCtS

291

To verify that the deduplication feature is in effect, run this query:

select table_name, column_name, deduplication
from user_lobs;

Here is some sample output:

TABLE_NAME COLUMN_NAME DEDUPLICATION
--------------- --------------- ---------------
PATCHMAIN PATCH_DESC LOB

If an existing table has a SecureFiles LOB, then you can alter the column to enable deduplication:

alter table patchmain
modify lob(patch_desc) (deduplicate);

Here is another example that modifies a partitioned LOB to enable deduplication:

alter table patchmain modify partition p2
lob (patch_desc) (deduplicate lob);

If you decide that you don’t want deduplication enabled, use the KEEP_DUPLICATES clause:

alter table patchmain
modify lob(patch_desc) (keep_duplicates);

Encrypting LOBs
You can transparently encrypt a SecureFiles LOB column (just like any other column). Before you use encryption
features, you must set up an encryption wallet. I’ve included a sidebar at the end of this section that details how to set
up a wallet.

Note ■ the SecureFiles encryption feature requires a license for the Oracle advanced Security option. See the
Oracle Database Licensing Information guide, available from the technology Network area of the Oracle web site
(http://otn.oracle.com), for more information.

The ENCRYPT clause enables SecureFiles encryption, using Oracle Transparent Data Encryption (TDE). The
following example enables encryption for the PATCH_DESC LOB column:

CREATE TABLE patchmain(
 patch_id number
,patch_desc clob)
LOB(patch_desc) STORE AS SECUREFILE (encrypt)
tablespace lob_data;

http://otn.oracle.com/

Chapter 11 ■ Large ObjeCtS

292

When you describe the table, the LOB column now shows that encryption is in effect:

SQL> desc patchmain;
Name Null? Type
--- -------- ----------------------------
PATCH_ID NUMBER
PATCH_DESC CLOB ENCRYPT

Here is a slightly different example that specifies the ENCRYPT keyword inline with the LOB column:

CREATE TABLE patchmain(
 patch_id number
,patch_desc clob encrypt)
LOB (patch_desc) STORE AS SECUREFILE;

You can verify the encryption details by querying the DBA_ENCRYPTED_COLUMNS view:

select table_name, column_name, encryption_alg
from dba_encrypted_columns;

Here is the output for this example:

TABLE_NAME COLUMN_NAME ENCRYPTION_ALG
-------------------- -------------------- --------------------
PATCHMAIN PATCH_DESC AES 192 bits key

If you’ve already created the table, you can alter a column to enable encryption:

alter table patchmain modify
(patch_desc clob encrypt);

You can also specify an encryption algorithm; for example,

alter table patchmain modify
(patch_desc clob encrypt using '3DES168');

You can disable encryption for a SecureFiles LOB column via the DECRYPT clause:

alter table patchmain modify
(patch_desc clob decrypt);

Chapter 11 ■ Large ObjeCtS

293

eNaBLING aN OraCLe WaLLet

an Oracle wallet is the mechanism Oracle uses to enable encryption. the wallet is an OS file that contains
encryption keys. the wallet is enabled via the following steps:

1. Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=FILE) (METHOD_DATA=
 (DIRECTORY=/ora01/app/oracle/product/12.1.0.1/db_1/network/admin)))

2. Create the wallet file (ewallet.p12) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

3. enable encryption:

SQL> alter system set encryption wallet open identified by foo;

See the Oracle advanced Security administrator’s guide, which can be freely downloaded from the technology
Network area of the Oracle web site (http://otn.oracle.com), for full details on implementing encryption.

Migrating BasicFiles to SecureFiles
You can migrate BasicFiles LOB data to SecureFiles via one of the following methods:

Create a new table, load the data from the old table, and rename the tables•	

Move the table•	

Redefine the table online•	

Each of these techniques is described in the following sections.

Creating a New Table
Here is a brief example of creating a new table and loading data from the old table. In this example, PATCHMAIN_NEW is
the new table being created with a SecureFiles LOB.

create table patchmain_new(
 patch_id number
,patch_desc clob)
lob(patch_desc) store as securefile (tablespace lob_data);

Next, load the newly created table with data from the old table:

SQL> insert into patchmain_new select * from patchmain;

http://otn.oracle.com/

Chapter 11 ■ Large ObjeCtS

294

Now, rename the tables:

SQL> rename patchmain to patchmain_old;
SQL> rename patchmain_new to patchmain;

When using this technique, be sure any grants that were pointing to the old table are reissued for the new table.

Moving a Table to SecureFiles Architecture
You can also use the ALTER TABLE...MOVE statement to redefine the storage of a LOB as a SecureFiles type; for example,

alter table patchmain
move lob(patch_desc)
store as securefile (tablespace lob_data);

You can verify that the column is now a SecureFiles type via this query:

SQL> select table_name, column_name, securefile from user_lobs;

The SECUREFILE column now has a value of YES:

TABLE_NAME COLUMN_NAME SEC
--------------- --------------- ---
PATCHMAIN PATCH_DESC YES

Migrating with Online Redefinition
You can also redefine a table while it’s online via the DBMS_REDEFINITION package. Use the following steps to do an
online redefinition:

1. Ensure that the table has a primary key. If the table doesn’t have a primary key, then
create one:

alter table patchmain
add constraint patchmain_pk
primary key (patch_id);

2. Create a new table that defines the LOB column(s) as SecureFiles type:

create table patchmain_new(
 patch_id number
,patch_desc clob)
lob(patch_desc)
store as securefile (tablespace lob_data);

Chapter 11 ■ Large ObjeCtS

295

3. Map the columns, and copy the data from the original table to the new table (this can take
a long time if there are many rows):

declare
 l_col_map varchar2(2000);
begin
 l_col_map := 'patch_id patch_id, patch_desc patch_desc';
 dbms_redefinition.start_redef_table(
 'MV_MAINT','PATCHMAIN','PATCHMAIN_NEW',l_col_map
);
end;
/

4. Clone dependent objects of the table being redefined (grants, triggers, constraints, and so on):

set serverout on size 1000000
declare
 l_err_cnt integer :=0;
begin
 dbms_redefinition.copy_table_dependents(
 'MV_MAINT','PATCHMAIN','PATCHMAIN_NEW',1,TRUE, TRUE, TRUE, FALSE, l_err_cnt
);
 dbms_output.put_line('Num Errors: ' || l_err_cnt);
end;
/

5. Finish the redefinition:

begin
 dbms_redefinition.finish_redef_table('MV_MAINT','PATCHMAIN','PATCHMAIN_NEW');
end;
/

You can confirm that the table has been redefined via this query:

SQL> select table_name, column_name, securefile from user_lobs;

Here is the output for this example:

TABLE_NAME COLUMN_NAME SECUREFILE
-------------------- -------------------- --------------------
PATCHMAIN_NEW PATCH_DESC NO
PATCHMAIN PATCH_DESC YES

Chapter 11 ■ Large ObjeCtS

296

VIeWING LOB MetaData

You can use any of the DBA/ALL/USER_LOBS views to display information about LObs in your database:

select table_name, column_name, index_name, tablespace_name
from all_lobs
order by table_name;

also keep in mind that a LOb segment has a corresponding index segment.

select segment_name, segment_type, tablespace_name
from user_segments
where segment_name like 'SYS_LOB%'
or segment_name like 'SYS_IL%';

In this way, you can query both the segment and the index in the DBA/ALL/USER_SEGMENTS views for LOb
information.

Loading LOBs
Loading LOB data isn’t typically the DBA’s job, but you should be familiar with techniques used to populate LOB
columns. Developers may come to you for help with troubleshooting, performance, or space-related issues.

Loading a CLOB
First, create an Oracle database directory object that points to the OS directory in which the CLOB file is stored. This
directory object is used when loading the CLOB. In this example the Oracle directory object is named LOAD_LOB, and
the OS directory is /orahome/oracle/lob:

SQL> create or replace directory load_lob as '/orahome/oracle/lob';

For reference, listed next is the DDL used to create the table in which the CLOB file is loaded:

create table patchmain(
 patch_id number primary key
,patch_desc clob
,patch_file blob)
lob(patch_desc, patch_file)
store as securefile (compress low) tablespace lob_data;

This example also uses a sequence named PATCH_SEQ. Here is the sequence creation script:

SQL> create sequence patch_seq;

Chapter 11 ■ Large ObjeCtS

297

The following bit of code uses the DBMS_LOB package to load a text file (patch.txt) into a CLOB column. In this
example the table name is PATCHMAIN, and the CLOB column is PATCH_DESC:

declare
 src_clb bfile; -- point to source CLOB on file system
 dst_clb clob; -- destination CLOB in table
 src_doc_name varchar2(300) := 'patch.txt';
 src_offset integer := 1; -- where to start in the source CLOB
 dst_offset integer := 1; -- where to start in the target CLOB
 lang_ctx integer := dbms_lob.default_lang_ctx;
 warning_msg number; -- returns warning value if bad chars
begin
 src_clb := bfilename('LOAD_LOB',src_doc_name); -- assign pointer to file
 --
 insert into patchmain(patch_id, patch_desc) -- create LOB placeholder
 values(patch_seq.nextval, empty_clob())
 returning patch_desc into dst_clb;
 --
 dbms_lob.open(src_clb, dbms_lob.lob_readonly); -- open file
 --
 -- load the file into the LOB
 dbms_lob.loadclobfromfile(
 dest_lob => dst_clb,
 src_bfile => src_clb,
 amount => dbms_lob.lobmaxsize,
 dest_offset => dst_offset,
 src_offset => src_offset,
 bfile_csid => dbms_lob.default_csid,
 lang_context => lang_ctx,
 warning => warning_msg
);
 dbms_lob.close(src_clb); -- close file
 --
 dbms_output.put_line('Wrote CLOB: ' || src_doc_name);
end;
/

You can place this code in a file and execute it from the SQL command prompt. In this example the file that
contains the code is named clob.sql:

SQL> set serverout on size 1000000
SQL> @clob.sql

Here is the expected output:

Wrote CLOB: patch.txt
PL/SQL procedure successfully completed.

Chapter 11 ■ Large ObjeCtS

298

Loading a BLOB
Loading a BLOB is similar to loading a CLOB. This example uses the directory object, table, and sequence from the
previous example (which loaded a CLOB). Loading a BLOB is simpler than loading a CLOB because you don’t have to
specify character set information.

This example loads a file named patch.zip into the PATCH_FILE BLOB column:

declare
 src_blb bfile; -- point to source BLOB on file system
 dst_blb blob; -- destination BLOB in table
 src_doc_name varchar2(300) := 'patch.zip';
 src_offset integer := 1; -- where to start in the source BLOB
 dst_offset integer := 1; -- where to start in the target BLOB
begin
 src_blb := bfilename('LOAD_LOB',src_doc_name); -- assign pointer to file
 --
 insert into patchmain(patch_id, patch_file)
 values(patch_seq.nextval, empty_blob())
 returning patch_file into dst_blb; -- create LOB placeholder column first
 dbms_lob.open(src_blb, dbms_lob.lob_readonly);
 --
 dbms_lob.loadblobfromfile(
 dest_lob => dst_blb,
 src_bfile => src_blb,
 amount => dbms_lob.lobmaxsize,
 dest_offset => dst_offset,
 src_offset => src_offset
);
 dbms_lob.close(src_blb);
 dbms_output.put_line('Wrote BLOB: ' || src_doc_name);
end;
/

You can place this code in a file and run it from the SQL command prompt. Here, the file that contains the code is
named blob.sql:

SQL> set serverout on size 1000000
SQL> @blob.sql

Here is the expected output:

Wrote BLOB: patch.zip
PL/SQL procedure successfully completed.

Chapter 11 ■ Large ObjeCtS

299

Measuring LOB Space Consumed
As discussed previously, a LOB consists of an in-row lob locator, a LOB index, and a LOB segment that is made up of
one or more chunks. The space used by the LOB index is usually negligible compared with the space used by the LOB
segment. You can view the space consumed by a segment by querying the BYTES column of DBA/ALL/USER_SEGMENTS
(just like any other segment in the database). Here is a sample query:

select segment_name, segment_type, segment_subtype,
 bytes/1024/1024 meg_bytes
from user_segments;

You can modify the query to report on only LOBs by joining to the USER_LOBS view:

select a.table_name, a.column_name, a.segment_name, a.index_name
,b.bytes/1024/1024 meg_bytes
from user_lobs a, user_segments b
where a.segment_name = b.segment_name;

You can also use the DBMS_SPACE.SPACE_USAGE package and procedure to report on the blocks being used
by a LOB. This package only works on objects that have been created in an ASSM-managed tablespace. There are
two different forms of the SPACE_USAGE procedure: one form reports on BasicFiles LOBs, and the other reports on
SecureFiles LOBs.

BasicFiles Space Used
Here is an example of how to call DBMS_SPACE.SPACE_USAGE for a BasicFiles LOB:

declare
 p_fs1_bytes number;
 p_fs2_bytes number;
 p_fs3_bytes number;
 p_fs4_bytes number;
 p_fs1_blocks number;
 p_fs2_blocks number;
 p_fs3_blocks number;
 p_fs4_blocks number;
 p_full_bytes number;
 p_full_blocks number;
 p_unformatted_bytes number;
 p_unformatted_blocks number;
begin
 dbms_space.space_usage(
 segment_owner => user,
 segment_name => 'SYS_LOB0000024082C00002$$',
 segment_type => 'LOB',
 fs1_bytes => p_fs1_bytes,
 fs1_blocks => p_fs1_blocks,
 fs2_bytes => p_fs2_bytes,
 fs2_blocks => p_fs2_blocks,
 fs3_bytes => p_fs3_bytes,
 fs3_blocks => p_fs3_blocks,

Chapter 11 ■ Large ObjeCtS

300

 fs4_bytes => p_fs4_bytes,
 fs4_blocks => p_fs4_blocks,
 full_bytes => p_full_bytes,
 full_blocks => p_full_blocks,
 unformatted_blocks => p_unformatted_blocks,
 unformatted_bytes => p_unformatted_bytes
);
 dbms_output.put_line('Full bytes = '||p_full_bytes);
 dbms_output.put_line('Full blocks = '||p_full_blocks);
 dbms_output.put_line('UF bytes = '||p_unformatted_bytes);
 dbms_output.put_line('UF blocks = '||p_unformatted_blocks);
end;
/

In this PL/SQL, you need to modify the code so that it reports on the LOB segment in your environment.

SecureFiles Space Used
Here is an example of how to call DBMS_SPACE.SPACE_USAGE for a SecureFiles LOB:

DECLARE
 l_segment_owner varchar2(40);
 l_table_name varchar2(40);
 l_segment_name varchar2(40);
 l_segment_size_blocks number;
 l_segment_size_bytes number;
 l_used_blocks number;
 l_used_bytes number;
 l_expired_blocks number;
 l_expired_bytes number;
 l_unexpired_blocks number;
 l_unexpired_bytes number;
 --
 CURSOR c1 IS
 SELECT owner, table_name, segment_name
 FROM dba_lobs
 WHERE table_name = 'PATCHMAIN';
BEGIN
 FOR r1 IN c1 LOOP
 l_segment_owner := r1.owner;
 l_table_name := r1.table_name;
 l_segment_name := r1.segment_name;
 --
 dbms_output.put_line('-----------------------------');
 dbms_output.put_line('Table Name : ' || l_table_name);
 dbms_output.put_line('Segment Name : ' || l_segment_name);
 --
 dbms_space.space_usage(
 segment_owner => l_segment_owner,
 segment_name => l_segment_name,
 segment_type => 'LOB',

Chapter 11 ■ Large ObjeCtS

301

 partition_name => NULL,
 segment_size_blocks => l_segment_size_blocks,
 segment_size_bytes => l_segment_size_bytes,
 used_blocks => l_used_blocks,
 used_bytes => l_used_bytes,
 expired_blocks => l_expired_blocks,
 expired_bytes => l_expired_bytes,
 unexpired_blocks => l_unexpired_blocks,
 unexpired_bytes => l_unexpired_bytes
);
 --
 dbms_output.put_line('segment_size_blocks: '|| l_segment_size_blocks);
 dbms_output.put_line('segment_size_bytes : '|| l_segment_size_bytes);
 dbms_output.put_line('used_blocks : '|| l_used_blocks);
 dbms_output.put_line('used_bytes : '|| l_used_bytes);
 dbms_output.put_line('expired_blocks : '|| l_expired_blocks);
 dbms_output.put_line('expired_bytes : '|| l_expired_bytes);
 dbms_output.put_line('unexpired_blocks : '|| l_unexpired_blocks);
 dbms_output.put_line('unexpired_bytes : '|| l_unexpired_bytes);
 END LOOP;
END;
/

Again, in this PL/SQL, you need to modify the code so that it reports on the table with the LOB segment in your
environment.

Reading BFILEs
As discussed previously, a BFILE data type is simply a column in a table that stores a pointer to an OS file. A BFILE
provides you with read-only access to a binary file on disk. To access a BFILE, you must first create a directory object.
This is a database object that stores the location of an OS directory. The directory object makes Oracle aware of the
BFILE location on disk.

This example first creates a directory object, creates a table with a BFILE column, and then uses the DBMS_LOB
package to access a binary file:

SQL> create or replace directory load_lob as '/orahome/oracle/lob';

Next, a table is created that contains a BFILE data type:

create table patchmain
(patch_id number
,patch_file bfile);

For this example a file named patch.zip is located in the aforementioned directory. You make Oracle aware of
the binary file by inserting a record into the table using the directory object and the file name:

SQL> insert into patchmain values(1, bfilename('LOAD_LOB','patch.zip'));

Chapter 11 ■ Large ObjeCtS

302

Now, you can access the BFILE via the DBMS_LOB package. For \ instance, if you want to verify that the file exists or
display the length of the LOB, you can do so as follows:

SQL> select dbms_lob.fileexists(bfilename('LOAD_LOB','patch.zip')) from dual;
SQL> select dbms_lob.getlength(patch_file) from patchmain;

In this manner, the binary file behaves like a BLOB. The big difference is that the binary file isn’t stored within the
database.

Tip ■ See the Oracle Database pL/SQL packages and types reference guide for full details on using the DBMS_LOB
package. this guide is available on http://otn.oracle.com.

Summary
Oracle lets you store large objects in databases via various LOB data types. LOBs facilitate the storage, management,
and retrieval of video clips, images, movies, word-processing documents, large text files, and so on. Oracle can store
these files in the database and thus provide backup and recovery and security protection (just as it does for any other
data type). BLOBs are used to store binary files, such as images (JPEG, MPEG), movie files, sound files, and so on. If it’s
not feasible to store the file in the database, you can use a BFILE LOB.

Oracle provides two underlying architectures for LOBS: BasicFiles and SecureFiles. BasicFiles is the LOB architecture
that has been available since Oracle version 8. The SecureFiles feature was introduced in Oracle Database 11g. SecureFiles
has many advanced options, such as compression, deduplication, and encryption (these specific features require an
extra license from Oracle).

LOBs provide a way to manage very large files. Oracle has another feature, partitioning, which allows you to
manage very large tables and indexes. Partitioning is covered in detail in the next chapter.

http://otn.oracle.com/

303

Chapter 12

Partitioning: Divide and Conquer

Oracle provides two key scalability features that enable good performance, even with massively large databases:
parallelism and partitioning. Parallelism allows Oracle to start more than one thread of execution to take advantage
of multiple hardware resources. Partitioning allows subsets of a table or index to be managed independently (Oracle’s
“divide and conquer” approach). The focus of this chapter is partitioning strategies.

Partitioning lets you create a logical table or index that consists of separate segments that can each be accessed
and worked on by separate threads of execution. Each partition of a table or index has the same logical structure,
such as the column definitions, but can reside in separate containers. In other words, you can store each partition in
its own tablespace and associated data files. This allows you to manage one large logical object as a group of smaller,
more maintainable pieces. The main benefits realized from partitioning are

better performance; in some circumstances, SQL queries can operate on a single partition •	
or subset of partitions, which allows for faster execution times

higher availability; the availability of data in one partition isn’t affected by the unavailability •	
of data in another partition

easier maintenance; inserting, updating, deleting, truncating, rebuilding, and reorganizing •	
data by partition allows for efficient loading and archiving operations that would otherwise
be difficult and time-consuming

Just because you implement partitioning doesn’t mean you’ll automatically get performance gains, achieve
high availability, and ease your administration activities. You need to be aware of how partitioning works and how to
leverage various features to reap any benefits. The goal of this chapter is to explain partitioning concepts and how to
implement partitioning and to offer guidelines on when to use which features.

Before getting into the details, there are several partitioning terms you should first be familiar with. Table 12-1
describes the meanings of key partitioning terms that are used throughout the chapter.

Chapter 12 ■ partitioning: DiviDe anD Conquer

304

Also keep in mind, if you work with mainly small OLTP databases, you probably don’t need to create partitioned
tables and indexes. However, if you work with large OLTP databases or in data warehouse environments, you can
most likely benefit from partitioning. Partitioning is a key to designing and building scalable, highly available, large
database systems.

What Tables Should Be Partitioned?
Following are some rules of thumb for determining whether to partition a table. In general, you should consider
partitioning for tables

that are greater than 2GB.•	

that have more than 10 million rows, when SQL operations are getting slower as more data •	
are added

that you know will grow large (it’s better to create a table as partitioned than to rebuild it as •	
partitioned after performance begins to suffer as the table grows)

that have rows that can be divided in a way that facilitates parallel operations, such as •	
inserting, retrieval, deleting, and backup and recovery

for which you want to archive the oldest partition on a periodic basis or from which you want •	
to drop the oldest partition regularly, as data become stale

Table 12-1. Oracle Partitioning Terminology

Term Meaning

Partitioning Transparently implementing one logical table or index as many separate,
smaller segments

Partition key One or more columns that unambiguously determine which partition a row is
stored in

Partition bound Boundary between partitions

Single-Level partitioning Partitioning, using a single method

Composite partitioning Partitioning, using a combination of methods

Subpartition Partition within a partition

Partition independence Ability to access partitions separately to perform maintenance operations
without affecting the availability of other partitions

Partition pruning Elimination of unnecessary partitions. Oracle detects which partitions need
to be accessed by an SQL statement and removes (prunes from search) any
partitions that aren’t needed.

Partition-wise join Join executed in partition-sized pieces to improve performance by executing
many smaller tasks in parallel rather than one large task in sequence

Local partitioned index Index that uses the same partition key as its table

Global partitioned index Index that doesn’t use the same partition key as its table

Global nonpartitioned index Regular index created on a partitioned table. The index itself isn’t partitioned.

Chapter 12 ■ partitioning: DiviDe anD Conquer

305

One rule is that any table greater than 2GB is a potential candidate for partitioning. Run this query to show the
top space-consuming objects in your database:

select * from (
select owner, segment_name, segment_type, partition_name
,sum(bytes)/1024/1024 meg_tot
from dba_segments
group by owner, segment_name, segment_type, partition_name
order by sum(extents) desc)
where rownum <= 10;

Here is a snippet of the output from the query:

OWNER SEGMENT_NAME SEGMENT_TYPE PARTITION_NAME MEG_TOT
-------- ------------------------------ ------------ --------------- ----------
MV_MAINT F_SALES TABLE 15281
MV_MAINT F_SALES_IDX1 INDEX 8075

This output shows that a few large objects in this database may benefit from partitioning. For this database, if
there are performance issues with these large objects, then partitioning may help.

If you’re running the previous query from SQL*Plus, you need to apply some formatting to the columns to
reasonably display the output within the limited width of your terminal:

set lines 132
col owner form a10
col segment_name form a25
col partition_name form a15

In addition to looking at the size of objects, if you can divide your data so that they facilitate operations,
such as loading data, querying, backups, archiving, and deleting, you should consider using partitioning. For example,
if you work with a table that contains a large number of rows that are often accessed according to a particular time
range—such as by day, week, month, or year—it makes sense to consider partitioning.

A large table size combined with a good business reason means that you should think about partitioning. Keep in
mind that there is more setup work and maintenance when you partition a table. However, as mentioned earlier, it’s
much easier to partition a table during setup than it is to convert it after it’s grown to an unwieldy size.

Note ■ partitioning is an extra cost option that is available only with the oracle enterprise edition. You have to decide,
based on your business requirements, whether partitioning is worth the cost.

Creating Partitioned Tables
Oracle provides a robust set of methods for dividing tables and indexes into smaller subsets. For example, you
can divide a table’s data by date ranges, such as by month or year. Table 12-2 gives an overview of the partitioning
strategies available.

Chapter 12 ■ partitioning: DiviDe anD Conquer

306

The following sections show examples of each partitioning strategy. Additionally, you learn how to place
partitions in separate tablespaces; to take advantage of all the benefits of partitioning, you need to understand how to
assign a partition to its own tablespace.

Partitioning by Range
Range partitioning is frequently used. This strategy instructs Oracle to place rows in partitions based on ranges of
values, such as dates, numbers, or characters. As data are inserted into a range-partitioned table, Oracle determines
which partition to place a row in based on the lower and upper bound of each range partition.

The range-based partition key is defined by the PARTITION BY RANGE clause in the CREATE TABLE statement.
This determines which column is used to control the partition a row belongs in. You’ll see some examples shortly.

Each range partition requires a VALUES LESS THAN clause that identifies the noninclusive value of the upper
bound of the range. The first partition defined for a range has no lower bound. Any values less than those set in
the first partition’s VALUES LESS THAN clause are inserted into the first partition. For partitions other than the first
partition, the lower bound of a range is determined by the upper bound of the previous partition.

Optionally, you can create a range-partitioned table’s highest partition with the MAXVALUE clause. Any row that
doesn’t have a partition key that falls in the lower ranges is inserted into this topmost MAXVALUE partition.

Implementing a NUMBER for the Partition Key Column
Let’s look at an example to illustrate the previous concepts. Suppose you’re working in a data warehouse environment,
in which you typically have a fact table that stores information about an event, such as sales, profits, registrations, and
so on. In a fact table usually one column represents an amount or count and another represents a point in time.

Some data warehouse architects choose to represent the point-in-time column with a number that translates into
a date—the idea being that a number data type is efficient when joining to multiple dimension tables. For instance,
the value 20130101 is used to represent January 1, 2013, and you use that number value (which represents a date)
as the column to partition the fact table. This SQL statement creates a table with three partitions based on a range
of numbers:

create table f_sales
(sales_amt number
,d_date_id number)

Table 12-2. Partitioning Strategies

Partition Type Description

Range Allows partitioning based on ranges of dates, numbers, or characters

List Useful when the partitions fit nicely into a list of values, such as state or region codes

Hash Allows even distribution of rows when there is no obvious partitioning key

Composite Allows combinations of other partitioning strategies

Interval Extends range partitioning by automatically allocating new partitions when new partition key
values exceed the existing high range

Reference Useful for partitioning a child table based on a parent table column

Virtual Allows partitioning on a virtual column

System Allows the application inserting the data to determine which partition should be used

Chapter 12 ■ partitioning: DiviDe anD Conquer

307

partition by range (d_date_id)(
partition p_2012 values less than (20130101),
partition p_2013 values less than (20140101),
partition p_max values less than (maxvalue));

When creating a range-partitioned table, you don’t have to specify a MAXVALUE partition. However, if you don’t
specify a partition with the MAXVALUE clause, and you attempt to insert a row that doesn’t fall within any other defined
ranges, you receive an error such as

ORA-14400: inserted partition key does not map to any partition

When you see that error, you have to add a partition that accommodates the partition key value being inserted or
that has the MAXVALUE clause.

Tip ■ if you’re using oracle Database 11g or higher, consider using an interval partitioning strategy, in which
partitions are automatically added by oracle when the high range value is exceeded. See the section “Creating partitions
on Demand,” later in this chapter.

You can view information about the partitioned table you just created by running the following query:

select table_name, partitioning_type, def_tablespace_name
from user_part_tables
where table_name='F_SALES';

Here is a snippet of the output:

TABLE_NAME PARTITION DEF_TABLESPACE_NAME
-------------------- --------- ------------------------------
F_SALES RANGE USERS

To view information about the partitions in the table, issue a query as follows:

select table_name, partition_name, high_value
from user_tab_partitions
where table_name = 'F_SALES'
order by table_name, partition_name;

Here is some sample output:

TABLE_NAME PARTITION_NAME HIGH_VALUE
-------------------- -------------------- --------------------
F_SALES P_2012 20130101
F_SALES P_2013 20140101
F_SALES P_MAX MAXVALUE

In this example the D_DATE_ID column is the partitioning key column. The VALUES LESS THAN clauses create
the partition boundaries; these define the partition into which a row is inserted. The MAXVALUE parameter creates a
partition in which to store rows that don’t fit into the other defined partitions (including NULL values).

Chapter 12 ■ partitioning: DiviDe anD Conquer

308

DeteCtING WheN aDDItIONaL hIGh raNGe IS reQUIreD

When you partition by range without specifying a MAXVALUE partition, you may not accurately predict when a new
high partition will need to be added. additionally, the HIGH_VALUE column in the data dictionary is a LONG data
type, which means that you can’t apply the MAX SqL function to return the current high value.

Listed next is a simple shell script that attempts to insert a record that contains a future date to determine if there
is an accepting partition. if the record is inserted successfully, the script rolls back the transaction. if the record
fails to insert, an error is generated, and the script sends you an e-mail:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
export ORACLE_SID=o12c
export ORACLE_HOME=/ora01/app/oracle/product/12.1.0.1/db_1
#
sqlplus -s <<EOF
mv_maint/foo
WHENEVER SQLERROR EXIT FAILURE
COL date_id NEW_VALUE hold_date_id
SELECT to_char(sysdate+30,'yyyymmdd') date_id FROM dual;
--
INSERT INTO mv_maint.f_sales(sales_amt, d_date_id)
VALUES (0, '&hold_date_id');
ROLLBACK;
EOF
#
if [$? -ne 0]; then
 mailx -s "Partition range issue: f_sales" dkuhn@gmail.com <<EOF
 check f_sales high range.
EOF
else
 echo "f_sales ok"
fi
exit 0

ensure that you don’t inadvertently add data to a production table with a script such as this. You have to modify
the script carefully to match your table and high-range partition key column.

mailto:dkuhn@gmail.com

Chapter 12 ■ partitioning: DiviDe anD Conquer

309

Implementing a TIMESTAMP for the Partition Key Column
As noted, the example in the previous section created the column D_DATE_ID as a NUMBER data type instead of a DATE
data type for the F_SALES table. As opposed to a NUMBER data type, some data warehouse architects would advocate
using a DATE or TIMESTAMP data type for the partition key. Here is an example that creates the F_SALES table with a
DATE data type for the D_DATE_DTT column:

create table f_sales
(sales_amt number
,d_date_dtt date
)
partition by range (d_date_dtt)(
 partition p_2011 values less than (to_date('01-01-2012','dd-mm-yyyy')),
 partition p_2012 values less than (to_date('01-01-2013','dd-mm-yyyy')),
 partition p_max values less than (maxvalue));

Tip ■ using the date format DD-MM-YYYY may be preferable to one such as 01-Mon-YYYY. the DD-MM-YYYY
format avoids using character names for the month (Jan, FeB, and so on), which circumvents issues with different
character-set languages.

As shown in the prior code, I recommend that you always use TO_DATE to explicitly instruct Oracle on how to
interpret the date. Doing so also provides a minimal level of documentation for anybody supporting the database.

Using a DATE data type for the partition key is every bit as valid as using a NUMBER field for the partition key.
Just keep in mind that whoever designs the data warehouse tables may have a strong opinion about which technique
to use.

Placing Partitions in Tablespaces
Benefits such as increased availability and reduced administration costs can only be achieved if you create a separate
tablespace for each partition. Using separate tablespaces effects the partition independence; a single partition can be
placed online/offline, backed up, restored, and recovered independently of the availability of other partitions.

To understand the benefits of using a separate tablespace for each partition, first consider a nonpartitioned table
scenario. For reference, here is the CREATE TABLESPACE statement used for this example:

CREATE TABLESPACE p1_tbsp
 DATAFILE '/u01/dbfile/o12c/p1_tbsp01.dbf' SIZE 100m
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 128K
 SEGMENT SPACE MANAGEMENT AUTO;

Here is a nonpartitioned CREATE TABLE statement that creates a table and places it in the P1_TBSP tablespace:

create table f_sales(
 sales_amt number
,d_date_id number)
tablespace p1_tbsp;

Chapter 12 ■ partitioning: DiviDe anD Conquer

310

 Now, as data are inserted into the F_SALES table, all the data are stored in the data files associated with the tablespace
P1_TBSP. Figure 12-1 illustrates this point. There is no way for the data being inserted into a nonpartitioned table to be
spread out across multiple tablespaces.

tablespace:
p1_tbsp

table:
F_SALES

data file(s):
t1_df1..N

Figure 12-1. A nonpartitioned table

Compare the previous nonpartitioned architecture with that of a partitioned table. This example creates a
partitioned table but doesn’t specify tablespaces for the partitions:

create table f_sales (
 sales_amt number
,d_date_id number)
tablespace p1_tbsp
partition by range(d_date_id)(
 partition y11 values less than (20120101)
,partition y12 values less than (20130101)
,partition y13 values less than (20140101));

Figure 12-2 illustrates this approach. Note that in this case, all partitions are stored in the same tablespace.

Chapter 12 ■ partitioning: DiviDe anD Conquer

311

This approach has some advantages over a nonpartitioned table, in that you can perform partition maintenance
operations (drop, split, merge, truncate, and so on) on one partition without affecting others, thus ensuring partition
independence. However, the approach doesn’t quite take advantage of all that partitioning has to offer.

The next example places each partition in a separate tablespace:

create table f_sales (
 sales_amt number
,d_date_id number)
tablespace p1_tbsp
partition by range(d_date_id)(
 partition y11 values less than (20120101)
 tablespace p1_tbsp
,partition y12 values less than (20130101)
 tablespace p2_tbsp
,partition y13 values less than (20140101)
 tablespace p3_tbsp);

Now, the data for each partition are physically stored in their own tablespace and corresponding data files
(see Figure 12-3).

tablespace:
p1_tbsp

F_SALES

partition:
Y11

(values less
than

20120101)

data file(s):
t1_df1..N

partition:
Y12

(values less
than

20130101)

partition:
Y13

(values less
than

20140101)

Figure 12-2. A partitioned table with only one tablespace

Chapter 12 ■ partitioning: DiviDe anD Conquer

312

An advantage of placing partitions in separate tablespaces is that you can back up and recover partitions
independently (by backing up individual tablespaces). Also, if you have a partition that isn’t being modified, you
can change its tablespace to read-only and instruct utilities such as RMAN to skip backing up such tablespaces, thus
increasing backup performance. Additionally, creating each partition in its own tablespace makes it easier to move
data from OLTP databases to decision support system (DSS) databases, and it lets you place specific tablespaces and
corresponding data files on separate storage devices to improve scalability and performance.

Also keep in mind that when you specify a tablespace for a partition, you can also specify any other storage
settings (per tablespace). The next example explicitly sets the PCTFREE, PCTUSED, and NOLOGGING storage clauses for the
tablespaces:

create table f_sales (
 sales_amt number
,d_date_id number)
tablespace p1_tbsp
partition by range(d_date_id)(
 partition y11 values less than (20120101)
 tablespace p1_tbsp pctfree 5 pctused 90 nologging
,partition y12 values less than (20130101)
 tablespace p2_tbsp pctfree 5 pctused 90 nologging
,partition y13 values less than (20140101)
 tablespace p3_tbsp pctfree 5 pctused 90 nologging);

tablespace:
p1_tbsp

F_SALES

partition:
Y11

(values less
than

20120101)

data file(s):
t1_df1..N

partition:
Y12

(values less
than

20130101)

partition:
Y13

(values less
than

20140101)

tablespace:
p2_tbsp

data file(s):
t2_df1..N

tablespace:
p3_tbsp

data file(s):
t3_df1..N

Figure 12-3. Partitions stored in separate tablespaces

Chapter 12 ■ partitioning: DiviDe anD Conquer

313

Partitioning by List
List partitioning works well for partitioning unordered and unrelated sets of data. For example, say you have a
large table and want to partition it by state code. To do so, use the PARTITION BY LIST clause of the CREATE TABLE
statement. This example uses state codes to create three list-based partitions:

create table f_sales
 (sales_amt number
 ,d_date_id number
 ,state_code varchar2(3))
partition by list (state_code)
 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')
 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')
 ,partition reg_def values (default));

The partition key for a list-partitioned table can be only one column. Use the DEFAULT list to specify a partition
for rows that don’t match values in the list. If you don’t specify a DEFAULT list, then an error is generated when a
row is inserted with a value that doesn’t map to the defined partitions. Run this SQL statement to view list values for
each partition:

select table_name, partition_name, high_value
from user_tab_partitions
where table_name = 'F_SALES'
order by 1;

Here is the output for this example:

TABLE_NAME PARTITION_NAME HIGH_VALUE
----------- ---------------- --
F_SALES REG_DEF default
F_SALES REG_MID 'IA', 'KS', 'MI', 'MN', 'MO', 'NE', 'OH', 'ND'
F_SALES REG_WEST 'AZ', 'CA', 'CO', 'MT', 'OR', 'ID', 'UT', 'NV'

The HIGH_VALUE column displays the list values defined for each partition. This column is a LONG data type. If
you’re using SQL*Plus, you may need to set the LONG variable to a value higher than the default (80B), to display the
entire contents of the column:

SQL> set long 1000

Partitioning by Hash
Sometimes a large table doesn’t contain an obvious column by which to partition the table, whether by range or by
list. For instance, suppose you use a sequence to populate a surrogate primary key for a table, and you want rows
spread evenly across partitions, based on the unique primary key. You may do this because there isn’t another column
to partition, or you may be mainly concerned with the efficiency of inserts.

Hash partitioning maps rows to partitions based on an internal algorithm that spreads data evenly across all
defined partitions. You don’t have any control over the hashing algorithm or the way Oracle distributes the data. You
specify how many partitions you’d like, and Oracle divides the data evenly, based on the hash key column.

Chapter 12 ■ partitioning: DiviDe anD Conquer

314

Tip ■ oracle strongly recommends that you use a power of two (2, 4, 8, 16, and so on) for the number of hash
partitions. Doing so results in the optimal distribution of rows throughout the partitions.

To create hash-based partitions, use the PARTITION BY HASH clause of the CREATE TABLE statement. This example
creates a table that is divided into two partitions; each partition is created in its own tablespace:

create table f_sales(
 sales_id number primary key
,sales_amt number)
partition by hash(sales_id)
partitions 2 store in(p1_tbsp, p2_tbsp);

Of course, you have to modify details, such as the tablespace names, to match those in your environment.
Alternatively, you can eliminate the STORE IN clause, and Oracle places all partitions in your default tablespace.
If you want to name both the tablespaces and the partitions, you can specify them as follows:

create table f_sales(
 sales_id number primary key
,sales_amt number)
partition by hash(sales_id)
(partition p1 tablespace p1_tbsp
,partition p2 tablespace p2_tbsp);

Hash partitioning has some interesting performance implications. All rows that share the same value for the
hash key are inserted into the same partition. This means that inserts are particularly efficient, because the hashing
algorithm ensures that the data are distributed uniformly across partitions. Also, if you typically select for a specific
key value, Oracle has to access only one partition to retrieve those rows. However, if you search by ranges of values,
Oracle will most likely have to search every partition to determine which rows to retrieve. Thus, range searches can
perform poorly in hash-partitioned tables.

Blending Different Partitioning Methods
Oracle allows you to partition a table using multiple strategies (composite partitioning). For example, suppose you
have a table that you want to partition on a number range, but you also want to subdivide each partition by a list of
regions. The following example does just that:

create table f_sales(
 sales_amt number
 ,state_code varchar2(3)
 ,d_date_id number)
partition by range(d_date_id)
subpartition by list(state_code)
(partition p2011 values less than (20120101)
 (subpartition p1_north values ('ID','OR')
 ,subpartition p1_south values ('AZ','NM')),
 partition p2012 values less than (20130101)
 (subpartition p2_north values ('ID','OR')
 ,subpartition p2_south values ('AZ','NM')));

Chapter 12 ■ partitioning: DiviDe anD Conquer

315

You can view subpartition information by running the following query:

select table_name, partitioning_type, subpartitioning_type
from user_part_tables
where table_name = 'F_SALES';

Here is some sample output:

TABLE_NAME PARTITION SUBPARTIT
----------- --------- ---------
F_SALES RANGE LIST

Run the next query to view information about the subpartitions:

select table_name, partition_name, subpartition_name
from user_tab_subpartitions
where table_name = 'F_SALES'
order by table_name, partition_name;

Here is a snippet of the output:

TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
----------- ---------------- --------------------
F_SALES P2011 P1_SOUTH
F_SALES P2011 P1_NORTH
F_SALES P2012 P2_SOUTH
F_SALES P2012 P2_NORTH

Prior to Oracle Database 11g, composite partitioning can be implemented as range-hash (available since
version 8i) and range-list (available since version 9i). Starting with Oracle Database 11g, here are the composite
partitioning strategies available:

Range-Hash: Appropriate for ranges that can be subdivided by a somewhat random key, such •	
as a range of D_DATE_ID and then a hash on SALES_ID

Range-List: Useful when a range can be further partitioned by a list, such as a range of •	
D_DATE_ID and then a list on STATE_CODE

Range-Range: Appropriate when you have two distinct partition range values, such as •	
D_DATE_ID and SHIP_DATE

List-Range: Useful when a list can be further subdivided by a range, such as a list on •	
STATE_CODE and then a range of D_DATE_ID

List-Hash: Useful for further partitioning a list by a somewhat random key, such as a list on •	
STATE_CODE and then a hash on SALES_ID

List-List: Appropriate when a list can be further delineated by another list, such as •	
COUNTRY_CODE and then STATE_CODE

Hash-Hash: Useful when a hash can be further subdivided by another unique value, such as •	
SALES_ID and CUSTOMER_ID

As you can see, composite partitioning gives you a great deal of flexibility in the way you partition your data.

Chapter 12 ■ partitioning: DiviDe anD Conquer

316

Creating Partitions on Demand
As of Oracle Database 11g, you can instruct Oracle to add partitions to range-partitioned tables automatically. This
feature is known as interval partitioning. Oracle dynamically creates a new partition when data inserted exceed the
maximum bound of a range-partitioned table. The newly added partition is based on an interval that you specify
(hence, the name interval partitioning).

Tip ■ think of the interval as a rule you provide, stating how you want future partitions to be created.

Adding Yearly Partitions, Based on Date
Suppose, for instance, you have a range-partitioned table and want Oracle to add a partition automatically when
values are inserted above the highest value defined for the highest range. You can use the INTERVAL clause of the
CREATE TABLE statement to instruct Oracle to add a partition automatically to the high end of a range-partitioned
table. The following example creates a table that initially has one partition, with a high value range of 01-01-2013:

create table f_sales(
 sales_amt number
,d_date_dtt date)
partition by range (d_date_dtt)
interval(numtoyminterval(1, 'YEAR'))
store in (p1_tbsp, p2_tbsp, p3_tbsp)
(partition p1 values less than (to_date('01-01-2013','dd-mm-yyyy'))
tablespace p1_tbsp);

The first partition is created in the P1_TBSP tablespace. As Oracle adds partitions, it assigns a new partition to the
tablespaces defined in the STORE IN clause (the program is supposed to store them in a round-robin fashion but isn’t
always consistent).

Note ■ With interval partitioning, you can specify only a single key column from the table, and it must be either
a DATE or a NUMBER data type. this is because the interval is mathematically added to these data types. You can’t use
a VARCHAR2, as you can’t add a number to a VARCHAR2 data type.

The interval in this example is one year, specified by the INTERVAL(NUMTOYMINTERVAL(1, 'YEAR')) clause. If a
record is inserted into the table with a D_DATE_DTT value greater than or equal to 01-01-2013, Oracle automatically
adds a new partition to the high end of the table. You can check the details of the partition by running this SQL
statement:

set lines 132
col table_name form a10
col partition_name form a9
col part_pos form 999
col interval form a10
col tablespace_name form a12
col high_value form a30
--

Chapter 12 ■ partitioning: DiviDe anD Conquer

317

select table_name, partition_name, partition_position part_pos
 ,interval, tablespace_name, high_value
from user_tab_partitions
where table_name = 'F_SALES'
order by table_name, partition_position;

Here is some sample output (the column headings have been shortened, and the HIGH_VALUE column has been
cut short so that the output fits on the page):

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
---------- --------- -------- ---------- ------------ ------------------------------
F_SALES P1 1 NO P1_TBSP TO_DATE(' 2013-01-01 00:00:00'

Next, insert data above the high value for the highest partition:

SQL> insert into f_sales values(1, sysdate+1000);

Here is what the output from selecting from USER_TAB_PARTITIONS now shows:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
---------- --------- -------- ---------- ------------ ------------------------------
F_SALES P1 1 NO P1_TBSP TO_DATE(' 2013-01-01 00:00:00'
F_SALES SYS_P3344 2 YES P1_TBSP TO_DATE(' 2016-01-01 00:00:00'

A partition was automatically created with a high value of 2016-01-01. If you don’t like the name that Oracle gives
the partition, you can rename it:

SQL> alter table f_sales rename partition sys_p3344 to p2;

Note what happens when a value is inserted that falls into a year interval between the two partitions:

SQL> insert into f_sales values(1, sysdate+500);

Querying the USER_TAB_PARTITIONS view shows that another partition has been created because the value
inserted falls into a year interval that isn’t included in the existing partitions:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
---------- --------- -------- ---------- ------------ ------------------------------
F_SALES P1 1 NO P1_TBSP TO_DATE(' 2013-01-01 00:00:00'
F_SALES SYS_P3345 2 YES P3_TBSP TO_DATE(' 2015-01-01 00:00:00'
F_SALES SYS_P3344 3 YES P1_TBSP TO_DATE(' 2016-01-01 00:00:00'

Note ■ if there is more than one INTERVAL partition with a value of NO, then all but the last one can be dropped.
in other words, if there is only one partition with an INTERVAL value of NO, then the partition cannot be dropped.
For example, attempting to drop partition P1 from the table in the prior example generates an ORA-14758 error.

Chapter 12 ■ partitioning: DiviDe anD Conquer

318

Adding Weekly Partitions, Based on Date
You can also have Oracle add partitions by other increments of time, such as a week; for example,

create table f_sales(
 sales_amt number
,d_date_dtt date)
partition by range (d_date_dtt)
interval(numtodsinterval(7,'day'))
store in (p1_tbsp, p2_tbsp, p3_tbsp)
(partition p1 values less than (to_date('01-01-2013', 'dd-mm-yyyy'))
tablespace p1_tbsp);

As data are inserted into future weeks, new weekly partitions will be created automatically; for example,

SQL> insert into f_sales values(100, sysdate+7);
SQL> insert into f_sales values(200, sysdate+14);

Running this query verifies that partitions have automatically been added:

select table_name, partition_name, partition_position part_pos
 ,interval, tablespace_name, high_value
from user_tab_partitions
where table_name = 'F_SALES'
order by table_name, partition_position;

Here is some sample output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
---------- --------- -------- ---------- ------------ ------------------------------
F_SALES P1 1 NO P1_TBSP TO_DATE(' 2013-01-01 00:00:00'
F_SALES SYS_P3725 2 YES P3_TBSP TO_DATE(' 2013-01-15 00:00:00'
F_SALES SYS_P3726 3 YES P1_TBSP TO_DATE(' 2013-01-22 00:00:00'

In this way, Oracle automatically manages the addition of weekly partitions to the table.

Adding Daily Partitions, Based on Number
Recall from the section “Partitioning by Range,” earlier in this chapter, how a number field (D_DATE_ID) was used as
a range-based partition key. Suppose you want to create daily interval partitions in a table with such a partitioning
strategy automatically. In this situation, you need to specify an INTERVAL of one. Here is an example:

create table f_sales(
 sales_amt number
,d_date_id number)
partition by range (d_date_id)
interval(1)
(partition p1 values less than (20120101));

Chapter 12 ■ partitioning: DiviDe anD Conquer

319

As long as your application can correctly use a number that represents a valid date, there shouldn’t be any issues.
As each new day’s data are inserted, a new daily partition is created. For example, suppose these data are inserted:

SQL> insert into f_sales values(100,20130130);
SQL> insert into f_sales values(50,20130131);

Two corresponding partitions are automatically created. This can be verified via this query:

select table_name, partition_name, partition_position part_pos
 ,interval, tablespace_name, high_value
from user_tab_partitions
where table_name = 'F_SALES'
order by table_name, partition_position;

Here is the corresponding output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
---------- --------- -------- ---------- ------------ --------------------
F_SALES P1 1 NO USERS 20130101
F_SALES SYS_P3383 2 YES USERS 20130131
F_SALES SYS_P3384 3 YES USERS 20130132

Be aware that the HIGH_VALUE column can contain numbers that map to invalid dates. This is to be expected.
For instance, when creating a partition with a D_DATE_ID of 20130131, Oracle will calculate the upper boundary to be
the value 20130132. The high boundary value is defined as less than (but not equal to) any values inserted into the
partition. The only reason I mention this here is because if you attempt to perform date arithmetic on the value in
HIGH_VALUE, you will need to account for potential numbers that map to invalid dates. In this specific example, you
would have to subtract one from the value in HIGH_VALUE to obtain a valid date.

As previously shown in this section, a daily interval partitioning scheme based on a number works fine. However,
such a scheme doesn’t work as well if you want to create interval partitions by month or year. This is because there is
no number that consistently represents a month or year. If you need date-based interval functionality, then use a date
and not a number.

Partitioning to Match a Parent Table
If you’re using Oracle Database 11g or higher, you can use the PARTITION BY REFERENCE clause to specify that a
child table should be partitioned in the same way as its parent. This allows a child table to inherit the partitioning
strategy of its parent table. Any parent table partition maintenance operations are automatically applied to the
child record tables.

Note ■ Before the advent of the partitioning-by-reference feature, you had to physically duplicate and maintain the
parent table column in the child table. Doing so not only requires more disk space, but also is a source of error when
maintaining the partitions.

For example, say you want to create a parent ORDERS table and a child ORDER_ITEMS table that are related by
primary key and foreign key constraints on the ORDER_ID column. The parent ORDERS table will be partitioned on the
ORDER_DATE column. Even though it won’t contain the ORDER_DATE column, you wonder whether you can partition the

Chapter 12 ■ partitioning: DiviDe anD Conquer

320

child ORDER_ITEMS table so that the records are distributed the same way as in the parent ORDERS table. This example
creates a parent table with a primary key constraint on ORDER_ID and range partitions on ORDER_DATE:

create table orders(
 order_id number
,order_date date
,constraint order_pk primary key(order_id))
partition by range(order_date)
(partition p11 values less than (to_date('01-01-2012','dd-mm-yyyy'))
,partition p12 values less than (to_date('01-01-2013','dd-mm-yyyy'))
,partition pmax values less than (maxvalue));

Next, you create the child ORDER_ITEMS table. It’s partitioned by naming the foreign key constraint as the
referenced object:

create table order_items(
 line_id number
,order_id number not null
,sku number
,quantity number
,constraint order_items_pk primary key(line_id, order_id)
,constraint order_items_fk1 foreign key (order_id) references orders)
partition by reference (order_items_fk1);

Note that the foreign key column ORDER_ID must be defined as NOT NULL. The foreign key column must be
enabled and enforced.

You can inspect the partition key columns via the following query:

select name, column_name, column_position
from user_part_key_columns
where name in ('ORDERS','ORDER_ITEMS');

Here is the output for this example:

NAME COLUMN_NAME COLUMN_POSITION
-------------------- -------------------- ---------------
ORDERS ORDER_DATE 1
ORDER_ITEMS ORDER_ID 1

Note that the child table is partitioned by the ORDER_ID column. This ensures that the child record is
partitioned in the same manner as the parent record (because the child record is related to the parent record via
the ORDER_ID key column).

When you create the referenced-partition child table, if you don’t explicitly name the child table partitions, by
default, Oracle creates partitions for the child table with the same partition names as its parent table. This example
explicitly names the child table referenced partitions:

create table order_items(
 line_id number
,order_id number not null
,sku number
,quantity number
,constraint order_items_pk primary key(line_id, order_id)

Chapter 12 ■ partitioning: DiviDe anD Conquer

321

,constraint order_items_fk1 foreign key (order_id) references orders)
partition by reference (order_items_fk1)
(partition c11
,partition c12
,partition cmax);

Starting with Oracle Database 12c, you can also specify an interval-reference partitioning strategy. This allows for
partitions to be automatically created for both the parent and child tables. Here is what the table creation scripts look
like for this feature:

create table orders(
 order_id number
,order_date date
,constraint order_pk primary key(order_id))
partition by range(order_date)
interval(numtoyminterval(1, 'YEAR'))
(partition p1 values less than (to_date('01-01-2013','dd-mm-yyyy')));
--
create table order_items(
 line_id number
,order_id number not null
,sku number
,quantity number
,constraint order_items_pk primary key(line_id, order_id)
,constraint order_items_fk1 foreign key (order_id) references orders)
partition by reference (order_items_fk1);

Inserting some sample data will demonstrate how the partitions are automatically created:

SQL> insert into orders values(1,sysdate);
SQL> insert into order_items values(10,1,123,1);
SQL> insert into orders values(2,sysdate+400);
SQL> insert into order_items values(20,2,456,1);

Now, run this query to verify the partition details:

select table_name, partition_name, partition_position part_pos
 ,interval, tablespace_name, high_value
from user_tab_partitions
where table_name IN ('ORDERS','ORDER_ITEMS')
order by table_name, partition_position;

Here is a snippet of the output:

TABLE_NAME PARTITION PART_POS INTERVAL TABLESPACE_N HIGH_VALUE
----------- --------- -------- ---------- ------------ ------------------------------
ORDERS P1 1 NO USERS TO_DATE(' 2013-01-01 00:00:00'
ORDERS SYS_P3761 2 YES USERS TO_DATE(' 2014-01-01 00:00:00'
ORDERS SYS_P3762 3 YES USERS TO_DATE(' 2015-01-01 00:00:00'
ORDER_ITEMS P1 1 NO USERS
ORDER_ITEMS SYS_P3761 2 YES USERS
ORDER_ITEMS SYS_P3762 3 YES USERS

Chapter 12 ■ partitioning: DiviDe anD Conquer

322

Partitioning on a Virtual Column
If you’re using Oracle Database 11g or higher, you can partition on a virtual column (see Chapter 7 for a discussion
of virtual columns). Here is a sample script that creates a table named EMP, with the virtual column COMMISSION and a
corresponding range partition for the virtual column:

create table emp (
 emp_id number
,salary number
,comm_pct number
,commission generated always as (salary*comm_pct)
)
partition by range(commission)
(partition p1 values less than (1000)
,partition p2 values less than (2000)
,partition p3 values less than (maxvalue));

This strategy allows you to partition on a column that isn’t stored in the table but that is computed dynamically.
Virtual column partitioning is appropriate when there is a business requirement to partition on a column that isn’t
physically stored in a table. The expression behind a virtual column can be a complex calculation, return a subset of a
column string, combine column values, and so on. The possibilities are endless.

For example, you may have a ten-character-string column in which the first two digits represent a region, and last
eight digits represent a specific location (this is a bad design, but it happens). In this case, it may make sense, from a
business perspective, to partition on the first two digits of this column (by region).

Giving an Application Control over Partitioning
You may have a rare scenario, in which you want the application inserting records into a table to explicitly
control which partition it inserts data into. If you’re using Oracle Database 11g or higher, you can use the PARTITION
BY SYSTEM clause to allow an INSERT statement to specify into which partition to insert data. This next example creates
a system-partitioned table with three partitions:

create table apps
(app_id number
,app_amnt number)
partition by system
(partition p1
,partition p2
,partition p3);

When inserting data into this table, you must specify a partition. The next line of code inserts a record into
partition P1:

SQL> insert into apps partition(p1) values(1,100);

When you’re updating or deleting, if you don’t specify a partition, Oracle scans all partitions of a system-partitioned
table to find the relevant rows. Therefore, you should specify a partition when updating and deleting to avoid poor
performance.

Chapter 12 ■ partitioning: DiviDe anD Conquer

323

A system-partitioned table is helpful in the unusual situation of needing to explicitly control which partition a
record is inserted into. This allows your application code to manage the distribution of records among the partitions.
I recommend that you use this feature only when you can’t use one of Oracle’s other partitioning mechanisms to meet
your business requirement.

Maintaining Partitions
When using partitions, you’ll eventually have to perform some sort of maintenance operation. For instance, you may
be required to move, exchange, rename, split, merge, or drop partitions. The various partition maintenance tasks are
described in this section.

Viewing Partition Metadata
When you’re maintaining partitions, it’s helpful to view metadata information about the partitioned objects. Oracle
provides many data dictionary views that contain information about partitioned tables and indexes. Table 12-3
outlines these views.

Table 12-3. Data Dictionary Views Containing Partitioning Information

View Information Contained

DBA/ALL/USER_PART_TABLES Displays partitioned table information

DBA/ALL/USER_TAB_PARTITIONS Contains information regarding individual table partitions

DBA/ALL/USER_TAB_SUBPARTITIONS Shows subpartition-level table information regarding storage
and statistics

DBA/ALL/USER_PART_KEY_COLUMNS Displays partition key columns

DBA/ALL/USER_SUBPART_KEY_COLUMNS Contains subpartition key columns

DBA/ALL/USER_PART_COL_STATISTICS Shows column-level statistics

DBA/ALL/USER_SUBPART_COL_STATISTICS Displays subpartition-level statistics

DBA/ALL/USER_PART_HISTOGRAMS Contains histogram information for partitions

DBA/ALL/USER_SUBPART_HISTOGRAMS Shows histogram information for subpartitions

DBA/ALL/USER_PART_INDEXES Displays partitioned index information

DBA/ALL/USER_IND_PARTITIONS Contains information regarding individual index partitions

DBA/ALL/USER_IND_SUBPARTITIONS Shows subpartition-level index information

DBA/ALL/USER_SUBPARTITION_TEMPLATES Displays subpartition template information

Keep in mind that the DBA-level views contain data for all partitioned objects in the database, the ALL level shows
partitioning information to which the currently connect user has access, and the USER-level offers information about
the partitioned objects owned by the currently connected user.

Two views you’ll use quite often are DBA_PART_TABLES and the DBA_TAB_PARTITIONS. The DBA_PART_TABLES
 view contains table-level partitioning information, such as partitioning method and default storage settings.
The DBA_TAB_PARTITIONS view provides information about the individual table partitions, such as the partition
name and storage settings for individual partitions.

Chapter 12 ■ partitioning: DiviDe anD Conquer

324

Moving a Partition
Suppose you create a list-partitioned table, as shown:

create table f_sales
 (sales_amt number
 ,d_date_id number
 ,state_code varchar2(20))
partition by list (state_code)
 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')
 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')
 ,partition reg_rest values (default));

Also for this partitioned table, you decide to create a locally partitioned index, as follows:

SQL> create index f_sales_lidx1 on f_sales(state_code) local;

You decide to create as well a nonpartitioned global index, as follows:

SQL> create index f_sales_gidx1 on f_sales(d_date_id) global;

And, you create a global partitioned index column:

create index f_sales_gidx2 on f_sales(sales_amt)
global partition by range(sales_amt)
(partition pg1 values less than (25)
,partition pg2 values less than (50)
,partition pg3 values less than (maxvalue));

Later, you decide that you want to move a partition to a specific tablespace. In this scenario, you can use the
ALTER TABLE. . .MOVE PARTITION statement to relocate a table partition. This example moves the REG_WEST partition
to a new tablespace:

SQL> alter table f_sales move partition reg_west tablespace p1_tbsp;

Moving a partition to a different tablespace is a fairly simple operation. Whenever you do this, however, make
sure you check on the status of any indexes associated with the table:

select b.table_name, a.index_name, a.partition_name
,a.status, b.locality
from user_ind_partitions a
 ,user_part_indexes b
where a.index_name=b.index_name
and table_name = 'F_SALES';

Chapter 12 ■ partitioning: DiviDe anD Conquer

325

Here is some sample output:

TABLE_NAME INDEX_NAME PARTITION Status LOCALI
---------- -------------------- --------- --------- ------
F_SALES F_SALES_LIDX1 REG_MID USABLE LOCAL
F_SALES F_SALES_LIDX1 REG_REST USABLE LOCAL
F_SALES F_SALES_LIDX1 REG_WEST UNUSABLE LOCAL
F_SALES F_SALES_GIDX2 PG1 UNUSABLE GLOBAL
F_SALES F_SALES_GIDX2 PG2 UNUSABLE GLOBAL
F_SALES F_SALES_GIDX2 PG3 UNUSABLE GLOBAL

You must rebuild any unusable indexes. As opposed to rebuilding the indexes manually, when moving a
partition, you can specify that the indexes associated with it be rebuilt with the UPDATE INDEXES clause:

SQL> alter table f_sales move partition reg_west tablespace p1_tbsp update indexes;

Starting with Oracle Database 12c, when moving a partition, you can specify that all indexes be updated via the
ONLINE clause:

SQL> alter table f_sales move partition reg_west online tablespace p1_tbsp;

The prior line of code tells Oracle to maintain all indexes during the move operation.

Automatically Moving Updated Rows
By default, Oracle doesn’t let you update a row by setting the partition key to a value outside the row’s current
partition. For example, this statement updates the partition key column (D_DATE_ID) to a value that would result in the
row’s needing to exist in a different partition:

SQL> update f_sales set d_date_id = 20130901 where d_date_id = 20120201;

You receive the following error:

ORA-14402: updating partition key column would cause a partition change

In this scenario, use the ENABLE ROW MOVEMENT clause of the ALTER TABLE statement to allow updates to the
partition key that would change the partition in which a value belongs. For this example, the F_SALES table is first
modified to enable row movement:

SQL> alter table f_sales enable row movement;

You should now be able to update the partition key to a value that moves the row to a different segment. You can
verify that row movement has been enabled by querying the ROW_MOVEMENT column of the USER_TABLES view:

SQL> select row_movement from user_tables where table_name='F_SALES';

You should see the value ENABLED:

ROW_MOVE

ENABLED

Chapter 12 ■ partitioning: DiviDe anD Conquer

326

To disable row movement, use the DISABLE ROW MOVEMENT clause:

SQL> alter table f_sales disable row movement;

Partitioning an Existing Table
You may have a nonpartitioned table that has grown quite large and want to partition it. There are several methods for
converting a nonpartitioned table to a partitioned table. Table 12-4 lists the pros and cons of various techniques.

As shown in Table 12-4, one of the easiest ways to partition an existing table is to create a new table—one that is
partitioned—and load it with data from the old table. Listed next are the required steps:

1. If this is a table in an active production database, you should schedule some downtime for
the table to ensure that no active transactions are occurring while it’s being migrated.

2. Create a new, partitioned table from the old with CREATE TABLE <new table> AS SELECT
* FROM <old table>.

3. Drop or rename the old table.

4. Rename the table created in step 2 to the name of the dropped/renamed table.

For instance, let’s assume that the F_SALES table used so far in this chapter was created as a nonpartitioned table.
The following statement creates a new table that is partitioned, taking data from the old table, which isn’t:

create table f_sales_new
partition by range (d_date_id)
(partition p2012 values less than(20130101),
 partition p2013 values less than(20140101),
 partition pmax values less than(maxvalue))
nologging
as select * from f_sales;

Table 12-4. Methods of Converting a Nonpartitioned Table

Conversion Method Advantages Disadvantages

CREATE <new_part_tab> AS
SELECT * FROM <old_tab>

Simple; can use NOLOGGING and
PARALLEL options; direct path load

Requires space for both
old and new tables

INSERT /*+ APPEND */ INTO
<new_part_tab> SELECT * FROM <old_tab>

Fast; simple; direct path load Requires space for both
old and new tables

Data Pump EXPDP old table; IMPDP new table
(or EXP IMP if using older version of Oracle)

Fast; less space required; takes care
of grants, privileges, and so on.
Loading can be done per partition
with filtering conditions.

More complicated
because you need to
use a utility

Create partitioned <new_part_tab>;
exchange partitions with <old_tab>

Potentially less downtime Many steps; complicated

Use DBMS_REDEFINITION package Converts existing table inline Many steps; complicated

Create CSV file or external table;
load <new_part_tab> with SQL*Loader

Loading can be done partition by
partition.

Many steps; complicated

Chapter 12 ■ partitioning: DiviDe anD Conquer

327

Now, you can drop (or rename) the old, nonpartitioned table and rename the new, partitioned table the old
table’s name. Be sure you don’t need the old table before you drop it with the PURGE option, as this permanently drops
the table:

SQL> drop table f_sales purge;
SQL> rename f_sales_new to f_sales;

Finally, create any required constraints, grants, indexes, and statistics for the new table. You should now have a
partitioned table that replaces the old, nonpartitioned table.

For the last step, if the original table contains many constraints, grants, and indexes, you may want to use Data
Pump expd to export the original table without data. Then, after the new table is created, use Data Pump impdp to
create the constraints, grants, and indexes for the new table. Also consider generating fresh statistics for the newly
created table.

Adding a Partition
Sometimes it’s hard to predict how many partitions you should initially establish for a table. A typical example is
a range-partitioned table that’s created without a MAXVALUE-created partition. You make a partitioned table that
contains enough partitions for two years into the future, and then you forget about the table. Sometime in the future,
application users report that this message is being thrown:

ORA-14400: inserted partition key does not map to any partition

Tip ■ Consider using interval partitioning, which enables oracle to add range partitions automatically when the upper
bound is exceeded.

Range
For a range-partitioned table, if the table’s highest bound isn’t defined with a MAXVALUE, you can use the
ALTER TABLE. . .ADD PARTITION statement to add a partition to the high end of the table. If you’re not sure what
the current upper bound is, query the data dictionary:

select table_name, partition_name, high_value
from user_tab_partitions
where table_name = UPPER('&&tab_name')
order by table_name, partition_name;

This example adds a partition to the high end of a range-partitioned table:

alter table f_sales add
partition p_2014 values less than (20150101) tablespace p14_tbsp;

Starting with Oracle Database 12c, you can add multiple partitions at the same time; for example,

alter table f_sales add
 partition p_2015 values less than (20160101) tablespace p15_tbsp
,partition p_2016 values less than (20170101) tablespace p16_tbsp;

Chapter 12 ■ partitioning: DiviDe anD Conquer

328

Note■ if you have a range-partitioned table with the high range bounded by MAXVALUE, you can’t add a partition.
in this situation, you have to split an existing partition (see the section “Splitting a partition,” later in this chapter).

List
For a list-partitioned table, you can add a new partition only if there isn’t a DEFAULT partition defined. The next
example adds a partition to a list-partitioned table:

SQL> alter table f_sales add partition reg_east values('GA');

Starting with Oracle Database 12c, you can add multiple partitions with one statement:

SQL> alter table f_sales add partition reg_mid_east values('TN'),
 partition reg_north values('NY');

Hash
If you have a hash-partitioned table, use the ADD PARTITION clause, as follows, to add a partition:

SQL> alter table f_sales add partition p3 update indexes;

Note■ When you’re adding to a hash-partitioned table, if you don’t specify the UPDATE INDEXES clause, any global
indexes must be rebuilt. additionally, you must rebuild any local indexes for the newly added partition.

After adding a partition to a hash-partitioned table, always check the indexes to be sure they all still have a
VALID status:

select b.table_name, a.index_name, a.partition_name, a.status, b.locality
from user_ind_partitions a
 ,user_part_indexes b
where a.index_name=b.index_name
and table_name = upper('&&part_table');

Also check the status of any global nonpartitioned indexes:

select index_name, status
from user_indexes
where table_name = upper('&&part_table');

I highly recommend that you always test a maintenance operation in a nonproduction database to determine
any unforeseen side effects.

Chapter 12 ■ partitioning: DiviDe anD Conquer

329

Exchanging a Partition with an Existing Table
Exchanging a partition is a common technique for transparently loading new data into large partitioned tables.
The technique involves taking a stand-alone table and swapping it with an existing partition (in an already partitioned
table), allowing you to add fully loaded new partitions (and associated indexes) without affecting the availability or
performance of operations against the other partitions in the table.

This simple example illustrates the process. Say you have a range-partitioned table, created as follows:

create table f_sales
(sales_amt number
,d_date_id number)
partition by range (d_date_id)
(partition p_2011 values less than (20120101),
 partition p_2012 values less than (20130101),
 partition p_2013 values less than (20140101));

You also create a local bitmap index on the D_DATE_ID column:

create bitmap index d_date_id_fk1 on
f_sales(d_date_id) local;

Now, add a new partition to the table to store new data:

alter table f_sales add partition p_2014
values less than(20150101);

Next, create a staging table, and insert data that fall within the range of values for the newly added partition:

create table workpart(
 sales_amt number
 ,d_date_id number);
--
insert into workpart values(100,20140201);
insert into workpart values(120,20140507);

Then, create a bitmap index on the WORKPART table that matches the structure of the bitmap index on F_SALES:

create bitmap index d_date_id_fk2
on workpart(d_date_id);

Now, exchange the WORKPART table with the P_2014 partition:

alter table f_sales
exchange partition p_2014
with table workpart
including indexes without validation;

A quick query of the F_SALES table verifies that the partition was exchanged successfully:

SQL> select * from f_sales partition(p_2014);

Chapter 12 ■ partitioning: DiviDe anD Conquer

330

Here is the output:

SALES_AMT D_DATE_ID
---------- ----------
 100 20140201
 120 20140507

This query displays that the indexes are all still usable:

SQL> select index_name, partition_name, status from user_ind_partitions;

You can also verify that a local index segment was created for the new partition:

select segment_name, segment_type, partition_name
from user_segments
where segment_name IN('F_SALES','D_DATE_ID_FK1');

The ability to exchange partitions is an extremely powerful feature. It allows you to take a partition in an existing
table and make it a stand-alone table, while making a stand-alone table (which can be fully populated before the
partition exchange operation) part of a partitioned table. When you exchange a partition, Oracle simple updates the
entries in the data dictionary to perform the exchange.

When you exchange a partition with the WITHOUT VALIDATION clause, you instruct Oracle not to validate that
the rows in the incoming partition (or subpartition) are valid entries for the defined range. This has the advantage
of making the exchange a very quick operation because Oracle is only updating pointers in the data dictionary to
perform the exchange operation. You need to make sure your data are accurate if you use WITHOUT VALIDATION.

If a primary key is defined for the partitioned table, the table being exchanged must have the same primary
key structure defined. If there is a primary key, the WITHOUT VALIDATION clause doesn’t stop Oracle from enforcing
unique constraints.

Renaming a Partition
Sometimes, you may be required to rename a table partition or index partition. For example, you may want to rename
a partition before you drop it (to ensure that it’s not being used). Also, you may want to rename objects so that they
conform to standards. In these scenarios, use the ALTER TABLE or ALTER INDEX statement as appropriate.

This example uses the ALTER TABLE statement to rename a table partition:

SQL> alter table f_sales rename partition p_2012 to part_2012;

The next line of code uses the ALTER INDEX statement to rename an index partition:

SQL> alter index d_date_id_fk1 rename partition p_2012 to part_2012;

You can query the data dictionary to verify the information regarding renamed objects. This query shows
partitioned table names:

select table_name, partition_name, tablespace_name
from user_tab_partitions;

Chapter 12 ■ partitioning: DiviDe anD Conquer

331

Similarly, this query displays partitioned index information:

select index_name, partition_name, status
,high_value, tablespace_name
from user_ind_partitions;

Splitting a Partition
Suppose you’ve identified a partition that has too many rows, and you want to split it into two partitions. Use the
ALTER TABLE. . .SPLIT PARTITION statement to split an existing partition. The following example splits a partition in
a range-partitioned table:

alter table f_sales split partition p_2012 at (20120601)
into (partition p_2012_a, partition p_2012)
update indexes;

If you don’t specify UPDATE INDEXES, you need to rebuild any local indexes associated with the split partition as
well as any global indexes. You can verify the status of partitioned indexes with this SQL:

SQL> select index_name, partition_name, status from user_ind_partitions;

The next example splits a list partition. First, here is the CREATE TABLE statement, which shows you how the list
partitions were originally defined:

create table f_sales
 (sales_amt number
 ,d_date_id number
 ,state_code varchar2(3))
partition by list (state_code)
 (partition reg_west values ('AZ','CA','CO','MT','OR','ID','UT','NV')
 ,partition reg_mid values ('IA','KS','MI','MN','MO','NE','OH','ND')
 ,partition reg_rest values (default));

Next, the REG_MID partition is split:

alter table f_sales split partition reg_mid values ('IA','KS','MI','MN') into
(partition reg_mid_a,
 partition reg_mid_b)
update indexes;

The REG_MID_A partition now contains the values IA, KS, MI, and MN, and REG_MID_B is assigned the remaining
values, MO, NE, OH, and ND.

The split partition operation allows you to create two new partitions from a single partition. Each new partition
has its own segment, physical attributes, and extents. The segment associated with the original partition is deleted.

Merging Partitions
When you create a partition, sometimes it’s hard to predict how many rows the partition will eventually contain.
You may have two partitions that don’t contain enough data to warrant separate partitions. In such a situation, use
the ALTER TABLE. . .MERGE PARTITIONS statement to combine partitions.

Chapter 12 ■ partitioning: DiviDe anD Conquer

332

The following example merges two partitions into one existing partition:

SQL> alter table f_sales merge partitions p_2011, p_2012 into partition p_2012;

In this example the partitions are organized by a range of dates. The partition into which you’re merging is
defined as accepting rows with the highest range of the two merged partitions. Any local indexes are also merged into
the new, single partition.

You can verify the status of the partitioned indexes by querying the data dictionary:

select index_name, partition_name, tablespace_name, high_value,status
from user_ind_partitions
order by 1,2;

When you merge partitions, you can use the UPDATE INDEXES clause of the ALTER TABLE statement to instruct
Oracle to rebuild any associated indexes automatically:

alter table f_sales merge partitions p_2011, p_2012 into partition p_2012
tablespace p2_tbsp
update indexes;

Keep in mind that the merge operation takes longer when you use the UPDATE INDEXES clause. If you want to
minimize the length of the merge operation, don’t use this clause. Instead, manually rebuild local indexes associated
with a merged partition:

SQL> alter table f_sales modify partition p_2012 rebuild unusable local indexes;

You can rebuild each partition of a global index with the ALTER INDEX. . .REBUILD PARTITION statement:

SQL> alter index f_glo_idx1 rebuild partition sys_p680;
SQL> alter index f_glo_idx1 rebuild partition sys_p681;
SQL> alter index f_glo_idx1 rebuild partition sys_p682;

You can merge two or more partitions with the ALTER TABLE. . .MERGE PARTITIONS statement. The name of
the partition into which you’re merging can be the name of one of the partitions you’re merging or a completely
new name.

Before you merge two (or more) partitions, make certain the partition into which you’re merging has enough
space in its tablespace to accommodate all the merged rows. If there isn’t enough space, you receive an error that the
tablespace can’t extend to the necessary size.

Dropping a Partition
You occasionally need to drop a partition. A common scenario is that you have old data that aren’t used anymore,
meaning that the partition can be dropped.

First, identify the name of the partition you want to drop. Run the following query to list partitions for a particular
table for the currently connected user:

select segment_name, segment_type, partition_name
from user_segments
where segment_name = upper('&table_name');

Chapter 12 ■ partitioning: DiviDe anD Conquer

333

Next, use the ALTER TABLE. . .DROP PARTITION statement to remove a partition from a table. This example drops
the P_2012 partition from the F_SALES table:

SQL> alter table f_sales drop partition p_2012;

When dropping a partition, you will need to rebuild any global indexes. This can be done within the same
DDL statement, as the following example shows:

SQL> alter table f_sales drop partition p_2012 update global indexes;

If you want to drop a subpartition, use the DROP SUBPARTITION clause:

SQL> alter table f_sales drop subpartition p2_south;

You can query USER_TAB_SUBPARTITIONS to verify that the subpartition has been dropped.

Note ■ oracle doesn’t let you drop all subpartitions of a composite-partitioned table. there must be at least one
subpartition per partition.

When you drop a partition, there is no undrop operation. Therefore, before you do this, be sure you’re in the
correct environment and really do need to drop the partition. If you need to preserve the data in a partition to be
dropped, merge the partition with another partition instead of dropping it.

You can’t drop a partition from a hash-partitioned table. For hash-partitioned tables, you must coalesce
partitions to remove one. And, you can’t explicitly drop a partition from a reference-partitioned table. When a parent
table partition is dropped, it’s also dropped from corresponding child reference-partitioned tables.

Generating Statistics for a Partition
After you load a large amount of data into a partition, you should generate statistics to reflect the newly inserted data.
Use the EXECUTE statement to run the DBMS_STATS package in order to generate statistics for a particular partition.
In this example the owner is STAR, the table is F_SALES, and the partition being analyzed is P_2012:

exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-
tabname=>'F_SALES',-
partname=>'P_2012');

If you’re working with a large partition, you probably want to specify the percentage sampling size and degree of
parallelism and also generate statistics for any indexes:

exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-
tabname=>'F_SALES',-
partname=>'P_2012',-
estimate_percent=>dbms_stats.auto_sample_size,-
degree=>dbms_stats.auto_degree,-
cascade=>true);

Chapter 12 ■ partitioning: DiviDe anD Conquer

334

For a partitioned table, you can generate statistics on either a single partition or the entire table. I recommend
that you generate statistics whenever a significant amount of data change in the partition. You need to understand
your tables and data well enough to determine whether generating new statistics is required.

Also, starting with Oracle Database 11g, you can instruct Oracle to scan only newly added partitions when
generating global statistics. This feature is enabled via the DBMS_STATS package:

SQL> exec DBMS_STATS.SET_TABLE_PREFS(user,'F_SALES','INCREMENTAL','TRUE');

You can verify the table preferences for the table as follows:

SQL> select dbms_stats.get_prefs('INCREMENTAL', tabname=>'F_SALES') from dual;

The incremental global statistics gathering must be used in conjunction with DBMS_STATS.AUTO_SAMPLE_SIZE.
This can greatly reduce the time and resources required to gather incremental statistics for partitions newly added to
large tables.

Removing Rows from a Partition
You can use several techniques to remove rows from a partition. If the data in the particular partition are no longer
required, consider dropping the partition. If you want to remove the data and leave the partition intact, then you
can either truncate or delete from it. Truncating a partition quickly and permanently removes the data. If you need
the option of rolling back the removal of records, then you should delete (instead of truncate). Both truncating and
deleting are described next.

First, identify the name of the partition from which you want to remove records:

select segment_name, segment_type, partition_name
from user_segments
where partition_name is not null;

Use the ALTER TABLE. . .TRUNCATE PARTITION statement to remove all records from a partition. This example
truncates a partition from the F_SALES table:

SQL> alter table f_sales truncate partition p_2013;

The prior command removes data only from the specified partition and not the entire table. Also keep in mind
that truncating a partition will invalidate any global indexes. You can update the global indexes while you issue a
TRUNCATE as follows:

SQL> alter table f_sales truncate partition p_2013 update global indexes;

Truncating a partition is an efficient way to remove large amounts of data. When you truncate a partition,
however, there is no rollback mechanism. The truncate operation permanently deletes the data from the partition.

If you need the option of rolling back a transaction, use the DELETE statement:

SQL> delete from f_sales partition(p_2013);

The downside to this approach is that if you have millions of records, the DELETE operation can take a long time
to run. Also, for a large number of records, DELETE generates a great deal of rollback information. This can cause
performance issues for other SQL statements contending for resources.

Chapter 12 ■ partitioning: DiviDe anD Conquer

335

Manipulating Data Within a Partition
If you need to select or manipulate data within one partition, specify the partition name as part of the SQL statement.
For instance, you can select the rows from a specific partition, as shown:

SQL> select * from f_sales partition (p_2013);

If you want to select from two (or more) partitions, then use the UNION clause:

select * from f_sales partition (p_2013)
union
select * from f_sales partition (p_2014);

If you’re a developer, and you don’t have access to the data dictionary to view which partitions are available, you
can use the SELECT. . .PARTITION FOR <partition_key_value> syntax (available in Oracle Database 11g and higher).
With this new syntax, you provide a partition key value, and Oracle determines what partition the key value belongs in
and returns the rows from that partition; for example,

SQL> select * from f_sales partition for (20130202);

You can also update and delete partition rows. This example updates a column in a partition:

SQL> update f_sales partition(p_2013) set sales_amt=200;

You can use the PARTITION FOR <partition_key_value> syntax for update, delete, and truncate operations;
for example,

SQL> update f_sales partition for (20130202) set sales_amt=200;

Note ■ See the previous section, “removing rows from a partition,” for examples of deleting and truncating a partition.

Partitioning Indexes
In today’s large database environments, indexes can also grow to unwieldy sizes. Partitioning indexes provides the
same benefits as partitioning tables: improved performance, scalability, and maintainability.

You can create an index that uses the partitioning strategy of its table (local), or you can create an index that is
partitioned differently from its table (global). Both of these techniques are described in the following sections.

Partitioning an Index to Follow Its Table
When you create an index on a partitioned table, you have the option of making it a LOCAL index type. A local
partitioned index is partitioned in the same manner as the partitioned table. Each table partition has a corresponding
index that contains ROWID values and index-key values for just that table partition. In other words, the ROWID values in
a local partitioned index only point to rows in the corresponding table partition.

Chapter 12 ■ partitioning: DiviDe anD Conquer

336

The following example illustrates the concept of a locally partitioned index. First, create a table that has only
two partitions:

create table f_sales (
 sales_id number
,sales_amt number
,d_date_id number)
tablespace p1_tbsp
partition by range(d_date_id)(
 partition y12 values less than (20130101)
 tablespace p1_tbsp
,partition y13 values less than (20140101)
 tablespace p2_tbsp);

And, say five records are inserted into the table, with three records inserted into partition Y12 and two records
inserted into partition Y13:

SQL> insert into f_sales values(1,20,20120322);
SQL> insert into f_sales values(2,33,20120507);
SQL> insert into f_sales values(3,72,20120101);
SQL> insert into f_sales values(4,12,20130322);
SQL> insert into f_sales values(5,98,20130507);

Next, use the LOCAL clause of the CREATE INDEX statement to create a local index on the partitioned table.
This example creates a local index on the D_DATE_ID column of the F_SALES table:

SQL> create index f_sales_fk1 on f_sales(d_date_id) local;

Run the following query to view information about partitioned indexes:

select index_name, table_name, partitioning_type
from user_part_indexes
where table_name = 'F_SALES';

Here is some sample output:

INDEX_NAME TABLE_NAME PARTITION
------------------------------ ---------- ---------
F_SALES_FK1 F_SALES RANGE

Now, query the USER_IND_PARTITIONS table to view information about the locally partitioned index:

select index_name, partition_name, tablespace_name
from user_ind_partitions
where index_name = 'F_SALES_FK1';

Chapter 12 ■ partitioning: DiviDe anD Conquer

337

Note that an index partition has been created for each partition of the table and that the index is created in the
same tablespace as the table partition:

INDEX_NAME PARTITION_NAME TABLESPACE_NAME
-------------------- -------------------- ---------------
F_SALES_FK1 Y12 P1_TBSP
F_SALES_FK1 Y13 P2_TBSP

Figure 12-4 conceptually shows how a locally managed index is constructed.

F_SALES

table partition Y12

----------- ------------- ---------------

table partition Y13

sales_id
----------- -------------- ---------------1 20 20120322
4 12 20130322
5 98 20130507

2 33 20120507
3 72 20120101

index partition Y12

row1 rowid: 20120322
row2 rowid: 20120507
row3 rowid: 20120101

index partition Y13

row4 rowid: 20130322
row5 rowid: 20130507

F_SALES_FK1

d_date_idsales_amt
sales_id d_date_idsales_amt

Figure 12-4. Architecture of a locally partitioned index

If you want the local index partitions to be created in a tablespace (or tablespaces) separate from that of the table
partitions, specify the tablespace(s) when creating the index:

create index f_sales_fk1 on f_sales(d_date_id) local
(partition y12 tablespace users
,partition y13 tablespace users);

Querying USER_IND_PARTITIONS now shows that the index partitions have been created in tablespaces separate
from the table partitions’ tablespace:

INDEX_NAME PARTITION_NAME TABLESPACE_NAME
-------------------- -------------------- ---------------
F_SALES_FK1 Y12 USERS
F_SALES_FK1 Y13 USERS

If you specify the partition information when building a local partitioned index, the number of partitions must
match the number of partitions in the table on which the partitioned index is built.

Chapter 12 ■ partitioning: DiviDe anD Conquer

338

Oracle automatically keeps local index partitions in sync with the table partitions. You can’t explicitly add a
partition to or drop a partition from a local index. When you add or drop a table partition, Oracle automatically
performs the corresponding work for the local index. Oracle manages the local index partitions, regardless of how
the local indexes have been assigned to tablespaces.

Local indexes are common in data warehouse and DSS environments. If you query frequently by using the
partitioned column(s), a local index is appropriate. This approach lets Oracle use the appropriate index and table
partition to quickly retrieve the data.

There are two types of local indexes: local prefixed and local nonprefixed. A local prefixed index is one in which
the leftmost column of the index matches the table partition key. The previous example in this section is a local
prefixed index because its leftmost column (D_DATE_ID) is also the partition key for the table.

A local nonprefixed index is one in which the leftmost column doesn’t match the partition key used to partition
the corresponding table. For example, this is a local nonprefixed index:

SQL> create index f_sales_idx1 on f_sales(sales_id) local;

The index is partitioned with the SALES_ID column, which isn’t the partition key of the table, and is therefore a
nonprefixed index. You can verify whether an index is considered prefixed by querying the ALIGNMENT column from
USER_PART_INDEXES:

select index_name, table_name, alignment, locality
from user_part_indexes
where table_name = 'F_SALES';

Here is some sample output:

INDEX_NAME TABLE_NAME ALIGNMENT LOCALI
-------------------- -------------------- ------------ ------
F_SALES_FK1 F_SALES PREFIXED LOCAL
F_SALES_IDX1 F_SALES NON_PREFIXED LOCAL

You may wonder why the distinction exists between prefixed and nonprefixed. A local index that is nonprefixed
doesn’t include the partition key as a leading edge of its index definition. This can have performance implications, in
that a range scan accessing a nonprefixed index may need to search every index partition. If there are a large number
of partitions, this can result in poor performance.

You can choose to create all local indexes as prefixed by including the partition key column in the leading edge of
the index. For instance, you can create the F_SALES_IDX2 index as prefixed as follows:

SQL> create index f_sales_idx2 on f_sales(d_date_id, sales_id) local;

Is a prefixed index preferable to a nonprefixed index? It depends on how you query your tables. You have to
generate explain plans for the queries you use and examine whether a prefixed index is better able to take advantage
of partition pruning (eliminating partitions to search) than a nonprefixed index. Also keep in mind that a multicolumn
local prefixed index consumes more space and resources than a local nonprefixed index.

Partitioning an Index Differently from Its Table
An index that is partitioned differently from its base table is known as a global index. An entry in a global index can
point to any of the partitions of its base table. You can create a global index on any type of partitioned table.

You can create either a range-partitioned or a hash-based global index. Use the keyword GLOBAL to specify that
the index is built with a partitioning strategy separate from that of its corresponding table. You must always specify a
MAXVALUE when creating a range-partitioned global index.

Chapter 12 ■ partitioning: DiviDe anD Conquer

339

The following example creates a range-based global index:

create index f_sales_gidx1 on f_sales(sales_amt)
global partition by range(sales_amt)
(partition pg1 values less than (25)
,partition pg2 values less than (50)
,partition pg3 values less than (maxvalue));

Figure 12-5 shows that with a global index, the partitioning strategy of the index doesn’t accord with the
partitioning strategy of the table.

F_SALES

table partition Y12

----------- ------------- ---------------

table partition Y13

sales_id
----------- -------------- ---------------1 20 20120322
4 12 20130322
5 98 20130507

2 33 20120507
3 72 20120101

d_date_idsales_amt
sales_id d_date_idsales_amt

index partition PG1

row1 rowid: 20
row4 rowid: 12

index partition PG2

row2 rowid: 33

F_SALES_GIDIX1

index partition PG3

row3 rowid: 72
row5 rowid: 98

Figure 12-5. Architecture of a global index

The other type of global partitioned index is hash based. This example creates a hash-partitioned global index:

create index f_sales_gidx2 on f_sales(sales_id)
global partition by hash(sales_id) partitions 4;

In general, global indexes are more difficult to maintain than local indexes. I recommend that you try to avoid
using global indexes and use local indexes whenever possible.

There is no automatic maintenance of global indexes (as there is with local indexes). With global indexes,
you’re responsible for adding and dropping index partitions. Also, many maintenance operations on the underlying
partitioned table require that the global index partitions be rebuilt. The following operations on a heap-organized
table render a global index unusable:

•	 ADD (HASH)

•	 COALESCE (HASH)

•	 DROP

Chapter 12 ■ partitioning: DiviDe anD Conquer

340

•	 EXCHANGE

•	 MERGE

•	 MOVE

•	 SPLIT

•	 TRUNCATE

Consider using the UPDATE INDEXES clause when you perform maintenance operations. Doing so keeps
the global index available during the operation and eliminates the need for rebuilding. The downside of using
UPDATE INDEXES is that the maintenance operation takes longer, owing to the indexes being maintained during
the action.

Global indexes are useful for queries that retrieve a small set of rows via an index. In these situations, Oracle
can eliminate (prune) any unnecessary index partitions and efficiently retrieve the data. For example, global
range-partitioned indexes are useful in OLTP environments, where you need quick access to individual records.

Partial Indexes
Starting with Oracle Database 12c, you can specify that index partitions be initially created in an unusable state.
You may want to do this if you’ve precreated partitions and don’t yet have data for range partitions that map to future
dates—the idea being that you’ll build the index after the partitions have been loaded (at some future date).

You control whether a local index is created in a usable state via the INDEXING ON|OFF clause. Here is an
example that specifies by default that index partitions will be unusable, unless explicitly turned on:

create table f_sales (
 sales_id number
,sales_amt number
,d_date_id number
)
indexing off
partition by range (d_date_id)
(partition p1 values less than (20110101) indexing on,
 partition p2 values less than (20120101) indexing on,
 partition p3 values less than (20130101) indexing on,
 partition p4 values less than (20140101) indexing off);

Next, a local partitioned index is created on the table, specifying that the partial index functionality
should be used:

create index f_sales_lidx1 on f_sales(d_date_id)
local indexing partial;

You can verify which partitions are usable (or not) via this query:

select a.index_name, a.partition_name, a.tablespace_name, a.status
from user_ind_partitions a, user_indexes b
where b.table_name = 'F_SALES'
and a.index_name = b.index_name;

Chapter 12 ■ partitioning: DiviDe anD Conquer

341

Here is some sample output for this example:

INDEX_NAME PARTITION_ TABLESPACE_NAME STATUS
-------------------- ---------- --------------- --------
F_SALES_LIDX1 P1 USERS USABLE
F_SALES_LIDX1 P2 USERS USABLE
F_SALES_LIDX1 P3 USERS USABLE
F_SALES_LIDX1 P4 USERS UNUSABLE

In this way, you can control whether the index is maintained as data are inserted into the partition. You may not
initially want an index partition created in a usable state because it will slow down bulk loads of data. In this situation,
you would first load the data and then make the index usable by rebuilding it:

SQL> alter index f_sales_lidx1 rebuild partition p4;

Partition Pruning
Partition pruning can greatly improve the performance of queries executing against partitioned tables. If an SQL
query specifically accesses a table on a partition key, Oracle only searches the partitions that contain data the query
needs (and doesn’t access any partitions that don’t contain such data—pruning them, so to speak).

For example, say a partitioned table is defined as follows:

create table f_sales (
 sales_id number
,sales_amt number
,d_date_id number)
tablespace p1_tbsp
partition by range(d_date_id)(
 partition y10 values less than (20110101)
 tablespace p1_tbsp
,partition y11 values less than (20120101)
 tablespace p2_tbsp
,partition y12 values less than (20130101)
 tablespace p3_tbsp);

Additionally, you create a local index on the partition key column:

SQL> create index f_sales_fk1 on f_sales(d_date_id) local;

And, say you insert some sample data:

SQL> insert into f_sales values(1,100,20100202);
SQL> insert into f_sales values(2,200,20110202);
SQL> insert into f_sales values(3,300,20120202);

To illustrate the process of partition pruning, enable the autotrace facility:

SQL> set autotrace trace explain;

Now, execute an SQL statement that accesses a row based on the partition key:

SQL> select sales_amt from f_sales where d_date_id = '20110202';

Chapter 12 ■ partitioning: DiviDe anD Conquer

342

Autotrace displays the explain plan. Some of the columns have been removed in order to fit the output on the
page neatly:

--
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
1	PARTITION RANGE SINGLE		2	2
2	TABLE ACCESS BY LOCAL INDEX ROWID BATCHED	F_SALES	2	2
* 3	INDEX RANGE SCAN	F_SALES_FK1	2	2
--

In this output, Pstart shows that the starting partition accessed is partition 2. Pstop shows that the last partition
accessed is partition 2. In this example, partition 2 is the only partition used to retrieve data; the other partitions in the
table aren’t accessed at all by the query.

If a query is executed that doesn’t use the partition key, then all partitions are accessed; for example,

SQL> select * from f_sales;

Here is the corresponding explain plan:

--
| Id | Operation | Name | Rows| Pstart| Pstop|
--
0	SELECT STATEMENT		3		
1	PARTITION RANGE ALL		3	1	3
2	TABLE ACCESS FULL	F_SALES	3	1	3
--

Note in this output that the starting partition is partition 1, and the stopping partition is partition 3. This means
that partitions 1 through 3 are accessed by this query, with no pruning of partitions.

This example is simple but demonstrates the concept of partition pruning. When you access the table by the
partition key, you can drastically reduce the number of rows Oracle needs to inspect and process. This has huge
performance benefits for queries that are able to prune partitions.

Summary
Oracle provides a partitioning feature that is critical for implementing large tables and indexes. Partitioning is vital for
building highly scalable and maintainable applications. This feature works on the concept of logically creating an object
(table or index) but implementing the object as several separate database segments. A partitioned object allows you to
build, load, maintain, and query on a partition-by-partition basis. Maintenance operations, such as deleting, archiving,
updating, and inserting data, are manageable because you’re working on only a small subset of the large logical table.

If you work in data warehouse environments or with large databases, you must be highly knowledgeable about
partitioning concepts. As a DBA, you’re required to create and maintain partitioned objects. You have to make
recommendations about table partitioning strategies and where to use local and global indexes. These decisions have
a huge impact on the usability and performance of the system.

The book now moves on to utilities used to copy and move users, objects, and data from one environment to
another. Oracle’s Data Pump and external tables feature are covered in the next two chapters.

343

Chapter 13

Data Pump

Data Pump is often described as an upgraded version of the old exp/imp utilities. That depiction is inaccurate; it’s
a bit like calling a modern smartphone a replacement for an old rotary-dial landline. Although the old utilities are
dependable and work well, Data Pump encompasses that functionality and while adding completely new dimensions
to how data can be lifted and moved between environments. This chapter will help explain how Data Pump makes
your current data transfer tasks easier and will also show how to move information and solve problems in ways that
you didn’t think were possible.

Data Pump enables you to efficiently back up, replicate, secure, and transform large amounts data and metadata.
You can use Data Pump in a variety of ways:

Perform point-in-time logical backups of the entire database or subsets of data•	

Replicate entire databases or subsets of data for testing or development•	

Quickly generate DDL required to recreate objects•	

Upgrade a database by exporting from the old version and importing into the new version•	

Sometimes, DBAs exert a Luddite-like attachment to the exp/imp utilities because the DBAs are familiar with
the syntax of these utilities, and they get the job done quickly. Even if those legacy utilities are easy to use, you should
consider using Data Pump going forward. Data Pump contains substantial functionality over the old exp/imp utilities:

Performance with large data sets, allowing efficient export and import gigabytes of data•	

Interactive command line utility, which lets you disconnect and then later attach to active •	
Data Pump jobs

Ability to export large amounts of data from a remote database and import them directly into a •	
local database without creating a dump file

Ability to make on-the-fly changes to schemas, tablespaces, data files, and storage settings •	
from export to import

Sophisticated filtering of objects and data•	

Security-controlled (via database) directory objects•	

Advanced features, such as compression and encryption•	

This chapter begins with a discussion on the Data Pump architecture. Subsequent topics include basic export
and import tasks, moving data across networks, filtering data, and running Data Pump in legacy mode.

Chapter 13 ■ Data pump

344

Data Pump Architecture
Data Pump consists of the following components:

•	 expdp (Data Pump export utility)

•	 impdp (Data Pump import utility)

•	 DBMS_DATAPUMP PL/SQL package (Data Pump application programming interface [API])

•	 DBMS_METADATA PL/SQL package (Data Pump Metadata API)

The expdp and impdp utilities use the DBMS_DATAPUMP and DBMS_METADATA built-in PL/SQL packages when
exporting and importing data and metadata. The DBMS_DATAPUMP package moves entire databases or subsets of data
between database environments. The DBMS_METADATA package exports and imports information about database
objects.

Note ■ You can call the DBMS_DATAPUMP and DBMS_METADATA packages independently (outside expdp and impdp) from
SQL*plus. I rarely call these packages directly from SQL*plus, but you may have a specific scenario in which it’s desirable
to interact directly with them. See the Oracle Database PL/SQL Packages and Types Reference Guide, which is available
for download from the technology Network area of the Oracle Web site (http://otn.oracle.com), for more details.

When you start a Data Pump export or import job, a master OS process is initiated on the database server. This
master process name has the format ora_dmNN_<SID>. On Linux/Unix systems, you can view this process from the OS,
prompt using the ps command:

$ ps -ef | grep -v grep | grep ora_dm
oracle 14602 1 4 08:59 ? 00:00:03 ora_dm00_o12c

Depending on the degree of parallelism and the work specified, a number of worker processes are also started. If
no parallelism is specified, then only one worker process is started. The master process coordinates the work between
master and worker processes. The worker process names have the format ora_dwNN_<SID>.

Also, when a user starts an export or import job, a database status table is created (owned by the user that starts
the job). This table exists only for the duration of the Data Pump job. The name of the status table is dependent
on what type of job you’re running. The table is named with the format SYS_<OPERATION>_<JOB_MODE>_NN, where
OPERATION is either EXPORT or IMPORT. JOB_MODE can be one of the following types:

•	 FULL

•	 SCHEMA

•	 TABLE

•	 TABLESPACE

•	 TRANSPORTABLE

For example, if you’re exporting a schema, a table is created in your account with the name SYS_EXPORT_
SCHEMA_NN, where NN is a number that makes the table name unique in the user’s schema. This status table contains
information such as the objects exported/imported, start time, elapsed time, rows, and error count. The status table
has more than 80 columns.

http://otn.oracle.com/

Chapter 13 ■ Data pump

345

Tip ■ the Data pump status table is created in the default permanent tablespace of the user performing the export/
import. therefore, if the user has no privileges to create a table in the default tablespace, the Data pump job will fail, with
an ORA-31633 error.

The status table is dropped by Data Pump upon successful completion of an export or import job. If you use
the KILL_JOB interactive command, the master table is also dropped. If you stop a job with the STOP_JOB interactive
command, the table isn’t removed and is used in the event you restart the job.

If your job terminates abnormally, the master table is retained. You can delete the status table if you don’t plan to
restart the job.

When Data Pump runs, it uses a database directory object to determine where to write and read dump files and
log files. Usually, you specify which directory object you want Data Pump to use. If you don’t specify a directory object,
a default directory is used. The default directory path is defined by a data directory object named DATA_PUMP_DIR.
This directory object is automatically created when the database is first created. On Linux/Unix systems this directory
object maps to the ORACLE_HOME/rdbms/log directory.

A Data Pump export creates an export file and a log file. The export file contains the objects being exported. The
log file contains a record of the job activities. Figure 13-1 shows the architectural components related to a Data Pump
export job.

OS files

SYS_EXPORT_<JOB>_N
(status table)

OS command
starts DP job:
$ expdp user/pwd
dumpfile=exp.dmp
logfile=exp.log
directory=dp_dir

/oradump
exp.dmp

/oradump
exp.log

DBMS_DATAPUMP
DBMS_METADATA

DP_DIR
directory object
/oradump

database

database objects
(tables, indexes,
grants, and so on)

master
OS process

ora_dmNN_<SID>

worker
OS process(es)

ora_dwNN_<SID>

interactive
command
mode entered via
Ctrl+C
Export> status

OS command can be
used to attach to
running DP job:

$ expdp user/pwd
attach=<JOB_NAME>

shared pool memory

Figure 13-1. Data Pump export job components

Chapter 13 ■ Data pump

346

Similarly, Figure 13-2 displays the architectural components of a Data Pump import job. The main difference
between export and import is the direction in which the data flow. Export writes data out of the database, and import
brings information into the database. Refer back to these diagrams as you work through Data Pump examples and
concepts throughout this chapter.

OS files

SYS_IMPORT_<JOB>_N
(status table)

OS command
starts DP job:
$ impdp user/pwd
dumpfile=exp.dmp
logfile=imp.log
directory=dp_dir

/oradump
exp.dmp

/oradump
imp.log

DBMS_DATAPUMP
DBMS_METADATA

DP_DIR
directory object
/oradump

database

database objects
(tables, indexes,
grants, and so on)

master
OS process

ora_dmNN_<SID>

worker
OS process(es)

ora_dwNN_<SID>

interactive
command
mode entered via
Ctrl+C
Import> status

OS command can be
used to attach to
running DP job:

$ impdp user/pwd
attach=<JOB_NAME>

shared pool memory

Figure 13-2. Data Pump import job components

For each Data Pump job, you must ensure that you have access to a directory object. The basics of exporting and
importing are described in the next few sections.

Tip ■ Because Data pump internally uses pL/SQL to perform its work, there needs to be some memory available in the
shared pool to hold the pL/SQL packages. If there is not enough room in the shared pool, Data pump will throw an
ORA-04031: unable to allocate bytes of shared memory... error and abort. If you receive this error, set the
database parameter ShareD_pOOL_SIZe to at least 50m. See mOS note 396940.1 for further details.

Getting Started
Now that you have an understanding of the Data Pump architecture, next is a simple example showing the required
export setup steps for exporting a table, dropping the table, and then reimporting the table back into the database.
This will lay the foundation for all other Data Pump tasks covered in this chapter.

Chapter 13 ■ Data pump

347

Taking an Export
A small amount of setup is required when you run a Data Pump export job. Here are the steps:

1. Create a database directory object that points to an OS directory that you want to
write/read Data Pump files to/from.

2. Grant read and write privileges on the directory object to the database user running the export.

3. From the OS prompt, run the expdp utility.

Step 1. Creating a Database Directory Object
Before you run a Data Pump job, first create a database directory object that corresponds to a physical location on
disk. This location will be used to hold the export and log files and should be a location where you know you have
plenty of disk space to accommodate the amount of data being exported.

Use the CREATE DIRECTORY command to accomplish this task. This example creates a directory named dp_dir
and specifies that it is to map to the /oradump physical location on disk:

SQL> create directory dp_dir as '/oradump';

To view the details of the newly created directory, issue this query:

SQL> select owner, directory_name, directory_path from dba_directories;

Here is some sample output:

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- --------------- --------------------
SYS DP_DIR /oradump

Keep in mind that the directory path specified has to physically exist on the database server. Furthermore, the
directory has to be one that the oracle OS user has read/write access to. Finally, the user performing the Data Pump
operations needs to be granted read/write access to the directory object (see step 2).

If you don’t specify the DIRECTORY parameter when exporting or importing, Data Pump will attempt to use the
default database directory object (as previously discussed, this maps to ORACLE_HOME/rdbms/log). I don’t recommend
using the default directory for two reasons:

If you’re exporting large amounts of data, it’s better to have on disk the preferred location, •	
where you know you have enough room to accommodate your disk space requirements.
If you use the default directory, you run the risk of inadvertently filling up the mount point
associated with ORACLE_HOME and then potentially hanging your database.

If you grant privileges to non-DBA users to take exports, you don’t want them creating large •	
dump files in a location associated with ORACLE_HOME. Again, you don’t want the mount point
associated with ORACLE_HOME to become full to the detriment of your database.

Step 2. Granting Access to the Directory
You need to grant permissions on the database directory object to a user that wants to use Data Pump. Use the GRANT
statement to allocate the appropriate privileges. If you want a user to be able to read from and write to the directory,
you must grant security access. This example grants access to the directory object to a user named MV_MAINT:

SQL> grant read, write on directory dp_dir to mv_maint;

Chapter 13 ■ Data pump

348

All directory objects are owned by the SYS user. If you’re using a user account that has the DBA role granted to it,
then you have the requisite read/write privileges on any directory objects. I usually perform Data Pump jobs with a
user that has the DBA granted to it (so that I don’t need to bother with granting access).

SeCUrItY ISSUeS WIth the OLD eXp UtILItY

the idea behind creating directory objects and then granting specific I/O access to the physical storage location
is that you can more securely administer which users have the capability to generate read and write activities
when normally they wouldn’t have permissions. With the legacy exp utility, any user that has access to the tool by
default has access to write or read a file to which the owner (usually oracle) of the Oracle binaries has access.
It’s conceivable that a malicious non-oracle OS user can attempt to run the exp utility to purposely overwrite a
critical database file. For example, the following command can be run by any non-oracle OS user with execute
access to the exp utility:

$ exp heera/foo file=/oradata04/SCRKDV12/users01.dbf

the exp process runs as the oracle OS user and therefore has read and write OS privileges on any oracle-owned
data files. In this exp example, if the users01.dbf file is a live database data file, it’s overwritten and rendered
worthless. this can cause catastrophic damage to your database.

to prevent such issues, with Oracle Data pump you first have to create a database object directory that maps to
a specific directory and then additionally assign read and write privileges to that directory per user. thus, Data
pump doesn’t have the security problems that exist with the old exp utility.

Step 3. Taking an Export
When the directory object and grants are in place, you can use Data Pump to export information from a database. The
simple example in this section shows how to export a table. Later sections in this chapter describe in detail the various
ways in which you can export data. The point here is to work through an example that will provide a foundation for
understanding more complex topics that follow.

As a non-SYS user, create a table, and populate it with some data:

SQL> create table inv(inv_id number);
SQL> insert into inv values (123);

Next, as a non-SYS user, export the table. This example uses the previously created directory, named DP_DIR. Data
Pump uses the directory path specified by the directory object as the location on disk to which to write the dump file
and log file:

$ expdp mv_maint/foo directory=dp_dir tables=inv dumpfile=exp.dmp logfile=exp.log

The expdp utility creates a file named exp.dmp in the /oradump directory, containing the information required
to recreate the INV table and populate it with data as it was at the time the export was taken. Additionally, a log file
named exp.log is created in the /oradump directory, containing logging information associated with this export job.

If you don’t specify a dump file name, Data Pump creates a file named expdat.dmp. If a file named expdat.dmp
already exists in the directory, then Data Pump throws an error. If you don’t specify a log file name, then Data Pump
creates one named export.log. If a log file named export.log already exists, then Data Pump overwrites it.

Chapter 13 ■ Data pump

349

Tip ■ although it’s possible to execute Data pump as the SYS user, I don’t recommend it for couple of reasons. First,
SYS is required to connect to the database with the AS SYSDBA clause. this requires a Data pump parameter file with the
USERID parameter and quotes around the associated connect string. this is unwieldy. Second, most tables owned by SYS
cannot be exported (there are a few exceptions, such as AUD$). If you attempt to export a table owned by SYS, Data pump
will throw an ORA-39166 error and indicate that the table doesn’t exist. this is confusing.

Importing a Table
One of the key reasons to export data is so that you can recreate database objects. You may want to do this as part of
a backup strategy or to replicate data to a different database. Data Pump import uses an export dump file as its input
and recreates database objects contained in the export file. The procedure for importing is similar to exporting:

1. Create a database directory object that points to an OS directory that you want to
read/write Data Pump files from.

2. Grant read and write privileges on the directory object to the database user running the
export or import.

3. From the OS prompt, run the impdp command.

Steps 1 and 2 were covered in the prior section, “Taking an Export,” and therefore will not be repeated here.
Before running the import job, drop the INV table that was created previously.

SQL> drop table inv purge;

Next, recreate the INV table from the export taken:

$ impdp mv_maint/foo directory=dp_dir dumpfile=exp.dmp logfile=imp.log

You should now have the INV table recreated and populated with data as it was at the time of the export. Now is
a good time to inspect again Figures 13-1 and 13-2. Make sure you understand which files were created by expdb and
which files were used by impdp.

Using a Parameter File
Instead of typing commands on the command line, in many situations it’s better to store the commands in a
file and then reference the file when executing Data Pump export or import. Using parameter files makes tasks
more repeatable and less prone to error. You can place the commands in a file once and then reference that file
multiple times.

Additionally, some Data Pump commands (such as FLASHBACK_TIME) require the use of quotation marks; in these
situations, it’s sometimes hard to predict how the OS will interpret these. Whenever a command requires quotation
marks, it’s highly preferable to use a parameter file.

To use a parameter file, first create an OS text file that contains the commands you want to use to control the
behavior of your job. This example uses the Linux/Unix vi command to create a text file named exp.par:

$ vi exp.par

Chapter 13 ■ Data pump

350

Now, place the following commands in the exp.par file:

userid=mv_maint/foo
directory=dp_dir
dumpfile=exp.dmp
logfile=exp.log
tables=inv
reuse_dumpfiles=y

Next, the export operation references the parameter file via the PARFILE command line option:

$ expdp parfile=exp.par

Data Pump processes the parameters in the file as if they were typed on the command line. If you find yourself
repeatedly typing the same commands or using commands that require quotation marks, or both, then consider using
a parameter file to increase your efficiency.

Tip ■ Don’t confuse a Data pump parameter file with the database initialization parameter file. a Data pump parameter
file instructs Data pump as to which user to connect to the database as, which directory locations to read/write files
to and from, what objects to include in the operation, and so on. In contrast, a database parameter file establishes
characteristics of the instance upon database startup.

Exporting and Importing with Granularity
Recall from the section “Data Pump Architecture,” earlier in this chapter, that there are several different modes in
which you can invoke the export/import utilities. For instance, you can instruct Data Pump to export/import in the
following modes:

Entire database•	

Schema level•	

Table level•	

Tablespace level•	

Transportable tablespace level•	

Before diving into the many features of Data Pump, it’s useful to discuss these modes and ensure you’re aware of
how each operates. This will further lay the foundation for understanding concepts introduced later in the chapter.

Exporting and Importing an Entire Database
When you export an entire database, this is sometimes referred to as a full export. In this mode the resultant export
file contains everything required to make a copy of your database. Unless restricted by filtering parameters (see the
section “Filtering Data and Objects,” later in this chapter), a full export consists of

Chapter 13 ■ Data pump

351

all DDL required to recreate tablespaces, users, user tables, indexes, constraints, triggers, •	
sequences, stored PL/SQL, and so on.

all table data (except the •	 SYS user’s tables)

A full export is initiated with the FULL parameter set to Y and must be done with a user that has DBA privileges or
that has the DATAPUMP_EXP_FULL_DATABASE role granted to it. Here is an example of taking a full export of a database:

$ expdp mv_maint/foo directory=dp_dir dumpfile=full.dmp logfile=full.log full=y

As the export is executing, you should see this text in the output, indicating that a full-level export is taking place:

Starting "MV_MAINT"."SYS_EXPORT_FULL_01":

Be aware that a full export doesn’t export everything in the database:

The contents of the •	 SYS schema are not exported (there are a few exceptions to this, such
as the AUD$ table). Consider what would happen if you could export the contents of the
SYS schema from one database and import them into another. The SYS schema contents
would overwrite internal data dictionary tables/views and thus corrupt the database.
Therefore, Data Pump never exports objects owned by SYS.

Index data are not exported, but rather, the index DDL that contains the SQL required to •	
recreate the indexes during a subsequent import.

Once you have a full export, you can use its contents to either recreate objects in the original database (e.g., in the
event a table is accidentally dropped) or replicate the entire database or subsets of users/tables to a different database.
This next example assumes that the dump file has been copied to a different database server and is now used to
import all objects into the destination database:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp logfile=fullimp.log full=y

Tip ■ to initiate a full database import, you must have DBa privileges or be assigned the DATAPUMP_IMP_FULL_
DATABASE role.

In the output displayed on your screen, you should see an indication that a full import is transpiring:

Starting "MV_MAINT"."SYS_IMPORT_FULL_01":

Running a full-import database job has some implications to be aware of:

The import job will first attempt to recreate any tablespaces. If a tablespace already exists, •	
or if the directory path a tablespace depends on doesn’t exist, then the tablespace creation
statements will fail, and the import job will move on to the next task.

Next, the import job will alter the •	 SYS and SYSTEM user accounts to contain the same password
that was exported. Therefore, after you import from a production system, it’s prudent to
change the passwords for SYS and SYSTEM, to reflect the new environment.

Additionally, the import job will then attempt to create any users in the export file. If a user •	
already exists, an error is thrown, and the import job moves on to the next task.

Chapter 13 ■ Data pump

352

Users will be imported with the same passwords that were taken from the original database. •	
Depending on your security standards, you may want to change the passwords.

Tables will be recreated. If a table already exists and contains data, you must specify how •	
you want the import job to handle this. You can have the import job either skip, append,
replace, or truncate the table (see the section “Importing When Objects Already Exist,” later
in this chapter).

After each table is created and populated, associated indexes are created.•	

The import job will also try to import statistics if available. Furthermore, object grants are •	
instantiated.

If everything runs well, the end result will be a database that is logically identical to the source database in terms
of tablespaces, users, objects, and so on.

Schema Level
When you initiate an export, unless otherwise specified, Data Pump starts a schema-level export for the user running
the export job. User-level exports are frequently used to copy a schema or set of schemas from one environment to
another. The following command starts a schema-level export for the MV_MAINT user:

$ expdp mv_maint/foo directory=dp_dir dumpfile=mv_maint.dmp logfile=mv_maint.log

In the output displayed on the screen, you should see some text indicating that a schema-level export has
been initiated:

Starting "MV_MAINT"."SYS_EXPORT_SCHEMA_01"...

You can also initiate a schema-level export for users other than the one running the export job with the SCHEMAS
parameter. The following command shows a schema-level export for multiple users:

$ expdp mv_maint/foo directory=dp_dir dumpfile=user.dmp schemas=heera,chaya

You can initiate a schema-level import by referencing a dump file that was taken with a schema-level export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=user.dmp

When you initiate a schema-level import, there are some details to be aware of:

No tablespaces are included in a schema-level export.•	

The import job attempts to recreate any users in the dump file. If a user already exists, an error •	
is thrown, and the import job continues.

The import job will reset the users’ passwords, based on the password that was exported.•	

Tables owned by the users will be imported and populated. If a table already exists, you must •	
instruct Data Pump on how to handle this with the TABLE_EXISTS_ACTION parameter.

You can also initiate a schema-level import when using a full-export dump file. To do this, specify which schemas
you want extracted from the full export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp schemas=heera,chaya

Chapter 13 ■ Data pump

353

Table Level
You can instruct Data Pump to operate on specific tables via the TABLES parameter. For example, say you want
to export

$ expdp mv_maint/foo directory=dp_dir dumpfile=tab.dmp \
tables=heera.inv,heera.inv_items

You should see some text in the output indicating that a table-level export is transpiring:

Starting "MV_MAINT"."SYS_EXPORT_TABLE_01...

Similarly, you can initiate a table-level import by specifying a table-level-created dump file:

$ impdp mv_maint/foo directory=dp_dir dumpfile=tab.dmp

A table-level import only attempts to import the tables and specified data. If a table already exists, an error is
thrown, and the import job continues. If a table already exists and contains data, you must specify how you want
the export job to handle this. You can have the import job either skip, append, replace, or truncate the table with the
TABLE_EXISTS_ACTION parameter.

You can also initiate a table-level import when using a full-export dump file or a schema-level export. To do this,
specify which tables you want extracted from the full- or schema-level export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp tables=heera.inv

Tablespace Level
A tablespace-level export/import operates on objects contained within specific tablespaces. This example exports all
objects contained in the USERS tablespace:

$ expdp mv_maint/foo directory=dp_dir dumpfile=tbsp.dmp tablespaces=users

The text displayed in the output should indicate that a tablespace-level export is occurring:

Starting "MV_MAINT"."SYS_EXPORT_TABLESPACE_01"...

You can initiate a tablespace-level import by specifying an export file that was created with a tablespace-level
export:

$ impdp mv_maint/foo directory=dp_dir dumpfile=tbsp.dmp

You can also initiate a tablespace-level import by using a full export, but specifying the TABLESPACES parameter:

$ impdp mv_maint/foo directory=dp_dir dumpfile=full.dmp tablespaces=users

A tablespace-level import will attempt to create any tables and indexes within the tablespace. The import doesn’t
try to recreate the tablespaces themselves.

Note ■ there is also a transportable tablespace mode export. See the section “Copying Data Files”, later in this chapter.

Chapter 13 ■ Data pump

354

Transferring Data
One of the main uses of Data Pump is the copying of data from one database to another. Often, source and destination
databases are located in data centers thousands of miles apart. Data Pump offers several powerful features for
efficiently copying data:

Network link•	

Copying data files (transportable tablespaces)•	

External tables (see Chapter 14)•	

Using a network link allows you to take an export and import it into the destination database without having to
create a dump file. This is a very efficient way of moving data.

Oracle also provides the transportable tablespace feature, which lets you copy the data files from a source
database to the destination and then use Data Pump to transfer the associated metadata. These two techniques are
described in the following sections.

Note ■ See Chapter 14 for a discussion of using external tables to transfer data.

Exporting and Importing Directly Across the Network
Suppose you have two database environments—a production database running on a Solaris box and a test database
running on a Linux server. Your boss comes to you with these requirements:

Make a copy of the production database on the Solaris box.•	

Import the copy into the testing database on the Linux server.•	

Change the names of the schemas when importing so as to meet the testing database •	
standards for names.

First, consider the steps required to transfer data from one database to another, using the old exp/imp utilities.
The steps would look something like this:

1. Export the production database (which creates a dump file on the database server).

2. Copy the dump file to the testing database server.

3. Import the dump file into the testing database.

You can perform those same steps using Data Pump. However, Data Pump provides a much more efficient
and transparent method for executing those steps. If you have direct network connectivity between the production
and testing database servers, you can take an export and directly import it into your target database without having
to create or copy any dump files. Furthermore, you can rename schemas on the fly as you perform the import.
Additionally, it doesn’t matter if the source database is running on an OS different from that of the target database.

An example will help illustrate how this works. For this example, the production database users are STAR2,
CIA_APP, and CIA_SEL. You want to move these users into a testing database and rename them STAR_JUL,
CIA_APP_JUL, and CIA_SEL_JUL. This task requires the following steps:

1. Create users in the test database to be imported into. Here is a sample script that creates
the users in the testing database:

define star_user=star_jul
define star_user_pwd=star_jul_pwd

Chapter 13 ■ Data pump

355

define cia_app_user=cia_app_jul
define cia_app_user_pwd=cia_app_jul_pwd
define cia_sel_user=cia_sel_jul
define cia_sel_user_pwd=cia_sel_jul_pwd
--
create user &&star_user identified by &&star_user_pwd;
grant connect,resource to &&star_user;
alter user &&star_user default tablespace dim_data;
--
create user &&cia_app_user identified by &&cia_app_user_pwd;
grant connect,resource to &&cia_app_user;
alter user &&cia_app_user default tablespace cia_data;
--
create user &&cia_sel_user identified by &&cia_app_user_pwd;
grant connect,resource to &&cia_app_user;
alter user &&cia_sel_user default tablespace cia_data;

2. In your testing database, create a database link that points to your production
database. The remote user referenced in the CREATE DATABASE LINK statement must
have the DBA role granted to it in the production database. Here is a sample CREATE
DATABASE LINK script:

create database link dk
connect to darl identified by foobar
using 'dwdb1:1522/dwrep1';

3. In your testing database, create a directory object that points to the location where you
want your log file to go:

SQL> create or replace directory engdev as '/orahome/oracle/ddl/engdev';

4. Run the import command on the testing box. This command references the remote
database via the NETWORK_LINK parameter. The command also instructs Data Pump to map
the production database user names to the newly created users in the testing database.

$ impdp darl/engdev directory=engdev network_link=dk \
schemas='STAR2,CIA_APP,CIA_SEL' \
remap_schema=STAR2:STAR_JUL,CIA_APP:CIA_APP_JUL,CIA_SEL:CIA_SEL_JUL

This technique allows you to move large amounts of data between disparate databases without having to create
or copy any dump files or data files. You can also rename schemas on the fly via the REMAP_SCHEMA parameter. This is a
very powerful Data Pump feature that lets you transfer data quickly and efficiently.

Tip ■ When replicating entire databases, also consider using the rmaN duplicate database functionality.

Chapter 13 ■ Data pump

356

OraCLe Net VS. NetWOrK_LINK

Don’t confuse exporting while connected to a remote database via Oracle Net with exporting using the NETWORK_LINK
parameter. When exporting while connected to a remote database via Oracle Net, the objects being exported exist
in the remote database, and the dump file and log file are created on the remote server in the directory specified
by the DIRECTORY parameter. For instance, the following command exports objects in the remote database and
creates files on the remote server:

$ expdp mv_maint/foo@shrek2 directory=dp_dir dumpfile=sales.dmp

In contrast, when you export using the NETWORK_LINK parameter, you are creating dump files and log files locally,
and the database objects being exported exist in a remote database; for example,

$ expdp mv_maint/foo network_link=shrek2 directory=dp_dir dumpfile=sales.dmp

Copying Data Files
Oracle provides a mechanism for copying data files from one database to another, in conjunction with using Data
Pump to transport the associated metadata. This is known as the transportable tablespace feature. The amount of
time this task requires depends on how long it takes you to copy the data files to the destination server. This technique
is appropriate for moving data in DSS and data warehouse environments.

Tip ■ transporting tablespaces can also be used (in conjunction with the rmaN CONVERT TABLESPACE command) to
move tablespaces to a destination server that has a platform different from that of the host.

Follow these steps to transport tablespaces:

1. Ensure that the tablespace is self-contained. These are some common violations of the
self-contained rule:

An index in one tablespace can’t point to a table in another tablespace that isn’t in the set •	
of tablespaces being transported.

A foreign key constraint is defined on a table in a tablespace that references a primary key •	
constraint on a table in a tablespace that isn’t in the set of tablespaces being transported.

Run the following check to see if the set of tablespaces being transported violates any of the self-contained rules:

SQL> exec dbms_tts.transport_set_check('INV_DATA,INV_INDEX', TRUE);

Now, see if Oracle detected any violations:

SQL> select * from transport_set_violations;

If you don’t have any violations, you should see this:

no rows selected

Chapter 13 ■ Data pump

357

If you do have violations, such as an index that is built on a table that exists in a tablespace not being transported,
then you’ll have to rebuild the index in a tablespace that is being transported.

2. Make the tablespaces being transported read-only:

SQL> alter tablespace inv_data read only;
SQL> alter tablespace inv_index read only;

3. Use Data Pump to export the metadata for the tablespaces being transported:

$ expdp mv_maint/foo directory=dp_dir dumpfile=trans.dmp \
transport_tablespaces=INV_DATA,INV_INDEX

4. Copy the Data Pump export dump file to the destination server.

5. Copy the data file(s) to the destination database. Place the files in the directory where
you want them in the destination database server. The file name and directory path must
match the import command used in the next step.

6. Import the metadata into the destination database. Use the following parameter file to
import the metadata for the data files being transported:

userid=mv_maint/foo
directory=dp_dir
dumpfile=trans.dmp
transport_datafiles=/ora01/dbfile/rcat/inv_data01.dbf,
/ora01/dbfile/rcat/inv_index01.dbf

If everything goes well, you should see some output indicating success:

Job "MV_MAINT"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed...

If the data files that are being transported have a block size different from that of the destination database, then
you must modify your initialization file (or use an ALTER SYSTEM command) and add a buffer pool that contains the
block size of the source data file. For example, to add a 16KB buffer cache, place this in the initialization file:

db_16k_cache_size=200M

You can check a tablespace’s block size via this query:

SQL> select tablespace_name, block_size from dba_tablespaces;

The transportable tablespace mechanism allows you to quickly move data files between databases, even if
the databases use different block sizes or have different endian formats. This section doesn’t discuss all the details
involved with transportable tablespaces; the focus of this chapter is to show how to use Data Pump to transport data.
See the Oracle Database Administrator’s Guide, which can be freely downloaded from the Technology Network area of
the Oracle Web site (http://otn.oracle.com), for complete details on transportable tablespaces.

Note ■ to generate transportable tablespaces, you must use the Oracle enterprise edition. You can use other editions
of Oracle to import transportable tablespaces.

http://otn.oracle.com/

Chapter 13 ■ Data pump

358

Features for Manipulating Storage
Data Pump contains many flexible features for manipulating tablespaces and data files when exporting and importing.
The following sections show useful Data Pump techniques when working with these important database objects.

Exporting Tablespace Metadata
Sometimes, you may be required to replicate an environment—say, replicating a production environment into
a testing environment. One of the first tasks is to replicate the tablespaces. To this end, you can use Data Pump to
pull out just the DDL required to recreate the tablespaces for an environment:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
full=y include=tablespace

The FULL parameter instructs Data Pump to export everything in the database. However, when used with
INCLUDE, Data Pump exports only the objects specified with that command. In this combination only metadata
regarding tablespaces are exported; no data within the data files are included with the export. You could add the
parameter and value of CONTENT=METADATA_ONLY to the INCLUDE command, but this would be redundant.

Now, you can use the SQLFILE parameter to view the DDL associated with the tablespaces that were exported:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp sqlfile=tbsp.sql

When you use the SQLFILE parameter, nothing is imported. In this example the prior command only creates
a file named tbsp.sql, containing SQL statements pertaining to tablespaces. You can modify the DDL and run it in
the destination database environment; or, if nothing needs to change, you can directly use the dump file by importing
tablespaces into the destination database.

Specifying Different Data File Paths and Names
As previously discussed, you can use the combination of the FULL and INCLUDE parameters to export only tablespace
metadata information:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
full=y include=tablespace

What happens if you want to use the dump file to create tablespaces on a separate database server that has
different directory structures? Data Pump allows you to change the data file directory paths and file names in the
import step with the REMAP_DATAFILE parameter.

For example, say the source data files existed on a mount point named /ora03, but on the database being
imported to, the mount points are named with /ora01. Here is a parameter file that specifies that only tablespaces
beginning with the string INV should be imported and that their corresponding data files names be changed to reflect
the new environment:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
full=y
include=tablespace:"like 'INV%'"
remap_datafile="'/ora03/dbfile/O12C/inv_data01.dbf':'/ora01/dbfile/O12C/tb1.dbf'"
remap_datafile="'/ora03/dbfile/O12C/inv_index01.dbf':'/ora01/dbfile/O12C/tb2.dbf'"

Chapter 13 ■ Data pump

359

When Data Pump creates the tablespaces, for any paths that match the first part of the string (to the left of the
colon [:]), the string is replaced with the text in the next part of the string (to the right of the colon).

Tip ■ When working with parameters that require both single and double quotation marks, you’ll get predictable
behavior when using a parameter file. In contrast, if you were to try to enter in the various required quotation marks on
the command line, the OS may interpret and pass to Data pump something other than what you were expecting.

Importing into a Tablespace Different from the Original
You may occasionally be required to export a table and then import it into a different user and a different tablespace.
The source database could be different from the destination database, or you could simply be trying to move data
between two users within the same database. You can easily handle this requirement with the REMAP_SCHEMA and
REMAP_TABLESPACE parameters.

This example remaps the user as well as the tablespace. The original user and tablespaces are HEERA and
INV_DATA. This command imports the INV table into the CHAYA user and the DIM_DATA tablespace:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp remap_schema=HEERA:CHAYA \
remap_tablespace=INV_DATA:DIM_DATA tables=heera.inv

The REMAP_TABLESPACE feature doesn’t recreate tablespaces. It only instructs Data Pump to place objects in
tablespaces different from those they were exported from. When importing, if the tablespace that you’re placing the
object in doesn’t exist, Data Pump throws an error.

Changing the Size of Data Files
You can change the size of the data files when importing by using the TRANSFORM parameter with the PCTSPACE option.
Say you’ve created an export of just the tablespace metadata:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp full=y include=tablespace

Now, you want to create the tablespaces that contain the string DATA in the tablespace name in a development
database, but you don’t have enough disk space to create the tablespaces as they were in the source database. In
this scenario, you can use the TRANSFORM parameter to specify that the tablespaces be created as a percentage of the
original size.

For instance, if you want the tablespaces to be created at 20 percent of the original size, issue the following
command:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
full=y
include=tablespace:"like '%DATA%'"
transform=pctspace:20

The tablespaces are created with data files 20 percent of their original size. The extent allocation sizes are also
20 percent of their original definition. This is important because Data Pump doesn’t check to see if the storage
attributes meet the minimum size restrictions for data files. This means that if the calculated smaller size violates an
Oracle minimum size (e.g., five blocks for the uniform extent size), an error will be thrown during the import.

Chapter 13 ■ Data pump

360

This feature is useful when used to export production data and then import it into a smaller database. In these
scenarios, you may be filtering out some of the production data via the SAMPLE parameter or QUERY parameters
(see the section “Filtering Data and Objects,” later in this chapter).

Changing Segment and Storage Attributes
When importing, you can alter the storage attributes of a table by using the TRANSFORM parameter. The general syntax
for this parameter is

TRANSFORM=transform_name:value[:object_type]

When you use SEGMENT_ATTRIBUTES:N for the transformation name, you can remove the following segment
attributes during an import:

Physical attributes•	

Storage attributes•	

Tablespaces•	

Logging•	

You may require this feature when you’re importing into a development environment and don’t want the tables
to come in with all the storage attributes as they were in the production database. For example, in development you
may just have one tablespace in which you store all your tables and indexes, whereas in production, you spread the
tables and indexes out in multiple tablespaces.

Here is an example that removes the segment attributes:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
transform=segment_attributes:n

You can remove just the storage clause by using STORAGE:N:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
transform=storage:n

Filtering Data and Objects
Data Pump has a vast array of mechanisms for filtering data and metadata. You can influence what is excluded or
included in a Data Pump export or import in the following ways:

Use the •	 QUERY parameter to export or import subsets of data.

Use the •	 SAMPLE parameter to export a percentage of the rows in a table.

Use the •	 CONTENT parameter to exclude or include data and metadata.

Use the •	 EXCLUDE parameter to specifically name items to be excluded.

Use the •	 INCLUDE parameter to name the items to be included (thereby excluding other
nondependent items not included in the list).

Use parameters such as •	 SCHEMAS to specify that you only want a subset of the database’s
objects (those that belong to the specified user or users).

Examples of each of these techniques are described in the following sections.

Chapter 13 ■ Data pump

361

Note ■ You can’t use EXCLUDE and INCLUDE at the same time. these parameters are mutually exclusive.

Specifying a Query
You can use the QUERY parameter to instruct Data Pump to write to a dump file only rows that meet a certain criterion.
You may want to do this if you’re recreating a test environment and only need subsets of the data. Keep in mind that
this technique is unaware of any foreign key constraints that may be in place, so you can’t blindly restrict the data sets
without considering parent–child relationships.

The QUERY parameter has this general syntax for including a query:

QUERY = [schema.][table_name:] query_clause

The query clause can be any valid SQL clause. The query must be enclosed by either double or single quotation
marks. I recommend using double quotation marks because you may need to have single quotation marks embedded
in the query to handle VARCHAR2 data. Also, you should use a parameter file so that there is no confusion about how
the OS interprets the quotation marks.

This example uses a parameter file and limits the rows exported for two tables. Here is the parameter file used
when exporting:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
tables=inv,reg
query=inv:"WHERE inv_desc='Book'"
query=reg:"WHERE reg_id <=20"

Say you place the previous lines of code in a file named inv.par. The export job references the parameter file
as shown:

$ expdp parfile=inv.par

The resulting dump file only contains rows filtered by the QUERY parameters. Again, be mindful of any
parent–child relationships, and ensure that what gets exported won’t violate any constraints on the import.

You can also specify a query when importing data. Here is a parameter file that limits the rows imported into the
INV table, based on the INV_ID column:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
tables=inv,reg
query=inv:"WHERE inv_id > 10"

This text is placed in a file named inv2.par and is referenced during the import as follows:

$ impdp parfile=inv2.par

All the rows from the REG table are imported. Only the rows in the INV table that have an INV_ID greater
than 10 are imported.

Chapter 13 ■ Data pump

362

Exporting a Percentage of the Data
When exporting, the SAMPLE parameter instructs Data Pump to retrieve a certain percentage of rows, based on
a number you provide. Data Pump doesn’t keep track of parent–child relationships when exporting. Therefore,
this approach doesn’t work well when you have tables linked via foreign key constraints and you’re trying to select
a percentage of rows randomly.

Here is the general syntax for this parameter:

SAMPLE=[[schema_name.]table_name:]sample_percent

For example, if you want to export 10 percent of the data in a table, do so as follows:

$ expdp mv_maint/foo directory=dp_dir tables=inv sample=10 dumpfile=inv.dmp

This next example exports two tables, but only 30 percent of the REG table’s data:

$ expdp mv_maint/foo directory=dp_dir tables=inv,reg sample=reg:30 dumpfile=inv.dmp

Note ■ the SAMPLE parameter is only valid for exports.

Excluding Objects from the Export File
For export the EXCLUDE parameter instructs Data Pump not to export specified objects (whereas the INCLUDE
parameter instructs Data Pump to include only specific objects in the export file). The EXCLUDE parameter has this
general syntax:

EXCLUDE=object_type[:name_clause] [, ...]

The OBJECT_TYPE is a database object, such as TABLE or INDEX. To see which object types can be filtered, view
the OBJECT_PATH column of DATABASE_EXPORT_OBJECTS, SCHEMA_EXPORT_OBJECTS, or TABLE_EXPORT_OBJECTS. For
example, if you want to view what schema-level objects can be filtered, run this query:

SELECT
 object_path
FROM schema_export_objects
WHERE object_path NOT LIKE '%/%';

Here is a snippet of the output:

OBJECT_PATH

STATISTICS
SYNONYM
SYSTEM_GRANT
TABLE
TABLESPACE_QUOTA
TRIGGER

Chapter 13 ■ Data pump

363

The EXCLUDE parameter instructs Data Pump export to filter out specific objects from the export. For instance, say
you’re exporting a table but want to exclude the indexes and grants:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=inv exclude=index,grant

You can filter at a more granular level by using NAME_CLAUSE. The NAME_CLAUSE option of EXCLUDE allows you to
specify an SQL filter. To exclude indexes that have names that start with the string “INV,” you use the following command:

exclude=index:"LIKE 'INV%'"

The previous line requires that you use quotation marks; in these scenarios, I recommend that you use a
parameter file. Here is a parameter file that contains an EXCLUDE clause:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
tables=inv
exclude=index:"LIKE 'INV%'"

A few aspects of the EXCLUDE clause may seem counterintuitive. For example, consider the following export
parameter file:

userid=mv_maint/foo
directory=dp_dir
dumpfile=sch.dmp
exclude=schema:"='HEERA'"

If you attempt to exclude a user in this manner, an error is thrown. This is because the default mode of export is
SCHEMA level, and Data Pump can’t exclude and include a schema at the same time. If you want to exclude a user from
an export file, specify the FULL mode, and exclude the user:

userid=mv_maint/foo
directory=dp_dir
dumpfile=sch.dmp
exclude=schema:"='HEERA'"
full=y

Excluding Statistics
By default, when you export a table object, any statistics are also exported. You can prevent statistics from being
imported via the EXCLUDE parameter. Here is an example:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
tables=inv exclude=statistics

When importing, if you attempt to exclude statistics from a dump file that didn’t originally include the statistics,
then you receive this error:

ORA-39168: Object path STATISTICS was not found.

You also receive this error if the objects in the exported dump file never had statistics generated for them.

Chapter 13 ■ Data pump

364

Including Only Specific Objects in an Export File
Use the INCLUDE parameter to include only certain database objects in the export file. The following example exports
only the procedures and functions that a user owns:

$ expdp mv_maint/foo dumpfile=proc.dmp directory=dp_dir include=procedure,function

The proc.dmp file that is created contains only the DDL required to recreate any procedures and functions the
user owns.

When using INCLUDE, you can also specify that only specific PL/SQL objects should be exported:

$ expdp mv_maint/foo directory=dp_dir dumpfile=ss.dmp \
include=function:\"=\'IS_DATE\'\"

When you’re exporting only specific PL/SQL objects, because of the issue of having to escape quotation marks
on the OS command line, I recommend using a parameter file. When you use a parameter file, this is not a concern.
The following example shows the contents of a parameter file that exports specific objects:

directory=dp_dir
dumpfile=ss.dmp
include=function:"='ISDATE'",procedure:"='DEPTREE_FILL'"

If you specify an object that doesn’t exist, Data Pump throws an error but continues with the export operation:

ORA-39168: Object path FUNCTION was not found.

Exporting Table, Index, Constraint, and Trigger DDL
Suppose you want to export the DDL associated with tables, indexes, constraints, and triggers in your database. To do
this, use the FULL export mode, specify CONTENT=METADATA_ONLY, and only include tables:

$ expdp mv_maint/foo directory=dp_dir dumpfile=ddl.dmp \
content=metadata_only full=y include=table

When you export an object, Data Pump also exports any dependent objects. So, when you export a table, you also
get indexes, constraints, and triggers associated with the table.

Excluding Objects from Import
In general, you can use the same techniques used to filter objects in exports to exclude objects from being imported.
Use the EXCLUDE parameter to exclude objects from being imported. For example, to exclude triggers and procedures
from being imported, use this command:

$ impdp mv_maint/foo dumpfile=inv.dmp directory=dp_dir exclude=TRIGGER,PROCEDURE

You can further refine what is excluded by adding an SQL clause. For example, say you want not to import triggers
that begin with the letter B. Here is what the parameter file looks like:

userid=mv_maint/foo
directory=dp_dir

Chapter 13 ■ Data pump

365

dumpfile=inv.dmp
schemas=HEERA
exclude=trigger:"like 'B%'"

Including Objects in Import
You can use the INCLUDE parameter to reduce what is imported. Suppose you have a schema from which you want to
import tables that begin with the letter A. Here is the parameter file:

userid=mv_maint/foo
directory=dp_dir
dumpfile=inv.dmp
schemas=HEERA
include=table:"like 'A%'"

If you place the previous text in a file named h.par, then the parameter file can be invoked as follows:

$ impdp parfile=h.par

In this example the HEERA schema must already exist. Only tables that start with the letter A are imported.

Common Data Pump Tasks
The following sections describe common features you can use with Data Pump. Many of these features are standard
with Data Pump, such as creating a consistent export and taking action when imported objects already exist in the
database. Other features, such as compression and encryption, require the Enterprise Edition of Oracle or an extra
license, or both. I’ll point out these requirements (if relevant) for the Data Pump element being covered.

Estimating the Size of Export Jobs
If you’re about to export a large amount of data, you can estimate the size of the file that Data Pump creates before you
run the export. You may want to do this because you’re concerned about the amount of space an export job needs.

To estimate the size, use the ESTIMATE_ONLY parameter. This example estimates the size of the export file for an
entire database:

$ expdp mv_maint/foo estimate_only=y full=y logfile=n

Here is a snippet of the output:

Estimate in progress using BLOCKS method...
Total estimation using BLOCKS method: 6.75 GB

Similarly, you can specify a schema name to get an estimate of the size required to export a user:

$ expdp mv_maint/foo estimate_only=y schemas=star2 logfile=n

Here is an example of estimating the size required for two tables:

$ expdp mv_maint/foo estimate_only=y tables=star2.f_configs,star2.f_installations \
logfile=n

Chapter 13 ■ Data pump

366

Listing the Contents of Dump Files
Data Pump has a very robust method of creating a file that contains all the SQL that’s executed when an import job
runs. Data Pump uses the DBMS_METADATA package to create the DDL that you can use to recreate objects in the Data
Pump dump file.

Use the SQLFILE option of Data Pump import to list the contents of a Data Pump export file. This example creates
a file named expfull.sql, containing the SQL statements that the import process calls (the file is placed in the
directory defined by the DPUMP_DIR2 directory object):

$ impdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp \
SQLFILE=dpump_dir2:expfull.sql

If you don’t specify a separate directory (such as dpump_dir2, in the previous example), then the SQL file is
written to the location specified in the DIRECTORY option.

Tip ■ You must run the previous command as a user with DBa privileges or the schema that performed the Data pump
export. Otherwise, you get an empty SQL file without the expected SQL statements in it.

When you use the SQLFILE option with an import, the impdp process doesn’t import any data; it only creates a file
that contains the SQL commands that would be run by the import process. It’s sometimes handy to generate an SQL
file for the following reasons:

Preview and verify the SQL statements before running the import•	

Run the SQL manually to precreate database objects•	

Capture the SQL that would be required to recreate database objects (users, tables, index, and •	
so on)

In regard to the last bulleted item, sometimes what’s checked into the source code control repository doesn’t
match what’s really been applied to the production database. This procedure can be handy for troubleshooting or
documenting the state of the database at a point in time.

Cloning a User
Suppose you need to move a user’s objects and data to a new database. As part of the migration, you want to rename
the user. First, create a schema-level export file that contains the user you want to clone. In this example the user
name is INV:

$ expdp mv_maint/foo directory=dp_dir schemas=inv dumpfile=inv.dmp

Now, you can use Data Pump import to clone the user. If you want to move the user to a different database, copy
the dump file to the remote database, and use the REMAP_SCHEMA parameter to create a copy of a user. In this example
the INV user is cloned to the INV_DW user:

$ impdp mv_maint/foo directory=dp_dir remap_schema=inv:inv_dw dumpfile=inv.dmp

This command copies all structures and data in the INV user to the INV_DW user. The resulting INV_DW user is
identical, in terms of objects, to the INV user. The duplicated schema also contains the same password as the schema
from which it was copied.

Chapter 13 ■ Data pump

367

If you just want to duplicate the metadata from one schema to another, use the CONTENT parameter with the
METADATA_ONLY option:

$ impdp mv_maint/foo directory=dp_dir remap_schema=inv:inv_dw \
content=metadata_only dumpfile=inv.dmp

The REMAP_SCHEMA parameter provides an efficient way to duplicate a schema, with or without the data. During
a schema duplication operation, if you want to change the tablespace in which the objects reside, also use the REMAP_
TABLESPACE parameter. This allows you to duplicate a schema and also place the objects in a tablespace different from
that of the source objects.

You can also duplicate a user from one database to another without first creating a dump file. To do this, use
the NETWORK_LINK parameter. See the section “Exporting and Importing Directly Across the Network,” earlier in this
chapter, for details on copying data directly from one database to another.

Creating a Consistent Export
A consistent export means that all data in the export file are consistent as of a time or an SCN. When you’re exporting
an active database with many parent-child tables, you should ensure that you get a consistent snapshot of the data.

Tip ■ If you’re using Oracle Database 11g release 2 or higher, you can take a consistent export by invoking the legacy
mode parameter of CONSISTENT=Y. See the section“Data pump Legacy mode,” later in this chapter, for details.

You create a consistent export by using either the FLASHBACK_SCN or FLASHBACK_TIME parameter. This example
uses the FLASHBACK_SCN parameter to take an export. To determine the current value of the SCN of your data set, issue
this query:

SQL> select current_scn from v$database;

Here is some typical output:

 CURRENT_SCN

 5715397

The following command takes a consistent full export of the database, using the FLASHBACK_SCN parameter:

$ expdp mv_maint/foo directory=dp_dir full=y flashback_scn=5715397 \
dumpfile=full.dmp

The previous export command ensures that all data exported are consistent with any transactions committed in
the database as of the specified SCN.

When you use the FLASHBACK_SCN parameter, Data Pump ensures that the data in the export file are consistent
as of the specified SCN. This means that any transactions committed after the specified SCN aren’t included in the
export file.

Note ■ If you use the NETWORK_LINK parameter in conjunction with FLASHBACK_SCN, then the export is taken with the
SCN consistent with the database referenced in the database link.

Chapter 13 ■ Data pump

368

You can also use FLASHBACK_TIME to specify that the export file should be created with consistent committed
transactions as of a specified time. When using FLASHBACK_TIME, Oracle determines the SCN that most closely
matches the time specified and uses that to produce an export consistent with that SCN. The syntax for using
FLASHBACK_TIME is as follows:

FLASHBACK_TIME="TO_TIMESTAMP{<value>}"

For some OSs, double quotation marks appearing directly on the command line must be escaped by a backslash
(\), because the OS treats them as special characters. For this reason, it’s much more straightforward to use a
parameter file. Here are the contents of a parameter file that uses FLASHBACK_TIME:

directory=dp_dir
content=metadata_only
dumpfile=inv.dmp
flashback_time="to_timestamp('24-jan-2013 07:03:00','dd-mon-yyyy hh24:mi:ss')"

Depending on your OS, the command line version of the previous example must be specified as follows:

flashback_time=\"to_timestamp\(\'24-jan-2013 07:03:00\',
\'dd-mon-yyyy hh24:mi:ss\'\)\"

This line of code should be specified on one line. Here, the code has been placed on two lines in order to fit on
the page.

You can’t specify both FLASHBACK_SCN and FLASHBACK_TIME when taking an export; these two parameters are
mutually exclusive. If you attempt to use both parameters at the same time, Data Pump throws the following error
message and halts the export job:

ORA-39050: parameter FLASHBACK_TIME is incompatible with parameter FLASHBACK_SCN

Importing When Objects Already Exist
When exporting and importing data, you often import into schemas in which the objects have been created (tables,
indexes, and so on). In this situation, you should import the data but instruct Data Pump to try not to create already
existing objects.

You can achieve this with the TABLE_EXISTS_ACTION and CONTENT parameters. The next example instructs Data
Pump to append data in any tables that already exist via the TABLE_EXISTS_ACTION=APPEND option. Also used is the
CONTENT=DATA_ONLY option, which instructs Data Pump not to run any DDL to create objects (only to load data):

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
table_exists_action=append content=data_only

Existing objects aren’t modified in any way, and any new data that exist in the dump file are inserted into any
tables.

You may wonder what happens if you just use the TABLE_EXISTS_ACTION option and don’t combine it with the
CONTENT option:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
table_exists_action=append

Chapter 13 ■ Data pump

369

The only difference is that Data Pump attempts to run DDL commands to create objects if they exist. This doesn’t
stop the job from running, but you see an error message in the output, indicating that the object already exists. Here is
a snippet of the output for the previous command:

Table "MV_MAINT"."INV" exists. Data will be appended ...

The default for the TABLE_EXISTS_ACTION parameter is SKIP, unless you also specify the parameter
CONTENT=DATA_ONLY. If you use CONTENT=DATA_ONLY, then the default for TABLE_EXISTS_ACTION is APPEND.

The TABLE_EXISTS_ACTION parameter takes the following options:

•	 SKIP (default if not combined with CONTENT=DATA_ONLY)

•	 APPEND (default if combined with CONTENT=DATA_ONLY)

•	 REPLACE

•	 TRUNCATE

The SKIP option tells Data Pump not to process the object if it exists. The APPEND option instructs Data Pump not
to delete existing data, but rather, to add data to the table without modifying any existing data. The REPLACE option
instructs Data Pump to drop and recreate objects; this parameter isn’t valid when the CONTENT parameter is used with
the DATA_ONLY option. The TRUNCATE parameter tells Data Pump to delete rows from tables via a TRUNCATE statement.

The CONTENT parameter takes the following options:

•	 ALL (default)

•	 DATA_ONLY

•	 METADATA_ONLY

The ALL option instructs Data Pump to load both data and metadata contained in the dump file; this is the default
behavior. The DATA_ONLY option tells Data Pump to load only table data into existing tables; no database objects are
created. The METADATA_ONLY option only creates objects; no data are loaded.

Renaming a Table
Starting with Oracle Database 11g, you have the option of renaming a table during import operations. There are
many reasons you may want to rename a table when importing it. For instance, you may have a table in the target
schema that has the same name as the table you want to import. You can rename a table when importing by using the
REMAP_TABLE parameter. This example imports the table from the HEERA user INV table to the HEERA user INVEN table:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=heera.inv \
remap_table=heera.inv:inven

Here is the general syntax for renaming a table:

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

Note that this syntax doesn’t allow you to rename a table into a different schema. If you’re not careful, you may
attempt to do the following (thinking that you’re moving a table and renaming it in one operation):

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp tables=heera.inv \
remap_table=heera.inv:scott.inven

In the prior example, you end up with a table in the HEERA schema named SCOTT. That can be confusing.

Chapter 13 ■ Data pump

370

Note ■ the process of renaming a table wasn’t entirely bug free in Oracle Database 11g release 1 but has been
corrected in Oracle Database 11g release 2. See mOS Note 886762.1 for more details.

Remapping Data
Starting with Oracle Database 11g, when either exporting or importing, you can apply a PL/SQL function to alter a
column value. For example, you may have an auditor who needs to look at the data, and one requirement is that you
apply a simple obfuscation function to sensitive columns. The data don’t need to be encrypted; they just need to be
changed enough that the auditor can’t readily determine the value of the LAST_NAME column in the CUSTOMERS table.

This example first creates a simple package that is used to obfuscate the data:

create or replace package obfus is
 function obf(clear_string varchar2) return varchar2;
 function unobf(obs_string varchar2) return varchar2;
end obfus;
/
--
create or replace package body obfus is
 fromstr varchar2(62) := '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' ||
 'abcdefghijklmnopqrstuvwxyz';
 tostr varchar2(62) := 'defghijklmnopqrstuvwxyzabc3456789012' ||
 'KLMNOPQRSTUVWXYZABCDEFGHIJ';
--
function obf(clear_string varchar2) return varchar2 is
begin
 return translate(clear_string, fromstr, tostr);
end obf;
--
function unobf(obs_string varchar2) return varchar2 is
begin
 return translate(obs_string, tostr, fromstr);
end unobf;
end obfus;
/

Now, when you import the data into the database, you apply the obfuscation function to the LAST_NAME column
of the CUSTOMERS table:

$ impdp mv_maint/foo directory=dp_dir dumpfile=cust.dmp tables=customers \
remap_data=customers.last_name:obfus.obf

Selecting LAST_NAME from CUSTOMERS shows that it has been imported in an obfuscated manner:

SQL> select last_name from customers;
LAST_NAME

yYZEJ
tOXXSMU
xERX

Chapter 13 ■ Data pump

371

You can manually apply the package’s UNOBF function to see the real values of the column:

SQL> select obfus.unobf(last_name) from customers;
OBFUS.UNOBF(LAST_NAME)

Lopuz
Gennick
Kuhn

Suppressing a Log File
By default, Data Pump creates a log file when generating an export or an import. If you know that you don’t want a log
file generated, you can suppress it by specifying the NOLOGFILE parameter. Here is an example:

$ expdp mv_maint/foo directory=dp_dir tables=inv nologfile=y

If you choose not to create a log file, Data Pump still displays status messages on the output device. In general,
I recommend that you create a log file with every Data Pump operation. This gives you an audit trail of your actions.

Using Parallelism
Use the PARALLEL parameter to parallelize a Data Pump job. For instance, if you know you have four CPUs on a box,
and you want to set the degree of parallelism to 4, use PARALLEL as follows:

$ expdp mv_maint/foo parallel=4 dumpfile=exp.dmp directory=dp_dir full=y

To take full advantage of the parallel feature, ensure that you specify multiple files when exporting. The following
example creates one file for each thread of parallelism:

$ expdp mv_maint/foo parallel=4 dumpfile=exp1.dmp,exp2.dmp,exp3.dmp,exp4.dmp

You can also use the %U substitution variable to instruct Data Pump to create dump files automatically to match
the degree of parallelism. The %U variable starts at the value 01 and increments as additional dump files are allocated.
This example uses the %U variable:

$ expdp mv_maint/foo parallel=4 dumpfile=exp%U.dmp

Now, say you need to import from the dump files created from an export. You can either individually specify the
dump files or, if the dump files were created with the %U variable, use that on import:

$ impdp mv_maint/foo parallel=4 dumpfile=exp%U.dmp

In the prior example the import process starts by looking for a file with the name exp01.dmp, then exp02.dmp, and
so on.

Tip ■ Oracle recommends that the degree of parallelism not be set to more than two times the number of Cpus
available on the server.

Chapter 13 ■ Data pump

372

You can also modify the degree of parallelism while the job is running. First, attach in the interactive command
mode to the job (see the section “Interactive Command Mode,” later in this chapter) for which you want to modify the
degree of parallelism. Then, use the PARALLEL option. In this example the job attached to is SYS_IMPORT_TABLE_01:

$ impdp mv_maint/foo attach=sys_import_table_01
Import> parallel=6

You can check the degree of parallelism via the STATUS command:

Import> status

Here is some sample output:

Job: SYS_IMPORT_TABLE_01
Operation: IMPORT
Mode: TABLE
State: EXECUTING
Bytes Processed: 0
Current Parallelism: 6

Note ■ the PARALLEL feature is only available in the enterprise edition of Oracle.

Specifying Additional Dump Files
If you run out of space in the primary data pump location, then you can specify additional data pump locations on
the fly. Use the ADD_FILE command from the interactive command prompt. Here is the basic syntax for adding
additional files:

ADD_FILE=[directory_object:]file_name [,...]

This example adds another output file to an already existing Data Pump export job:

Export> add_file=alt2.dmp

You can also specify a separate database directory object:

Export> add_file=alt_dir:alt3.dmp

Reusing Output File Names
By default, Data Pump doesn’t overwrite an existing dump file. For example, the first time you run this job, it will run
fine because there is no dump file named inv.dmp in the directory being used:

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp

If you attempt to run the previous command again with the same directory and the same data pump name, this
error is thrown:

ORA-31641: unable to create dump file "/oradump/inv.dmp"

Chapter 13 ■ Data pump

373

You can either specify a new data pump name for the export job or use the REUSE_DUMPFILES parameter to direct
Data Pump to overwrite an existing dump file; for example,

$ expdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp reuse_dumpfiles=y

You should now be able to run the Data Pump export regardless of an existing dump file with the same name in
the output directory. When you set REUSE_DUMPFILES to a value of y, if Data Pump finds a dump file with the same
name, it overwrites the file.

Note ■ the default value for REUSE_DUMPFILES is n. the REUSE_DUMPFILES parameter is available only in Oracle
Database 11g and higher.

Creating a Daily DDL File
Sometimes, in database environments, changes occur to database objects in unexpected ways. You may have a
developer who somehow obtains the production user passwords and decides to make a change on the fly, without
telling anybody. Or a DBA may decide not to follow the standard release process and make a change to an object
while troubleshooting an issue. These scenarios can be frustrating for production-support DBAs. Whenever there is
an issue, the first question raised is, “What changed?”

When you use Data Pump, it’s fairly simple to create a file that contains all the DDL to recreate every object
in your database. You can instruct Data Pump to export or import just the metadata via the
CONTENT=METADATA_ONLY option.

For instance, in a production environment, you can set up a daily job to capture this DDL. If there is ever
a question about what changed and when, you can go back and compare the DDL in the daily dump files.

Listed next is a simple shell script that first exports the metadata content from the database and then uses Data
Pump import to create a DDL file from that export:

#!/bin/bash
source OS variables, see Chapter 2 for details
. /etc/oraset o12c
#
DAY=$(date +%Y_%m_%d)
SID=DWREP
#---
First create export dump file with metadata only
expdp mv_maint/foo dumpfile=${SID}.${DAY}.dmp content=metadata_only \
directory=dp_dir full=y logfile=${SID}.${DAY}.log
#---
Now create DDL file from the export dump file.
impdp mv_maint/foo directory=dp_dir dumpfile=${SID}.${DAY}.dmp \
SQLFILE=${SID}.${DAY}.sql logfile=${SID}.${DAY}.sql.log
#
exit 0

This code listing depends on a database directory object’s being created that points to where you want the daily
dump file to be written. You may also want to set up another job that periodically deletes any files older than a certain
amount of time.

Chapter 13 ■ Data pump

374

Compressing Output
When you use Data Pump to create large files, you should consider compressing the output. As of Oracle Database
11g, the COMPRESSION parameter can be one of the following values: ALL, DATA_ONLY, METADATA_ONLY, or NONE. If
you specify ALL, then both data and metadata are compressed in the output. This example exports one table and
compresses both the data and metadata in the output file:

$ expdp dbauser/foo tables=locations directory=datapump \
dumpfile=compress.dmp compression=all

If you’re using Oracle Database 10g, then the COMPRESSION parameter only has the METADATA_ONLY and
NONE values.

Note ■ the ALL and DATA_ONLY options of the COMPRESS parameter require a license for the Oracle advanced
Compression option.

New with Oracle Database 12c, you can specify a compression algorithm. The choices are BASIC, LOW, MEDIUM, and
HIGH. Here is an example of using MEDIUM compression:

$ expdp mv_maint/foo dumpfile=full.dmp directory=dp_dir full=y \
compression=all compression_algorithm=MEDIUM

Using the COMPRESSION_ALGORITHM parameter can be especially useful if you’re running low on disk space or
exporting over a network connection (as it reduces the number of bytes that need to be transferred).

Note ■ the COMPRESSION_ALGORITHM parameter requires a license for the Oracle advanced Compression option.

Changing Table Compression Characteristics on Import
Starting with Oracle Database 12c, you can change a table’s compression characteristics when importing the table.
This example changes the compression characteristics for all tables imported in the job to ROW STORE COMPRESS
ADVANCED. Because the command in this example requires quotation marks, it’s placed in a parameter file, as shown:

userid=mv_maint/foo
dumpfile=inv.dmp
directory=dp_dir
transform=table_compression_clause:"ROW STORE COMPRESS ADVANCED"

Assume that the parameter file is named imp.par. It can now be invoked as follows:

$ impdp parfile=imp.par

All tables included in the import job are created as ROW STORE COMPRESS ADVANCED, and the data are
compressed as they’re loaded.

Note ■ table-level compression requires a license for the Oracle advanced Compression option.

Chapter 13 ■ Data pump

375

Encrypting Data
One potential security issue with Data Pump dump files is that anybody with OS access to the output file can search
for strings in the file. On Linux/Unix systems, you can do this with the strings command:

$ strings inv.dmp | grep -i secret

Here is the output for this particular dump file:

Secret Data<
top secret data<
corporate secret data<

This command allows you to view the contents of the dump file because the data are in regular text and not
encrypted. If you require that the data be secured, you can use Data Pump’s encryption features.

This example uses the ENCRYPTION parameter to secure all data and metadata in the output:

$ expdp mv_maint/foo encryption=all directory=dp_dir dumpfile=inv.dmp

For this command to work, your database must have an encryption wallet in place and open. See the Oracle
Advanced Security Administrator’s Guide, available for download from the Technology Network area of the Oracle
web site (http://otn.oracle.com), for more details on how to create and open a wallet.

Note ■ the Data pump ENCRYPTION parameter requires that you use the enterprise edition of Oracle Database 11g or
higher and also requires a license for the Oracle advanced Security option.

The ENCRYPTION parameter takes the following options:

•	 ALL

•	 DATA_ONLY

•	 ENCRYPTED_COLUMNS_ONLY

•	 METADATA_ONLY

•	 NONE

The ALL option enables encryption for both data and metadata. The DATA_ONLY option encrypts just the data. The
ENCRYPTED_COLUMNS_ONLY option specifies that only columns encrypted in the database are written to the dump file in
an encrypted format. The METADATA_ONLY option encrypts just metadata in the export file.

Exporting Views As Tables
Starting with Oracle Database 12c, you can export a view and later import it as a table. You may want to do this if you
need to replicate the data contained in a view to a historical reporting database.

Use the VIEWS_AS_TABLES parameter to export a view into a table structure. This parameter has the following
syntax:

VIEWS_AS_TABLES=[schema_name.]view_name[:template_table_name]

http://otn.oracle.com/

Chapter 13 ■ Data pump

376

Here is an example:

$ expdp mv_maint/foo directory=dp_dir dumpfile=v.dmp \
views_as_tables=sales_rockies

The dump file can now be used to import a table named SALES_ROCKIES into a different schema or database.

$ impdp mv_maint/foo directory=dp_dir dumpfile=v.dmp

If you just want to import the table (which was created from a view during the export), you can do so as follows:

$ impdp mv_maint/foo directory=dp_dir dumpfile=v.dmp tables=sales_rockies

The table will have the same columns and data types as per the view definition. The table will additionally
contain rows of data that match what would have been selected from the view at the time of the export.

Disabling Logging of Redo on Import
Starting with Oracle Database 12c, you can specify that objects be loaded with nologging of redo. This is achieved via
the DISABLE_ARCHIVE_LOGGING parameter:

$ impdp mv_maint/foo directory=dp_dir dumpfile=inv.dmp \
transform=disable_archive_logging:Y

While performing the import, the logging attributes for objects are set to NO; after the import the logging attributes
are set back to their original values. For operations that Data Pump can perform with direct path (such as inserting
into a table), this can reduce the amount of redo generated during an import.

Interactive Command Mode
Data Pump provides an interactive command mode that allows you to monitor the status of a Data Pump job and
modify on the fly a number of job characteristics. The interactive command mode is most useful for long-running
Data Pump operations. In this mode, you can also stop, restart, or terminate a currently running job. Each of these
activities is discussed in the following sections.

Entering Interactive Command Mode
There are two ways to access the interactive command mode prompt:

Press Ctrl+C in a Data Pump job that you started via •	 expdp or impdp.

Use the •	 ATTACH parameter to attach to a currently running job.

When you run a Data Pump job from the command line, you’re placed in the command-line mode. You should
see output displayed to your terminal as a job progresses. If you want to exit command-line mode, press Ctrl+C. This
places you in the interactive command-interface mode. For an export job, the prompt is

Export>

Chapter 13 ■ Data pump

377

Export> help

Type EXIT to leave interactive command mode:

Export> exit

You should now be at the OS prompt.
You can press Ctrl+C for either an export or an import job. For an import job the interactive command mode

prompt is

Import>

To view all commands available, type HELP:

Import> help

The interactive command mode import commands are summarized in Table 13-2.

Table 13-1. Export Interactive Commands

Command Description

ADD_FILE Adds files to the export dump set

CONTINUE_CLIENT Continues with interactive client mode

EXIT_CLIENT Exits the client session and returns to the OS prompt; leaves the current
job running

FILESIZE Defines file size for any subsequently created dump files

HELP Displays interactive export commands

KILL_JOB Terminates the current job

PARALLEL Increases or decreases the degree of parallelism

REUSE_DUMPFILES Overwrites the dump file if it exists (default is N)

START_JOB Restarts the attached job

STATUS Displays the status of the currently attached job

STOP_JOB [=IMMEDIATE] Stops a job from processing (you can later restart it). Using the IMMEDIATE
parameter quickly stops the job, but there may be some incomplete tasks.

Type in the HELP command to view the export interactive commands available (see Table 13-1):

Chapter 13 ■ Data pump

378

Type EXIT to leave the Data Pump status utility:

Import> exit

You should now be at the OS prompt.

Attaching to a Running Job
One powerful feature of Data Pump is that you can attach to a currently running job and view its progress and status.
If you have DBA privileges, you can even attach to a job if you aren’t the owner. You can attach to either an import or
an export job via the ATTACH parameter.

Before you attach to a job, you must first determine the Data Pump job name (and owner name, if you’re not the
owner of the job). Run the following SQL query to display currently running jobs:

SQL> select owner_name, operation, job_name, state from dba_datapump_jobs;

Here is some sample output:

OWNER_NAME OPERATION JOB_NAME STATE
---------- --------------- -------------------- --------------------
MV_MAINT EXPORT SYS_EXPORT_SCHEMA_01 EXECUTING

In this example the MV_MAINT user can directly attach to the export job, as shown:

$ expdp mv_maint/foo attach=sys_export_schema_01

If you aren’t the owner of the job, you attach to the job by specifying the owner name and the job name:

$ expdp system/foobar attach=mv_maint.sys_export_schema_01

Table 13-2. Import Interactive Commands

Command Description

CONTINUE_CLIENT Continues with interactive logging mode

EXIT_CLIENT Exits the client session and returns to the OS prompt. Leaves the current job running

HELP Displays the available interactive commands

KILL_JOB Terminates the job currently connected to in the client

PARALLEL Increases or decreases the degree of parallelism

START_JOB Restarts a previously stopped job. START_JOB=SKIP_CURRENT restarts the job and
skips any operations that were active when the job was stopped

STATUS Specifies the frequency at which the job status is monitored. Default mode is 0; the
client reports job status changes whenever available in this mode.

STOP_JOB [=IMMEDIATE] Stops a job from processing (you can later restart it). Using the IMMEDIATE parameter
quickly stops the job, but there may be some incomplete tasks.

Chapter 13 ■ Data pump

379

You should now see the Data Pump command-line prompt:

Export>

Type STATUS to view the status of the currently attached job:

Export> status

Stopping and Restarting a Job
If you have a currently running Data Pump job that you want to temporarily stop, you can do so by first attaching to
the interactive command mode. You may want to stop a job to resolve space issues or performance issues and then,
after resolving the issues, restart the job. This example attaches to an import job:

$ impdp mv_maint/foo attach=sys_import_table_01

Now, stop the job, using the STOP_JOB parameter:

Import> stop_job

You should see this output:

Are you sure you wish to stop this job ([yes]/no):

Type YES to proceed with stopping the job. You can also specify that the job be stopped immediately:

Import> stop_job=immediate

When you stop a job with the IMMEDIATE option, there may be some incomplete tasks associated with the job. To
restart a job, attach to interactive command mode, and issue the START_JOB command:

Import> start_job

If you want to resume logging job output to your terminal, issue the CONTINUE_CLIENT command:

Import> continue_client

Terminating a Data Pump Job
You can instruct Data Pump to permanently kill an export or import job. First, attach to the job in interactive
command mode, and then issue the KILL_JOB command:

Import> kill_job

You should be prompted with the following output:

Are you sure you wish to stop this job ([yes]/no):

Type YES to permanently kill the job. Data Pump unceremoniously kills the job and drops the associated status
table from the user running the export or import.

Chapter 13 ■ Data pump

380

Monitoring Data Pump Jobs
When you have long-running Data Pump jobs, you should occasionally check the status of the job to ensure it hasn’t
failed become suspended, and so on. There are several ways to monitor the status of Data Pump jobs:

Screen output•	

Data Pump log file•	

Querying data dictionary views•	

Database alert log•	

Querying the status table•	

Interactive command mode status•	

Using the process status (•	 ps) OS utility

The most obvious way to monitor a job is to view the status that Data Pump displays on the screen as the job is
running. If you’ve disconnected from the command mode, then the status is no longer displayed on your screen. In
this situation, you must use another technique to monitor a Data Pump job.

Data Pump Log File
By default, Data Pump generates a log file for every job. When you start a Data Pump job, it’s good practice to name
a log file that is specific to that job:

$ impdp mv_maint/foo directory=dp_dir dumpfile=archive.dmp logfile=archive.log

This job creates a file, named archive.log, that is placed in the directory referenced in the database object DP_DIR.
If you don’t explicitly name a log file, Data Pump import creates one named import.log, and Data Pump export
creates one named export.log.

Note ■ the log file contains the same information you see displayed interactively on your screen when running a Data
pump job.

Data Dictionary Views
A quick way to determine whether a Data Pump job is running is to check the DBA_DATAPUMP_JOBS view for anything
running with a STATE that has an EXECUTING status:

select job_name, operation, job_mode, state
from dba_datapump_jobs;

Here is some sample output:

JOB_NAME OPERATION JOB_MODE STATE
------------------------- -------------------- ---------- ---------------
SYS_IMPORT_TABLE_04 IMPORT TABLE EXECUTING
SYS_IMPORT_FULL_02 IMPORT FULL NOT RUNNING

r

Chapter 13 ■ Data pump

381

You can also query the DBA_DATAPUMP_SESSIONS view for session information via the following query:

select sid, serial#, username, process, program
from v$session s,
 dba_datapump_sessions d
where s.saddr = d.saddr;

Here is some sample output, showing that several Data Pump sessions are in use:

 SID SERIAL# USERNAME PROCESS PROGRAM
---------- ---------- -------------------- --------------- ----------------------
 1049 6451 STAGING 11306 oracle@xengdb (DM00)
 1058 33126 STAGING 11338 oracle@xengdb (DW01)
 1048 50508 STAGING 11396 oracle@xengdb (DW02)

Database Alert Log
If a job is taking much longer than you expected, look in the database alert log for any messages similar to this:

statement in resumable session 'SYS_IMPORT_SCHEMA_02.1' was suspended due to
ORA-01652: unable to extend temp segment by 64 in tablespace REG_TBSP_3

This message indicates that a Data Pump import job is suspended and is waiting for space to be added to the
REG_TBSP_3 tablespace. After you add space to the tablespace, the Data Pump job automatically resumes processing.
By default a Data Pump job waits 2 hours for space to be added.

Note ■ In addition to writing to the alert log, for each Data pump job, Oracle creates a trace file in the ADR_HOME/trace
directory. this file contains information such as the session ID and when the job started. the trace file is named with the
following format: <SID>_dm00_<process_ID>.trc.

Status Table
Every time you start a Data Pump job, a status table is automatically created in the account of the user running the job.
For export jobs the table name depends on what type of export job you’re running. The table is named with the format
SYS_<OPERATION>_<JOB_MODE>_NN, where OPERATION is either EXPORT or IMPORT. JOB_MODE can be FULL, SCHEMA, TABLE,
TABLESPACE, and so on.

Here is an example of querying the status table for particulars about a currently running job:

select name, object_name, total_bytes/1024/1024 t_m_bytes
,job_mode
,state ,to_char(last_update, 'dd-mon-yy hh24:mi')
from SYS_EXPORT_TABLE_01
where state='EXECUTING';

Interactive Command Mode Status
A quick way to verify that Data Pump is running a job is to attach in interactive command mode and issue a STATUS
command; for example,

$ impdp mv_maint/foo attach=SYS_IMPORT_TABLE_04
Import> status

Chapter 13 ■ Data pump

382

Here is some sample output:

Job: SYS_IMPORT_TABLE_04
Operation: IMPORT
Mode: TABLE
State: EXECUTING
Bytes Processed: 0
Current Parallelism: 4

You should see a state of EXECUTING, which indicates that the job is actively running. Other items to inspect in the
output are the number of objects and bytes processed. Those numbers should increase as the job progresses.

OS Utilities
You can use the ps OS utility to display jobs running on the server. For example, you can search for master and worker
processes, as follows:

$ ps -ef | egrep 'ora_dm|ora_dw' | grep -v egrep

Here is some sample output:

oracle 29871 717 5 08:26:39 ? 11:42 ora_dw01_STAGE
oracle 29848 717 0 08:26:33 ? 0:08 ora_dm00_STAGE
oracle 29979 717 0 08:27:09 ? 0:04 ora_dw02_STAGE

If you run this command multiple times, you should see the processing time (seventh column) increase for one
or more of the current jobs. This is a good indicator that Data Pump is still executing and doing work.

Data Pump Legacy Mode
This feature is covered last in this chapter, but it’s quite useful, especially if you’re an old-school DBA. As of Oracle
Database 11g Release 2, Data Pump allows you to use the old exp and imp utility parameters when invoking a Data
Pump job. This is known as legacy mode, and it’s a great feature.

You don’t have to do anything special to use legacy mode Data Pump. As soon as Data Pump detects a legacy
parameter, it attempts to process the parameter as if it were from the old exp/imp utilities. You can even mix and
match old legacy parameters with newer parameters; for example,

$ expdp mv_maint/foo consistent=y tables=inv directory=dp_dir

In the output, Data Pump indicates that it has encountered legacy parameters and gives you the syntax for what it
translated the legacy parameter to in Data Pump syntax. For the previous command, here is the output from the Data
Pump session that shows what the consistent=y parameter was translated into:

Legacy Mode Parameter: "consistent=TRUE" Location: Command Line,
Replaced with:
"flashback_time=TO_TIMESTAMP('2013-01-25 19:31:54', 'YYYY-MM-DD HH24:MI:SS')"

This feature can be extremely handy, particularly if you’re really familiar with the old legacy syntax and wonder
how it’s implemented in Data Pump.

Chapter 13 ■ Data pump

383

I recommend that you try to use the newer Data Pump syntax whenever possible. However, you may run into
situations in which you have legacy exp/imp jobs and want to continue running the scripts as they are,
without modification.

Note ■ When Data pump runs in legacy mode, it doesn’t create an old exp-/imp-formatted file. Data pump always
creates a Data pump file and can only read Data pump files.

Data Pump Mapping to the exp Utility
If you’re used to the old exp/imp parameters, you may initially be confused by some of the syntax semantics. However,
after you use Data Pump, you’ll find the newer syntax fairly easy to remember and use. Table 13-3 describes how the
legacy export parameters map to Data Pump export.

Table 13-3. Mapping of Old Export Parameters to Data Pump

Original exp Parameter Similar Data Pump expdp Parameter

BUFFER N/A

COMPRESS TRANSFORM

CONSISTENT FLASHBACK_SCN or FLASHBACK_TIME

CONSTRAINTS EXCLUDE=CONSTRAINTS

DIRECT N/A; Data Pump automatically uses direct path whenever possible.

FEEDBACK STATUS in client output

FILE Database directory object and DUMPFILE

GRANTS EXCLUDE=GRANT

INDEXES INCLUDE=INDEXES, INCLUDE=INDEXES

LOG Database directory object and LOGFILE

OBJECT_CONSISTENT N/A

OWNER SCHEMAS

RECORDLENGTH N/A

RESUMABLE N/A; Data Pump automatically provides functionality.

RESUMABLE_NAME N/A

RESUMABLE_TIMEOUT N/A

ROWS CONTENT=ALL

STATISTICS N/A; Data Pump export always exports statistics for tables.

TABLESPACES TRANSPORT_TABLESPACES

TRANSPORT_TABLESPACE TRANSPORT_TABLESPACES

TRIGGERS EXCLUDE=TRIGGER

TTS_FULL_CHECK TRANSPORT_FULL_CHECK

VOLSIZE N/A; Data Pump doesn’t support tape devices.

Chapter 13 ■ Data pump

384

In many instances, there isn’t a one-to-one mapping. Often, Data Pump automatically provides features that used
to require a parameter in the legacy utilities. For example, whereas you used to have to specify DIRECT=Y to get a direct
path export, Data Pump automatically uses direct path whenever possible.

Data Pump Mapping to the imp Utility
As with Data Pump export, Data Pump import often doesn’t have a one-to-one mapping of the legacy utility
parameter. Data Pump import automatically provides many features of the old imp utility. For example, COMMIT=Y isn’t
required because Data Pump import automatically commits after each table is imported. Table 13-4 describes how
the legacy import parameters map to Data Pump import.

Table 13-4. Mapping of Old Import Parameters to Data Pump

Original imp Parameter Similar Data Pump impdp Parameter

BUFFER N/A

CHARSET N/A

COMMIT N/A; Data Pump import automatically commits after each table is exported.

COMPILE N/A; Data Pump import compiles procedures after they’re created.

CONSTRAINTS EXCLUDE=CONSTRAINT

DATAFILES TRANSPORT_DATAFILES

DESTROY REUSE_DATAFILES=y

FEEDBACK STATUS in client output

FILE Database directory object and DUMPFILE

FILESIZE N/A

FROMUSER REMAP_SCHEMA

GRANTS EXCLUDE=OBJECT_GRANT

IGNORE TABLE_EXISTS_ACTION, with APPEND, REPLACE, SKIP, or TRUNCATE

INDEXES EXCLUDE=INDEXES

INDEXFILE SQLFILE

LOG Database directory object and LOGFILE

RECORDLENGTH N/A

RESUMABLE N/A; this functionality is automatically provided.

RESUMABLE_NAME N/A

RESUMABLE_TIMEOUT N/A

ROWS=N CONTENT, with METADATA_ONLY or ALL

SHOW SQLFILE

STATISTICS N/A

STREAMS_CONFIGURATION N/A

STREAMS_INSTANTIATION N/A

(continued)

Chapter 13 ■ Data pump

385

Summary
Data Pump is an extremely powerful and feature-rich tool. If you haven’t used Data Pump much, then I recommend
that you take some time to reread this chapter and work through the examples. This tool greatly simplifies tasks such
as moving users and data from one environment to another. You can export and import subsets of users, filter and
remap data via SQL and PL/SQL, rename users and tablespaces, compress, encrypt, and parallelize, all with one
command. It really is that powerful.

DBAs sometimes stick with the old exp/imp utilities because that’s what they’re familiar with (I’m occasionally
guilty of this). If you’re running Oracle Database 11g Release 2, you can use the old exp/imp parameters and options
directly from the command line. Data Pump translates these parameters on the fly to Data Pump–specific syntax. This
feature nicely facilitates the migration from the old to the new. For reference, I’ve also provided a mapping of the old
exp/imp syntax and how it relates to Data Pump commands.

Although Data Pump is an excellent tool for moving database objects and data from one environment to another,
sometimes you need to transfer large quantities of data to and from OS flat files. You use external tables to achieve this
task. This is the topic of the next chapter in this book.

Original imp Parameter Similar Data Pump impdp Parameter

TABLESPACES TRANSPORT_TABLESPACES

TOID_NOVALIDATE N/A

TOUSER REMAP_SCHEMA

TRANSPORT_TABLESPACE TRANSPORT_TABLESPACES

TTS_OWNERS N/A

VOLSIZE N/A; Data Pump doesn’t support tape devices.

Table 13-4. (continued)

387

Chapter 14

External Tables

Sometimes, DBAs and developers don’t grasp the utility of external tables. The Oracle external table feature enables
you to perform two distinct operations:

Transparently select information from OS comma-separated-value (CSV) files via SQL, which •	
allows you to do tasks such as loading these files into the database.

Create platform-independent dump files that can be used to transfer data. You can also create •	
these files as compressed and encrypt them for efficient and secure data transportation.

Tip ■ CSV files are also commonly known as flat files.

One common use of an external table is the selection of data from an OS CSV (flat) file via SQL *Plus. When using
an external table in this mode, you must specify the type of data in the file and how the data are organized. You can
select from an external table but aren’t permitted to modify the contents (no inserts, updates, or deletes).

You can also use an external table feature that enables you to select data from the database and write that
information to a binary dump file. The definition of the external table determines what tables and columns will be
used to unload data. Using an external table in this mode provides a method for extracting large amounts of data to a
platform-independent file that you can later load into a different database.

All that is required to enable external tables is to first create a database directory object that specifies the location
of the OS file. Then, you use the CREATE TABLE...ORGANIZATION EXTERNAL statement to make the database aware of
OS files that can be used as sources or targets of data.

This chapter starts by comparing using SQL*Loader—Oracle’s traditional data-loading utility—with external
tables for the loading of data into the database. Several examples illustrate the flexibility and power of using external
tables as a loading and data-transformation tool. The chapter finishes with an external table example of how to
unload data into a dump file.

SQL*Loader vs. External Tables
One general use of an external table is to employ SQL to load data from an OS file into a regular database table. This
facilitates the loading of large amounts of data from flat files into the database. In older versions of Oracle, this type of
loading was performed via SQL*Loader or through custom Pro*C programs.

Almost anything you can do with SQL*Loader, you can achieve with external tables. External tables are more
flexible and intuitive than SQL*Loader. Additionally, you can obtain very good performance when loading data with
external tables by using direct path and parallel features.

Chapter 14 ■ external tableS

388

A quick comparison of SQL*Loader and external tables highlights the differences. Listed next are the steps that
you use to load and transform data with SQL*Loader:

1. Create a parameter file that SQL*Loader uses to interpret the format of the data in the OS file.

2. Create a regular database table into which SQL*Loader will insert records. The data will be
staged here until they can be further processed.

3. Run the SQL*Loader sqlldr utility to load data from the OS file into the database table
(created in step 2). When loading data, SQL*Loader has some features that allow you to
transform data. This step is sometimes frustrating because it can take several trial-and-
error runs to correctly map the parameter file to the table and corresponding columns.

4. Create another table that will contain the completely transformed data.

5. Run SQL to extract the data from the staging table (created in step 2), and then transform
and insert the data into the production table (created in step 4).

Compare the previous SQL*Loader list to the following steps for loading and transforming data, using
external tables:

1. Execute a CREATE TABLE...ORGANIZATION EXTERNAL script that maps the structure of
the OS file to table columns. After this script is run, you can directly use SQL to query the
contents of the OS file.

2. Create a regular table to hold the completely transformed data.

3. Run SQL statements to load and fully transform the data from the external table (created in
step 1) into the table created in step 2.

For many shops, SQL*Loader underpins large data-loading operations. It continues to be a good tool for that task.
However, you may want to investigate using external tables. External tables have the following advantages:

Loading data with external tables is more straightforward and requires fewer steps.•	

The interface for creating and loading from external tables is SQL*Plus. Many DBAs/•	
developers find SQL*Plus more intuitive and powerful than SQL*Loader’s parameter file
interface.

You can view data (via SQL) in an external table before they’re loaded into a database table.•	

You can load, transform, and aggregate the data without an intermediate staging table. For •	
large amounts of data, this can be a huge space savings.

The next several sections contain examples of using external tables to read from OS files.

Loading CSV Files into the Database
You can load small or very large CSV flat files into the database, using external tables and SQL. Figure 14-1 shows the
architectural components involved with using an external table to view and load data from an OS file. A directory
object is required that specifies the location of the OS file. The CREATE TABLE...ORGANIZATION EXTERNAL statement
creates a database object that SQL*Plus can use to directly select from the OS file.

Chapter 14 ■ external tableS

389

Here are the steps for using an external table to access an OS flat file:

1. Create a database directory object that points to the location of the CSV file.

2. Grant read and write privileges on the directory object to the user creating the external
table. I usually use a DBA-privileged account, so I don’t need to perform this step.

3. Run the CREATE TABLE...ORGANIZATION EXTERNAL statement.

4. Use SQL*Plus to access the contents of the CSV file.

In this example the flat file is named ex.csv and is located in the /u01/et directory. It contains the following data:

5|2|0|0|12/04/2011|Half
6|1|0|1|09/06/2012|Quarter
7|4|0|1|08/10/2012|Full
8|1|1|0|06/15/2012|Quarter

Note■ Some of the CSV file examples in this chapter are separated by characters other than a comma, such as a
pipe (|). the character used depends on the data and the user supplying the CSV file. a comma isn’t always useful as the
delimiter, as the data being loaded may contain commas as valid characters within the data.

Creating a Directory Object and Granting Access
First, create a directory object that points to the location of the flat file on disk:

SQL> create directory exa_dir as '/u01/et';

This example uses a database account that has the DBA role granted to it; therefore, you don’t need to grant READ
and WRITE on the directory object to the user (your account) that is accessing the directory object. If you’re not using a
DBA account to read from the directory object, then grant these privileges to the account, using this object:

SQL> grant read, write on directory exa_dir to reg_user;

SQL> create table exadata_et(
 exa_id NUMBER
...
 ,rack_type VARCHAR2(32)
)
organization external (
 type oracle_loader
...

OS flat file
/u01/et/ex.csv

5|2|0|0|12/04/2011|Half
6|1|0|1|09/06/2012|Quarter
7|4|0|1|08/10/2012|Full
8|1|1|0|06/15/2012|Quarter

SQL> CREATE DIRECTORY
exa_dir AS ‘/u01/et’;

SQL> select * from
exadata_et;

database

EXA_INFO

SQL> create
table exa_info as

select * from
exadata_et;

Figure 14-1. Architectural components of an external table used to read a flat file

Chapter 14 ■ external tableS

390

Creating an External Table
Then, fashion the script that creates the external table that will reference the flat file. The CREATE TABLE...
ORGANIZATION EXTERNAL statement provides the database with the following information:

How to interpret data in the flat file and a mapping of data in file to column definitions in the •	
database

A •	 DEFAULT DIRECTORY clause that identifies the directory object, which in turn specifies the
directory of the flat file on disk

The •	 LOCATION clause, which identifies the name of the flat file

The next statement creates a database object that looks like a table but that is able to retrieve data directly from
the flat file:

create table exadata_et(
 exa_id NUMBER
 ,machine_count NUMBER
 ,hide_flag NUMBER
 ,oracle NUMBER
 ,ship_date DATE
 ,rack_type VARCHAR2(32)
)
organization external (
 type oracle_loader
 default directory exa_dir
 access parameters
 (
 records delimited by newline
 fields terminated by '|'
 missing field values are null
 (exa_id
 ,machine_count
 ,hide_flag
 ,oracle
 ,ship_date char date_format date mask "mm/dd/yyyy"
 ,rack_type)
)
 location ('ex.csv')
)
reject limit unlimited;

An external table named EXADATA_ET is created when you execute this script. Now, use SQL*Plus to view the
contents of the flat file:

SQL> select * from exadata_et;

 EXA_ID MACHINE_COUNT HIDE_FLAG ORACLE SHIP_DATE RACK_TYPE
---------- ------------- ---------- ---------- ---------- --------------------
 5 2 0 0 04-DEC-11 Half
 6 1 0 1 06-SEP-12 Quarter
 7 4 0 1 10-AUG-12 Full
 8 1 1 0 15-JUN-12 Quarter

Chapter 14 ■ external tableS

391

Generating SQL to Create an External Table
If you’re currently working with SQL*Loader and want to convert to using external tables, you can use SQL*Loader to
generate the SQL required to create the external table, using the EXTERNAL_TABLE option. A small example will help
demonstrate this process. Suppose you have the following table DDL:

create table books
(book_id number,
 book_desc varchar2(30));

In this situation, you want to load the following data from a CSV file into the BOOKS table. The data are in a file
named books.dat and are as follows:

1|RMAN Recipes
2|Linux for DBAs
3|SQL Recipes

You also have a books.ctl SQL*Loader control file that contains the following data:

load data
INFILE 'books.dat'
INTO TABLE books
APPEND
FIELDS TERMINATED BY '|'
(book_id,
 book_desc)

You can use SQL*Loader with the EXTERNAL_TABLE=GENERATE_ONLY clause to generate the SQL required to create
an external table; for example,

$ sqlldr dk/f00 control=books.ctl log=books.log external_table=generate_only

The prior line of code doesn’t load any data. Rather it creates a file, named books.log, that contains the SQL
required to create an external table. Here is a partial listing of the code generated:

CREATE TABLE "SYS_SQLLDR_X_EXT_BOOKS"
(
 "BOOK_ID" NUMBER,
 "BOOK_DESC" VARCHAR2(30)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE 'SYS_SQLLDR_XT_TMPDIR_00000':'books.bad'
 LOGFILE 'books.log_xt'
 READSIZE 1048576
 FIELDS TERMINATED BY "|" LDRTRIM
 REJECT ROWS WITH ALL NULL FIELDS

Chapter 14 ■ external tableS

392

 (
 "BOOK_ID" CHAR(255)
 TERMINATED BY "|",
 "BOOK_DESC" CHAR(255)
 TERMINATED BY "|"
)
)
 location
 (
 'books.dat'
)
)REJECT LIMIT UNLIMITED;

Before you run the prior code, create a directory that points to the location of the books.dat file; for example,

SQL> create or replace directory SYS_SQLLDR_XT_TMPDIR_00000
 as '/u01/sqlldr';

Now, if you run the SQL code generated by SQL*Loader, you should be able to view the data in the
SYS_SQLLDR_X_EXT_BOOKS table:

SQL> select * from SYS_SQLLDR_X_EXT_BOOKS;

Here is the expected output:

 BOOK_ID BOOK_DESC
---------- ------------------------------
 1 RMAN Recipes
 2 Linux for DBAs
 3 SQL Recipes

This is a powerful technique, especially if you already have existing SQL*Loader control files and want to ensure
that you have the correct syntax when converting to external tables.

Viewing External Table Metadata
At this point, you can also view metadata regarding the external table. Query the DBA_EXTERNAL_TABLES view for details:

select
 owner
,table_name
,default_directory_name
,access_parameters
from dba_external_tables;

Here is a partial listing of the output:

OWNER TABLE_NAME DEFAULT_DIRECTORY_NA ACCESS_PARAMETERS
---------- --------------- -------------------- --------------------
SYS EXADATA_ET EXA_DIR records delimited ...

Chapter 14 ■ external tableS

393

Additionally, you can select from the DBA_EXTERNAL_LOCATIONS table for information regarding any flat files
referenced in an external table:

select
 owner
,table_name
,location
from dba_external_locations;

Here is some sample output:

OWNER TABLE_NAME LOCATION
---------- --------------- --------------------
SYS EXADATA_ET ex.csv

Loading a Regular Table from the External Table
Now, you can load data contained in the external table into a regular database table. When you do this, you can take
advantage of Oracle’s direct-path loading and parallel features. This example creates a regular database table that will
be loaded with data from the external table:

create table exa_info(
 exa_id NUMBER
 ,machine_count NUMBER
 ,hide_flag NUMBER
 ,oracle NUMBER
 ,ship_date DATE
 ,rack_type VARCHAR2(32)
) nologging parallel 2;

You can direct-path load this regular table (via the APPEND hint) from the contents of the external table, as follows:

SQL> insert /*+ APPEND */ into exa_info select * from exadata_et;

You can verify that the table was direct-path loaded by attempting to select from it before you commit the data:

SQL> select * from exa_info;

Here is the expected error:

ORA-12838: cannot read/modify an object after modifying it in parallel

After you commit the data, you can select from the table:

SQL> commit;
SQL> select * from exa_info;

The other way to direct-path load a table is to use the CREATE TABLE AS SELECT (CTAS) statement. A CTAS statement
automatically attempts to do a direct-path load. In this example the EXA_INFO table is created and loaded in one statement:

SQL> create table exa_info nologging parallel 2 as select * from exadata_et;

Chapter 14 ■ external tableS

394

By using direct-path loading and parallelism, you can achieve loading performance similar to that of SQL*Loader.
The advantage of using SQL to create a table from an external table is that you can perform complex data transformations
using standard SQL*Plus features when building your regular database table (EXA_INFO, in this example).

Any CTAS statements automatically process with the degree of parallelism that has been defined for the underlying
table. However, when you use INSERT AS SELECT statements, you need to enable parallelism for the session:

SQL> alter session enable parallel dml;

As a last step, you should generate statistics for any table that has been loaded with a large amount of data. Here
is an example:

exec dbms_stats.gather_table_stats(-
 ownname=>'SYS',-
 tabname=>'EXA_INFO',-
 estimate_percent => 20, -
 cascade=>true);

Performing Advanced Transformations
Oracle provides sophisticated techniques for transforming data. This section details how to use a pipelined function
to transform data in an external table. Listed next are the steps for doing this:

1. Create an external table.

2. Create a record type that maps to the columns in the external table.

3. Create a table, based on the record type created in step 2.

4. Create a pipelined function that is used to inspect each row as it’s loaded and to transform
data, based on business requirements.

5. Use an INSERT statement that selects from the external table and that uses the pipelined
function to transform data as they’re loaded.

This example uses the same external table and CSV file created in the section, “Loading CSV Files into the
Database,” earlier in this chapter. Recall that the external table name is EXADATA_ET and that the CSV file name is ex.
csv. After you create the external table, then create a record type that maps to the column names in the external table:

create or replace type rec_exa_type is object
(
 exa_id number
 ,machine_count number
 ,hide_flag number
 ,oracle number
 ,ship_date date
 ,rack_type varchar2(32)
);
/

Next, create a table based on the previous record type:

create or replace type table_exa_type is table of rec_exa_type;
/

Chapter 14 ■ external tableS

395

Oracle PL/SQL allows you to use functions as a row source for SQL operations. This feature is known as
pipelining. It lets you use complex transformation logic, combined with the power of SQL*Plus. For this example, you
create a pipelined function to transform selected column data as they’re loaded. Specifically, this function adds 30
days to the SHIP_DATE when the ORACLE column has a 0 value:

create or replace function exa_trans
return table_exa_type pipelined is
begin
for r1 in
 (select rec_exa_type(
 exa_id, machine_count, hide_flag
 ,oracle, ship_date, rack_type
) exa_rec
 from exadata_et) loop
 if (r1.exa_rec.oracle = 0) then
 r1.exa_rec.ship_date := r1.exa_rec.ship_date + 30;
 end if;
 pipe row (r1.exa_rec);
end loop;
return;
end;
/

Now, you can use this function to load data into a regular database table. For reference, here is the CREATE TABLE
statement that instantiates the table to be loaded:

create table exa_info(
 exa_id NUMBER
 ,machine_count NUMBER
 ,hide_flag NUMBER
 ,oracle NUMBER
 ,ship_date DATE
 ,rack_type VARCHAR2(32)
) nologging parallel 2;

Next, use the pipelined function to transform data selected from the external table and insert them into the
regular database table, in one step:

SQL> insert into exa_info select * from table(exa_trans);

Here is the data that are loaded into the EXA_INFO table for this example:

SQL> select * from exa_info;

Chapter 14 ■ external tableS

396

Here is some sample output, showing that the rows with a value of 0 in the ORACLE column have had 30 days
added to the date:

 EXA_ID MACHINE_COUNT HIDE_FLAG ORACLE SHIP_DATE RACK_TYPE
---------- ------------- ---------- ---------- ---------- -----------
 5 2 0 0 03-JAN-12 Half
 6 1 0 1 06-SEP-12 Quarter
 7 4 0 1 10-AUG-12 Full
 8 1 1 0 15-JUL-12 Quarter

Although the example in this section is simple, you can use the technique to apply any level of transformational
logic. This technique allows you to embed the transformation requirements in a pipelined PL/SQL function that
modifies data as each row is loaded.

Viewing Text Files from SQL
External tables allow you to use SQL SELECT statements to retrieve information from OS flat files. For example, say you
want to report on the contents of the alert log file. First, create a directory object that points to the location of the alert log:

SQL> select value from v$diag_info where name = 'Diag Trace';

Here is the output for this example:

/ora01/app/oracle/diag/rdbms/o12c/o12c/trace

Next, create a directory object that points to the diagnostic trace directory:

SQL> create directory t_loc as '/ora01/app/oracle/diag/rdbms/o12c/o12c/trace';

Now, create an external table that maps to the database alert log OS file. In this example the database name is
o12c, and thus the alert log file name is alert_o12c.log:

create table alert_log_file(
 alert_text varchar2(4000))
organization external
(type oracle_loader
 default directory t_loc
 access parameters (
 records delimited by newline
 nobadfile
 nologfile
 nodiscardfile
 fields terminated by '#$~=ui$X'
 missing field values are null
 (alert_text)
)
 location ('alert_o12c.log')
)
reject limit unlimited;

Chapter 14 ■ external tableS

397

You can query the table via SQL queries; for example,

SQL> select * from alert_log_file where alert_text like 'ORA-%';

This allows you to use SQL to view and report on the contents of the alert log. You may find this a convenient way
to provide SQL access to otherwise inaccessible OS files.

The ACCESS PARAMETERS clause of an external table’s ORACLE_LOADER access driver may look familiar if you’ve
previously worked with SQL*Loader. Table 14-1 describes some of the more commonly used access parameters. See
the Oracle Database Utilities Guide, which can be freely downloaded from the Technology Network area of the Oracle
web site (http://otn.oracle.com), for a full list of access parameters.

Table 14-1. Selected Access Parameters for the ORACLE_LOADER Driver

Access Parameter Description

DELIMITED BY Indicates which character delimits the fields

TERMINATED BY Indicates how a field is terminated

FIXED Specifies the size of records having a fixed length

BADFILE Name of the file that stores records that can’t be loaded because of an error

NOBADFILE Specifies that a file shouldn’t be created to hold records that can’t be loaded
because of errors

LOGFILE Name of the file in which general messages are recorded when creating
an external table

NOLOGFILE Specifies that no log file should be created

DISCARDFILE Names the file to which records are written that fail the LOAD WHEN clause

NODISCARDFILE Specifies that no discard file should be created

SKIP Skips the specified number of records in the file before loading

PREPROCESSOR Specifies the user-named program that runs and modifies the contents
of the file before Oracle loads the data

MISSING FIELD VALUES ARE NULL Loads fields that have no data as NULL values

Unloading and Loading Data Using an External Table
External tables may also be used to select data from a regular database table and create a binary dump file. This is
known as unloading data. The advantage of this technique is that the dump file is platform independent and can be
used to move large amounts of data between servers of different platforms.

You can also encrypt or compress data, or both, when creating the dump file. Doing so provides you with an
efficient and secure way of transporting databases between database servers.

Figure 14-2 illustrates the components involved in using an external table to unload and load data. On the source
database (database A), you create a dump file, using an external table that selects data from a table named INV.
After it’s created, you copy the dump file to a destination server (database B) and subsequently load the file into the
database, using an external table.

http://otn.oracle.com/

Chapter 14 ■ external tableS

398

A small example illustrates the technique of using an external table to unload data. Here are the steps required:

1. Create a directory object that specifies where you want the dump file placed on disk. If
you’re not using a DBA account, then grant read and write access to the directory object to
the database user that needs access.

2. Use the CREATE TABLE...ORGANIZATION EXTERNAL...AS SELECT statement to unload data
from the database into the dump file.

First, create a directory object. The next bit of code creates a directory object, named DP, that points to the
/oradump directory:

SQL> create directory dp as '/oradump';

If you’re not using a user with DBA privileges, then explicitly grant access to the directory object to the
required user:

SQL> grant read, write on directory dp to larry;

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY dp
LOCATION ('inv.dmp')
) AS SELECT * FROM inv;

operating system
dump file

/oradump/inv.dmp

SQL> CREATE DIRECTORY
dp AS ‘/oradump’;

SQL> select *
from inv_et;

Database A

INV table

CREATE TABLE inv_dw
(inv_id number
,inv_desc varchar2(30))
ORGANIZATION EXTERNAL (
TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY dp
LOCATION ('inv.dmp'));

operating system
dump file

/oradump/inv.dmp

SQL> CREATE DIRECTORY
dp AS ‘/oradump’;

SQL> select *
from inv_dw;

Database B
copy to remote server

(scp, or ftp, ...) SQL>create table
INV as select *
from inv_dw;

Figure 14-2. Using external tables to unload and load data

Chapter 14 ■ external tableS

399

This example depends on a table named INV; for reference, here is the DDL for the INV table:

CREATE TABLE inv
(inv_id NUMBER,
 inv_desc VARCHAR2(30));

To create a dump file, use the ORACLE_DATAPUMP access driver of the CREATE TABLE...ORGANIZATION EXTERNAL
statement. This example unloads the INV table’s contents into the inv.dmp file:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 LOCATION ('inv.dmp')
)
AS SELECT * FROM inv;

The previous command creates two things:

An external table named •	 INV_ET, based on the structure and data within the INV table

A platform-independent dump file named •	 inv.dmp

Now, you can copy the inv.dmp file to a separate database server and base an external table on this dump file.
The remote server (to which you copy the dump file) can be a platform different from the server on which you created
the file. For example, you can create a dump file on a Windows box, copy to a Unix/Linus server, and select from the
dump file via an external table. In this example the external table is named INV_DW:

CREATE TABLE inv_dw
(inv_id number
,inv_desc varchar2(30))
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 LOCATION ('inv.dmp')
);

After it’s created, you can access the external table data from SQL*Plus:

SQL> select * from inv_dw;

You can also create and load data into regular tables, using the dump file:

SQL> create table inv as select * from inv_dw;

This provides a simple and efficient mechanism for transporting data from one platform to another.

Chapter 14 ■ external tableS

400

Enabling Parallelism to Reduce Elapsed Time
To maximize the unload performance when you create a dump file via an external table, use the PARALLEL clause.
This example creates two dump files, in parallel:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 LOCATION ('inv1.dmp','inv2.dmp')
)
PARALLEL 2
AS SELECT * FROM inv;

To access the data in the dump files, create a different external table that references the two dump files:

CREATE TABLE inv_dw
(inv_id number
,inv_desc varchar2(30))
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 LOCATION ('inv1.dmp','inv2.dmp')
);

You can now use this external table to select data from the dump files:

SQL> select * from inv_dw;

Compressing a Dump File
You can create a compressed dump file via an external table. For example, use the COMPRESS option of the
ACCESS PARAMETERS clause:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 ACCESS PARAMETERS (COMPRESSION ENABLED BASIC)
 LOCATION ('inv1.dmp')
)
AS SELECT * FROM inv;

You should see quite good compression ratios when using this option. In my testing, the output dump file was
10 to 20 times smaller when compressed. Your mileage may vary, depending on the type data being compressed.

In Oracle Database 12c there are four levels of compression: BASIC, LOW, MEDIUM, and HIGH. Before using
compression, ensure that the COMPATIBLE initialization parameter is set to 12.0.0 or higher.

Note ■ Using compression requires the Oracle enterprise edition, along with the advanced Compression option.

Chapter 14 ■ external tableS

401

Encrypting a Dump File
You can also create an encrypted dump file, using an external table. This example uses the ENCRYPTION option of the
ACCESS PARAMETERS clause:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dp
 ACCESS PARAMETERS
 (ENCRYPTION ENABLED)
 LOCATION ('inv1.dmp')
)
AS SELECT * FROM inv;

For this example to work, you need to have a security wallet in place and open for your database.

Note ■ Using encryption requires the Oracle enterprise edition along with the advanced Security option.

eNaBLING aN OraCLe WaLLet

an Oracle Wallet is the mechanism Oracle uses to enable encryption. the wallet is an OS file that contains
encryption keys. the wallet is enabled via the following steps:

1. Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=FILE) (METHOD_DATA=
 (DIRECTORY=/ora01/app/oracle/product/12.1.0.1/db_1/network/admin)))

2. Create the wallet file (ewallet.p12) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

3. enable encryption:

SQL> alter system set encryption wallet open identified by foo;

 See the Oracle Advanced Security Administrator’s Guide, which can be freely downloaded from the technology
network area of the Oracle web site (http://otn.oracle.com), for full details on implementing encryption.

You enable compression and encryption via the ACCESS PARAMETERS clause. Table 14-2 contains a listing of all
access parameters available with the ORACLE_DATAPUMP access driver.

http://otn.oracle.com/

Chapter 14 ■ external tableS

402

Summary
I used to use SQL*Loader for all types of data-loading tasks. In the past few years I’ve become an external table
convert. Almost anything you can do with SQL*Loader, you can also do with an external table. The external table
approach is advantageous because there are fewer moving parts and because the interface is SQL*Plus. Most DBAs
and developers find SQL*Plus easier to use than a SQL*Loader control file.

You can easily use an external table to enable SQL*Plus access to OS flat files. You simply have to define the
structure of the flat file in your CREATE TABLE...ORGANIZATION EXTERNAL statement. After the external table is
created, you can select directly from the flat file, as if it were a database table. You can select from an external table,
but you can’t insert, update, or delete.

When you create an external table, if required, you can then create regular database tables by using CREATE TABLE
AS SELECT from the external table. Doing so provides a fast and effective way to load data stored in external OS files.

The external table feature also allows you to select data from a table and write them to a binary dump file. The
external table CREATE TABLE...ORGANIZATION EXTERNAL statement defines which tables and columns are used to
unload the data. A dump file created in this manner is platform independent, meaning you can copy it to a server using a
different OS and seamlessly load the data. Additionally, the dump file can be encrypted and compressed for secure and
efficient transportation. You can also use parallel features to reduce the amount of time it takes to create the dump file.

The next chapter deals with materialized views. These database objects provide you with a flexible, maintainable,
and scalable mechanism for aggregating and replicating data.

Table 14-2. Parameters of the ORACLE_DATAPUMP Access Driver

Access Parameter Description

COMPRESSION Compresses the dump file; DISABLED is the default value.

ENCRYPTION Encrypts the dump file; DISABLED is the default value.

NOLOGFILE Suppresses the generation of a log file

LOGFILE=[directory_object:]logfile_name Allows you to name a log file

VERSION Specifies the minimum version of Oracle that can read
the dump file

403

Chapter 15

Materialized Views

Materialized view (MV) technology was introduced in Oracle Database version 7. This feature was originally called
snapshots, and you can still see this nomenclature reflected in some data dictionary structures. An MV allows you to
execute an SQL query at a point in time and store the result set in a table (either locally or in a remote database). After
the MV is initially populated, you can later rerun the MV query and store the fresh results in the underlying table.
There are two main uses for MVs:

Replicating of data to offload query workloads to separate reporting databases•	

Improving performance of queries by periodically computing and storing the results of •	
complex aggregations of data, which lets users query point-in-time results (of the complex
aggregations)

The MV can be a query based on tables, views, and other MVs. The base tables are often referred to as master
tables. When you create an MV, Oracle internally creates a table (with the same name as the MV) as well as an MV
object (visible in DBA/ALL/USER_OBJECTS).

Understanding MVs

Note ■ The SALES table will be used as the basis for the majority of the examples in this chapter.

A good way of introducing MVs is to walk through how you’d manually perform a task if the MV feature weren’t
available. Suppose you have a table that stores sales data:

create table sales(
 sales_id number
,sales_amt number
,region_id number
,sales_dtt date
,constraint sales_pk primary key(sales_id));
--
insert into sales values(1,101,10,sysdate-10);
insert into sales values(2,511,20,sysdate-20);
insert into sales values(3,11,30,sysdate-30);
commit;

ChapTer 15 ■ MaTerialized Views

404

And, you have a query that reports on historical daily sales:

select
sum(sales_amt) sales_amt
,sales_dtt
from sales
group by sales_dtt;

You observe from a database performance report that this query is executed thousands of times a day and
is consuming a large amount of database resources. The business users use the report to display historical sales
information and therefore don’t need the query to be reexecuted each time they run a report. To reduce the amount of
resources the query is consuming, you decide to create a table and populate it as follows:

create table sales_daily as
select
 sum(sales_amt) sales_amt
,sales_dtt
from sales
group by sales_dtt;

After the table is created, you put in a daily process to delete from it and completely refresh it:

-- Step 1 delete from daily aggregated sales data:
delete from sales_daily;
--
-- Step 2 repopulate table with a snapshot of aggregated sales table:
insert into sales_daily
select
 sum(sales_amt) sales_amt
,sales_dtt
from sales
group by sales_dtt;

You inform the users that they can have subsecond query results by selecting from SALES_DAILY (instead of
running the query that directly selects and aggregates from the master SALES table):

SQL> select * from sales_daily;

The prior procedure roughly describes an MV complete refresh process. Oracle’s MV technology automates and
greatly enhances this process. This chapter covers the procedures for implementing both basic and complex MV
features. After reading this chapter and working through the examples, you should be able to create MVs to replicate
and aggregate data in a wide variety of situations.

Before delving into the details of creating MVs, it’s useful to cover basic terminology and helpful data dictionary
views related to MVs. The next two sections briefly describe the various MV features and the many data dictionary
views that contain MV metadata.

Note ■ This chapter doesn’t cover topics such as multimaster replication and updatable MVs. see the Oracle Advanced
Replication Guide, which is available for download from the Technology Network area of the Oracle web site
(http://otn.oracle.com), for more details on those topics.

http://otn.oracle.com/

ChapTer 15 ■ MaTerialized Views

405

MV Terminology
A great many terms relate to refreshing MVs. You should be familiar with these terms before delving into how to
implement the features. Table 15-1 defines the various terms relevant to MVs.

Table 15-1. MV Terminology

Term Meaning

Materialized view (MV) Database object used for replicating data and improving query performance

MV SQL statement SQL query that defines what data are stored in the underlying MV base table

MV underlying table Database table that has the same name as the MV and that stores the result of the MV
SQL query

Master (base) table Table that an MV references in its FROM clause of the MV SQL statement

Complete refresh Process in which an MV is deleted from and completely refreshed with an MV SQL
statement

Fast refresh Process during which only DML changes (against base table) that have occurred
since the last refresh are applied to an MV

MV log Database object that tracks DML changes to the MV base table. An MV log is required
for fast refreshes. It can be based on the primary key, ROWID, or object ID.

Simple MV MV based on a simple query that can be fast refreshed

Complex MV MV based on a complex query that isn’t eligible for fast refresh

Build mode Mode that specifies whether the MV should be immediately populated or deferred

Refresh mode Mode that specifies whether the MV should be refreshed on demand, on commit,
or never

Refresh method Option that specifies whether the MV refresh should be complete or fast

Query rewrite Feature that allows the optimizer to choose to use MVs (instead of base tables) to
fulfill the requirements of a query (even though the query doesn’t directly reference
the MVs)

Local MV MV that resides in the same database as the base table(s)

Remote MV MV that resides in a database separate from that of the base table(s)

Refresh group Set of MVs refreshed at the same consistent transactional point

Refer back to Table 15-1 as you read the rest of this chapter. These terms and concepts are explained and
expounded on in subsequent sections.

Referencing Useful Views
When you’re working with MVs, sometimes it’s hard to remember which data dictionary view to query under a
particular circumstance. A wide variety of data dictionary views are available. Table 15-2 contains a description
of the MV-related data dictionary views. Examples of using these views are shown throughout this chapter where
appropriate. These views are invaluable for troubleshooting, diagnosing issues, and understanding your MV
environment.

ChapTer 15 ■ MaTerialized Views

406

Creating Basic Materialized Views
This section covers how to create an MV. The two most common configurations used are as follows:

Creating complete refresh MVs that are refreshed on demand•	

Creating fast refresh MVs that are refreshed on demand•	

It’s important to understand these basic configurations. They lay the foundation for everything else you do with
the MV feature. Therefore, this section starts with these basic configurations. Later, the section covers more advanced
configurations.

Creating a Complete Refreshable MV
This section explains how to set up an MV that is periodically completely refreshed, which is about the simplest
example possible. Complete refreshes are appropriate for MVs that have base tables in which significant portions of
the rows change from one refresh interval to the next. Complete refreshes are also required in situations in which

Table 15-2. MV Data Dictionary View Definitions

Data Dictionary View Meaning

DBA/ALL/USER_MVIEWS Information about MVs, such as owner, base query, last refresh time,
and so on

DBA/ALL/USER_MVIEW_REFRESH_TIMES MV last refresh times, MV names, master table, and master owner

DBA/ALL/USER_REGISTERED_MVIEWS All registered MVs; helps identify which MVs are using which MV logs

DBA/ALL/USER_MVIEW_LOGS MV log information

DBA/ALL/USER_BASE_TABLE_MVIEWS Base table names and last refresh dates for tables that have MV logs

DBA/ALL/USER_MVIEW_AGGREGATES Aggregate functions that appear in SELECT clauses for MVs

DBA/ALL/USER_MVIEW_ANALYSIS Information about MVs. Oracle recommends that you use
DBA/ALL/USER_MVIEWS instead of these views.

DBA/ALL/USER_MVIEW_COMMENTS Any comments associated with MVs

DBA/ALL/USER_MVIEW_DETAIL_PARTITION Partition and freshness information

DBA/ALL/USER_MVIEW_DETAIL_
SUBPARTITION

Subpartition and freshness information

DBA/ALL/USER_MVIEW_DETAIL_RELATIONS Local tables and MVs that an MV is dependent on

DBA/ALL/USER_MVIEW_JOINS Joins between two columns in the WHERE clause of an MV definition

DBA/ALL/USER_MVIEW_KEYS Columns or expressions in the SELECT clause of an MV definition

DBA/ALL/USER_TUNE_MVIEW Result of executing the DBMS_ADVISOR.TUNE_MVIEW procedure

V$MVREFRESH Information about MVs currently being refreshed

DBA/ALL/USER_REFRESH Details about MV refresh groups

DBA_RGROUP Information about MV refresh groups

DBA_RCHILD Children in an MV refresh group

ChapTer 15 ■ MaTerialized Views

407

a fast refresh isn’t possible because of restrictions imposed by Oracle (more on this later in this section; see also the
section “Manually Refreshing MVs from SQL *Plus,” later in this chapter).

Note ■ To create an MV, you need both the CREATE MATERIALIZED VIEW system privilege and the CREATE TABLE
system privilege. if a user creating MVs doesn’t own the base table, then SELECT access on the base table is
also required.

The MV example is this section is based on the previously created SALES table. Suppose you wanted to create an
MV that reports on daily sales. Use the CREATE MATERIALIZED VIEW...AS SELECT statement to do this. The following
statement names the MV, specifies its attributes, and defines the SQL query on which the MV is based:

create materialized view sales_daily_mv
segment creation immediate
refresh
complete
on demand
as
select
 sum(sales_amt) sales_amt
,trunc(sales_dtt) sales_dtt
from sales
group by trunc(sales_dtt);

The SEGMENT CREATION IMMEDIATE clause is available with Oracle 11g Release 2 and higher. This clause instructs
Oracle to create the segment and allocate an extent when you create the MV. This was the behavior in previous
versions of Oracle. If you don’t want immediate segment creation, use the SEGMENT CREATION DEFERRED clause. If the
newly created MV contains any rows, then segments are created, and extents are allocated, regardless of whether you
use SEGMENT CREATION DEFERRED.

Let’s look at the USER_MVIEWS data dictionary to verify that the MV was created as expected. Run this query:

select mview_name, refresh_method, refresh_mode
,build_mode, fast_refreshable
from user_mviews
where mview_name = 'SALES_DAILY_MV';

Here is the output for this MV:

MVIEW_NAME REFRESH_ REFRES BUILD_MOD FAST_REFRESHABLE
--------------- -------- ------ --------- ------------------
SALES_DAILY_MV COMPLETE DEMAND IMMEDIATE DIRLOAD_LIMITEDDML

It’s also informative to inspect the USER_OBJECTS and USER_SEGMENTS views to see what has been created. When
you query USER_OBJECTS, note that an MV and table object have been created:

select object_name, object_type
from user_objects
where object_name like 'SALES_DAILY_MV'
order by object_name;

ChapTer 15 ■ MaTerialized Views

408

Here is the corresponding output:

OBJECT_NAME OBJECT_TYPE
-------------------- -----------------------
SALES_DAILY_MV MATERIALIZED VIEW
SALES_DAILY_MV TABLE

The MV is a logical container that stores data in a regular database table. Querying the USER_SEGMENTS view
shows the base table, its primary key index, and the table that stores data returned by the MV query:

select segment_name, segment_type
from user_segments
where segment_name like '%SALES%'
order by segment_name;

Here is the output for this example:

SEGMENT_NAME SEGMENT_TYPE
------------------------- ------------------
I_SNAP$_SALES_DAILY_MV INDEX
SALES TABLE
SALES_DAILY_MV TABLE
SALES_PK INDEX

In the prior output the I_SNAP$_SALES_DAILY_MV is a unique index associated with the MV that Oracle
automatically creates to help improve refresh performance. Recall that the MV feature was originally called
snapshots, and so sometimes you’ll find objects with names derived from the early days of the feature.

Finally, let’s look at how to refresh the MV. Here are data contained in the MV:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy') from sales_daily_mv;

Here is the output:

SALES_AMT TO_CHAR(SALES_DTT,'D
---------- --------------------
 101 20-jan-2013
 511 10-jan-2013
 11 31-dec-2012

Next, insert some additional data into the base SALES table:

insert into sales values(4,99,200,sysdate);
insert into sales values(5,127,300,sysdate);
commit;

Now, you attempt to initiate a fast refresh of the MV, using the REFRESH procedure of the DBMS_MVIEW package.
This example passes two parameters to the REFRESH procedure: the name and the refresh method. The name is
SALES_DAILY_MV, and the parameter is F (for fast):

SQL> exec dbms_mview.refresh('SALES_DAILY_MV','F');

ChapTer 15 ■ MaTerialized Views

409

Because this MV wasn’t created in conjunction with an MV log, a fast refresh isn’t possible. The following error is
thrown:

ORA-23413: table "MV_MAINT"."SALES" does not have a materialized view log

Instead, a complete refresh is initiated. The parameter passed in is C (for complete):

SQL> exec dbms_mview.refresh('SALES_DAILY_MV','C');

The output indicates success:

PL/SQL procedure successfully completed.

Now, when you select from the MV, it returns data showing that more information has been added:

SQL> select sales_amt, to_char(sales_dtt,'dd-mon-yyyy') from sales_daily_mv;

Here is the output:

 SALES_AMT TO_CHAR(SALES_DTT,'D
---------- --------------------
 101 20-jan-2013
 226 30-jan-2013
 511 10-jan-2013
 11 31-dec-2012

Figure 15-1 illustrates the architectural components involved with a complete refresh. If you’re new to MVs,
pause for a few minutes here, and make sure you understand all the components.

materialized view:
CREATE
MATERIALIZED VIEW
sales_daily_mv
SELECT...FROM sales;

MV table:
SALES_DAILY_MVbase table:

SALES

PK index:
SALES_PK
sales_id

data deleted from
and inserted into
SALES_DAILY_MV

OLTP app.
insert, update,

delete
statements

reporting app.
reads from

SALES_DAILY_MV

complete refresh:
SQL> execute

dbms_mview.refresh
(‘SALES_DAILY_MV’, ‘C’);

1

2

3

4

5

MV index:
I_SNAP$_SALES_DAILY_MV

DML
changes

Figure 15-1. Architectural components of a complete refresh MV

This diagram illustrates that a complete refresh isn’t difficult to understand. The numbers show the flow of data
in the complete refresh process:

1. Users/applications create transactions.

2. Data are committed in the base table.

ChapTer 15 ■ MaTerialized Views

410

3. A complete refresh is manually initiated with the DBMS_MVIEW package.

4. Data in the underlying MV are deleted and completely refreshed with the contents of the
base table.

5. Users can query data from the MV, which contains a point-in-time snapshot of the base
table’s data.

In the next section, a more complicated example shows you how to set up a fast refreshable MV.

Creating a Fast Refreshable MV
When you create a fast refreshable MV, it first populates the MV table with the entire result set of the MV query. After
the initial result set is in place, only data modified (in the base table) since the last refresh need to be applied to the MV.
In other words, any updates, inserts, or deletes from the master table that have occurred since the last refresh are
copied over. This feature is appropriate when you have a small number of changes to a base table over a period of time
compared with the total number of rows in the table.

Here are the steps for implementing a fast refreshable MV:

1. Create a base table (if it hasn’t already been created).

2. Create an MV log on the base table.

3. Create an MV as fast refreshable.

This example uses the previously created SALES table. A fast refreshable MV requires an MV log on the base table.
When a fast refresh occurs, the MV log must have a unique way to identify which records have been modified and
thus need to be refreshed. You can do this with two different approaches. One method is to specify the PRIMARY KEY
clause when you create the MV log; the other is to specify the ROWID clause. If the underlying base table has a primary
key, then use the primary key–based MV log. If the underlying base table has no primary key, then you have to create
the MV log, using ROWID. In most cases, you’ll probably have a primary key defined for every base table. However, the
reality is that some systems are poorly designed or have some rare reason for a table not to have a primary key.

In this example, a primary key is defined on the base table, so you create the MV log with the PRIMARY KEY clause:

SQL> create materialized view log on sales with primary key;

If there was no primary key defined on the base table, this error is thrown when attempting to create the MV log:

ORA-12014: table does not contain a primary key constraint

If the base table has no primary key, and you don’t have the option of adding one, you must specify ROWID when
you create the MV log:

SQL> create materialized view log on sales with rowid;

When you use a primary key–based fast refreshable MV, the primary key column(s) of the base table must be part
of the fast refreshable MV SELECT statement. Also, when creating a fast refreshable MV, there are certain restrictions
on what can be aggregated (see the section “Creating a Fast Refreshable MV Based on a Complex Query,” later in the
chapter). For this example there will be no aggregated columns in the MV. This type of MV would typically be used to
replicate data from one environment to another:

create materialized view sales_rep_mv
segment creation immediate

ChapTer 15 ■ MaTerialized Views

411

refresh
 with primary key
 fast
 on demand
as
select
 sales_id
,sales_amt
,trunc(sales_dtt) sales_dtt
from sales;

At this point, it’s useful to inspect the objects that are associated with the MV. The following query selects from
USER_OBJECTS:

select object_name, object_type
from user_objects
where object_name like '%SALES%'
order by object_name;

Here are the objects that have been created:

OBJECT_NAME OBJECT_TYPE
-------------------- -----------------------
MLOG$_SALES TABLE
RUPD$_SALES TABLE
SALES TABLE
SALES_PK INDEX
SALES_PK1 INDEX
SALES_REP_MV TABLE
SALES_REP_MV MATERIALIZED VIEW

A few objects in the previous output require some explanation:

•	 MLOG$_SALES

•	 RUPD$_SALES

•	 SALES_PK1

First, when an MV log is created, a corresponding table is also created that stores the rows in the base table
that changed and how they changed (insert, update, or delete). The MV log table name follows the format
MLOG$_<base table name>.

A table is also created with the format RUPD$_<base table name>. Oracle automatically creates this RUPD$
table when you create a fast refreshable MV, using a primary key. The table is there to support the updatable MV
feature. You don’t have to worry about this table unless you’re dealing with updatable MVs (see the Oracle Advanced
Replication Guide for more details on updatable MVs). If you’re not using the updatable MV feature, then you can
ignore the RUPD$ table.

Furthermore, Oracle creates an index with the format <base table name>_PK1. This index is automatically
created for primary key–based MVs and is based on the primary key column(s) of the base table. If this is a ROWID
instead of a primary key, then the index name has the format I_SNAP$_<table_name> and is based on the ROWID. If
you don’t explicitly name the primary key index on the base table, then Oracle gives the MV table primary key index a
system-generated name, such as SYS_C008780.

ChapTer 15 ■ MaTerialized Views

412

Now that you understand the underlying architectural components, let’s look at the data in the MV:

select sales_amt, to_char(sales_dtt,'dd-mon-yyyy')
from sales_rep_mv
order by 2;

Here is the output:

SALES_AMT TO_CHAR(SALES_DTT,'D
---------- --------------------
 511 10-jan-2013
 101 20-jan-2013
 127 30-jan-2013
 99 30-jan-2013
 11 31-dec-2012

Let’s add two records to the base SALES table:

insert into sales values(6,99,20,sysdate-6);
insert into sales values(7,127,30,sysdate-7);
commit;

At this point, it’s instructional to inspect the M$LOG table. You should see two records that identify how the data in
the SALES table have changed:

SQL> select count(*) from mlog$_sales;

There are two records:

 COUNT(*)

 2

Next, let’s refresh the MV. This MV is fast refreshable, so you call the REFRESH procedure of the DBMS_MVIEW
package with the F (for fast) parameter:

SQL> exec dbms_mview.refresh('SALES_REP_MV','F');

A quick inspection of the MV shows two new records:

select sales_amt, to_char(sales_dtt,'dd-mon-yyyy')
from sales_rep_mv
order by 2;

Here is some sample output:

SALES_AMT TO_CHAR(SALES_DTT,'D
---------- --------------------
 511 10-jan-2013
 101 20-jan-2013
 127 23-jan-2013
 99 24-jan-2013

-

ChapTer 15 ■ MaTerialized Views

413

 127 30-jan-2013
 99 30-jan-2013
 11 31-dec-2012

Additionally, the count of the MLOG$ has dropped to zero. After the MV refresh is complete, those records are no
longer required:

SQL> select count(*) from mlog$_sales;

Here is the output:

 COUNT(*)

 0

You can verify the last method whereby an MV was refreshed by querying the USER_MVIEWS view:

select mview_name, last_refresh_type, last_refresh_date
from user_mviews
order by 1,3;

Here is some sample output:

MVIEW_NAME LAST_REF LAST_REFR
------------------------- -------- ---------
SALES_REP_MV FAST 30-JAN-13

Figure 15-2 illustrates the architectural components involved with a fast refresh. The numbers in the boxes
represent the sequential flow of the fast refresh process. If you’re new to MVs, pause for a few minutes here, and make
sure you understand all the components.

materialized view:
CREATE MATERIALIZED
VIEW sales_rep_mv
SELECT...FROM sales;

MV table:
SALES_REP_MV

base table:
SALES

MV log table:
MLOG$_SALES

sales_id
snaptime$$
dmltype$$

PK index:
SALES_PK
sales_id

PK index:
SALES_PK1

sales_id

materialized view log:
CREATE
MATERIALIZED VIEW
LOG ON sales...

DML changes
since last refresh

data dictionary:
USER_MVIEWS

last_refresh_date

OLTP app.
insert, update,

delete
statements

reporting app.
reads from

SALES_REP_MV

delete MV log rows
no longer needed for

fast refresh

fast refresh:
SQL> execute

dbms_mview.refresh
(‘SALES_REP_MV’, ‘F’);

RUPD$_SALES

1 2

3

4

5

6

internal trigger adds
rows to MV log

Figure 15-2. Architectural components of a fast refreshable MV

ChapTer 15 ■ MaTerialized Views

414

The numbers in the diagram describe the flow of data for a fast refreshable MV:

1. Users create transactions.

2. Data are committed in the base table.

3. An internal trigger on the base table populates the MV log table.

4. A fast refresh is initiated via the DBMS_MVIEW package.

5. DML changes that have been created since the last refresh are applied to the MV. Rows no
longer needed by the MV are deleted from the MV log.

6. Users can query data from the MV, which contains a point-in-time snapshot of the base
table’s data.

When you have a good understanding of the architecture of a fast refresh, you won’t have difficulty learning
advanced MV concepts. If you’re new to MVs, it’s important to realize that an MV’s data are stored in a regular
database table. This will help you understand architecturally what is and is not possible. For the most part, because
the MV and MV log are based on tables, most features available with a regular database table can also be applied to
the MV table and MV log table. For instance, the following Oracle features are readily applied to MVs:

Storage and tablespace placement•	

Indexing•	

Partitioning•	

Compression•	

Encryption•	

Logging•	

Parallelism•	

The next section shows examples of how to create MVs with various features.

Going Beyond the Basics
Numerous MV features are available. Many are related to attributes that you can apply to any table, such as storage,
indexing, compression, and encryption. Other features are related to the type of MV created and how it’s refreshed.
These features are described in the next several sections.

Creating MVs and Specifying Tablespace for MVs and Indexes
Every MV has an underlying table associated with it. Additionally, depending on the type of MV, an index may be
automatically created. When you create an MV, you can specify the tablespace and storage characteristics for both the
underlying table and index. The next example shows how to specify the tablespace to be used for the MV table and the
index:

create materialized view sales_mv
tablespace users
using index tablespace users
refresh with primary key

ChapTer 15 ■ MaTerialized Views

415

 fast on demand
as
select sales_id ,sales_amt, sales_dtt
from sales;

You can also specify storage characteristics. For example, if you know that you’re loading data into MVs that are
based on tables that are rarely updated (and thus, the MV is rarely updated), it’s appropriate to set PCTUSED to a high
value, such as 95; for example,

create materialized view sales_mv
pctused 95
pctfree 5
tablespace users
using index tablespace users
refresh with primary key
 fast on demand
as
select sales_id ,sales_amt, sales_dtt
from sales;

Creating Indexes on MVs
An MV stores its data in a regular database table. Therefore, you can create indexes on the underlying table (just
as you can for any other table). In general, follow the same guidelines for creating an index on an MV table as you
would a regular table (see Chapter 8 for more details on creating indexes). Keep in mind that although indexes can
significantly improve query performance, overhead is associated with maintaining the index for any inserts, updates,
and deletes. Indexes also consume disk space.

Listed next is an example of creating an index based on a column in an MV. The syntax is the same as for creating
an index on a regular table:

SQL> create index sales_mv_idx1 on sales_mv(sales_dtt) tablespace users;

You can display the indexes created for an MV by querying the USER_INDEXES view:

select a.table_name, a.index_name
from user_indexes a
 ,user_mviews b
where a.table_name = b.mview_name;

Note ■ if you create, using the WITH PRIMARY KEY clause, a simple MV that selects from a base table that has a
 primary key, Oracle automatically creates an index on the corresponding primary key columns in the MV. if you create,
using the WITH ROWID clause, a simple MV that selects from a base table that has a primary key, Oracle automatically
creates an index named I_SNAP$_<table_name> on a hidden column named M_ROW$$.

ChapTer 15 ■ MaTerialized Views

416

Partitioning MVs
You can partition an MV table like any other table in the database. If you work with large MVs, you may want to
consider partitioning to better manage and maintain a large table. Use the PARTITION clause when you create the MV.
This example builds an MV that is partitioned by hash on SALES_ID:

create materialized view sales_mv
partition by hash (sales_id)
partitions 4
refresh on demand complete with rowid
as
select sales_id, sales_amt, region_id, sales_dtt
from sales;

The result set from the query is stored in a partitioned table. You can view the partition details for this table in
USER_TAB_PARTITIONS and USER_PART_TABLES (just like any other partitioned table in your database). See Chapter 12
for more details on partitioning strategies and maintenance.

Compressing an MV
As mentioned earlier, when you create an MV, an underlying table is created to store the data. Because this table is a
regular database table, you can implement features such as compression; for example,

create materialized view sales_mv
compress
as
select sales_id, sales_amt
from sales;

You can confirm the compression details with the following query:

select table_name, compression, compress_for
from user_tables
where table_name='SALES_MV';

Here is the output:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
SALES_MV ENABLED BASIC

Note ■ Basic table compression doesn’t require an extra license from Oracle, whereas ROW STORE COMPRESS ADVANCED
compression (prior to 12c this was enabled via COMPRESS FOR OLTP) calls for the advanced Compression option, which
does require an extra license from Oracle. see Oracle Database Licensing Information, available from the Technology
Network area of the Oracle web site (http://otn.oracle.com), for details.

http://otn.oracle.com/

ChapTer 15 ■ MaTerialized Views

417

Encrypting MV Columns
As mentioned earlier, when you create an MV, an underlying table is created to store the data. Because this table is a
regular database table, you can implement features such as encryption of columns; for example,

create materialized view sales_mv
(sales_id encrypt no salt
,sales_amt encrypt)
as
select
 sales_id
,sales_amt
from sales;

For the previous statement to work, you must create and open a security wallet for your database. This feature
requires the Advanced Security option from Oracle.

You can verify that encryption is in place by describing the MV:

SQL> desc sales_mv
Name Null? Type
 ----------------------------------- ----------------------------
 SALES_ID NOT NULL NUMBER ENCRYPT
 SALES_AMT NUMBER ENCRYPT

eNaBLING aN OraCLe WaLLet

an Oracle wallet is the mechanism Oracle uses to enable encryption. The wallet is an Os file that contains
encryption keys. The wallet is enabled via the following steps:

Modify the SQLNET.ORA file to contain the location of the wallet:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=FILE) (METHOD_DATA=
 (DIRECTORY=/ora01/app/oracle/product/12.1.0.1/db_1/network/admin)))

Create the wallet file (ewallet.p12) with the ALTER SYSTEM command:

SQL> alter system set encryption key identified by foo;

enable encryption:

SQL> alter system set encryption wallet open identified by foo;

see the Oracle advanced security administrator’s Guide, which can be freely downloaded from the Technology
Network area of the Oracle web site (http://otn.oracle.com), for full details on implementing encryption.

http://otn.oracle.com/

ChapTer 15 ■ MaTerialized Views

418

Building an MV on a Prebuilt Table
In data warehouse environments, sometimes you need to create a table, populate it with large quantities of data,
and then transform it into an MV. Or, you may be replicating a large table and find that it’s more efficient to initially
populate the remote MV by prebuilding the table with data, using Data Pump. Listed next are the steps for building an
MV on a prebuilt table:

1. Create a table.

2. Populate it with data.

3. Create an MV on the table created in step 1.

Here is a simple example to illustrate the process. First, you create a table:

create table sales_mv
(sales_id number
,sales_amt number);

Now, populate the table with data. For instance, in a data warehouse environment, a table can be loaded using
Data Pump, SQL*Loader, or external tables.

Finally, run the CREATE MATERIALIZED VIEW...ON PREBUILT TABLE statement to turn the table into an MV. The
MV name and the table name must be identical. Additionally, each column in the query must correspond to a column
in the table; for example,

create materialized view sales_mv
on prebuilt table
using index tablespace users
as
select sales_id, sales_amt
from sales;

Now, the SALES_MV object is an MV. If you attempt to drop the SALES_MV table, the following error is thrown,
indicating that SALES_MV is now an MV:

SQL> drop table sales_mv;
ORA-12083: must use DROP MATERIALIZED VIEW to drop "MV_MAINT"."SALES_MV"

The prebuilt-table feature is useful in data warehouse environments, in which typically there are long periods
when a base table isn’t being actively updated. This gives you time to load a prebuilt table and ensure that its contents
are identical to those of the base table. After you create the MV on the prebuilt table, you can fast refresh the MV and
keep it in sync with the base table.

If your base table (specified in the SELECT clause of the MV) is continuously being updated, then creating an MV
on a prebuilt table may not be a viable option. This is because there is no way to ensure that the prebuilt table will stay
in sync with the base table.

Note ■ For MVs created on prebuilt tables, if you subsequently issue a DROP MATERIALIZED VIEW statement, the
underlying table isn’t dropped. This has some interesting implications when you need to modify a base table (such as
adding a column). see the section “Modifying Base Table ddl and propagating to MVs,” later in this chapter, for details.

ChapTer 15 ■ MaTerialized Views

419

Creating an Unpopulated MV
When you create an MV, you have the option of instructing Oracle whether or not to initially populate the MV with
data. For example, if it takes several hours to initially build an MV, you may want to first define the MV and then
populate it as a separate job.

This example uses the BUILD DEFERRED clause to instruct Oracle not to initially populate the MV with the results
of the query:

create materialized view sales_mv
tablespace users
build deferred
refresh complete on demand
as
select sales_id, sales_amt
from sales;

At this point, querying the MV results in zero rows returned. At some later point, you can initiate a complete
refresh to populate the MV with data.

Creating an MV Refreshed on Commit
You may be required, when data are modified in the master table, to have them immediately copied to an MV. In this
scenario, use the ON COMMIT clause when you create the MV. The master table must have an MV log created on it for
this technique to work:

SQL> create materialized view log on sales with primary key;

Next, an MV is created that refreshes on commit:

create materialized view sales_mv
refresh
on commit
as
select sales_id, sales_amt from sales;

As data are inserted and committed in the master table, any changes are also available in the MV that would be
selected by the MV query.

The ON COMMIT refreshable MV has a few restrictions you need to be aware of:

The master table and MV must be in the same database.•	

You can’t execute distributed transaction on the base table.•	

This approach isn’t supported with MVs that contain object types or Oracle-supplied types.•	

Also consider the overhead associated with committing data simultaneously in two places; this can affect the
performance of a high-transaction OLTP system. Additionally, if there is any problem with updating the MV, then
the base table can’t commit a transaction. For example, if the tablespace in which the MV is created becomes full
(and can’t allocate another extent), you see an error such as this when trying to insert into the base table:

ORA-12008: error in materialized view refresh path
ORA-01653: unable to extend table MV_MAINT.SALES_MV by 16 in tablespace...

For these reasons, you should use this feature only when you’re sure it won’t affect performance or availability.

ChapTer 15 ■ MaTerialized Views

420

Note ■ You can’t specify that an MV be refreshed with both ON COMMIT and ON DEMAND. in addition, ON COMMIT isn’t
compatible with the START WITH and NEXT clauses of the CREATE MATERIALIZED VIEW statement.

Creating a Never Refreshable MV
You may never want an MV to be refreshed. For example, you may want to guarantee that you have a snapshot
of a table at a point in time for auditing purposes. Specify the NEVER REFRESH clause when you create the MV to
achieve this:

create materialized view sales_mv
never refresh
as
select sales_id, sales_amt
from sales;

If you attempt to refresh a nonrefreshable MV, you receive this error:

ORA-23538: cannot explicitly refresh a NEVER REFRESH materialized view

You can alter a never refreshable view to be refreshable. Use the ALTER MATERIALIZED VIEW statement to do this:

SQL> alter materialized view sales_mv refresh on demand complete;

You can verify the refresh mode and method with the following query:

SQL> select mview_name, refresh_mode, refresh_method from user_mviews;

Creating MVs for Query Rewrite
Query rewrite allows the optimizer to recognize that an MV can be used to fulfill the requirements of a query instead
of using the underlying master (base) tables. If you have an environment in which users frequently write their
own queries and are unaware of the available MVs, this feature can greatly help with performance. There are three
prerequisites for enabling query rewrite:

Oracle Enterprise Edition•	

Setting database initialization parameter •	 QUERY_REWRITE_ENABLED to TRUE (the default value
in 10g and higher)

MV either created or altered with the •	 ENABLE QUERY REWRITE clause

This example creates an MV with query rewrite enabled:

create materialized view sales_daily_mv
segment creation immediate
refresh
complete
on demand
enable query rewrite
as

ChapTer 15 ■ MaTerialized Views

421

select
 sum(sales_amt) sales_amt
,trunc(sales_dtt) sales_dtt
from sales
group by trunc(sales_dtt);

You can verify that query rewrite is in use by examining a query’s explain plan via the autotrace utility:

SQL> set autotrace trace explain

Now, suppose a user runs the following query, unaware that an MV exists that already aggregates the
required data:

select
 sum(sales_amt) sales_amt
,trunc(sales_dtt) sales_dtt
from sales
group by trunc(sales_dtt);

Here is a partial listing of autotrace output that verifies that query rewrite is in use:

| Id | Operation | Name | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 3 (0)| 00:00:01 |
| 1 | MAT_VIEW REWRITE ACCESS FULL| SALES_DAILY_MV | 3 (0)| 00:00:01 |

As you can see from the prior output, even though the user selected directly from the SALES table, the optimizer
determined that it could more efficiently satisfy the results of the query by accessing the MV.

You can tell if query rewrite is enabled for an MV by selecting the REWRITE_ENABLED column from USER_MVIEWS:

select mview_name, rewrite_enabled, rewrite_capability
from user_mviews
where mview_name = 'SALES_DAILY_MV';

If for any reason a query isn’t using the query rewrite functionality, and you think it should be, use the
EXPLAIN_REWRITE procedure of the DBMS_MVIEW package to diagnose issues.

Creating a Fast Refreshable MV Based on a Complex Query
In many situations, when you base an MV on a query that joins multiple tables, it’s deemed complex and therefore
is available only for a complete refresh. However, in some scenarios, you can create a fast refreshable MV when you
reference two tables that are joined together in the MV query.

This section describes how to use the EXPLAIN_MVIEW procedure of the DBMS_MVIEW to determine whether it’s
possible to fast refresh a complex query. To help you completely understand the example, this section shows the SQL
used to create the base tables. Say you have two base tables, defined as follows:

create table region(
 region_id number
,reg_desc varchar2(30)

ChapTer 15 ■ MaTerialized Views

422

,constraint region_pk primary key(region_id));
--
create table sales(
 sales_id number
,sales_amt number
,region_id number
,sales_dtt date
,constraint sales_pk primary key(sales_id)
,constraint sales_fk1 foreign key (region_id) references region(region_id));

Additionally, REGION and SALES have MV logs created on them, as shown:

create materialized view log on region with primary key;
create materialized view log on sales with primary key;

Also, for this example, the base tables have these data inserted into them:

insert into region values(10,'East');
insert into region values(20,'West');
insert into region values(30,'South');
insert into region values(40,'North');
--
insert into sales values(1,100,10,sysdate);
insert into sales values(2,200,20,sysdate-20);
insert into sales values(3,300,30,sysdate-30);

Suppose you want to create an MV that joins the REGION and SALES base tables as follows:

create materialized view sales_mv
as
select
 a.sales_id
,b.reg_desc
from sales a
 ,region b
where a.region_id = b.region_id;

Next, let’s attempt to fast refresh the MV:

SQL> exec dbms_mview.refresh('SALES_MV','F');

This error is thrown:

ORA-12032: cannot use rowid column from materialized view log...

The error indicates that the MV has issues and can’t be fast refreshed. To determine whether this MV can become
fast refreshable, use the output of the EXPLAIN_MVIEW procedure of the DBMS_MVIEW package. This procedure requires that
you first create an MV_CAPABILITIES_TABLE. Oracle provides a script to do this. Run this script as the owner of the MV:

SQL> @?/rdbms/admin/utlxmv.sql

ChapTer 15 ■ MaTerialized Views

423

After you create the table, run the EXPLAIN_MVIEW procedure to populate it:

SQL> exec dbms_mview.explain_mview(mv=>'SALES_MV',stmt_id=>'100');

Now, query MV_CAPABILITIES_TABLE to see what potential issues this MV may have:

select capability_name, possible, msgtxt, related_text
from mv_capabilities_table
where capability_name like 'REFRESH_FAST_AFTER%'
and statement_id = '100'
order by 1;

Next is a partial listing of the output. The P (for possible) column contains an N (for no) for every fast refresh
possibility:

CAPABILITY_NAME P MSGTXT RELATED_TEXT
------------------------------ - ----------------------------------- ---------------
REFRESH_FAST_AFTER_INSERT N the SELECT list does not have the B
 rowids of all the detail tables
REFRESH_FAST_AFTER_INSERT N mv log must have ROWID MV_MAINT.REGION
REFRESH_FAST_AFTER_INSERT N mv log must have ROWID MV_MAINT.SALES

MSGTXT indicates the issues: The MV logs need to be ROWID based, and the ROWID of the tables must appear in the
SELECT clause. So, first drop and recreate the MV logs with ROWID (instead of a primary key):

drop materialized view log on region;
drop materialized view log on sales;
--
create materialized view log on region with rowid;
create materialized view log on sales with rowid;
--
drop materialized view sales_mv;
--
create materialized view sales_mv
as
select
 a.rowid sales_rowid
,b.rowid region_rowid
,a.sales_id
,b.reg_desc
from sales a
 ,region b
where a.region_id = b.region_id;

Next, reset the MV_CAPABILITIES_TABLE, and repopulate it via the EXPLAIN_MVIEW procedure:

SQL> delete from mv_capabilities_table where statement_id=100;
SQL> exec dbms_mview.explain_mview(mv=>'SALES_MV',stmt_id=>'100');

ChapTer 15 ■ MaTerialized Views

424

The output shows that it’s now possible to fast refresh the MV:

CAPABILITY_NAME P MSGTXT RELATED_TEXT
------------------------------ - ----------------------------------- ------------
REFRESH_FAST_AFTER_ANY_DML Y
REFRESH_FAST_AFTER_INSERT Y
REFRESH_FAST_AFTER_ONETAB_DML Y

Execute the following statement to see if the fast refresh works:

SQL> exec dbms_mview.refresh('SALES_MV','F');
PL/SQL procedure successfully completed.

The EXPLAIN_MVIEW procedure is a powerful tool that allows you to determine whether a refresh capability is
possible and, if it isn’t possible, why it isn’t and how to potentially resolve the issue.

Viewing MV DDL
To quickly view the SQL query on which an MV is based, select from the QUERY column of DBA/ALL/USER_MVIEWS.
If you’re using SQL*Plus, first set the LONG variable to a value large enough to display the entire contents of a LONG
column:

SQL> set long 5000
SQL> select query from dba_mviews where mview_name=UPPER('&&mview_name');

To view the entire DDL required to recreate an MV, use the DBMS_METADATA package (you also need to set the LONG
variable to a large value if using SQL*Plus):

SQL> select dbms_metadata.get_ddl('MATERIALIZED_VIEW','SALES_MV') from dual;

Here is a partial listing of the output for this example:

DBMS_METADATA.GET_DDL('MATERIALIZED_VIEW','SALES_MV')
--

 CREATE MATERIALIZED VIEW "MV_MAINT"."SALES_MV" ("SALES_ROWID", "REGION_ROWID",
 "SALES_ID", "REG_DESC")
 ORGANIZATION HEAP PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

This output shows the DDL that Oracle thinks is required to recreate the MV. This is usually the most reliable
way to generate the DDL associated with an MV.

Dropping an MV
You may occasionally need to drop an MV. Perhaps a view is no longer being used, or you may need to drop and
recreate an MV to change the underlying query on which the MV is based (such as adding a column). Use the DROP
MATERIALIZED VIEW command to drop an MV; for example,

SQL> drop materialized view sales_mv;

ChapTer 15 ■ MaTerialized Views

425

When you drop an MV, the MV object, the table object, and any corresponding indexes are also dropped.
Dropping an MV doesn’t affect any MV logs—an MV log is dependent only on the master table.

You can also specify that the underlying table be preserved. You may want to do this if you’re troubleshooting and
need to drop the MV definition but keep the MV table and data; for example,

SQL> drop materialized view sales_mv preserve table;

In this scenario, you can also use the underlying table later as the basis for an MV by building the MV, using the
ON PREBUILT TABLE clause.

If the MV was originally built using the ON PREBUILT TABLE clause, then when you drop the MV, the underlying
table isn’t dropped. If you want the underlying table dropped, you must use a DROP TABLE statement:

SQL> drop materialized view sales_mv;
SQL> drop table sales_mv;

Modifying MVs
The following sections describe common maintenance tasks associated with MVs. Topics covered include how to
modify an MV to reflect column changes that have been applied to the base table sometime after the MV was initially
created and modifying attributes such as logging and parallelism.

Modifying Base Table DDL and Propagating to MVs
A common task involves adding a column to or dropping a column from a base table (because business requirements
have changed). After the column is added to or dropped from the base table, you want those DDL changes to be
reflected in any dependent MVs. You have a few options for propagating base table column changes to dependent MVs:

Drop and recreate the MV with the new column definitions.•	

Drop the MV, but preserve the underlying table, modify the MV table, and then recreate the •	
MV (with the new column changes), using the ON PREBUILT TABLE clause.

If the MV was originally created using the •	 ON PREBUILT TABLE clause, drop the MV object,
modify the MV table, and then recreate the MV (with the new column changes), using the ON
PREBUILT TABLE clause.

With any of the prior options, you have to drop and recreate the MV so that it’s aware of the column changes in
the base table. These approaches are described next.

Recreating an MV to Reflect Base Table Modifications
Using the previously created SALES table, suppose you have an MV log and an MV, created as shown:

create materialized view log on sales with primary key;
--
create materialized view sales_mv
refresh with primary key
 fast on demand as
select sales_id ,sales_amt, sales_dtt
from sales;

ChapTer 15 ■ MaTerialized Views

426

Then, sometime later, a column is added to the base table:

SQL> alter table sales add(sales_loc varchar2(30));

You want the base table modification to be reflected in the MV. How do you accomplish this task? You know the
MV contains an underlying table that stores the results. You decide to modify the underlying MV table directly:

SQL> alter table sales_mv add(sales_loc varchar2(30));

The alteration is successful. You next refresh the MV but realize that the additional column isn’t being refreshed.
To understand why, recall that an MV is an SQL query that stores its results in an underlying table. Therefore, to
modify an MV, you have to change the SQL query that the MV is based on. Because there is no ALTER MATERIALIZED
VIEW ADD/DROP/MODIFY <column> statement, you must do the following to add/delete columns in an MV:

1. Alter the base table.

2. Drop and recreate the MV to reflect the changes in the base table.

drop materialized view sales_mv;
--
create materialized view sales_mv
refresh with primary key
 complete on demand as
select sales_id, sales_amt, sales_dtt, sales_loc
from sales;

This approach may take a long time if large quantities of data are involved. You have downtime for any
application that accesses the MV while it’s being rebuilt. If you work in a data warehouse environment, then because
of the amount of time it takes to refresh the MV completely, you may want to consider not dropping the underlying
table. This option is discussed in the next section.

Altering an MV but Preserving the Underlying Table
When you drop an MV, you have the option of preserving the underlying table and its data. You may find this
approach advantageous when you’re working with large MVs in data warehouse environments. Here are the steps:

1. Alter the base table.

2. Drop the MV, but preserve the underlying table.

3. Modify the underlying table.

4. Recreate the MV, using the ON PREBUILT TABLE clause.

Here is a simple example to illustrate this procedure:

SQL> alter table sales add(sales_loc varchar2(30));

Drop the MV, but specify that you want to preserve the underlying table:

SQL> drop materialized view sales_mv preserve table;

ChapTer 15 ■ MaTerialized Views

427

Now, modify the underlying table:

SQL> alter table sales_mv add(sales_loc varchar2(30));

Next, create the MV, using the ON PREBUILT TABLE clause:

create materialized view sales_mv
on prebuilt table
refresh with primary key
 complete on demand as
select sales_id, sales_amt, sales_dtt, sales_loc
from sales;

This allows you to redefine the MV without dropping and completely refreshing the data. Be aware that if there
is any DML activity against the base table during the MV rebuild operation, those transactions aren’t reflected in the
MV when you attempt to refresh it. In data warehouse environments, you typically have a known schedule for loading
base tables and therefore should be able to perform the MV alteration during a maintenance window in which no
transactions are occurring in the base table.

Altering an MV Created on a Prebuilt Table
If you originally created an MV using the ON PREBUILT TABLE clause, then you can perform a procedure similar to the
one shown in the previous section when preserving the underlying table. Here are the steps for modifying an MV that
was created using the ON PREBUILT TABLE clause:

1. Alter the base table.

2. Drop the MV. For MVs built on prebuilt tables, this doesn’t drop the underlying table.

3. Alter the prebuilt table.

4. Recreate the MV on the prebuilt table.

Here is a simple example to illustrate this process. First, the base table is altered:

SQL> alter table sales add(sales_loc varchar2(30));

Then, drop the MV:

SQL> drop materialized view sales_mv;

For MVs created on prebuilt tables, this doesn’t drop the underlying table—only the MV object. Next, add
a column to the prebuilt table:

SQL> alter table sales_mv add(sales_loc varchar2(30));

Now, you can rebuild the MV, using the prebuilt table with the new column added:

create materialized view sales_mv
on prebuilt table
refresh with primary key
 complete on demand as
select sales_id, sales_amt, sales_dtt, sales_loc
from sales;

ChapTer 15 ■ MaTerialized Views

428

This process has the advantage of allowing you to modify an MV definition without dropping the underlying
table. You have to drop the MV, alter the underlying table, and then recreate the MV with the new definition. If the
underlying table contains a large amount of data, this method can prevent unwanted downtime.

As mentioned in the previous section, you need to be aware that if there is any DML activity against the base table
during the MV rebuild operation, those transactions aren’t reflected in the MV when you attempt to refresh it.

Toggling Redo Logging on an MV
Recall that an MV has an underlying database table. When you refresh an MV, this initiates transactions in the
underlying table that result in the generation of redo (just as with a regular database table). In the event of a database
failure, you can restore and recover all the transactions associated with an MV.

By default, redo logging is enabled when you create an MV. You have the option of specifying that redo not be
logged when an MV is refreshed. To enable nologging, create the MV with the NOLOGGING option:

create materialized view sales_mv
nologging
refresh with primary key
 fast on demand as
select sales_id ,sales_amt, sales_dtt
from sales;

You can also alter an existing MV into nologging mode:

SQL> alter materialized view sales_mv nologging;

If you want to reenable logging, then do as follows:

SQL> alter materialized view sales_mv logging;

To verify that the MV has been switched to NOLOGGING, query the USER_TABLES view:

select a.table_name, a.logging
from user_tables a
 ,user_mviews b
where a.table_name = b.mview_name;

The advantage of enabling nologging is that refreshes take place more quickly. The refresh mechanism uses a
direct path insert, which, when combined with NOLOGGING, eliminates most of the redo generation. The big downside
is that if a media failure occurs soon after an MV has been refreshed, you can’t recover the data in the MV. In this
scenario the first time you attempt to access the MV, you receive an error such as

ORA-01578: ORACLE data block corrupted (file # 5, block # 899)
ORA-01110: data file 5: '/u01/dbfile/o12c/users02.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

If you get the previous error, then you’ll most likely have to rebuild the MV to make the data accessible again. In
many environments this may be acceptable. You save on database resources by not generating redo for the MV, but
the downside is a longer restore process (in the event of a failure) that requires you to rebuild the MV.

ChapTer 15 ■ MaTerialized Views

429

Note■ if your database is in force logging mode, then the NOLOGGING clause has no effect. The force logging mode is
required in environments using data Guard.

Altering Parallelism
Sometimes, an MV is created with a high degree of parallelism to improve the performance of the creation process:

create materialized view sales_mv
parallel 4
refresh with primary key
 fast on demand as
select sales_id ,sales_amt, sales_dtt
from sales;

After you create the MV, you may not need the same degree of parallelism associated with the underlying table.
This is important because queries against the MV will start parallel threads of execution. In other words, you may
require parallelism for building the MV quickly but do not want parallelism used when subsequently querying the MV.
You can alter an MV’s parallelism as follows:

SQL> alter materialized view sales_mv parallel 1;

You can check on the degree of parallelism by querying USER_TABLES:

SQL> select table_name, degree from user_tables where table_name= upper('&mv_name');

Moving an MV
As the operating environment’s conditions change, you may need to move an MV from one tablespace to another. In
these scenarios, use the ALTER MATERIALIZED VIEW...MOVE TABLESPACE statement. This example moves the table
associated with an MV to a different tablespace:

SQL> alter materialized view sales_mv move tablespace users;

If any indexes are associated with the MV table, the move operation renders them unusable. You can check the
status of the indexes as follows:

select a.table_name, a.index_name, a.status
from user_indexes a
 ,user_mviews b
where a.table_name = b.mview_name;

You must rebuild any associated indexes after moving the table; for example,

SQL> alter index sales_pk2 rebuild;

ChapTer 15 ■ MaTerialized Views

430

Managing MV Logs
MV logs are required for fast refreshable MVs. The MV log is a table that stores DML information for a master (base)
table. The MV log is created in the same database as the master table with the same user that owns the master table.
You need the CREATE TABLE privilege to create an MV log.

The MV log is populated by an Oracle internal trigger (that you have no control over). This internal trigger inserts
a row into the MV log after an INSERT, UPDATE, or DELETE on the master table. You can view the internal triggers in use
by querying DBA/ALL/USER_INTERNAL_TRIGGERS.

An MV log is associated with only one table, and each master table can have only one MV log defined for it. You
can create an MV log on a table or on another MV. Multiple fast refreshable MVs can use one MV log.

After an MV performs a fast refresh, any records in the MV log that are no longer needed are deleted. In the event
that multiple MVs are using one MV log, then records are purged from the MV log only once they aren’t required by
any of the fast refreshable MVs.

Table 15-3 defines the terms used with MV logs. These terms are referred to in the following sections in this
chapter that relate to MV logs.

Table 15-3. MV Log Terminology and Features

Term Meaning

Materialized view (MV) log Database object that tracks DML changes to MV base table; required for
fast refreshes

Primary key MV log MV log that uses the base table primary key to track DML changes

ROWID MV log MV log that uses the base table ROWID to track DML changes

Commit SCN MV log MV log based on the commit SCN instead of a timestamp; available in Oracle
Database 11g Release 2 and higher

Object ID Object identifier used to track DML changes

Filter column Nonprimary key column referenced by an MV subquery; required for some fast
refresh scenarios

Join column Nonprimary key column that defines a join in the subquery WHERE clause;
required for some fast refresh scenarios

Sequence Sequence value required for some fast refresh scenarios

New values Specifies that old and new values be recorded in the MV log; required for
single-table aggregate views to be eligible for fast refresh

Creating an MV Log
Fast refreshable views require an MV log to be created on the master (base) table. Use the CREATE MATERIALIZED VIEW
LOG command to create an MV log. This example creates an MV log on the SALES table, specifying that the primary key
should be used to identify rows in the MV log:

SQL> create materialized view log on sales with primary key;

You can also specify storage information, such as the tablespace name:

create materialized view log on sales
pctfree 5

ChapTer 15 ■ MaTerialized Views

431

tablespace users
with primary key;

When you create an MV log on a table, Oracle creates a table to store the changes since the last refresh to a base
table. The name of the MV log table follows this format: MLOG$_<master_table_name>. You can use the SQL*Plus
DESCRIBE statement to view the columns of the MV log:

SQL> desc mlog$_sales;
Name Null? Type
-------------------------------- -------- ----------------------------
SALES_ID NUMBER
SNAPTIME$$ DATE
DMLTYPE$$ VARCHAR2(1)
OLD_NEW$$ VARCHAR2(1)
CHANGE_VECTOR$$ RAW(255)
XID$$ NUMBER

You can query this underlying MLOG$ table to determine the number of transactions since the last refresh. After
each refresh the MV log table is purged. If multiple MVs use the MV log, the log table isn’t purged until all dependent
MVs are refreshed.

If you create the MV log on a table with a primary key, then a RUPD$_<master_table_name> table is also created.
This table is used for updatable MVs. If you’re not using the updatable MV feature, then this table is never used, and
you can ignore it.

When you create an MV log, you can specify that it use one of the following clauses to uniquely identify rows in
the MV log table:

•	 WITH PRIMARY KEY

•	 WITH ROWID

•	 WITH OBJECT ID

If the master table has a primary key, use WITH PRIMARY KEY when you create the MV log. If the master table
doesn’t have a primary key, you have to use WITH ROWID to specify that a ROWID value be used to uniquely identify MV
log records. You can use WITH OBJECT ID when you create an MV log on an object table.

Oracle uses the SNAPTIME$$ column to determine which records need to be refreshed or purged, or both. As
of Oracle Database 11g Release 2, you have the option of creating a COMMIT SCN–based MV log (not based on a
timestamp). This type of MV log uses the SCN of a transaction to determine which records need to be applied to any
dependent MVs. COMMIT SCN–based MV logs are more efficient than timestamp-based MV logs. If you’re using Oracle
Database 11g Release 2 or higher, then you should consider using COMMIT SCN–based MV logs. Use the WITH COMMIT
SCN clause to do this:

SQL> create materialized view log on sales with commit scn;

You can view whether an MV log is SCN based by querying USER_MVIEW_LOGS:

SQL> select log_table, commit_scn_based from user_mview_logs;

Note ■ MV logs created with COMMiT sCN do not have a SNAPTIME$$ column.

ChapTer 15 ■ MaTerialized Views

432

Indexing MV Log Columns
Sometimes, you may need better performance from your fast refreshing MVs. One way to do this is through indexes
on columns of the MV log table. In particular, Oracle uses the SNAPTIME$$ column or the primary key column, or both,
when refreshing or purging. Therefore, indexes on these columns can improve performance:

SQL> create index mlog$_sales_idx1 on mlog$_sales(snaptime$$);
SQL> create index mlog$_sales_idx2 on mlog$_sales(sales_id);

You shouldn’t add indexes just because you think it may be a good idea. Only add indexes on the MV log tables
when you have known performance issues with fast refreshes. Keep in mind that adding indexes consumes resources
in the database. Oracle has to maintain the index for DML operations on the table, and an index uses disk space.

Viewing Space Used by an MV Log
You should consider periodically checking the space consumed by an MV log. If the space consumed is growing (and
never shrinking), you may have an issue with an MV’s not successfully refreshing and hence causing the MV log never
to be purged. Here is a query to check the space of MV logs:

select segment_name, tablespace_name
,bytes/1024/1024 meg_bytes, extents
from dba_segments
where segment_name like 'MLOG$%'
order by meg_bytes;

Here is some sample output:

SEGMENT_NAME TABLESPACE_NAME MEG_BYTES EXTENTS
-------------------- ------------------------------ ---------- ----------
MLOG$_USERS MV_DATA 1609 3218
MLOG$_ASSET_ATTRS MV_DATA 3675.5 7351

This output indicates that a couple of MV logs most likely have purging issues. In this situation there are probably
multiple MVs that are using the MV log, and one of them isn’t refreshing on a daily basis, thus preventing the log from
being purged.

You may run into a situation in which an MV log hasn’t been purged for quite some time. This can happen
because you have multiple MVs using the same MV log, and one of those MVs isn’t successfully refreshing anymore.
This can happen when a DBA builds a development environment and connects development MVs to the production
environment (it shouldn’t happen, but it does). At some later point in time, the DBA drops the development database.
The production environment still has information regarding the remote development MV and won’t purge MV log
records because it thinks a fast refreshable MV needs the log data to refresh.

In these scenarios, you should determine which MVs are using the log (see the section “Determining How Many
MVs Reference a Central MV Log,” later in this chapter), and resolve any issues. After the problem is solved, check the
space being used by the log, and see if it can be shrunk (see the next section, “Shrinking the Space in an MV Log”).

Shrinking the Space in an MV Log
If an MV log doesn’t successfully delete records, it grows large. After you resolve the issue, and the records are deleted from
the MV log, you can set the high-water mark for the MV log table to a high value. But, doing so may cause performance
issues and also unnecessarily consumes disk space. In this situation, consider shrinking the space used by the MV log.

ChapTer 15 ■ MaTerialized Views

433

In this example, MLOG$_SALES had a problem with purging records because of an associated MV’s not successfully
refreshing. This MV log subsequently grew large. The issue was identified and resolved, and now the log’s space needs
to be reduced. To shrink the space in an MV log, first enable row movement on the appropriate MV log MLOG$ table:

SQL> alter table mlog$_sales enable row movement;

Next, issue the ALTER MATERIALIZED VIEW LOG ON...SHRINK statement. Note that the table name (after the
keyword ON) is that of the master table:

SQL> alter materialized view log on sales shrink space;

This statement may take a long time, depending on the amount of space it shrinks. After the statement finishes,
you can disable row movement:

SQL> alter table mlog$_sales disable row movement;

You can verify that the space has been reduced by running the query from the prior section, which selects from
DBA_SEGMENTS.

Checking the Row Count of an MV Log
As mentioned earlier, sometimes there are problems with an MV’s refreshing, and this results in the building up of a
large number of rows in the corresponding MV log table. This can happen when multiple MVs are using one MV log,
and one of the MVs can’t perform a fast refresh. In this situation the MV log continues to grow until the issue is resolved.

One way of detecting whether an MV log isn’t being purged is to check the row counts of the MV log tables
periodically. The following query uses SQL to generate SQL that creates a script that checks row counts for MV log
tables owned by the currently connected user:

set head off pages 0 lines 132 trimspool on
spo mvcount_dyn.sql
select 'select count(*) || ' || '''' || ': ' || table_name || ''''
|| ' from ' || table_name || ';'
from user_tables
where table_name like 'MLOG%';
spo off;

This script generates a script named mvcount_dyn.sql, containing the SQL statements to select row counts from
the MLOG$ tables. When you’re inspecting row counts, you must be somewhat familiar with your application and have
an idea of what a normal row count is. Here is some sample code generated by the previous script:

select count(*) || ': MLOG$_SALES' from MLOG$_SALES;
select count(*) || ': MLOG$_REGION' from MLOG$_REGION;

Moving an MV Log
You may need to move an MV log because the initial creation script didn’t specify the correct tablespace. A common
scenario is that the tablespace isn’t specified, and the MV log is placed by default in a tablespace such as USERS. You
can verify the tablespace information with this query:

select table_name, tablespace_name
from user_tables
where table_name like 'MLOG%';

ChapTer 15 ■ MaTerialized Views

434

If any MV log tables need to be relocated, use the ALTER MATERIALIZED VIEW LOG ON <table_name> MOVE
statement. Note that you specify the name of the master table (and not the underlying MLOG$ table) on which the MV is
created:

SQL> alter materialized view log on sales move tablespace users;

Also keep in mind that when you move a table, any associated indexes are rendered unusable (because the ROWID
of every record in the table has just changed). You can check the status of the indexes as shown:

select a.table_name, a.index_name, a.status
from user_indexes a
 ,user_mview_logs b
where a.table_name = b.log_table;

Any unusable indexes must be rebuilt. Here is an example of rebuilding an index:

SQL> alter index mlog$_sales_idx2 rebuild;

Dropping an MV Log
There are a couple of reasons why you may want to drop an MV log:

You initially created an MV log, but requirements have changed and you no longer need it.•	

The MV log has grown large and is causing performance issues, and you want to drop it to •	
reset the size.

Before you drop an MV log, you can verify the owner, master table, and MV log table with the following query:

select
 log_owner
,master -- master table
,log_table
from user_mview_logs;

Use the DROP MATERIALIZED VIEW LOG ON statement to drop an MV log. You don’t need to know the name of the
MV log, but you do need to know the name of the master table on which the log was created. This example drops the
MV log on the SALES table:

SQL> drop materialized view log on sales;

You should see the following message if successful:

Materialized view log dropped.

If you have permissions, and you don’t own the table on which the MV log is created, you can specify the schema
name when dropping the MV log:

SQL> drop materialized view log on <schema>.<table>;

ChapTer 15 ■ MaTerialized Views

435

If you’re cleaning up an environment and want to drop all MV logs associated with a user, then use SQL to
generate SQL to accomplish this. The following script creates the SQL required to drop all MV logs owned by the
currently connected user:

set lines 132 pages 0 head off trimspool on
spo drop_dyn.sql
select 'drop materialized view log on ' || master || ';'
from user_mview_logs;
spo off;

The previous SQL*Plus code creates a script named drop_dyn.sql, containing the SQL statements that can be
used to drop all MV logs for a user.

Refreshing MVs
Typically, you refresh MVs at periodic intervals. You can either refresh the MVs manually or automate this task. The
following sections cover these related topics:

Manually refreshing MVs from SQL*Plus•	

Automating refreshes, using a shell script and scheduling utility•	

Automating refreshes, using the built-in Oracle job scheduler•	

Note ■ if you require that a group of MV be refreshed as a set, see the section “Managing MVs in Groups,” later in
this chapter.

Manually Refreshing MVs from SQL*Plus
You’ll need to refresh an MV periodically so as to synchronize it with the base table. To do this, use SQL*Plus to call
the REFRESH procedure of the DBMS_MVIEW package. The procedure takes two parameters: the MV name and the refresh
method. This example uses the EXEC[UTE] statement to call the procedure. The MV being refreshed is SALES_MV, and
the refresh method is F (for fast):

SQL> exec dbms_mview.refresh('SALES_MV','F');

You can also manually run a refresh from SQL*Plus, using an anonymous block of PL/SQL. This example
performs a fast refresh:

SQL> begin
 dbms_mview.refresh('SALES_MV','F');
 end;
 /

Additionally, you can use a question mark (?) to invoke the force refresh method. This instructs Oracle to perform
a fast refresh if possible. If a fast refresh isn’t possible, then Oracle performs a complete refresh:

SQL> exec dbms_mview.refresh('SALES_MV','?');

ChapTer 15 ■ MaTerialized Views

436

You can also use a C (for complete) to specifically execute the complete refresh method:

SQL> exec dbms_mview.refresh('SALES_MV','C');

MVS VS. reSULt CaChe

starting with Oracle database 11g, Oracle has a result cache feature that stores the result of a query in memory
and makes that result set available to any subsequent identical queries that are issued. if a subsequent identical
query is issued, and none of the underlying table data have changed since the original query was issued, Oracle
makes the result available to the subsequent query. For databases with relatively static data and many identical
queries being issued, using the result cache can significantly improve performance.

how do MVs compare with the result cache? recall that an MV stores the result of a query in a table and makes that
result available to reporting applications. The two features sound similar but differ in a couple of significant ways:

1. The result cache stores results in memory. an MV stores results in a table.

2. The result cache needs to be refreshed any time the underlying data in the tables change.
MVs are refreshed on commit or at a periodic interval (such as on a daily basis).

The result cache can significantly improve performance if you have long-running queries that operate on relatively
static data. MVs are better suited for replicating data and storing the results of complex queries that only require
new results on a periodic basis (such as daily, weekly, or monthly).

Automating Refreshes, Using a Shell Script and Scheduling Utility
Many MVs must be refreshed on a daily basis. To achieve this, you can use a Linux/Unix utility (such as cron) that calls
a shell script to refresh the MVs. This approach

is easy to implement and maintain•	

makes it easy to create a daily log file for auditing•	

sends e-mail when the job has problems or when the database isn’t available•	

Here is an example of a shell script that contains the logic to refresh an MV:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
#
HOSTNAME='uname -a | awk '{print$2}''
MAILX='/bin/mailx'
MAIL_LIST='dkuhn@gmail.com'
ORACLE_SID=$1
jobname=SALES_MV
Source oracle OS variables, see Chapter 2 for details.
. /etc/oraset $ORACLE_SID
#

mailto:dkuhn@gmail.com

ChapTer 15 ■ MaTerialized Views

437

sqlplus -s <<EOF
mv_maint/foo
WHENEVER SQLERROR EXIT FAILURE
exec dbms_mview.refresh('SALES_MV','C');
EOF
#
if [$? -ne 0]; then
echo "not okay"
$MAILX -s "Problem with MV refresh on $HOSTNAME $jobname" $MAIL_LIST <<EOF
$HOSTNAME $jobname MVs not okay.
EOF
else
echo "okay"
$MAILX -s "MV refresh OK on $HOSTNAME $jobname" $MAIL_LIST <<EOF
$HOSTNAME $jobname MVs okay.
EOF
fi
#
exit 0

For this MV refresh job, here is the corresponding cron entry that invokes it:

25 16 * * * /orahome/oracle/bin/mvref_sales.bsh DWREP \
1>/orahome/oracle/bin/log/mvref_sales.log 2>&1

This job runs on a daily basis, at 4:25 pm. For details on using cron to schedule jobs, see Chapter 21.

Creating an MV with a Refresh Interval
When you initially create an MV, you have the option of specifying START WITH and NEXT clauses, which instruct Oracle
to set up an internal database job (via the DBMS_JOB package) to initiate the refresh of an MV on a periodic basis. If you
omit START WITH and NEXT, then no job is set up, and you have to use another technique (e.g., a scheduling utility such
as cron).

I almost never specify START WITH and NEXT as a refresh mechanism. I strongly prefer to use another scheduling
utility, such as cron. When using cron, it’s easy to create a log file that details how the job ran and whether there were
any issues. Also, when using cron, it’s easy to have the log file e-mailed to a distribution list so that the support DBAs
are aware of any issues.

Regardless, it’s important to understand how START WITH and NEXT work, because sooner or later you’ll find
yourself in an environment in which DBAs or developers prefer to use the DBMS_JOB package for refreshes. When
you’re troubleshooting refresh issues, you must understand how this refresh mechanism works.

The START WITH parameter specifies the date you want the first refresh of an MV to occur. The NEXT parameter
specifies a date expression that Oracle uses to calculate the interval between refreshes. For instance, this MV initially
refreshes 1 minute in the future (sysdate+1/1440) and subsequently refreshes on a daily basis (sysdate+1):

create materialized view sales_mv
refresh
with primary key
fast on demand
start with sysdate+1/1440
next sysdate+1
as

ChapTer 15 ■ MaTerialized Views

438

select sales_id, sales_amt, sales_dtt
from sales;

You can view details of the scheduled job by querying USER_JOBS:

select job, schema_user
,to_char(last_date,'dd-mon-yyyy hh24:mi:ss') last_date
,to_char(next_date,'dd-mon-yyyy hh24:mi:ss') next_date
,interval, broken
from user_jobs;

Here is some sample output:

JOB SCHEMA_USE LAST_DATE NEXT_DATE INTERVAL B
---- ---------- -------------------- -------------------- ------------ -
 1 MV_MAINT 28-jan-2013 14:55:33 29-jan-2013 14:55:33 sysdate+1 N

You can also view job information in the USER_REFRESH view:

select rowner, rname, job
,to_char(next_date,'dd-mon-yyyy hh24:mi:ss')
,interval, broken
from user_refresh;

Here is some sample output:

ROWNER RNAME JOB TO_CHAR(NEXT_DATE,'DD-MON-YYY INTERVAL B
---------- ---------- ---- ----------------------------- ------------ -
MV_MAINT SALES_MV 1 29-jan-2013 14:55:33 sysdate+1 N

When you drop an MV, the associated job is also removed. If you want to remove a job manually, use the REMOVE
procedure DBMS_JOB. This example removes job number 1, which was identified from the previous queries:

SQL> exec dbms_job.remove(1);

Note ■ You can’t use START WITH or NEXT in conjunction with an MV that refreshes ON COMMIT.

Efficiently Performing a Complete Refresh
When an MV does a complete refresh, the default behavior is to use a DELETE statement to remove all records from the
MV table. After the delete is finished, records are selected from the master table and inserted into the MV table. The
delete and insert are done as one transaction; this means that anybody selecting from the MV during the complete
refresh process sees the data as they existed before the DELETE statement. Anybody accessing the MV immediately
after the INSERT commits sees a fresh view of the data.

In some scenarios, you may want to modify this behavior. If a large amount of data are being refreshed, the
DELETE statement can take a long time. You have the option of instructing Oracle to perform the removal of data as
efficiently as possible via the ATOMIC_REFRESH parameter. When this parameter is set to FALSE, it allows Oracle to use a
TRUNCATE statement instead of a DELETE when performing a complete refresh:

SQL> exec dbms_mview.refresh('SALES_MV',method=>'C',atomic_refresh=>false);

ChapTer 15 ■ MaTerialized Views

439

TRUNCATE works faster than DELETE for large data sets because TRUNCATE doesn’t have the overhead of generating
redo. The disadvantage of using the TRUNCATE statement is that a user selecting from the MV may see zero rows while
the refresh is taking place.

Handling the ORA-12034 Error
When you attempt to perform a fast refresh of an MV, you may sometimes get the ORA-12034 error; for example,

SQL> exec dbms_mview.refresh('SALES_MV','F');

The statement subsequently throws this error message:

ORA-12034: materialized view log on "MV_MAINT"."SALES" younger than last refresh

To resolve this error, try to refresh the MV completely:

SQL> exec dbms_mview.refresh('SALES_MV','C');

After the complete refresh has finished, you should be able to perform a fast refresh without receiving an error:

SQL> exec dbms_mview.refresh('SALES_MV','F');

The ORA-12034 error is thrown when Oracle determines that the MV log was created after the last refresh took
place in the associated MV. In other words, the MV log is younger than the last refresh of MV. There are several
possible causes:

The MV log was dropped and recreated.•	

The MV log was purged.•	

The master table was reorganized.•	

The master table was truncated.•	

The previous refresh failed.•	

In this situation, Oracle knows that transactions may have been created between the last refresh time of the MV
and when the MV log was created. In this scenario, you have to first perform a complete refresh before you can start
using the fast refresh mechanism.

Monitoring MV Refreshes
The following sections contain some very handy examples of how to monitor MV refresh jobs. Examples include
how to view the last refresh time, determine whether a job is currently executing, establish the progress of a refresh
job, and check to see whether MVs haven’t refreshed within the last day. Scripts such as these are invaluable for
troubleshooting and diagnosing refresh problems.

ChapTer 15 ■ MaTerialized Views

440

Viewing MVs’ Last Refresh Times
When you’re troubleshooting issues with MVs, usually the first item to check is the LAST_REFRESH_DATE in
DBA/ALL/USER_MVIEWS. Viewing this information allows you to see whether the MVs are refreshing on schedule.
Run this query as the owner of the MV to display the last refresh date:

select mview_name
,to_char(last_refresh_date,'dd-mon-yy hh24:mi:ss')
,refresh_mode, refresh_method
from user_mviews

The LAST_REFRESH_DATE column of DBA/ALL/USER_MVIEWS shows the last date and time that an MV successfully
finished refreshing. The LAST_REFRESH_DATE is NULL if the MV has never successfully refreshed.

Determining Whether a Refresh Is in Progress
If you need to know what MVs are running, use this query:

SQL> select sid, serial#, currmvowner, currmvname from v$mvrefresh;

Here is some sample output:

 SID SERIAL# CURRMVOWNER CURRMVNAME
---------- ---------- ----------------------- --------------------
 108 3037 MV_MAINT SALES_MV

Monitoring Real-Time Refresh Progress
If you deal with large MVs, the next query shows you the real-time progress of the refresh operation. When you’re
troubleshooting issues, this query can be very useful. Run the following script as the user, with privileges on the
internal SYS tables:

column "MVIEW BEING REFRESHED" format a25
column inserts format 9999999
column updates format 9999999
column deletes format 9999999
--
select
 currmvowner_knstmvr || '.' || currmvname_knstmvr "MVIEW BEING REFRESHED",
 decode(reftype_knstmvr, 1, 'FAST', 2, 'COMPLETE', 'UNKNOWN') reftype,
 decode(groupstate_knstmvr, 1, 'SETUP', 2, 'INSTANTIATE',
 3, 'WRAPUP', 'UNKNOWN') STATE,
 total_inserts_knstmvr inserts,
 total_updates_knstmvr updates,
 total_deletes_knstmvr deletes
from x$knstmvr x
where type_knst = 6
and exists (select 1
 from v$session s
 where s.sid=x.sid_knst
 and s.serial#=x.serial_knst);

ChapTer 15 ■ MaTerialized Views

441

When an MV first starts refreshing, you see this output:

MVIEW BEING REFRESHED REFTYPE STATE INSERTS UPDATES DELETES
------------------------- -------- ----------- -------- -------- --------
MV_MAINT.SALES_MV UNKNOWN SETUP 0 0 0

After a few seconds the MV reaches the INSTANTIATE state:

MV_MAINT.SALES_MV FAST INSTANTIATE 0 0 0

As the MV refreshes, the INSERTS, UPDATES, and DELETES columns are updated appropriately:

MV_MAINT.SALES_MV FAST INSTANTIATE 860 274 0

When the MV is almost finished refreshing, it reaches the WRAPUP state:

MV_MAINT.SALES_MV FAST WRAPUP 5284 1518 0

After the MV has completed refreshing, the query returns no rows:

no rows selected

As you can imagine, this query can be quite useful for troubleshooting and diagnosing MV refresh issues.

Checking Whether MVs Are Refreshing Within a Time Period
When you’re dealing with MVs, it’s nice to have an automated way of determining whether refreshes are occurring.
Use the following shell script to detect which MVs haven’t refreshed within the last day and then send an e-mail if any
are detected:

#!/bin/bash
Source oracle OS variables, see Chapter 2 for details
. /etc/oraset $1
#
crit_var=$(sqlplus -s <<EOF
mv_maint/foo
SET HEAD OFF FEED OFF
SELECT count(*) FROM user_mviews
WHERE sysdate-last_refresh_date > 1;
EOF)
#
if [$crit_var -ne 0]; then
 echo $crit_var
 echo "mv_ref refresh problem with $1" | mailx -s "mv_ref problem" \
dkuhn@gmail.com
else
 echo $crit_var
 echo "MVs ok"
fi
#
exit 0

mailto:dkuhn@gmail.com

ChapTer 15 ■ MaTerialized Views

442

This script takes the output of the SQL*Plus statement and returns it to the shell crit_var variable. If any MVs for
the REP_MV user haven’t refreshed within the last day, then the crit_var variable has a nonzero value. If crit_var isn’t
equal to zero, then an e-mail is sent, indicating that there is an issue.

Creating Remote MV Refreshes
You can create MVs that select from remote tables, MVs, or views, or a combination of these. Doing so allows you to
quickly and efficiently replicate data. The setup for basing MVs on remote objects is as follows:

1. Ensure that Oracle Net connectivity exists from the replicated database environment to
the database with the master tables. If you don’t have this connectivity, you can’t replicate
using MVs.

2. Obtain access to a user account in the remote database that has access to the remote
tables, MVs, or views that you want to replicate.

3. For fast refreshes, create an MV log on the master (base) table. You only need to do this if
you intend to perform fast refreshes.

4. Create a database link in the replicated database environment that points to the master
database.

5. Create MVs in the replicated database environment that access remote master objects via
the database link created in step 4.

Here is a simple example. First, ensure that you can establish Oracle Net connectivity from the replicated
environment to the master database. You can verify connectivity and ensure that you can log in to the master database
by connecting via SQL*Plus from the replicated database environment to the remote master. From the command
prompt on the database that will contain the MVs, attempt to connect to the user REP_MV in the master database
named ENGDEV on the XENGDB server:

$ sqlplus rep_mv/foo@'xengdb:1522/engdev'

When you’re connected to the remote master database, also be sure you have access to the tables that you base
the MV on. In this example the name of the remote master table is SALES:

SQL> select count(*) from sales;

Next, create a database link in the database that will contain the MVs. The database link points to the user in the
remote master database:

create database link engdev
connect to rep_mv identified by foo
using 'xengdb:1522/engdev';

Now, create an MV that accesses the master SALES table:

create materialized view sales_mv
refresh complete on demand
as
select
 sales_id
,sales_amt
from sales@engdev;

ChapTer 15 ■ MaTerialized Views

443

You access the remote database by appending the @<database_link_name> to the table name. This instructs
Oracle to select from the remote table. The remote table’s location is defined in the CREATE DATABASE LINK statement.

Understanding Remote-Refresh Architectures
You can use numerous configurations with remotely refreshed MVs. This section details three common scenarios; you
can build on them to meet most remote-replication needs.

Figure 15-3 shows a common configuration using MV logs on the master OLTP database. The remote database
uses MV logs to enable fast refreshes. This configuration is typically used when you can’t report directly from an OLTP
database because of concern that the reporting activity will greatly hamper production performance. This architecture
is also useful when you have users on the other side of the planet, and you want to replicate data to a database that is
physically closer to them so that they have acceptable reporting performance.

remote reporting databaseOLTP production database

MV log A
fast refresh
simple MV A

OLTP
base table A

second-tier complete
refresh

aggregated complex MV

MV log B
OLTP

base table B
fast refresh
simple MV B

third-tier complete refresh
aggregated complex MV

Figure 15-3. Remote refresh, using MV logs at a master site

Figure 15-4 illustrates a scenario in which you aren’t allowed to create MV logs on the master base tables. This
may happen because another team or organization owns the master (base) database, and the owners are unwilling
to let you create MV logs in the master environment. In this case, you have to use complete MV refreshes to the
remote reporting database. This architecture is also appropriate when a large percentage of the base table records
are modified each day. In this situation a complete refresh may be more efficient than a fast refresh (because you’re
replicating most of the data, not just a small subset).

remote reporting databaseOLTP production database

complete refresh
simple MV A

OLTP
base table A

second-tier complete refresh
aggregated complex MV

OLTP
base table B

complete refresh
simple MV B

Figure 15-4. Remote refresh, using complete MV refreshes

ChapTer 15 ■ MaTerialized Views

444

Figure 15-5 shows a scenario in which you replicate the base tables to a staging database and then replicate from
the staging database to a reporting database. This situation is common when the network architecture is configured
such that the reporting database is placed on a network segment that can’t be directly connected to a hardened
production environment. In this case, you can build an intermediate database that resides in a network that can
connect to both the OLTP database and the reporting database. Note that MV logs built are on the MVs in the secure
staging database. When refreshing in this configuration, you must coordinate the refresh times of the staging and
reporting databases so that there is no overlap during the refresh.

reporting databaseOLTP production database

fast refresh
simple MV AA

OLTP
base table A

OLTP
base table B

fast refresh
simple MV BB

MV log A

MV log B

secure firewalled staging DB

fast refresh
simple MV A

fast refresh
simple MV B

MV log
MV A

MV log
MV B

Figure 15-5. Two-hop remote fast MV refresh

Note ■ sometimes, an MV built on another MV is called a nested MV.

Viewing MV Base Table Information
When you’re diagnosing issues with MVs, it’s useful to view the MV and its associated remote master table. Run the
following query on the database that contains the MV to extract master owner and table information:

select
 owner mv_owner
,name mv_name
,master_owner mast_owner
,master mast_table
from dba_mview_refresh_times
order by 1,2;

The previous query reports on each MV and the master table it’s based on. The base table can be local or remote.

Determining How Many MVs Reference a Central MV Log
Say you have one master table with an MV log. Additionally, more than one remote MV uses the central master
MV log. Figure 15-6 illustrates this configuration.

ChapTer 15 ■ MaTerialized Views

445

In this situation, Oracle keeps records in the MV log until all MVs have refreshed. For example, suppose MV A has
a LAST_REFRESH_DATE of July 1, 2013, and MV B has a LAST_REFRESH_DATE of September 1, 2013. Then, MV A refreshes
on October 1, 2013. The master log only purges records older than September 1, 2013 (because the more recent log
records are still needed by MV B).

If an MV was dropped and unable to unregister itself from a master MV log table, then records grow indefinitely
in the master MV log table. To resolve this issue, you need information regarding which MVs are tied to which MV
logs. This query displays the master table owner information and the SNAPID (MV ID) of all dependent MVs:

select mowner
,master base_table
,snapid, snaptime
from sys.slog$;

Here is some sample output that shows two MVs connected to one MV log:

MOWNER BASE_TABLE SNAPID SNAPTIME
--------------- -------------------- ---------- ---------
INV_MGMT PRODUCT_TAXONOMY 653 28-JAN-13
INV_MGMT COMPANY_ACCOUNTS 650 28-JAN-13
INV_MGMT CMP_GRP_ASSOC 651 28-JAN-13

The next query displays information regarding all MVs that have been created that tie into an MV log. Run this
query on the master site:

select a.log_table, a.log_owner
,b.master mast_tab
,c.owner mv_owner
,c.name mview_name
,c.mview_site, c.mview_id
from dba_mview_logs a
 ,dba_base_table_mviews b
 ,dba_registered_mviews c
where b.mview_id = c.mview_id

reporting database B

reporting database A

master database

fast refresh
simple MV A

MV log
OLTP

base table

fast refresh
simple MV B

Figure 15-6. Multiple remote MVs using the same centralized MV log

ChapTer 15 ■ MaTerialized Views

446

and b.owner = a.log_owner
and b.master = a.master
order by a.log_table;

Here is some sample output:

LOG_TABLE LOG_OWNE MAST_TAB MV_OWN MVIEW_NAME MVIEW_S MVIEW_ID
------------------- -------- ------------- ------ ---------------- ------- --------
MLOG$_CMP_GRP_ASSOC INV_MGMT CMP_GRP_ASSOC REP_MV CMP_GRP_ASSOC_MV DWREP 651
MLOG$_CMP_GRP_ASSOC INV_MGMT CMP_GRP_ASSOC TSTDEV CMP_GRP_ASSOC_MV ENGDEV 541

When you drop a remote MV, it should unregister from the master database. However, this doesn’t always
happen. A remote database may get wiped out (e.g., a short-term development database), and the MV doesn’t get
a chance to unregister itself (via the DROP MATERIALIZED VIEW statement). In this situation the MV log is unaware that
a dependent MV is no longer available and therefore keeps records indefinitely.

To purge unwanted MV information from the database that contains the MV log, execute the PURGE_MVIEW_FROM_LOG
procedure of DBMS_MVIEW. This example passes in the ID of the MV to be purged:

SQL> exec dbms_mview.purge_mview_from_log(541);

This statement should update the data dictionary and remove information from the internal table SLOG$ and
DBA_REGISTERED_MVIEWS. If the MV being purged is the oldest MV associated with the MV log table, the associated old
records are also deleted from the MV log.

If a remote MV is no longer available but is still registered with the MV log table, you can manually unregister it
at the master site. Use the UNREGISTER_MVIEW procedure of the DBMS_MVIEW package to unregister a remote MV. To do
this, you need to know the remote MV owner, MV name, and MV site (available from the output of the previous query
in this section):

SQL> exec dbms_mview.unregister_mview('TSTDEV','CMP_GRP_ASSOC_MV','ENGDEV');

If successful, the prior operation removes a record from DBA_REGISTERED_MVIEWS.

Managing MVs in Groups
An MV group is a useful feature that enables you to refresh a set of MVs at a consistent transactional point in time. If
you refresh MVs based on master tables that have parent–child relationships, then you should most likely use a refresh
group. This method guarantees that you won’t have any orphaned child records in your set of refreshed MVs. The
following sections describe how to create and maintain MV refresh groups.

Note ■ You use the DBMS_REFRESH package to accomplish most of the tasks involved in managing MV refresh
groups. This package is fully documented in the Oracle advanced replication Management api reference Guide, which is
available for download from the Technology Network area of the Oracle web site (http://otn.oracle.com).

http://otn.oracle.com/

ChapTer 15 ■ MaTerialized Views

447

Creating an MV Group
You use the MAKE procedure of the DBMS_REFRESH package to create an MV group. When you create an MV group, you
must specify a name, a comma-separated list of MVs in the group, the next date to refresh, and the interval used to
calculate the next refresh time. Here is an example of a group that consists of two MVs:

begin
 dbms_refresh.make(
 name => 'SALES_GROUP'
 ,list => 'SALES_MV, SALES_DAILY_MV'
 ,next_date => sysdate-100
 ,interval => 'sysdate+1'
);
end;
/

When you create an MV group, Oracle automatically creates a database job to manage the refresh of the group.
You can view the details of an MV group by querying from DBA/ALL/USER_REFRESH:

SQL> select rname, job, next_date, interval from user_refresh;

Here is some sample output:

RNAME JOB NEXT_DATE INTERVAL
--------------- ---- -------------------- ---------------
SALES_GROUP 3 20-OCT-12 sysdate+1

I hardly ever use the internal database job as a refresh mechanism. Note that the NEXT_DATE value specified in the
previous SQL is sysdate-100, meaning that the only way the database job will kick off the job is if the date somehow
gets set to 100 days in the past. In this way, the job scheduler never initiates the refresh.

In most environments the refresh needs to start at a specific time. In these scenarios, you use a cron job or some
similar utility that has job-scheduling capabilities.

Altering an MV Refresh Group
You can alter characteristics of a refresh group, such as the refresh date or interval. If you rely on a database job
for your refresh mechanism, then you may occasionally need to tweak your refresh characteristics. Use the CHANGE
function of the DBMS_REFRESH package to achieve this. The following example changes the INTERVAL calculation:

SQL> exec dbms_refresh.change(name=>'SALES_GROUP',interval=>'SYSDATE+2');

Again, you need to change refresh intervals only if you’re using the internal database job to initiate the
materialized group refresh. You can verify the details of a refresh group’s interval and job information with this query:

select a.job, a.broken, b.rowner, b.rname, b.interval
from dba_jobs a
 ,dba_refresh b
where a.job = b.job
order by a.job;

ChapTer 15 ■ MaTerialized Views

448

Here is the output for this example:

JOB B ROWNER RNAME INTERVAL
---- - ---------- --------------- ---------------
 3 N MV_MAINT SALES_GROUP SYSDATE+2

Refreshing an MV Group
After you’ve created a group, you can manually refresh it, using the REFRESH function of the DBMS_REFRESH package.
This example refreshes the group that you previously created:

SQL> exec dbms_refresh.refresh('SALES_GROUP');

If you inspect the LAST_REFRESH_DATE column of USER_MVIEWS, you’ll note that all MVs in the group have the
same refresh time. This is the expected behavior because the MVs in the group are all refreshed at a consistent
transactional point in time.

DBMS_MVIEW vs. DBMS_REFRESH
You may have noted that you can use the DBMS_MVIEW package to refresh a group of MVs. For instance, you can refresh
a set of MVs in a list as follows, using DBMS_MVIEW:

SQL> exec dbms_mview.refresh(list=>'SALES_MV,SALES_DAILY_MV');

This method refreshes each MV in the list in a single transaction. It’s the equivalent of using an MV group. However,
when you use DBMS_MVIEW, you have the option of setting the ATOMIC_REFRESH parameter to TRUE (default) or FALSE.
For example, here the ATOMIC_REFRESH parameter is set to FALSE:

SQL> exec dbms_mview.refresh(list=>'SALES_MV,SALES_DAILY_MV',atomic_refresh=>false);

This setting instructs DBMS_MVIEW to refresh each MV in the list as a separate transaction. The setting also instructs
complete refreshes of the MV to consider using the TRUNCATE statement. The previous line of code is equivalent to the
following two lines:

SQL> exec dbms_mview.refresh(list=>'SALES_MV', atomic_refresh=>false);
SQL> exec dbms_mview.refresh(list=>'SALES_DAILY_MV', atomic_refresh=>false);

Compare that with the behavior of DBMS_REFRESH, which is the package you should use to set up and maintain an
MV group. The DBMS_REFRESH package always refreshes a group of MVs as a consistent transaction.

If you always need a set of MVs to be refreshed as a transactionally consistent group, use DBMS_REFRESH. If you
need some flexibility as to whether a list of MVs is refreshed as a consistent transaction (or not), use DBMS_MVIEW.

Determining MVs in a Group
When you’re investigating issues with an MV refresh group, a good starting point is to display which MVs the group
contains. Query the data dictionary views DBA_RGROUP and DBA_RCHILD to see the MVs in a refresh group:

select a.owner
 ,a.name mv_group
 ,b.name mv_name

ChapTer 15 ■ MaTerialized Views

449

from dba_rgroup a
 ,dba_rchild b
where a.refgroup = b.refgroup
and a.owner = b.owner
order by a.owner, a.name, b.name;

Here is a snippet of the output:

OWNER MV_GROUP MV_NAME
---------- -------------------- --------------------
MV_MAINT SALES_GROUP SALES_DAILY_MV
MV_MAINT SALES_GROUP SALES_MV

In the DBA_RGROUP view, the NAME column represents the name of the refresh group. The DBA_RCHILD view
contains the name of each MV in the refresh group.

Adding an MV to a Refresh Group
As your business requirements change, you occasionally need to add an MV to a group. Use the ADD procedure of the
DBMS_REFRESH package to accomplish this task:

SQL> exec dbms_refresh.add(name=>'SALES_GROUP',list=>'PRODUCTS_MV,USERS_MV');

You must specify a name and provide a comma-separated list of the MV names to add. The newly added MVs are
refreshed the next time the group is refreshed.

The other way to add an MV to a group is to drop the group and recreate it with the new MV. However, it’s usually
preferable to add an MV.

Removing MVs from a Refresh Group
Sometimes, you need to remove an MV from a group. To do this, use the SUBTRACT function of the DBMS_REFRESH
package. This example removes one MV from a group:

SQL> exec dbms_refresh.subtract(name=>'SALES_GROUP',list=>'SALES_MV');

You have to specify the name of the MV group and provide a comma-separated list containing the names of the
MVs you want to remove.

The other way to remove an MV from a group is to drop the group and recreate it without the unwanted MV(s).
However, it’s usually preferable to remove an MV.

Dropping an MV Refresh Group
If you need to drop an MV refresh group, use the DESTROY procedure of the DBMS_REFRESH package. This example
drops the MV group named SALES_GROUP:

SQL> exec dbms_refresh.destroy('SALES_GROUP');

This method only drops the MV refresh-group object—it doesn’t drop any of the actual MVs. If you need to also
drop the MVs, use the DROP MATERIALIZED VIEW statement.

ChapTer 15 ■ MaTerialized Views

450

Summary
Sometimes, the term materialized view confuses people who are new to the technology. Perhaps Oracle should have
named this feature “periodically purge and repopulate a table that contains the results of a query,” but that’s probably
too long a phrase. Regardless, when you understand the power of this tool, you can use it to replicate and aggregate
large amounts of data. You can greatly improve the performance of queries by periodically computing and storing the
results of complex aggregations of data.

MVs can be fast refreshable, which means that they copy over only changes from the master table that have
occurred since the last refresh. To use this type of MV, you must create an MV log on the master table. It’s not always
possible to create an MV log; in these scenarios the MV must be completely refreshed.

If need be, you can also compress and encrypt the data with an MV. This allows for better space management
and security. Additionally, you can partition the underlying table used by an MV, to allow for greater scalability,
performance, and availability.

The last several chapters have focused on specialized database features that DBAs often use. These include large
objects, partitioning, Data Pump, external tables, and MVs. The book now shifts focus to one of the most important
topics a DBA must be familiar with: backup and recovery. User managed backups and RMAN are covered in the next
several chapters.

451

Chapter 16

User-Managed Backup and Recovery

All DBAs should know how to back up a database. Even more critical, a DBA must be able to restore and recover a
database. When media failures occur, everybody looks to the DBA to get the database up and running. There are two
common, yet very different, Oracle approaches for backup and recovery:

User-managed approach•	

RMAN approach•	

User-managed backups are aptly named because you manually perform all steps associated with the backup or
recovery, or both. There are two types of user-managed backups: cold backups and hot backups. Cold backups are
sometimes called offline backups because the database is shut down during the backup process. Hot backups are also
referred to as online backups because the database is available during the backup procedure.

RMAN is Oracle’s flagship backup and recovery tool. It automates and manages most aspects of backup and
recovery. For Oracle backup and recovery, you should use RMAN. So, why have a chapter about user-managed
backups when this approach has been gathering dust for more than a decade? Consider the following reasons for
understanding user-managed backup and recovery:

You still find shops using user-managed backup and recovery techniques. Therefore, you’re •	
required to be knowledgeable about this technology.

Manually executing a user-managed backup, restore, and recovery solidifies your •	
understanding of the Oracle backup and recovery architecture. This helps immensely when
you’re troubleshooting issues with any backup and recovery tool and lays the foundation of
core knowledge for key Oracle tools, such as RMAN and Data Guard.

You’ll more fully appreciate RMAN and the value of its features.•	

Nightmarish database recovery stories recounted by the old DBAs will now make sense.•	

For these reasons, you should be familiar with user-managed backup and recovery techniques. Manually working
through the scenarios in this chapter will greatly increase your understanding of which files are backed up and how
they’re used in a recovery. You’ll be much better prepared to use RMAN. RMAN makes much of backup and recovery
automated and push-button. However, knowledge of how to back up and recover a database manually helps you think
through and troubleshoot issues with any type of backup technology.

This chapter begins with cold backups. These types of backups are viewed as the simplest form of user-managed
backup because even a system administrator can implement them. Next, the chapter discusses hot backups. You also
investigate several common restore-and-recovery scenarios. These examples build your base knowledge of Oracle
backup and recovery internals.

Chapter 16 ■ User-Managed BaCkUp and reCovery

452

Tip ■ In oracle database 12c, you can perform user-managed hot backups and cold backups on pluggable databases;
the user-managed backup and recovery technology works fine. however, I would strongly recommend that you use rMan
to manage backup and recovery in a pluggable environment. When connected to either the root container or a pluggable
container, rMan automatically determines which data files need to be backed up, their locations, and how to restore and
recover. this task quickly becomes unwieldy for user-managed backups, in which the dBa has to manage this information
for the root container and, potentially, numerous pluggable databases.

Implementing a Cold-Backup Strategy for a Noarchivelog
Mode Database
You perform a user-managed cold backup by copying files after the database has been shut down. This type of backup
is also known as an offline backup. Your database can be in either noarchivelog mode or archivelog mode when you
make a cold backup.

DBAs tend to think of a cold backup as being synonymous with a backup of a database in noarchivelog mode.
That isn’t correct. You can make a cold backup of a database in archivelog mode, and that’s a backup strategy
that many shops employ. The differences between a cold backup with the database in noarchivelog mode and in
archivelog mode are detailed in the following sections.

Making a Cold Backup of a Noarchivelog Mode Database
One main reason for making a cold backup of a database in noarchivelog mode is to give you a way to restore a
database back to a point in time in the past. You should use this type of backup only if you don’t need to recover
transactions that occurred after the backup. This type of backup and recovery strategy is acceptable only if your
business requirements allow for the loss of data and downtime. Rarely would you ever implement this type of backup
and recovery solution for a production business database.

Having said that, there are some good reasons to implement this type of backup. One common use is to make a
cold backup of a development/test/training database and periodically reset the database back to the baseline. This
gives you a way to restart a performance test or a training session with the same point-in-time snapshot of the database.

Tip ■ Consider using the Flashback database feature to set your database back to a point in time in the past
(see Chapter 19 for more details).

The example in this section shows you how to make a backup of every critical file in your database: all control
files, data files, temporary data files, and online redo log files. With this type of backup, you can easily restore your
database back to the point in time when the backup was made. The main advantages of this approach are that
it’s conceptually simple and easy to implement. Here are the steps required for a cold backup of a database in
noarchivelog mode:

1. Determine where to copy the backup files and how much space is required.

2. Identify the locations and names of the database files to copy.

3. Shut down the database with the IMMEDIATE, TRANSACTIONAL, or NORMAL clause.

Chapter 16 ■ User-Managed BaCkUp and reCovery

453

4. Copy the files (identified in step 2) to the backup location (determined in step 1).

5. Restart your database.

The following sections elaborate on these steps.

Step 1. Determine Where to Copy the Backup Files and How Much Space Is Required
Ideally, the backup location should be on a set of disks separate from your live data files location. However, in many
shops, you may not have a choice and may be told which mount points are to be used by the database. For this
example the backup location is the directory /u01/cbackup/o12c. To get a rough idea of how much space you need to
store one copy of the backups, you can run this query:

select sum(sum_bytes)/1024/1024 m_bytes
from(
select sum(bytes) sum_bytes from v$datafile
union
select sum(bytes) sum_bytes from v$tempfile
union
select (sum(bytes) * members) sum_bytes from v$log
group by members);

You can verify how much operating disk space is available with the Linux/Unix df (disk free) command. Make
sure that the amount of disk space available at the OS is greater than the sum returned from the prior query:

$ df -h

Step 2. Identify the Locations and Names of the Database Files to Copy
Run this query to list the names (and paths) of the files that are included in a cold backup of a noarchivelog
mode database:

select name from v$datafile
union
select name from v$controlfile
union
select name from v$tempfile
union
select member from v$logfile;

BaCKING Up ONLINe reDO LOGS (Or NOt)

do you need to back up the online redo logs? no; you never need to back up the online redo logs as part of any
type of backup. then, why do dBas back up the online redo logs as part of a cold backup? one reason is that it
makes the restore process for the noarchivelog mode scenario slightly easier. the online redo logs are required to
open the database in a normal manner.

If you back up all files (including the online redo logs), then to get your database back to the state it was in at the
time of the backup, you restore all files (including the online redo logs) and start up your database.

Chapter 16 ■ User-Managed BaCkUp and reCovery

454

Step 3. Shut Down the Database
Connect to your database as the SYS (or as a SYSDBA-privileged user), and shut down your database, using IMMEDIATE,
TRANSACTIONAL, or NORMAL. In almost every situation, using IMMEDIATE is the preferred method. This mode disconnects
users, rolls back incomplete transactions, and shuts down the database:

$ sqlplus / as sysdba
SQL> shutdown immediate;

Step 4. Create Backup Copies of the Files
For every file identified in step 2, use an OS utility to copy the files to a backup directory (identified in step 1). In this
simple example all the data files, control files, temporary database files, and online redo logs are in the same directory.
In production environments, you’ll most likely have files spread out in several different directories. This example uses
the Linux/Unix cp command to copy the database files from /u01/dbfile/o12c to the /u01/cbackup/o12c directory:

$ cp /u01/dbfile/o12c/*.* /u01/cbackup/o12c

Step 5. Restart Your Database
After all the files are copied, you can start up your database:

$ sqlplus / as sysdba
SQL> startup;

Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs
The next example explains how to restore from a cold backup of a database in noarchivelog mode. If you included
the online redo logs as part of the cold backup, you can include them when you restore the files. Here are the steps
involved in this procedure:

1. Shut down the instance.

2. Copy the data files, online redo logs, temporary files, and control files back from the
backup to the live database data file locations.

3. Start up your database.

These steps are detailed in the following sections.

Step 1. Shut Down the Instance
Shut down the instance, if it’s running. In this scenario it doesn’t matter how you shut down the database, because
you’re restoring back to a point in time (with no recovery of transactions). Any files in the live database directory
locations are overwritten when the backup files are copied back. If your instance is running, you can abruptly abort it.
As a SYSDBA-privileged user, do the following:

$ sqlplus / as sysdba
SQL> shutdown abort;

Chapter 16 ■ User-Managed BaCkUp and reCovery

455

Step 2. Copy the Files Back from the Backup
This step does the reverse of the backup: you’re copying files from the backup location to the live database file
locations. In this example all the backup files are located in the /u01/cbackup/o12c directory, and all files are being
copied to the /u01/dbfile/o12c directory:

$ cp /u01/cbackup/o12c/*.* /u01/dbfile/o12c

Step 3. Start Up the database
Connect to your database as SYS (or a user that has SYSDBA privileges), and start up your database:

$ sqlplus / as sysdba
SQL> startup;

After you finish these steps, you should have an exact copy of your database as it was when you made the cold
backup. It’s as if you set your database back to the point in time when you made the backup.

Restoring a Cold Backup in Noarchivelog Mode Without Online Redo Logs
As mentioned earlier, you don’t ever need the online redo logs when restoring from a cold backup. If you made a cold
backup of your database in noarchivelog mode and didn’t include the online redo logs as part of the backup, the steps
to restore are nearly identical to the steps in the previous section. The main difference is that the last step requires you
to open your database, using the OPEN RESETLOGS clause. Here are the steps:

1. Shut down the instance.

2. Copy the control files and data files back from the backup.

3. Start up the database in mount mode.

4. Open the database with the OPEN RESETLOGS clause.

Step 1. Shut Down the Instance
Shut down the instance, if it’s running. In this scenario it doesn’t matter how you shut down the database, because
you’re restoring back to a point in time. Any files in the live database directory locations are overwritten when the
backups are copied. If your instance is running, you can abruptly abort it. As a SYSDBA-privileged user, do the following:

$ sqlplus / as sysdba
SQL> shutdown abort;

Step 2. Copy the Files Back from the Backup
Copy the control files and data files from the backup location to the live data file locations:

$ cp <backup directory>/*.* <live database file directory>

Step 3. Start Up the Database in Mount Mode
Connect to your database as SYS or a user with SYSDBA privileges, and start the database in mount mode:

$ sqlplus / as sysdba
SQL> startup mount

Chapter 16 ■ User-Managed BaCkUp and reCovery

456

Step 4. Open the Database with the OPEN RESETLOGS Clause
Open your database for use with the OPEN RESETLOGS clause:

SQL> alter database open resetlogs;

If you see the Database altered message, the command was successful. However, you may see this error:

ORA-01139: RESETLOGS option only valid after an incomplete database recovery

In this case, issue the following command:

SQL> recover database until cancel;

You should see this message:

Media recovery complete.

Now, attempt to open your database with the OPEN RESETLOGS clause:

SQL> alter database open resetlogs;

This statement instructs Oracle to recreate the online redo logs. Oracle uses information in the control file for the
placement, name, and size of the redo logs. If there are old online redo log files in those locations, they’re overwritten.

If you’re monitoring your alert.log throughout this process, you may see ORA-00312 and ORA-00313. This means
that Oracle can’t find the online redo log files; this is okay, because these files aren’t physically available until they’re
recreated by the OPEN RESETLOGS command.

Scripting a Cold Backup and Restore
It’s instructional to view how to script a cold backup. The basic idea is to dynamically query the data dictionary
to determine the locations and names of the files to be backed up. This is preferable to hard-coding the directory
locations and file names in a script. The dynamic generation of a script is less prone to errors and surprises (e.g., the
addition of new data files to a database but not to an old, hard-coded backup script).

Note ■ the scripts in this section aren’t meant to be production-strength backup and recovery scripts. rather, they
illustrate the basic concepts of scripting a cold backup and subsequent restore.

The first script in this section makes a cold backup of a database. Before you use the cold backup script, you need
to modify these variables in the script to match your database environment:

•	 ORACLE_SID

•	 ORACLE_HOME

•	 cbdir

Chapter 16 ■ User-Managed BaCkUp and reCovery

457

The cbdir variable specifies the name of the backup-directory location. The script creates a file named
coldback.sql, which is executed from SQL*Plus to initiate a cold backup of the database:

#!/bin/bash
ORACLE_SID=o12c
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
PATH=$PATH:$ORACLE_HOME/bin
#
sqlplus -s <<EOF
/ as sysdba
set head off pages0 lines 132 verify off feed off trimsp on
define cbdir=/u01/cbackup/o12c
spo coldback.sql
select 'shutdown immediate;' from dual;
select '!cp ' || name || ' ' || '&&cbdir' from v\$datafile;
select '!cp ' || name || ' ' || '&&cbdir' from v\$tempfile;
select '!cp ' || member || ' ' || '&&cbdir' from v\$logfile;
select '!cp ' || name || ' ' || '&&cbdir' from v\$controlfile;
select 'startup;' from dual;
spo off;
@@coldback.sql
EOF
exit 0

This file generates commands that are to be executed from an SQL*Plus script to make a cold backup of a
database. You place an exclamation mark (!) in front of the Unix cp command to instruct SQL*Plus to host out to the
OS to run the cp command. You also place a backward slash (\) in front of each dollar sign ($) when referencing v$
data dictionary views; this is required in a Linux/Unix shell script. The \ escapes the $ and tells the shell script not to
treat the $ as a special character (the $ normally signifies a shell variable).

After you run this script, here is a sample of the copy commands written to the coldback.sql script:

shutdown immediate;
!cp /u01/dbfile/o12c/system01.dbf /u01/cbackup/o12c
!cp /u01/dbfile/o12c/sysaux01.dbf /u01/cbackup/o12c
!cp /u01/dbfile/o12c/undotbs01.dbf /u01/cbackup/o12c
!cp /u01/dbfile/o12c/users01.dbf /u01/cbackup/o12c
!cp /u01/dbfile/o12c/tools01.dbf /u01/cbackup/o12c
!cp /u01/dbfile/o12c/temp01.dbf /u01/cbackup/o12c
!cp /u01/oraredo/o12c/redo02a.rdo /u01/cbackup/o12c
!cp /u02/oraredo/o12c/redo02b.rdo /u01/cbackup/o12c
!cp /u01/oraredo/o12c/redo01a.rdo /u01/cbackup/o12c
!cp /u02/oraredo/o12c/redo01b.rdo /u01/cbackup/o12c
!cp /u01/oraredo/o12c/redo03a.rdo /u01/cbackup/o12c
!cp /u02/oraredo/o12c/redo03b.rdo /u01/cbackup/o12c
!cp /u01/dbfile/o12c/control01.ctl /u01/cbackup/o12c
!cp /u01/dbfile/o12c/control02.ctl /u01/cbackup/o12c
startup;

While you make a cold backup, you should also generate a script that provides the commands to copy data files,
temp files, log files, and control files back to their original locations. You can use this script to restore from the cold
backup. The next script in this section dynamically creates a coldrest.sql script that copies files from the backup

Chapter 16 ■ User-Managed BaCkUp and reCovery

458

location to the original data file locations. You need to modify this script in the same manner that you modified the
cold backup script (i.e., change the ORACLE_SID, ORACLE_HOME, and cbdir variables to match your environment):

#!/bin/bash
ORACLE_SID=o12c
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
PATH=$PATH:$ORACLE_HOME/bin
#
sqlplus -s <<EOF
/ as sysdba
set head off pages0 lines 132 verify off feed off trimsp on
define cbdir=/u01/cbackup/o12c
define dbname=$ORACLE_SID
spo coldrest.sql
select 'shutdown abort;' from dual;
select '!cp ' || '&&cbdir/' || substr(name, instr(name,'/',-1,1)+1) ||
 ' ' || name from v\$datafile;
select '!cp ' || '&&cbdir/' || substr(name, instr(name,'/',-1,1)+1) ||
 ' ' || name from v\$tempfile;
select '!cp ' || '&&cbdir/' || substr(member, instr(member,'/',-1,1)+1) ||
 ' ' || member from v\$logfile;
select '!cp ' || '&&cbdir/' || substr(name, instr(name,'/',-1,1)+1) ||
 ' ' || name from v\$controlfile;
select 'startup;' from dual;
spo off;
EOF
exit 0

This script creates a script, named coldrest.sql, that generates the copy commands to restore your data files,
temp files, log files, and control files back to their original locations. After you run this shell script, here is a snippet of
the code in the coldrest.sql file:

shutdown abort;
!cp /u01/cbackup/o12c/system01.dbf /u01/dbfile/o12c/system01.dbf
!cp /u01/cbackup/o12c/sysaux01.dbf /u01/dbfile/o12c/sysaux01.dbf
!cp /u01/cbackup/o12c/undotbs01.dbf /u01/dbfile/o12c/undotbs01.dbf
!cp /u01/cbackup/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf
!cp /u01/cbackup/o12c/tools01.dbf /u01/dbfile/o12c/tools01.dbf

...
!cp /u01/cbackup/o12c/redo03b.rdo /u02/oraredo/o12c/redo03b.rdo
!cp /u01/cbackup/o12c/control01.ctl /u01/dbfile/o12c/control01.ctl
!cp /u01/cbackup/o12c/control02.ctl /u01/dbfile/o12c/control02.ctl
startup;

If you need to restore from a cold backup using this script, log in to SQL*Plus as SYS, and execute the script:

$ sqlplus / as sysdba
SQL> @coldrest.sql

Chapter 16 ■ User-Managed BaCkUp and reCovery

459

Making a Cold Backup of an Archivelog Mode Database
You can use a backup of a database in archivelog mode to restore and recover up to the last committed transaction
prior to a failure. Therefore, unlike a backup of a noarchivelog mode database, this type of backup is not necessarily
intended to be used to reset the database back to a point in time in the past from which no recovery can be applied.
The purpose of a backup of an archivelog mode database is usually to restore the database and roll forward and apply
transactions to fully recover the database.

This has significant implications for the backups. Recall that for a noarchivelog mode database, DBAs sometimes
include the online redo logs as part of the backup. For a backup of an archivelog mode database, you should
never include the online redo logs in the backup. The online redo logs contain the most currently generated redo
transaction information for the database. Any transactions in the current online redo logs that haven’t been archived
are required for a complete recovery. In the event of a failure, you don’t want to overwrite the online redo logs with
backups of online redo logs taken from a point in time in the past; this would result in the inability to perform a
complete recovery.

The high-level steps for a cold backup of a database in archivelog mode are identical to those for a noarchivelog
mode database:

1. Determine where to copy the backup files and how much space is required.

2. Identify the locations and names of the database files to copy.

3. Shut down the database with the IMMEDIATE, TRANSACTIONAL, or NORMAL clause.

4. Copy the files (identified in step 2) to the backup location (determined in step 1).

5. Restart your database.

The main difference between the cold archivelog mode backup and noarchivelog mode backup is that in step 2,
you run this query to identify the files to be backed up:

select name from v$datafile
union
select name from v$controlfile;

Also, you don’t need to back up the data files associated with the TEMP tablespace. As of Oracle Database 10g,
Oracle automatically attempts to create missing data files associated with the TEMP tablespace (for locally managed
temp tablespaces) when the database is started.

Restoring and recovering with a cold backup of a database in archivelog mode is nearly identical to the restore
and recovery from a hot backup. See the sections “Performing a Complete Recovery of an Archivelog Mode Database”
and “Performing an Incomplete Recovery of an Archivelog Mode Database,” later in this chapter, for discussion of how
to restore and recover from a database in archivelog mode.

UNDerStaNDING the MeChaNICS DOeS Matter

knowing how a hot backup works also helps in untangling and surviving difficult rMan scenarios. rMan is a
sophisticated and highly automated tool. With just a few commands, you can back up, restore, and recover your
database. however, if there is a failure with any rMan command or step, an understanding of oracle’s underlying
internal restore-and-recovery architecture pays huge dividends. a detailed knowledge of how to restore and
recover from a hot backup helps you logically think your way through any rMan scenario.

When you ride a bike, understanding how the derailleurs and gears and shifting work helps a great deal. you can
usually tell when a rider knows only to push one button to go slower and another button to go faster. riders who

Chapter 16 ■ User-Managed BaCkUp and reCovery

460

understand in more detail how the chain moves between gears will always be smoother at shifting gears.
My editor, Jonathan gennick, recounted the following anecdote while reading an early draft of this chapter:

I loaned my bike to a guy the other week and went on a ride with him. you should have heard the horrible noises
he conjured out of my derailleurs and drivetrain. I thought he was going to damage the bike. after a few minutes,
he rode up to me and told me that my front derailleur wasn’t working right.

“the derailleur was fine. he was just one of those guys who knows only how to push the button, without any
understanding of what goes on underneath that action.”

similarly, effort you put into understanding how backup and recovery is implemented pays off in the long run.
you actually have less to remember—because your understanding of the underlying operation enables you to
think through problems and solve them in ways that checklists don’t.

Implementing a Hot Backup Strategy
As discussed previously, RMAN should be your tool of choice for any type of Oracle database backup (either online
or offline). RMAN is more efficient than user-managed backups and automates most tasks. Having said that, one of
the best ways to gain an understanding of Oracle backup and recovery internals is to make a hot backup and then use
that backup to restore and recover your database. Manually issuing the commands involved in a hot backup, followed
by a restore and recovery, helps you understand the role of each type of file (control files, data files, archive redo logs,
online redo logs) in a restore-and-recovery scenario.

The following sections begin by showing you how to implement a hot backup. They also provide basic scripts
that you can use to automate the hot backup process. Later sections explain some of the internal mechanics of a hot
backup and clarify why you must put tablespaces in backup mode before the hot backup takes place.

Making a Hot Backup
Here are the steps required for a hot backup:

1. Ensure that the database is in archivelog mode.

2. Determine where to copy the backup files.

3. Identify which files need to be backed up.

4. Note the maximum sequence number of the online redo logs.

5. Alter the database/tablespace into backup mode.

6. Copy the data files with an OS utility to the location determined in step 2.

7. Alter the database/tablespace out of backup mode.

8. Archive the current online redo log, and note the maximum sequence number of the
online redo logs.

9. Back up the control file.

10. Back up any archive redo logs generated during the backup.

These steps are covered in detail in the following sections.

Chapter 16 ■ User-Managed BaCkUp and reCovery

461

Step 1. Ensure That the Database Is in Archivelog Mode
Run the following command to check the archivelog mode status of your database:

SQL> archive log list;

The output shows that this database is in archivelog mode:

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u01/oraarch/o12c

If you’re not sure how to enable archiving, see Chapter 5 for details.

Step 2. Determine Where to Copy the Backup Files
Now, determine the backup location. For this example the backup location is the directory /u01/hbackup/o12c.
To get a rough idea of how much space you need, you can run this query:

SQL> select sum(bytes) from dba_data_files;

Ideally, the backup location should be on a set of disks separate from your live data files. But, in practice, many
times you’re given a slice of space on a SAN and have no idea about the underlying disk layout. In these situations, you
rely on redundancy’s being built into the SAN hardware (RAID disks, multiple controllers, and so on) to ensure high
availability and recoverability.

Step 3. Identify Which Files Need to Be Backed Up
For this step, you only need to know the locations of the data files:

SQL> select name from v$datafile;

When you get to step 5, you may want to consider altering tablespaces one at a time into backup mode. If you
take that approach, you need to know which data files are associated with which tablespace:

select tablespace_name, file_name
from dba_data_files
order by 1,2;

Step 4. Note the Maximum Sequence Number of the Online Redo Logs
To successfully recover using a hot backup, you require, at minimum, all the archive redo logs that were generated
during the backup. For this reason, you need to note the archivelog sequence before starting the hot backup:

select thread#, max(sequence#)
from v$log
group by thread#
order by thread#;

Chapter 16 ■ User-Managed BaCkUp and reCovery

462

Step 5. Alter the Database/Tablespaces into Backup Mode
You can put all your tablespaces into backup mode at the same time, using the ALTER DATABASE BEGIN BACKUP
statement:

SQL> alter database begin backup;

If it’s an active OLTP database, doing this can greatly degrade performance. This is because when a tablespace is
in backup mode, Oracle copies a full image of any block (when it’s first modified) to the redo stream (see the section
“Understanding the Split-Block Issue,” later in this chapter, for more details).

The alternative is to alter only one tablespace at a time into backup mode. After the tablespace has been altered
into backup mode, you can copy the associated data files (step 6) and then alter the tablespace out of backup mode
(step 7). You have to do this for each tablespace:

SQL> alter tablespace <tablespace_name> begin backup;

Step 6. Copy the Data Files with an OS Utility
Use an OS utility (Linux/Unix cp command) to copy the data files to the backup location. In this example all the data
files are in one directory, and they’re all copied to the same backup directory:

$ cp /u01/dbfile/o12c/*.dbf /u01/hbackup/o12c

Step 7. Alter the Database/Tablespaces out of Backup Mode
After you’re finished copying all your data files to the backup directory, you need to alter the tablespaces out of
backup mode. This example alters all tablespaces out of backup mode at the same time:

SQL> alter database end backup;

If you’re altering your tablespaces into backup mode one at a time, you need to alter each tablespace out
of backup mode after its data files have been copied:

SQL> alter tablespace <tablespace_name> end backup;

If you don’t take the tablespaces out of backup mode, you can seriously degrade performance and compromise
the ability to recover your database. You can verify that no data files have an ACTIVE status with the following query:

SQL> alter session set nls_date_format = 'DD-MON-RRRR HH24:MI:SS';
SQL> select * from v$backup where status='ACTIVE';

Note ■ setting the NLS_DATE_FORMAT parameter appropriately will allow you to see the exact date/time when the data
file was placed into backup mode. this is useful for determining the starting sequence number of the archivelog needed,
in the event that the data file needs to be recovered.

Chapter 16 ■ User-Managed BaCkUp and reCovery

463

Step 8. Archive the Current Online Redo Log, and Note the Maximum Sequence
Number of the Online Redo Logs
The following statement instructs Oracle to archive any unarchived online redo logs and to initiate a log switch. This
ensures that an end-of-backup marker is written to the archive redo logs:

SQL> alter system archive log current;

Also, note the maximum online redo log sequence number. If a failure occurs immediately after the hot backup,
you need any archive redo logs generated during the hot backup to fully recover your database:

select thread#, max(sequence#)
from v$log
group by thread#
order by thread#;

Step 9. Back Up the Control File
For a hot backup, you can’t use an OS copy command to make a backup of the control file. Oracle’s hot backup
procedure specifies that you must use the ALTER DATABASE BACKUP CONTROLFILE statement. This example makes a
backup of the control file and places it in the same location as the database backup files:

SQL> alter database backup controlfile
 to '/u01/hbackup/o12c/controlbk.ctl' reuse;

The REUSE clause instructs Oracle to overwrite the file if it already exists in the backup location.

Step 10. Back Up Any Archive Redo Logs Generated During the Backup
Back up the archive redo logs that were generated during the hot backup. You can do this with an OS copy command:

$ cp <archive redo logs generated during backup> <backup directory>

This procedure guarantees that you have the logs, even if a failure should occur soon after the hot backup
finishes. Be sure you don’t back up an archive redo log that is currently being written to by the archiver process—
doing so results in an incomplete copy of that file. Sometimes, DBAs script this process by checking the maximum
SEQUENCE# with the maximum RESETLOGS_ID in the V$ARCHIVED_LOG view. Oracle updates that view when it’s finished
copying the archive redo log to disk. Therefore, any archive redo log file that appears in the V$ARCHIVED_LOG view
should be safe to copy.

Scripting Hot Backups
The script in this section covers the minimal tasks associated with a hot backup. For a production environment a hot
backup script can be quite complex. The script given here provides you with a baseline of what you should include in
a hot backup script. You need to modify these variables in the script for it to work in your environment:

•	 ORACLE_SID

•	 ORACLE_HOME

•	 hbdir

Chapter 16 ■ User-Managed BaCkUp and reCovery

464

The ORACLE_SID OS variable defines your database name. The ORACLE_HOME OS variable defines where you
installed the Oracle software. The SQL*Plus hbdir variable points to the directory for the hot backups.

#!/bin/bash
ORACLE_SID=o12c
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
PATH=$PATH:$ORACLE_HOME/bin
#
sqlplus -s <<EOF
/ as sysdba
set head off pages0 lines 132 verify off feed off trimsp on
define hbdir=/u01/hbackup/o12c
spo hotback.sql
select 'spo &&hbdir/hotlog.txt' from dual;
select 'select max(sequence#) from v\$log;' from dual;
select 'alter database begin backup;' from dual;
select '!cp ' || name || ' ' || '&&hbdir' from v\$datafile;
select 'alter database end backup;' from dual;
select 'alter database backup controlfile to ' || '''' || '&&hbdir'
 || '/controlbk.ctl' || '''' || ' reuse;' from dual;
select 'alter system archive log current;' from dual;
select 'select max(sequence#) from v\$log;' from dual;
select 'select member from v\$logfile;' from dual;
select 'spo off;' from dual;
spo off;
@@hotback.sql
EOF

The script generates a hotback.sql script. This script contains the commands for performing the hot backup.
Here is a listing of the hotback.sql script for a test database:

spo /u01/hbackup/o12c/hotlog.txt
select max(sequence#) from v$log;
alter database begin backup;
!cp /u01/dbfile/o12c/system01.dbf /u01/hbackup/o12c
!cp /u01/dbfile/o12c/sysaux01.dbf /u01/hbackup/o12c
!cp /u01/dbfile/o12c/undotbs01.dbf /u01/hbackup/o12c
!cp /u01/dbfile/o12c/users01.dbf /u01/hbackup/o12c
!cp /u01/dbfile/o12c/tools01.dbf /u01/hbackup/o12c
alter database end backup;
alter database backup controlfile to '/u01/hbackup/o12c/controlbk.ctl' reuse;
alter system archive log current;
select max(sequence#) from v$log;
select member from v$logfile;
spo off;

You can run this script manually from SQL*Plus, like this:

SQL> @hotback.sql

Chapter 16 ■ User-Managed BaCkUp and reCovery

465

Caution ■ If the previous script fails on a statement before ALTER DATABASE END BACKUP is executed, you must
take your database (tablespaces) out of backup mode by manually running ALTER DATABASE END BACKUP from
sQL*plus (as the SYS user).

While you generate the hot backup script, it’s prudent to generate a script that you can use to copy the data files
from a backup directory. You have to modify the hbdir variable in this script to match the location of the hot backups
for your environment. Here is a script that generates the copy commands:

#!/bin/bash
ORACLE_SID=o12c
ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
PATH=$PATH:$ORACLE_HOME/bin
#
sqlplus -s <<EOF
/ as sysdba
set head off pages0 lines 132 verify off feed off trimsp on
define hbdir=/u01/hbackup/o12c/
define dbname=$ORACLE_SID
spo hotrest.sql
select '!cp ' || '&&hbdir' || substr(name,instr(name,'/',-1,1)+1)
 || ' ' || name from v\$datafile;
spo off;
EOF
#
exit 0

For my environment here is the code generated that can be executed from SQL*Plus to copy the data files back
from the backup directory, if a failure should occur:

!cp /u01/hbackup/o12c/system01.dbf /u01/dbfile/o12c/system01.dbf
!cp /u01/hbackup/o12c/sysaux01.dbf /u01/dbfile/o12c/sysaux01.dbf
!cp /u01/hbackup/o12c/undotbs01.dbf /u01/dbfile/o12c/undotbs01.dbf
!cp /u01/hbackup/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf
!cp /u01/hbackup/o12c/tools01.dbf /u01/dbfile/o12c/tools01.dbf

In this output, you can remove the exclamation point (!) from each line if you prefer to run the commands from
the OS prompt. The main idea is that these commands are available in the event of a failure, so you know which files
have been backed up to which location and how to copy them back.

Tip ■ don’t use user-managed hot backup technology for online backups; use rMan. rMan doesn’t need to place
tablespaces in backup mode and automates nearly everything related to backup and recovery.

Chapter 16 ■ User-Managed BaCkUp and reCovery

466

Understanding the Split-Block Issue
To perform a hot backup, one critical step is to alter a tablespace into backup mode before you copy any of the data
files associated with the tablespace, using an OS utility. To understand why you have to alter a tablespace into backup
mode, you must be familiar with what is sometimes called the split- (or fractured-) block issue.

Recall that the size of a database block is often different from that of an OS block. For instance, a database block
may be sized at 8KB, whereas the OS block size is 4KB. As part of the hot backup, you use an OS utility to copy the live
data files. While the OS utility is copying the data files, the possibility exists that database writers are writing to a block
simultaneously. Because the Oracle block and the OS block are different sizes, the following may happen:

1. The OS utility copies part of the Oracle block.

2. A moment later, a database writer updates the entire block.

3. A split second later, the OS utility copies the latter half of the Oracle block.

This can result in the OS copy of the block’s being inconsistent with what Oracle wrote to the OS. Figure 16-1
illustrates this concept.

Figure 16-1. Hot backup split- (or fractured-) block issue

Looking at Figure 16-1, the block copied to disk at time 3 is corrupt, as far as Oracle is concerned. The first half
of the block is from time 1, and the latter half is copied at time 3. When you make a hot backup, you’re guaranteeing
block-level corruption in the backups of the data files.

To understand how Oracle resolves the split-block issue, first consider a database operating in its normal mode
(not in backup mode). The redo information that is written to the online redo logs is only what Oracle needs, to
reapply transactions. The redo stream doesn’t contain entire blocks of data. Oracle only records a change vector in the
redo stream that specifies which block changed and how it was changed. Figure 16-2 shows Oracle operating under
normal conditions.

Chapter 16 ■ User-Managed BaCkUp and reCovery

467

Now, consider what happens during a hot backup. For a hot backup, before you copy the data files associated
with a tablespace, you must first alter the tablespace into backup mode. While in this mode, before Oracle modifies a
block, the entire block is copied to the redo stream. Any subsequent changes to the block only require that the normal
redo-change vectors be written to the redo stream. This is illustrated in Figure 16-3.

Figure 16-2. Oracle normally only writes change vectors to the redo stream

Figure 16-3. Entire blocks are written to the redo stream

Chapter 16 ■ User-Managed BaCkUp and reCovery

468

To understand why Oracle logs the entire block to the redo stream, consider what happens during a restore and
recovery. First, the backup files from the hot backup are restored. As explained earlier, these backup files contain
corrupt blocks, owing to the split-block issue. But, it doesn’t matter, because once Oracle recovers the data files, for
any block that was modified during the hot backup, Oracle has an image copy of the block as it was before it was
modified. Oracle uses the copy of the block it has in the redo stream as a starting point for the recovery (of that block).
This process is illustrated in Figure 16-4.

Figure 16-4. Restore and recovery of a split block

In this way, it doesn’t matter if there are corrupt blocks in the hot backup files. Oracle always starts the recovery
process for a block from a copy of the block (as it was before it was modified) in the redo stream.

Understanding the Need for Redo Generated During Backup
What happens if you experience a failure soon after you make a hot backup? Oracle knows when a tablespace was put
in backup mode (begin backup system SCN written to the redo stream), and Oracle knows when the tablespace was
taken out of backup mode (end-of-backup marker written to the redo stream). Oracle requires every archive redo log
generated during that time frame to successfully recover the data files.

Figure 16-5 shows that, at minimum, the archive redo logs from sequence numbers 100 to 102 are required to
recover the tablespace. These archive redo logs were generated during the hot backup.

Chapter 16 ■ User-Managed BaCkUp and reCovery

469

If you attempt to stop the recovery process before all redo between the begin and end markers has been applied
to the data file, Oracle throws this error:

ORA-01195: online backup of file 1 needs more recovery to be consistent

All redo generated during the hot backup of a tablespace must be applied to the data files before they can be
opened. Oracle, at a minimum, needs to apply everything between the begin-backup SCN marker and the end-backup
marker, to account for every block modified while the tablespace was in backup mode. This redo is in the archive redo
log files; or, if the failure happened right after the backup ended, some of the redo may not have been archived and may
be in the online redo logs. Therefore, you have to instruct Oracle to apply what’s in the online redo logs.

Understanding that Data Files are Updated
Note that, in Figures 16-2 and 16-3, the behavior of the database writer is, for the most part, unchanged throughout
the backup procedure. The database writer continues to write blocks to data files, regardless of the backup mode of
the database. The database writer doesn’t care if a hot backup is taking place; its job is to write blocks from the buffer
cache to the data files.

Every once in a while, you run into a DBA who states that the database writer doesn’t write to data files during
user-managed hot backups. This is a widespread misconception. Use some common sense: if the database writer isn’t
writing to the data files during a hot backup, then where are the changes being written? If the transactions are being
written to somewhere other than the data files, how would those data files be resynchronized after the backup? It
doesn’t make any sense.

Some DBAs say, “The data file header is frozen, which means no changes to the data file.” Oracle does freeze the
SCN to indicate the start of the hot backup in the data file header and doesn’t update that SCN until the tablespace is
taken out of backup mode. This “frozen SCN” doesn’t mean that blocks aren’t being written to data files during the
backup. You can easily demonstrate that a data file is written to during backup mode by doing this:

1. Put a tablespace in backup mode:

SQL> alter tablespace users begin backup;

2. Create a table that has a character field:

SQL> create table cc(cc varchar2(20)) tablespace users;

Figure 16-5. Recovery applied

Chapter 16 ■ User-Managed BaCkUp and reCovery

470

3. Insert a string into that table:

SQL> insert into cc values('DBWR does write');

4. Force a checkpoint (which ensures that all modified buffers are written to disk):

SQL> alter system checkpoint;

5. From the OS, use the strings and grep commands to search for the string in the data file:

$ strings /u01/dbfile/o12c/users01.dbf | grep "DBWR does write"

6. Here is the output, proving that the database writer did write the data to disk:

DBWR does write

7. Don’t forget to take the tablespace out of backup mode:

SQL> alter tablespace users end backup;

Performing a Complete Recovery of an Archivelog
Mode Database
The term complete recovery means that you can recover all transactions that were committed before a failure occurred.
Complete recovery doesn’t mean you that completely restore and recover the entire database. For instance, if only
one data file has experienced media failure, you need to restore and recover only the damaged data file to perform a
complete recovery.

Tip ■ If you have access to a test or development database, take the time to walk through every step in each of the
examples that follow. going through these steps can teach you more about backup and recovery than any documentation.

The steps outlined here apply to any database backed up while in archivelog mode. It doesn’t matter if you made
a cold backup or hot backup. The steps to restore and recover data files are the same, as long as the database was in
archivelog mode during the backup. For a complete recovery, you need

to be able to restore the data files that have experienced media failure•	

access to all archive redo logs generated since the last backup was started•	

intact online redo logs•	

Here is the basic procedure for a complete recovery:

1. Place the database in mount mode; this prevents normal user transaction processing from
reading/writing to data files being restored. (If you’re not restoring the SYSTEM or UNDO
tablespace, you have the option of opening the database and manually taking the data files
offline before restoring them. If you do this, make sure you place the data files online after
the recovery is complete.)

2. Restore the damaged data files with an OS copy utility.

Chapter 16 ■ User-Managed BaCkUp and reCovery

471

3. Issue the appropriate SQL*Plus RECOVER command to apply any information required in
the archive redo logs and online redo logs.

4. Alter the database open.

The next several sections demonstrate some common complete restore-and-recovery scenarios. You should be
able to apply these basic scenarios to diagnose and recover from any complex situation you find yourself in.

Restoring and Recovering with the Database Offline
This section details a simple restore-and-recovery scenario. Described next are the steps to simulate a failure and then
perform a complete restore and recovery. Try this scenario in a development database. Ensure that you have a good
backup and that you aren’t trying this experiment in a database that contains critical business data.

Before you start this example, create a table, and insert some data. This table and data are selected from the end
of the complete recovery process to demonstrate a successful recovery:

SQL> create table foo(foo number) tablespace users;
SQL> insert into foo values(1);
SQL> commit;

Now, switch the online logs several times. Doing so ensures that you have to apply archive redo logs as part of
the recovery:

SQL> alter system switch logfile;

The forward slash (/) reruns the most recently executed SQL statement:

SQL> /
SQL> /
SQL> /

Next, simulate a media failure by renaming the data file associated with the USERS tablespace. You can identify
the name of this file with this query:

SQL> select file_name from dba_data_files where tablespace_name='USERS';

FILE_NAME

/u01/dbfile/o12c/users01.dbf

From the OS, rename the file:

$ mv /u01/dbfile/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf.old

And, attempt to stop your database:

$ sqlplus / as sysdba
SQL> shutdown immediate;

You should see an error such as this:

ORA-01116: error in opening database file ...

Chapter 16 ■ User-Managed BaCkUp and reCovery

472

If this were a real disaster, it would be prudent to navigate to the data file directory, list the files, and see if the file
in question was in its correct location. You should also inspect the alert.log file to see if any relevant information is
logged there by Oracle.

Now that you’ve simulated a media failure, the next several steps walk you through a restore and complete recovery.

Step 1. Place Your Database in Mount Mode
Before you place your database in mount mode, you may need to first shut it down, using ABORT:

$ sqlplus / as sysdba
SQL> shutdown abort;
SQL> startup mount;

Step 2. Restore the Data File from the Backup
The next step is to copy from the backup the data file that corresponds to the one that has had a failure:

$ cp /u01/hbackup/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf

At this point, it’s instructional to ponder what Oracle would do if you attempted to start your database. When
you issue the ALTER DATABASE OPEN statement, Oracle inspects the SCN in the control file for each data file. You can
examine this SCN by querying V$DATAFILE:

SQL> select checkpoint_change# from v$datafile where file#=4;

CHECKPOINT_CHANGE#

 3543963

Oracle compares the SCN in the control file with the SCN in the data file header. You can check the SCN in the
data file header by querying V$DATAFILE_HEADER; for example,

select file#, fuzzy, checkpoint_change#
from v$datafile_header
where file#=4;

 FILE# FUZ CHECKPOINT_CHANGE#
---------- --- ------------------
 4 YES 3502285

Note that the SCN recorded in V$DATAFILE_HEADER is less than the SCN in V$DATAFILE for the same data file. If
you attempt to open your database, Oracle throws an error stating that media recovery is required (meaning that you
need to apply redo) to synchronize the SCN in the data file with the SCN in the control file. The FUZZY column is set
to YES. This indicates that redo must be applied to the data file before it can be opened for use. Here is what happens
when you try to open the database at this point:

SQL> alter database open;

alter database open;
alter database open
*

Chapter 16 ■ User-Managed BaCkUp and reCovery

473

ERROR at line 1:
ORA-01113: file 4 needs media recovery...

Oracle doesn’t let you open the database until the SCN in all data file headers matches the corresponding SCN in
the control file.

Step 3. Issue the Appropriate RECOVER Statement
The archive redo logs and online redo logs have the information required to catch up the data file SCN to the control
file SCN. You can apply redo to the data file that needs media recovery by issuing one of the following SQL*Plus
statements:

•	 RECOVER DATAFILE

•	 RECOVER TABLESPACE

•	 RECOVER DATABASE

Because only one data file in this example needs to be recovered, the RECOVER DATAFILE statement is
appropriate. However, keep in mind that you can run any of the previously listed RECOVER statements, and Oracle will
figure out what needs to be recovered. In this particular scenario, you may find it easier to remember the name of the
tablespace that contains the restored data file(s) than to remember the data file name(s). Next, any data files that need
recovery in the USERS tablespace are recovered:

SQL> recover tablespace users;

At this point, Oracle uses the SCN in the data file header to determine which archive redo log or online redo log to
use to begin applying redo. You can view the starting log sequence number that RMAN will use to begin the recovery
process via the following query:

select
 HXFNM file_name
,HXFIL file_num
,FHTNM tablespace_name
,FHTHR thread
,FHRBA_SEQ sequence
from X$KCVFH
where FHTNM = 'USERS';

If all the redo required is in the online redo logs, Oracle applies that redo and displays this message:

Media recovery complete.

If Oracle needs to apply redo that is only contained in archived redo logs (meaning that the online redo log that
contained the appropriate redo has already been overwritten), you’re prompted with a recommendation from Oracle
as to which archive redo log to apply first:

ORA-00279: change 3502285 generated at 11/02/2012 10:49:39 needed for thread 1
ORA-00289: suggestion : /u01/oraarch/o12c/1_1_798283209.dbf
ORA-00280: change 3502285 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Chapter 16 ■ User-Managed BaCkUp and reCovery

474

You can press Enter or Return (<RET>) to have Oracle apply the suggested archive redo log file, specify a file
name, specify AUTO to instruct Oracle to apply any suggested files automatically, or type CANCEL to cancel out of
the recovery operation.

In this example, specify AUTO. Oracle applies all redo in all archive redo log files and online redo log files to perform
a complete recovery:

AUTO

The last message displayed after all required archive redo and online redo have been applied is this:

Log applied.
Media recovery complete.

Step 4. Alter Your Database Open
After the media recovery is complete, you can open your database:

SQL> alter database open;

You can now verify that the transaction you committed just prior to the media failure was restored and recovered:

SQL> select * from foo;

 FOO

 1

Restoring and Recovering with a Database Online
If you lose a data file associated with a tablespace other than SYSTEM and UNDO, you can restore and recover the
damaged data file while leaving the database online. For this to work, any data files being restored and recovered must
be taken offline first. You may be alerted to an issue with a data file in which a user is attempting to update a table and
sees an error such as this:

SQL> insert into foo values(2);

ORA-01116: error in opening database file ...

You navigate to the OS directory that contains the data file and determine that it has been erroneously removed
by a system administrator.

In this example the data file associated with the USERS tablespace is taken offline and subsequently restored and
recovered while the rest of the database remains online. First, place take the data file offline:

SQL> alter database datafile '/u01/dbfile/o12c/users01.dbf' offline;

Now, restore the appropriate data file from the backup location:

$ cp /u01/hbackup/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf

Chapter 16 ■ User-Managed BaCkUp and reCovery

475

In this situation, you can’t use RECOVER DATABASE. The RECOVER DATABASE statement attempts to recover all
data files in the database, of which the SYSTEM tablespace is part. The SYSTEM tablespace can’t be recovered while the
database is online. If you use the RECOVER TABLESPACE, all data files associated with the tablespace must be offline. In
this case, it’s more appropriate to recover at the data file level of granularity:

SQL> recover datafile '/u01/dbfile/o12c/users01.dbf';

Oracle inspects the SCN in the data file header and determines which archive redo log or online redo log to use to
start applying redo. If all redo required is in the online redo logs, you see this message:

Media recovery complete.

If the starting point for redo is contained only in an archive redo log file, Oracle suggests which file to start with:

ORA-00279: change 3502285 generated at 11/02/2012 10:49:39 needed for thread 1
ORA-00289: suggestion : /u01/oraarch/o12c/1_1_798283209.dbf
ORA-00280: change 3502285 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can type AUTO to have Oracle apply all required redo in archive redo log files and online redo log files:

AUTO

If successful, you should see this message:

Log applied.
Media recovery complete.

You can now bring the data file back online:

SQL> alter database datafile '/u01/dbfile/o12c/users01.dbf' online;

If successful, you should see this:

Database altered.

Restoring Control Files
When you’re dealing with user-managed backups, you usually restore the control file in one of these situations:

A control file is damaged, and the file is multiplexed.•	

All control files are damaged.•	

These two situations are covered in the following sections.

Chapter 16 ■ User-Managed BaCkUp and reCovery

476

Restoring a Damaged Control File When Multiplexed
If you configure your database with more than one control file, you can shut down the database and use an OS command
to copy an existing control file to the location of the missing control file. For example, from the initialization file, you
know that two control files are used for this database:

SQL> show parameter control_files

NAME TYPE VALUE
---------------------------- ----------- ------------------------------
control_files string /u01/dbfile/o12c/control01.ctl
 ,/u02/dbfile/o12c/control02.ctl

Suppose the control02.ctl file has become damaged. Oracle throws this error when querying the data dictionary:

ORA-00210: cannot open the specified control file...

When a good control file is available, you can shut down the database, move the old/bad control file (this preserves
it, in the event that it is later needed for root cause analysis), and copy the existing good control file to the name and
location of the bad control file:

SQL> shutdown abort;

$ mv /u02/dbfile/o12c/control02.ctl /u02/dbfile/o12c/control02.ctl.old
$ cp /u01/dbfile/o12c/control01.ctl /u02/dbfile/o12c/control02.ctl

Now, restart the database:

SQL> startup;

In this manner, you can restore a control file from an existing control file.

Restoring When All Control Files Are Damaged
If you lose all of your control files, you can restore one from a backup, or you can recreate the control file. As long as
you have all your data files and any required redo (archive redo and online redo), you should be able to recover your
database completely. The steps for this scenario are as follows:

1. Shut down the database.

2. Restore a control file from the backup.

3. Start the database in mount mode, and initiate database recovery, using the RECOVER
DATABASE USING BACKUP CONTROLFILE clause.

4. For a complete recovery, manually apply the redo contained in the online redo logs.

5. Open the database with the OPEN RESETLOGS clause.

In this example all control files for the database were accidentally deleted, and Oracle subsequently reports
this error:

ORA-00210: cannot open the specified control file...

Chapter 16 ■ User-Managed BaCkUp and reCovery

477

Step 1. Shut Down the Database

First, shut down the database:

SQL> shutdown abort;

Step 2. Restore the Control File from the Backup

This database was configured with just one control file, which you copy back from the backup location, as shown:

$ cp /u01/hbackup/o12c/controlbk.ctl /u01/dbfile/o12c/control01.ctl

If more than one control file is being used, you have to copy the backup control file to each control file and
location name listed in the CONTROL_FILES initialization parameter.

Step 3. Start the Database in Mount Mode, and Initiate Database Recovery

Next, start the database in mount mode:

SQL> startup mount;

After the control file(s) and data files have been copied back, you can perform a recovery. Oracle knows that the
control file was from a backup (because it was created with the ALTER DATABASE BACKUP CONTROLFILE statement), so
the recovery must be performed with the USING BACKUP CONTROLFILE clause:

SQL> recover database using backup controlfile;

At this point, you’re prompted for the application of archive redo log files:

ORA-00279: change 3584431 generated at 11/02/2012 11:48:46 needed for thread 1
ORA-00289: suggestion : /u01/oraarch/o12c/1_8_798283209.dbf
ORA-00280: change 3584431 for thread 1 is in sequence #8

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Type AUTO to instruct the recovery process to apply all archive redo logs automatically:

AUTO

The recovery process applies all available archive redo logs. The recovery process has no one way of determining
where the archive redo stream ends and therefore tries to apply an archive redo log that doesn’t exist, resulting in a
message such as this:

ORA-00308: cannot open archived log '/u01/oraarch/o12c/1_10_798283209.dbf'
ORA-27037: unable to obtain file status

The prior message is to be expected. Now, attempt to open the database:

SQL> alter database open resetlogs;

Oracle throws the following error in this situation:

ORA-01113: file 1 needs media recovery
ORA-01110: data file 1: '/u01/dbfile/o12c/system01.dbf'

Chapter 16 ■ User-Managed BaCkUp and reCovery

478

Step 4. Apply Redo Contained in the Online Redo Logs

Oracle needs to apply more redo to synchronize the SCN in the control file with the SCN in the data file header. In this
scenario the online redo logs are still intact and contain the required redo. To apply redo contained in the online redo
logs, first identify the locations and names of the online redo log files:

select a.sequence#, a.status, a.first_change#, b.member
from v$log a, v$logfile b
where a.group# = b.group#
order by a.sequence#;

Here is the partial output for this example:

SEQUENCE# STATUS FIRST_CHANGE# MEMBER
---------- ---------------- ------------- ------------------------------
 6 INACTIVE 3543960 /u01/oraredo/o12c/redo03a.rdo
 6 INACTIVE 3543960 /u02/oraredo/o12c/redo03b.rdo
 7 INACTIVE 3543963 /u02/oraredo/o12c/redo01b.rdo
 7 INACTIVE 3543963 /u01/oraredo/o12c/redo01a.rdo
 8 CURRENT 3583986 /u02/oraredo/o12c/redo02b.rdo
 8 CURRENT 3583986 /u01/oraredo/o12c/redo02a.rdo

Now, reinitiate the recovery process:

SQL> recover database using backup controlfile;

The recovery process prompts for an archive redo log that doesn’t exist:

ORA-00279: change 3584513 generated at 11/02/2012 11:50:50 needed for thread 1
ORA-00289: suggestion : /u01/oraarch/o12c/1_10_798283209.dbf
ORA-00280: change 3584513 for thread 1 is in sequence #10

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Instead of supplying the recovery process with an archive redo log file, type in the name of a current online redo
log file (you may have to attempt each online redo log until you find the one that Oracle needs). This instructs the
recovery process to apply any redo in the online redo log:

/u01/oraredo/o12c/redo01a.rdo

You should see this message when the correct online redo log is applied:

Log applied.
Media recovery complete.

Chapter 16 ■ User-Managed BaCkUp and reCovery

479

Step 5. Open the Database with RESETLOGS

The database is completely recovered at this point. However, because a backup control file was used for the recovery
process, the database must be opened with the RESETLOGS clause:

SQL> alter database open resetlogs;

Upon success, you should see this:

Database altered.

Performing an Incomplete Recovery of an Archivelog
Mode Database
Incomplete recovery means that you don’t restore all transactions that were committed before the failure. With this
type of recovery, you’re recovering to a point in time in the past, and transactions are lost. This is why incomplete
recovery is also known as database point-in-time recovery (DBPITR).

Incomplete recovery doesn’t mean that you’re restoring and recovering only a subset of data files. In fact, with
most incomplete scenarios, you have to restore all data files from the backup as part of the procedure. If you don’t want
to recover all data files, you first need to take offline any data files you don’t intend to participate in the incomplete
recovery process. When you initiate the recovery, Oracle will only recover data files that have an ONLINE value in the
STATUS column of V$DATAFILE_HEADER.

You may want to perform an incomplete recovery for many different reasons:

You attempt to perform a complete recovery but are missing the required archive redo logs or •	
unarchived online redo log information.

You want to restore the database back to a point in time in the past just prior to an erroneous •	
user error (deleted data, dropped table, and so on).

You have a testing environment in which you have a baseline copy of the database. After the •	
testing is finished, you want to reset the database back to baseline for another round of testing.

You can perform user-managed incomplete recovery three ways:

Cancel based•	

SCN based•	

Time based•	

Cancel based allows you to apply archive redo and halt the process at the boundary, based on an archive redo
log file. For instance, say you’re attempting to restore and recover your database, and you realize that you’re missing
an archive redo log. You have to stop the recover process at the point of your last good archive redo log. You initiate
cancel-based incomplete recovery with the CANCEL clause of the RECOVER DATABASE statement:

SQL> recover database until cancel;

If you want to recover up to and including a certain SCN number, use SCN-based incomplete recovery. You may
know from the alert log or from the output of LogMiner the point to which you want to restore to a certain SCN.
Use the UNTIL CHANGE clause to perform this type of incomplete recovery:

SQL> recover database until change 12345;

Chapter 16 ■ User-Managed BaCkUp and reCovery

480

If you know the time at which you want to stop the recovery process, use time-based incomplete recovery. For
example, you may know that a table was dropped at a certain time and want to restore and recover the database up to the
specified time. The format for a time-based recovery is always as follows: YYYY-MM-DD:HH24:MI:SS. Here is an example:

SQL> recover database until time '2012-10-21:02:00:00';

When you perform an incomplete recovery, you have to restore all data files that you plan to have online when the
incomplete restoration is finished. Here are the steps for an incomplete recovery:

1. Shut down the database.

2. Restore all the data files from the backup.

3. Start the database in mount mode.

4. Apply redo (roll forward) to the desired point, and halt the recovery process (use cancel-,
SCN-, or time-based recovery).

5. Open the database with the OPEN RESETLOGS clause.

The following example performs a cancel-based incomplete recovery. If the database is open, shut it down:

$ sqlplus / as sysdba
SQL> shutdown abort;

Next, copy all data files from the backup (either a cold or hot backup). This example restores all data files from a
hot backup. For this example the current control file is intact and doesn’t need to be restored. Here is a snippet of the
OS copy commands for the database being restored:

cp /u01/hbackup/o12c/system01.dbf /u01/dbfile/o12c/system01.dbf
cp /u01/hbackup/o12c/sysaux01.dbf /u01/dbfile/o12c/sysaux01.dbf
cp /u01/hbackup/o12c/undotbs01.dbf /u01/dbfile/o12c/undotbs01.dbf
cp /u01/hbackup/o12c/users01.dbf /u01/dbfile/o12c/users01.dbf
cp /u01/hbackup/o12c/tools01.dbf /u01/dbfile/o12c/tools01.dbf

After the data files have been copied back, you can initiate the recovery process. This example performs a
cancel-based incomplete recovery:

$ sqlplus / as sysdba
SQL> startup mount;
SQL> recover database until cancel;

At this point, the Oracle recovery process suggests an archive redo log to apply:

ORA-00279: change 3584872 generated at 11/02/2012 12:02:32 needed for thread 1
ORA-00289: suggestion : /u01/oraarch/o12c/1_1_798292887.dbf
ORA-00280: change 3584872 for thread 1 is in sequence #1

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Apply the logs up to the point you where want to stop, and then type CANCEL:

CANCEL

This stops the recovery process. Now, you can open the database with the RESETLOGS clause:

SQL> alter database open resetlogs;

Chapter 16 ■ User-Managed BaCkUp and reCovery

481

The database has been opened to a point in time in the past. The recovery is deemed incomplete because not all
redo was applied.

Tip ■ now would be a good time to get a good backup of your database. this will give you a clean point from which to
initiate a restore and recovery should a failure happen soon after you’ve opened your database.

pUrpOSe OF OpeN reSetLOGS

sometimes, you’re required to open your database with the OPEN RESETLOGS clause. you may do this when
recreating a control file, performing a restore and recovery with a backup control file, or performing an incomplete
recovery. When you open your database with the OPEN RESETLOGS clause, it either wipes out any existing online
redo log files or, if the files don’t exist, recreates them. you can query the MEMBER column of V$LOGFILE to see
which files are involved in an OPEN RESETLOGS operation.

Why would you want to wipe out what’s in the online redo logs? take the example of an incomplete recovery,
in which the database is deliberately opened to a point in time in the past. In this situation the sCn information
in the online redo logs contains transaction data that will never be recovered. oracle forces you to open the
database with OPEN RESETLOGS to purposely wipe out that information.

When you open your database with OPEN RESETLOGS, you create a new incarnation of your database and reset
the log sequence number back to 1. oracle requires a new incarnation so as to avoid accidentally using any old
archive redo logs (associated with a separate incarnation of the database), in the event that another restore and
recovery is required.

Summary
Some studies have indicated that airplane pilots who are over dependent on autopilot technology are less able to
cope with catastrophic in-flight problems than the pilots who have spent considerable time flying without autopilot
assistance. The overautodependent pilots tend to forget key procedures when serious problems arise, whereas pilots
who aren’t as dependent on autopilot are more adept at diagnosing and resolving stressful in-flight failures.

Similarly, DBAs who understand how to backup, restore, and recover a database manually, using user-managed
techniques, are more proficient at troubleshooting and resolving serious backup and recovery problems than DBAs who
only navigate backup and recovery technology via screens. This is why I included this chapter in the book. Understanding
what happens at each step and why the step is required is vital for complete knowledge of the Oracle backup and recovery
architecture. This awareness translates into key troubleshooting skills when you’re using Oracle tools such as RMAN
(backup and recovery), Enterprise Manager, and Data Guard (disaster recovery, high availability, and replication).

The user-managed backup and recovery techniques covered in this chapter aren’t taught or used much anymore.
Most DBAs are (and should be) using RMAN for their Oracle backup and recovery requirements. However, it’s critical
for you to understand how cold backups and hot backups work. You may find yourself employed in a shop in which
old technology has been implemented and needing to restore and recover the database, troubleshoot, or assist in
migrating to RMAN. In these scenarios, you must fully understand the old backup technologies.

Now that you have an in-depth understanding of Oracle backup and recovery mechanics, you’re ready to
investigate RMAN. The next several chapters examine how to configure and use RMAN for production-strength
backup and recovery.

483

Chapter 17

Configuring RMAN

Oracle Recovery Manager (RMAN) is Oracle’s flagship B&R tool. RMAN is provided by default when you install the
Oracle software (for both the Standard Edition and Enterprise Edition). RMAN offers a robust and flexible set of B&R
features. The following list highlights some of the most salient qualities:

Easy-to-use commands for backup, restore, and recovery.•	

Ability to track which files have been backed up and where to. Manages the deletion •	
of obsolete backups and archive redo logs.

Parallelization: Can use multiple processes for backup, restore, and recovery.•	

Incremental backups that only back up changes since the previous backup.•	

Recovery at the database, tablespace, data file, table, or block level.•	

Advanced compression and encryption features.•	

Integration with media managers for tape backups.•	

Backup validation and testing.•	

Cross-platform data conversion.•	

Data Recovery Advisor, which assists with diagnosing failures and proposing solutions.•	

Ability to detect corrupt blocks in data files.•	

Advanced reporting capabilities from the RMAN command line.•	

The goal of this chapter is to present enough information about RMAN that you can make reasonable decisions
about how to implement a solid backup strategy. The basic RMAN components are described first, after which you
walk through many of the decision points involved in implementing RMAN.

Note ■ The RMAN-related chapters in this book aren’t intended to be a complete reference on all aspects of B&R.
That would take an entire book. These chapters contain the basic information you need to successfully use RMAN for
B&R. If you require advanced RMAN information regarding backup, restore, and recovery, see RMAN Recipes for Oracle
 Database 12c, second edition, by Darl Kuhn (Apress, 2013).

ChApTeR 17 ■ CoNfIguRINg RMAN

484

Understanding RMAN
RMAN consists of many different components. Figure 17-1 shows the interactions of the main RMAN pieces. Refer
back to this diagram when reading through this section.

Fast Recovery Area
(optional)

target databasefirst default
server

process

datafiles

ORACLE_HOME/bin
rman executable

RMAN Client archive
redo log

files

control
files

dbms_rcvman
PL/SQL

dbms_backup_
restore
PL/SQLserver

polling
process

RMAN
channel(s)

memory
buffers

PGA (or SGA)

db_recovery_file_dest
(init parameter)

dbuname1 backup piecebackupset YYYY_MM_DD

autobackup YYYY_MM_DD backup piece

fra

tape
storage

DBA

RMAN CONFIGURE or
FORMAT command

/<mount_pnt>/O12C/rman backup piece

optional
media

manager

optional
recovery
catalog

database

optional
auxiliary
database

default disk location
OS dependent

ORACLE_HOME/dbs

backup piece

datafile image copy

image copy

image copy

spfile

snapshot control file snapcf_<SID>.f

server
process

server
process

Figure 17-1. RMAN architectural components

The following list describes the RMAN architectural components:

DBA: Appears somewhat short and bald in the diagram, which isn’t far from the truth
(in my case).

Target database: The database being backed up by RMAN. You connect to the target
database with the RMAN command-line TARGET parameter (see the next section for
more details).

RMAN client: The rman utility from which you issue BACKUP, RESTORE, and RECOVER
commands. On most database servers the rman utility is located in the ORACLE_HOME/bin
directory (along with all the other Oracle utilities, such as sqlplus and expdp).

Oracle server processes: When you execute the rman client and connect to the target
database, two Oracle server background processes are started. The first default server
process interacts with the PL/SQL packages to coordinate the backup activities. The
secondary polling process occasionally updates Oracle data dictionary structures.

Channel(s): The Oracle server processes for handling I/O between files being backed up
(or restored) and the backup device (disk or tape).

ChApTeR 17 ■ CoNfIguRINg RMAN

485

PL/SQL packages: RMAN uses two internal PL/SQL packages (owned by SYS) to perform
B&R tasks: DBMS_RCVMAN and DBMS_BACKUP_RESTORE. DBMS_RCVMAN accesses information in
the control file and passes that to the RMAN server processes. The DBMS_BACKUP_RESTORE
package performs most of RMAN’s work. For example, this package creates the system calls
that direct the channel processes to perform B&R operations.

Memory buffers (PGA or SGA): RMAN uses a memory area in the PGA (and sometimes in
the SGA) as a buffer when reading from data files and copying subsequent blocks to back
up files.

Auxiliary database: A database to which RMAN restores target database data files for the
purpose of duplicating a database, creating a Data Guard standby database, or performing
a DBPITR.

Backup/Back up: Can be either a noun or a verb. The physical files (backup) that store the
backed up files; or, the act of copying and archiving (backing up) files. Backups can consist
of backup sets and backup pieces or image copies.

Backup set: When you run an RMAN BACKUP command, by default, it creates one or more
backup sets. A backup set is a logical RMAN construct that groups backup piece files. You
can think of the relationship of a backup set to a backup piece as similar to the relationship
between a tablespace and a data file: one is a logical construct, the other is a physical file.

Backup piece file: RMAN binary backup files. Each logical backup set consists of one or
more backup piece files. These are the physical files that RMAN creates on disk or tape.
They’re binary, proprietary format files that only RMAN can read or write to. A backup
piece can contain blocks from many different data files. Backup piece files are typically
smaller than data files, because backup pieces only contain blocks that have been used in
the data files.

Image copy: Initiated with the BACKUP AS COPY command. A type of backup in which
RMAN creates identical copies of a data file, archive redo log file, or control file. Image
copies can be operated on by OS utilities such as the Linux cp and mv commands. Image
copies are used as part of incrementally updated image backups. Sometimes, it’s preferable
to use image copies rather than backup sets if you need to be able to restore quickly.

Recovery catalog: An optional database schema that contains tables used to store
metadata information regarding RMAN backup operations. Oracle strongly recommends
using a recovery catalog, because it provides more options for B&R.

Media manager: Third-party software that allows RMAN to back up files directly to tape.
Backing up to tape is desirable when you don’t have enough room to back up directly to
disk or when disaster recovery requirements necessitate a backup to storage that can be
easily moved offsite.

FRA: An optional disk area that RMAN can use for backups. You can also use the FRA
to multiplex control files and online redo logs. You instantiate a fast recovery with
the database initialization parameters DB_RECOVERY_FILE_DEST_SIZE and
DB_RECOVERY_FILE_DEST.

Snapshot control file: RMAN requires a read-consistent view of the control file when either
backing up the control file or synchronizing with the recovery catalog (if it’s being used).
In these situations, RMAN first creates a temporary copy (snapshot) of the control file.
This allows RMAN to use a version of the control file that is guaranteed not to change while
backing up the control file or synchronizing with the recovery catalog.

ChApTeR 17 ■ CoNfIguRINg RMAN

486

You can make several types of backups with RMAN:

Full backup: All modified blocks associated with the data file are backed up. A full backup
is not a backup of the entire database. For example, you can make a full backup of one
data file.

Incremental level 0 backup: Backs up the same blocks as a full backup. The only difference
between a level 0 backup and a full backup is that you can use a level 0 backup with other
incremental backups, but not a full backup.

Incremental level 1 backup: Backs up only blocks that have been modified since the
previous backup. Level 1 incremental backups can be either differential or cumulative.
A differential level 1 backup is the default and backs up all blocks that have been modified
since the last level 0 or level 1 backup. A cumulative level 1 backup backs up all blocks that
have changed since the last level 0 backup.

Incrementally updated backup: First creates an image copy of the data files, after which
subsequent backups are incremental backups that are merged with the image copy. This
is an efficient way to use image copies for backups. Media recoveries using incrementally
updated backups are fast because the image copy of the data file is used during the restore.

Block change tracking: Database feature that keeps track of blocks that have changed in
the database. A record of the changed blocks is kept in a binary file. RMAN can use the
contents of the binary file to improve the performance of incremental backups: instead of
having to scan all modified blocks in a data file, RMAN can determine which blocks have
changed from the binary block change tracking.

Now that you understand the RMAN architectural components and the types of backups you can make, you’re
ready to start up RMAN and configure it for your environment.

Starting RMAN
To connect to RMAN, you need to establish

OS environment variables•	

access to a privileged OS account or a database user with •	 SYSDBA privileges

The easiest way to connect to RMAN is to log in to the server on which the target database resides as the owner of
the Oracle software (usually named oracle, on Linux/Unix boxes). When you log in as oracle, you need to establish
several OS variables before you can use utilities such as rman and sqlplus. Setting these required OS variables is
covered in detail in Chapter 2.

At minimum, you need to set ORACLE_HOME and ORACLE_SID. Additionally, it’s convenient if the PATH variable
includes the directory ORACLE_HOME/bin. This is the directory that contains the Oracle utilities.

After you’ve established your OS variables, you can invoke RMAN from the OS, as shown:

$ rman target /

When connecting to RMAN, you don’t have to specify the AS SYSDBA clause (as you do when connecting to a
database as a privileged user in SQL*Plus). This is because RMAN always requires that you connect as a database user
with SYSDBA privileges.

ChApTeR 17 ■ CoNfIguRINg RMAN

487

Tip ■ New in oracle Database 12c, the SYSBACKUP privilege allows you to assign privileges to a user that include only
the permissions needed to perform B&R operations. The SYSBACKUP privilege contains the subset of SYSDBA privileges
required for carrying out such operations.

The previous example of logging in to RMAN uses OS authentication. This type of authentication means that
if you can log in to an authorized OS account (such as the owner of the Oracle software, usually oracle), then
you’re allowed to connect to the database without having to provide a username and password. You administer OS
authentication by assigning special groups to OS accounts. When you install the Oracle binaries in a Linux/Unix
environment, you’re required to specify at the time of installation the names of the OS groups that are assigned the
database privileges of SYSDBA, SYSOPER, SYSBACKUP—typically, the dba, oper, and backupdba groups, respectively
(see Chapter 1 for details).

(NOt) CaLLING rMaN FrOM SQL*pLUS

I teach oracle B&R classes at a local institute of higher learning. Nearly every term, one of the students asks why
the following RMAN command doesn’t work:

SQL> rman
SP2-0042: unknown command "rman" - rest of line ignored.

The answer is short: the rman client is an oS utility, not an SQL*plus function. You must invoke the rman client
from the oS prompt.

If you don’t have access to log in directly to a server as the Oracle software owner, you need a privileged database
user account to connect to RMAN. Granting SYSDBA privileges to database users requires that you first implement
a password file. To create a password file on Linux/Unix servers, first navigate to the ORACLE_HOME/dbs directory, and
then use the orapwd utility to create a password file:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapw<ORACLE_SID> password=<sys password>

Before you grant SYSDBA to a database user, ensure that the initialization parameter REMOTE_LOGIN_PASSWORDFILE
is set to EXCLUSIVE (the default):

SQL> show parameter remote_login_passwordfile

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
remote_login_passwordfile string EXCLUSIVE

You can now grant the SYSDBA privilege to a database user:

SQL> grant sysdba to lellison;

ChApTeR 17 ■ CoNfIguRINg RMAN

488

You can view the users that have SYSDBA privileges via the following query:

SQL> select * from v$pwfile_users;

Note ■ If you want to connect remotely to RMAN via oracle Net, you need to first implement a password file.

RMAN Architectural Decisions
If archiving is enabled for your database (see Chapter 5 for details on archiving), you can use RMAN out of the box to
run commands such as this to back up your entire target database:

$ rman target /
RMAN> backup database;

If you experience a media failure, you can restore all data files, as follows:

RMAN> shutdown immediate;
RMAN> startup mount;
RMAN> restore database;

After your database is restored, you can fully recover it:

RMAN> recover database;
RMAN> alter database open;

You’re good to go, right? No, not quite. RMAN’s default attributes are reasonably set for simple backup requirements.
The RMAN out-of-the-box settings may be appropriate for small development or test databases. But, for any type of
business critical database, you need to consider carefully where the backups are stored, how long to store backups on disk
or tape, which RMAN features are appropriate for the database, and so on. The following sections in this chapter walk you
through many of the B&R architectural decisions necessary to implementing RMAN in a production environment. RMAN
has a vast and robust variety of options for customizing B&R; and, typically, you don’t need to implement many of RMAN’s
features. However, each time you implement RMAN to back up a production database, you should think through each
decision point and decide whether you require an attribute.

Table 17-1 summarizes the RMAN implementation decisions and recommendations. Each of the decision points
in the table is elaborated on in subsequent sections. Many DBAs will have differing opinions concerning some of
these recommendations; that’s fine. The point is that you need to consider each architectural aspect and determine
what makes sense for your business requirements.

ChApTeR 17 ■ CoNfIguRINg RMAN

489

Table 17-1. Overview of Architectural Decisions and Recommendations

Decision Point Recommendation

Running the RMAN client remotely or locally Run the client locally on the target database server.

Specifying the backup user Use SYS unless you have a security requirement that dictates
otherwise.

Using online or offline backups Depends on your business requirements. Most production
databases require online backups, which means that you must
enable archiving.

 Setting the archive redo log destination and
file format

If you’re using an FRA, archive logs are written there with a default
format. I prefer to use the LOG_ARCHIVE_DEST_N initialization
parameter to specifically set the location outside the FRA.

 Configuring the RMAN backup location and
file format

Depends on your business requirements. Some shops require
tape backups. If you’re using disk, place the backups in the FRA,
or specify a location via channel settings. I prefer not to use an
FRA and to explicitly specify the location and file format via a
CONFIGURE command.

Setting the autobackup of the control file Always enable autobackup of the control file.

 Specifying the location of the autobackup of
the control file

Either place it in the FRA, or configure a location. I prefer to
write the autobackup of the control file to the same location as
that of the database backups.

Backing up archive redo logs Depends on your business requirements. For many
environments, I back up the archive redo logs on a daily basis,
with the same command I use to back up the database.

 Determining the location for the snapshot
control file

Use the default location.

Using a recovery catalog Depends on your business requirements. For many environments,
I don’t use a recovery catalog. Oracle recommends that you do use
a recovery catalog. If the RMAN retention policy is greater than
CONTROL_FILE_RECORD_KEEP_TIME, then I recommend that you
use a recovery catalog.

Using a media manager This is required for backing up directly to tape.

 Setting the CONTROL_FILE_RECORD_KEEP_TIME
initialization parameter

Usually, the default of 7 days is sufficient.

Configuring RMAN’s backup retention policy Depends on your database and business requirements. For many
environments, I use a backup retention redundancy of 1 or 2.

Configuring the archive redo logs’
deletion policy

Depends on your database and business requirements. In many
scenarios, applying the backup retention policy to the archive
redo logs is sufficient (this is the default behavior).

Setting the degree of parallelism Depends on the available hardware resources and business
requirements. For most production servers, on which there are
multiple CPUs, I configure a degree of parallelism of 2 or more.

(continued)

ChApTeR 17 ■ CoNfIguRINg RMAN

490

Decision Point Recommendation

Using backup sets or image copies I prefer backup sets. Backup sets are generally smaller than
image copies and easier to manage.

Using incremental backups Use incremental backups for large databases when a small
percentage of the database changes between backups and when
you want to conserve on disk space. I often use incremental
backups in data warehouse–type databases.

Using incrementally updated backups Use this approach if you require image copies of data files.

Using block change tracking Use this to improve the performance of incremental backups.
For large, data warehouse–type databases, block change
tracking can result in significant time savings for backups.

Configuring binary compression Depends on your business requirements. Compressed backups
consume less space but require more CPU resources (and time)
for backup and restore operations.

Configuring encryption Depends on your business requirements.

Configuring miscellaneous settings You can set many channel-related properties, such as the
backup set size and backup piece size. Configure as needed.

Configuring informational output Configure the OS variable NLS_DATE_FORMAT to display date
and time. Use SET ECHO ON and SHOW ALL to display RMAN
commands and settings.

Table 17-1. (continued)

Running the RMAN Client Remotely or Locally
It’s possible to run the rman utility from a remote server and connect to a target database via Oracle Net:

$ rman target sys/foo@remote_db

This allows you to run RMAN backups on disparate remote servers from one central location. When you run
RMAN remotely, the backup files are always created on the target database server.

Whenever possible, I run the rman client locally on the target server and connect, like this:

$ rman target /

This approach is simple and adequate for most requirements. You don’t have to worry about network issues or
password files, and there are never compatibility issues with the rman client and the target database. If you run RMAN
remotely, you need to be sure the remote rman executable is compatible with the target database. For example, you
may establish that the remote rman executable you’re running is an Oracle Database 12c version of the RMAN client
and need to determine if it’s possible to connect that client to a remote Oracle Database 9i target database. If you run
the rman client locally on the target server, there is never a compatibility issue because the rman client is always the
same version as the target database.

ChApTeR 17 ■ CoNfIguRINg RMAN

491

Specifying the Backup User
As discussed previously, RMAN requires that you use a database user with SYSDBA privileges. Whether I’m running
RMAN from the command line or invoking RMAN in a script, in most scenarios, I connect directly as SYS to the target
database. For example, here is how I connect to RMAN from the command line:

$ rman target /

Some DBAs don’t use this approach; they opt to set up a user separate from SYS and cite security concerns as a
rationale for doing this.

I prefer to use the SYS account directly, because when connecting to RMAN locally on the server, there is no need
to specify a username and password. This means that you never have to hard-code usernames and passwords into any
backup scripts or specify a username and password on the command line that can be viewed by rogue developers or
managers looking over your shoulder.

Using Online or Offline Backups
Most production databases have 24-7 availability requirements. Therefore, your only option is online RMAN backups.
Your database must be in archivelog mode for online backups. You need to consider carefully to place archive redo
logs, how to format them, how often to back them up, and how long to retain them before deletion. These topics are
discussed in subsequent sections.

Note ■ If you make offline backups, you must shut down your database with IMMEDIATE, NORMAL, or TRANSACTIONAL
and then place it in mount mode. RMAN needs the database in mount mode so that it can read from and write to the
control file.

Setting the Archive Redo Log Destination and File Format
Enabling archive redo log mode is a prerequisite for making online backups (see Chapter 5 for a full discussion
of architectural decisions regarding the archive redo log destination and format and how to enable/disable
archivelog mode).

When archivelog mode is enabled, Oracle writes the archive redo logs to one or more of the following locations
(you can configure archive redo logs to be written to the FRA as well as to several other locations that you manually
set via initialization parameters):

Default location•	

FRA•	

Location specified via the •	 LOG_ARCHIVE_DEST_N initialization parameter(s)

If you don’t use an FRA, and if you don’t explicitly set the archive redo log destination via a LOG_ARCHIVE_DEST_N
initialization parameter, then by default the archive redo logs are written to an OS-dependent location. On many
Linux/Unix boxes the default location is the ORACLE_HOME/dbs directory. The default file name format for archive redo
logs is %t_%s_%r.dbf.

ChApTeR 17 ■ CoNfIguRINg RMAN

492

If you enable an FRA (and don’t set LOG_ARCHIVE_DEST_N), then, by default, the archive redo logs are written to a
directory in the FRA. The default file name format of the of archive redo log files created in the FRA is an OMF format.
The files are stored in a subdirectory given the same name as the database’s unique name; for example,

/<fra>/<dbuname>/archivelog/<YYYY_MM_DD>/o1_mf_1_1078_68dx5dyj_.arc

Oracle recommends using an FRA. I prefer not to use an FRA because I don’t like to be surprised with a hung
database when there are issues with the FRA’s filling up and not being purged of old files quickly enough. Instead,
I use the LOG_ARCHIVE_DEST_N parameter to set the location of the archive redo log files. Here is an example:

log_archive_dest_1='LOCATION=/oraarch1/CHNPRD'

I also prefer to use this format for the default archivelog file name:

log_archive_format='%t_%s_%r.arc'

Sometimes, DBAs use .dbf as an extension for both data files and archive redo log files. I prefer to use .arc for
the archive redo log files. The .arc extension avoids the potentially confusing task of identifying a file as an archive
redo log file or a live database data file.

Configuring the RMAN Backup Location and File Format
When you run a BACKUP command for disk-based backups, RMAN creates backup pieces in one of the following locations:

Default location•	

FRA•	

Location specified via the •	 BACKUP...FORMAT command

Location specified via the •	 CONFIGURE CHANNEL...FORMAT command

Of these choices, I lean toward the last of them; I prefer specifying a target location via a backup channel.

Default Location
If you don’t configure any RMAN variables and don’t set up an FRA, by default RMAN allocates one disk-based
channel and writes the backup files to a default location. For example, you can run the following command without
configuring any RMAN parameters:

RMAN> backup database;

The default location varies by OS. In many Linux/Unix environments the default location is ORACLE_HOME/dbs.
The default format of the name of the backup files created is an OMF format; for example,

<ORACLE_HOME>/dbs/01ln9g7e_1_1

Tip ■ The default location is okay for small development databases. however, for most other environments (especially
production), you’ll need to plan ahead for how much disk space you’ll need for backups and explicitly set the location
for the backups via one of the other methods (such as implementing an fRA or CONFIGURE CHANNEL).

ChApTeR 17 ■ CoNfIguRINg RMAN

493

FRA
When backing up to disk, if you don’t explicitly instruct RMAN to write the backups to a specific location (via the
FORMAT or CONFIGURE command), and you’re using an FRA, RMAN automatically writes the backup files to directories
in the FRA. The files are stored in a subdirectory with the same name as the database’s unique name. Also, the default
format of the name of the backup files created in the FRA is an OMF format; for example,

/<fra>/<dbuname>/backupset/<YYYY_MM_DD>/o1_mf_nnndf_TAG20100907T025402_68czfbdf_.bkp

I don’t usually use an FRA for the placement of RMAN backups. In many of the environments I work in, there
isn’t enough disk space on a single mount point to accommodate the entirety of the database backups. In such
situations, you need to allocate two or more channels that point to different mount points. Using an FRA in these
environments is somewhat unwieldy.

Also, for performance reasons, you may want to instruct RMAN to write to multiple disk locations. If you can
ensure that different mount points are based on different physical disks and are written to by separate controllers,
you can reduce I/O contention by allocating multiple channels pointing to separate mount points.

When you’re using an FRA, RMAN automatically creates separate directories when backing up a database for the
first time on a given date. I prefer to have the backups written to one directory and not separate the directories and
backups by date. I find it easier to manage, maintain, and troubleshoot the backups if I use one standard directory for
each database on each server.

BACKUP…FORMAT
If you’ve configured an FRA and don’t want to place RMAN backup files in the FRA automatically, you can directly
specify where you want backups to be placed when you issue the BACKUP command; for example,

RMAN> backup database format '/u01/O12C/rman/rman_%U.bkp';

Here is a corresponding file generated by RMAN:

/u01/O12C/rman/rman_0jnv0557_1_1.bkp

The %U instructs RMAN to dynamically construct a unique string for the backup file name. A unique name is
required in most situations, because RMAN won’t write over the top of a file that already exists. This is important,
because if you instruct RMAN to write in parallel, it needs to create unique file names for each channel; for example,

RMAN> configure device type disk parallelism 2;

Now, when you run the BACKUP command, you see this message:

RMAN> backup database format '/u01/O12C/rman/rman_%U.bkp';

RMAN allocates multiple channels and writes in parallel to two different backup files. The U% in the format string
guarantees that unique file names are created.

ChApTeR 17 ■ CoNfIguRINg RMAN

494

CONFIGURE CHANNEL…FORMAT
I don’t usually use the BACKUP...FORMAT syntax to specify the location for RMAN backups. I prefer to use the
CONFIGURE CHANNEL...FORMAT command. This is because I’m frequently writing to multiple disk locations and
need the flexibility to specify directories located on different mount points. Here is a typical configuration specifying
CONFIGURE CHANNEL...FORMAT:

RMAN> configure device type disk parallelism 3;
RMAN> configure channel 1 device type disk format '/u01/O12C/rman/rman1_%U.bk';
RMAN> configure channel 2 device type disk format '/u02/O12C/rman/rman2_%U.bk';
RMAN> configure channel 3 device type disk format '/u03/O12C/rman/rman3_%U.bk';

In these lines of code, you should configure the device-type parallelism degree to match the number of channels
that you allocated. RMAN only allocates the number of channels as specified by the degree of parallelism; other
configured channels are ignored. For instance, if you specify a degree of parallelism of 2, RMAN allocates only two
channels, regardless of the number of channels you configured via the CONFIGURE CHANNEL command.

In this example of configuring three channels, suppose the BACKUP command is issued, like this:

RMAN> backup database;

RMAN allocates three channels, all on separate mount points (/u01, /u02, /u03), and writes in parallel to the
specified locations. RMAN creates as many backup pieces in the three locations as it deems necessary to create a
backup of the database.

If you need to unconfigure a channel, do so as follows:

RMAN> configure channel 3 device type disk clear;

Note ■ Also consider what happens if you configure a degree of parallelism higher than the number of preconfigured
channels. RMAN will open a channel for each degree of parallelism, and if the number of channels opened is greater
than the number of preconfigured channels, for the unconfigured channels, RMAN will write backup files to the fRA
(if configured) or the default location.

Setting the Autobackup of the Control File
You should always configure RMAN to back up the control file automatically after running any RMAN BACKUP or COPY
command or after you make physical changes to the database that result in updates to the control file (such as
adding/removing a data file). Use the SHOW command to display the current setting of the control file autobackup:

RMAN> show controlfile autobackup;

Here is some sample output:

RMAN configuration parameters for database with db_unique_name O12C are:
CONFIGURE CONTROLFILE AUTOBACKUP ON;

ChApTeR 17 ■ CoNfIguRINg RMAN

495

The following line of code shows how to enable automatic backup of the control file feature:

RMAN> configure controlfile autobackup on;

The automatic control file backup always goes into its own backup set. When autobackup of the control file is
enabled, if you’re using an spfile, it’s automatically backed up along with the control file.

If, for any reason, you want to disable automatic backup of the control file, you can do so as follows:

RMAN> configure controlfile autobackup off;

Note ■ If autobackup of the control file is off, then any time you back up data file 1 (SYSTEM tablespace data file),
RMAN automatically backs up the control file.

Specifying the Location of the Autobackup of the Control File
When you enable autobackup of the control file, RMAN creates the backup of the control file in one of the following
locations:

Default location•	

FRA•	

Location specified via the •	 CONFIGURE CONTROLFILE AUTOBACKUP FORMAT command

If you aren’t using an FRA, or if you haven’t specified a location for the control file autobackups, the control
file autobackup is written to an OS-dependent default location. In Linux/Unix environments the default location is
ORACLE_HOME/dbs; for example,

/u01/app/oracle/product/12.1.0.1/db_1/dbs/c-3423216220-20130109-01

If you’ve enabled an FRA, then RMAN automatically writes the control file autobackup files to directories in the
FRA, using an OMF format for the name; for example,

/<fra>/<dbuname>/autobackup/<YYYY_MM_DD>/o1_mf_s_729103049_68fho9z2_.bkp

I don’t usually use the default location or the FRA for control file autobackups. I prefer these backups to be placed
in the same directory the database backups are in. Here is an example:

RMAN> configure controlfile autobackup format for device type disk to
'/u01/O12C/rman/rman_ctl_%F.bk';

If you want to set the autobackup format back to the default, do so as follows:

RMAN> configure controlfile autobackup format for device type disk clear;

Backing Up Archive Redo Logs
You should back up your archive redo logs on a regular basis. The archivelog files shouldn’t be removed from disk
until you’ve backed them up at least once. I usually like to keep on disk any archive redo logs that have been generated
since the last good RMAN backup.

ChApTeR 17 ■ CoNfIguRINg RMAN

496

Generally, I instruct RMAN to back up the archive redo logs while the data files are being backed up. This is a
sufficient strategy in most situations. Here is the command to back up the archive redo logs along with the data files:

RMAN> backup database plus archivelog;

Sometimes, if your database generates a great deal of redo, you may need to back up your archive redo logs at a
frequency different from that of the data files. DBAs may back up the archive redo logs two or three times a day; after
the logs are backed up, the DBAs delete them to make room for more current archivelog files.

In most situations, you don’t need any archive redo logs that were generated before your last good backup.
For example, if a data file has experienced media failure, you need to restore the data file from a backup and then
apply any archive redo logs that were generated during and after the backup of the data file.

On some occasions, you may need archive redo logs that were generated before the last backup. For instance,
you may experience a media failure, attempt to restore your database from the last good backup, find corruption in
that backup, and therefore need to restore from an older backup. At that point, you need a copy of all archive redo logs
that have been generated since that older backup was made.

Determining the Location for the Snapshot Control File
RMAN requires a read-consistent view of the control file for the following tasks:

Synchronizing with the recovery catalog•	

Backing up the current control file•	

RMAN creates a snapshot copy of the current control file that it uses as a read-consistent copy while it’s
performing these tasks. This ensures that RMAN is working from a copy of the control file that isn’t being modified.

The default location of the snapshot control file is OS specific. On Linux platforms the default location/format is
ORACLE_HOME/dbs/snapcf_@.f. Note that the default location isn’t in the FRA (even if you’ve implemented an FRA).

You can display the current snapshot control file details, using the SHOW command:

RMAN> show snapshot controlfile name;

Here is some sample output:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO
 '/ora01/app/oracle/product/12.1.0.1/db_1/dbs/snapcf_o12c.f'; # default

For most situations the default location and format of the snapshot control file are sufficient. This file doesn’t use
much space or have any intensive I/O requirements. I recommend that you use the default setting.

If you have a good reason to configure the snapshot control file to a nondefault location, you can do so as follows:

RMAN> configure snapshot controlfile name to '/u01/O12C/rman/snapcf.ctl';

If you accidentally configure the snapshot control file location to a nonexistent directory, then when running
a BACKUP or COPY command, the autobackup of the control file will fail, with this error:

ORA-01580: error creating control backup file ...

You can set the snapshot control file back to the default, like this:

RMAN> configure snapshot controlfile name clear;

ChApTeR 17 ■ CoNfIguRINg RMAN

497

Using a Recovery Catalog
RMAN always stores its latest backup operations in the target database control file. You can set up an optional recovery
catalog to store metadata regarding RMAN backups. The recovery catalog is a separate schema (usually in a database
different from that of the target database) that contains database objects (tables, indexes, and so on) that store the RMAN
backup information. The recovery catalog doesn’t store RMAN backup pieces—only backup metadata.

The main advantages of using a recovery catalog are as follows:

Provides a secondary repository for RMAN metadata. If you lose all your control files and •	
backups of your control files, you can still retrieve RMAN metadata from the recovery catalog.

Stores RMAN metadata for a much longer period than is possible when you just use a control •	
file for the repository.

Offers access to all RMAN features. Some restore and recovery features are simpler when using •	
a recovery catalog.

The disadvantage of using a recovery catalog is that this is another database you have to set up, maintain, and
back up. Additionally, when you start a backup and attempt to connect to the recovery catalog, if the recovery catalog
isn’t available for any reason (server down, network issues, and so on), you must decide whether you want to continue
with the backup without a recovery catalog.

You must also be aware of versioning aspects when using a recovery catalog. You need to make sure the version
of the database you use to store the recovery catalog is compatible with the version of the target database. When you
upgrade a target database, be sure the recovery catalog is upgraded (if necessary).

Note ■ See Chapter 18 for details on how to implement a recovery catalog.

RMAN works fine with or without a recovery catalog. For several of the databases I maintain, I don’t use a
recovery catalog; this eliminates having to set it up and maintain it. For me, simplicity takes precedence over the
features available with the recovery catalog.

However, if you have good business reasons for using a recovery catalog, then implement and use one.
The recovery catalog isn’t that difficult to set up and maintain, and Oracle recommends that you use it.

Using a Media Manager
A media manager is required for RMAN to back up directly to tape. Several vendors provide this feature (for a cost).
Media managers are used in large database environments, such as data warehouses, in which you may not have enough
room to back up a database to disk. You may also have a disaster recovery requirement to back up directly to tape.

If you have such requirements, then you should purchase a media management package and implement it. If you
don’t need to back up directly to tape, there’s no need to implement a media manager. RMAN works fine backing up
directly to disk.

Keep in mind that many shops use RMAN to back up directly to disk and then have the system administrator
back up the RMAN backups to tape afterward. If you do this, you have to be sure your RMAN backups aren’t running
while the tape backups are running (because you may get partial files backed up to tape).

Tip ■ See Chapter 20 for details on how to implement oracle Secure Backup as a media management layer.

ChApTeR 17 ■ CoNfIguRINg RMAN

498

Setting the CONTROL_FILE_RECORD_KEEP_TIME
Initialization Parameter
The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the minimum number of days a reusable
record in the control file is retained before the record can be overwritten. The RMAN metadata are stored in the
reusable section of the control file and therefore are eventually overwritten.

If you’re using a recovery catalog, then you don’t need to worry about this parameter because RMAN metadata
are stored in the recovery catalog indefinitely. Therefore, when you use a recovery catalog, you can access any
historical RMAN metadata.

If you’re using only the control file as the RMAN metadata repository, then the information stored there will
eventually be overwritten. The default value for CONTROL_FILE_RECORD_KEEP_TIME is 7 days:

SQL> show parameter control_file_record_keep_time

NAME TYPE VALUE
------------------------------------ ----------- -----
control_file_record_keep_time integer 7

You can set the value to anything from 0 to 365 days. Setting the value to 0 means that the RMAN metadata
information can be overwritten at any time.

The CONTROL_FILE_RECORD_KEEP_TIME parameter was more critical in older versions of Oracle, in which it wasn’t
easy to repopulate the control file with RMAN information, in the event that metadata were overwritten. Starting with
Oracle Database 10g, you can use the CATALOG command to quickly make the control file aware of RMAN backup files.

If you run daily backups, then I recommend that you leave this parameter at 7 days. However, if you only back up
your database once a month, or if, for some reason, you have a retention policy greater than 7 days, and you’re not using
a recovery catalog, then you may want to consider increasing the value. The downside to increasing this parameter is that
if you have a significant amount of RMAN backup activity, this can increase the size of your control file.

Configuring RMAN’s Backup Retention Policy
RMAN retention policies allow you to specify how long you want to retain backups. RMAN has two mutually exclusive
methods of specifying a retention policy:

Recovery window•	

Number of backups (redundancy)•	

Recovery Window
With a recovery window, you specify a number of days in the past for which you want to be able recover to any point
in that window. For example, if you specify a retention policy window of 5 days, then RMAN doesn’t mark as obsolete
backups of data files and archive redo logs that are required to be able to restore to any point in that 5-day window:

RMAN> configure retention policy to recovery window of 5 days;

For the specified recovery, RMAN may need backups older than the 5-day window because it may need an older
backup to start with to be able to recover to the recovery point specified. For example, suppose your last good backup
was made 6 days ago, and now you want to recover to 4 days in the past. For this recovery window, RMAN needs the
backup from 6 days ago to restore and recover to the point specified.

ChApTeR 17 ■ CoNfIguRINg RMAN

499

Redundancy
You can also specify that RMAN keep a minimum number of backups. For instance, if redundancy is set to 2, then
RMAN doesn’t mark as obsolete the latest two backups of data files and archive redo log files:

RMAN> configure retention policy to redundancy 2;

I find that a retention policy based on redundancy is easier to work with and more predictable with regard to how
long backups are retained. If I set redundancy to 2, I know that RMAN won’t mark as obsolete the latest two backups.
In contrast, the recovery window retention policy depends on the frequency of the backups and the window length to
determine whether a backup is obsolete.

Deleting Backups, Based on Retention Policy
You can report on backups that RMAN has determined to be obsolete per the retention policy, as follows:

RMAN> report obsolete;

To delete obsolete backups, run the DELETE OBSOLETE command:

RMAN> delete obsolete;

You’re prompted with this:

Do you really want to delete the above objects (enter YES or NO)?

If you’re scripting the procedure, you can specify the delete not to prompt for input:

RMAN> delete noprompt obsolete;

I usually have the DELETE NOPROMPT OBSOLETE command coded into the shell script that backs up the database.
This instructs RMAN to delete any obsolete backups and obsolete archive redo logs, as specified by the retention
policy (see the section “Segueing from Decisions to Action,” later in this chapter, for an example of how to automate
the deleting of obsolete backups with a shell script).

Clearing the Retention Policy
The default retention policy is redundancy of 1. You can completely disable the RMAN retention policy via the
TO NONE command.

RMAN> configure retention policy to none;

When the policy is set to NONE, no backups are ever considered obsolete and therefore cannot be removed via the
DELETE OBSOLETE command. This normally is not the behavior you want. You want to let RMAN delete backups per a
retention policy based on a window or number of backups.

To set the retention policy back to the default, use the CLEAR command:

RMAN> configure retention policy clear;

ChApTeR 17 ■ CoNfIguRINg RMAN

500

Configuring the Archive Redo Logs’ Deletion Policy
In most scenarios, I have RMAN delete the archive redo logs based on the retention policy of the database backups.
This is the default behavior. You can view the database retention policy, using the SHOW command:

RMAN> show retention policy;
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default

To remove archive redo logs (and backup pieces) based on the database retention policy, run the following:

RMAN> delete obsolete;

As of Oracle Database 11g, you can specify an archive redo log deletion policy that is separate from that of the
database backups. This deletion policy applies to archive redo logs both outside and in the FRA.

Note■ prior to oracle Database 11g the archive deletion policy only applied to archive redo logs associated with
a standby database.

To configure an archive redo log deletion policy, use the CONFIGURE ARCHIVELOG DELETION command. The following
command configures the archive redo deletion policy so that archive redo logs aren’t deleted until they have been backed
up twice to disk:

RMAN> configure archivelog deletion policy to backed up 2 times to device type disk;

To have RMAN delete obsolete archive redo logs, as defined by the archivelog deletion policy, issue the following
command:

RMAN> delete archivelog all;

Tip■ Run the CROSSCHECK command before running the DELETE command. Doing so ensures that RMAN is aware of
whether a file is on disk.

To see whether a retention policy has been set specifically for the archive redo log files, use this command:

RMAN> show archivelog deletion policy;

To clear the archive deletion policy, do this:

RMAN> configure archivelog deletion policy clear;

Setting the Degree of Parallelism
You can significantly increase the performance of RMAN backup and restore operations if your database server is
equipped with the hardware to support multiple channels. If your server has multiple CPUs and multiple storage
devices (disks or tape devices), then you can improve performance by enabling multiple backup channels.

ChApTeR 17 ■ CoNfIguRINg RMAN

501

If you require better performance from backup and restore operations and have hardware that facilitates parallel
operations, you should enable parallelism and perform tests to determine the optimal degree. If your hardware can
take advantage of parallel RMAN channels, there is little downside to enabling parallelism.

If you have multiple CPUs, but just one storage device location, you can enable multiple channels to write to and
read from one location. For example, if you’re backing up to an FRA, you can still take advantage of multiple channels by
enabling parallelism. Suppose you have four CPUs on a server and want to enable a corresponding degree of parallelism:

RMAN> configure device type disk parallelism 4;

You can also write to separate locations in parallel by configuring multiple channels associated with different
mount points; for example,

RMAN> configure device type disk parallelism 4;
RMAN> configure channel 1 device type disk format '/u01/O12C/rman/rman1_%U.bk';
RMAN> configure channel 2 device type disk format '/u02/O12C/rman/rman2_%U.bk';
RMAN> configure channel 3 device type disk format '/u03/O12C/rman/rman3_%U.bk';
RMAN> configure channel 4 device type disk format '/u04/O12C/rman/rman4_%U.bk';

This code configures four channels that write to separate locations on disk. When you configure separate
channels for different locations, make sure you enable the degree of parallelism to match the number of configured
device channels. If you allocate more channels than the specified degree of parallelism, RMAN only writes to the
number of channels specified by the degree of parallelism and ignores the other channels.

If you need to clear the degree of parallelism, you can do so as follows:

RMAN> configure device type disk clear;

Similarly, to clear the channel device types, use the CLEAR command. This example clears channel 4:

RMAN> configure channel 4 device type disk clear;

Using Backup Sets or Image Copies
When you issue an RMAN BACKUP command, you can specify that the backup be one of the following:

Backup set•	

Image copy•	

A backup set is the default type of RMAN backup. A backup set contains backup pieces, which are binary files
that only RMAN can write to or read from. Backup sets are desirable because they’re generally smaller than the data
files being backed up. If you’re using Oracle Database 10g Release 2 or higher, RMAN automatically attempts to create
backup pieces with unused block compression. In this mode, RMAN reads a bitmap to determine which blocks are
allocated and only reads from those blocks in the data files. This feature is supported only for disk-based backup sets
and Oracle Secure Backup tape backups.

If you’re using a database version prior to Oracle Database 10g Release 2, by default, backup sets are created,
using null block compression (sometimes referred to, more aptly, as block skipping). In this mode, RMAN checks
blocks in the data file; if the blocks haven’t been used, they aren’t backed up.

ChApTeR 17 ■ CoNfIguRINg RMAN

502

Note ■ RMAN can also create backup sets using true binary compression. This is the type of compression you get from
an oS compression utility (such as zip). oracle supports several levels of binary compression. The BASIC compression
 algorithm is available without an additional license. oracle provides further compression features with the oracle
 Advanced Compression option (see the section “Configuring Binary Compression,” later in this chapter, for details on how
to enable binary compression).

When you create a backup as a backup set, the binary backup piece files can only be manipulated by RMAN
processes. Some DBAs view this as a disadvantage because they must use RMAN to back up and restore these files
(you have no direct access to or control over the backup pieces). But, these perceptions aren’t warranted. Unless you
hit a rare bug, RMAN is dependable and works reliably in all backup-and-restore situations.

Contrast the backup set with an image copy. An image copy creates a byte-for-byte identical copy of each data
file. The advantage of creating an image copy is that (if necessary) you can manipulate the image copy without using
RMAN (as with an OS copy utility). Additionally, in the event of a media failure, an image copy is a fast method of
restoring data files, because RMAN only has to copy the file back from the backup location (there is no reconstructing
of the data file, because it’s an exact copy).

I almost always use backup sets for database backups, rather than image copies. Usually, I require some form of
RMAN compression (block skipping). The size of the backup to disk is almost always a concern. Backup sets are more
efficient regarding disk space consumption. Because backup sets can take advantage of RMAN compression, there
is also less I/O involved, compared with an image copy. In many environments, reducing the I/O so as not to impact
other applications is a concern.

However, if you feel that you need direct control over the backup files that RMAN creates, or you’re in an
environment in which the speed of the restore process is paramount, consider using image copies.

Using Incremental Backups
For most of the databases I’m responsible for, I run a daily level 0 backup. I don’t usually implement any type of
incremental backup strategy.

Incremental backup strategies are appropriate for large databases in which only a small portion of the database
blocks change from one backup to the next. If you’re in a data warehouse environment, you may want to consider an
incremental backup strategy, because it can greatly reduce the size of your backups. For example, you may want to run
a weekly level 0 backup and then run a daily level 1 incremental backup.

Note ■ See Chapter 18 for details on how to back up a database using incremental backups.

Using Incrementally Updated Backups
Incrementally updated backups are an efficient way to implement an image copy backup strategy. This technique
instructs RMAN to first create image copies of data files; then, the next time the backup runs, instead of creating a
fresh set of image copies, RMAN makes an incremental backup (changes to blocks since the image copy was created)
and applies that incremental backup to the image copies.

If you have the disk space available for full image copies of your database and you want the flexibility to use the
image copies directly, in the event of a media failure, consider this backup strategy.

ChApTeR 17 ■ CoNfIguRINg RMAN

503

One potential disadvantage of this approach is that if you’re required to restore and recover to some point in the past,
you can only restore and recover to the point at which the image copies were last updated with the incremental backup.

Note ■ See Chapter 18 for details on how to back up a database using incrementally updated backups.

Using Block Change Tracking
This feature keeps track of when a database block changes. The idea is that if you’re using an incremental backup
strategy, you can enhance performance, because by implementing this feature, RMAN doesn’t have to scan each
block (under the high-water mark) in the data files to determine whether it needs to be backed up. Rather, RMAN
only has to access the block change tracking file to find which blocks have changed since the last backup and directly
access those blocks. If you work in a large, data warehouse environment and are using an incremental backup
strategy, consider enabling block change tracking to enhance performance.

Note ■ See Chapter 18 for details on how to implement block change tracking.

Configuring Binary Compression
You can configure RMAN to use true binary compression when generating backup sets. You can enable compression
in one of two ways:

Specify •	 AS COMPRESSED BACKUPSET with the BACKUP command.

Use a one-time •	 CONFIGURE command.

Here is an example of backing up with compression when issuing the BACKUP command:

RMAN> backup as compressed backupset database;

In this example, compression is configured for the disk device:

RMAN> configure device type disk backup type to compressed backupset;

If you need to clear the device-type compression, issue this command:

RMAN> configure device type disk clear;

I’ve found the default compression algorithm to be quite efficient. For a typical database the backups are usually
approximately four to five times smaller than the regular backups. Of course, your compression results may vary,
depending on your data.

Why not compress all backups? Compressed backups consume more CPU resources and take longer to create
and restore from, but they result in less I/O, spread out over a longer period. If you have multiple CPUs, and the speed
of making a backup isn’t an issue, then you should consider compressing your backups.

You can view the type of compression enabled, using the SHOW command:

RMAN> show compression algorithm;

ChApTeR 17 ■ CoNfIguRINg RMAN

504

Here is some sample output:

CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT'
OPTIMIZE FOR LOAD TRUE ; # default

The basic compression algorithm doesn’t require an extra license from Oracle. If you’re using Oracle Database
11g Release 2 or higher, and if you have a license for the Advanced Compression option, then you have available three
additional configurable levels of binary compression; for example,

RMAN> configure compression algorithm 'HIGH';
RMAN> configure compression algorithm 'MEDIUM';
RMAN> configure compression algorithm 'LOW';

In my experience the prior compression algorithms are very efficient, both in compression ratios and time taken
to create backups.

You can query V$RMAN_COMPRESSION_ALGORITHM to view details regarding the compression algorithms available
for your release of the database. To reset the current compression algorithm to the default of BASIC, use the CLEAR
command:

RMAN> configure compression algorithm clear;

Configuring Encryption
You may be required to encrypt backups. Some shops especially require this for backups that contain sensitive data
and that are stored offsite. To use encryption when backing up, you must use the Oracle Enterprise Edition, possess
a license for the Advanced Security option, and use Oracle Database 10g Release 2 or higher.

If you’ve configured a security wallet (see the Oracle Advanced Security Administrator’s Guide, which can be
freely downloaded from the Technology Network area of the Oracle website (http://otn.oracle.com, for details),
you can configure transparent encryption for backups, as shown:

RMAN> configure encryption for database on;

Any backups that you make now will be encrypted. If you need to restore from a backup, it’s automatically
unencrypted (assuming the same security wallet is in place as when you encrypted the backup). To disable
encryption, use the CONFIGURE command:

RMAN> configure encryption for database off;

You can also clear the encryption setting with CLEAR:

RMAN> configure encryption for database clear;

You can query V$RMAN_ENCRYPTION_ALGORITHMS to view details regarding the encryption algorithms available for
your release of the database.

http://otn.oracle.com/

ChApTeR 17 ■ CoNfIguRINg RMAN

505

rUNNING SQL FrOM WIthIN rMaN

Starting with oracle Database 12c, you can run SQL statements (and see the results) directly from within RMAN:

RMAN> select * from v$rman_encryption_algorithms;

prior to 12c, you could run the prior SQL statement with the RMAN sql command, but no results would
be displayed:

RMAN> sql 'select * from v$rman_encryption_algorithms';

The RMAN sql command was meant more for running commands such as ALTER SYTEM:

RMAN> sql 'alter system switch logfile';

Now, in 12c, you can run the SQL directly:

RMAN> alter system switch logfile;

This ability to run SQL from within RMAN is a really nice enhancement; it allows you to see the results of SQL
queries and eliminates the need for specifying the sql keyword as well as for placing quotation marks around the
SQL command itself.

Configuring Miscellaneous Settings
RMAN provides a flexible number of channel configuration commands. You will occasionally need to use them,
depending on special circumstances and the requirements for your database. Here are some of the options:

Maximum backup set size•	

Maximum backup piece size•	

Maximum rate•	

Maximum open files•	

By default the maximum backup set size is unlimited. You can use the MAXSETSIZE parameter with the CONFIGURE
or BACKUP command to specify the overall maximum backup set size. Make sure the value of this parameter is at least
as great as the largest data file being backed up by RMAN. Here is an example:

RMAN> configure maxsetsize to 2g;

Sometimes, you may want to limit the overall size of a backup piece because of physical limitations of storage devices.
Use the MAXPIECESIZE parameter of the CONFIGURE CHANNEL or ALLOCATE CHANNEL command do this; for example,

RMAN> configure channel device type disk maxpiecesize = 2g;

If you need to set the maximum number of bytes that RMAN reads each second on a channel, you can do so,
using the RATE parameter. This configures the maximum read rate for channel 1 to 200MB per second:

configure channel 1 device type disk rate 200M;

ChApTeR 17 ■ CoNfIguRINg RMAN

506

If you have a limit on the number of files you can have open simultaneously, you can specify a maximum open
files number via the MAXOPENFILES parameter:

RMAN> configure channel 1 device type disk maxopenfiles 32;

You may need to configure any of these settings when you need to make RMAN aware of some OS or hardware
limitation. You’ll rarely need to use these parameters but should know of them.

Note ■ New with 12c, you can configure the number of days RMAN will store output logging of commands within
V$RMAN_ouTpuT. You can configure the number of days worth of commands to log via the CoNfIguRe RMAN ouTpuT
To Keep foR command.

Configuring Informational Output
A good practice is to always set the OS NLS_DATE_FORMAT variable (before running RMAN) so that both the date and
time information are displayed in the RMAN log instead of just the date, which is the default:

export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

This is useful during troubleshooting, especially when RMAN fails, because we can use the exact date/time
information for when the RMAN error occurred and compare it with the alert.log and OS/MML logs to verify what
other events occurred in the database/server.

Also consider executing SET ECHO ON to ensure that RMAN commands are displayed within the log before the
command is executed. Execute SHOW ALL as well to display the current settings of RMAN variables. These settings are
useful when troubleshooting and tuning.

CLearING aLL rMaN CONFIGUratIONS

There is no CLEAR ALL command for resetting all RMAN configurations back to the default values. however,
you can easily simulate this by running a script that contains CONFIGURE...CLEAR commands:

CONFIGURE RETENTION POLICY clear;
CONFIGURE BACKUP OPTIMIZATION clear;
CONFIGURE DEFAULT DEVICE TYPE clear;
CONFIGURE CONTROLFILE AUTOBACKUP clear;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK clear;
CONFIGURE DEVICE TYPE DISK clear;
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK clear;
CONFIGURE CHANNEL 1 DEVICE TYPE DISK clear;
CONFIGURE CHANNEL 2 DEVICE TYPE DISK clear;
CONFIGURE CHANNEL 3 DEVICE TYPE DISK clear;
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK clear;
CONFIGURE MAXSETSIZE clear;
CONFIGURE ENCRYPTION FOR DATABASE clear;
CONFIGURE ENCRYPTION ALGORITHM clear;
CONFIGURE COMPRESSION ALGORITHM clear;
CONFIGURE RMAN OUTPUT clear; # 12c
CONFIGURE ARCHIVELOG DELETION POLICY clear;
CONFIGURE SNAPSHOT CONTROLFILE NAME clear;

Depending on what you’ve set (and the version of your database), you may need to set additional configurations.

ChApTeR 17 ■ CoNfIguRINg RMAN

507

Segueing from Decision to Action
Now that you have a good understanding of what types of decisions you should make before implementing RMAN, it’s
instructional to view a script that implements some of these components. I mainly work with Linux/Unix servers. In
these environments, I use shell scripts to automate the RMAN backups. These shell scripts are automated through a
scheduling utility such as cron.

This section contains a typical shell script for RMAN backups. The shell script has line numbers in the output for
reference in the discussion of the architectural decisions I made when writing the script. (If you copy the script, take
out the line numbers before running it.)

Following is the script. Table 17-2 details every RMAN architectural decision point covered in this chapter, how
it’s implemented (or not) in the shell script, and the corresponding line number in the shell script. The script doesn’t
cover every aspect of how to use RMAN. If you use the script, be sure to modify it to meet the requirements and RMAN
standards for your own environment:

 1. #!/bin/bash
 2. HOLDSID=${1} # SID name
 3. PRG=`basename $0`
 4. USAGE="Usage: ${PRG} <database name> "
 5. if [-z "${HOLDSID}"]; then
 6. echo "${USAGE}"
 7. exit 1
 8. fi
 9. #--
 10. # source environment variables (see Chapter 2 for details on oraset)
 11. /etc/oraset $HOLDSID
 12. BOX=`uname -a | awk '{print$2}'`
 13. MAILX='/bin/mailx'
 14. MAIL_LIST='dkuhn@gmail.com'
 15. export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'
 16. date
 17. #--
 18. LOCKFILE=/tmp/$PRG.lock
 19. if [-f $LOCKFILE]; then
 20. echo "lock file exists, exiting..."
 21. exit 1
 22. else
 23. echo "DO NOT REMOVE, $LOCKFILE" > $LOCKFILE
 24. fi
 25. #--
 26. rman nocatalog <<EOF
 27. connect target /
 28. set echo on;
 29. show all;
 30. crosscheck backup;
 31. crosscheck copy;
 32. configure controlfile autobackup on;
 33. configure controlfile autobackup format for device type disk to
 '/u01/O12C/rman/o12c_ctl_%F.bk';
 34. configure retention policy to redundancy 1;
 35. configure device type disk parallelism 2;
 36. configure channel 1 device type disk format '/u01/O12C/rman/o12c_%U.bk';

mailto:dkuhn@gmail.com

ChApTeR 17 ■ CoNfIguRINg RMAN

508

 37. configure channel 2 device type disk format '/u02/O12C/rman/o12c_%U.bk';
 38. backup as compressed backupset incremental level=0 database plus archivelog;
 39. delete noprompt obsolete;
 40. EOF
 41. #--
 42. if [$? -ne 0]; then
 43. echo "RMAN problem..."
 44. echo "Check RMAN backups" | $MAILX -s "RMAN issue: $ORACLE_SID on $BOX" $MAIL_LIST
 45. else
 46. echo "RMAN ran okay..."
 47. fi
 48. #--
 49. if [-f $LOCKFILE]; then
 50. rm $LOCKFILE
 51. fi
 52. #--
 53. date
 54. exit 0

Table 17-2. Implementation of Architectural Decisions

Decision Point Implementation in Script Line Number in Script

 Running the RMAN client
remotely or locally

Running script locally on the database
server

Line 26, connecting locally (not a
network connection)

Specifying the backup user Using SYS to connect Line 27, starting rman connecting
with forward slash (/)

Using online or offline backups Online backup N/A. Database is assumed to be
up during the backup

 Setting the archive redo log
destination and file format

LOG_ARCHIVE_DEST_N and LOG_ARCHIVE_
FORMAT initialization parameters set outside
the script in a database parameter file

N/A; set outside the script

 Configuring the RMAN backup
location and file format

Using the CONFIGURE command directly in
the script

Lines 33–37

 Setting the autobackup of the
control file

Enabled in the script Line 32

 Specifying the location of the
autobackup of the control file

Placed in the same directory as the
backups

Line 33

Backing up archive redo logs Backing up with the rest of the database;
specifically, using the PLUS ARCHIVELOG
clause

Line 38

 Determining the location for the
snapshot control file

Using the default location N/A

Using a recovery catalog Not using Line 26, connecting as nocatalog

Using a media manager Not using Lines 35–37, device type disk

(continued)

ChApTeR 17 ■ CoNfIguRINg RMAN

509

Decision Point Implementation in Script Line Number in Script

 Setting the CONTROL_FILE_
RECORD_KEEP_TIME initialization
parameter

Using the default N/A

 Configuring RMAN’s backup
retention policy

Configuring to a redundancy of 1,
cross-checking, and deleting obsolete
backups and archive redo log files

Line 34, configuring; lines 30 and
31 cross-check; line 39, using
RMAN to delete old files

 Configuring the archive redo logs’
deletion policy

Using the same retention policy applied
to the backups

N/A

 Setting the degree of parallelism Setting a degree of 2 Lines 35–37

 Using backup sets or image copies Using backup sets Line 38

Using incremental backups Incremental level 0, the same as a full
backup

Line 38

 Using incrementally updated
backups

Not using N/A

Using block change tracking Not using N/A

 Configuring binary compression Using basic compression Line 38

Configuring encryption Not using N/A

 Configuring miscellaneous
settings

Not using N/A

 Configuring informational output Setting Lines 15, 28, and 29

Table 17-2. (continued)

A few aspects of this script need further discussion. Line 11 sets the required OS variables by running a script named
oraset (see Chapter 2 for details on running oraset and sourcing OS variables). Many DBAs choose to hard-code OS
variables, such as ORACLE_HOME and ORACLE_SID, into the script. However, you should avoid hard-coding variables and
instead use a script to source the required variables. Running a script is much more flexible, especially when you have
many databases on a box with different versions of Oracle installed.

Line 15 sets the NLS_DATE_FORMAT OS variable to a value that includes hours, minutes, and seconds. This ensures
that when RMAN runs commands that are appropriate, it displays the date output with a time component. This can
be invaluable when you’re debugging and diagnosing issues. By default, RMAN displays only the date component.
Knowing just the date when a command ran is rarely enough information to determine the timing of the commands
as they were executed. At minimum, you need to see hours and minutes (along with the date).

Lines 18–24 check for the existence of a lock file. You don’t want to run this script if it’s already running.
The script checks for the lock file, and, if it exists, the script exits. After the backup has finished, the lock file is
removed (lines 49–51).

Line 28 sets the ECHO parameter to on. This instructs RMAN to display in the output the command before running it.
This can be invaluable for debugging issues. Line 29 displays all the configurable variables. This also comes in handy for
troubleshooting issues because you can see what the RMAN variables were set to before any commands are executed.

Lines 32–37 use the CONFIGURE command. These commands run each time the script is executed. Why do that?
You only need to run a CONFIGURE command once, and it’s stored in the control file—you don’t have to run it again,
right? That is correct. However, I’ve occasionally been burned when a DBA with poor habits configured a setting for
a database and didn’t tell anybody, and I didn’t discover the misconfiguration until I attempted to make another
backup. I strongly prefer to place the CONFIGURE commands in the script so that the behavior is the same, regardless

ChApTeR 17 ■ CoNfIguRINg RMAN

510

of what another DBA may have done outside the script. The CONFIGURE settings in the script also act as a form of
documentation: I can readily look at the script and determine how settings have been configured.

Lines 30 and 31 run CROSSCHECK commands. Why do that? Sometimes, files go missing, or a rogue DBA may remove
archive redo log files from disk with an OS command outside RMAN. When RMAN runs, if it can’t find files that it thinks
should be in place, it throws an error and stops the backup. I prefer to run the CROSSCHECK command and let RMAN
reconcile which files it thinks should be on disk with those that are actually on disk. This keeps RMAN running smoothly.

You run DELETE NOPROMPT OBSOLETE on line 39. This removes all backup files and archive redo log files that have
been marked as OBSOLETE by RMAN, as defined by the retention policy. This lets RMAN manage which files should be
kept on disk. I prefer to run the DELETE command after the backup has finished (as opposed to running it before the
backup). The retention policy is defined as 1, so if you run DELETE after the backup, RMAN leaves one backup copy on
disk. If you run DELETE before the backup, RMAN leaves one copy of the backup on disk. After the backup runs, there
are be two copies of the backup on disk, which I don’t have room for on this server.

You can execute the shell script from the Linux/Unix scheduling utility cron, as follows:

0 16 * * * $HOME/bin/rmanback.bsh INVPRD >$HOME/bin/log/INVPRDRMAN.log 2>&1

The script runs daily at 1600 hours military time on the database server. A log file is created (INVPRDRMAN.log)
to capture any output and errors associated with the RMAN job. See Chapter 21 for details on automating jobs
through cron.

Again, the script in this section is basic; you’ll no doubt want to enhance and modify it to meet your requirements.
This script gives you a starting point, with concrete RMAN recommendations and how to implement them.

Summary
RMAN is Oracle’s flagship B&R tool. If you’re still using the older, user-managed backup technologies, then I strongly
recommend that you switch to RMAN. RMAN contains a powerful set of features that are unmatched by any other
backup tool available. RMAN is easy to use and configure. It will save you time and effort and give you peace of mind
when you’re implementing a rock-solid B&R strategy.

If you’re new to RMAN, it may not be obvious which features should always be enabled and implemented and,
likewise, which aspects you’ll rarely need. This chapter contains a checklist that walks you through each architectural
decision point. You may disagree with some of my conclusions, or some recommendations may not meet your
business requirements—that’s fine. The point is that you should carefully consider each component and how to
implement the features that make sense.

The chapter ended with a real-world example of a script used to implement RMAN in a production environment.
Now that you have a good idea of RMAN’s features and how to use them, you’re ready to start making backups. The next
chapter deals with RMAN backup scenarios.

511

Chapter 18

RMAN Backups and Reporting

Chapter 17 provided the details on configuring RMAN and using specialized features to control the behavior of
RMAN. After you consider which features you require, you’re ready to create backups. RMAN can back up the
following types of files:

Data files•	

Control files•	

Archived redo log files•	

•	 spfiles

Backup pieces•	

For most scenarios, you will use RMAN to back up data files, control files, and archive redo log files. If you have
the autobackup of the control file feature enabled, then RMAN will automatically back up the control file and the
spfile (if you’re using one) when a BACKUP or COPY command is issued. You can also back up the backup piece files
that RMAN has created.

RMAN does not back up Oracle Net files, password files, block change tracking files, flashback logs, or the Oracle
binary files (files created when you installed Oracle). If required, you should put in place OS backups that include
those files.

Tip ■ Consider using Oracle Secure Backup to back up OS files to tape (see Chapter 20 for details).

Also note that RMAN does not back up online redo log files. If you were to back up the online redo log files,
it would be pointless to restore them. The online redo log files contain the latest redo generated by the database.
You would not want to overwrite them from a backup with old redo information. When your database is in
archivelog mode, the online redo log files contain the most recently generated transactions required to perform
complete recovery.

This chapter details many of the features related to running the RMAN BACKUP command. Also covered are
creating a recovery catalog and techniques for logging output and reporting on RMAN backup operations. This
chapter begins by discussing a few common practices used to enhance what is displayed in the RMAN output when
running commands.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

512

Preparing to Run RMAN Backup Commands
Before running RMAN backups, I usually set a few things so as to enhance what is shown in the output. You don’t
need to set these variables every time you log in and run an RMAN command. However, when troubleshooting or
debugging issues, it’s almost always a good idea to perform the following tasks:

Set •	 NLS_DATE_FORMAT OS variable

Set •	 ECHO

Show RMAN variables•	

The bulleted items are discussed in the following sections.

Setting NLS_DATE_FORMAT
Before running any RMAN job, I set the OS variable NLS_DATE_FORMAT to include a time (hours, minutes, seconds)
component; for example,

$ export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

Additionally, if I have a shell script that calls RMAN, I put the prior line directly in the shell script (see the shell
script at the end of Chapter 17 for an example):

NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:ss'

This ensures that when RMAN displays a date, it always includes the hours, minutes, and seconds as part of the
output. By default, RMAN only includes the date component (DD-MON-YY) in the output. For instance, without setting
NLS_DATE_FORMAT, when starting a backup, here is what RMAN displays:

Starting backup at 11-JAN-13

When you set the NLS_DATE_FORMAT OS variable to include a time component, the output will look like this
instead:

Starting backup at 11-jan-2013 16:43:04

When troubleshooting, it’s essential to have a time component so that you can determine how long a command
took to run or how long a command was running before a failure occurred. Oracle Support will almost always ask
you to set this variable to include the time component before capturing output and sending it to them.

The only downside to setting the NLS_DATE_FORMAT is that if you set it to a value unknown to RMAN, connectivity
issues can occur. For example, here the NLS_DATE_FORMAT is set to an invalid value:

$ export NLS_DATE_FORMAT='dd-mon-yyyy hh24:mi:sd'
$ rman target /

When set to an invalid value, you get this error when logging in to RMAN:

RMAN-03999: Oracle error occurred while converting a date: ORA-01821:

To unset the NLS_DATE_FORMAT variable, set it to a blank value, like so:

$ export NLS_DATE_FORMAT=''

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

513

Setting ECHO Setting ECHO
Another value that I always set in any RMAN scripts is the ECHO command, seen here:

RMAN> set echo on;

This instructs RMAN to display the command that it’s running in the output, so you can see what RMAN command
is running. along with any relevant error or output messages associated with the command. This is especially important
when you’re running RMAN commands within scripts, because you’re not directly typing in a command (and may not
know what command was issued within the shell script). For example, without SET ECHO ON, here is what is displayed
in the output for a command:

Starting backup at...

With SET ECHO ON, this output shows the actual command that was run:

backup datafile 4;
Starting backup at...

From the prior output, you can see which command is running, when it started, and so on.

Showing Variables
Another good practice is to run the SHOW ALL command within any script, as follows:

RMAN> show all;

This displays all the RMAN configurable variables. When troubleshooting, you may not be aware of
something that another DBA has configured. This gives you a snapshot of the settings as they were when the
RMAN session executed.

Running Backups
Before you run an RMAN backup, make sure you read Chapter 17 for details on how to configure RMAN with
settings for a production environment. For production databases, I mainly run RMAN from a shell script similar to
the one shown at the end of Chapter 17. Within the shell script, I configure every aspect of RMAN that I want to use
for a particular database. If you run RMAN out of the box, with its default settings, you will be able to back up your
database. However, these settings will not be adequate for most production database applications.

Backing Up the Entire Database
If you’re not sure where RMAN will be backing up your database files, you need to read Chapter 17, because it
describes how to configure RMAN to create the backup files in the location of your choice. Here is how I usually
configure RMAN to write to specific locations on disk (note that the CONFIGURE command must be executed before
you run the BACKUP command):

RMAN> configure channel 1 device type disk format '/u01/O12C/rman/rman1_%U.bk';

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

514

After a backup location is configured, I almost always use a command similar to the one shown next to back up
the entire database:

RMAN> backup incremental level=0 database plus archivelog;

This command ensures that RMAN will back up all data files in the database, all available archive redo logs
generated prior to the backup, and all archive redo logs generated during the backup. This command also ensures that
you have all the data files and archive redo logs that would be required to restore and recover your database.

If you have the autobackup of the control file feature enabled (as shown next):

RMAN> configure controlfile autobackup on;

Then the last task RMAN does as part of the backup is to generate a backup set that contains a backup of the
control file. This control file will contain all information regarding the backup that took place and any archive redo
logs that were generated during the backup.

Tip ■ always enable the autobackup of the control file feature.

There are many nuances to the RMAN BACKUP command. For production databases, I usually back up the
database with the BACKUP INCREMENTAL LEVEL=0 DATABASE PLUS ARCHIVELOG command. That’s generally sufficient.
However, you will encounter many situations in which you need to run a backup that uses a specific RMAN feature,
or you might troubleshoot an issue requiring that you be aware of the other ways to invoke an RMAN backup. These
aspects are discussed in the next several sections.

Full Backup vs. Incremental Level=0
The term RMAN full backup sometimes causes confusion. A more apt way of phrasing this task would be RMAN
backing up all modified blocks within one or more data files. The term full does not mean that all blocks are backed up
or that all data files are backed up. It simply means that all blocks that would be required to rebuild a data file (in the
event of a failure) are being backed up. You can take a full backup of a single data file, and the contents of that backup
piece may be quite a bit smaller than the data file itself.

The term RMAN level 0 incremental backup doesn’t exactly describe itself very well, either. A level 0 incremental
backup is backing up the same blocks as a full backup. In other words, the following two commands back up the same
blocks in a database:

RMAN> backup as backupset full database;
RMAN> backup as backupset incremental level=0 database;

The only difference between the prior two commands is that an incremental level 0 backup can be used in
conjunction with other incremental backups, whereas a full backup cannot participate in an incremental backup
strategy. Therefore, I almost always prefer to use the INCREMENTAL LEVEL=0 syntax (as opposed to a full backup);
it gives me the flexibility to use the level 0 incremental backup along with subsequent incremental level 1 backups.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

515

Backup Sets vs. Image Copies
The default backup mode of RMAN instructs it to back up only blocks that have been used in a data file; these are
known as backup sets. RMAN can also make byte-for-byte copies of the data files; these are known as image copies.
Creating a backup set is the default type of backup that RMAN creates. The next command creates a backup set
backup of the database:

RMAN> backup database;

If you prefer, you can explicitly place the AS BACKUPSET command when creating backups:

RMAN> backup as backupset database;

You can instruct RMAN to create image copies by using the AS COPY command. This command creates image
copies of every data file in the database:

RMAN> backup as copy database;

Because image copies are identical copies of the data files, they can be directly accessed by the DBA with OS
commands. For example, say you had a media failure, and you didn’t want to use RMAN to restore an image copy.
You could use an OS command to copy the image copy of a data file to a location where it could be used by the
database. In contrast, a backup set consists of binary files that only the RMAN utility can write to or read from.

I prefer to use backup sets when working with RMAN. The backup sets tend to be smaller than the data files and
can have true binary compression applied to them. Also, I don’t find it inconvenient to use RMAN as the mechanism
for creating backup files that only RMAN can restore. Using RMAN with backup sets is efficient and very reliable.

Backing Up Tablespaces
RMAN has the ability to back up at the database level (as shown in the prior section), the tablespace level, or, even
more granularly, at the data file level. When you back up a tablespace, RMAN backs up any data files associated with
the tablespaces(s) that you specify. For instance, the following command will back up all the data files associated with
the SYSTEM and SYSAUX tablespaces:

RMAN> backup tablespace system, sysaux;

One scenario in which I back up at the tablespace level is if I’ve recently created a new tablespace and want to
take a backup of just the data files associated with the newly added tablespace. Note that when B&R issues, it’s often
more efficient to work with one tablespace (because it’s generally much faster to back up one tablespace than the
entire database).

Backing Up Data Files
You may occasionally need to back up individual data files. For example, when troubleshooting issues with backups,
it’s often helpful to attempt to successfully backup one data file. You can specify data files by file name or by file
number, as follows:

RMAN> backup datafile '/u01/dbfile/o12c/system01.dbf';

In this example, file numbers are specified:

RMAN> backup datafile 1,4;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

516

Here are some other examples of backing up data files, using various features:

RMAN> backup as copy datafile 4;
RMAN> backup incremental level 1 datafile 4;

Tip ■ use the rMaN REPORT SCHEMA command to list tablespace, data file name, and data file number information.

Backing Up the Control File
The most reliable way to back up the control file is to configure the autobackup feature:

RMAN> configure controlfile autobackup on;

This command ensures that the control file is automatically backed up when a BACKUP or COPY command is
issued. I usually enable the autobackup of the control file feature and then never have to worry about explicitly issuing
a separate command to back up the control file. When in this mode the control file is always created in its own backup
set and backup piece after the data file backup pieces have been created.

If you need to back up the control file manually, you can do so like this:

RMAN> backup current controlfile;

The location of the backup is either a default OS location, the FRA (if using), or a manually configured location.
As shown in Chapter 17, I prefer to set the location of the control file backup piece to the same location as that of the
data file backups:

RMAN> configure controlfile autobackup format for device type disk to
'/u01/O12C/rman/rman_ctl_%F.bk';

Backing up the spfile
If you have enabled the autobackup of the control file feature, the spfile will be backed up automatically (along with
the control file) anytime a BACKUP or COPY command is issued. If you need to back up the spfile manually, use the
following command:

RMAN> backup spfile;

The location of the file that contains the backup of the spfile is dependent on what you have configured for
the autobackup of the control file (see the previous section for an example). By default, if you don’t use an FRA,
and you haven’t explicitly configured a location via a channel, then for Linux/Unix servers, the backup goes to the
ORACLE_HOME/dbs directory.

Note ■ rMaN can only back up the spfile if the instance was started using a spfile.

Backing Up Archive Redo Logs
I don’t usually back up the archive redo logs separately from the database backups. As mentioned earlier, I normally
back up the database files and the archive redo log files by using the following command:

RMAN> backup incremental level=0 database plus archivelog;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

517

However, you will occasionally find yourself in a situation in which you need to take a special, one-off backup
of the archive redo logs. You can issue the following command to back up the archive redo logs files:

RMAN> backup archivelog all;

If you have a mount point that is nearly full, and you determine that you want to back up the archive redo logs
(so that they exist in a backup file), but then you want to immediately delete the files (that were just backed up) from
disk, you can use the following syntax to back up the archive redo logs and then have RMAN delete them from the
storage media:

RMAN> backup archivelog all delete input;

Listed next are some other ways in which you can back up the archive redo log files:

RMAN> backup archivelog sequence 300;
RMAN> backup archivelog sequence between 300 and 400 thread 1;
RMAN> backup archivelog from time "sysdate-7" until time "sysdate-1";

If an archive redo log has been removed from disk manually via an OS delete command, RMAN will throw the
following error when attempting to back up the nonexistent archive redo log file:

RMAN-06059: expected archived log not found, loss of archived log compromises recoverability

In this situation, first run a CROSSCHECK command to let RMAN know which files are physically available on disk:

RMAN> crosscheck archivelog all;

Backing Up FRA
If you use an FRA, one nice RMAN feature is that you can back up all the files in that location with one command.
If you’re using a media manager and have a tape backup channel enabled, you can back up everything in the FRA
to tape, like this:

RMAN> backup device type sbt_tape recovery area;

You can also back up the FRA to a location on disk. Use the TO DESTINATION command to accomplish this:

RMAN> backup recovery area to destination '/u01/O12C/fra_back';

RMAN will automatically create directories as required beneath the directory specified by the TO DESTINATION
command.

Note ■ the format of the subdirectory under the directory <TO_DESTINATION> is
db_uniuqe_name/backupset/YYYY_MM_DD.

RMAN will back up full backups, incremental backups, control file autobackups, and archive redo log files.
Keep in mind that flashback logs, online redo log files, and the current control file are not backed up.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

518

Excluding Tablespaces from Backups
Suppose you have a tablespace that contains noncritical data, and you don’t ever want to back it up. RMAN can be
configured to exclude such tablespaces from the backup. To determine if RMAN is currently configured to exclude any
tablespaces, run this command:

RMAN> show exclude;
RMAN configuration parameters for database with db_unique_name O12C are:
RMAN configuration has no stored or default parameters

Use the EXCLUDE command to instruct RMAN as to which tablespaces not to back up:

RMAN> configure exclude for tablespace users;

Now, for any database-level backups, RMAN will exclude the data files associated with the USERS tablespace. You
can instruct RMAN to back up all data files and any excluded tablespaces with this command:

RMAN> backup database noexclude;

You can clear the exclude setting via the following command:

RMAN> configure exclude for tablespace users clear;

Backing Up Data Files Not Backed Up
Suppose you have just added several data files to your database, and you want to ensure that you have a backup of
them. You can issue the following command to instruct Oracle to back up data files that have not yet been backed up:

RMAN> backup database not backed up;

You can also specify a time range for such files that have not yet been backed up. Say you discover that your
backups have not been running for the last several days, and you want to back up everything that hasn’t been backed
up within the last 24 hours. The following command backs up all data files that have not been backed up within the
last day:

RMAN> backup database not backed up since time='sysdate-1';

The prior command is also useful if, for any reason (a power failure in the data center, your backup directory’s
becoming full during backups, and so on), your backups aborted. After you have resolved the issue that caused your
backup job to fail, you can issue the previous command, and RMAN will back up only the data files that have not been
backed up in the specified time period.

Skipping Read-Only Tablespaces
Because data in read-only tablespaces can’t change, you may only want to back up read-only tablespaces once and
then skip them in subsequent backups. Use the SKIP READONLY command to achieve this:

RMAN> backup database skip readonly;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

519

Keep in mind that when you skip read-only tablespaces, you’ll need to keep available a backup that contains
these tablespaces. As long as you only issue the RMAN command DELETE OBSOLETE, the RMAN backup set
containing the read-only tablespaces will be retained and not deleted, even if that RMAN backup set contains other
read-write tablespaces.

Skipping Offline or Inaccessible Files
Suppose you have one data file that is missing or corrupt, and you don’t have a backup of it, so you can’t restore and
recover it. You can’t start your database in this situation:

SQL> startup;
ORA-01157: cannot identify/lock data file 6 - see DBWR trace file
ORA-01110: data file 6: '/u01/dbfile/o12c/reg_data01.dbf'

In this scenario, you’ll have to take the data file offline before you can start your database:

SQL> alter database datafile '/u01/dbfile/o12c/reg_data01.dbf' offline for drop;

Now, you can open your database:

SQL> alter database open;

Suppose you then attempt to run an RMAN backup:

RMAN> backup database;

The following error is thrown when RMAN encounters a data file that it can’t back up:

RMAN-03002: failure of backup command at ...
RMAN-06056: could not access datafile 6

In this situation, you’ll have to instruct RMAN to exclude the offline data file from the backup. The SKIP OFFLINE
command instructs RMAN to ignore data files with an offline status:

RMAN> backup database skip offline;

If a file has gone completely missing, use SKIP INACCESSIBLE to instruct RMAN to ignore files that are not
available on disk. This might happen if the data file was deleted using an OS command. Here is an example of
excluding inaccessible data files from the RMAN backup:

RMAN> backup database skip inaccessible;

You can skip read-only, offline, and inaccessible data files with one command:

RMAN> backup database skip readonly skip offline skip inaccessible;

When dealing with offline and inaccessible files, you should figure out why the files are offline or inaccessible
and try to resolve any issues.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

520

Backing Up Large Files in Parallel
Normally, RMAN will only use one channel to back up a single data file. When you enable parallelism, it allows RMAN
to spawn multiple processes to back up multiple files. However, even when parallelism is enabled, RMAN will not use
parallel channels simultaneously to back up one data file.

Starting with Oracle Database 11g, you can instruct RMAN to use multiple channels to back up one data file in
parallel. This is known as a multisection backup. This feature can speed up the backups of very large data files. Use the
SECTION SIZE parameter to make a multisection backup. The following example configures two parallel channels to
back up one file:

RMAN> configure device type disk parallelism 2;
RMAN> configure channel 1 device type disk format '/u01/O12C/rman/r1%U.bk';
RMAN> configure channel 2 device type disk format '/u02/O12C/rman/r2%U.bk';
RMAN> backup section size 2500M datafile 10;

When this code runs, RMAN will allocate two channels to back up the specified data file in parallel.

Note■ if you specify a section size greater than the size of the data file, rMaN will not back up the file in parallel.

Adding RMAN Backup Information to the Repository
Suppose you’ve had to re-create your control file. The process of re-creating the control file wipes out any information
regarding RMAN backups. However, you want to make the newly created control file aware of RMAN backups sitting
on disk. In this situation, use the CATALOG command to populate the control file with RMAN metadata. For example,
if all the RMAN backup files are kept in the /u01/O12C/rman directory, you can make the control file aware of these
backups files in the directory, as follows:

RMAN> catalog start with '/u01/O12C/rman';

This instructs RMAN to look for any backup pieces, image copies, control file copies, and archive redo logs in
the specified directory, and, if found, to populate the control file with the appropriate metadata. For this example two
backup piece files are found in the given directory:

searching for all files that match the pattern /u01/O12C/rman

List of Files Unknown to the Database
=====================================
File Name: /u01/O12C/rman/r1otlns90o_1_1.bk
File Name: /u01/O12C/rman/r1xyklnrveg_1_1.bk

Do you really want to catalog the above files (enter YES or NO)?

If you enter YES, then metadata regarding the backup files will be added to the control file. In this way, the
CATALOG command allows you to make the RMAN repository (control file and recovery catalog) aware of files that
RMAN can work with for B&R.

You can also instruct RMAN to catalog any files in the FRA that the control file isn’t currently aware of, like this:

RMAN> catalog recovery area;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

521

Additionally, you can catalog specific files. This example instructs RMAN to add metadata to the control file for a
specific backup piece file:

RMAN> catalog backuppiece '/u01/O12C/rman/r159nv562v_1_1.bk';

Taking Backups of Pluggable Databases
Starting with Oracle Database 12c, you can create pluggable databases within a root container database (see Chapter 23
for more details). If you’re using this option, there are a few features to be aware of in regard to backups:

While connected to the root container, you can back up all the data files within the database or •	
just the root database data files; a specific pluggable database; or specific tablespaces or data
files, or a combination of these.

While connected to a pluggable database, you can only back up data files associated with that •	
database.

The bulleted items are detailed in the following two sections.

While Connected to the Root Container
Suppose you’re connected to the root container as SYS and want to back up all data files (including any data files with
associated pluggable databases). First, verify that you are indeed connected to the root container as SYS:

RMAN> SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,
 SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,
 SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') AS cur_user
 FROM DUAL;

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER
-------------------- -------------------- --------------------
1 CDB$ROOT SYS

Now, to back up all data files, both in the root container and in any associated pluggable databases,
do so as follows:

RMAN> backup database;

If you want to back up only the data files associated with the root container, then specify ROOT:

RMAN> backup database root;

You can also back up a specific pluggable database:

RMAN> backup pluggable database salespdb;

Additionally, you can back up specific tablespaces within a pluggable database:

RMAN> backup tablespace SALESPDB:SALES;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

522

And, you can specify the file name to back up any data file within the root container or associated pluggable databases:

RMAN> backup datafile '/ora01/app/oracle/oradata/CDB/salespdb/sales01.dbf';

While Connected to a Pluggable Database
First, start RMAN, and connect to the pluggable database you want to back up. You must connect as a user with
SYSDBA or SYSBACKUP privileges. Also, there must be a listener running and a password file in place. This example
connects to the SALESPDB pluggable database:

$ rman target sys/foo@salespdb

Once connected to a pluggable database, you can only back up data files specific to that database. Therefore, for
this example, the following command takes a backup of just data files associated with the SALESPDB pluggable database:

RMAN> backup database;

This example backs up the data files associated with the pluggable database SYSTEM tablespace:

RMAN> backup tablespace system;

I should emphasize again that when you are connected directly to a pluggable database, you can only back up
data files associated with that database. You can’t back up data files associated with the root container or with any
other pluggable databases within the container. Figure 18-1 illustrates this concept. A connection as SYSDBA to the
SALESPDB pluggable database can only back up and view data files related to that database. The SYSDBA connection
can’t see outside its pluggable box in regard to data files and RMAN backups of data files. In contrast, the SYSDBA
connection to the root container can back up all data files (root, seed, and all pluggable databases) as well as access
RMAN backups that were initiated from a connection to a pluggable database.

root
data files

system.dbf
sysaux.dbf
undo.dbf

seed
data files

system.dbf
sysaux.dbf

All
RMAN

backup
files

salespdb
SYSDBA

salespdb
RMAN

backups

salespdb
data files

system.dbf
sysaux.dbf

sales_data.dbf

CDB root
SYSDBA

Figure 18-1. Purview of a SYSDBA connection to root container vs. a SYSDBA connection to a pluggable database

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

523

Creating Incremental Backups
RMAN has three separate and distinct incremental backup features:

Incremental-level backups•	

Incrementally updating backups•	

Block change tracking•	

With incremental-level backups, RMAN only backs up the blocks that have been modified since a previous
backup. Incremental backups can be applied to the entire database, tablespaces, or data files. Incremental-level
backups are the most commonly used incremental feature with RMAN.

Incrementally updating backups is a separate feature from incremental-level backups. These backups take image
copies of the data files and then use incremental backups to update the image copies. This gives you an efficient way
to implement and maintain image copies as part of your backup strategy. You only take the image copy backup once,
and then use incremental backups to keep the image copies updated with the most recent transactions.

Block change tracking is another feature designed to speed up the performance of incremental backups. The idea
here is that an OS file is used to record which blocks have changed since the last backup. RMAN can use the block
change tracking file to quickly identify which blocks need to be backed up when performing incremental backups.
This feature can greatly improve the performance of incremental backups.

Taking Incremental-Level Backups
RMAN implements incremental backups through levels. Starting with Oracle Database 10g, there are only two
documented levels of incremental backups: level 0 and level 1. Prior versions of Oracle offer five levels, 0–4. These
levels (0–4) are still available but are not specified in the Oracle documentation. You must first take a level 0
incremental backup to establish a baseline, after which you can take a level 1 incremental backup.

Note ■ a full backup backs up the same blocks as a level 0 backup. however, you can’t use a full backup with
 incremental backups. Furthermore, you have to start an incremental backup strategy with a level 0 backup. if you attempt
to take a level 1 backup, and no level 0 exists, rMaN will automatically take a level 0 backup.

Here is an example of taking an incremental level 0 backup:

RMAN> backup incremental level=0 database;

Suppose for the next several backups you want to back up only the blocks that have changed since the last
incremental backup. This line of code takes a level 1 backup:

RMAN> backup incremental level=1 database;

There are two different types of incremental backups: differential and cumulative. Which type you use depends
on your requirements. Differential backups (the default) are smaller but take more time to recover from. Cumulative
backups are larger than differential backups but require less recovery time.

A differential incremental level 1 backup instructs RMAN to back up blocks that have changed since the last
level 1 or level 0 backup, whereas a cumulative incremental level 1 backup instructs RMAN to back up blocks
that have changed since the last level 0 backup. Cumulative incremental backups, in effect, ignore any level 1
incremental backups.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

524

Note ■ the rMaN incremental level 0 backups are used to restore the data files, whereas the rMaN incremental
level 1 backups are used to recover the data files.

When using incremental backups, I almost always use the default, of differential. Usually, I don’t worry about the
differences between incremental and cumulative backups. If you require cumulative backups, you must specify
the key word CUMULATIVE. Here is an example of taking a cumulative level 1 backup:

RMAN> backup incremental level=1 cumulative database;

Here are some examples of taking incremental backups at a more granular level than the database:

RMAN> backup incremental level=0 tablespace sysaux;
RMAN> backup incremental level=1 tablespace sysaux plus archivelog;
RMAN> backup incremental from scn 4343352 datafile 3;

Making Incrementally Updating Backups
The basic idea behind an incrementally updating backup is to create image copies of data files and then use incremental
backups to update the image copies. In this manner, you have image copies of your database that are kept somewhat
current. This can be an efficient way to combine image copy backups with incremental backups.

To understand how this backup technique works, you’ll need to inspect the commands that perform an
incrementally updating backup. The following lines of RMAN code are required to enable this feature:

run{recover copy of database with tag 'incupdate';
backup incremental level 1 for recover of copy with tag 'incupdate' database;}

In the first line a tag is specified (this example uses incupdate). You can use whatever you want for the tag name;
the tag name lets RMAN associate the backup files being used each time the commands are run. This code will
perform as follows the first time you run the script:

•	 RECOVER COPY generates a message saying there’s nothing for it to do.

If no image copies exist, the •	 BACKUP INCREMENTAL creates an image copy of the database
data files.

You should see messages such as this in the output when the RECOVER COPY and BACKUP INCREMENTAL commands
run the first time:

no copy of datafile 1 found to recover
...
no parent backup or copy of datafile 1 found
...

The second time you run the incrementally updating backup, it does as follows:

•	 RECOVER COPY again generates a message saying it has nothing to do.

•	 BACKUP INCREMENTAL makes an incremental level 1 backup and assigns it the tag name
specified; this backup will subsequently be used by the RECOVER COPY command.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

525

The third time you run the incrementally updating backup, it does this:

Now that an incremental backup has been created, the •	 RECOVER COPY applies the incremental
backup to the image copies.

•	 BACKUP INCREMENTAL makes an incremental level 1 backup and assigns it the tag name
specified; this backup will subsequently be used by the RECOVER COPY command.

Going forward, each time you run the two lines of code, you will have a regularly repeating backup pattern. If you
use image copies for backups, you might consider using an incrementally updating backup strategy, because with
it, you avoid creating entire image copies whenever the backup runs. The image copies are updated each time the
backup runs with the incremental changes from the previous backup.

Using Block Change Tracking
Block change tracking is the process in which a binary file is used to record changes to database data file blocks. The
idea is that incremental backup performance can be improved because RMAN can use the block change tracking file
to pinpoint which blocks have changed since the last backup. This saves a great deal of time because otherwise RMAN
would have to scan all the blocks that had been backed up to determine if they’d changed since the last backup.

Listed next are the steps for enabling block change tracking:

1. If not already enabled, set the DB_CREATE_FILE_DEST parameter to a location (that already
exists on disk); for example,

SQL> alter system set db_create_file_dest='/u01/O12C/bct' scope=both;

2. Enable block change tracking via the ALTER DATABASE command:

SQL> alter database enable block change tracking;

This example creates a file with an OMF name in the directory specified by DB_CREATE_FILE_DEST. In this
example the file created is given this name:

/u01/O12C/bct/O12C/changetracking/o1_mf_8h0wmng1_.chg

You can also enable block change tracking by directly specifying a file name, which does not require that
DB_CREATE_FILE_DEST be set; for example,

SQL> alter database enable block change tracking using file '/u01/O12C/bct/btc.bt';

You can verify the details of block change tracking by running the following query:

SQL> select * from v$block_change_tracking;

For space-planning purposes, the size of the block change tracking file is approximately 1/30,000 the size of
the total size of the blocks being tracked in the database. Therefore, the size of the block change tracking file is
proportional to the size of the database and not to the amount of redo generated.

To disable block change tracking, run this command:

SQL> alter database disable block change tracking;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

526

Note ■ When you disable block change tracking, Oracle will automatically delete the block change tracking file.

Checking for Corruption in Data Files and Backups
You can use RMAN to check for corruption in data files, archive redo logs, and control files. You can also verify
whether a backup set is restorable. The RMAN VALIDATE command is used to perform these types of integrity checks.
There are three ways you can run the VALIDATE command:

•	 VALIDATE

•	 BACKUP...VALIDATE

•	 RESTORE...VALIDATE

Note ■ the stand-alone VALIDATE command is available in Oracle database 11g and higher. the BACKUP...VALIDATE
and RESTORE...VALIDATE commands are available in Oracle database 10g and higher.

Using VALIDATE
The VALIDATE command can be used stand-alone to check for missing files or physical corruption in database data
files, archive redo log files, control files, spfiles, and backup set pieces. For example, this command will validate all
data files and the control files:

RMAN> validate database;

You can also validate just the control file, as follows:

RMAN> validate current controlfile;

You can validate the archive redo log files, like so:

RMAN> validate archivelog all;

You may want to combine all the prior integrity checks into one command, as shown:

RMAN> validate database include current controlfile plus archivelog;

Under normal conditions the VALIDATE command only checks for physical corruption. You can specify that you
also want to check for logical corruption by using the CHECK LOGICAL clause:

RMAN> validate check logical database include current controlfile plus archivelog;

VALIDATE has a variety of uses. Here are a few more examples:

RMAN> validate database skip offline;
RMAN> validate copy of database;
RMAN> validate tablespace system;
RMAN> validate datafile 3 block 20 to 30;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

527

RMAN> validate spfile;
RMAN> validate backupset <primary_key_value>;
RMAN> validate recovery area;

If you’re using the Oracle Database 12c pluggable database feature, you can validate specific databases within the
container. While connected as SYS to the root container, validate any associated pluggable databases:

RMAN> validate pluggable database salespdb;

If RMAN detects any corrupt blocks, the V$DATABASE_BLOCK_CORRUPTION is populated. This view contains
information on the file number, block number, and number of blocks affected. You can use this information to
perform a block-level recovery (see Chapter 19 for more details).

Note ■ physical corruption is a change to a block, such that its contents don’t match the physical format that Oracle
expects. By default, rMaN checks for physical corruption when backing up, restoring, and validating data files. With
logical corruption, a block is in the correct format, but the contents aren’t consistent with what Oracle expects, such as
in a row piece or an index entry.

Using BACKUP…VALIDATE
The BACKUP...VALIDATE command is very similar to the VALIDATE command, in that it can check to see if data files are
available and if the data files contain any corrupt blocks; for example,

RMAN> backup validate database;

This command doesn’t actually create any backup files; it only reads the data files and checks for corruption.
Like the VALIDATE command, BACKUP VALIDATE, by default, only checks for physical corruption. You can instruct it to
check as well for logical corruption, as shown:

RMAN> backup validate check logical database;

Here are some variations of the BACKUP...VALIDATE command:

RMAN> backup validate database current controlfile;
RMAN> backup validate check logical database current controlfile plus archivelog;

Also like the VALIDATE command, BACKUP...VALIDATE will populate V$DATABASE_BLOCK_CORRUPTION if it detects
any corrupt blocks. The information in this view can be used to determine which blocks can potentially be restored by
block-level recovery (see Chapter 19 for more details.

Using RESTORE…VALIDATE
The RESTORE...VALIDATE command is used to verify backup files that would be used in a restore operation. This
command validates backup sets, data file copies, and archive redo log files:

RMAN> restore validate database;

No actual files are restored when using RESTORE...VALIDATE. This means that you can run the command while
the database is online and available.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

528

Using a Recovery Catalog
When you use a recovery catalog, it’s possible to create the recovery catalog user in the same database, on the same
server, as your target database. However, that approach isn’t recommended because you don’t want the availability of
your target database or of the server on which the target database resides to affect the recovery catalog. Therefore,
you should create the recovery catalog database on a server different from that of your target database.

Creating a Recovery Catalog
When I use a recovery catalog, I prefer to have a dedicated database that is used only for the recovery catalog. This
ensures that the recovery catalog isn’t affected by any maintenance or downtime required by another application
(and vice versa).

Listed next are the steps for creating a recovery catalog:

1. Create a database on a server different from that of your target database, to be used
for the recovery catalog. Make sure the database is adequately sized. I’ve found that
Oracle’s recommended sizes are usually much too small. Here are some adequate
recommendations:

SYSTEM tablespace: 500MB

SYSAUX tablespace: 500MB

TEMP tablespace: 500MB

UNDO tablespace: 500MB

Online redo logs: 25MB each; three groups, multiplexed with two members per group

RECCAT tablespace: 500MB

2. Create a tablespace to be used by the recovery catalog user. I recommend giving the
tablespace a name such as RECCAT so that it’s readily identifiable as the tablespace that
contains the recovery catalog metadata:

CREATE TABLESPACE reccat
 DATAFILE '/u01/dbfile/O12C/reccat01.dbf' SIZE 500M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128k
 SEGMENT SPACE MANAGEMENT AUTO;

3. Create a user that will own the tables and other objects used to store the target database
metadata. I recommend giving the recovery catalog user a name such as RCAT so that
it’s readily identifiable as the user that owns the recovery catalog objects. Also, grant the
RECOVERY_CATALOG_OWNER role to the RCAT user as well as CREATE SESSION:

CREATE USER rcat IDENTIFIED BY foo
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE reccat
QUOTA UNLIMITED ON reccat;
--
GRANT RECOVERY_CATALOG_OWNER TO rcat;
GRANT CREATE SESSION TO rcat;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

529

4. Connect through RMAN as RCAT, and create the recovery catalog objects:

$ rman catalog rcat/foo

5. Now, run the CREATE CATALOG command:

RMAN> create catalog;
RMAN> exit;

6. This command may take a few minutes to run. When it’s finished, you can verify that the
tables were created with the following query:

$ sqlplus rcat/foo
SQL> select table_name from user_tables;

7. Here is a small sample of the output:

TABLE_NAME

DB
NODE
CONF
DBINC

Registering a Target Database
Now, you can register a target database with the recovery catalog. Log in to the target database server. Ensure that you
can establish Oracle Net connectivity to the recovery catalog database. For instance, one approach is to populate the
TNS_ADMIN/tnsnames.ora file with an entry that points to the remote database. On the target database server, register
the recovery catalog, as follows:

$ rman target / catalog rcat/foo@rcat

When you connect, you should see verification that you’re connecting to both the target and the recovery catalog:

connected to target database: O12C (DBID=3423216220)
connected to recovery catalog database

Next, run the REGISTER DATABASE command:

RMAN> register database;

Now, you can run backup operations and have the metadata about the backup tasks written to both the control
file and the recovery catalog. Make sure you connect to the recovery catalog, along with the target database, each time
you run RMAN commands:

$ rman target / catalog rcat/foo@rcat
RMAN> backup database;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

530

Backing Up the Recovery Catalog
Make certain you include a strategy for backing up and recovering the recovery catalog database. For the most
protection, be sure the recovery catalog database is in archivelog mode, and use RMAN to back up the database.

You can also use a tool such as Data Pump to take a snapshot of the database. The downside to using Data Pump
is that you can potentially lose some information in the recovery catalog that was created after the Data Pump export.

Keep in mind that if you experience a complete failure on your recovery catalog database server, you can still use
RMAN to back up your target databases; you just can’t connect to the recovery catalog. Therefore, any scripts that
instruct RMAN to connect to the target and the recovery catalog must be modified.

Also, if you completely lose a recovery catalog and don’t have a backup, one option is to re-create it from scratch.
As soon as you re-create it, you reregister the target databases with the recovery catalog. You lose any long-term
historical recovery catalog metadata.

Synchronizing the Recovery Catalog
You may have an issue with the network that renders the recovery catalog inaccessible. In the meantime, you connect
to your target database and perform backup operations. Sometime later, the network issues are resolved, and you can
again connect to the recovery catalog.

In this situation, you need to resynchronize the recovery catalog with the target database so that the recovery
catalog is aware of any backup operations that aren’t stored in it. Run the following command to ensure that the
recovery catalog has the most recent backup information:

$ rman target / catalog rcat/foo@rcat
RMAN> resync catalog;

Keep in mind that you have to resynchronize the catalog only if, for some reason, you’re performing backup
operations without connecting to the catalog. Under normal conditions, you don’t have to run the RESYNC command.

Recovery Catalog Versions
I recommend that you create a recovery catalog for each version of the target databases that you’re backing up. Doing
so will save you some headaches with compatibility issues and upgrades. I’ve found it easier to use a recovery catalog
when the database version of the rman client is the same version used when creating the catalog.

Yes, having multiple versions of the recovery catalog can cause some confusion. However, if you’re in an
environment in which you have several different versions of the Oracle database, then multiple recovery catalogs may
be more convenient.

Dropping a Recovery Catalog
If you determine that you’re not using a recovery catalog and that you no longer need the data, you can drop it. To do
so, connect to the recovery catalog database as the catalog owner, and issue the DROP CATALOG command:

$ rman catalog rcat/foo
RMAN> drop catalog;

You’re prompted as follows:

recovery catalog owner is RCAT
enter DROP CATALOG command again to confirm catalog removal

If you enter the DROP CATALOG command again, all the objects in the recovery catalog are removed from the
recovery catalog database.

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

531

The other way to drop a catalog is to drop the owner. To do so, connect to the recovery catalog as a user with DBA
privileges, and issue the DROP USER statement:

$ sqlplus system/manager
SQL> drop user rcat cascade;

SQL*Plus doesn’t prompt you twice; it does as you instructed and drops the user and its objects. Again, the only
reason to do this is when you’re certain you don’t need the recovery catalog or its data any longer. Use caution when
dropping a user or the recovery catalog: I recommend that you take a Data Pump export of the recovery catalog owner
before dropping it.

Logging RMAN Output
When troubleshooting RMAN output or checking the status of a backup job, it’s essential to have a record of what
RMAN ran and the status of each command. There are several methods for logging RMAN output. Some are built-in
aspects of the Linux/Unix OS. Others are RMAN-specific features:

Linux/Unix redirect output to file•	

Linux/Unix logging commands•	

RMAN •	 SPOOL LOG command

•	 V$RMAN_OUTPUT view

These logging features are discussed in the next sections.

Redirecting Output to a File
I run almost all RMAN backup jobs from shell scripts. The shell scripts are usually run automatically from a scheduling
tool such as cron. When running RMAN commands in this fashion, I always capture the output by instructing the
shell command to redirect standard output messaging and standard error messaging to a log file. This is done with
the redirection (>) character. This example runs a shell script (rmanback.bsh) and redirects both standard output and
standard error output to a log file named rmanback.log:

$ rmanback.bsh 1>/home/oracle/bin/log/rmanback.log 2>&1

Here, 1> instructs standard output to be redirected to the specified file. The 2>&1 instructs the shell script to send
standard error output to the same location as standard output.

Tip ■ For further details on how dBas use shell scripts and Linux features, see Linux Recipes for Oracle DBAs by darl
kuhn (apress, 2008).

Capturing Output with Linux/Unix Logging Commands
You can instruct Linux/Unix to create a log file to capture any output that is also being displayed on your screen. This
can be done in one of two ways:

•	 tee

•	 script

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

532

Capturing Output with tee
When you start RMAN, you can send the output you see on your screen to an OS text file, using the tee command:

$ rman | tee /tmp/rman.log

Now, you can connect to the target database and run commands. All the output seen on your screen will be
logged to the /tmp/rman.log file:

RMAN> connect target /
RMAN> backup database;
RMAN> exit;

The tee party session stops writing to the log file when you exit RMAN.

Capturing Output with script
The script command is useful because it instructs the OS to log any output that appears at the terminal to a log file.
To capture all output, run the script command before connecting to RMAN:

$ script /tmp/rman.log
Script started, file is /tmp/rman.log
$ rman target /
RMAN> backup database;
RMAN> exit;

To end a script session, press Ctrl+D, or type exit. The /tmp/rman.log file will contain all output that was
displayed on your screen. The script command is useful when you need to capture all the output from a particular
time range. For example, you may be running RMAN commands, exiting from RMAN, running SQL*Plus commands,
and so on. The script session lasts from the point at which you start script to the point at which you press Ctrl+D.

Logging Output to a File
An easy way to capture RMAN output is to use the SPOOL LOG command to send the output to a file. This example
spools a log file from within RMAN:

RMAN> spool log to '/tmp/rmanout.log'
RMAN> set echo on;
RMAN> <run RMAN commands>
RMAN> spool log off;

By default the SPOOL LOG command will overwrite an existing file. If you want to append to the log file, use the
keyword APPEND:

RMAN> spool log to '/tmp/rmanout.log' append

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

533

You can also direct output to a log file when starting RMAN on the command line, which will overwrite an
existing file:

$ rman target / log /tmp/rmanout.log

You can also append to the log file, as follows:

$ rman target / log /tmp/rmanout.log append

When you use SPOOL LOG as shown in the previous examples, the output goes to a file and not to your terminal.
Therefore, I hardly ever use SPOOL LOG when running RMAN interactively. The command is mainly a tool for
capturing output when running RMAN from scripts.

Querying for Output in the Data Dictionary
If you don’t capture any RMAN output, you can still view the most recent RMAN output by querying the data
dictionary. The V$RMAN_OUTPUT view contains messages recently reported by RMAN:

select sid, recid, output
from v$rman_output
order by recid;

The V$RMAN_OUTPUT view is an in-memory object that holds up to 32,768 rows. Information in this view is cleared
out when you stop and restart your database. The view is handy when you’re using the RMAN SPOOL LOG command to
spool output to a file and cannot view what is happening at your terminal.

RMAN Reporting
There are several different methods for reporting on the RMAN environment:

•	 LIST command

•	 REPORT command

Query metadata via data dictionary views•	

When first learning RMAN, the difference between the LIST and REPORT commands may seem confusing because
the distinction between the two is not clear-cut. In general, I use the LIST command to view information about
existing backups and the REPORT command to determine which files need to be backed or to display information on
obsolete or expired backups.

I use SQL queries for specialized reports (not available via LIST or REPORT) or for automating reports. For
example, I’ll generally implement an automated check via a shell script and SQL that reports whether the RMAN
backups have run within the last day.

Using LIST
When investigating issues with RMAN backups, usually one of the first tasks I undertake is connecting to the target
database and running the LIST BACKUP command. This command allows you to view backup sets, backup pieces, and
the files included in the backup:

RMAN> list backup;

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

534

The command shows all RMAN backups recorded in the repository. You may want to spool the backups to an
output file so that you can save the output and then use an OS editor to search through and look for specific strings in
the output.

To get a summarized view of backup information, use the LIST BACKUP SUMARY command:

RMAN> list backup summary;

You can also use the LIST command to report just image copy information:

RMAN> list copy;

To list all files that have been backed up, and the associated backup set, issue the following command:

RMAN> list backup by file;

These commands display archive redo logs on disk:

RMAN> list archivelog all;
RMAN> list copy of archivelog all;

And, this command lists the backups of the archive redo logs (and which archive redo logs are contained in
which backup pieces):

RMAN> list backup of archivelog all;

There are a great many ways in which you can run the LIST command (and, likewise, the REPORT command,
covered in the next section). The prior methods are the ones you’ll run most of the time. See the Oracle Database
Backup and Recovery Reference Guide, available from the Technology Network area of the Oracle web site
(http://otn.oracle.com), for a complete list of options.

Using REPORT
The RMAN REPORT command is useful for reporting on a variety of details. You can quickly view all the data files
associated with a database, as follows:

RMAN> report schema;

The REPORT command provides detailed information about backups marked obsolete via the RMAN retention
policy; for example,

RMAN> report obsolete;

You can report on data files that need to be backed up, as defined by the retention policy, like this:

RMAN> report need backup;

There are several ways to report on data files that need to be backed up. Here are some other examples:

RMAN> report need backup redundancy 2;
RMAN> report need backup redundancy 2 datafile 2;

http://otn.oracle.com/

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

535

The REPORT command may also be used for data files that have never been backed up or that may contain data
created from a NOLOGGING operation. For example, say you have direct-path loaded data into a table, and the data file
in which the table resides has not been backed up. The following command will detect these conditions:

RMAN> report unrecoverable;

Using SQL
There are a number of data dictionary views available for querying about backup information. Table 18-1 describes
RMAN-related data dictionary views. These views are available regardless of your use of a recovery catalog
(the information in these views is derived from the control file).

Table 18-1. Description of RMAN Backup Data Dictionary Views

View Name Information Provided

V$RMAN_BACKUP_JOB_DETAILS RMAN backup jobs

V$BACKUP Backup status of online data files placed in backup mode
(for hot backups)

V$BACKUP_ARCHIVELOG_DETAILS Archive logs backed up

V$BACKUP_CONTROLFILE_DETAILS Control files backed up

V$BACKUP_COPY_DETAILS Control file and data file copies

V$BACKUP_DATAFILE Control files and data files backed up

V$BACKUP_DATAFILE_DETAILS Data files backed up in backup sets, image copies, and proxy copies

V$BACKUP_FILES Data files, control files, spfiles, and archive redo logs backed up

V$BACKUP_PIECE Backup piece files

V$BACKUP_PIECE_DETAILS Backup piece details

V$BACKUP_SET Backup sets

V$BACKUP_SET_DETAILS Backup set details

Sometimes, DBAs new to RMAN have a hard time grasping the concept of backups, backup sets, backup pieces,
and data files and how they relate. I find the following query useful when discussing RMAN backup components.
This query will display backup sets, the backup pieces with the set, and the data files that are backed up within the
backup pieces:

SET LINES 132 PAGESIZE 100
BREAK ON REPORT ON bs_key ON completion_time ON bp_name ON file_name
COL bs_key FORM 99999 HEAD "BS Key"
COL bp_name FORM a40 HEAD "BP Name"
COL file_name FORM a40 HEAD "Datafile"
--
SELECT
 s.recid bs_key
,TRUNC(s.completion_time) completion_time
,p.handle bp_name
,f.name file_name

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

536

FROM v$backup_set s
 ,v$backup_piece p
 ,v$backup_datafile d
 ,v$datafile f
WHERE p.set_stamp = s.set_stamp
AND p.set_count = s.set_count
AND d.set_stamp = s.set_stamp
AND d.set_count = s.set_count
AND d.file# = f.file#
ORDER BY
 s.recid
,p.handle
,f.name;

The output here has been shortened to fit on the page:

BS Key COMPLETIO BP Name Datafile
------ --------- -------------------------------- ---------------------------------
 159 11-JAN-13 /u01/O12C/rman/r16qnv59jj_1_1.bk /u01/dbfile/o12c/inv_data2.dbf
 /u01/dbfile/o12c/lob_data01.dbf
 /u01/dbfile/o12c/p14_tbsp.dbf
 /u01/dbfile/o12c/p15_tbsp.dbf
 /u01/dbfile/o12c/p16_tbsp.dbf

Sometimes, it’s useful to report on the performance of RMAN backups. The following query reports on the time
taken for an RMAN backup per session.

COL hours FORM 9999.99
COL time_taken_display FORM a20
SET LINESIZE 132
--
SELECT
 session_recid
,compression_ratio
,time_taken_display
,(end_time - start_time) * 24 as hours
,TO_CHAR(end_time,'dd-mon-yy hh24:mi') as end_time
FROM v$rman_backup_job_details
ORDER BY end_time;

Here is some sample output:

SESSION_RECID COMPRESSION_RATIO TIME_TAKEN_DISPLAY HOURS END_TIME
------------- ----------------- -------------------- -------- ------------------------
 15 1 00:05:08 .09 11-jan-13 13:41
 27 3.79407176 00:00:09 .00 11-jan-13 13:52
 33 1.19992137 00:05:01 .08 11-jan-13 14:07

The contents of V$RMAN_BACKUP_JOB_DETAILS are summarized by a session connection to RMAN. Therefore, the
report output is more accurate if you connect to RMAN (establishing a session) and then exit out of RMAN after the
backup job is complete. If you remain connected to RMAN while running multiple backup jobs, the query output
reports on all backup activity while connected (for that session).

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

537

You should have an automated method of detecting whether or not RMAN backups are running and if data files
are being backed up. One reliable method of automating such a task is to embed SQL into a shell script and then run
the script on a periodic basis from a scheduling utility such as cron.

I typically run two basic types of checks regarding the RMAN backups:

Have the RMAN backups run recently?•	

Are there any data files that have not been backed up recently?•	

The following shell script checks for these conditions. You’ll need to modify the script and provide it with a
username and password for a user that can query the data dictionary objects referenced in the script and also change
the e-mail address of where messages are sent. When running the script, you’ll need to pass in two variables: the
Oracle SID and the threshold number of past days that you want to check for the last time the backups ran or for when
a data file was backed up.

#!/bin/bash
#
if [$# -ne 2]; then
 echo "Usage: $0 SID threshold"
 exit 1
fi
source oracle OS variables
. /var/opt/oracle/oraset $1
crit_var=$(sqlplus -s <<EOF
/ as sysdba
SET HEAD OFF FEEDBACK OFF
SELECT COUNT(*) FROM
(SELECT (sysdate - MAX(end_time)) delta
 FROM v\$rman_backup_job_details) a
WHERE a.delta > $2;
EOF)
#
if [$crit_var -ne 0]; then
 echo "rman backups not running on $1" | mailx -s "rman problem" dkuhn@gmail.com
else
 echo "rman backups ran ok"
fi
#--
crit_var2=$(sqlplus -s <<EOF
/ as sysdba
SET HEAD OFF FEEDBACK OFF
SELECT COUNT(*)
FROM
(
SELECT name
FROM v\$datafile
MINUS
SELECT DISTINCT
 f.name
FROM v\$backup_datafile d
 ,v\$datafile f
WHERE d.file# = f.file#

mailto:dkuhn@gmail.com

Chapter 18 ■ rMaN BaCkupS aNd repOrtiNg

538

AND d.completion_time > sysdate - $2);
EOF)
#
if [$crit_var2 -ne 0]; then
 echo "datafile not backed up on $1" | mailx -s "backup problem" dkuhn@gmail.com
else
 echo "datafiles are backed up..."
fi
#
exit 0

For example, to check if backups have been running successfully within the past 2 days, run the script (named
rman_chk.bsh):

$ rman_chk.bsh INVPRD 2

The prior script is basic but effective. You can enhance it as required for your RMAN environment.

Summary
RMAN offers many flexible and feature-rich options for backups. By default, RMAN backs up only blocks that have been
modified in the database. The incremental features allow you to back up only blocks that have been modified since
the last backup. These incremental features are particularly useful in reducing the size of backups in large database
environments, in which only a small percentage of data in the database changes from one backup to the next.

You can instruct RMAN to back up every block in each data file via an image copy. An image copy is a
block-for-block identical copy of the data file. Image copies have the advantage of being able to restore the backup
files directly from the backup (without using RMAN). You can use the incrementally updated backup feature to
implement an efficient hybrid of image copy backups and incremental backups.

RMAN contains built-in commands for reporting on many aspects of backups. The LIST command reports on
backup activity. The REPORT command is useful for determining which files need to be backed up, as dictated by the
retention policy.

After you’ve successfully configured RMAN and created backups, you are in a position to be able to restore and
recover your database in the event of a media failure. Restore and recovery topics are detailed in the next chapter.

mailto:dkuhn@gmail.com

539

Chapter 19

RMAN Restore and Recovery

A couple of years ago, I was out on a long Saturday morning bike ride. About halfway through the ride, my cell phone
rang. It was one of the data center operational support technicians. He told me that a mission critical database
server was acting strange and that I should log in as soon as possible and make sure things were okay. I told him that
I was about 15 minutes from being able to log in. So, I scurried home as fast as I could to check out the production
box. When I got home and logged in to the database server, I tried to start SQL*Plus and immediately got an error
indicating that the SQL*Plus binary file had corruption. Great. I couldn’t even log in to SQL*Plus. This was not good.

Mental Note ■ Ensure that all bicycle rides are taken out of range of cell phone coverage. – Ed.

I had the SA restore the Oracle binaries from an OS backup. I started SQL*Plus. The database had crashed, so
I attempted to start it . The output indicated that there was a media failure with all the data files. After some analysis it
was discovered that there had been some filesystem issues and that all these files on disk were corrupt:

Data files•	

Control files•	

Archive redo logs•	

Online redo log files•	

RMAN backup pieces•	

This was almost a total disaster. My director asked about our options. I responded, “All we have to do is restore
the database from our last tape backup, and we’ll lose whatever data are in archive redo logs that haven’t been backed
up to tape yet. ”

The storage administrators were called in and instructed to restore the last set of RMAN backups that had been
written to tape. About 15 minutes later, we could hear the tape guys talking to each other in hushed voices. One of
them said, “We are sooooo hosed. We don’t have any tape backups of RMAN for any databases on this box.”

That was a dark moment. The worst case scenario was to rebuild the database from DDL scripts and lose 3 years
of production data. Not a very palatable option.

After looking around the production box, I discovered that the prior production support DBA (who, ironically,
had just been let go a few days before, owing to budget cuts) had implemented a job to copy the RMAN backups to
another server in the production environment. The RMAN backups on this other server were intact. I was able to
restore and recover the production database from these backups. We lost about a day’s worth of data (between corrupt
archive logs and downtime, in which no incoming transactions were allowed), but we were able to get the database
restored and recovered approximately 20 hours after the initial phone call. That was a long day.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

540

Most situations in which you need to restore and recover will not be as bad as the one just described. However,
the previous scenario does highlight the need for

a backup strategy•	

a DBA with B&R skills•	

a restore-and-recovery strategy, including a requirement to test the restore and recovery •	
periodically

This chapter walks you through restore and recovery, using RMAN. The chapter covers many of the common
tasks you will have to perform when dealing with media failures.

Determining if Media Recovery Is Required
The term media recovery means the restoration of files that have been lost or damaged, owing to the failure of the
underlying storage media (usually a disk of some sort) or accidental removal of files. Usually, you know that media
recovery is required through an error such as the following:

ORA-01157: cannot identify/lock data file 1 - see DBWR trace file
ORA-01110: data file 1: '/u01/dbfile/o12c/system01.dbf'

The error may be displayed on your screen when performing DBA tasks, such as stopping and starting the
database. Or, you might see such an error in a trace file or the alert.log file. If you don’t notice the issue right away,
with a severe media failure, the database will stop processing transactions, and users will start calling you.

To understand how Oracle determines that media recovery is required, you must first understand how Oracle
determines that everything is okay. When Oracle shuts down normally (IMMEDIATE, TRANSACTIONAL, NORMAL), part of
the shutdown process is to flush all modified blocks (in memory) to disk, mark the header of each data file with the
current SCN, and update the control file with the current SCN information.

Upon startup, Oracle checks to see if the SCN in the control file matches the SCN in the header of the data files.
If there is a match, then Oracle attempts to open the data files and online redo log files. If all files are available and can
be opened, Oracle starts normally. The following query compares the SCN in the control file (for each data file) with
the SCN in the data file header:

SET LINES 132
COL name FORM a40
COL status FORM A8
COL file# FORM 9999
COL control_file_SCN FORM 999999999999999
COL datafile_SCN FORM 999999999999999
--
SELECT
 a.name
,a.status
,a.file#
,a.checkpoint_change# control_file_SCN
,b.checkpoint_change# datafile_SCN
,CASE
 WHEN ((a.checkpoint_change# - b.checkpoint_change#) = 0) THEN 'Startup Normal'
 WHEN ((b.checkpoint_change#) = 0) THEN 'File Missing?'
 WHEN ((a.checkpoint_change# - b.checkpoint_change#) > 0) THEN 'Media Rec. Req.'

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

541

 WHEN ((a.checkpoint_change# - b.checkpoint_change#) < 0) THEN 'Old Control File'
 ELSE 'what the ?'
 END datafile_status
FROM v$datafile a -- control file SCN for datafile
 ,v$datafile_header b -- datafile header SCN
WHERE a.file# = b.file#
ORDER BY a.file#;

If the control file SCN values are greater than the data file SCN values, then media recovery is most likely
required. This would be the case if you restored a data file from a backup, and the SCN in the restored data file had an
SCN less than the data file in the current control file.

Tip ■ the V$DATAFILE_HEADER view uses the physical data file on disk as its source. the V$DATAFILE view uses the
control file as its source.

You can also directly query the V$DATAFILE_HEADER for more information. The ERROR and RECOVER columns report
any potential problems. For example, a YES or null value in the RECOVER column indicates that there is a problem:

SQL> select file#, status, error, recover from v$datafile_header;

Here is some sample output:

 FILE# STATUS ERROR REC
---------- ------- -------------------- ---
 1 ONLINE FILE NOT FOUND
 2 ONLINE NO
 3 ONLINE NO

Determining What to Restore
Media recovery requires that you perform manual tasks to get your database back in one piece. These tasks usually
involve a combination of RESTORE and RECOVER commands. You will have to issue an RMAN RESTORE command if,
for some reason (accidental deleting of files, disk failure, and so on), your data files have experienced media failure.

How the Process Works
When you issue the RESTORE command, RMAN automatically decides how to extract the data files from any of the
following available backups:

Full database backup•	

Incremental level-0 backup•	

Image copy backup generated by •	 BACKUP AS COPY command

After the files are restored from a backup, you are required to apply redo to them via the RECOVER command.
When you issue the RECOVER command, Oracle examines the SCNs in the affected data files and determines whether
any of them need to be recovered. If the SCN in the data file is less than the corresponding SCN in the control file, then
media recovery will be required.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

542

Oracle retrieves the data file SCN and then looks for the corresponding SCN in the redo stream to establish where
to start the recovery process. If the starting recovery SCN is in the online redo log files, the archived redo log files are
not required for recovery.

During a recovery, RMAN automatically determines how to apply redo. First, RMAN applies any incremental
backups available that are greater than level 0, such as the incremental level 1. Next, any archived redo log files on disk
are applied. If the archived redo log files do not exist on disk, RMAN attempts to retrieve them from a backup set.

To be able to perform a complete recovery, all the following conditions need to be true:

Your database is in archivelog mode.•	

You have a good baseline backup of your database.•	

You have any required redo that has been generated since the backup (archived redo log •	
files, online redo log files, or incremental backups that RMAN can use for recovery instead of
applying redo).

There are a wide variety of restore-and-recovery scenarios. How you restore and recover depends directly on your
backup strategy and which files have been damaged. Listed next are the general steps to follow when facing a media failure:

1. Determine which files need to be restored.

2. Depending on the damage, set your database mode to nomount, mount, or open.

3. Use the RESTORE command to retrieve files from RMAN backups.

4. Use the RECOVER command for data files requiring recovery.

5. Open your database.

Your particular restore-and-recovery scenario may not require that all the previous steps be performed.
For instance, you may just want to restore your spfile, which doesn’t require a recovery step.

The first step in the restore-and-recovery process is to determine which files have experienced media failure.
You can usually determine which files need to be restored from the following sources:

Error messages displayed on your screen, either from RMAN or SQL*Plus•	

•	 Alert.log file and corresponding trace files

Data dictionary views•	

If you’re using Oracle Database 11g or higher, then in addition to the previously listed methods, you should consider
the Data Recovery Advisor for obtaining information about the extent of a failure and corresponding corrective action.

Using Data Recovery Advisor
The Data Recovery Advisor tool was introduced in Oracle Database 11g. In the event of a media failure, this tool
will display the details of the failure, recommend corrective actions, and perform the recommended actions if you
specify that it do so. It’s like having another set of eyes to provide feedback when in a restore-and-recovery situation.
There are four modes to Data Recovery Advisor:

Listing failures•	

Suggesting corrective action•	

Running commands to repair failures•	

Changing the status of a failure•	

The Data Recovery Advisor is invoked from RMAN. You can think of the Data Recovery Advisor as a set of RMAN
commands that can assist you when dealing with media failure.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

543

Listing Failures
When using the Data Recovery Advisor, the LIST FAILURE command is used to display any issues with the data files,
control files, or online redo logs:

RMAN> list failure;

If there are no detected failures, you’ll see a message indicating that there are no failures. Here is some sample
output indicating that there may be an issue with a data file:

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
6222 CRITICAL OPEN 12-JAN-13 System datafile 1:
 '/u01/dbfile/o12c/system01.dbf' is missing

To display more information about the failure, use the DETAIL clause:

RMAN> list failure 6222 detail;

Here is the additional output for this example:

Impact: Database cannot be opened

With this type of failure, the prior output indicates that the database can’t be opened.

Tip ■ If you suspect there’s a media failure, yet the data recovery advisor is not reporting any issues, run the
VALIDATE DATABASE command to verify that the database is intact.

Suggesting Corrective Action
The ADVISE FAILURE command gives advice about how to recover from potential problems detected by the Data
Recovery Advisor. If you have multiple failures with your database, you can directly specify the failure ID to get advice
on a given failure, like so:

RMAN> advise failure 6222;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

544

Here is a snippet of the output for this particular issue:

Optional Manual Actions
=======================
1. If file /u01/dbfile/o12c/system01.dbf was unintentionally renamed or moved,
restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /ora01/app/oracle/diag/rdbms/o12c/o12c/hm/reco_4116328280.hm

In this case, the Data Recovery Advisor created a script that can be used to potentially fix the problem.
The contents of the repair script can be viewed with an OS utility; for example,

$ cat /ora01/app/oracle/diag/rdbms/o12c/o12c/hm/reco_4116328280.hm

Here are the contents of the script for this example:

restore and recover datafile
restore (datafile 1);
recover datafile 1;
sql 'alter database datafile 1 online';

After reviewing the script, you can decide to run the suggested commands manually, or you can have the Data
Recovery Advisor run the script via the REPAIR command (see the next section for details).

Repairing Failures
If you have identified a failure and viewed the recommended advice, you can proceed to the repair work. If you want
to inspect what the REPAIR FAILURE command will do without actually running the commands, use the PREVIEW
clause:

RMAN> repair failure preview;

Before you run the REPAIR FAILURE command, ensure that you first run the LIST FAILURE and ADVISE FAILURE
commands from the same connected session. In other words, the RMAN session that you’re in must run the LIST and
ADVISE commands within the same session before running the REPAIR command.

If you’re satisfied with the repair suggestions, then run the REPAIR FAILURE command:

RMAN> repair failure;

You’ll be prompted at this point for confirmation:

Do you really want to execute the above repair (enter YES or NO)?

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

545

Type YES to proceed:

YES

If all goes well, you should see a final message such as this in the output:

repair failure complete

Note ■ you can run the data recovery advisor commands from the rMaN command prompt or from Enterprise Manager.

In this way, you can use the RMAN commands LIST FAILURE, ADVISE FAILURE, and REPAIR FAILURE to resolve
media failures.

Changing the Status of a Failure
One last note on the Data Recovery Advisor: if you know that you’ve had a failure and that it isn’t critical (e.g., a data
file missing from a tablespace that is no longer used), then use the CHANGE FAILURE command to alter the priority of
a failure. In this example, there’s a missing data file that belongs to a noncritical tablespace. First, obtain the failure
priority via the LIST FAILURE command:

RMAN> list failure;

Here is some sample output:

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
5 HIGH OPEN 12-JAN-13 One or more non-system datafiles
 are missing

Next, change the priority from HIGH to LOW with the CHANGE FAILURE command:

RMAN> change failure 5 priority low;

You will be prompted to confirm that you really do want to change the priority:

Do you really want to change the above failures (enter YES or NO)?

If you do want to change the priority, then type YES, and press the Enter key. If you run the LIST FAILURE
command again, you’ll see that the priority has now been changed to LOW:

RMAN> list failure low;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

546

Using RMAN to Stop/Start Oracle
You can use RMAN to stop and start your database with methods that are almost identical to those available through
SQL*Plus. When performing restore and recovery operations, it’s often more convenient to stop and start your
database from within RMAN. The following RMAN commands can be used to stop and start your database:

•	 SHUTDOWN

•	 STARTUP

•	 ALTER DATABASE

Shutting Down
The SHUTDOWN command works the same from RMAN as it does from SQL*Plus. There are four types of shutdown:
ABORT, IMMEDIATE, NORMAL, and TRANSACTIONAL. I usually first attempt to stop a database using SHUTDOWN IMMEDIATE;
if that doesn’t work, don’t hesitate to use SHUTDOWN ABORT. Here are some examples:

RMAN> shutdown immediate;
RMAN> shutdown abort;

If you don’t specify a shutdown option, NORMAL is the default. Shutting down a database with NORMAL is rarely
viable, as this mode waits for currently connected users to disconnect at their leisure. I never use NORMAL when
shutting down a database.

Starting Up
As with SQL*Plus, you can use a combination of STARTUP and ALTER DATABASE commands with RMAN to step the
database through startup phases, like this:

RMAN> startup nomount;
RMAN> alter database mount;
RMAN> alter database open;

Here is another example:

RMAN> startup mount;
RMAN> alter database open;

If you want to start the database with restricted access, use the DBA option:

RMAN> startup dba;

Tip ■ starting with oracle database 12c, you can run all sQL statements directly from within rMaN without having to
specify the rMaN sql command.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

547

Complete Recovery
As discussed in Chapter 16, the term complete recovery means that you can restore all transactions that were
committed before a failure occurred. Complete recovery doesn’t mean that you are restoring and recovering all data
files in your database. For instance, you are performing a complete recovery if you have a media failure with one data
file, and you restore and recover the one data file. For complete recovery, the following conditions must be true:

Your database is in archivelog mode.•	

You have a good baseline backup of the data files that have experienced media failure.•	

You have any required redo that has been generated since the last backup.•	

All archive redo logs start from the point at which the last backup began.•	

Any incremental backups that RMAN can use for recovery are available (if using).•	

Online redo logs that contain transactions that have not yet been archived are available.•	

If you’ve experienced a media failure, and you have the required files to perform a complete recovery, then you
can restore and recover your database.

Testing Restore and Recovery
You can determine which files RMAN will use for restore and recovery before you actually perform the restore and recovery.
You can also instruct RMAN to verify the integrity of the backup files that will be used for the restore and recovery.

Previewing Backups Used for Recovery
Use the RESTORE...PREVIEW command to list the backups and archive redo log files that RMAN will use to restore and
recover database data files. The RESTORE...PREVIEW command does not actually restore any files. Rather, it lists the
backup files that will be used for a restore operation. This example previews in detail the backups required for restore
and recovery for the entire database:

RMAN> restore database preview;

You can also preview require backup files at a summarized level of detail:

RMAN> restore database preview summary;

Here is a snippet of the output:

List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
224 Full 775.37M DISK 00:02:22 12-JAN-13
 BP Key: 229 Status: AVAILABLE Compressed: NO Tag: TAG20130112T120713
 Piece Name: /u02/O12C/rman/r29gnv7q7i_1_1.bk

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

548

 List of Datafiles in backup set 224
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 4586940 12-JAN-13 /u01/dbfile/o12c/system01.dbf
 3 Full 4586940 12-JAN-13 /u01/dbfile/o12c/undotbs01.dbf
 4 Full 4586940 12-JAN-13 /u01/dbfile/o12c/users01.dbf

Here are some more examples of how to preview backups required for restore and recovery:

RMAN> restore tablespace system preview;
RMAN> restore archivelog from time 'sysdate -1' preview;
RMAN> restore datafile 1, 2, 3 preview;

Validating Backup Files Before Restoring
There are several levels of verification that you can perform on backup files without actually restoring anything.
If you just want RMAN to verify that the files exist and check the file headers, then use the RESTORE...VALIDATE HEADER
command, as shown:

RMAN> restore database validate header;

This command only validates the existence of backup files and checks the file headers. You can further
instruct RMAN to verify the integrity of blocks within backup files required to restore the database data files via the
RESTORE...VALIDATE command (sans the HEADER clause). Again, RMAN will not restore any data files in this mode:

RMAN> restore database validate;

This command only checks for physical corruption within the backup files. You can also check for logical
corruption (along with physical corruption), as follows:

RMAN> restore database validate check logical;

Here are some other examples of using RESTORE...VALIDATE:

RMAN> restore datafile 1,2,3 validate;
RMAN> restore archivelog all validate;
RMAN> restore controlfile validate;
RMAN> restore tablespace system validate;

Testing Media Recovery
The prior sections covered reporting and verifying the restore operations. You can also instruct RMAN to verify the
recovery process via the RECOVER...TEST command. Before performing a test recovery, you need to ensure that the
data files being recovered are offline. Oracle will throw an error for any online data files being recovered in test mode.

In this example the tablespace USERS is restored first, and then a trial recovery is performed:

RMAN> connect target /
RMAN> startup mount;
RMAN> restore tablespace users;
RMAN> recover tablespace users test;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

549

If there are any missing archive redo logs that are required for recovery, the following error is thrown:

RMAN-06053: unable to perform media recovery because of missing log
RMAN-06025: no backup of archived log for thread 1 with sequence 6 ...

If the testing of the recovery succeeded, you’ll see messages such as the following, indicating that the application
of redo was tested but not applied:

ORA-10574: Test recovery did not corrupt any data block
ORA-10573: Test recovery tested redo from change 4586939 to 4588462
ORA-10572: Test recovery canceled due to errors
ORA-10585: Test recovery can not apply redo that may modify control file

Here are some other examples of testing the recovery process:

RMAN> recover database test;
RMAN> recover tablespace users, tools test;
RMAN> recover datafile 1,2,3 test;

Restoring and Recovering the Entire Database
The RESTORE DATABASE command will restore every data file in your database. The exception to this is when RMAN
detects that data files have already been restored; in that case, it will not restore them again. If you want to override
that behavior, use the FORCE command.

When you issue the RECOVER DATABASE command, RMAN will automatically apply redo to any data files that need
recovery. The recovery process includes applying changes found in the following files:

Incremental backup pieces (applicable only if using incremental backups)•	

Archived redo log files (generated since the last backup or incremental backup applied)•	

Online redo log files (current and unarchived)•	

You can open your database after the restore-and-recovery process is complete. Complete database recovery
works only if you have good backups of your database and access to all redo generated after the backup was taken.
You need all the redo required to recover the database data files. If you don’t have all the required redo, then you’ll
most likely have to perform an incomplete recovery (see the section “Incomplete Recovery, ” later in this chapter).

Note ■ your database has to be at least mounted to restore data files, using rMaN. this is because rMaN reads
information from the control file during the restore-and-recovery process.

You can perform a complete database-level recovery with either the current control file or a backup control file.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

550

Using the Current Control File
You must first put your database in mount mode to perform a database-wide restore and recovery. This is because
Oracle won’t allow you to operate your database in open mode while data files associated with the SYSTEM tablespace
are being restored and recovered. In this situation, start up the database in mount mode, issue the RESTORE and
RECOVER commands, and then open the database, like so:

$ rman target /
RMAN> startup mount;
RMAN> restore database;
RMAN> recover database;
RMAN> alter database open;

If everything goes as expected, the last message you should see is this:

Statement processed

Using the Backup Control File
This technique uses an autobackup of the control file retrieved from the FRA. (see the section “Restoring a Control
File,” later in this chapter, for more examples of how to restore your control file). In this scenario the control file is first
retrieved from a backup before restoring and recovering the database:

$ rman target /
RMAN> startup nomount;
RMAN> restore controlfile from autobackup;
RMAN> alter database mount;
RMAN> restore database;
RMAN> recover database;
RMAN> alter database open resetlogs;

If successful, the last message you should see is this:

Statement processed

Restoring and Recovering Tablespaces
Sometimes you’ll have a media failure that’s localized to a particular tablespace or set of tablespaces. In this situation,
it’s appropriate to restore and recover at the tablespace level of granularity. The RMAN RESTORE TABLESPACE and
RECOVER TABLESPACE commands will restore and recover all data files associated with the specified tablespace(s).

Restoring Tablespaces While the Database Is Open
If your database is open, then you must take offline the tablespace you want to restore and recover. You can do this for
any tablespace except SYSTEM and UNDO. This example restores and recovers the USERS tablespace while the database
is open:

$ rman target /
RMAN> sql 'alter tablespace users offline immediate';
RMAN> restore tablespace users;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

551

RMAN> recover tablespace users;
RMAN> sql 'alter tablespace users online';

After the tablespace is brought online, you should see a message such as this:

sql statement: alter tablespace users online

Starting with Oracle Database 12c, you can run SQL statements directly, without the RMAN sql command and
associated quotation marks; for example,

$ rman target /
RMAN> alter tablespace users offline immediate;
RMAN> restore tablespace users;
RMAN> recover tablespace users;
RMAN> alter tablespace users online;

Restoring Tablespaces While the Database Is in Mount Mode
Usually when performing a restore and recovery, DBAs will shut down the database and restart it in mount mode in
preparation for performing the recovery. Placing a database in mount mode ensures that no users are connecting to
the database and that no transactions are transpiring.

Also, if you’re restoring and recovering the SYSTEM tablespace, then you must start the database in mount mode.
Oracle doesn’t allow for restoring and recovering the SYSTEM tablespace data files while the database is open. This
next example restores the SYSTEM tablespace while the database is in mount mode:

$ rman target /
RMAN> shutdown immediate;
RMAN> startup mount;
RMAN> restore tablespace system;
RMAN> recover tablespace system;
RMAN> alter database open;

If successful, the last message you should see is this:

Statement processed

Restoring Read-Only Tablespaces
RMAN will restore read-only tablespaces along with the rest of the database when you issue a RESTORE DATABASE
command. For example, the following command will restore all data files (including those in read-only mode):

RMAN> restore database;

Prior to Oracle Database 11g, you were required to issue RESTORE DATABASE CHECK READONLY to instruct RMAN
to restore read-only tablespaces along with tablespaces in read-write mode. This is no longer a requirement in Oracle
Database 11g and higher.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

552

Note ■ If you are using a backup that was created after the read-only tablespace was placed in read-only mode,
then no recovery is necessary for the read-only data files. In this situation no redo has been generated for the read-only
tablespace since it was backed up.

Restoring Temporary Tablespaces
Starting with Oracle Database 10g, you don’t have to restore or re-create missing locally managed temporary
tablespace temp files. When you open your database for use, Oracle automatically detects and re-creates locally
managed temporary tablespace temp files.

When Oracle automatically re-creates a temporary tablespace, it will log a message to your target database
alert.log such as this:

Re-creating tempfile <your temporary tablespace filename>

If, for any reason, your temporary tablespace becomes unavailable, you can also re-create it yourself. Because
there are never any permanent objects in temporary tablespaces, you can simply re-create them as needed. Here is an
example of how to create a locally managed temporary tablespace:

CREATE TEMPORARY TABLESPACE temp TEMPFILE
'/u01/dbfile/o12c/temp01.dbf' SIZE 1000M
EXTENT MANAGEMENT
LOCAL UNIFORM SIZE 512K;

If your temporary tablespace exists, but the temporary data files are missing, you can just add them, as shown:

alter tablespace temp
add tempfile '/u01/dbfile/o12c/temp02.dbf' SIZE 5000M REUSE;

Restoring and Recovering Data Files
A data file–level restore and recovery works well when a media failure is confined to a small set of data files. With data
file–level recoveries, you can instruct RMAN to restore and recover either with data file name or data file number.
For data files not associated with the SYSTEM or UNDO tablespaces, you have the option of restoring and recovering
while the database remains open. While the database is open, however, you must first take offline any data files being
restored and recovered.

Restoring and Recovering Data Files While the Database Is Open
Use the RESTORE DATAFILE and RECOVER DATAFILE commands to restore and recover at the data file level. When your
database is open, you’re required to take offline any data files that you’re attempting to restore and recover.
This example restores and recovers data files while the database is open:

RMAN> sql 'alter database datafile 4, 5 offline';
RMAN> restore datafile 4, 5;
RMAN> recover datafile 4, 5;
RMAN> sql 'alter database datafile 4, 5 online';

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

553

Tip ■ Use the rMaN REPORT SCHEMA command to list data file names and file numbers. you can also query the NAME
and FILE# columns of V$DATAFILE to take names and numbers.

You can also specify the name of the data file that you want to restore and recover; for example,

RMAN> sql "alter database datafile ''/u01/dbfile/o12c/users01.dbf'' offline";
RMAN> restore datafile '/u01/dbfile/o12c/users01.dbf';
RMAN> recover datafile '/u01/dbfile/o12c/users01.dbf';
RMAN> sql "alter database datafile ''/u01/dbfile/o12c/users01.dbf'' online";

Note ■ When using the rMaN sql command, if there are single quotation marks within the sQL statement, then you
are required to use double quotation marks to enclose the entire sQL statement and two single quotation marks where
you would ordinarily use just one quotation double mark.

As mentioned earlier, starting with Oracle Database 12c, you can run SQL commands directly, without the RMAN
sql command and associated quotation marks; for example,

RMAN> alter database datafile 4 offline;
RMAN> restore datafile 4;
RMAN> recover datafile 4;
RMAN> alter database datafile 4 online;

Here are the corresponding 12c examples, with the data file names:

RMAN> alter database datafile '/u01/dbfile/o12c/users01.dbf' offline;
RMAN> restore datafile '/u01/dbfile/o12c/users01.dbf';
RMAN> recover datafile '/u01/dbfile/o12c/users01.dbf';
RMAN> alter database datafile '/u01/dbfile/o12c/users01.dbf' online;

Restoring and Recovering Data Files While the Database Is Not Open
In this scenario the database is first shut down and then started in mount mode. You can restore and recover
any data file in your database while the database is not open. This example shows the restoring of data file 1,
which is associated with the SYSTEM tablespace:

$ rman target /
RMAN> shutdown abort;
RMAN> startup mount;
RMAN> restore datafile 1;
RMAN> recover datafile 1;
RMAN> alter database open;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

554

You can also specify the file name when performing a data file recovery:

$ rman target /
RMAN> shutdown abort;
RMAN> startup mount;
RMAN> restore datafile '/u01/dbfile/o12c/system01.dbf';
RMAN> recover datafile '/u01/dbfile/o12c/system01.dbf';
RMAN> alter database open;

Restoring Data Files to Nondefault Locations
Sometimes a failure will occur that renders the disks associated with a mount point inoperable. In these situations,
you will need to restore and recover the data files to a location different from the one where they originally resided.
Another typical need for restoring data files to nondefault locations is that you’re restoring to a different database
server, on which the mount points are completely different from those of the server on which the backup originated.

Use the SET NEWNAME and SWITCH commands to restore data files to nondefault locations. Both of these
commands must be run from within an RMAN run{} block. You can think of using SET NEWNAME and SWITCH as a way
to rename data files (similar to the SQL*Plus ALTER DATABASE RENAME FILE statement).

This example changes the location of data files when doing a restore and recover. First, place the database in
mount mode:

$ rman target /
RMAN> startup mount;

Then, run the following block of RMAN code:

run{
set newname for datafile 4 to '/u02/dbfile/o12c/users01.dbf';
set newname for datafile 5 to '/u02/dbfile/o12c/users02.dbf';
restore datafile 4, 5;
switch datafile all; # Updates repository with new datafile location.
recover datafile 4, 5;
alter database open;
}

This is a partial listing of the output:

datafile 4 switched to datafile copy
input datafile copy RECID=79 STAMP=804533148 file name=/u02/dbfile/o12c/users01.dbf
datafile 5 switched to datafile copy
input datafile copy RECID=80 STAMP=804533148 file name=/u02/dbfile/o12c/users02.dbf

If the database is open, you can place the data files offline and then set their new names for restore and recovery,
as follows:

run{
sql 'alter database datafile 4, 5 offline';
set newname for datafile 4 to '/u02/dbfile/o12c/users01.dbf';
set newname for datafile 5 to '/u02/dbfile/o12c/users02.dbf';
restore datafile 4, 5;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

555

switch datafile all; # Updates repository with new datafile location.
recover datafile 4, 5;
sql 'alter database datafile 4, 5 online';
}

Starting with Oracle Database 12c, you no longer need to specify the RMAN sql command when running SQL
statements, such as ALTER DATABASE; for example,

run{
alter database datafile 4, 5 offline;
set newname for datafile 4 to '/u02/dbfile/o12c/users01.dbf';
set newname for datafile 5 to '/u02/dbfile/o12c/users02.dbf';
restore datafile 4, 5;
switch datafile all; # Updates repository with new datafile location.
recover datafile 4, 5;
alter database datafile 4, 5 online;
}

Performing Block-Level Recovery
Block-level corruption is rare and is usually caused by some sort of I/O error. However, if you do have an isolated
corrupt block within a large data file, it’s nice to have the option of performing a block-level recovery. Block-level
recovery is useful when a small number of blocks are corrupt within a data file. Block recovery is not appropriate if the
entire data file needs media recovery.

RMAN will automatically detect corrupt blocks whenever a BACKUP, VALIDATE, or BACKUP VALIDATE command is
run. Details on corrupt blocks can be viewed in the V$DATABASE_BLOCK_CORRUPTION view. In the following example the
regular backup job has reported a corrupt block in the output:

ORA-19566: exceeded limit of 0 corrupt blocks for file...

Querying the V$DATABASE_BLOCK_CORRUPTION view indicates which file contains corruption:

SQL> select * from v$database_block_corruption;

 FILE# BLOCK# BLOCKS CORRUPTION_CHANGE# CORRUPTIO CON_ID
---------- ---------- ---------- ------------------ --------- ----------
 4 20 1 0 ALL ZERO 0

Your database can be either mounted or open when performing block-level recovery. You do not have to
take offline the data file being recovered. You can instruct RMAN to recover all blocks reported in
V$DATABASE_BLOCK_CORRUPTION, as shown:

RMAN> recover corruption list;

If successful, the following message is displayed:

media recovery complete...

Another way to recover the block is to specify the data file and block number, like so:

RMAN> recover datafile 4 block 20;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

556

It’s preferable to use the RECOVER CORRUPTION LIST syntax because it will clear out any blocks recovered from the
V$DATABASE_BLOCK_CORRUPTION view.

Note ■ rMaN can’t perform block-level recovery on block 1 (data file header) of the data file.

Block-level media recovery allows you to keep your database available and also reduces the mean time to
recovery, as only the corrupt blocks are offline during the recovery. Your database must be in archivelog mode for
performing block-level recoveries. Starting with Oracle Database 11g, RMAN can restore the block from the flashback
logs (if available). If the flashback logs are not available, then RMAN will attempt to restore the block from a full
backup, a level-0 backup, or an image copy backup generated by the BACKUP AS COPY command. After the block has
been restored, any required archived redo logs must be available to recover the block. RMAN can’t perform block
media recovery using incremental level-1 (or higher) backups.

Note ■ If you’re using oracle database 10g or oracle9i database, use the BLOCKRECOVER command to perform block
media recovery. Block-level recovery is not available in oracle version 8.

Restoring a Container Database and Its Associated Pluggable Databases
Starting with Oracle Database 12c, you can create pluggable databases within one container database (see Chapter 23
for details). When dealing with container and associated pluggable databases, there are three basic scenarios:

All data files have experienced media failure (container root data files as well as all associated •	
pluggable database data files).

Just the data files associated with the container root database have experienced media failure.•	

Only data files associated with a pluggable database have experienced media failure.•	

The prior scenarios are covered in the following sections.

Restoring and Recovering All Data Files
To restore and recover all data files associated with a container database (this includes the root container, the seed
container, and all associated pluggable databases), use RMAN to connect to the container database as a user with
sysdba or sysbackup privileges. Because the data files associated with the root system tablespace are being restored,
the database must be started in mount mode (and not open):

$ rman target /
RMAN> startup mount;
RMAN> restore database;
RMAN> recover database;
RMAN> alter database open;

Keep in mind that when you open a container database, this does not, by default, open the associated pluggable
databases. You can do that from the root container, as follows:

RMAN> alter pluggable database all open;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

557

Restoring and Recovering Root Container Data Files
If just data files associated with the root container have been damaged, then you can restore and recover at the root
level. In this example the root container’s system data file is being restored, so the database must not be open.
The following commands instruct RMAN to restore only the data files associated with the root container database,
via the keyword root:

$ rman target /
RMAN> startup mount;
RMAN> restore database root;
RMAN> recover database root;
RMAN> alter database open;

In the prior code the restore database root command instructs RMAN to restore only data files associated
with the root container database. After the container database is opened, you must open any associated pluggable
databases. You can do so from the root container, as shown:

RMAN> alter pluggable database all open;

You can check the status of your pluggable databases via this query:

SQL> select name, open_mode from v$pdbs;

Restoring and Recovering a Pluggable Database
You have two options for restoring and recovering a pluggable database:

Connect as the container root user, and specify the pluggable database to be restored •	
and recovered.

Connect directly to the pluggable database as a privileged pluggable-level user, and issue •	
RESTORE and RECOVER commands.

This first example connects to the root container and restores and recovers the data files associated with the
salespdb pluggable database. For this to work, the pluggable database must not be open (because the pluggable
database’s system data files are also being restored and recovered):

$ rman target /
RMAN> alter pluggable database salespdb close;
RMAN> restore pluggable database salespdb;
RMAN> recover pluggable database salespdb;
RMAN> alter pluggable database salespdb open;

You can also connect directly to a pluggable database and perform restore and recovery operations. When
connected directly to the pluggable database, the user only has access to the data files associated with the pluggable
database:

$ rman target sys/foo@salespdb
RMAN> shutdown immediate;
RMAN> restore database;
RMAN> recover database;
RMAN> alter database open;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

558

Note ■ When you’re connected directly to a pluggable database, you can’t specify the name of the pluggable database
as part of the RESTORE and RECOVER commands. In this situation, you’ll get an error indicating the operation isn’t allowed
while connected to a pluggable database.

The prior code only affects data files associated with the pluggable database to which you are connected.
The pluggable database needs to be closed for this to work. However, the root container database can be open or
mounted. Also, you must use a backup that was taken while connected to the pluggable database as a privileged user.
The privileged pluggable database user can’t access backups of data files initiated by the root container database
privileged user.

Restoring Archive Redo Log Files
RMAN will automatically restore any archived redo log files that it needs during a recovery process. You normally
don’t need to restore archived redo log files manually. However, you may want to do so if any of the following
situations apply:

You need to restore archived redo log files in anticipation of later performing a recovery; •	
the idea is that if the archived redo log files are already restored, it will speed the recovery
operation.

You’re required to restore the archived redo log files to a nondefault location, either because of •	
media failure or because of storage space issues.

You need to restore specific archived redo log files in order to inspect them via LogMiner.•	

If you’ve enabled an FRA, then RMAN will, by default, restore archived redo log files to the destination defined by
the initialization parameter DB_RECOVERY_FILE_DEST. Otherwise, RMAN uses the LOG_ARCHIVE_DEST_N initialization
parameter (where N is usually 1) to determine where to restore the archived redo log files.

If you restore archived redo log files to a nondefault location, RMAN knows the location they were restored to and
automatically finds these files when you issue any subsequent RECOVER commands. RMAN will not restore archived
redo log files that it determines are already on disk. Even if you specify a nondefault location, RMAN will not restore
an archived redo log file to disk if the file already exists. In this situation, RMAN simply returns a message stating that
the archived redo log file has already been restored. Use the FORCE option to override this behavior.

If you are uncertain of the sequence numbers to use during a restore of log files, you can query the
V$LOG_HISTORY view.

Tip ■ Keep in mind that you can’t restore an archive redo log that you never backed up. also, you can’t restore an
archive redo log if the backup file containing the archive redo log is no longer available. run the LIST ARCHIVELOG ALL
command to view archive redo logs currently on disk, and LIST BACKUP OF ARCHIVELOG ALL to verify which archive
redo log files are in available rMaN backups.

Restoring to the Default Location
The following command will restore all archived redo log files that RMAN has backed up:

RMAN> restore archivelog all;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

559

If you want to restore from a specified sequence, use the FROM SEQUENCE clause. You may want to run this query
first to establish the most recent log files and sequence numbers that have been generated:

SQL> select sequence#, first_time from v$log_history order by 2;

This example restores all archived redo log files from sequence 68:

RMAN> restore archivelog from sequence 68;

If you want to restore a range of archived redo log files, use the FROM SEQUENCE and UNTIL SEQUENCE clauses or
the SEQUENCE BETWEEN clause, as shown. The following commands restore archived redo log files from sequence 68
through sequence 78, using thread 1:

RMAN> restore archivelog from sequence 68 until sequence 78 thread 1;
RMAN> restore archivelog sequence between 68 and 78 thread 1;

By default, RMAN won’t restore an archived redo log file if it is already on disk. You can override this behavior if
you use the FORCE, like so:

RMAN> restore archivelog from sequence 1 force;

Restoring to a Nondefault Location
Use the SET ARCHIVELOG DESTINATION clause if you want to restore archived redo log files to a location different from
the default. The following example restores to the nondefault location u01/archtemp. The option of the SET command
must be executed from within an RMAN run{} block.

run{
set archivelog destination to '/u01/archtemp';
restore archivelog from sequence 8 force;
}

Restoring a Control File
If you are missing one control file, and you have multiple copies, then you can shut down your database and simply
restore the missing or damaged control file by copying a good control file to the correct location and name of the
missing control file (see Chapter 5 for details).

Listed next are three typical scenarios when restoring a control file:

Using a recovery catalog•	

Using an autobackup•	

Specifying a backup file name•	

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

560

Using a Recovery Catalog
When you’re connected to the recovery catalog, you can view backup information about your control files even while
your target database is in nomount mode. To list backups of your control files, use the LIST command, as shown:

$ rman target / catalog rcat/foo@rcat
RMAN> startup nomount;
RMAN> list backup of controlfile;

If you’re missing all your control files, and you’re using a recovery catalog, then issue the STARTUP NOMOUNT and
the RESTORE CONTROLFILE commands:

RMAN> startup nomount;
RMAN> restore controlfile;

RMAN restores the control files to the location defined by your CONTROL_FILES initialization parameter. You
should see a message indicating that your control files have been successfully copied back from an RMAN backup
piece. You can now alter your database into mount mode and perform any additional restore and recovery commands
required for your database.

Note■ When you restore a control file from a backup, you’re required to perform media recovery on your entire
database and open your database with the OPEN RESETLOGS command, even if you didn’t restore any data files. you can
determine whether your control file is a backup by querying the CONTROLFILE_TYPE column of the V$DATABASE view.

Using an Autobackup
When you enable the autobackup of your control file and are using an FRA, restoring your control file is fairly
simple. First, connect to your target database, then issue a STARTUP NOMOUNT command, followed by the RESTORE
CONTROLFILE FROM AUTOBACKUP command, like this:

$ rman target /
RMAN> startup nomount;
RMAN> restore controlfile from autobackup;

RMAN restores the control files to the location defined by your CONTROL_FILES initialization parameter.
You should see a message indicating that your control files have been successfully copied back from an RMAN
backup piece. Here is a snippet of the output:

channel ORA_DISK_1: control file restore from AUTOBACKUP complete

You can now alter your database into mount mode and perform any additional restore and recovery commands
required for your database.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

561

Specifying a Backup File Name
When restoring a database to a different server, these are generally the first few steps in the process take a backup
of the target database, copy to the remote server, and then restore the control file from the RMAN backup. In these
scenarios, I usually know the name of the backup piece that contains the control file. Here is an example in which you
instruct RMAN to restore a control file from a specific backup piece file:

RMAN> startup nomount;
RMAN> restore controlfile from
'/u01/O12C/rman/rman_ctl_c-3423216220-20130113-01.bk';

The control file will be restored to the location defined by the CONTROL_FILES initialization parameter.

Restoring the spfile
You might want to restore a spfile for several different reasons:

You accidentally set a value in the •	 spfile that keeps your instance from starting.

You accidentally deleted the •	 spfile.

You are required to see what the •	 spfile looked like at some point in time in the past.

One scenario (this has happened to me more than once) is that you’re using a spfile, and one of the DBAs on
your team does something inexplicable, such as this:

SQL> alter system set processes=1000000 scope=spfile;

The parameter is changed in the spfile on disk, but not in memory. Sometime later, the database is stopped for
some maintenance. When attempting to start the database, you can’t even get the instance to start in a nomount state.
This is because a parameter has been set to a ridiculous value that will consume all the memory on the box. In this
scenario the instance may hang, or you may see one or more of the following messages:

ORA-01078: failure in processing system parameters
ORA-00838: Specified value of ... is too small

If you have an RMAN backup available that has a copy of the spfile as it was before it was modified, you can
simply restore the spfile. If you are using a recovery catalog, here is the procedure for restoring the spfile:

$ rman target / catalog rcat/foo@rcat
RMAN> startup nomount;
RMAN> restore spfile;

If you’re not using a recovery catalog, there are a number of ways to restore your •	 spfile.
The approach you take depends on several variables, such as whether you’re using an FRA

you’ve configured a channel backup location for the autobackup•	

you’re using the default location for autobackups•	

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

562

I’m not going to show every detail of these scenarios. Usually, I determine the location of the backup piece that
contains the backup of the spfile and do the restore, like this:

RMAN> startup nomount force;
RMAN> restore spfile to '/tmp/spfile.ora'
 from '/u01/O12C/rman/rman_ctl_c-3423216220-20130113-00.bk';

You should see a message such as this:

channel ORA_DISK_1: SPFILE restore from AUTOBACKUP complete

In this example the spfile is restored to the /tmp directory. Once restored, you can copy the spfile to
ORACLE_HOME/dbs, with the proper name. For my environment (database name: o12c) this would be as follows:

$ cp /tmp/spfile.ora $ORACLE_HOME/dbs/spfileo12c.ora

Note ■ For a complete description of all possible spfile and control file restore scenarios, see RMAN Recipes for
Oracle Database 12c, second edition, by darl Kuhn (apress, 2013).

Incomplete Recovery
The term incomplete database recovery means that you can’t recover all committed transactions. Incomplete means
that you do not apply all redo to restore up to the point of the last committed transaction that occurred in
your database. In other words, you are restoring and recovering to a point in time in the past. For this reason,
incomplete database recovery is also called database point-in-time recovery (DBPITR). Typically, you perform
incomplete database recovery for one of the following reasons:

You don’t have all the redo required to perform a complete recovery. You’re missing either the •	
archived redo log files or the online redo log files that are required for complete recovery. This
situation could arise because the required redo files are damaged or missing.

You purposely want to roll back the database to a point in time in the past. For example, you •	
would do this if somebody accidentally truncated a table, and you intentionally wanted to roll
back the database to just before the truncate table command was issued.

Incomplete database recovery consists of two : restore and recovery. The restore step re-creates data files, and
the recover step applies redo up to the specified point in time. The restore process can be initiated from RMAN in a
couple of different ways:

•	 RESTORE DATABASE UNTIL

•	 FLASHBACK DATABASE

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

563

For the majority of incomplete database recovery circumstances, you use the RESTORE DATABASE UNTIL
command to instruct RMAN to retrieve data files from the RMAN backup files. This type of incomplete database
recovery is the main focus of this section of the chapter. The Flashback Database feature is covered in the section
“Flashing Back a Database, ” later in this chapter.

The UNTIL portion of the RESTORE DATABASE command instructs RMAN to retrieve data files from a point in time
in the past, based on one of the following methods:

Time•	

SCN•	

Log sequence number•	

Restore point•	

The RMAN RESTORE DATABASE UNTIL command will retrieve all data files from the most recent backup set or
image copy. RMAN will automatically determine from the UNTIL clause which backup set contains the required data
files. If you omit the UNTIL clause of the RESTORE DATABASE command, RMAN will retrieve data files from the latest
available backup set or image copy. In some situations this may be the behavior you desire. I recommend that you use
the UNTIL clause to ensure that RMAN restores from the correct backup set. When you issue the RESTORE DATABASE
UNTIL command, RMAN will establish how to extract the data files from any of the following types of backups:

Full database backup•	

Incremental level-0 backup•	

Image copy backup generated by the •	 BACKUP AS COPY command

You can’t perform an incomplete database recovery on a subset of your database’s online data files. When
performing incomplete database recovery, all the checkpoint SCNs for all online data files must be synchronized
before you can open your database with the ALTER DATABASE OPEN RESETLOGS command. You can view the data file
header SCNs and the status of each data file via this SQL query:

select file#, status, fuzzy,
error, checkpoint_change#,
to_char(checkpoint_time,'dd-mon-rrrr hh24:mi:ss') as checkpoint_time
from v$datafile_header;

Note ■ the FUZZY column V$DATAFILE_HEADER contains data files that have one or more blocks with an sCN value
greater than or equal to the checkpoint sCN in the data file header. If a data file is restored and has a FUZZY value of YES,
then media recovery is required.

The only exception to this rule of not performing an incomplete recovery on a subset of online database files is a
tablespace point-in-time recovery (TSPITR), which uses the RECOVER TABLESPACE UNTIL command. TSPITR is used
in rare situations; it restores and recovers only the tablespace(s) you specify. For more details on TSPITR,
see RMAN Recipes for Oracle Database 12c.

The recovery portion of an incomplete database recovery is always initiated with the RECOVER DATABASE UNTIL
command. RMAN will automatically recover your database up to the point specified with the UNTIL clause. Just like
the RESTORE command, you can recover up to time, change/SCN, log sequence number, or restore point. When RMAN
reaches the specified point, it will automatically terminate the recovery process.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

564

Note ■ regardless of what you specify in the UNTIL clause, rMaN will convert that into a corresponding UNTIL SCN
clause and assign the appropriate sCN. this is to avoid any timing issues, particularly those caused by daylight saving time.

During a recovery, RMAN will automatically determine how to apply redo. First, RMAN will apply any
incremental backups available. Next, any archived redo log files on disk will be applied. If the archived redo log files
do not exist on disk, then RMAN will attempt to retrieve them from a backup set. If you want to apply redo as part of
an incomplete database recovery, the following conditions must be true:

Your database is in archivelog mode.•	

You have a good backup of all data files.•	

You have all redo required to restore up to the specified point.•	

Tip ■ starting with oracle database 10g, you can perform parallel media recovery by using the RECOVER DATABASE
PARALLEL command.

When performing an incomplete database recovery with RMAN, you must have your database in mount mode.
RMAN needs the database in mount mode to be able to read and write to the control file. Also, with an incomplete
database recovery, any SYSTEM tablespace data files are always recovered. Oracle will not allow your database to be
open while restoring the SYSTEM tablespace data file(s).

Note ■ after incomplete database recovery is performed, you are required to open your database with the
ALTER DATABASE OPEN RESETLOGS command.

Depending on the scenario, you can use RMAN to perform a variety of incomplete recovery methods. The next
section discusses how to determine what type of incomplete recovery to perform.

Determining the Type of Incomplete Recovery
Time-based restore and recovery is commonly used when you know the approximate date and time to which you
want to recover your database. For instance, you may know approximately the time you want to stop the recovery
process, but not a particular SCN.

Log sequence–based and cancel-based recovery work well in situations in which you have missing or damaged
log files. In such scenarios, you can recover only up to your last good archived redo log file.

SCN-based recovery works well if you can pinpoint the SCN at which you want to stop the recovery process. You
can retrieve SCN information from views such as V$LOG and V$LOG_HISTORY. You can also use tools such as LogMiner
to retrieve the SCN of a particular SQL statement.

Restore point recoveries work only if you have established restore points. In these situations, you restore and
recover up to the SCN associated with the specified restore point.

TSPITR is used in situations in which you need to restore and recover just a few tablespaces. You can use RMAN
to automate many of the tasks associated with this type of incomplete recovery.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

565

Performing Time-Based Recovery
To restore and recover your database back to a point in time in the past, you can use either the UNTIL TIME clause
of the RESTORE and RECOVER commands or the SET UNTIL TIME clause within a run{} block. RMAN will restore and
recover the database up to, but not including, the specified time. In other words, RMAN will restore any transactions
committed prior to the time specified. RMAN automatically stops the recovery process when it reaches the time you
specified.

The default date format that RMAN expects is YYYY-MM-DD:HH24:MI:SS. However, I recommend using the
TO_DATE function and specifying a format mask. This eliminates ambiguities with different national date formats and
having to set the OS NLS_DATE_FORMAT variable. The following example specifies a time when issuing the restore and
recover commands:

$ rman target /
RMAN> startup mount;
RMAN> restore database until time
 "to_date('15-jan-2013 12:20:00', 'dd-mon-rrrr hh24:mi:ss')";
RMAN> recover database until time
 "to_date('15-jan-2013 12:20:00', 'dd-mon-rrrr hh24:mi:ss')";
RMAN> alter database open resetlogs;

If everything goes well, you should see output such as this:

Statement processed

Performing Log Sequence-Based Recovery
Usually this type of incomplete database recovery is initiated because you have a missing or damaged archived redo
log file. If that’s the case, you can recover only up to your last good archived redo log file, because you can’t skip a
missing archived redo log.

How you determine which archived redo log file to restore up to (but not including) will vary. For example, if you
are physically missing an archived redo log file, and RMAN can’t find it in a backup set, you’ll receive a message such
as this when trying to apply the missing file:

RMAN-06053: unable to perform media recovery because of missing log
RMAN-06025: no backup of archived log for thread 1 with sequence 19...

Based on the previous error message, you would restore up to (but not including) log sequence 19.

$ rman target /
RMAN> startup mount;
RMAN> restore database until sequence 19;
RMAN> recover database until sequence 19;
RMAN> alter database open resetlogs;

If successful, you should see output such as this:

Statement processed

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

566

Note ■ Log sequence–based recovery is similar to user-managed cancel-based recovery. see Chapter 16 for details
on a user-managed cancel-based recovery.

Performing SCN-Based Recovery
SCN-based incomplete database recovery works in situations in which you know the SCN value at which you want
to end the restore-and-recovery session. RMAN will recover up to, but not including, the specified SCN. RMAN
automatically terminates the restore process when it reaches the specified SCN.

You can view your database SCN information in several ways:

Using LogMiner to determine an SCN associated with a DDL or DML statement•	

Looking in the •	 alert.log file

Looking in your trace files•	

Querying the •	 FIRST_CHANGE# column of VLOG, VLOG_HISTORY and V$ARCHIVED_LOG

After establishing the SCN to which you want to restore, use the UNTIL SCN clause to restore up to, but not
including, the SCN specified. The following example restores all transactions that have an SCN that is less than
95019865425:

$ rman target /
RMAN> startup mount;
RMAN> restore database until scn 95019865425;
RMAN> recover database until scn 95019865425;
RMAN> alter database open resetlogs;

If everything goes well, you should see output such as this:

Statement processed

Restoring to a Restore Point
There are two types of restore points: normal and guaranteed. The main difference between a guaranteed restore
point and a normal restore point is that a guaranteed restore point is not eventually aged out of the control file;
a guaranteed restore point will persist until you drop it. Guaranteed restore points do require an FRA. However,
for incomplete recovery using a guaranteed restore point, you do not have to have flashback database enabled.

You can create a normal restore point using SQL*Plus, as follows:

SQL> create restore point MY_RP;

This command creates a restore point, named MY_RP, that is associated with the SCN of the database at the time
the command was issued. You can view the current SCN of your database, as shown:

SQL> select current_scn from v$database;

You can view restore point information in the V$RESTORE_POINT view, like so:

SQL> select name, scn from v$restore_point;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

567

The restore point acts like a synonym for the particular SCN. The restore point allows you to restore and recover
to an SCN without having to specify a number. RMAN will restore and recover up to, but not including, the SCN
associated with the restore point.

This example restores and recovers to the MY_RP restore point:

$ rman target /
RMAN> startup mount;
RMAN> restore database until restore point MY_RP;
RMAN> recover database until restore point MY_RP;
RMAN> alter database open resetlogs;

Restoring Tables to a Previous Point
Starting with Oracle Database 12c, you can restore individual tables from RMAN backups via the RECOVER TABLE
command. This gives you with the ability to restore and recover a table back to a point in time in the past.

The table-level restore feature uses a temporary auxiliary instance and the Data Pump utility. Both the auxiliary
instance and Data Pump create temporary files when restoring the table. Before initiating a table-level restore, first
create two directories: one to hold files used by the auxiliary instance and one to store a Data Pump dump file:

$ mkdir /tmp/oracle
$ mkdir /tmp/recover

The prior two directories are referenced within the RECOVER TABLE command via the AUXILIARY DESTINATION
and DATAPUMP DESTINATION clauses. In the following bit of code, the INV table, owned by MV_MAINT, is restored as it
was at a prior SCN:

recover table mv_maint.inv
until scn 4689805
auxiliary destination '/tmp/oracle'
datapump destination '/tmp/recover';

Providing that RMAN backups are available that contain the state of the table at the specified SCN, a table-level
restore and recovery is performed.

Note ■ you can also restore a table to an sCN, a point in time, or a log sequence number.

When RMAN performs a table-level recovery, it automatically creates a temporary auxiliary database, uses Data
Pump to export the table, and then imports the table back into the target database as it was at the specified restore
point. After the restore is finished, the auxiliary database is dropped, and Data Pump dump file is removed.

Tip ■ although the RECOVER TABLE command is a nice enhancement, I would recommend that, if you have an
accidentally dropped table, you first explore using the Flashback table to Before drop feature to restore the table. or, if
the table was erroneously deleted from, then use the Flashback table feature to restore the table back to a point in time
in the past. If neither of the prior options are viable, then consider using the rMaN recover table feature.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

568

Flashing Back a Table
Prior to Oracle Database 10g, if a table was accidentally dropped, you had to do the following to restore the table:

1. Restore a backup of the database to a test database.

2. Perform an incomplete recovery up to the point in time at which the table was dropped.

3. Export the table.

4. Import the table into the production database.

This process can be time-consuming and resource intensive. It requires extra server resources as well as time
and effort from a DBA.

To simplify recovery of an accidentally dropped table, Oracle introduced the Flashback Table feature. Oracle
offers two different types of Flashback Table operations:

•	 FLASHBACK TABLE TO BEFORE DROP quickly undrops a previously dropped table. This feature
uses a logical container named the recycle bin.

•	 FLASHBACK TABLE flashes back to a recent point in time to undo the effects of undesired DML
statements. You can flash back to an SCN, a timestamp, or a restore point.

Oracle introduced FLASHBACK TABLE TO BEFORE DROP to allow you to quickly recover a dropped table.
As of Oracle Database 10g, when you drop a table, if you don’t specify the PURGE clause, Oracle doesn’t drop the
table—instead, the table is renamed. Any tables you drop (that Oracle renames) are placed in the recycle bin.
The recycle bin provides you with an efficient way to view and manage dropped objects.

Note ■ to use the Flashback table feature, you don’t need to implement an Fra, nor do you need Flashback database
to be enabled.

The FLASHBACK TABLE TO BEFORE DROP operation only works if your database has the recycle bin feature enabled
(which it is by default). You can check the status of the recycle bin, as follows:

SQL> show parameter recyclebin

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
recyclebin string on

FLASHBACK TABLE TO BEFORE DROP
When you drop a table, if you don’t specify the PURGE clause, Oracle renames the table with a system-generated name.
Because the table isn’t really dropped, you can use FLASHBACK TABLE TO BEFORE DROP to instruct Oracle to rename
the table with its original name. Here is an example. Suppose the INV table is accidentally dropped:

SQL> drop table inv;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

569

Verify that the table has been renamed by viewing the contents of the recycle bin:

SQL> show recyclebin;
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
INV BIN$0zIqhEFlcprgQ4TQTwq2uA==$0 TABLE 2013-01-11:12:16:49

The SHOW RECYCLEBIN statement shows only tables that have been dropped. To get a more complete picture of
renamed objects, query the RECYCLEBIN view:

select object_name, original_name, type
from recyclebin;

Here is the output:

OBJECT_NAME ORIGINAL_NAM TYPE
----------------------------------- ------------ -------------------------
BIN$0zIqhEFjcprgQ4TQTwq2uA==$0 INV_PK INDEX
BIN$0zIqhEFkcprgQ4TQTwq2uA==$0 INV_TRIG TRIGGER
BIN$0zIqhEFlcprgQ4TQTwq2uA==$0 INV TABLE

In this output the table also has a primary key that was renamed when the object was dropped. To undrop the
table, do this:

SQL> flashback table inv to before drop;

The prior command restores the table to its original name. This statement, however, doesn’t restore the index to
its original name:

SQL> select index_name from user_indexes where table_name='INV';

INDEX_NAME

BIN$0zIqhEFjcprgQ4TQTwq2uA==$0

In this scenario, you have to rename the index:

SQL> alter index "BIN$0zIqhEFjcprgQ4TQTwq2uA==$0" rename to inv_pk;

You also have to rename any trigger objects in the same manner. If referential constraints were in place before the
table was dropped, you must manually re-create them.

If, for some reason, you need to flash back a table to a name different from the original name, you can do so
as follows:

SQL> flashback table inv to before drop rename to inv_bef;

Flashing Back a Table to a Previous Point in Time
If a table was erroneously deleted from, you have the option of flashing back the table to a previous point in time. The
Flashback Table feature uses information in the undo tablespace to restore the table. The point in time in the past
depends on your undo tablespace retention period, which specifies the minimum time that undo information is kept.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

570

If the required flashback information isn’t in the undo tablespace, you receive an error such as this:

ORA-01555: snapshot too old

In other words, to be able to flash back to a point in time in the past, the required information in the undo
tablespace must not have been overwritten.

FLASHBACK TABLE TO SCN
Suppose you’re testing an application feature, and you want to quickly restore a table back to a specific SCN. As part of
the application testing, you record the SCN before testing begins:

SQL> select current_scn from v$database;

CURRENT_SCN

 4760099

You perform some testing and then want to flash back the table to the SCN previously recorded. First, ensure that
row movement is enabled for the table:

SQL> alter table inv enable row movement;
SQL> flashback table inv to scn 4760089;

The table should now reflect transactions that were committed as of the historical SCN value specified in the
FLASHBACK statement.

FLASHBACK TABLE TO TIMESTAMP
You can also flash back a table to a prior point in time. For example, to flash back a table to 15 minutes in the past, first
enable row movement, and then use FLASHBACK TABLE :

SQL> alter table inv enable row movement;
SQL> flashback table inv to timestamp(sysdate-1/96) ;

The timestamp you provide must evaluate to a valid format for an Oracle timestamp. You can also explicitly
specify a time, as follows:

SQL> flashback table inv to timestamp
 to_timestamp('14-jan-13 12:07:33','dd-mon-yy hh24:mi:ss');

FLASHBACK TABLE TO RESTORE POINT
A restore point is a name associated with a timestamp or an SCN in the database. You can create a restore point that
contains the current SCN of the database, as shown:

SQL> create restore point point_a;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

571

Later, if you decide to flash back a table to that restore point, first enable row movement:

SQL> alter table inv enable row movement;
SQL> flashback table inv to restore point point_a;

The table should now contain transactions as they were at the SCN associated with the specified restore point.

Flashing Back a Database
The Flashback Database feature allows you to perform an incomplete recovery back to a point in time in
the past. Flashback Database uses information stored in flashback logs; it doesn’t rely on restoring database files
(as do cold backup, hot backup, and RMAN).

Tip ■ Flashback database isn’t a substitute for a backup of your database. If you experience a media failure with
a data file, you can’t use Flashback database to flash back to before the failure. If a data file is damaged, you have to
restore and recover, using a physical backup (hot, cold, or rMaN).

The Flashback Database feature may be desirable in situations in which you want to consistently reset your
database back to a point in time in the past. For instance, you may periodically want to set a test or training database
back to a known baseline. Or, you may be upgrading an application and, before making large-scale changes to the
application database objects, mark the starting point. After the upgrade, if things don’t go well, you want the ability to
quickly reset the database back to the point in time before the upgrade took place.

There are several prerequisites for Flashback Database:

The database must be in archivelog mode.•	

You must be using an FRA.•	

The Flashback Database feature must be enabled.•	

See Chapter 5 for details on enabling archivelog mode and/or enabling an FRA. You can verify the status of these
features using the following SQL*Plus statements:

SQL> archive log list;
SQL> show parameter db_recovery_file_dest;

To enable the Flashback Database feature, alter your database into flashback mode, as shown:

SQL> alter database flashback on;

Note ■ In oracle database 10g the database must be in mount mode to enable Flashback database.

You can verify the flashback status, as follows:

SQL> select flashback_on from v$database;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

572

After you enable Flashback Database, you can view the flashback logs in your FRA with this query:

select name, log#, thread#, sequence#, bytes
from v$flashback_database_logfile;

The range of time in which you can flash back is determined by the DB_FLASHBACK_RETENTION_TARGET parameter.
This specifies the upper limit, in minutes, of how far your database can be flashed back.

You can view the oldest SCN and time you can flash back your database to by running the following SQL:

select
 oldest_flashback_scn
,to_char(oldest_flashback_time,'dd-mon-yy hh24:mi:ss')
from v$flashback_database_log;

If, for any reason, you need to disable Flashback Database, you can turn it off, as follows:

SQL> alter database flashback off;

You can use either RMAN or SQL*Plus to flash back a database. You can specify a point in time in the past, using
one of the following:

SCN•	

Timestamp•	

Restore point•	

Last •	 RESETLOGS operation (works from RMAN only)

This example creates a restore point:

SQL> create restore point flash_1;

Next, the application performs some testing, after which the database is flashed back to the restore point so that a
new round of testing can begin:

SQL> shutdown immediate;
SQL> startup mount;
SQL> flashback database to restore point flash_1;
SQL> alter database open resetlogs;

At this point, your database should be transactionally consistent with how it was at the SCN associated with the
restore point.

Restoring and Recovering to Different Server
When you think about architecting your backup strategy, as part of the process, you must also consider how you’re
going to restore and recover. Your backups are only as good as the last time you tested a restore and recovery. A backup
strategy can be rendered worthless without a good restore-and-recovery strategy. The last thing you want to happen
is to have a media failure, go to restore your database, and then find out you’re missing critical pieces, you don’t have
enough space to restore, something is corrupt, and so on.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

573

One of the best ways to test an RMAN backup is to restore and recover it to a different database server. This will
exercise all your backup, restore, and recovery DBA skills. If you can restore and recover an RMAN backup on
a different server, it will give you confidence when a real disaster hits. You can think of all the prior material in this book
as the building blocks for performing technically challenging tasks. Moving a database from one server to another
using an RMAN backup requires an expert level understanding of the Oracle architecture and how B&R works.

Note ■ rMaN does have a DUPLICATE DATABASE command, which works well for copying a database from one server
to another. If you’re going to be performing this type of task often, I would recommend that you use rMaN’s duplicate
database functionality. however, you may still have to copy a backup of a database manually from one server to another,
especially when the security is such that you can’t directly connect a production server to a development environment.
I work with many production databases in which there is no direct access to a production server, so the only way to
duplicate a database is by manually copying the rMaN backups from production to a test environment. starting with
oracle database 11g release 2, you can use rMaN to duplicate a database based on backups you copy from the target
to the auxiliary server. see Mos note 874352.1 for details on targetless duplication.

In this example the originating server and destination server have different mount points. Listed next are the
high-level steps required to take an RMAN backup and use it to recreate a database on a separate server:

1. Create an RMAN backup on the originating database.

2. Copy the RMAN backup to the destination server. All steps that follow are performed on
the destination database server.

3. Ensure that Oracle is installed.

4. Source the required OS variables.

5. Create an init.ora file for the database to be restored.

6. Create any required directories for data files, control files, and dump/trace files.

7. Start up the database in nomount mode.

8. Restore the control file from the RMAN backup.

9. Start up the database in mount mode.

10. Make the control file aware of the location of the RMAN backups.

11. Rename and restore the data files to reflect new directory locations.

12. Recover the database.

13. Set the new location for the online redo logs.

14. Open the database.

15. Add the temp file.

16. Rename the database (optional).

Each of the prior steps is covered in detail in the next several sections. Steps 1 and 2 occur on the source database
server. All remaining steps are performed on the destination server. For this example the source database is named
o12c, and the destination database will be named DEVDB.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

574

Furthermore, the originating server and destination server have different mount point names. On the source
database the data files and control files are here:

/u01/dbfile/o12c

On the destination database the data files and control files will be renamed and restored to this directory:

/ora01/dbfile/DEVDB

The destination database online redo logs will be placed in this directory:

/ora01/oraredo/DEVDB

The destination database archive redo log file location will be set as follows:

/ora01/arc/DEVDB

Keep in mind that these are the directories used on servers in my test environment. You’ll have to adjust these
directory names to reflect the directory structures on your database servers.

Step 1. Create an RMAN Backup on the Originating Database
When backing up a database, make sure you have the autobackup control file feature turned on. Also, include the
archive redo logs as part of the backup, like so:

RMAN> backup database plus archivelog;

You can verify the names and locations of the backup pieces via the LIST BACKUP command. For example, this is
what the backup pieces look like for the source database:

rman1_bonvb2js_1_1.bk
rman1_bqnvb2k5_1_1.bk
rman1_bsnvb2p3_1_1.bk
rman_ctl_c-3423216220-20130113-06.bk

In the prior output the file with the c-3423216220 string in the name is the backup piece that contains the control
file. You’ll have to inspect the output of your LIST BACKUP command to determine which backup piece contains the
control file. You’ll need to reference that backup piece in step 8.

Step 2. Copy the RMAN Backup to the Destination Server
For this step, use a utility such as rsync or scp to copy the backup pieces from one server to another. This example
uses the scp command to copy the backup pieces:

$ scp rman* oracle@DEVBOX:/ora01/rman/DEVDB

In this example the /ora01/rman/DEVDB directory must be created on the destination server before copying the
backup files. Depending on your environment, this step might require copying the RMAN backups twice: once from
the production server to a secure server and once from the secure server to a test server.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

575

Note ■ If the rMaN backups are on tape instead of on disk, then the same media manager software must be
installed/configured on the destination server. also, that server must have direct access to the rMaN backups on tape.

Step 3. Ensure That Oracle Is Installed
Make sure you have the same version of the Oracle binaries installed on the destination server as you do on the
originating database.

Step 4. Source the Required OS Variables
You need to establish the OS variables, such as ORACLE_SID, ORACLE_HOME, and PATH. Typically, the ORACLE_SID
variable is initially set to match what it was on the original database. The database name will be changed as part of the
last step in this recipe (optional). Here are the settings for ORACLE_SID and ORACLE_HOME on the destination server:

$ echo $ORACLE_SID
o12c

$ echo $ORACLE_HOME
/ora01/app/oracle/product/12.1.0.1/db_1

At this point also consider adding the Oracle SID to the oratab file. If you plan on using this database after you’ve
replicated it, then you should have an automated method for setting the required OS variables. See Chapter 2 for
details on sourcing OS variables in conjunction with the oratab file.

Step 5. Create an init.ora File for the Database to Be Restored
Copy the init.ora file from the original server to the destination server, and modify it so that it matches the
destination box in terms of any directory paths. Ensure that you change the parameters, such as the CONTROL_FILES,
to reflect the new path directories on the destination server (/ora01/dbfile/DEVDB, in this example).

Initially, the name of the init.ora file is ORACLE_HOME/dbs/inito12c.ora, and the name of the database is o12c.
Both will be renamed in a later step. Here are the contents of the init.ora file:

control_files='/ora01/dbfile/DEVDB/control01.ctl',
 '/ora01/dbfile/DEVDB/control02.ctl'
db_block_size=8192
db_name='o12c'
log_archive_dest_1='location=/ora01/arc/DEVDB'
job_queue_processes=10
memory_max_target=300000000
memory_target=300000000
open_cursors=100
os_authent_prefix=''
processes=100
remote_login_passwordfile='EXCLUSIVE'
resource_limit=true
shared_pool_size=80M
sql92_security=TRUE

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

576

undo_management='AUTO'
undo_tablespace='UNDOTBS1'
workarea_size_policy='AUTO'

Note ■ If this were an oracle database 10g example, you would need to set the parameters background_dump_dest,
user_dump_dest, core_dump_dest.

Step 6. Create Any Required Directories for Data Files, Control Files, and
Dump/Trace Files
For this example the directories /ora01/dbfile/DEVDB and /ora01/oraredo/DEVDB are created:

$ mkdir -p /ora01/dbfile/DEVDB
$ mkdir -p /ora01/oraredo/DEVDB
$ mkdir -p /ora01/arc/DEVDB

Step 7. Start Up the Database in Nomount Mode
You should now be able to start up the database in nomount mode:

$ rman target /
RMAN> startup nomount;

Step 8. Restore the Control File from the RMAN Backup
Next, restore the control file from the backup that was previously copied; for example,

RMAN> restore controlfile from
'/ora01/rman/DEVDB/rman_ctl_c-3423216220-20130113-06.bk';

The control file will be restored to all locations specified by the CONTROL_FILES initialization parameter. Here is
some sample output:

channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
output file name=/ora01/dbfile/DEVDB/control01.ctl
output file name=/ora01/dbfile/DEVDB/control02.ctl

Step 9. Start Up the Database in Mount Mode
You should now be able to start up your database in mount mode:

RMAN> alter database mount;

At this point, your control files exist and have been opened, but none of the data files or online redo logs exist yet.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

577

Step 10. Make the Control File Aware of the Location of the RMAN Backups
First, use the CROSSCHECK command to let the control file know that none of the backups or archive redo logs are in the
same location that they were in on the original server:

RMAN> crosscheck backup; # Crosscheck backups
RMAN> crosscheck copy; # Crosscheck image copies and archive logs

Then, use the CATALOG command to make the control file aware of the location and names of the backup pieces
that were copied to the destination server.

Note ■ don’t confuse the CATALOG command with the recovery catalog schema. the CATALOG command adds rMaN
metadata to the control file, whereas the recovery catalog schema is a user, generally created in a separate database,
that can be used to store rMaN metadata.

In this example any RMAN files that are in the /ora01/rman/DEVDB directory will be cataloged in the control file:

RMAN> catalog start with '/ora01/rman/DEVDB';

Here is some sample output:

List of Files Unknown to the Database
=====================================
File Name: /ora01/rman/DEVDB/rman1_bqnvb2k5_1_1.bk
File Name: /ora01/rman/DEVDB/rman1_bonvb2js_1_1.bk
File Name: /ora01/rman/DEVDB/rman_ctl_c-3423216220-20130113-06.bk
File Name: /ora01/rman/DEVDB/rman1_bsnvb2p3_1_1.bk

Do you really want to catalog the above files (enter YES or NO)?

Now, type YES (if everything looks okay). You should then be able to use the RMAN LIST BACKUP command to
view the newly cataloged backup pieces:

RMAN> list backup;

Step 11. Rename and Restore the Data Files to Reflect New Directory Locations
If your destination server has the exact same directory structure as the original server directories, you can issue the
RESTORE command directly:

RMAN> restore database;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

578

However, when restoring data files to locations that are different from the original directories, you’ll have to use the
SET NEWNAME command. Create a file that uses an RMAN run{} block that contains the appropriate SET NEWNAME and
RESTORE commands. I like to use an SQL script that generates SQL to give me a starting point. Here is a sample script:

set head off feed off verify off echo off pages 0 trimspool on
set lines 132 pagesize 0
spo newname.sql
--
select 'run{' from dual;
--
select
'set newname for datafile ' || file# || ' to ' || '''' || name || '''' || ';'
from v$datafile;
--
select
'restore database;' || chr(10) ||
'switch datafile all;' || chr(10) ||
'}'
from dual;
--
spo off;

After running the script, these are the contents of the newname.sql script that was generated:

run{
set newname for datafile 1 to '/u01/dbfile/o12c/system01.dbf';
set newname for datafile 2 to '/u01/dbfile/o12c/sysaux01.dbf';
set newname for datafile 3 to '/u01/dbfile/o12c/undotbs01.dbf';
set newname for datafile 4 to '/u01/dbfile/o12c/users01.dbf';
restore database;
switch datafile all;
}

Then, modify the contents of the newname.sql script to reflect the directories on the destination database server.
Here is what the final newname.sql script looks like for this example:

run{
set newname for datafile 1 to '/ora01/dbfile/DEVDB/system01.dbf';
set newname for datafile 2 to '/ora01/dbfile/DEVDB/sysaux01.dbf';
set newname for datafile 3 to '/ora01/dbfile/DEVDB/undotbs01.dbf';
set newname for datafile 4 to '/ora01/dbfile/DEVDB/users01.dbf';
restore database;
switch datafile all;
}

Now, connect to RMAN, and run the prior script to restore the data files to the new locations:

$ rman target /
RMAN> @newname.sql

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

579

Here is a snippet of the output:

datafile 1 switched to datafile copy
input datafile copy RECID=5 STAMP=790357985 file name=/ora01/dbfile/DEVDB/system01.dbf

All the data files have been restored to the new database server. You can use the RMAN REPORT SCHEMA command
to verify that the files have been restored and are in the correct locations:

RMAN> report schema;

Here is some sample output:

RMAN-06139: WARNING: control file is not current for REPORT SCHEMA
Report of database schema for database with db_unique_name O12C
List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 500 SYSTEM *** /ora01/dbfile/DEVDB/system01.dbf
2 500 SYSAUX *** /ora01/dbfile/DEVDB/sysaux01.dbf
3 800 UNDOTBS1 *** /ora01/dbfile/DEVDB/undotbs01.dbf
4 50 USERS *** /ora01/dbfile/DEVDB/users01.dbf

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 500 TEMP 500 /u01/dbfile/o12c/temp01.dbf

From the prior output you can see that the database name and temporary tablespace data file still don’t reflect
the destination database (DEVDB). These will be modified in subsequent steps.

Step 12. Recover the Database
Next, you need to apply any archive redo files that were generated during the backup. These should be included in
the backup because the ARCHIVELOG ALL clause was used to take the backup. Initiate the application of redo via the
RECOVER DATABASE command:

RMAN> recover database;

RMAN will restore and apply as many archive redo logs as it has in the backup pieces and then may throw an
error when it reaches an archive redo log that doesn’t exist; for example,

RMAN-06054: media recovery requesting unknown archived log for...

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

580

That error message is fine. The recovery process will restore and recover archive redo logs contained in the
backups, which should be sufficient to open the database. The recovery process doesn’t know where to stop applying
archive redo logs and therefore will continue to attempt to do so until it can’t find the next log. Having said that, now is
a good time to verify that your data files are online and not in a fuzzy state:

select file#, status, fuzzy, error, checkpoint_change#,
to_char(checkpoint_time,'dd-mon-rrrr hh24:mi:ss') as checkpoint_time
from v$datafile_header;

Step 13. Set the New Location for the Online Redo Logs
If your source and destination servers have the exact same directory structures, then you don’t need to set a new
location for the online redo logs (so you can skip this step).

However, if the directory structures are different, then you’ll need to update the control file to reflect the new
directory for the online redo logs. I sometimes use an SQL script that generates SQL to assist with this step:

set head off feed off verify off echo off pages 0 trimspool on
set lines 132 pagesize 0
spo renlog.sql
select
'alter database rename file ' || chr(10)
|| '''' || member || '''' || ' to ' || chr(10) || '''' || member || '''' ||';'
from v$logfile;
spo off;

For this example, here is a snippet of the renlog.sql file that was generated:

alter database rename file
'/u01/oraredo/o12c/redo01a.rdo' to
'/u01/oraredo/o12c/redo01a.rdo';
...
alter database rename file
'/u02/oraredo/o12c/redo03b.rdo' to
'/u02/oraredo/o12c/redo03b.rdo';

The contents of renlog.sql need to be modified to reflect the directory structure on the destination server.
Here is what renlog.sql looks like after being edited:

alter database rename file
'/u01/oraredo/o12c/redo01a.rdo' to
'/ora01/oraredo/DEVDB/redo01a.rdo';
...
alter database rename file
'/u02/oraredo/o12c/redo03b.rdo' to
'/ora01/oraredo/DEVDB/redo03b.rdo';

Update the control file by running the renlog.sql script:

SQL> @renlog.sql

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

581

You can select from V$LOGFILE to verify that the online redo log names are correct:

SQL> select member from v$logfile;

Here is the output for this example:

/ora01/oraredo/DEVDB/redo01a.rdo
/ora01/oraredo/DEVDB/redo02a.rdo
/ora01/oraredo/DEVDB/redo03a.rdo
/ora01/oraredo/DEVDB/redo01b.rdo
/ora01/oraredo/DEVDB/redo02b.rdo
/ora01/oraredo/DEVDB/redo03b.rdo

Make sure the directories exist on the new server that will contain the online redo logs. For this example, here is
the mkdir command:

$ mkdir -p /ora01/oraredo/DEVDB

Step 14. Open the Database
You must open the database with the OPEN RESETLOGS command (because there are no redo logs, and they must be
re-created at this point):

SQL> alter database open resetlogs;

If successful, you should see this message:

Statement processed

Note ■ Keep in mind that all the passwords from the newly restored copy are as they were in the source database.
you may want to change the passwords in a replicated database, especially if it was copied from production.

Step 15. Add the Temp File
When you start your database, Oracle will automatically try to add any missing temp files to the database. Oracle
won’t be able to do this if the directory structure on the destination server is different from that of the source server.
In this scenario, you will have to add any missing temp files manually. To do this, first take offline the temporary
tablespace temp file. The file definition from the originating database is taken offline like so:

SQL> alter database tempfile '/u01/dbfile/o12c/temp01.dbf' offline;
SQL> alter database tempfile '/u01/dbfile/o12c/temp01.dbf' drop;

Next, add a temporary tablespace file to the TEMP tablespace that matches the directory structure of the
destination database server:

SQL> alter tablespace temp add tempfile '/ora01/dbfile/DEVDB/temp01.dbf'
 size 100m;

You can run the REPORT SCHEMA command to verify that all files are in the correct locations.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

582

Step 16. Rename the Database
This step is optional. If you need to rename the database to reflect the name for a development or test database, create
a trace file that contains the CREATE CONTROLFILE statement, and use it to rename your database.

Tip ■ If you don’t rename the database, be careful about connect and resync operations to the same recovery catalog
used by the original/source database. this causes confusion in the recovery catalog as to which is the real source
database and may jeopardize your ability to recover and restore the real source database.

The steps for renaming your database are as follows:

1. Generate a trace file that contains the SQL command to recreate the control files:

SQL> alter database backup controlfile to trace as '/tmp/cf.sql' resetlogs;

2. Shut down the database:

SQL> shutdown immediate;

3. Modify the /tmp/cf.sql trace file; be sure to specify SET DATABASE "<NEW DATABASE
NAME>" in the top line of the output:

CREATE CONTROLFILE REUSE SET DATABASE "DEVDB" RESETLOGS ARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 876
LOGFILE
 GROUP 1 (
 '/ora01/oraredo/DEVDB/redo01a.rdo',
 '/ora01/oraredo/DEVDB/redo01b.rdo'
) SIZE 50M BLOCKSIZE 512,
 GROUP 2 (
 '/ora01/oraredo/DEVDB/redo02a.rdo',
 '/ora01/oraredo/DEVDB/redo02b.rdo'
) SIZE 50M BLOCKSIZE 512,
 GROUP 3 (
 '/ora01/oraredo/DEVDB/redo03a.rdo',
 '/ora01/oraredo/DEVDB/redo03b.rdo'
) SIZE 50M BLOCKSIZE 512
DATAFILE
 '/ora01/dbfile/DEVDB/system01.dbf',
 '/ora01/dbfile/DEVDB/sysaux01.dbf',
 '/ora01/dbfile/DEVDB/undotbs01.dbf',
 '/ora01/dbfile/DEVDB/users01.dbf'
CHARACTER SET AL32UTF8;

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

583

If you don’t specify SET DATABASE in the top line of the prior script, when you run the script (as shown later in this
example), you’ll receive an error such as this:

ORA-01161: database name ... in file header does not match...

4. Create an init.ora file that matches the new database name:

$ cd $ORACLE_HOME/dbs
$ cp init<old_sid>.ora init<new_sid>.ora
$ cp inito12c.ora initDEVDB.ora

5. Modify the DB_NAME variable within the new init.ora file (in this example, it’s set to DEVDB):

db_name='DEVDB'

6. Set the ORACLE_SID OS variable to reflect the new SID name (in this example, it’s set to
DEVDB):

$ echo $ORACLE_SID
DEVDB

7. Start up the instance in nomount mode:

SQL> startup nomount;

8. Run the trace file (from step 2) to re-create the control file:

SQL> @/tmp/cf.sql

Note ■ In this example the control files already exist in the location specified by the CONTROL_FILES initialization
parameter; therefore, the REUSE parameter is used in the CREATE CONTROL FILE statement.

9. Open the database with OPEN RESETLOGS:

SQL> alter database open resetlogs;

If successful, you should have a database that is a copy of the original database. All the data files, control files,
archive redo logs, and online redo logs are in the new locations, and the database has a new name.

10. As a last step, ensure that your temporary tablespace exists:

ALTER TABLESPACE TEMP ADD TEMPFILE '/ora01/dbfile/DEVDB/temp01.dbf'
 SIZE 104857600 REUSE AUTOEXTEND OFF;

Tip ■ you can also use the NID utility to change the database name and database identifier (dBId). see Mos note
863800.1 for more details.

ChaptEr 19 ■ rMaN rEstorE aNd rECovEry

584

Summary
RMAN is an acronym for Recovery Manager. It’s worth noting that Oracle did not name this tool Backup Manager.
The Oracle team recognized that although backups are important, the real value of a B&R tool is its ability to restore
and recover the database. Being able to manage the recovery process is the critical skill. When a database is damaged
and needs to be restored, everybody looks to the DBA to perform a smooth and speedy recovery of the database.
Oracle DBAs should use RMAN to protect, secure, and ensure the availability of the company’s data assets.

The restore-and-recovery process is analogous to the healing process involved when you break a bone.
Restoring data files from a backup and placing them in their original directories can be likened to setting a bone back
to its original position. Recovering a data file is similar to the healing of a broken bone—returning the bone back to the
state it was in before it was broken. When you recover data files, you apply transactions (obtained from archive redo
and online redo) to transform the restored data files back to the state they were in before the media failure occurred.

RMAN can be used for any type of restore-and-recovery scenario. Depending on the situation, RMAN can be
used to restore the entire database, specific data files, control files, server parameter files, archive redo logs, or just
specific data blocks. You can instruct RMAN to perform a complete or an incomplete recovery.

The last section in this chapter details how to use RMAN to restore and recover a database to a remote server.
I recommend that you periodically attempt this type of recovery in order to exercise your B&R strategy. You will gain
much confidence and fully understand B&R internals once you can successfully restore a database to a server that is
different from the original.

585

Chapter 20

Oracle Secure Backup

Protecting and securing data is a core responsibility of a DBA. DBAs must be proficient in B&R skills. As shown in
Chapters 17 through 19, you can use RMAN to manage and automate the backup of Oracle databases. RMAN is easily
configured to back up and restore database files to and from disk.

Most production database environments will have an additional requirement of storing database backups
on tape. If your database server experiences a complete failure, you can use tape backups to restore and recover.
Furthermore, tape backups are easily transported outside the data center to provide additional protection in the event
that an entire data center experiences a complete failure (such as a tornado or flood), the idea being that the tapes are
safely stored off-site and can be brought back when disaster strikes.

To this end, Oracle offers a centralized tape backup solution, Oracle Secure Backup (OSB). This tool is a
full-feature enterprise backup management system that automates the tape backup and restore of OS files. More
important to you as the DBA, OSB can also be configured as a media management layer with RMAN. This means that
you can implement RMAN and OSB together for the backup and restore of database files directly to and from tape.

There are myriad tape management solutions available. Why consider OSB? OSB is particularly compelling if one
of your main goals is database backups to tape. Because OSB is an Oracle product, it is tightly integrated with RMAN.
OSB is aware of the Oracle database file format and can take advantage of block-level validation, encrypting backups
as they are written to tape, integration with Oracle’s Enterprise Manager, and so on.

OSB Editions and Features
There are two different editions of OSB:

Oracle Secure Backup Express•	

Oracle Secure Backup•	

The Oracle Secure Backup Express edition is free (well, “free” when you purchase a license for the Oracle
database). This edition contains core features, such as backup and restore of OS files and RMAN integration, but is
limited to use on a single host with one directly attached tape device.

The Oracle Secure Backup edition requires an extra license and is well suited for tape backup and restore in
a distributed server environment with heterogeneous filesystems (Linux/Unix, Windows, and network-attached
storage). The Oracle Secure Backup edition contains the following additional features not available with the
Express edition:

Backup and restore of database files in RAC environments•	

Integrated with Oracle Enterprise Manager Grid Control (with Oracle Database 10g Release 2 •	
and higher)

Supports multiple tape drives•	

Encrypted tape backups•	

Chapter 20 ■ OraCle SeCure BaCkup

586

Fiber-attached device support•	

Fast backup compression (with Oracle Database 11g Release 1 and higher)•	

RMAN medium-level compression (with Oracle Database 11g Release 2 and higher)•	

Networked backup of distributed hosts and tape devices•	

Automated cartridge system library software (ACSLS) and automated rotation of tapes •	
between multiple locations (vaulting)

If you are a small shop with just one production database server, then Oracle Secure Backup Express may satisfy
your business requirements, whereas the full-fledged Oracle Secure Backup edition is more suitable for environments
with multiple distributed hosts that need advanced data protection.

Note ■ OSB is available on most linux/unix platforms as well as Windows. See the MOS certification matrix for a
current list (https://support.oracle.com).

OSB Terminology
Take some time to familiarize yourself with the architectural terms used with OSB. The following sections give a brief
description of the major OSB parts, starting with administrative domains.

OSB Administrative Domain and Servers
An administrative domain is a collection of servers (hosts) that you manage as a single group for backup and restore
operations. Within an OSB administrative domain, each server can be assigned one or more of the following roles:

Administrative (admin) server•	

Media server•	

Client server (or client host)•	

As shown in Figure 20-1, for each administrative domain, there is only one admin server that controls the
backup, restore, and scheduling operations. An admin server manages one or more media servers and one or
more clients.

https://support.oracle.com/

Chapter 20 ■ OraCle SeCure BaCkup

587

A media server is a host that has at least one physical tape device connected to it. Media servers are responsible
for transferring data to and from the attached tape devices.

The client host is the server on which reside the Oracle databases and filesystem data that you want to back up
(and potentially restore). For a single-host environment a server can be the admin server, media server, and client
host in the OSB administrative domain.

OSB Interfaces
There are four tools you can use to run and manage OSB backup and restore tasks:

Enterprise Manager Database Control and Grid Control or Enterprise Manager 12c Cloud Control•	

Oracle Secure Backup web tool•	

Oracle Secure Backup command-line tool (•	 obtool)

Recover Manager command-line tool (•	 rman)

Although the graphical interfaces are somewhat intuitive and easy to use, I’m a strong believer in learning how
to run a tool from the command line. Doing so gives you a better understanding of the underlying architecture,
knowledge that is invaluable when troubleshooting and diagnosing problems. In that vein, this chapter focuses on
using obtool and rman to configure and run OSB backup and restore tasks.

Tip ■ For complete details on all the OSB interfaces, see the Oracle Secure Backup Administrator’s Guide and Oracle
Secure Backup Reference, available at www.oracle.com/technetwork/database/secure-backup/documentation/.

Figure 20-1. OSB administrative domain

http://www.oracle.com/technetwork/database/secure-backup/documentation/

Chapter 20 ■ OraCle SeCure BaCkup

588

OSB Users and Classes
An OSB user is an account defined within an OSB administrative domain. These users are separate from OS users.
OSB user information is stored in the OSB administrative domain server. You are required to enter a username and
password when accessing OSB through its interfaces, such as obtool or Oracle Secure Backup web tool.

An OSB class is a set of privileges and rights granted to a user. Each user can be assigned to only one OSB class.
OSB classes help maintain a consistent user experience across all servers in an administrative domain.

OSB Daemons
OSB uses seven different background processes (daemons) to manage the configuration, backup, and restore
operations. The executables that start the daemons are in the OSB_HOME/etc directory on each of the servers. These
processes are as follows:

Schedule daemon (obsheduled) runs only on the admin server and manages the scheduled
backups.

Index daemon (obixd) runs only on the admin server and manages the backup catalog for
each client.

Apache web server daemon (obhttpd) runs only on the admin server and services the
Oracle Secure Backup web tool.

Service daemon (observiced) runs on the admin, media, and client servers. On the admin
server, it runs jobs as requested by the schedule daemon. When running on the media or
client server, it allows for remote administration of the host.

Network data management protocol (NDMP) daemon (obndmpd) runs on the admin,
media, and client servers. It provides data communication between servers in the
administrative domain.

Robot daemon (obrobotd) runs only on the media server and helps manage
communication to tape devices.

Proxy daemon (obproxyd) runs only on the client server and verifies user access for system
backup tape (SBT) backup and restore operations.

Now that you have a basic understanding of the OSB architecture, you are ready to download and install
theOSB software.

Download and Installation
You can download the OSB software from the Technology Network area of the Oracle web site
(www.oracle.com/technetwork/database/secure-backup/downloads/).

For the examples in this chapter, I downloaded OSB version 10.4.0.2.0 and saved the zip file
osb-10.4.0.2.0_linux32_cdrom120606.zip under a staging directory stage/osb of my admin server in the OSB
administrative domain. You can stage this binary file in a location of your choice on your server.

http://www.oracle.com/technetwork/database/secure-backup/downloads/

Chapter 20 ■ OraCle SeCure BaCkup

589

Oracle recommends installing the OSB software under the directory /usr/local/oracle/backup for Unix/Linux
platforms and C:\Program Files\Oracle\Backup for the Windows platform, which are the default OSB home
directories. Once you have downloaded the OSB zip file and copied it to the appropriate directory, then you may
proceed to the installation steps, as shown:

 1. To perform the OSB installation, you must log in as root.

$ su - root

 2. If the uncompress utility is not available, create a link.

ln -s /bin/gunzip /bin/uncompress

 3. Go to the staging directory, and unzip the zip file that you downloaded from the Oracle
Technology Network.

cd /stage/osb
unzip osb-10.4.0.2.0_linux32_cdrom120606.zip

 4. If the OSB home directory does not exist, create the directory.

mkdir -p /usr/local/oracle/backup

 5. Go to the OSB home directory, and run the setup script.

cd /usr/local/oracle/backup
/stage/osb/osb-10.4.0.2.0_linux32_cdrom120606/setup

The following output is displayed:

Welcome to Oracle's setup program for Oracle Secure Backup. This
program loads Oracle Secure Backup software from the CD-ROM to a
filesystem directory of your choosing.
This CD-ROM contains Oracle Secure Backup version 10.4.0.2.0_LINUX32.
Please wait a moment while I learn about this host... done.
- -
 1. linux32
 administrative server, media server, client
- -
Loading Oracle Secure Backup installation tools... done.
Loading linux32 administrative server, media server, client... done.
- -
Oracle Secure Backup has installed a new obparameters file.
Your previous version has been saved as install/obparameters.savedbysetup.
Any changes you have made to the previous version must be
made to the new obparameters file.
Would you like the opportunity to edit the obparameters file
Please answer 'yes' or 'no' [no]:

Chapter 20 ■ OraCle SeCure BaCkup

590

6. Because you are not modifying the obparameters file, accept the default parameters by
pressing the Enter key. The following output is displayed:

Loading of Oracle Secure Backup software from CD-ROM is complete.
You may unmount and remove the CD-ROM.
Would you like to continue Oracle Secure Backup installation with
'installob' now? (The Oracle Secure Backup Installation Guide
contains complete information about installob.)
Please answer 'yes' or 'no' [yes]:

7. Press the Enter key to proceed with running the installob. The following output is
displayed:

Welcome to installob, Oracle Secure Backup's installation program.
For most questions, a default answer appears enclosed in square brackets.
Press Enter to select this answer.
Please wait a few seconds while I learn about this machine... done.

Have you already reviewed and customized install/obparameters for your
Oracle Secure Backup installation [yes]?

8. Press Enter to proceed with the OSB installation. The following output is displayed:

Oracle Secure Backup is already installed on this machine (BLLNX4).
Would you like to re-install it preserving current configuration data[no]?

9. If OSB is already installed, and you are performing an OSB upgrade, enter yes to retain the
previous configuration. The following output is displayed:

Oracle Secure Backup's Web server has been loaded, but is not yet configured.
Choose from one of the following options. The option you choose defines
the software components to be installed.
Configuration of this host is required after installation completes.
You can install the software on this host in one of the following ways:
 (a) administrative server, media server and client
 (b) media server and client
 (c) client
If you are not sure which option to choose, please refer to the Oracle
Secure Backup Installation Guide. (a,b or c) [a]?

10. Press Enter to accept the default value a, which is to configure the server as the admin
server, media server, and client. The following output is displayed:

Beginning the installation. This will take just a minute and will produce
several lines of informational output.

Installing Oracle Secure Backup on BLLNX4 (Linux version 2.6.9-67.EL)

You must now enter a password for the Oracle Secure Backup admin user.
Oracle suggests you choose a password of at least eight characters in length,
containing a mixture of alphabetic and numeric characters.

Chapter 20 ■ OraCle SeCure BaCkup

591

Please enter the admin password:
Re-type password for verification:

 11. Enter the password twice for the admin user. The following output is displayed:

You should now enter an email address for the Oracle Secure Backup 'admin'
user. Oracle Secure Backup uses this email address to send job summary
reports and to notify the user when a job requires input. If you leave this
blank, you can set it later using the obtool's 'chuser' command.

Please enter the admin email address: juan.cruz@xyz.com

 12. Enter the e-mail address for the admin user. The following output is displayed:

 generating links for admin installation with Web server
 checking Oracle Secure Backup's configuration file (/etc/obconfig)
 protecting the Oracle Secure Backup directory
 creating /etc/rc.d/init.d/observiced
 activating observiced via chkconfig
 upgrading the administrative domain (where required)
****************************** N O T E ******************************
On Linux systems Oracle recommends that you answer no to the next two
questions. The preferred mode of operation on Linux systems is to use
the /dev/sg devices for attach points as described in the 'ReadMe'
and in the 'Installation and Configuration Guide'.
Is BLLNX4 connected to any tape libraries that you'd like to use with
Oracle Secure Backup [no]?
Is BLLNX4 connected to any tape drives that you'd like to use with
Oracle Secure Backup [no]?

 13. Because I am installing OSB on a Linux server, I accept the default and type no for both
prompts. The following final output is displayed, showing the installation summary:

Installation summary:
 Installation Host OS Driver OS Move Reboot
 Mode Name Name Installed? Required? Required?
 admin BLLNX4 Linux no no no
Oracle Secure Backup is now ready for your use.

 14. After the OSB software is installed, launch it by running the following OS command:

/etc/observiced

Note ■ to remove OSB, as root, run the uninstallob shell script, located in the OSB_HOME/install directory. replace
the OS variable OSB_HOME to the usr/local/oracle/backup directory for unix/linux platforms, and to the C:\Programs
Files\Oracle\Backup directory for Windows platforms.

mailto:juan.cruz@xyz.com

Chapter 20 ■ OraCle SeCure BaCkup

592

Command-Line Access to OSB
All the examples in this chapter use either obtool or RMAN to access OSB and perform tasks such as creating backups
and restoring files. This section focuses on connecting to the obtool utility. The first time you run the obtool utility,
you will be prompted for the password of the admin user, which is the default OSB user created when you installed
OSB. When prompted, use the password you specified when installing the OSB software:

$ obtool
Oracle Secure Backup 10.4.0.2.0
login:

To launch the obtool utility and log in to a specific user, use the u option, as shown (you will learn how to
maintain OSB users in the next section):

$ obtool -u apress_oracle

To verify the OSB user that you are logged in as, issue the id command:

ob> id
apress_oracle

To view a list of obtool help topics, enter the following command:

ob> help topics

Help is available on the following topics:

advanced .. advanced and seldom-used commands
backups .. data backup operations
backupwindow .. backup window definition
browser .. file system browser
checkpoint .. checkpoint management
class .. user class rights

To exit the obtool utility, issue either the exit or quit command, like so

ob> exit

However, to log out the current user, issue the logout command, as follows:

ob> logout

OSB Configuration
Once OSB is installed and running, you can run a simple backup command. However, for an environment in which
security is a top priority, you may want to change the OSB default settings first. Imagine that tight security is strictly
enforced for your production database, and a single OSB user account is used to back up both production and test
databases. You are in a vulnerable situation, because a DBA on your testing team can restore the backup of your
production database to another server and access the data from there. To increase security and better manage your

Chapter 20 ■ OraCle SeCure BaCkup

593

tape backups, I recommend creating new user accounts and assigning specific roles as well as creating media families
and database backup storage selectors. These topics are discussed in the next several sections.

Configuring Users and Classes
When OSB is installed, the default user account created, named admin, has all the privileges relating to OSB. For
security reasons, you should create separate OSB user accounts to access the different environments, such as
production, test, and development. Also, assign these users to specific classes (roles), such as admin, operator,
oracle, user, or reader. Monitor them to limit their rights to modify OSB administrative domain configurations
and perform backup and restore operations. Limiting rights ensures that a particular OSB user can back up the test
database but has no rights to perform other tasks, for example, restoring the production database.

To determine the rights of the admin class, issue the lsclass command, as shown:

ob> lsclass -l admin

Here is some sample output:

admin:
 browse backup catalogs with this access: privileged
 access Oracle database backups: all
 access file system backups: all
 display administrative domain's configuration: yes
 modify own name and password: yes
 modify administrative domain's configuration: yes
 modify catalog: yes
 perform file system backups as self: yes
 perform file system backups as privileged user: yes
 list any jobs owned by user: yes
 modify any jobs owned by user: yes
 perform file system restores as self: yes
 perform file system restores as privileged user: yes
 receive email requesting operator assistance: yes
 receive email describing internal errors: yes
 receive email regarding expired passphrase keys: yes
 query and display information about devices: yes
 manage devices and change device state: yes
 list any job, regardless of its owner: yes
 modify any job, regardless of its owner: yes
 perform Oracle database backups and restores: yes

Note ■ to display the complete syntax of an OSB command, issue the help command, followed by the OSB command.

To create an OSB user, issue the mkuser command. In the following example the OSB user apress_oracle is
created and assigned oracle rights:

ob> mkuser --class oracle apress_oracle --preauth BLLNX3:oracle+cmdline+rman

Chapter 20 ■ OraCle SeCure BaCkup

594

The cmdline attribute in the -preauth option grants the oracle OS user preauthorized access to obtool utility,
whereas the rman attribute grants Oracle Database SBT backups via RMAN. If no +rman preauthorization is defined for the
server hosting the target database that you want to back up, then the RMAN backup fails, with ORA-19511 error, as shown:

ORA-19511: Error received from media manager layer, error text:
 sbt__rpc_cat_query: Query for piece u8lr5bs6_1_1 failed.
(Oracle Secure Backup error: 'no preauth config found for OS user (OB tools) oracle').

If you want to view all OSB users, issue the lsuser command:

ob> lsuser

Table 20-1 describes the various OSB commands used to maintain OSB user accounts.

Table 20-1. OSB Commands for Maintaining OSB Users

Command Meaning

mkuser Create an OSB user.

lsuser Display information on OSB users.

renuser Rename an OSB user.

chuser Modify the attributes of an OSB user.

rmuser Delete an OSB user.

Configuring Media Families
The media family classifies and defines the characteristics of the tape volume, such as the volume ID, volume
expiration, and write window. The volume ID, which is used by OSB to uniquely identify the tape volume, consists
of the name of the media family affixed with a six-digit sequence number generated by OSB. For example, if the name
of the media family is APRESS_BACKUP, then the first volume ID is APRESS_BACKUP-000001, the second is
APRESS_BACKUP-000002, and so on.

There are two types of volume expiration policies: time managed and content managed. The tape volumes
in a time-managed media family can expire after surpassing the expiration time; in a content-managed media
family, they expire when all the backup pieces on the volume are marked as deleted. For filesystem backups, you
must use a time-managed media family to let OSB manage the volume expiration. For RMAN backups, you must use
content-managed media family to let RMAN manage the expiration of the backup pieces on the tape volume instead
of OSB. This avoids inconsistency between the RMAN metadata and the contents of the tapes.

To create a time-managed media family, issue the mkmf command. In the following example the media family
APRESS_OS has 7 days of write period and 14 days of retention period. This means that the volumes of the media family
APRESS_OS will expire and are ready for recycling after 21 days, as the first backup piece is created on the tape volume:

ob> mkmf --writewindow 7days --retain 14days APRESS_OS

To create a content-managed media family, issue the mkmf, as shown. Because the default volume expiration
policy is content managed, you can omit the --contentmanaged option.

ob> mkmf --contentmanaged APRESS_RMAN

Table 20-2 describes OSB commands used to maintain media families.

Chapter 20 ■ OraCle SeCure BaCkup

595

To increase security and better manage your tape backups, you may create separate media families for different
environments, such as production, test, and development. In this way, the backups of the production database and
test database are not sharing the same tape volumes.

Configuring Database Backup Storage Selector
The default media family for RMAN backup is RMAN-DEFAULT. To use a different media family when running RMAN
backup, create a database backup storage selector, using the mkssel command. Here, the database backup storage
selector, named BLLNX3-DB11R2.ssel, assigns the media family APRESS_RMAN for RMAN backups on the Oracle
database DB11R2, hosted on the client server BLLNX3:

ob> mkssel --host BLLNX3 --dbname DB11R2 --family APRESS_RMAN BLLNX3-DB11R2.ssel

Note ■ If an rMaN backup matches the Oracle database or client host defined on a database backup storage selector,
then you don’t have to pass the OS environment variable OB_MEDIA_FAMILY parameter when allocating the rMaN
channel for SBT_TAPE.

Table 20-3 offers descriptions of OSB commands related to maintaining the database backup storage selector.

Table 20-2. OSB Commands for Maintaining Media Families

Command Meaning

mkmf Create a media family.

lsmf Display information on media families.

renmf Rename a media family.

chmf Modify the attributes of a media family.

rmmf Delete a media family.

Table 20-3. OSB Commands for Maintaining the Database Backup Storage Selector

Command Meaning

mkssel Create a database backup storage selector.

lsssel Display information on database backup storage selectors.

renssel Rename a database backup storage selector.

chssel Modify the attributes of a database backup storage selector.

rmssel Delete a database backup storage selector.

Chapter 20 ■ OraCle SeCure BaCkup

596

Database Backup
In Chapter 18, you learned how to use RMAN to back up database files to disk. In the following sections, you will use
OSB and RMAN to create backups on tape. There are two ways to configure RMAN for a backup to tape:

Allocate a channel•	

Configure a channel•	

The first option is to allocate an RMAN channel for SBT_TAPE inside the run{} block. In this example the media
family APRESS_RMAN is passed as a parameter to the environment variable OB_MEDIA_FAMILY. The tape volumes will
have a volume ID of APRESS_RMAN, affixed with a six-digit sequence number generated by OSB.

RMAN> run {
 allocate channel t1 device type sbt_tape parms 'ENV=(OB_MEDIA_FAMILY=APRESS_RMAN)';
 backup database;
}

You can configure multiple channels for SBT_TAPE, equivalent to the number of available physical tape devices.
However, if you allocate two channels and only have one physical tape device, the other channel will just wait for the
tape resource to become available. You can also use the CONFIGURE command to set the RMAN channel for SBT_TAPE,
as shown:

RMAN> configure channel device type sbt_tape
 parms 'ENV=(OB_MEDIA_FAMILY=APRESS_RMAN)';
RMAN> backup device type sbt_tape database;

For discussion on monitoring the backup jobs you have submitted, see the section “OSB Job Monitoring,” later in
this chapter. Table 20-4 provides descriptions of other OSB media management parameters.

Table 20-4. OSB Media Management Parameters

Parameter Meaning

OB_MEDIA_FAMILY Specify the media family that defines the characteristics of the tape volumes.

OB_DEVICE Specify the tape drives to use during backup.

OB_RESOURCE_WAIT_TIME Specify the wait time for resources to become available.

OB_ENCRYPTION Specify the OSB encryption. If this is set, then OSB does not perform further
encryption.

OB_RESTORE_DEVICE Specify the tape drives to use during restore.

OB_IGNORE_NUMA Enable support for nonuniform memory access (NUMA). NUMA allows the Oracle
shadow process and the Oracle Secure Backup data service (obndmpd process) to
access a common memory when exchanging data. This feature is available
starting with Oracle Secure Backup version 10.4.0.1.0; the default value is 1, which
enables NUMA.

Chapter 20 ■ OraCle SeCure BaCkup

597

Note ■ If no media family is explicitly passed when allocating/configuring the rMaN channel for SBT_TAPE, or no
database backup storage selector is defined for the specific host or database, OSB will use the default media family
RMAN-DEFAULT, which is created when OSB is installed.

Database Restore
For RMAN restore and recover, you have to allocate an RMAN channel for SBT_TAPE. In the following example the
RMAN channel for SBT_TAPE is allocated inside the run{} block:

RMAN> run {
 allocate channel t1 device type sbt_tape;
 restore database;
 recover database;
}

Another option is to run the CONFIGURE command. Unlike the previous example, you must include the PARMS
clause in the CONFIGURE command (if you don’t use the PARMS clause, a syntax error is returned):

RMAN> configure channel device type sbt_tape
 parms 'ENV=(OB_MEDIA_FAMILY=APRESS_RMAN)';
RMAN> restore device type sbt_tape database;
RMAN> recover device type sbt_tape database;

Suppose you have a scenario in which the production server is completely gone, owing to a catastrophic event,
but, luckily, you have an off-site tape backup of the database. Additionally, you are not using an RMAN recovery
catalog, and control file autobackup is disabled. You discover that the latest backup of the control file is corrupted,
but you are able to restore the control file from a backup taken 2 days ago. After mounting the database, you realize
that the latest RMAN backups, taken yesterday, are not on the list when you issue the RMAN LIST BACKUP command
(because the control file restored was from 2 days ago and has no knowledge of yesterday’s RMAN backup).

In this situation the control file restored from a backup taken 2 days ago has no information on the backup pieces
created on tape yesterday. To make the RMAN repository (control file, in this scenario) aware of the backup pieces on
tape, do the following:

 1. Configure a channel for tape.

 2. Make the RMAN repository aware of the backup piece via the CATALOG command.

Next, issue the CATALOG DEVICE TYPE SBT_TAPE BACKUPPIECE command, followed by the name of the backup
piece. In this example, one backup piece is cataloged:

RMAN> catalog device type sbt_tape backuppiece '15o2qns3_1_1';

Here is the sample output for the previous command.

channel ORA_SBT_TAPE_1: sid=159 devtype=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
cataloged backuppiece
backup piece handle=15o2qns3_1_1 recid=5559 stamp=813392789

Chapter 20 ■ OraCle SeCure BaCkup

598

If you have multiple backup pieces that you want to catalog, you must issue the CATALOG DEVICE TYPE SBT_TAPE
BACKUPPIECE command for each individual backup piece. The key to cataloging the RMAN backup pieces on tape is
that you must know their exact names.

Note ■ as mentioned in Chapter 19, for disk-based backups, you can easily make the rMaN repository aware of
multiple backup pieces via the CATALOG START WITH <directory> command. however, this technique only works for
disk-based backups and not tape backups.

What if you don’t know the names of the back pieces? One way to figure out their names is to check the RMAN log
file generated during the RMAN backup. In the snippet of the RMAN log file shown here, the RMAN backup piece is
silr06fk_1_1:

channel t1: finished piece 1 at 25-FEB-2013 02:46:43piece handle=15o2qns3_1_1
tag=TAG20130225T021218 comment=API Version 2.0,MMS Version 10.4.0.2
channel t1: backup set complete, elapsed time: 00:34:24

But, what if the RMAN log file is not available? You can issue the lspiece command, using the obtool utility.
Here, the output is filtered to display only the backup pieces for the hostname BLLNX3, which hosts the database
DB11R2:

The following is the snippet of the output of the LSPIECE command:

ob> lspiece -d MYDB
 POID Database Content Copy Created Host Piece name
 17350 MYDB full 0 02/25.07:12 BLLNX1 15o2qns3_1_1

This listing shows information such as the creation date and backup piece name. In this example the missing
RMAN backup piece is 15o2qns3_1_1. After you catalog the missing RMAN backup pieces, you can proceed with the
RMAN restore and recovery.

Filesystem Backup
Like any backup job, you need to define the three Ws and one H. What data do I back up? When do I run the backup?
Where do I store the backup? How should the backup run? To accomplish the 3 Ws and 1 H using OSB, you need to
create a data set file as well configure a backup window, a schedule, and a trigger.

Creating Data Set Files
Data setfiles define the directories and files on the client hosts that you want to back up. In the following example the
data set file specifies to include all files under the directory home/oracle on the client host BLLNX1, except for files
under the directory /home/oracle/temp and Oracle database-related files:

include host BLLNX1
include path /home/oracle {
 exclude path /home/oracle/temp
 exclude oracle database files
}

Chapter 20 ■ OraCle SeCure BaCkup

599

To create a data set file named bllnx1_home-oracle.ds, perform the following steps, using the obtool utility,
as shown:

 1. Issue the mkds command, followed by the name of the data set file.

ob> mkds bllnx1_home-oracle.ds

 2. The vi editor is invoked, and a data set template is displayed.

 3. Comment out or remove all existing lines, and add the following lines:

include host BLLNX1
include path /home/oracle {
 exclude oracle database files
 exclude path /home/oracle/temp
}

 4. Save the file by pressing the Esc key and typing : and wq!

 5. The following prompt is displayed. Press the Enter key to confirm the changes.

Apply your changes, if any [yes]?

You just created a data set file. Table 20-5 gives a list of other data set commands.

Table 20-5. Data Set Commands

Command Meaning

catds Display the contents of a data set file.

cdds Change the data set directory.

chkds Check the syntax in a data set file.

edds Modify a data set file.

lsds List the data set file and data set directory names.

mkds Create a data set file or data set directory.

pwdds Show the current directory in the data set directory tree.

rends Rename a data set file or data set directory.

rmds Delete a data set file or data set directory.

Configuring Backup Windows
The backup window defines the range of time in which the scheduled backups are allowed to run. The default backup
window is daily, 00:00–24:00. If no backup window is defined, the scheduled backups are not going to run at all.

Chapter 20 ■ OraCle SeCure BaCkup

600

For production servers, you may want the backups to run daily between 1 am and 5 am. when there is minimal
database traffic. To define a range of time for your backup window, perform the following steps:

1. Remove the existing backup window (daily, 00:00–24:00), as it overlaps the backup window
you want to create, by issuing the rmbw command, like so

ob> rmbw daily

2. Issue the lsbw command.

ob> lsbw

There are no backup windows. This result indicates that the daily backup window is already removed.

3. To create the backup window, issue the addbw command. The following example defines
the backup window as daily, from 01:00 to 05:00:

ob> addbw --times '01:00-05:00' ,mon,tue,wed,thu,fri,sat,sun

Table 20-6 presents a list of other backup window commands.

Table 20-6. Backup Window Commands

Command Meaning

addbw Add a backup window.

chkbw Check whether there is a backup window defined.

lsbw List the backup windows.

rmbw Remove a backup window.

setbw Modify a backup window.

Configuring Backup Schedules and Triggers
The backup schedule defines what data to back up, where to store the backup, and how the backup runs, whereas the
triggers define when the backup is scheduled to run. For what data to back up, set the specific data sets. For where
to store the backup, set the specific tape drives. If no specific tape drive is selected, then any available tape drive will
be used. For how the backup runs, set the job priority and backup encryption options. The lower the value of the job
priority number, the greater the preference given to the job by the scheduler. The default value for the job priority is
100; the default value for the encryption option is no.

The following example uses the MKSCHED command to create a backup schedule named
bllnx1_home-oracle.sched for the data set bllnx1_home-oracle.ds:

ob> mksched --dataset bllnx1_home-oracle.ds bllnx1_home-oracle.sched

After creating the backup schedule, create a trigger to define when to run the scheduled backup. This example
uses the CHSCHED command to define a trigger for the schedule bllnx1_home-oracle.sched to run daily at 02:00
(2 am). The –a option means the addtrigger, the –d option means day, the –t option means time, and the –f option
means media family.

Chapter 20 ■ OraCle SeCure BaCkup

601

ob> chsched -a -d daily -t 02:00 -f APRESS_OS bllnx1_home-oracle.sched

To display the information on the backup schedules, issue the lssched command, like so:

ob> lssched -l bllnx1_home-oracle.sched
bllnx1_home-oracle.sched:
 Type: backup
 State: enabled
 Dataset: bllnx1_home-oracle.ds
 Encryption: no
 UUID: 1ea82008-bfdd-102d-a743-0002a530c867
 Trigger 1:
 Day/date: daily
 At: 02:00
 Backup level: full
 Media family: APRESS_OS

You just scheduled a backup, named bllnx1_home-oracle.sched, that is going to run daily at 2 am. For details on
monitoring a backup job, see the section “OSB Job Monitoring,” later in this chapter.

To remove a backup schedule, issue the rmsched command, as shown:

ob> rmsched bllnx1_home-oracle.sched

Performing On-Demand Filesystem Backups
To run a one-time backup on a specific client host, use the backup command. In this example the data set file is
bllnx1_home-oracle.ds, which was created earlier:

ob> backup --dataset bllnx1_home-oracle.ds --go

If you omit the -go option, the backup request is still in the queue. You can issue the lsbackup command to
display the backup requests that are queued, as follows:

ob> lsbackup
Item # Save data
1 dataset bllnx1_home-oracle.ds

To forward the backup request to the OSB scheduler, issue the following backup command with the --go option,
as shown:

ob> backup --go

To back up the OSB catalog of the admin server manually, issue the following backup command:

ob> backup --dataset OSB-CATALOG-DS --family OSB-CATALOG-MF --go

For discussion on monitoring the backup jobs you have submitted, see the section “OSB Job Monitoring,” later in
this chapter.

Chapter 20 ■ OraCle SeCure BaCkup

602

Note ■ By default, OSB-CATALOG-SCHED is scheduled to run daily at 1 am to back up the OSB catalog, using the data
set file OSB-CATALOG-DS.

Filesystem Restore
There are three options for restoring from a filesystem backup:

Catalog-based restore•	

Raw restore•	

•	 obtar command

In a catalog-based restore, you provide the directory and file, which you can browse from the OSB catalog. With
both the raw restore and the obtar command, you give the volume ID and file number. The volume ID is the unique
name (containing the media family) assigned to a tape volume; the file number is the number of the backup image on
the tape volume. Both the catalog-based restore and raw restore are performed using the obtool utility, whereas the
obtar commands are issued at the OS prompt.

Performing Catalog-Based Restore
Fora catalog-based restore, you can browse the OSB catalog to determine and verify the files you want to restore.
In the following example, you want to restore the file /home/oracle/scripts/rmanbkup.sh, of the client host BLLNX1.
To restore the files using the OSB catalog, perform the following steps:

 1. Set the host variable to BLLNX1, which is the source host.

ob> set host BLLNX1

 2. Issue the cd command to navigate to the directory.

ob> cd /home/oracle/scripts

 3. Issue the ls command to verify the files in the directory.

ob> ls -l rmanbkup.sh
-rwxr-xr-x oracle.oinstall 782 2010/01/13.18:14 rmanbkup.sh (0)

 4. Issue the restore command.

ob> restore '/home/oracle/scripts/rmanbkup.sh' --go

For details on monitoring a restore job, see the section “OSB Job Monitoring,” later in this chapter.

Performing a Raw Restore
To restore data using the raw restore, you must know where to extract the data from; you must provide the file’s
volume ID and file number (you know that backups use a particular media family, which can make the search
a bit easier).

Chapter 20 ■ OraCle SeCure BaCkup

603

Here, you are going to restore the file /home/oracle/scripts/rmanbkup.sh from a tape volume that has the
media family APRESS_OS.

 1. Issue the lsvol command with the -contents option, to display the contents of the
volumes associated with the media family APRESS_OS:

ob> lsvol --contents --family APRESS_OS --nobarcode
VOID OOID Seq Volume ID Family Created Attributes
2845 2845 1 APRESS_OS-000001 APRESS_OS 10/21.04:41 open; closes 10/28.04:41
 BSOID File Sect Level Host Size Created Attributes
 31250 1 1 0 BLLNX1 208.6 MB 10/21.04:41
 31258 2 1 0 BLLNX1 208.8 MB 10/21.06:04
 31260 3 1 0 BLLNX1 210.1 MB 10/21.12:23
 31261 4 1 0 BLLNX1 210.1 MB 10/21.12:34

 2. According to the output shown, you want to restore from a backup taken on 10/21.06:04
(i.e., October 21, at 6:04 am). The corresponding file number is 2, and the volume ID is
APRESS_OS-000001. Issue the following restore command. The -R option indicates a raw
restore operation and does not use an OSB catalog, whereas the –F option means the file
number, and the –v option means the volume ID.

ob> restore -R -F 2 -v APRESS_OS-000001 /home/oracle/scripts/rmanbkup.sh --go

For discussion on monitoring the restore job you have submitted, see the section “OSB Job Monitoring section”
later in this chapter.

Performing an obtar Restore
When you run the OSB restores, they are actually translated to obtar commands in the background. The obtar
commands are issued at the OS level. The obtar command is seldom used to perform restore operations, as you
need to give the volume ID and file number, which are not readily available, especially if you have no access to the
OSB catalog.

In the following example, let’s assume that the file you want to restore, /home/oracle/scripts/rmanbkup.sh,
is in a tape that has the volume ID Home-MF-000098. If you didn’t know the specific volume ID), you would have to
repeat steps 1–3 until you could confirm that the file you wanted to restore was in that particular volume ID.

 1. Issue the loadvol command to load manually the tape that has the volume ID
Home-MF-000098 to an available tape drive. Here, I am using the tape drive vdrive8.

ob> loadvol -D vdrive8 --volume Home-MF-000098

 2. Run the obtar –zz to display all OSB labels on the volume ID Host_Home-MF-000098.
Identify the file number for the corresponding date and time of the backup that you want
to extract from. In this example the volume ID is Host_Home-MF-000098, and the file
number is 1, which you will use in the next step.

obtar -zzvf vdrive8 -e Host_Home-MF-000098
Volume label:
 Volume tag: 2ed9dbd024ce10397df0004e238fbd3
 Volume UUID: dd56f352-5028-1030-a8f5-0004e238fbd3
 Volume ID: Host_Home-MF-000098
 Volume sequence: 1

Chapter 20 ■ OraCle SeCure BaCkup

604

 Volume set owner: root
 Volume set created: Sun Feb 03 02:11:00 2013
 Volume set closes: Sun Feb 10 02:11:00 2013 (no writes after this time)
 Volume set expires: Sun Feb 24 02:11:00 2013
 Media family: Host_Home-MF (permanent)
 Original UUID: dd56f352-5028-1030-a8f5-0004e238fbd3

Archive label:
 File number: 1
 File section: 1
 Owner: root
 Client host: BLLNX1
 Backup level: 0
 S/w compression: no
 Archive created: Sun Feb 03 02:11:00 2013
 Encryption: on
 Algorithm: aes192

 3. To check whether /home/oracle/scripts/rmanbkup.sh is in file 1 in the tape volume ID
Home-MF-000098, which is loaded in the vdrive8, issue the obtar command with the
-t option.

$ obtar -t -f vdrive8 -F 1

 4. To perform the restore operation using the obtar command, issue the following command
with the -x option. The -F option means the file number, and the -k option avoids
overwriting the existing file.

$ obtar -F 1 -x -f vdrive8 -k /home/oracle/scripts/rmanbkup.sh

 5. Because you are restoring using the obtar command, which is executed at the OS level,
you can’t monitor the restore job using the obtool utility. However, one way to verify
whether the file is restored is to issue the ls OS command.

$ ls -l /home/oracle/scripts/rmanbkup.sh

OSB Job Monitoring
You submitted a backup or restore operation for an Oracle database, using RMAN, or for filesystem data, using Oracle
Enterprise Manager, Oracle Secure Backup web tool, or obtool utility, and you want to check whether the job is active,
pending, or completed. To check the status of an OSB job, issue the lsjob command and the catxcr command to
show the details about the operation of a job.

Listing Jobs
To display the jobs that are still running, issue the lsjob command with the -active, or -a, option. For other job
states, use the --complete, or -c, option for completed jobs; --pending, or -p, for pending jobs; --inputrequest, or

Chapter 20 ■ OraCle SeCure BaCkup

605

-i, for jobs currently requesting input; and --all, or -A, to display all jobs, regardless of the job state. For example, to
list active jobs, issue this command:

ob> lsjob --active

For RMAN jobs, use the --dbname, or -d, option to limit the output for a specific Oracle database. If you know the
database ID, you can use the --dbid, or -I, option instead. This example uses the dbname parameter:

ob> lsjob --active --dbname MYDB

In the following output the State column indicates that the job is still running. Once the job is done without
error, the State column displays completed successfully.

Job ID Sched time Contents State
---------------- ----------- ------------------------------ ---------------------------------------
rmansbt/380.1 none incremental backup running since 2013/02/25.08:54

For filesystem jobs, use the --host, or -h, option to limit the output for a specific client host, as follows:

ob> lsjob --active --host BLLNX1
Job ID Sched time Contents State
---------------- ----------- ------------------------------ ---------------------------------------
admin/134.1 none backup BLLNX1 running since 2013/02/25.09:04

To monitor active jobs, use the lsjob command. If there are several active jobs running, you can filter the output
by providing the job ID. However, if the job is already completed, you can use the same command, but you need to
remove the -a option and give the corresponding job ID. I usually run the lsjob command with the following options:

ob> lsjob -a -l -j -o -R -L -C

The prior command displays detailed information on the status of the job. Here is some sample output:

admin/134:
 Type: dataset BLLnx1_home_bslopuz.ds
 Level: full
 Family: Host_Home-MF
 Encryption: off
 Scheduled time: none
 Introduction time: 2013/02/25.09:04
 Earliest exec time: any
 Last update time: 2013/02/25.09:04
 Expire time: never
 State: processed; host backup(s) scheduled
 Priority: 100
 Privileged op: no
 Run on host: (administrative server)
 Requires: any device
 Attempts: 1
 Log:
 2013/02/25.09:04:42 Dataset processed; host backups scheduled.

Chapter 20 ■ OraCle SeCure BaCkup

606

admin/134.1:
 Type: backup BLLNX1
 Level: full
 Family: Host_Home-MF
 Encryption: on
 Scheduled time: none
 Introduction time: 2013/02/25.09:04
 Earliest exec time: any
 Last update time: 2013/02/25.09:04
 Expire time: never
 State: running since 2013/02/25.09:04
 Priority: 100
 Privileged op: no
 Run on host: BLLNX3
 Requires: host BLLNX1 and family Host_Home-MF and any device
 Attempts: 1
 Processed: 64.0 KB
 Files: 32
 Log:
 2013/02/25.09:04:42 Job created.
 2013/02/25.09:05:06 Dispatching job to run on BLLNX3.

In the previous output the lsjob command displays all active jobs using the -a option. Besides the job ID,
scheduled time, contents, and job state, the -l option shows more information, such as the RMAN backup piece,
media family, encryption status, priority number, host on which the job runs, and number of times OSB attempted
to run the job. The --subjobs, or -j, gives the subordinate job (subjob), which is admin/134.1. The --progress, or
-o, option indicates the progress of the active job, which is 64.0KB processed. The --requires, or -R, option provides
resources required to run each job, which are the media family Host_Home-MF and any device. The --log, or -L, option
offers the log associated with the job, which is the log information following the output. The --times, or -C, option
illustrates all relevant times for each job, such as introduction time, earliest execution time, last update time, and
expire time.

Showing Job Transcripts
In addition to using the lsjob command to help monitor the OSB job, you can issue the catxcr command to gather
detailed information on the operation of the job. The --folow, or -f, option shows the transcript as the file grows,
which is valuable when monitoring active jobs. The --msgno, or -m, gives the number for each line in the transcript.
The --level, or -l, option indicates the message level, which is useful for generating additional messages for
debugging or troubleshooting; for example,

ob> catxcr -f -m -l 0 rmansbt/394

The following is a snippet of the output for the prior command. Line 463 shows that the status is 0, which means
that the OSB job rmansbt/394.1 is successfully completed. For additional information on status codes, see
samples/obexit.h in your OSB home directory.

rmansbt/394.1: 462: Backup statistics:
rmansbt/394.1: 463: status 0
rmansbt/394.1: 464: devices vdrive3

Chapter 20 ■ OraCle SeCure BaCkup

607

rmansbt/394.1: 467: devices 1
rmansbt/394.1: 468: volumes RMAN-MYDB-002368
rmansbt/394.1: 471: voltags 335d86802195102b12300065b61a636
rmansbt/394.1: 474: file 13
rmansbt/394.1: 475: host BLLNX1
rmansbt/394.1: 476: encryption on aes192
rmansbt/394.1: 477: start_time Wed Feb 27 2013 at 05:36:39 (1361961399)
rmansbt/394.1: 478: end_time Wed Feb 27 2013 at 06:08:30 (1361963310)
rmansbt/394.1: 479: backup_time Wed Feb 27 2013 at 05:36:39 (1361961399)
rmansbt/394.1: 480: dev_kbytes 1619848
rmansbt/394.1: 481: dev_iosecs 1849
rmansbt/394.1: 482: dev_iorate 897.1 KB/S
rmansbt/394.1: 483: wrt_iosecs 1911
rmansbt/394.1: 484: wrt_iorate 868.0 KB/S
rmansbt/394.1: 485: physical_blks_written 3239680
rmansbt/394.1: 486: write_errors 0
rmansbt/394.1: 487: physical_blks_read 0
rmansbt/394.1: 488: read_errors 0
rmansbt/394.1: 489: error_rate 0%
rmansbt/394.1: 490: 06:08:30 RLYX: exit status 0; checking allocs...
rmansbt/394.1: 491: 06:08:30 RLYX: from mm__check_all: 1

Note ■ For details on OSB job transcript backup statistics, refer to the Oracle Secure Backup Administrator’s Guide.

Monitoring OSB Logs
In addition to analyzing the OSB job details and transcript, you can investigate the OSB logs. This is especially useful
when troubleshooting OSB issues. Table 20-7 lists the logs of the different OSB daemons and describes their contents.

Table 20-7. Log Files of OSB Daemons

Daemon Messages Contained

observiced OSB job run and transcript cleanup as well as security messages related to certificate signing for
host and starting of the obhttpd and obscheduled services

obndmpd NDMP traffic between clients and media server

obproxyd Verification of user access for SBT backup/restore operations as well as import process of data into
the sbtpiece catalog after each database backup

obscheduled OSB job schedule

obixd Import process of filesystem backup metadata into the backup catalog

obhttpd Oracle Secure Backup web tool

obrobotd Library and drive operations

Chapter 20 ■ OraCle SeCure BaCkup

608

Table 20-8 lists the pathnames of the log files for the different OSB daemons., Replace the OS variable {OSBhome}
to the /usr/local/oracle/backup directory for Unix/Linux platforms, and to the C:\Programs Files\Oracle\Backup
directory for the Windows platform.

Table 20-8. OSB Daemons and Logs

Daemon Linux/Unix Windows

Observiced /usr/tmp/observiced.log {OSBhome}\temp\observiced.log

obndmpd /usr/tmp/obndmpd.log {OSBhome}\temp\obndmpd.log

obproxyd /usr/tmp/obproxyd.log {OSBhome}\temp\obproxyd.log

obscheduled {OSBhome}/admin/log/scheduler/log {OSBhome}\admin\log\scheduler\log

obixd {OSBhome}/admin/log/index/log {OSBhome}\admin\log\index\log

obhttpd {OSBhome}/apache/logs/error_log {OSBhome}\apache\logs\error_log

obrobotd {OSBhome}/admin/log/device/
{library}/obrobotd

{OSBhome}\admin\log\device\{library}\obrobotd

For example, while the RMAN backup job is running, you can run the following OS command to monitor the
obproxyd.log on the server hosting the Oracle database:

tail -f /usr/tmp/obproxyd.log

From another terminal, on which you are connected to the OSB admin server or media server, you can run this
OS command to monitor the observiced.log, as shown.

tail -f /usr/tmp/observiced.log

Virtual Test Devices
You may relate to the expression “experience is the best teacher.” You have read this chapter, and you want to try the
OSB commands and examples yourself. However, you don’t have a physical tape device connected to any test servers
in your environment. In this situation, where can you install and experiment with OSB? Well, you can configure a
virtual test device solely for testing purposes.

Caution ■ You should not implement virtual test devices in a production environment. Oracle Support does not provide
support for virtual test devices.

To configure a virtual test device, perform the following steps. In this example the hostname of the media server
is BLLNX3.

 1. Log in as the oracle OS user at your designated media server of the OSB administrative
domain.

$ su - oracle

Chapter 20 ■ OraCle SeCure BaCkup

609

 2. At the OSB media server, create a directory that hosts the virtual storage elements and
virtual tape devices. Make sure you have enough disk space on the mount point on which
you are going to create the directory.

$ mkdir /osb_vdevices

 3. Log in as admin user to the obtool utility, and provide the corresponding password.

$ obtool -u admin
 Password:

 4. Configure the virtual tape library by running the following mkdev command, using the
-t option to specify the device as a tape library and the -v option to specify it as a virtual
tape library. The -S option specifies the number of storage elements. The -I option
specifies the number of export and import elements. The -o option specifies that the tape
device is logically available to OSB. The -B option with the yes value specifies that the bar
code reader is present. The -a option attaches the virtual library vlib1 to the directory
 /osb_vdevices/vlib1 of the host BLLNX3.

ob> mkdev -t library -v -S20 -I2 -o -B yes -a BLLNX3:/osb_vdevices/vlib1 vlib1

 5. Configure the virtual tape devices by running the following mkdev command, using the
-t option to specify the device as a tape device and the -v option to specify it as a virtual
tape device. The -o option specifies that the tape device is logically available to OSB. The
-l option specifies the name of the associated tape library. The -d option specifies the data
transfer element (DTE). The -a option attaches the virtual tape vdrive1 to the directory
/osb_vdevices/vdrive1 of the host BLLNX3. To configure additional virtual tape devices,
run the same mkdev command. However, for the second virtual tape device, change the
name vdrive1 and the directory /osb_vdevices/vdrive1 to vdrive2 and /osb_vdevices/
vdrive2, respectively.

ob> mkdev -t tape -v -o -l vlib1 -d1 -a BLLNX3:/osb_vdevices/vdrive1 vdrive1

 6. Run the insertvol command to insert a volume to the tape library manually. The
-L option specifies the library name, which is vlib1. Because there are 20 storage
elements defined when the virtual library is created, issue unlabeled 1-20 to insert
20 new volumes.

ob> insertvol -L vlib1 unlabeled 1-20

 7. Issue the lsvol command to display the volumes in the tape library vlib1.

ob> lsvol -l -L vlib1

Oracle Database Backup in the Cloud
Perhaps your company is traditionally dependent on tape for off-site backups of your Oracle database. However, with
the continuous accessibility, better reliability, and cost savings offered by Oracle Secure Backup Cloud Module, you
can back up your Oracle database to the cloud (Internet storage) through Amazon Web Services (AWS), using Amazon
Simple Storage Service (Amazon S3).

Chapter 20 ■ OraCle SeCure BaCkup

610

To install and configure the Oracle Secure Backup Cloud Module, perform the following steps:

1. Obtain your Oracle Technology Network account username and password. You can
register for a free account by going to the Technology Network area of the Oracle web site
(http://otn.oracle.com).

2. Obtain your AWS access key ID and secret access key at aws.amazon.com by selecting the
My Account/Console tab and choosing Security Credentials under the drop-down menu.
You can create your Amazon account at www.amazon.com.

3. Download the S3 backup installer, osbws_installer.zip, from
www.oracle.com/technetwork/database/secure-backup/secure-backup-s3-484709.html.

4. Unzip the osbws_installer.zip.

$ unzip osbws_installer.zip

5. Set and verify the OS environment variables ORACLE_HOME and ORACLE_SID.

$. oraenv
ORACLE_SID = [MYDB] ?
The Oracle base for ORACLE_HOME=/usr/oracle/product/12.1.0/db_1 is /usr/oracle
$ env | grep ORACLE
ORACLE_SID=MYDB
ORACLE_BASE=/usr/oracle
ORACLE_HOME=/usr/oracle/product/12.1.0/db_1

6. Run the installer to extract the Oracle Secure Backup Cloud Module library and to create
the library configuration file and the Oracle wallet where the S3 credentials are to be
stored. Make sure to replace the appropriate values for your AWS access key ID and secret
access key as well as your Oracle Technology Network username and password. If your
server is behind a firewall, provide the appropriate values for the proxyHost and proxyPort.
Otherwise, you can omit the proxyHost and proxyPort.

$ORACLE_HOME/jdk/bin/java -jar osbws_install.jar \
 -AWSID ***** -AWSKey ***** \
 -otnUser ***** -otnPass ***** \
 -walletDir $ORACLE_HOME/dbs/osbws_wallet \
 -configFile $ORACLE_HOME/dbs/osbws$ORACLE_SID \
 -libdir $ORACLE_HOME/lib \
 -proxyHost www-proxy.us.oracle.com \
 -proxyPort 80

Here is the sample output:

Oracle Secure Backup Database Web-Service Install Tool, build 2011-02-04.0001
AWS credentials are valid.
S3 user already registered.
Registration ID: *****
S3 Logging Bucket: oracle-log-bernard--1
Validating log bucket location ...
Validating license file ...
Create credential oracle.security.client.connect_string1

http://otn.oracle.com/
http://aws.amazon.com
http://www.amazon.com/
http://www.oracle.com/technetwork/database/secure-backup/secure-backup-s3-484709.html
http://www-proxy.us.oracle.com

Chapter 20 ■ OraCle SeCure BaCkup

611

OSB web-services wallet created in directory /usr/oracle/product/12.1.0/db_1/dbs/osbws_wallet.
OSB web-services initialization file /usr/oracle/product/12.1.0/db_1/dbs/osbwsMYDB created.
Downloading OSB Web Services Software Library from file osbws_linux32.zip.
Downloaded 15060954 bytes in 30 seconds. Transfer rate was 502031 bytes/second.
Download complete.
Extracted file /usr/oracle/product/12.1.0/db_1/lib/libosbws12.so

Note ■ Installation of OSB is not required to install and run Oracle Secure Backup Cloud Module.

After you extract the Oracle Secure Backup Cloud Module library, you can run the following RMAN backup script
to store the backups of your Oracle database directly to Amazon S3, as shown.

run {
allocate channel t1 device type sbt_tape parms='SBT_LIBRARY=/usr/oracle/product/12.1.0/db_1/lib/
libosbws12.so,ENV=(OSB_WS_PFILE=/usr/oracle/product/12.1.0/db_1/dbs/osbwsMYDB)';
backup database;
}

The following is a snippet of the RMAN log, indicating that the RMAN channel t1 is connected via the Oracle
Secure Backup Web Services Library, as follows:

allocated channel: t1
channel t1: SID=124 device type=SBT_TAPE
channel t1: Oracle Secure Backup Web Services Library

OSB Software Upgrades
You have an older version of OSB installed, and you want to upgrade to the current release. To perform an OSB
upgrade, follow the same procedure used for installing OSB. However, before performing the upgrade, make sure to
back up the OSB catalog in the admin server and stop the OSB daemons and services at all hosts in the administrative
domain. Also, upgrade the admin server first, then the media servers and client hosts.

Table 20-9 provides a list of OS-specific commands for starting and stopping OSB services. You must have root
privilege on Linux/Unix or be a member of the Administrators group for Windows to run these commands.

Table 20-9. OSB Service Shutdown and Startup Commands

OS Shutdown Command Startup Command

Linux etc/init.d/observiced stop etc/init.d/observiced start

Solaris etc/init.d/OracleBackup stop etc/init.d/OracleBackup start

AIX etc/rc.d/init.d/OracleBackup stop etc/rc.d/init.d/OracleBackup start

HP-UX /sbin/init.d/OracleBackup stop /sbin/init.d/OracleBackup start

Windows net stop observiced net start observiced

Chapter 20 ■ OraCle SeCure BaCkup

612

Summary
OSB is a tool you can use to back up and restore OS files to and from tape. OSB is a full-featured tape management
utility. OSB can be integrated with RMAN to facilitate the backup of database files directly to tape. This provides you
with extra data protection in the event that the entire server or data center experiences a failure.

OSB is available in two editions: Oracle Secure Backup Express and Oracle Secure Backup. The Express version
is available for use without extra licensing costs and is suitable for small shops with one server and one physical tape
device. The full-fledged Oracle Secure Backup edition is appropriate for distributed servers across multiple platforms
(Linux/Unix, Windows).

You can access OSB through graphical tools such as Enterprise Manager and Oracle Secure Backup web tool or
through command-line tools such as obtool. This chapter focused on demonstrating how to use the command-line
obtool for backup and restore operations.

In addition to storing the backups of your Oracle database on tape for off-site storage, you can install and
configure Oracle Secure Backup Cloud Module to store the backups of your Oracle database directly to Amazon S3.
However, because of network performance and security concerns, some companies may not adapt the backup to
cloud technology.

This chapter concludes coverage of backup and recovery. The next chapter focuses on automating jobs and
database troubleshooting.

613

Chapter 21

Automating Jobs

In almost any type of database environment—from development, to testing, to production—DBAs rely heavily on
automating tasks. Typical jobs that DBAs automate include the following:

Shutdown and startup of databases and listeners•	

Backups•	

Validating the integrity of backups•	

Checking for errors•	

Removing old trace or log files•	

Checking for errant processes•	

Checking for abnormal conditions•	

Automating routine tasks allows DBAs to be much more effective and productive. Automated environments
are inherently smoother running and more efficient than manually administered systems. DBA jobs that run
automatically from scripts consistently execute the same set of commands each time and therefore are less prone to
human error and mistakes. Two scheduling utilities are described in this chapter:

Oracle Scheduler•	

Linux/Unix •	 cron utility

This chapter begins by detailing the basic aspects of the Oracle Scheduler utility. This scheduler is available if you
have an Oracle database installed. Oracle Scheduler can be used to schedule jobs in a wide variety of configurations.

Also covered in this chapter is how to use the Linux/Unix cron scheduling tool. In Linux/Unix environments,
DBAs often use the cron scheduling utility to run jobs automatically. The cron utility is ubiquitous and easy to
implement and use. If you’re an Oracle DBA, you must be familiar with cron, because sooner or later, you’ll find
yourself in an environment that relies heavily on this tool to automate database jobs.

The last several sections in this chapter show you how to implement many real-world DBA jobs, such as
automatically starting/stopping the database, monitoring, and OS file maintenance. You should be able to extend
these scripts to meet the automation requirements of your environment.

Note ■ Enterprise Manager Grid/Cloud Control can also be used to schedule and manage automated jobs. If you work
in a shop that uses Enterprise Manager, then it’s appropriate to use this tool for automating your environment.

ChaptEr 21 ■ autoMatInG Jobs

614

Automating Jobs with Oracle Scheduler
Oracle Scheduler is a tool that provides a way of automating the scheduling of jobs. Oracle Scheduler is implemented
via the DBMS_SCHEDULER internal PL/SQL package. Oracle Scheduler offers a sophisticated set of features for
scheduling jobs. The following sections of this chapter cover the basics of using Oracle Scheduler to automate jobs
with simple requirements.

Tip ■ there are currently more than 70 procedures and functions available within the DBMS_SCHEDULER package. For
complete details, see the Oracle Database PL/SQL Packages and Types Reference Guide, which is available for download
from the technology network area of the oracle Web site (http://otn.oracle.com).

Creating and Scheduling a Job
The example in this section shows how to use DBMS_SCHEDULER to run an OS shell script on a daily basis. First, a shell
script is created that contains an RMAN backup command. For this example, the shell script is named rmanback.bsh
and is located in the /orahome/oracle/bin directory. The shell script also assumes that there is an /orahome/oracle/
bin/log directory available. Here is the shell script:

#!/bin/bash
source oracle OS variables; see chapter 2 for an example of oraset script
. /etc/oraset o12c
rman target / <<EOF
spool log to '/orahome/oracle/bin/log/rmanback.log'
backup database;
spool log off;
EOF
exit 0

Next, the CREATE_JOB procedure of the DBMS_SCHEDULER package is used to create a daily job. Next, connect as
SYS, and execute the following command:

BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name => 'RMAN_BACKUP',
job_type => 'EXECUTABLE',
job_action => '/orahome/oracle/bin/rmanback.bsh',
repeat_interval => 'FREQ=DAILY;BYHOUR=9;BYMINUTE=35',
start_date => to_date('17-01-2013','dd-mm-yyyy'),
job_class => '"DEFAULT_JOB_CLASS"',
auto_drop => FALSE,
comments => 'RMAN backup job',
enabled => TRUE);
END;
/

In the prior code the JOB_TYPE parameter can be one of the following types: STORED_PROCEDURE, PLSQL_BLOCK,
EXTERNAL_SCRIPT, SQL_SCRIPT, or EXECUTABLE.

http://otn.oracle.com/

ChaptEr 21 ■ autoMatInG Jobs

615

The REPEAT_INTERVAL parameter is set to FREQ=DAILY;BYHOUR=9;BYMINUTE=35. This instructs the job to run daily,
at 9:35 am. The REPEAT_INTERVAL parameter of the CREATE_JOB is capable of implementing sophisticated calendaring
frequencies. For instance, it supports a variety of yearly, monthly, weekly, daily, hourly, by the minute, and by the
second schedules. The Oracle Database PL/SQL Packages and Types Reference Guide contains several pages of syntax
details for just the REPEAT_INTERVAL parameter.

The JOB_CLASS parameter specifies which job class to assign the job to. Typically, you would create a job class
and assign a job to that class, whereby the job would inherit the attributes of that particular class. For example,
you may want all jobs in a particular class to have the same logging level or to purge log files in the same manner.
There’s a default job class that can be used if you haven’t created any job classes. The previous example uses the
default job class.

The AUTO_DROP parameter is set to FALSE in this example. This instructs the Oracle Scheduler not to drop the job
automatically after it runs (the default is TRUE).

Viewing Job Details
To view details about how a job is configured, query the DBA_SCHEDULER_JOBS view. This query selects information for
the RMAN_BACKUP job:

SELECT job_name
 ,last_start_date
 ,last_run_duration
 ,next_run_date
 ,repeat_interval
FROM dba_scheduler_jobs
WHERE job_name='RMAN_BACKUP';

Each time a job runs, a record of the job execution is logged in the data dictionary. To check the status of a job
execution, query the DBA_SCHEDULER_JOB_LOG view. There should be one entry for every time a job has run:

SELECT job_name
,log_date
,operation
,status
FROM dba_scheduler_job_log
WHERE job_name='RMAN_BACKUP';

Modifying Job Logging History
By default the Oracle Scheduler keeps 30 days’ worth of log history. You can modify the default retention period via
the SET_SCHEDULER_ATTRIBUTE procedure. For example this command changes the default number of days to 15:

SQL> exec dbms_scheduler.set_scheduler_attribute('log_history',15);

To remove the contents of the log history completely, use the PURGE_LOG procedure:

SQL> exec dbms_scheduler.purge_log();

ChaptEr 21 ■ autoMatInG Jobs

616

Modifying a Job
You can modify various attributes of a job via the SET_ATTRIBUTE procedure. This example modifies the RMAN_BACKUP
job to run weekly, on Mondays:

BEGIN
 dbms_scheduler.set_attribute(
 name=>'RMAN_BACKUP'
 ,attribute=>'repeat_interval'
 ,value=>'freq=weekly; byday=mon');
END;
/

You can verify the change by selecting the REPEAT_INTERVAL column from the DBA_SCHEDULER_JOBS view. Here is
what the REPEAT_INTERVAL column now shows for the RMAN_BACKUP job:

21-JAN-13 12.00.00.200000 AM -07:00 freq=weekly; byday=mon

From the prior output you can see that the job will run on the next Monday, and because no BYHOUR and
BYMINUTE options were specified (when modifying the job), the job is scheduled to run at the default time of 12:00 am.

Stopping a Job
If you have a job that has been running for an abnormally long period of time, you may want to abort it. Use the
STOP_JOB procedure to stop a currently running job. This example stops the RMAN_BACKUP job while it is running:

SQL> exec dbms_scheduler.stop_job(job_name=>'RMAN_BACKUP');

The STATUS column of DBA_SCHEDULER_JOB_LOG will show STOPPED for jobs stopped using the STOP_JOB procedure.

Disabling a Job
You may want to temporarily disable a job because it’s not running correctly. You need to ensure that the job does not
run while you’re troubleshooting the issue. Use the DISABLE procedure to disable a job:

SQL> exec dbms_scheduler.disable('RMAN_BACKUP');

If the job is currently running, consider stopping the job first or using the FORCE option of the DISABLE procedure:

SQL> exec dbms_scheduler.disable(name=>'RMAN_BACKUP',force=>true);

Enabling a Job
You can enable a previously disabled job via the ENABLE procedure of the DBMS_SCHEDULER package. This example
reenables the RMAN_BACKUP job:

SQL> exec dbms_scheduler.enable(name=>'RMAN_BACKUP');

ChaptEr 21 ■ autoMatInG Jobs

617

Tip ■ You can check to see if a job has been disabled or enabled by selecting the ENABLED column from the
DBA_SCHEDULER_JOBS view.

Copying a Job
If you have a current job that you want to clone, you can use the COPY_JOB procedure to accomplish this. The
procedure takes two arguments: the old job name and the new job name. Here is an example of copying a job, where
RMAN_BACKUP is a previously created job, and RMAN_NEW_BACK is the new job that will be created:

begin
 dbms_scheduler.copy_job('RMAN_BACKUP','RMAN_NEW_BACK');
end;
/

The copied job will be created but not enabled. You must enable the job first (see the previous section for an
example) before it will run.

Running a Job Manually
You can manually run a job outside its regular schedule. You might want to do this to test the job to ensure that it’s
working correctly. Use the RUN_JOB procedure to initiate a job manually. This example manually runs the previously
created RMAN_BACKUP job:

BEGIN
 DBMS_SCHEDULER.RUN_JOB(
 JOB_NAME => 'RMAN_BACKUP',
 USE_CURRENT_SESSION => FALSE);
END;
/

The USE_CURRENT_SESSION parameter instructs Oracle Scheduler to run the job as the current user (or not).
A value of FALSE instructs the scheduler to run the job as the user who originally created and scheduled the job.

Deleting a Job
If you no longer require a job, you should delete it from the scheduler. Use the DOP_JOB procedure to permanently
remove a job. This example removes the RMAN_BACKUP job:

BEGIN
 dbms_scheduler.drop_job(job_name=>'RMAN_BACKUP');
END;
/

The code will drop the job and remove any information regarding the dropped job from the DBA_SCHEDULER_JOBS view.

ChaptEr 21 ■ autoMatInG Jobs

618

Oracle Scheduler vs. cron
DBAs often debate whether they should use Oracle Scheduler or the Linux/Unix cron utility for scheduling and
automating tasks. These are some of the benefits that Oracle Scheduler has over cron:

Can make the execution of a job dependent on the completion of another job•	

Robust resource balancing and flexible scheduling features•	

Can run jobs based on a database event•	

Program’s •	 DBMS_SCHEDULER PL/SQL package syntax works the same, regardless of the OS

Can run status reports, using the data dictionary•	

If working in a clustered environment, no need to worry about synchronizing multiple •	 cron
tables for each node in the cluster

Can be maintained and monitored via Enterprise Manager•	

The Oracle Scheduler is implemented via the DBMS_SCHEDULER PL/SQL package. As discussed previously, it’s
fairly easy to create and maintain jobs, using this utility. Yet, despite Oracle Scheduler’s benefits, many DBAs prefer to
use a scheduling utility such as cron. These are some of the advantages of cron:

Easy to use; simple, tried and true; only takes seconds to create or modify jobs•	

Almost universally available on all Linux/Unix boxes; for the most part, runs nearly identically, •	
regardless of the Linux/Unix platform (yes, there are minor differences)

Database agnostic; operates independently of the database and works the same, regardless of •	
the database vendor or version

Works whether or not the database is available•	

The prior lists aren’t comprehensive but should give you a flavor of the uses of each scheduling tool. I prefer
to use cron, but if you require a more sophisticated scheduler, then consider using Oracle Scheduler. The following
sections in this chapter provide information on how to implement and schedule automated jobs via cron.

Note ■ If you’re in a Windows environment, use the task scheduler utility to run batch jobs automatically. You can
access the task scheduler by going to the Control panel, and then to administrative tools.

Automating Jobs via cron
The cron program is a job-scheduling utility that is ubiquitous in Linux/Unix environments. This tool derives its name
from chrónos (the Greek word for “time”). The cron (the geek word for “scheduler”) tool allows you to schedule scripts
or commands to run at a specified time and repeat at a designated frequency.

ChaptEr 21 ■ autoMatInG Jobs

619

How cron Works
When your Linux server boots up, a cron background process is automatically started to manage all cron jobs in the
system. The cron background process is also known as the cron daemon. This process is started upon system startup by
the etc/init.d/crond script. You can check to see whether the cron daemon process is running with the ps command:

$ ps -ef | grep crond | grep -v grep
root 3081 1 0 2012 ? 00:00:18 crond

On Linux boxes, you can also check to see whether the cron daemon is running, using the service command:

$ /sbin/service crond status
crond (pid 3081) is running...

The root user uses several files and directories when executing system cron jobs. The /etc/crontab file contains
commands for running system cron jobs. Here is a typical listing of the contents of the /etc/crontab file:

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/
run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

This /etc/crontab file uses the run-parts utility to run scripts located in the following directories: /etc/cron.hourly,
/etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly. If there is a system utility that needs to run other than on
an hourly, daily, weekly, or monthly basis, then it can be placed in the /etc/cron.d directory.

Each user can create a crontab (also known as a cron table) file. This file contains the list of programs that you
want to run at a specific time and interval. This file is usually located in the /var/spool/cron directory. For every user
who creates a cron table, there will be a file in the /var/spool/cron directory named after the user. As root, you can
list the files in that directory, as shown:

ls /var/spool/cron
oracle root

The cron background process is mostly idle. It wakes up once every minute and checks /etc/crontab, /etc/cron.d,
and the user cron table files and determines whether there are any jobs that need to be executed.

Table 21-1 summarizes the purpose of the various files and directories used by cron. Knowledge of these files and
directories will help you troubleshoot any issues as well as get a better understanding of cron.

ChaptEr 21 ■ autoMatInG Jobs

620

Enabling Access to cron
Sometimes when SAs set up a new box, they don’t (by default) enable the use of cron for all users on the system. To
verify whether you have access to cron, invoke the utility as follows:

$ crontab -e

If you receive the following error message, then you do not have access:

You (oracle) are not allowed to use this program (crontab)

To enable cron access as the root user, add oracle to the /etc/cron.allow file with the echo command:

echo oracle >> /etc/cron.allow

Once the oracle entry is added to the /etc/cron.allow file, you can use the crontab utility to schedule a job.

Note■ You can also use an editing utility (such as vi) to add an entry to the cron.allow file.

The root user can always schedule jobs with the crontab utility. Other users must be listed in the
/etc/cron.allow file. If the /etc/cron.allow file does not exist, then the OS user must not appear in the
/etc/cron.deny file. If neither the /etc/cron.allow nor the /etc/cron.deny file exists, then only the root user can
access the crontab utility. (These rules may vary slightly, depending on the version of Linux/Unix you’re using.)

On some Unix OSs (such as Solaris) the cron.allow and cron.deny files are located in the /etc/cron.d directory.
These files usually can only be modified by the root user.

Table 21-1. Descriptions of Files and Directories Used by the cron Utility

File Purpose

/etc/init.d/crond Starts the cron daemon upon system boot

/var/log/cron System messages related to the cron process; useful for troubleshooting problems

/var/spool/cron/<username> User crontab files are stored in the /var/spool/cron directory.

/etc/cron.allow Specifies users who can create a cron table

/etc/cron.deny Specifies users who are not allowed to create a cron table

/etc/crontab/ The system cron table that has commands to run scripts located in the following
directories: /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and
/etc/cron.monthly

/etc/cron.d Directory that contains cron tables for jobs that need to run on a schedule other
than hourly, daily, weekly, or monthly

/etc/cron.hourly Directory that contains system scripts to run on an hourly basis

/etc/cron.daily Directory that contains system scripts to run on a daily basis

/etc/cron.weekly Directory that contains system scripts to run on a weekly basis

/etc/cron.monthly Directory that contains system scripts to run on a monthly basis

ChaptEr 21 ■ autoMatInG Jobs

621

Tip ■ on some Linux/unix platforms newer and more flexible variants of cron are available, such as the anacron
utility. use the man anacron command to view details on the implementation of this utility on your system.

Understanding cron Table Entries
Your cron table is a list of numbers and commands that the cron background process (cron daemon) will run at a
specified time and schedule. The crontab utility expects entries to follow a well-defined format. It’s a good idea to add
a comment line at the beginning of your crontab file that documents the required format, like so:

min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6) commandOrScript

In the previous example the number sign (#) in the cron file represents the start of a comment. Any text entered
after # is ignored by cron.

Each entry in the crontab is a single line composed of six fields. The first five fields specify the execution time
and frequency. Entries in these fields can be separated by commas or hyphens. A comma indicates multiple values for
an entry, whereas a hyphen indicates a range of values. An entry can also be an asterisk (*), which indicates that all
possible values are in effect. Here is an example to help clarify. The following entry sends an e-mail saying, “Wake up,”
every half hour, from 8 am to 4:30 pm, Monday through Friday:

0,30 8-16 * * 1-5 echo "wake up" | mailx -s "wake up" dkuhn@gmail.com

On some Linux systems, you can skip a value within a range by following the entry with /<integer>. For instance,
if you wanted to run a job every other minute, use 0-59/2 in the minute column. You can also use a slash (/) with an
asterisk to skip values. For instance, to run a job every fourth minute, you would use */4 in the minute column.

The sixth field in the crontab can be one or more Linux commands or a shell script. Or, put another way, the sixth
column can be any combination of commands or a script that you can run on one line from the Linux command line.

The cron utility has a few quirks that need further explanation. The fifth column is the day of the week. Sunday is
designated by either a 0 or a 7; Monday, by a 1; Tuesday, by a 2; and so on, to Saturday, which is indicated with a 6.

The hour numbers in the second column are in military time format, ranging from 0 to 23. The fourth column
(month of the year) and fifth column (day of the week) can be represented with numeric values or by three-letter
abbreviations. For example, the following entry in the crontab uses three-letter abbreviations for months and days:

0,30 8-16 * Jan-Dec Mon-Fri echo "wake up" | mailx -s "get up" dkuhn@gmail.com

There also appear to be overlapping columns, such as the third column (day of the month) and the fifth column
(day of the week). These columns allow you to create flexible schedules for jobs that need to run on schedules such as
the 1st and 15th day of the month or every Tuesday. Put an asterisk in the column that you’re not using. If you need to
run a job on the 1st and 15th and every Tuesday, then fill in both columns.

If you’re running a shell script from cron that contains a call to an Oracle utility such as sqlplus or rman, ensure
that you instantiate within the script any required OS variables, such as ORACLE_SID and ORACLE_HOME. If you don’t
source these variables, you’ll see errors such as the following when your shell script runs from cron:

sqlplus: command not found

When cron runs a script (in a user’s crontab), it doesn’t run the user’s startup or login files (such as .bashrc).
Therefore, any script (being run from cron) needs to explicitly set any required variables. You can directly set the
variables within the script or call another script that exports these variables (such as Oracle’s oraenv script).

mailto:dkuhn@gmail.com
mailto:dkuhn@gmail.com

ChaptEr 21 ■ autoMatInG Jobs

622

Tip ■ Don’t schedule the jobs that you enter in cron to run all at the same time. rather, spread them out so as not to
bog down cron or the system at any particular point in time.

Scheduling a Job to Run Automatically
To schedule a job, you must add a line in your cron table, specifying the time you want the job to execute. There are
two methods for adding entries in your cron table:

Editing the •	 cron table file directly

Loading the •	 cron table from a file

These two techniques are described in the following sections.

Editing the cron Table Directly
You an edit your cron table directly with the -e (editor) option of the crontab command:

$ crontab -e

When issuing the previous command, you will be presented with a file to edit. This file is known as your cron
table (crontab). To schedule a script named backup.bsh to run daily, at 11:05 pm, enter the following line into your
cron table:

5 23 * * * /home/oracle/bin/backup.bsh

Here, the 5 specifies that the job will run at 5 minutes after the top of the hour. The 23 is military time, specifying
that the job should run in the 2300 hour window (in this example, 5 minutes after the hour). The three stars (* * *)
signify that the job should run every day of the month, every month of the year, and every day of the week.

Exit the cron table file. If your default editor is vi, then type wq to exit. When you exit crontab, your cron table is
saved for you. To view your cron entries, use the -l (list) option of the crontab command:

$ crontab -l

To remove your cron table completely, use the r option:

$ crontab -r

Before running the previous command, you should save your cron table in a text file, as shown:

$ crontab -l > saved.cron

In this way, you can refer to the saved file, in the event that you didn’t mean to delete your cron table.

Tip ■ I once worked with a Dba who thought crontab -r meant “read the cron table.” Don’t ever make that mistake.

ChaptEr 21 ■ autoMatInG Jobs

623

Setting Default Editor
The default editor invoked to modify the cron table is dependent on the value of your VISUAL OS variable. In my
current environment the VISUAL variable is set to vi:

$ echo $VISUAL
vi

If the VISUAL OS variable isn’t set, then the value of EDITOR is used to define the default editor. Make sure that
either VISUAL or EDITOR is set to your editor of choice. If neither VISUAL nor EDITOR is set, your system will default to
the ed editor. In this scenario, you’ll be presented with the following prompt:

26
<blank prompt>

Press the Q key to exit from ed. You can have the VISUAL or EDITOR variable automatically set for you when you
log in to the system. You can also manually set the editor with the export command. The following example sets the
default editor to vi:

$ export EDITOR=vi

Consider putting the prior line of code in a startup file (such as .bashrc) so that your editor is set consistently.

Loading the cron Table from a File
The other way to modify your cron table is to load it directly with a file name, using the following syntax:

$ crontab <filename>

Here, the crontab utility will load the contents of the specified file into your cron table. The recommended steps
to modify your cron table with this method are as follows:

1. Before modifying your cron table, first populate a file with the cron table’s current
contents; for example,

$ crontab -l > mycron.txt

2. Next, make a copy of the previously created file (mycron.txt). This allows you to revert
back to the original file, in the event that you introduce errors and can’t readily figure out
what’s incorrect. This also provides you with an audit trail of changes to your cron table:

$ cp mycron.txt mycron.jul29.txt

3. Now, edit the mycron.txt file with your favorite text editor:

$ vi mycron.txt

For example, to schedule a script named backup.bsh to run daily, at 11:05 pm, add the following lines:

#---
File backup, dk: 20-jan-14, inserted.
5 23 * * * /home/oracle/bin/backup.bsh
#---

ChaptEr 21 ■ autoMatInG Jobs

624

4. When you are finished making edits, load the contents of mycron.txt into the cron table,
as shown:

$ crontab mycron.txt

If your file doesn’t conform to the cron syntax, you’ll receive an error such as the following:

"mycron.txt":6: bad day-of-week
errors in crontab file, can't install.

In this situation, either correct the syntax error, or reload the original copy of the cron table.

eXaMpLe OF a tYpICaL CrON taBLe

Listed here is a sample entry from a cron table on a database server:

#---
min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6) commandOrScript
#---
RMAN backups, dk: 01-may-12, updated.
1 16 * * * /u01/oracle/bin/rmanback.bsh INV >/u01/oracle/bin/log/bck.log 2>&1
#---
Tablespace check, sp: 17-dec-12, created.
5 * * * * /u01/oracle/bin/tbsp_chk.bsh INV 10 1>/u01/oracle/bin/log/tbsp.log 2>&1
#---

take note of a few aspects in the this entry. I always place a line at the top of every cron table (on every database
server) that briefly explains the meanings of the date scheduling features:

min(0-59) hr(0-23) dayMonth(1-31) monthYear(1-12) dayWeek(0/7-6) commandOrScript

I also separate each entry with a comment line. this makes the entry much more readable:

#---

additionally, I include a brief note (with my initials), describing the cron job and when the edit was made:

RMAN backups, dk: 01-jan-13, updated.

If you manage dozens of database servers (each with its own cron table), with multiple Dbas, you’ll need some
mechanism (and it doesn’t have to be sophisticated) for tracking who made changes and when.

Redirecting cron Output
Whenever you run a Linux shell command, by default the standard output (of the command) will be displayed on
your screen. Also, if any error messages are generated, they will, by default, be displayed on your screen. You can
use either > or 1> (they are synonymous) to redirect any standard output to an OS file. Additionally, you can use 2>
to redirect any error messages to a file. The notation 2>&1 instructs the shell to send any error messages to the same
location as standard output.

ChaptEr 21 ■ autoMatInG Jobs

625

When you create a cron job, you can use these redirection features to send the output of a shell script to a log file.
For example, in the following cron table entry, any standard output and error messages generated by the backup.bsh
shell script are captured in a file named bck.log:

11 12 * * * /home/oracle/bin/backup.bsh 1>/home/oracle/bin/log/bck.log 2>&1

If you don’t redirect the cron job output, then any output will be e-mailed to the user that owns the cron table.
You can override this behavior by specifying the MAILTO variable directly within the cron table. With the next few lines
of code, the cron output will go to the root user:

MAILTO=root
11 12 * * * /home/oracle/bin/backup.bsh

If you don’t want the output to go anywhere, then redirect it to the proverbial bit bucket. The following entry
sends the standard output and standard error to the dev/null device:

11 12 * * * /home/oracle/bin/backup.bsh 1>/dev/null 2>&1

Troubleshooting cron
If you have a cron job that isn’t running correctly, follow these steps to troubleshoot the issue:

1. Copy your cron entry, paste it into the OS command line, and manually run the command.
Frequently, a slight typo in a directory or file name can be the source of the problem.
Manually running the command will highlight errors such as this.

2. If the script runs Oracle utilities, make sure you source (set) the required OS variables
within the script, such as ORACLE_HOME and ORACLE_SID. Oftentimes, these variables are
set by startup scripts (such as HOME/.bashrc) when you log in. Because cron doesn’t run a
user’s startup scripts, any required variables must be set explicitly within the script.

3. Ensure that the first line of any shell scripts invoked from cron specify the name of the
program that will be used to interpret the commands within the script. For instance,
#!/bin/bash should be the first entry in a Bash shell script. Because cron doesn’t run a
user’s startup scripts (such as HOME/.bashrc), you can’t assume that your OS user’s default
shell will be used to run a command or script evoked from cron.

4. Make certain that the cron background process is running. Issue the following command
from the OS to verify:

$ ps -ef | grep cron

If the cron daemon (background process) is running, you should see something similar to this:

root 2969 1 0 Mar23 ? 00:00:00 crond

5. Check your e-mail on the server. The cron utility will usually send an e-mail to the OS
account when there are issues with a misbehaving cron job.

6. Inspect the contents of the /var/log/cron file for any errors. Sometimes, this file has
relevant information regarding a cron job that has failed to run.

ChaptEr 21 ■ autoMatInG Jobs

626

Examples of Automated DBA Jobs
In today’s often chaotic business environment, it’s almost mandatory to automate jobs. If you don’t automate, you
may forget to do a task; or, if performing a job manually, you may introduce error into the procedure. If you don’t
automate, you could find yourself replaced by a more efficient or cheaper set of DBAs.

Usually, I automate jobs such that the script only sends an e-mail in the event of a failure. Generating an e-mail
upon success often leads to a full mailbox. Some DBAs like to see success messages. I generally don’t.

DBAs automate a wide variety of tasks and jobs. Almost any type of environment requires that you create some
sort of OS script that encapsulates a combination of OS commands, SQL statements, and PL/SQL blocks.

The following scripts in this chapter are a sample of the wide variety of different types of tasks that DBAs
automate. This set of scripts is, by no means, complete. Many of these scripts may not be needed in your environment.
The point is to give you a good sampling of the types of jobs automated and the techniques used to accomplish a
given task.

Note ■ Chapter 3 contains basic examples of some core scripts that Dbas require. this section provides examples of
tasks and scripts that Dbas commonly automate.

Starting and Stopping the Database and Listener
In many environments it’s desirable to have the Oracle database and listener automatically shut down and start up
when the server reboots. If you have that requirement, then follow the next several steps to automate your database
and listener shutdown and startup.

Note ■ the example in this section is Linux centric; if you’re working with a different unix platform, refer to the Oracle
Database Administrator’s Guide, which can be freely downloaded from the technology network area of the oracle web
site (http://otn.oracle.com), for details for your environment.

1. Edit the /etc/oratab file, and place a Y at the end of the entry for the databases you want to
restart automatically when the system reboots. You may need root privileges to edit the file:

vi /etc/oratab

2. Place within the file a line similar to this, for your environment:

o12c:/u01/app/oracle/product/12.1.0.1/db_1:Y

3. In the previous line, o12c is the database name, and /u01/app/oracle/
product/12.1.0.1/db_1 specifies the directory ORACLE_HOME. The Y at the end of the string
signifies that the database can be started and stopped by the ORACLE_HOME/bin/dbstart
and ORACLE_HOME/bin/dbshut scripts. You can replace the Y with an N if you do not want
the database automatically stopped and restarted.

Note ■ With unix systems (such as solaris) the oratab file is usually located in the /var/opt/oracle directory.

http://otn.oracle.com/

ChaptEr 21 ■ autoMatInG Jobs

627

4. As root, navigate to the /etc/init.d directory, and create a file named dbora:

cd /etc/init.d
vi dbora

5. Place the following lines in the dbora file. Make sure you change the values of the variables
ORA_HOME and ORA_OWNER to match your environment. This is a bare-bones script of what
you minimally would need to stop and start a database and listener:

#!/bin/bash
chkconfig: 35 99 10
description: Starts and stops Oracle processes
ORA_HOME=/u01/app/oracle/product/12.1.0.1/db_1
ORA_OWNER=oracle
case "$1" in
 'start')
 su - $ORA_OWNER -c "$ORA_HOME/bin/lsnrctl start"
 su - $ORA_OWNER -c $ORA_HOME/bin/dbstart
 ;;
 'stop')
 su - $ORA_OWNER -c "$ORA_HOME/bin/lsnrctl stop"
 su - $ORA_OWNER -c $ORA_HOME/bin/dbshut
 ;;
esac

These lines look like comments in the dbora file but are actually mandatory:

chkconfig: 35 99 10
description: Starts and stops Oracle processes

The prior lines describe the service characteristics of the script. The 35 means that the service will be started in

runlevels 3 and 5. The 99 indicates that the service will be started near the end of the init processing. The 10 signifies
that the service will be stopped near the beginning of the init processing. A description is also required providing
textual information about the service.

Note ■ a Linux runlevel is a logical container for specifying which services will run when the system is started.

6. Change the group of the dbora file to match the group assigned to the OS owner of the
Oracle software (usually oinstall or dba):# chgrp dba dbora

7. Change the permissions on the dbora file to 750:

chmod 750 dbora

8. Run the following chkconfig command:

/sbin/chkconfig --add dbora

ChaptEr 21 ■ autoMatInG Jobs

628

Here, the chkconfig command registers the service script. This also creates the appropriate symbolic links to files
beneath the /etc/rc.d directory. Use the --list option to display whether a service is on or off for each runlevel:

chkconfig --list | grep dbora
dbora 0:off 1:off 2:off 3:on 4:off 5:on 6:off

This output indicates that the dbora service is on for runlevels 3 and 5. If you need to delete a service, use the
-del option of chkconfig.

Tip ■ If you want to stop and start automatically (on system reboots), you can use other processes, such as the
Intelligent agent, Management server, or http server. see Mos note 222813.1 for details.

Automating the shutdown and startup of your Oracle database will vary, depending on whether you’re using tools
such as cluster software or ASM. The prior code in this section demonstrates the typical steps for implementing the
shutdown and startup of your database in scenarios in which you don’t have other software that manages this task.

To test whether the dbora script is working, as root, run the following command to stop your database
and listener:

/etc/init.d/dbora stop

To test the startup of your database and listener, as root, issue the following command:

/etc/init.d/dbora start

As of this writing, you may need to make a slight modification to the Oracle-supplied ORACLE_HOME/bin/dbstart
and ORACLE_HOME/bin/dbshut scripts. If you inspect these scripts with an OS editor (such as vi), you’ll notice the
following line:

ORACLE_HOME_LISTNER=$1

I would recommend that you change it to this:

ORACLE_HOME_LISTNER=${1:-$ORACLE_HOME}

This line instructs the scripts to accept a parameter if one is passed in. If a parameter is not passed in, then
set ORACLE_HOME_LISTNER to the value contained in the variable $ORACLE_HOME. This preserves the functionality of
dbstart and dbshut and also makes these scripts work when called from dbora.

If you have the opportunity to reboot your system, I recommend that you do so to ensure that the database
stops and restarts correctly. When you invoke dbstart and dbshut, these utilities create log files in the ORACLE_HOME
directory, named startup.log and shutdown.log. You can inspect the contents of these to verify that the shutdown
and startup are working as expected.

Tip ■ starting with oracle Database 11g, consider using the oracle restart utility to automate the startup/shutdown of
your database and listener. this utility is especially useful in raC and asM environments.

ChaptEr 21 ■ autoMatInG Jobs

629

LINUX SYSteM V INIt rUNLeVeLS

a Linux service is an application that typically runs in the background (conceptually similar to a Windows
service). a runlevel is used to configure which services run on a box. usually, there are seven runlevels (0–6).
the chkconfig command manages which services you want running in which runlevel(s).

When Linux starts up, the sbin/init program reads the /etc/inittab file to determine the runlevel in which it
should run. Following is a snippet of script from /etc/inittab that shows the runlevels used by red hat (these
are similar to runlevels in other Linux distributions):

0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

to set the default runlevel, specify N in the id:<N>:initdefault line in the /etc/inittab file. this example sets
the default runlevel to 5:

id:5:initdefault:

a runlevel of 1 is used by sas when performing maintenance and repairs. a runlevel of 5 will start the Linux
server with a graphical login screen at the console, plus networking capabilities. however, if you have a problem
running the display manager at the console—owing to a video driver issue, for example—then you can start in
runlevel 3 instead, which is command line based but still has networking services.

Most sas who are security conscious operate their servers in runlevel 3. With the wide acceptance of VnC, sas
oftentimes do not see the benefit of running in runlevel 5. If an sa wants to take advantage of graphical utilities,
the sa will just use VnC (or a similar tool). Do not attempt to set initdefault to either 0 or 6, because your Linux
server will never start.

to determine the current runlevel, you can run who -r or runlevel, as follows:

runlevel
N 5
who -r
run-level 5 Jun 17 00:29 last=S

a given runlevel governs which scripts Linux will run when starting. these scripts are located in the
directory /etc/rc.d/rc<N>.d, where <N> corresponds to the runlevel. For runlevel 5 the scripts are in the
/etc/rc.d/rc5.d directory. For example, when Linux starts up in runlevel 5, one of the scripts it will run is
/etc/rc.d/rc5.d/S55sshd, which is actually a soft link to /etc/rc.d/init.d/sshd.

ChaptEr 21 ■ autoMatInG Jobs

630

Checking for Archive Redo Destination Fullness
Sometimes DBAs and SAs don’t adequately plan and implement a location for storing archive redo log files on disk. In
these scenarios it’s sometimes convenient to have a script that checks for space in the primary location and that sends
out warnings before the archive redo destination becomes full. Additionally, you may want to implement within the
script that the archive redo log location automatically switch to an alternate location that has adequate disk space.

I’ve only used scripts such as this in chaotic environments that have issues with the archive redo log destination’s
filling up at unpredictable frequencies. If the archive redo log destination fills up, the database will hang. In some
environments this is highly unacceptable. You could argue that you should never let yourself get into this type of
situation. Therefore, if you’re brought in to maintain an unpredictable environment, and you’re the one getting the
phone calls at 2:00 am, you may want to consider implementing a script such as the one provided in this section.

Before using the following script, change the variables within the script to match your environment. For instance,
SWITCH_DIR should point to an alternate location on disk that you can safely switch to the archive redo log destination,
should the primary destination become full. The script will send warning e-mails when the threshold goes below the
amount of space specified by the THRESH_GET_WORRIED variable. If the archive redo log space falls below the value
specified in the THRESH_SPACE_CRIT variable, then the destination will automatically be switched to the directory
contained in the SWITCH_DIR variable.

#!/bin/bash
PRG='basename $0'
DB=$1
USAGE="Usage: ${PRG} <sid>"
if [-z "$DB"]; then
 echo "${USAGE}"
 exit 1
fi
source OS variables
. /var/opt/oracle/oraset ${DB}
Set an alternative location, make sure it exists and has space.
SWITCH_DIR=/oradump01/${DB}/archivelog
Set thresholds for getting concerned and switching.
THRESH_GET_WORRIED=2000000 # 2Gig from df -k
THRESH_SPACE_CRIT=1000000 # 1Gig from df -k
MAILX="/bin/mailx"
MAIL_LIST="dkuhn@gmail.com "
BOX='uname -a | awk '{print$2}''
#
loc='sqlplus -s <<EOF
CONNECT / AS sysdba
SET HEAD OFF FEEDBACK OFF
SELECT SUBSTR(destination,1,INSTR(destination,'/',1,2)-1)
FROM v\\$archive_dest WHERE dest_name='LOG_ARCHIVE_DEST_1';
EOF'
The output of df depends on your version of Linux/Unix,
you may need to tweak the next line based on that output.
free_space='df -k | grep ${loc} | awk '{print $4}''
echo box = ${BOX}, sid = ${DB}, Arch Log Mnt Pnt = ${loc}
echo "free_space = ${free_space} K"
echo "THRESH_GET_WORRIED= ${THRESH_GET_WORRIED} K"
echo "THRESH_SPACE_CRIT = ${THRESH_SPACE_CRIT} K"
#
if [$free_space -le $THRESH_GET_WORRIED]; then

mailto:dkuhn@gmail.com

ChaptEr 21 ■ autoMatInG Jobs

631

$MAILX -s "Arch Redo Space Low ${DB} on $BOX" $MAIL_LIST <<EOF
Archive log dest space low, box: $BOX, sid: ${DB}, free space: $free_space
EOF
fi
#
if [$free_space -le $THRESH_SPACE_CRIT]; then
sqlplus -s << EOF
CONNECT / AS sysdba
ALTER SYSTEM SET log_archive_dest_1='location=${SWITCH_DIR}';
ALTER SYSTEM SWITCH LOGFILE;
EOF
$MAILX -s "Archive Switch ${DB} on $BOX" $MAIL_LIST <<EOF
Archive log dest, box: $BOX, sid: ${DB} has switched.
Then ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='location=<Normal Location>';
EOF
else
 echo no need to switch, ${free_space} KB free on ${loc}
fi
#
exit 0

The prior script assumes that the LOG_ARCHIVE_DEST_1 initialization parameter has been set to your archive redo
location. If you’re using an FRA for the location of your archive redo log files, you can derive the archive location from
the V$ARCHIVED_LOG view; for example,

select
 substr(name,1,instr(name,'/',1,2)-1)
from v$archived_log
where first_time =
 (select max(first_time) from v$archived_log);

Typically, I’ll run a script to check the archive redo log destination once an hour. Here is a typical cron entry (this
entry should actually be a single line of code but has been placed on two lines in order to fit on the page):

38 * * * * /u01/oracle/bin/arch_check.bsh DWREP
 1>/u01/oracle/bin/log/arch_check.log 2>&1

Truncating Large Log Files
Sometimes log files can grow very large and cause issues by filling up critical mount points. The listener.log will
record information about incoming connections to the database. With active systems this file can quickly grow
to several gigabytes. For many of my environments, the information in the listener.log file does not need to be
retained. If there are Oracle Net connectivity issues, then the file can be inspected to help troubleshoot issues.

The listener.log file is actively written to, so you shouldn’t just delete it. If you remove the file, the listener
process won’t re-create the file and start writing to it again; you have to stop and restart the listener to restart its
writing to the listener.log file. You can, however, null out the listener.log file or truncate it. In Linux/Unix
environments this is done via the following technique:

$ cat /dev/null >listener.log

ChaptEr 21 ■ autoMatInG Jobs

632

The previous command replaces the contents of the listener.log file with the contents of /dev/null (a default
file on Linux/Unix systems that contains nothing). The result of this command is that the listener.log file is
truncated, and the listener can continue to actively write to it.

Listed next is a shell script that truncates the default listener.log file. This script is dependent on setting the OS
variable ORACLE_BASE. If you don’t set that variable in your environment, you’ll have to hard-code the directory path
within this script:

#!/bin/bash
#
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
See chapter 2 for details on setting OS variables
Source oracle OS variables with oraset script
. /etc/oraset $1
#
MAILX='/bin/mailx'
MAIL_LIST='dkuhn@gmail.com'
BOX=$(uname -a | awk '{print $2}' | cut -f 1 -d'.')
#
if [-f $ORACLE_BASE/diag/tnslsnr/$BOX/listener/trace/listener.log]; then
 cat /dev/null > $ORACLE_BASE/diag/tnslsnr/$BOX/listener/trace/listener.log
fi
if [$? -ne 0]; then
 echo "trunc list. problem" | $MAILX -s "trunc list. problem $1" $MAIL_LIST
else
 echo "no problem..."
fi
exit 0

The following cron entry runs the prior script on a monthly basis (this entry should all be on one line but has
been placed on two lines in order to fit on the page):

30 6 1 * * /orahome/oracle/bin/trunc_log.bsh DWREP
 1>/orahome/oracle/bin/log/trunc_log.log 2>&1

Checking for Locked Production Accounts
Usually I have a database profile in place that specifies that a database account become locked after a designated
number of failed login attempts. For example, I’ll set the DEFAULT profile FAILED_LOGIN_ATTEMPTS to 5. Sometimes,
however, a rogue user or developer will attempt to guess the production account password, and after five attempts,
locks the production account. When this happens, I need to know about it as soon as possible so that I can investigate
the issue and then unlock the account.

The following shell script checks the LOCK_DATE value in DBA_USERS for a list of production database accounts:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1

mailto:dkuhn@gmail.com

ChaptEr 21 ■ autoMatInG Jobs

633

fi
source oracle OS variables
. /etc/oraset $1
#
crit_var=$(sqlplus -s <<EOF
/ as sysdba
SET HEAD OFF FEED OFF
SELECT count(*)
FROM dba_users
WHERE lock_date IS NOT NULL
AND username in ('CIAP','REPV','CIAL','STARPROD');
EOF)
#
if [$crit_var -ne 0]; then
 echo $crit_var
 echo "locked acct. issue with $1" | mailx -s "locked acct. issue" dkuhn@gmail.com
else
 echo $crit_var
 echo "no locked accounts"
fi
exit 0

This shell script is called from a scheduling tool, such as cron. For example, this cron entry instructs the job to
run every 10 minutes (this entry should actually be a single line of code but has been placed on two lines in order to fit
on the page):

0,10,20,30,40,50 * * * * /home/oracle/bin/lock.bsh DWREP
 1>/home/oracle/bin/log/lock.log 2>&1

In this way, I am notified when one of the production database accounts becomes locked.

Checking for Files Older Than a Certain Age
For some jobs that I run from shell scripts (such as backups), I’ll first check to see if another backup job is already
running. The check involves looking for a lock file. If the lock file exists, then the shell script exits; if the lock file
doesn’t exist, then one is created. At the end of the job, the lock file is removed.

Sometimes, there’s a problem with the job, and it aborts abnormally before the lock file can be removed. In
these situations, I want to know if a lock file that is older than 1 day exists the a server. The existence of an old lock file
indicates that there has been an issue and that I need to investigate. The following shell script checks for any lock files
older than 1 day in the tmp directory.

#!/bin/bash
BOX=$(uname -a | awk '{print $2}')
find all lock files gt 1 day old.
Find all lock files in /tmp, if found, find any older than one day
ls /tmp/*.lock 2>/dev/null && \
filevar=$(find /tmp/*lock -type f -mtime +1 | wc -l) || filevar=0
if [$filevar -gt 0]; then
 echo "$BOX, lockfile issue: $filevar" | \
 mailx -s "$BOX lockfile problem" dkuhn@gmail.com

mailto:dkuhn@gmail.com
mailto:dkuhn@gmail.com

ChaptEr 21 ■ autoMatInG Jobs

634

else
 echo "Lock file ok: $filevar"
fi
exit 0

I usually check for the existence of a lock file on a daily basis. Here is a typical cron entry for running the prior
script, named lock_chk.bsh (this entry should all be on one line but has been placed on two lines in order to fit on the
page):

33 5 * * * /orahome/oracle/bin/lock_chk.bsh
 1>/orahome/oracle/bin/log/lock_chk.log 2>&1

Checking for Too Many Processes
On some database servers, you may have many background SQL*Plus jobs. These batch jobs may perform tasks such
as copying data from remote databases and large daily update jobs. In these environments it’s useful to know if, at any
given time, there are an abnormal number of shell scripts or SQL*Plus processes running on the database server. An
abnormal number of jobs could be an indication that something is broken or hung.

The next shell script has two checks in it: one to determine the number of shell scripts that are named with the
extension of bsh and one to determine the number of processes that contain the string of sqlplus:

#!/bin/bash
#
if [$# -ne 0]; then
 echo "Usage: $0"
 exit 1
fi
#
crit_var=$(ps -ef | grep -v grep | grep bsh | wc -l)
if [$crit_var -lt 20]; then
 echo $crit_var
 echo "processes running normal"
else
 echo "too many processes"
 echo $crit_var | mailx -s "too many bsh procs: $1" dkuhn@gmail.com
fi
#
crit_var=$(ps -ef | grep -v grep | grep sqlplus | wc -l)
if [$crit_var -lt 30]; then
 echo $crit_var
 echo "processes running normal"
else
 echo "too many processes"
 echo $crit_var | mailx -s "too many sqlplus procs: $1" dkuhn@gmail.com
fi
#
exit 0

mailto:dkuhn@gmail.com
mailto:dkuhn@gmail.com

ChaptEr 21 ■ autoMatInG Jobs

635

The prior shell script, named proc_count.bsh, is run once an hour from a cron job (this entry should actually be
a single line of code but is placed on two lines in order to fit on the page):

33 * * * * /home/oracle/bin/proc_count.bsh
 1>/home/oracle/bin/log/proc_count.log 2>&1

Verifying the Integrity of RMAN Backups
As part of your backup-and-recovery strategy, you should periodically validate the integrity of the backup files. RMAN
provides a RESTORE...VALIDATE command that checks for physical corruption within the backup files. The following
script starts RMAN and spools a log file. The log file is subsequently searched for the keyword error. If there are any
errors in the log file, an e-mail is sent:

#!/bin/bash
#
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
source oracle OS variables
. /etc/oraset $1
#
date
BOX='uname -a | awk '{print$2}''
rman nocatalog <<EOF
connect target /
spool log to $HOME/bin/log/rman_val.log
set echo on;
restore database validate;
EOF
grep -i error $HOME/bin/log/rman_val.log
if [$? -eq 0]; then
 echo "RMAN verify issue $BOX, $1" | \
 mailx -s "RMAN verify issue $BOX, $1" dkuhn@sun.com
else
 echo "no problem..."
fi
#
date
exit 0

The RESTORE...VALIDATE doesn’t actually restore any files; it only validates that the files required to restore the
database are available and checks for physical corruption.

If you need to check for logical corruption as well, specify the CHECK LOGICAL clause. For example, to check for
logical corruption, the prior shell script would have this line in it:

restore database validate check logical;

mailto:dkuhn@sun.com

ChaptEr 21 ■ autoMatInG Jobs

636

For large databases the validation process can take a great deal of time (because the script checks each block
in the backup file for corruption). If you only want to verify that the backup files exist, specify the VALIDATE HEADER
clause, like so:

restore database validate header;

This command only checks for valid information in the header of each file that would be required for a restore
and recovery.

Summary
Automating routine database jobs is a key strategy of the successful DBA. Automated jobs ensure that tasks are
repeatable and verifiable and that you’re quickly notified when there are any problems. For example, your job as a
DBA greatly depends on successfully running backups and ensuring that the database is highly available. This chapter
includes several scripts and examples that detail how to run routine jobs at defined frequencies.

Oracle provides the Oracle Scheduler utility (implemented via the DBMS_SCHEDULER PL/SQL package) for
scheduling jobs. This tool can be used to automate any type of database task. You can also initiate jobs based on
system events or on the success/failure of other scheduled jobs. I prefer to use cron for scheduling database jobs.
However, you might have sophisticated scheduling requirements that dictate the use of a tool such as the Oracle
Scheduler.

If you’re a DBA who works in a Linux/Unix shop, you should familiarize yourself with the cron utility. This
scheduler is simple to use and is almost universally available. Even if you don’t use cron for your current assignment,
you’re sure to encounter its use in future work environments.

At this point in the book, you’ve learned how to implement and perform many tasks required of a DBA. Even if
you manage just one database, no doubt you’ve been embroiled in a vast number of troubleshooting activities. The
next chapter focuses on diagnosing and resolving many of the issues that a DBA encounters.

637

Chapter 22

Database Troubleshooting

Database troubleshooting is a vague and general term that is applied to a wide variety of topics. It can mean anything
from investigating database connectivity issues to detailed performance tuning. In this chapter, I’ll cover the following
troubleshooting activities:

Assessing database availability issues quickly•	

Identifying system performance issues with OS utilities•	

Querying data dictionary views to display resource-intensive SQL statements•	

Using Oracle performance tools to identify resource-consuming SQL statements•	

Identifying and resolving locking issues•	

Troubleshooting open-cursor issues•	

Investigating issues with the undo and temporary tablespaces•	

The prior list doesn’t encompass all the types of database troubleshooting and performance issues that you’ll
encounter. Rather, it’s a sampling of the database problems that you’re likely to encounter and demonstrates useful
techniques for resolving problems.

Quickly Triaging
When I get a call reporting some vague performance issues with a database, I perform a few quick standard checks to
establish whether or not there are really problems. Probably half the time, it turns out to be something other than the
database. Regardless, when somebody (developer, user, boss, and so on) reports an issue, the DBA must respond and
determine if there is an issue or if the problem is with a nondatabase component of the system.

Tip ■ Keep in mind that you should automate jobs that perform tasks such as verifying the database availability
(see Chapter 21 for examples of automating DBA tasks). Automated jobs help you proactively handle issues so that they
don’t turn into database downtime.

Checking Database Availability
The first few checks that I perform don’t require logging in to the database server. Rather, they can be performed
remotely via SQL*Plus and OS commands. In fact, I perform all the initial checks remotely over the network; this
establishes whether all the system components are working.

ChApter 22 ■ DAtABAse trouBleshooting

638

One quick check to determine whether the remote server is available, the database is up, the network is working,
and the listener is accepting incoming connections is to connect via an SQL*Plus client to the remote database over
the network. I usually have a standard database account and password that I create in all databases for use in such
scenarios. Here is an example of connecting over the network to a remote database as the barts user with a password
of l1sa; the network connect information is embedded directly into the connect string (where dwdb1 is the server,
1521 is the port, and dwrep1 is the database service name):

$ sqlplus barts/l1sa@'dwdb1:1521/dwrep1'

If a connection can be made, then the remote server is available, and the database and listener are up and
working. At this point, I contact whomever reported a problem and see if the connectivity issue has to do with the
application or with something other than the database.

If the prior SQL*Plus command doesn’t work, try to establish whether the remote server is available. In this
example, the ping command is issued to the remote server, named dwdb1:

$ ping dwdb1

If ping works, you should see output such as this:

64 bytes from dwdb1 (192.168.254.215): icmp_seq=1 ttl=64 time=0.044 ms

If ping doesn’t work, there is probably an issue with either the network or the remote server. If the remote server
isn’t available, I usually try to contact a system administrator or network administrator.

If ping does work, I then check to see if the remote server is reachable via the port that the listener is listening on.
I use the telnet command to accomplish this:

$ telnet IP <port>

In this example a network connection is attempted to the server’s IP address on the 1521 port:

$ telnet 192.168.254.215 1521

If the IP address is reachable on the specified port, you should see “Connected to . . .” in the output, like so:

Trying 192.168.254.215...
Connected to dwdb1.
Escape character is '^]'.

If the telnet command doesn’t work, I contact the SA or the network administrator.
If the telnet command does work, and there is network connectivity to the server on the specified port, then use

the tnsping command to test network connectivity to the remote server and database, using Oracle Net. This example
attempts to reach the DWREP1 remote service:

$ tnsping DWREP1

If successful, the output should contain the OK string, like so:

Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = DWDB1)
(PORT = 1521)) (CONNECT_DATA = (SERVICE_NAME = DWREP1)))
OK (20 msec)

ChApter 22 ■ DAtABAse trouBleshooting

639

If tnsping works, it means that the remote listener is up and working. It doesn’t necessarily mean that the
database is up, so you may need to log in to the database server to investigate further. If tnsping doesn’t work, then
the listener or the database is down or hung.

To further investigate issues, I log in directly to the server to perform additional checks, such as a mount point’s
filling up.

OraCLe INStaNt CLIeNt

i work with sAs and developers who sometimes need to test remote connectivity to a database but who don’t
have access to an oracle installation with the sQl*plus executable. in these situations, i recommend that they
download and use oracle instant Client. it has a very small footprint and takes just a few minutes to install. here
are the steps:

1. Download the instant Client from the technology network area of the oracle web site
(http://otn.oracle.com).

2. Create a directory for storing the files.

3. unzip the files to that directory.

4. set the LD_LIBRARY_PATH and PATH variables to include the directory to which the files were
unzipped.

5. Connect to a remote database, using the easy connect syntax:

$ sqlplus user/pass@'host:port/database_service_name'

this process allows you to access sQl*plus without having to perform a large and cumbersome oracle install.
instant Client is available for most hardware platforms (Windows, Mac, linux, and unix).

Investigating Disk Fullness
To further diagnose issues (such as running low on disk space), you need to log in directly to the remote server.
Typically, you will need to log in as the owner of the Oracle software (usually the oracle OS account). When first
logging in to a box, one issue that will cause a database to hang or have problems is a full mount point. The df
command with the human readable -h switch assists with verifying disk fullness:

$ df -h

Any mount point that is full needs to be investigated. If the mount point that contains ORACLE_HOME becomes full,
then you’ll receive errors such as this when connecting to the database:

Linux Error: 28: No space left on device

To fix issues with a full mount point, first identify files that can be either moved or removed. Generally, I start by
looking for old trace files; often, there are old files that can be safely removed.

http://otn.oracle.com/

ChApter 22 ■ DAtABAse trouBleshooting

640

Locating the Alert Log and Trace Files
In Oracle Database 11g and higher the default alert log directory path has this structure:

ORACLE_BASE/diag/rdbms/LOWER(<db_unique_name>)/<instance_name>/trace

Note■ You can override the default directory path for the alert log by setting the DIAGNOSTIC_DEST initialization
parameter.

Usually, the db_unique_name is the same as the instance_name. In RAC and Data Guard environments, however,
the db_unique_name is often different from the instance_name. You can verify the directory path with this query:

SQL> select value from v$diag_info where name = 'Diag Trace';

The name of the alert log follows this format:

alert_<ORACLE_SID>.log

You can also locate the alert log from the OS (whether or not the database is started) via these OS commands:

$ cd $ORACLE_BASE
$ find . -name alert_<ORACLE_SID>.log

In the prior find command, you’ll need to replace the <ORACLE_SID> value with the name of your database.

Tip■ For oracle Database 10g the standard location for the alert log is defined as the
<ORACLE_BASE>/admin/<SID>/bdump directory. the easiest way to determine its location is via the following sQl
command: show parameter background_dump_dest

As shown in Chapter 3, it’s advisable to set up an OS function that helps you navigate to the location of the alert
log. Here is such a function (you’ll have to modify this to match your environment):

function bdump {
 if ["$ORACLE_SID" = "O12C"]; then
 cd /orahome/app/oracle/diag/rdbms/o12c/O12C/trace
 elif ["$ORACLE_SID" = "O11R2"]; then
 cd /orahome/app/oracle/diag/rdbms/o11r2/O11R2/trace
 fi
}

You can now type bdump and will be placed in the working directory that contains the database alert log. Once you
have found the correct file, inspect the most recent entries for errors, and then look for trace files in the same directory:

$ ls -altr *.tr*

If any of these trace files are more than several days old, consider moving or removing them.

ChApter 22 ■ DAtABAse trouBleshooting

641

Removing Files
Needless to say, be very careful when removing files. When trying to resolve issues, the last thing you want to do is
make things worse. Accidentally removing one critical file can be catastrophic. For any files you identify as candidates
for deletion, consider moving (instead of deleting) them. If you have a mount point that has free space, move the files
there, and leave them for a couple of days before removing them.

Tip ■ Consider using the Automatic Diagnostic repository Command interpreter (ADrCi) utility to purge old trace files.
For more details, see the Oracle Database Utilities Guide, which is available for download from the technology network
area of the oracle website (http://otn.oracle.com).

If you have identified files that can be removed, first create a list of the files that will be removed before you
actually delete them. Minimally, I do this before removing any file:

$ ls -altr <file_name>

After viewing the results returned by the ls command, remove the file(s). This example uses the Linux/Unix rm
command to permanently delete the file:

$ rm <file_name>

You can also remove files based on the age of the file. For example, say you determine that any trace files more
than 2 days old can be safely deleted. Typically, the find command is used in conjunction with the rm command to
accomplish this task. Before removing files, first display the results of the find command:

$ find . -type f -mtime +2 -name "*.tr*"

If you are satisfied with the list of files, then add the rm command to remove them:

$ find . -type f -mtime +2 -name "*.tr*" | xargs rm

In the prior line of code, the results of the find command are piped to the xargs command, which executes the
rm command for every file found by the find command. This is an efficient method for deleting files based on age.
However, be very sure you know which files will be deleted.

Another file that sometimes consumes large amounts of space is the listener.log file. Because this file is
actively written to by the listener process, you can’t simply remove it. If you need to preserve the contents of this
file, first copy it to a backup location (that contains free disk space), and then truncate the file. In this example the
listener.log file is copied to ora01/backups, and then the file is truncated, as follows:

$ cp listener.log /u01/backups

Next, use the cat command to replace the contents of the listener.log with the /dev/null file (which contains
zero bytes):

$ cat /dev/null > listener.log

http://otn.oracle.com/

ChApter 22 ■ DAtABAse trouBleshooting

642

Inspecting the Alert Log
When dealing with database issues, the alert.log file should be one of the first files you check for relevant error
messages. You can use either OS tools or the ADRCI utility to view the alert.log file and corresponding trace files.

Viewing the Alert Log via OS Tools
After navigating to the directory that contains the alert.log, you can see the most current messages by viewing the
end (furthest down) of the file (in other words, the most current messages are written to the end of the file). To view
the last 50 lines, use the tail command:

$ tail -50 alert_<SID>.log

You can continuously view the most current entries by using the f switch:

$ tail -f alert_<SID>.log

You can also directly open the alert.log with an OS editor (such as vi):

$ vi alert_<SID>.log

Sometimes, it’s handy to define a function that will allow you to open the alert.log, regardless of your current
working directory. The next few lines of code define a function that locates and opens the alert.log with the view
command:

#---#
view alert log
 function valert {
 if ["$ORACLE_SID" = "O12C"]; then
 view /orahome/app/oracle/diag/rdbms/o12c/O12C/trace/alert_O12C.log
 elif ["$ORACLE_SID" = "O11R2"]; then
 view /orahome/app/oracle/diag/rdbms/o11r2/O11R2/trace/alert_O11R2.log
 fi
 } # valert
#---#

Usually, the prior lines of code are placed in a startup file so that the function is automatically defined when you
log in to a server. Once the function is defined, you can view the alert.log by typing this command:

$ valert

When inspecting the end of the alert.log, look for errors that indicate these types of issues:

Archiver process hung, owing to inadequate disk space•	

File system out of space•	

Tablespace out of space•	

Running out of memory in the buffer cache or shared pool•	

ChApter 22 ■ DAtABAse trouBleshooting

643

Media error indicating that a data file is missing or damaged•	

Error indicating an issue with writing an archive redo log; for example,•	

ORA-19502: write error on file "/ora01/fra/o12c/archivelog/...

For a serious error message listed in the alert.log file, there is almost always a corresponding trace file. For
example, here is the accompanying message for the prior error message:

Errors in file /orahome/app/oracle/diag/rdbms/o12c/O12C/trace/O12C_ora_5665.trc

Inspecting the trace file will often (but not always) provide additional insight into the issue.

Viewing the Alert Log Using the ADRCI Utility
With Oracle Database 11g or higher, you can use the ADRCI utility to view the contents of the alert.log file. Run the
following command from the OS to start the ADRCI utility:

$ adrci

You should be presented with a prompt:

adrci>

Use the SHOW ALERT command to view the alert.log file:

adrci> show alert

If there are multiple Oracle homes on the server, then you will be prompted to choose which alert.log you want
to view. The SHOW ALERT command will open the alert.log with the utility that has been set as the default editor for
your OS. On Linux/Unix systems the default editor is derived from the OS EDITOR variable (which is usually set to a
utility such as vi).

Tip ■ When presented with the alert.log, if you are unfamiliar with vi, and want to exit, first press the escape key,
then press and hold down the shift key while pressing the colon (:) key. next, type q!. that should exit you out of the vi
editor and back to the ADrCi prompt.

You can override the default editor within ADRCI, using the SET EDITOR command. This example sets the default
editor to emacs:

adrci> set editor emacs

You can view the last N number of lines in the alert.log with the TAIL option. The following command shows
the last 50 lines of the alert.log:

adrci> show alert -tail 50

ChApter 22 ■ DAtABAse trouBleshooting

644

If you have multiple Oracle homes, you may see a message such as this:

DIA-48449: Tail alert can only apply to single ADR home

The ADRCI utility doesn’t assume that you want to work with one Oracle home over another on a server. To
specifically set the Oracle home for the ADRCI utility, first use the SHOW HOMES command to display all available
Oracle homes:

adrci> show homes

Here is some sample output for this server:

diag/rdbms/o12c/O12C
diag/rdbms/o12cp/O12CP

Now, use the SET HOMEPATH command. This sets the HOMEPATH to diag/rdbms/e64208/E64208:

adrci> set homepath diag/rdbms/o12c/O12C

To continuously display the end of the file, use this command:

adrci> show alert -tail -f

Press Ctrl+C to break off continuously viewing the alert.log file. To display lines from the alert.log that
contain specific strings, use the MESSAGE_TEXT LIKE command. This example shows messages that contain the
ORA-27037 string:

adrci> show alert -p "MESSAGE_TEXT LIKE '%ORA-27037%'"

You will be presented with a file that contains all the lines in the alert.log that match the specified string.

Tip ■ see the Oracle Database Utilities Guide for full details on how to use the ADrCi utility.

Identifying Bottlenecks via OS Utilities
In the Oracle world there is sometimes a tendency to assume that you have a dedicated machine for one Oracle
database. Furthermore, this database is the latest version of Oracle, fully patched, and monitored by a sophisticated
graphical tool. This database environment is completely automated and kept trouble free through the use of visual
tools that quickly pinpoint problems and efficiently isolate and resolve issues. If you live in this ideal world, then you
probably don’t need any of the material in this chapter.

Let me paint a slightly different picture. I have an environment in which one machine has a dozen databases
running on it. There’s a MySQL database, a PostgreSQL database, and a mix of Oracle version 10g, 11g, and 12c
databases. Furthermore, many of these old databases are on nonterminal releases of Oracle and are therefore not
supported by Oracle Support. There are no plans to upgrade any of these unsupported databases because the
business can’t take the risk of potentially breaking the applications that depend on these databases.

So, what does one do in this type of environment when somebody reports that a database application is
performing poorly? In this scenario it’s often something in a different database that is causing other applications on
the box to behave poorly. It may not be an Oracle process or an Oracle database that is causing problems.

ChApter 22 ■ DAtABAse trouBleshooting

645

In this situation it’s almost always more effective to start investigating issues by using an OS tool. The OS tools
are database agnostic. OS performance utilities help pinpoint where the most resources are consumed, regardless of
database vendor or version.

In Linux/Unix environments there are several tools available for monitoring resource usage. Table 22-1
summarizes the most commonly used OS utilities for diagnosing performance issues. Being familiar with how
these OS commands work and how to interpret the output will allow you to better diagnose server performance
issues, especially when it’s a non-Oracle or even a nondatabase process that is tanking performance for every other
application on the box.

Table 22-1. Performance and Monitoring Utilities

Tool Purpose

vmstat Monitors processes, CPU, memory, and disk I/O bottlenecks

top Identifies sessions consuming the most resources

watch Periodically runs another command

ps Identifies highest CPU- and memory-consuming sessions; used to identify Oracle sessions
consuming the most system resources

mpstat Reports CPU statistics

sar Displays CPU, memory, disk I/O, and network usage, both current and historical

free Displays free and used memory

df Reports on free disk space

du Displays disk usage

iostat Displays disk I/O statistics

netstat Reports on network statistics

When diagnosing performance issues, it’s useful to determine where the OS is constrained. For instance, try to
identify whether the issue is related to CPU, memory, or I/O, or a combination of these.

Identifying System Bottlenecks
Whenever there are application performance issues or availability problems, seemingly (from the DBA’s perspective),
the first question asked is, “What’s wrong with the database?” Regardless of the source of the problem, the onus is
often on the DBA to establish whether the database is behaving well. I usually approach this issue by determining
which system-wide resources are being consumed. There are two Linux/Unix OS tools that are particularly useful for
displaying system-wide resource usage:

•	 vmstat

•	 top

The vmstat (virtual memory statistics) tool is intended to help you quickly identify bottlenecks on your server.
The top utility provides a dynamic, real-time view of system resource usage. These two utilities are discussed in the
next two sections.

ChApter 22 ■ DAtABAse trouBleshooting

646

Using vmstat
The vmstat utility displays real-time performance information about processes, memory, paging, disk I/O, and CPU
usage. This example shows using vmstat to display the default output, with no options specified:

$ vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
14 0 52340 25272 3068 1662704 0 0 63 76 9 31 15 1 84 0

Here are some general heuristics you can use when interpreting the output of vmstat:

If the •	 wa (time waiting for I/O) column is high, this is usually an indication that the storage
subsystem is overloaded.

If •	 b (processes sleeping) is consistently greater than 0, then you may not have enough CPU
processing power.

If •	 so (memory swapped out to disk) and si (memory swapped in from disk) are consistently
greater than 0, you may have a memory bottleneck.

By default only one line of server statistics is displayed when running vmstat (without supplying any options).
This one line of output gives average statistics calculated from the last time the system was rebooted. This is fine for a
quick snapshot. However, if you want to gather metrics over a period of time, use vmstat with this syntax:

$ vmstat <interval in seconds> <number of intervals>

While in this mode, vmstat reports statistics, sampling from one interval to the next. For example, if you wanted
to report system statistics every 2 seconds, for ten intervals, you’d issue this command:

$ vmstat 2 10

You can also send the vmstat output to a file. This is useful for analyzing historical performance over a period of
time. This example samples statistics every 5 seconds, for a total of 60 reports, and records the output in a file:

$ vmstat 5 60 > vmout.perf

Additionally, the vmstat utility can be used with the watch tool. The watch command is used to execute another
program on a periodic basis. In this example, watch runs the vmstat command every 5 seconds and highlights on the
screen any differences between each snapshot:

$ watch –n 5 –d vmstat
Every 5.0s: vmstat Thu Aug 9 13:27:57 2007
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 144 15900 64620 1655100 0 0 1 7 16 4 0 0 99 0

When running vmstat in watch -d (differences) mode, you’ll visually see changes on your screen, from snapshot
to snapshot. To exit watch, press Ctrl+C.

Note that the default unit of measure for the memory columns of vmstat is kilobytes. If you want to view the
memory statistics in megabytes, then use the S m (statistics in megabytes) option:

$ vmstat –S m

ChApter 22 ■ DAtABAse trouBleshooting

647

Tip ■ use the man vmstat or vmstat --help command for further documentation on this utility.

Using top
Another tool for identifying resource-intensive processes is the top command. Use this utility to quickly identify
which processes are the highest consumers of resources on the server. By default, top will repetitively refresh (every 3
seconds) information regarding the most CPU-intensive processes. The simplest way to run top is as follows:

$ top

Here is a fragment of the output:

top - 13:34:32 up 19 min, 2 users, load average: 0.05, 0.16, 0.24
Tasks: 176 total, 1 running, 175 sleeping, 0 stopped, 0 zombie
Cpu(s): 2.0%us, 0.7%sy, 0.0%ni, 91.6%id, 5.7%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 787028k total, 748744k used, 38284k free, 1836k buffers
Swap: 1605624k total, 31896k used, 1573728k free, 377668k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
4683 root 20 0 279m 14m 7268 S 2.0 1.9 0:01.61 gnome-terminal
3826 root 20 0 218m 9944 4200 S 1.7 1.3 0:02.80 Xorg
3592 oracle -2 0 601m 18m 15m S 0.7 2.4 0:09.36 ora_vktm_o12c

The process identifiers (PIDs) of the top-consuming sessions are listed in the first column (PID). You can use
this information to see if a PID maps to a database process (see the next section, “Mapping an OS Process to an SQL
Statement,” for details on mapping a PID to a database process).

While top is running, you can interactively change its output. For example, if you type the redirection character (>),
this will move the column that top is sorting one position to the right. Table 22-2 lists some key features that you can
use to alter the top display to the desired format.

Table 22-2. Commands to Interactively Change the top Output

Command Function

Spacebar Immediately refreshes the output

< or > Moves the sort column one position to the left or to the right.
By default, top sorts on the CPU column.

D Changes the refresh time

R Reverses the sort order

Z Toggles the color output

H Displays the Help menu

F or O Chooses a sort column

ChApter 22 ■ DAtABAse trouBleshooting

648

You can also run top using the b (batch mode) option and send the output to a file for later analysis:

$ top –b > tophat.out

While running in batch mode, the top command will run until you kill it (with Ctrl+C) or until it reaches a
specified number of iterations. You could run the previous top command in batch mode, with a combination of nohup
and & to keep it running, regardless of whether you were logged in to the system. The danger there is that you might
forget about it and eventually create a very large output file (and an angry SA).

If you have a particular process that you’re interesting in monitoring, use the p option to monitor a PID or the U
option to monitor a username. You can also specify a delay and the number of iterations by using the d and -n options.
The following example monitors the oracle user with a delay of 5 seconds, for 25 iterations:

$ top –u oracle –d 5 –n 25

Tip ■ use the man top or top --help command to list all the options available in your os version.

Mapping an Operating System Process to an SQL Statement
When identifying OS processes, it’s useful to view which processes are consuming the greatest amount of CPU. If the
resource hog is a database process, it’s also useful to map the OS process to a database job or query. To determine
the ID of the processes consuming the most CPU resources, use a command such as ps, like so:

$ ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head

Table 22-3. Column Descriptions of the top Output

Column Description

PID Unique process identifier

USER OS username running the process

PR Priority of the process

NI Nice value or process. Negative value means high priority; positive value means low priority.

VIRT Total virtual memory used by process

RES Nonswapped physical memory used by process

SHR Shared memory used by process

S Process status

CPU Processes percentage of CPU consumption since last screen refresh

MEM Percentage of physical memory the process is consuming

TIME Total CPU time used by process

TIME+ Total CPU time, showing hundredths of seconds, used by process

COMMAND Command line used to start a process

Type q, or press Ctrl+C, to exit top. Table 22-3 describes several of the columns displayed in the default output
of top.

ChApter 22 ■ DAtABAse trouBleshooting

649

Here is a snippet of the output:

14.6 24875 oracle ? oracleo12c (DESCRIPTION=(LOCAL=YES)(ADDRESS=...
 0.8 21613 oracle ? ora_vktm_o12c
 0.1 21679 oracle ? ora_mmon_o12c

From the output, you can see that the OS session 24875 is the top consumer of CPU resources. The output
also indicates that the process is associated with the o12c database. With that information in hand, log in to the
appropriate database, and use the following SQL statement to determine what type of program is associated with
the OS process 24875:

select
 'USERNAME : ' || s.username|| chr(10) ||
 'OSUSER : ' || s.osuser || chr(10) ||
 'PROGRAM : ' || s.program || chr(10) ||
 'SPID : ' || p.spid || chr(10) ||
 'SID : ' || s.sid || chr(10) ||
 'SERIAL# : ' || s.serial# || chr(10) ||
 'MACHINE : ' || s.machine || chr(10) ||
 'TERMINAL : ' || s.terminal
from v$session s,
 v$process p
where s.paddr = p.addr
and p.spid = &PID_FROM_OS;

When you run the command, SQL*Plus will prompt you for the value to use in place of &PID_FROM_OS. In this
example, you’ll enter 24875. Here is the relevant output:

USERNAME : MV_MAINT
OSUSER : oracle
PROGRAM : sqlplus@speed2 (TNS V1-V3)
SPID : 24875
SID : 111
SERIAL# : 899
MACHINE : speed2
TERMINAL : pts/4

In this output the PROGRAM value indicates that an SQL*Plus session is the program consuming the inordinate
amount of resources on the server. Next, run the following query to display the SQL statement associated with the OS
PID (in this example, the server process identifier [SPID] is 24875):

select
 'USERNAME : ' || s.username || chr(10) ||
 'OSUSER : ' || s.osuser || chr(10) ||
 'PROGRAM : ' || s.program || chr(10) ||
 'SPID : ' || p.spid || chr(10) ||
 'SID : ' || s.sid || chr(10) ||
 'SERIAL# : ' || s.serial# || chr(10) ||
 'MACHINE : ' || s.machine || chr(10) ||
 'TERMINAL : ' || s.terminal || chr(10) ||
 'SQL TEXT : ' || sa.sql_text
from v$process p,

ChApter 22 ■ DAtABAse trouBleshooting

650

v$session s,
v$sqlarea sa
where p.addr = s.paddr
and s.username is not null
and s.sql_address = sa.address(+)
and s.sql_hash_value = sa.hash_value(+)
and p.spid= &PID_FROM_OS;

The results show the resource-consuming SQL as part of the output, in the SQL TEXT column. Here is a snippet of
the output:

USERNAME : MV_MAINT
OSUSER : oracle
PROGRAM : sqlplus@speed2 (TNS V1-V3)
SPID : 24875
SID : 111
SERIAL# : 899
MACHINE : speed2
TERMINAL : pts/4
SQL TEXT : select a.table_name from dba_tables a,dba_indexes b,dba_objects c...

When you run multiple databases on one server and are experiencing server performance issues, it can
sometimes be difficult to pinpoint which database and associated process are causing the problems. In these
situations, you have to use an OS tool to identify the top resource-consuming sessions on the system.

In a Linux/Unix environment, you can use utilities such as ps, top, or vmstat to identify top-consuming OS
processes. The ps utility is handy because it lets you identify processes consuming the most CPU or memory.
The previous ps command identified the top-consuming CPU processes. Here, it’s used to identify the top Oracle
memory–using processes:

$ ps -e -o pmem,pid,user,tty,args | grep -i oracle | sort -n -k 1 -r | head

Once you have identified a top-consuming process associated with a database, you can query the data dictionary
views, based on the SPID, to identify what the database process is executing.

OS WatCher

oracle provides a collection of scripts that gather and store metrics for Cpu, memory, disk, and network usage.
on linux/unix systems, the os Watcher tool suite automates the gathering of statistics, using tools such as top,
vmstat, iostat, mpstat, netstat, and traceroute. this utility also has an optional graphical component for
visually displaying performance metrics.

You can obtain os Watcher from oracle’s Mos web site. For the linux/unix version, see Mos note 301137.1 or
the document titled “os Watcher user guide.” For details on the Windows version of os Watcher, see Mos note
433472.1.

ChApter 22 ■ DAtABAse trouBleshooting

651

Finding Resource-Intensive SQL Statements
One of the best ways to isolate a poorly performing query is to have a user or developer complain about a specific SQL
statement. In this situation there is no detective work involved. You can directly pinpoint the SQL query that is in need
of tuning.

However, you don’t often have the luxury of a human’s letting you know specifically where to look when
investigating performance issues. There are a number of methods for determining which SQL statements are
consuming the most resources in a database:

Real-time execution statistics (new, starting with Oracle Database 11g)•	

Near real-time statistics•	

Oracle performance reports•	

These techniques are described in the next several sections.

Monitoring Real-Time SQL Execution Statistics
If you’re using Oracle Database 11g or higher, you can use the following query to select from the V$SQL_MONITOR to
monitor the near real-time resource consumption of SQL queries:

select * from (
select a.sid session_id, a.sql_id
,a.status
,a.cpu_time/1000000 cpu_sec
,a.buffer_gets, a.disk_reads
,b.sql_text sql_text
from v$sql_monitor a
 ,v$sql b
where a.sql_id = b.sql_id
order by a.cpu_time desc)
where rownum <=20;

The output for this query doesn’t fit easily onto a page. Here is a subset of the output:

SESSION_ID SQL_ID STATUS CPU_SEC BUFFER_GETS DISK_READS SQL_TEXT
---------- ------------- --------- ---------- ----------- ---------- ---------------
 139 d07nngmx93rq7 DONE 331.88 5708 3490 select count(*)
 130 9dtu8zn9yy4uc EXECUTING 11.55 5710 248 select task_name

In the query an inline view is used to first retrieve all records and organize them by CPU_TIME, in descending
order. The outer query then limits the result set to the top 20 rows, using the ROWNUM pseudocolumn. You can modify
the previous query to order the results by the statistic of your choice or to display only the queries that are currently
executing. For example, the next SQL statement monitors currently executing queries, ordered by the number of disk
reads:

select * from (
select a.sid session_id, a.sql_id, a.status
,a.cpu_time/1000000 cpu_sec
,a.buffer_gets, a.disk_reads
,substr(b.sql_text,1,35) sql_text

ChApter 22 ■ DAtABAse trouBleshooting

652

from v$sql_monitor a
 ,v$sql b
where a.sql_id = b.sql_id
and a.status='EXECUTING'
order by a.disk_reads desc)
where rownum <=20;

The statistics in V$SQL_MONITOR are updated every second, so you can view resource consumption as it changes.
These statistics are gathered by default if an SQL statement runs in parallel or consumes more than 5 seconds of CPU
or I/O time.

The V$SQL_MONITOR view includes a subset of statistics contained in the VSQL, VSQLAREA, and V$SQLSTATS
views. The V$SQL_MONITOR view displays real-time statistics for each execution of a resource-intensive SQL statement,
whereas VSQL, VSQLAREA, and V$SQLSTATS contain cumulative sets of statistics resulting from several executions of
an SQL statement.

Once the SQL statement execution ends, the runtime statistics are not immediately flushed from V$SQL_MONITOR.
Depending on activity in your database, the statistics can be available for some time. If you have a very active
database, however, the statistics can potentially be flushed soon after the query finishes.

Tip ■ You can uniquely identify the execution of an sQl statement in V$SQL_MONITOR from a combination of the
 following columns: SQL_ID, SQL_EXEC_START, SQL_EXEC_ID.

You can also query views such as V$SQLSTATS to determine which SQL statements are consuming an inordinate
amount of resources. For example, use the following query to identify the ten most resource-intensive queries, based
on CPU time:

select * from(
select s.sid, s.username, s.sql_id
,sa.elapsed_time/1000000, sa.cpu_time/1000000
,sa.buffer_gets, sa.sql_text
from v$sqlarea sa
 ,v$session s
where s.sql_hash_value = sa.hash_value
and s.sql_address = sa.address
and s.username is not null
order by sa.cpu_time desc)
where rownum <= 10;

In the prior query an inline view is used to first retrieve all records and sort the output by CPU_TIME, in descending
order. The outer query then limits the result set to the top ten rows, using the ROWNUM pseudocolumn. The query can
be easily modified to sort by a column other than CPU_TIME. For instance, if you want to report resource usage by
BUFFER_GETS, simply substitute BUFFER_GETS for CPU_TIME in the ORDER BY clause. The CPU_TIME column is calculated
in microseconds; to convert it to seconds, it is divided by 1,000,000.

Tip ■ Keep in mind that V$SQLAREA contains statistics that are cumulative for the duration for a given session. so, if a
session runs an identical query several times, the statistics for that connection will be the total for all the runs of a query.
in contrast, V$SQL_MONITOR shows statistics that have accumulated for the current run of a given sQl statement.
therefore, each time a query runs, new statistics are reported for that query in V$SQL_MONITOR.

ChApter 22 ■ DAtABAse trouBleshooting

653

Running Oracle Diagnostic Utilities
Oracle provides several utilities for diagnosing database performance issues:

Automatic workload repository (AWR)•	

Automatic database diagnostic monitor (ADDM)•	

Active session history (ASH)•	

Statspack•	

AWR, ADDM, and ASH were introduced many years ago, in Oracle Database 10g. These tools provide advanced
reporting capabilities that allow you to troubleshoot and resolve performance issues. These new utilities require an
extra license from Oracle. The older Statspack utility is free and requires no license.

All these tools rely heavily on the underlying V$ dynamic performance views. Oracle maintains a vast collection
of these views, which track and accumulate metrics of database performance. For example, if you run the following
query, you’ll notice that for Oracle Database 12c, there are approximately 700 V$ views:

SQL> select count(*) from dictionary where table_name like 'V$%';

 COUNT(*)

 714

The Oracle performance utilities rely on periodic snapshots gathered from these internal performance views.
Two of the most useful views, with regard to performance statistics, are the V$SYSSTAT and V$SESSTAT views. The
V$SYSSTAT view offers more than 400 types of database statistics. This V$SYSSTAT view contains information about
the entire database, whereas the V$SESSTAT view contains statistics on individual sessions. A few of the values in the
V$SYSSTAT and V$SESSTAT views represent the current usage of the resource. These values are

opened cursors current•	

logins current•	

session cursor cache current•	

work area memory allocated•	

The rest of the values are cumulative. The values in V$SYSSTAT are cumulative for the entire database, from the
time the instance was started. The values in V$SESSTAT are cumulative per session, from the time the session was
started. Some of the more important performance-related cumulative values are

CPU used•	

consistent gets•	

physical reads•	

physical writes•	

For the cumulative statistics the way to measure periodic usage is to note the value of a statistic at a starting
point, then note the value again at a later point in time and capture the delta. This is the approach used by the Oracle
performance utilities, such as AWR and Statspack. Periodically, Oracle will take snapshots of the dynamic wait
interface views and store them in a repository.

The following sections detail how to access AWR, ADDM, ASH, and Statspack via the SQL command line.

ChApter 22 ■ DAtABAse trouBleshooting

654

Tip ■ You can access AWr, ADDM, and Ash from the enterprise Manager. if you have access to the enterprise Manager,
you will find the interface fairly intuitive and visually helpful.

Using AWR
An AWR report is good for viewing the entire system’s performance and identifying the top resource-consuming SQL
queries. Run the following script to generate an AWR report:

SQL> @?/rdbms/admin/awrrpt

From the AWR output, you can identify top resource-consuming statements by examining the “SQL Ordered by
Elapsed Time” or “SQL Ordered by CPU Time” section of the report. Here is some sample output:

SQL ordered by CPU Time DB/Inst: O12C/o12c Snaps: 1668-1669
-> Resources reported for PL/SQL code includes the resources used by all SQL
 statements called by the code.
-> %Total - CPU Time as a percentage of Total DB CPU
-> %CPU - CPU Time as a percentage of Elapsed Time
-> %IO - User I/O Time as a percentage of Elapsed Time
-> Captured SQL account for 3.0E+03% of Total CPU Time (s): 0
-> Captured PL/SQL account for 550.9% of Total CPU Time (s): 0

 CPU CPU per Elapsed
 Time (s) Executions Exec (s) %Total Time (s) %CPU %IO SQL Id
---------- ------------ ---------- ------ ---------- ------ ------ -------------
 3.2 1 3.24 930.5 10.5 30.9 74.9 93jktd5vtxb98

As of Oracle Database 10g, Oracle will automatically take a snapshot of your database once an hour and populate
the underlying AWR tables that store the statistics. By default, 7 days of statistics are retained.

You can also generate an AWR report for a specific SQL statement by running the awrsqrpt.sql report. When you
run the following script, you will be prompted for the SQL_ID of the query of interest:

SQL> @?/rdbms/admin/awrsqrpt.sql

Using ADDM
The ADDM report provides useful information on which SQL statements are candidates for tuning. Use the following
SQL script to generate an ADDM report:

SQL> @?/rdbms/admin/addmrpt

ChApter 22 ■ DAtABAse trouBleshooting

655

Look for the section of the report labeled “SQL Statements Consuming Significant Database Time.” Here is some
sample output:

FINDING 2: 29% impact (65043 seconds)

SQL statements consuming significant database time were found.

 RECOMMENDATION 1: SQL Tuning, 6.7% benefit (14843 seconds)
 ACTION: Investigate the SQL statement with SQL_ID "46cc3t7ym5sx0" for

The ADDM report analyzes data in the AWR tables to identify potential bottlenecks and high resource-consuming
SQL queries.

Using ASH
The ASH report allows you to focus on short-lived SQL statements that have been recently run and that may have only
executed for a briefly. Run the following script to generate an ASH report:

SQL> @?/rdbms/admin/ashrpt

Search the output for the section labeled “Top SQL.” Here is some sample output:

Top SQL with Top Events DB/Inst: O12C/o12c (Jan 30 14:49 to 15:14)

 Sampled #
 SQL ID Planhash of Executions % Activity
----------------------- -------------------- -------------------- --------------
Event % Event Top Row Source % RwSrc
------------------------------ ------- --------------------------------- -------
 dx5auh1xb98k5 1677482778 1 46.57
CPU + Wait for CPU 46.57 HASH JOIN 23.53

The previous output indicates that the query is waiting for CPU resources. In this scenario the problem may be
that another query is consuming the CPU resources.

When is the ASH report more useful than the AWR or ADDM report? The AWR and ADDM output shows
top-consuming SQL in terms of total database time. If the SQL performance problem is transient and short-lived,
it may not appear on the AWR and ADDM reports. In these situations an ASH report is more useful.

Using Statspack
If you don’t have a license to use the AWR, ADDM, and ASH reports, the free Statspack utility can help you identify
poorly performing SQL statements. Run the following script as SYS to install Statspack:

SQL> @?/rdbms/admin/spcreate.sql

The prior script creates a PERFSTAT user that owns the Statspack repository. Once crated, then connect as the
PERFSTAT user, and run this script to enable the automatic gathering of Statspack statistics:

SQL> @ ?/rdbms/admin/spauto.sql

ChApter 22 ■ DAtABAse trouBleshooting

656

After some snapshots have been gathered, you can run the following script as the PERFSTAT user to create a
Statspack report:

SQL> @?/rdbms/admin/spreport.sql

Once the report is created, search for the section labeled “SQL Ordered by CPU.” Here is some sample output:

SQL ordered by CPU DB/Inst: O12C/o12c Snaps: 30-31
-> Total DB CPU (s): 1,432
-> Captured SQL accounts for 100.5% of Total DB CPU
-> SQL reported below exceeded 1.0% of Total DB CPU

 CPU CPU per Elapsd Old
 Time (s) Executions Exec (s) %Total Time (s) Buffer Gets Hash Value
---------- ------------ ---------- ------ ---------- --------------- ----------
 1430.41 1 1430.41 99.9 1432.49 482 690392559
Module: SQL*Plus
select a.table_name from my_tables

Tip ■ see the ORACLE_HOME/rdbms/admin/spdoc.txt file for statspack documentation.

Detecting and Resolving Locking Issues
Sometimes, a developer or application user will report that a process that normally takes seconds to run is now taking
several minutes and doesn’t appear to be doing anything. In these situations the problem is usually one of the following:

Space-related issue (e.g., the archive redo destination is full and has suspended all •	
transactions).

A process has a lock on a table row and is not committing or rolling back, thus preventing •	
another session from modifying the same row.

In this scenario, I first check the alert.log to see if there are any obvious issues that have occurred recently
(such as a tablespace’s not being able to allocate another extent). If there is nothing obvious in the alert.log file, I run
an SQL query to look for locking issues. The query listed here is a more sophisticated version of the lock-detecting script
introduced in Chapter 3. This query shows information such as the locking session SQL statement and the waiting
SQL statement:

set lines 80
col blkg_user form a10
col blkg_machine form a10
col blkg_sid form 99999999
col wait_user form a10
col wait_machine form a10
col wait_sid form 9999999
col obj_own form a10
col obj_name form a10
col blkg_sql form a50
col wait_sql form a50
--

ChApter 22 ■ DAtABAse trouBleshooting

657

select
 s1.username blkg_user, s1.machine blkg_machine
,s1.sid blkg_sid, s1.serial# blkg_serialnum
,s1.process blkg_OS_PID
,substr(b1.sql_text,1,50) blkg_sql
,chr(10)
,s2.username wait_user, s2.machine wait_machine
,s2.sid wait_sid, s2.serial# wait_serialnum
,s2.process wait_OS_PID
,substr(w1.sql_text,1,50) wait_sql
,lo.object_id blkd_obj_id
,do.owner obj_own, do.object_name obj_name
from v$lock l1
 ,v$session s1
 ,v$lock l2
 ,v$session s2
 ,v$locked_object lo
 ,v$sqlarea b1
 ,v$sqlarea w1
 ,dba_objects do
where s1.sid = l1.sid
and s2.sid = l2.sid
and l1.id1 = l2.id1
and s1.sid = lo.session_id
and lo.object_id = do.object_id
and l1.block = 1
and s1.prev_sql_addr = b1.address
and s2.sql_address = w1.address
and l2.request > 0;

The output from this query does not fit well on one page. When running this query, you will have to format it so
that it on your screen. Here is some sample output, indicating that the SALES table is locked and that another process
is waiting for the lock to be released:

BLKG_USER BLKG_MACHI BLKG_SID BLKG_SERIALNUM BLKG_OS_PID
---------- ---------- --------- -------------- ------------------------
BLKG_SQL C WAIT_USER WAIT_MACHI
-- - ---------- ----------
WAIT_SID WAIT_SERIALNUM WAIT_OS_PID
-------- -------------- ------------------------
WAIT_SQL BLKD_OBJ_ID OBJ_OWN
-- ----------- ----------
OBJ_NAME

MV_MAINT speed2 32 487 26216
update sales set sales_amt=100 where sales_id=1 MV_MAINT speed2
 116 319 25851

This situation is typical when applications don’t explicitly issue a COMMIT or ROLLBACK at appropriate times in the
code. This leaves a lock on a row and prevents a transaction from continuing until the lock is released. In this scenario,
you can try to locate the user that is blocking the transaction and see if the user needs to click a button that says

ChApter 22 ■ DAtABAse trouBleshooting

658

something like “Commit your changes.” If that’s not possible, you can manually kill one of the sessions. Keep in mind
that terminating a session may have unforeseen effects (such as rolling back data that a user thought was committed).

If you decide to kill one of the user sessions, you need to identify the SID and serial number of the session you
want to terminate. Once identified, use the ALTER SYSTEM KILL SESSION statement to terminate the session:

SQL> alter system kill session '32,487';

Again, be careful when killing sessions. Ensure that you know the impact of killing a session and thereby rolling
back any active transactions currently open in that session.

The other way to kill a session is to use an OS command such as kill. In the prior output, you can identify the OS
processes from the BLKG_OS_PID and WAIT_OS_PID columns. Before you terminate a process from the OS, ensure that
the process isn’t critical. For this example, to terminate the blocking OS process, first check the blocking PID:

$ ps -ef | grep 26216

Here is some sample output:

oracle 26222 26216 0 16:49 ? 00:00:00 oracleo12c

Next, use the kill command, as shown:

$ kill -9 26216

The kill command will unceremoniously terminate a process. Any open transactions associated with the
process will be rolled back by the Oracle process monitor.

Resolving Open-Cursor Issues
The OPEN_CURSORS initialization parameter determines the maximum number of cursors a session can have open.
This setting is per session. The default value of 50 is usually too low for any application. When an application exceeds
the number of open cursors allowed, the following error is thrown:

ORA-01000: maximum open cursors exceeded

Usually, the prior error is encountered when

•	 OPEN_CURSORS initialization parameter is set too low

developers write code that doesn’t close cursors properly•	

To investigate this issue, first determine the current setting of the parameter:

SQL> show parameter open_cursors;

If the value is less than 300, consider setting it higher. I typically set this value to 1,000 for busy OLTP systems. You
can dynamically modify the value while your database is open, as shown:

SQL> alter system set open_cursors=1000;

If you’re using an spfile, consider making the change both in memory and in the spfile, at the same time:

SQL> alter system set open_cursors=1000 scope=both;

ChApter 22 ■ DAtABAse trouBleshooting

659

After setting OPEN_CURSORS to a higher value, if the application continues to exceed the maximum value, you

probably have an issue with code that is not properly closing cursors.
If you work in an environment that has thousands of connections to the database, you may want to view only the

top cursor-consuming sessions. The following query uses an inline view and the pseudocolumn ROWNUM to display the
top 20 values:

select * from (
select a.value, c.username, c.machine, c.sid, c.serial#
from v$sesstat a
 ,v$statname b
 ,v$session c
where a.statistic# = b.statistic#
and c.sid = a.sid
and b.name = 'opened cursors current'
and a.value != 0
and c.username IS NOT NULL
order by 1 desc,2)
where rownum < 21;

If a single session has more than 1,000 open cursors, then the code is probably written such that the cursors
aren’t closing. When the limit is reached, somebody should inspect the application code to determine if a cursor is not
being closed.

Tip ■ i recommend that you query V$SESSION instead of V$OPEN_CURSOR to determine the number of open cursors.
V$SESSION provides a more accurate count of the cursors currently open.

Troubleshooting Undo Tablespace Issues
Problems with the undo tablespace are usually of the following nature:

•	 ORA-01555: snapshot too old

•	 ORA-30036: unable to extend segment by ... in undo tablespace 'UNDOTBS1'

The prior errors can be caused by many different issues, such as incorrect sizing of the undo tablespace or poorly
written SQL or PL/SQL code.

Determining if Undo Is Correctly Sized
Suppose you have a long-running SQL statement that is throwing an ORA-01555: snapshot too old error, and
you want to determine if adding space to the undo tablespace might help alleviate the issue. Run this next query to
identify potential issues with your undo tablespace. The query checks for issues that have occurred within the last day:

select to_char(begin_time,'MM-DD-YYYY HH24:MI') begin_time
,ssolderrcnt ORA_01555_cnt, nospaceerrcnt no_space_cnt
,txncount max_num_txns, maxquerylen max_query_len
,expiredblks blck_in_expired

ChApter 22 ■ DAtABAse trouBleshooting

660

from v$undostat
where begin_time > sysdate - 1
order by begin_time;

Here is some sample output. Part of the output has been omitted to fit this on the page:

BEGIN_TIME ORA_01555_CNT NO_SPACE_CNT MAX_NUM_TXNS BLCK_IN_EXPIRED
---------------- ------------- ------------ ------------ ---------------
01-31-2013 08:21 0 0 51 0
01-31-2013 08:31 0 0 0 0
01-31-2013 12:11 0 0 629 256

The ORA_01555_CNT column indicates the number of times your database has encountered the ORA-01555:
snapshot too old error. If this column reports a nonzero value, you need to do one or more of the following tasks:

Ensure that code does not contain •	 COMMIT statements within cursor loops.

Tune the SQL statement throwing the error so that it runs faster.•	

Ensure that you have good statistics (so that your SQL runs efficiently).•	

Increase the •	 UNDO_RETENTION initialization parameter.

The NO_SPACE_CNT column displays the number of times space was requested in the undo tablespace. In this
example there were no such requests. If the NO_SPACE_CNT is reporting a nonzero value, however, you may need to add
more space to your undo tablespace.

A maximum of 4 days’ worth of information is stored in the V$UNDOSTAT view. The statistics are gathered every
10 minutes, for a maximum of 576 rows in the table. If you’ve stopped and started your database within the last 4 days,
this view will only contain information from the time you last started your database.

Another way to get advice on the undo tablespace sizing is to use the Oracle Undo Advisor, which you can invoke
by querying the PL/SQL DBMS_UNDO_ADV package from a SELECT statement. The following query displays the current
undo size and the recommended size for an undo retention setting of 900 seconds:

select
 sum(bytes)/1024/1024 cur_mb_size
 ,dbms_undo_adv.required_undo_size(900) req_mb_size
from dba_data_files
where tablespace_name =
 (select
 value
 from v$parameter
 where name = 'undo tablespace');

Here is some sample output:

CUR_MB_SIZE REQ_MB_SIZE
----------- -----------
 36864 20897

ChApter 22 ■ DAtABAse trouBleshooting

661

The output shows that the undo tablespace currently has 36.8GB allocated to it. In the prior query, you used
900 seconds as the amount of time to retain information in the undo tablespace. To retain undo information for
900 seconds, the Oracle Undo Advisor estimates that the undo tablespace should be 20.8GB. In this example the undo
tablespace is sized adequately. If it were not sized adequately, you would have to either add space to an existing data
file or add a data file to the undo tablespace.

Here is a slightly more complex example of using the Oracle Undo Advisor to find the required size of the undo
tablespace. This example uses PL/SQL to display information about potential issues and recommendations for fixing
the problem:

SET SERVEROUT ON SIZE 1000000
DECLARE
 pro VARCHAR2(200);
 rec VARCHAR2(200);
 rtn VARCHAR2(200);
 ret NUMBER;
 utb NUMBER;
 retval NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE(DBMS_UNDO_ADV.UNDO_ADVISOR(1));
 DBMS_OUTPUT.PUT_LINE('Required Undo Size (megabytes): ' || DBMS_UNDO_ADV.REQUIRED_UNDO_SIZE
(900));
 retval := DBMS_UNDO_ADV.UNDO_HEALTH(pro, rec, rtn, ret, utb);
 DBMS_OUTPUT.PUT_LINE('Problem: ' || pro);
 DBMS_OUTPUT.PUT_LINE('Advice: ' || rec);
 DBMS_OUTPUT.PUT_LINE('Rational: ' || rtn);
 DBMS_OUTPUT.PUT_LINE('Retention: ' || TO_CHAR(ret));
 DBMS_OUTPUT.PUT_LINE('UTBSize: ' || TO_CHAR(utb));
END;
/

If no issues are found, a 0 will be returned for the retention size. Here is some sample output:

Finding 1:The undo tablespace is OK.
Required Undo Size (megabytes): 64
Problem: No problem found
Advice:
Rational:
Retention: 0
UTBSize: 0

Viewing SQL That Is Consuming Undo Space
Sometimes, a piece of code does not commit properly, which results in large amounts of space being allocated in
the undo tablespace and never being released. Sooner or later, you’ll get the ORA-30036 error, indicating that the
tablespace can’t extend. Usually, the first time a space-related error is thrown, I simply increase the size of one of the
data files associated with the undo tablespace.

However, if an SQL statement continues to run and fills up the newly added space, then the issue is probably with
a poorly written application. For example, a developer may not have appropriate commit statements in the code.

ChApter 22 ■ DAtABAse trouBleshooting

662

In these situations it’s helpful to identify which users are consuming space in the undo tablespace. Run this query
to report on basic information regarding space allocated on a per-user basis:

select s.sid, s.serial#, s.osuser, s.logon_time
,s.status, s.machine
,t.used_ublk, t.used_ublk*16384/1024/1024 undo_usage_mb
from v$session s
 ,v$transaction t
where t.addr = s.taddr;

If you want to view the SQL statement associated with a user consuming undo space, then join to V$SQL,
as shown:

select s.sid, s.serial#, s.osuser, s.logon_time, s.status
,s.machine, t.used_ublk
,t.used_ublk*16384/1024/1024 undo_usage_mb
,q.sql_text
from v$session s
 ,v$transaction t
 ,v$sql q
where t.addr = s.taddr
and s.sql_id = q.sql_id;

If you need more information, such as the name and status of the rollback segment, run a query that joins to the
V$ROLLNAME and V$ROLLSTAT views, like so:

select s.sid, s.serial#, s.username, s.program
,r.name undo_name, rs.status
,rs.rssize/1024/1024 redo_size_mb
,rs.extents
from v$session s
 ,v$transaction t
 ,v$rollname r
 ,v$rollstat rs
where s.taddr = t.addr
and t.xidusn = r.usn
and r.usn = rs.usn;

The prior queries allow you to pinpoint which users are responsible for space allocated within the undo
tablespace. This can be especially useful when there is code that is not committing at appropriate times and that is
excessively consuming undo space.

Handling Temporary Tablespace Issues
Issues with temporary tablespaces are somewhat easy to spot. For example, when the temporary tablespace runs out
of space, the following error will be thrown:

ORA-01652: unable to extend temp segment by 128 in tablespace TEMP

ChApter 22 ■ DAtABAse trouBleshooting

663

When you see this error, you need to determine if there’s not enough space in the temporary tablespace or if a
rare runaway SQL query has temporarily consumed an inordinate amount of temporary space. Both of these issues
are discussed in the following sections.

Determining if Temporary Tablespace Is Sized Correctly
The temporary tablespace is used as a sorting area on disk when a process has consumed the available memory and
needs more space. Operations that require a sorting area include

index creation•	

SQL sorting operations•	

temporary tables and indexes•	

temporary LOBs•	

temporary B-trees•	

There is no exact formula for determining if your temporary tablespace is sized correctly. It depends on the
number and types of queries, index build operations, and parallel operations and on size of your memory sort space
(PGA). You’ll have to monitor your temporary tablespace while there is a load on your database to establish its usage
patterns. If you are using Oracle Database 11g or higher, run the following query to show both the allocated and free
space within the temporary tablespace:

select tablespace_name
,tablespace_size/1024/1024 mb_size
,allocated_space/1024/1024 mb_alloc
,free_space/1024/1024 mb_free
from dba_temp_free_space;

Here is some sample output:

TABLESPACE_NAME MB_SIZE MB_ALLOC MB_FREE
--------------- ---------- ---------- ----------
TEMP 200 200 170

If the FREE_SPACE (MB_FREE) value drops to near 0, there are SQL operations in your database consuming most
of the available space. The FREE_SPACE (MB_FREE) column is the total free space available, including space currently
allocated and available for reuse.

If you are using an Oracle Database 10g database, run this query to view the space being used in your temporary
tablespace:

select tablespace_name
,sum(bytes_used)/1024/1024 mb_used
from v$temp_extent_pool
group by tablespace_name;

Here is some sample output:

TABLESPACE_NAME MB_USED
--------------- ----------
TEMP 120

ChApter 22 ■ DAtABAse trouBleshooting

664

If the amount used is getting near your current allocated amount, you may need to allocate more space to the
temporary tablespace data files. Run the following query to view the temporary data file names and allocated sizes:

SQL> select name, bytes/1024/1024 mb_alloc from v$tempfile;

Here is some typical output:

NAME MB_ALLOC
-- ----------
/u01/dbfile/o12c/temp01.dbf 400
/u01/dbfile/o12c/temp02.dbf 100
/u01/dbfile/o12c/temp03.dbf 100

When first creating a database, if I have no idea as to “correct” size of the temporary tablespace, I’ll usually size
this tablespace at approximately 2GB. If I’m building a data warehouse–type database, I might size the temporary
tablespace at approximately 20GB. You’ll have to monitor your temporary tablespace with the appropriate SQL and
adjust the size as necessary.

Viewing SQL That Is Consuming Temporary Space
When Oracle throws the ORA-01652: unable to extend temp error, this may be an indication that your temporary
tablespace is too small. However, Oracle may throw that error if it runs out of space because of a one-time event, such
as a large index build. You’ll have to decide whether a one-time index build or a query that consumes large amounts
of sort space in the temporary tablespace warrants adding space.

To view the space a session is using in the temporary tablespace, run this query:

SELECT s.sid, s.serial#, s.username
,p.spid, s.module, p.program
,SUM(su.blocks) * tbsp.block_size/1024/1024 mb_used
,su.tablespace
FROM v$sort_usage su
 ,v$session s
 ,dba_tablespaces tbsp
 ,v$process p
WHERE su.session_addr = s.saddr
AND su.tablespace = tbsp.tablespace_name
AND s.paddr = p.addr
GROUP BY
 s.sid, s.serial#, s.username, s.osuser, p.spid, s.module,
 p.program, tbsp.block_size, su.tablespace
ORDER BY s.sid;

If you determine that you need to add space, you can either resize an existing data file or add a new one. To resize
a temporary tablespace data file, use the ALTER DATABASE TEMPFILE...RESIZE statement. The following command
resizes a temporary data file to 12GB:

SQL> alter database tempfile '/u01/dbfile/o12c/temp02.dbf' resize 12g;

You can add a data file to a temporary tablespace, as follows:

SQL> alter tablespace temp add tempfile '/u02/dbfile/o12c/temp04.dbf' size 2g;

ChApter 22 ■ DAtABAse trouBleshooting

665

Summary
A senior DBA must be adept at efficiently determining the source of database unavailability and performance
problems. The ability to identify and resolve problems defines a professional-level DBA. Anyone can google a topic
(there’s nothing worse than being on a trouble call with a manager who is googling and recommending random
solutions). Finding the appropriate solution and confidently applying it in a production database environment is how
you add tremendous value.

Diagnosing issues sometimes requires some system and network administrator skills. Additionally, an effective
DBA must know how to leverage the Oracle data dictionary to identify problems. As part of your strategy, you should
also proactively monitor for the common sources of database unavailability. Ideally, you’ll be aware of the problem
before anybody else and will proactively solve the issue.

No book can cover every troubleshooting activity. This chapter includes some of the most common techniques
for identifying problems and dealing with them. Often, basic OS utilities will help you ascertain the source of a hung
database. In almost every scenario the alert.log and corresponding trace files should be inspected. Finding the root
cause of a problem is often the hardest task. Use a consistent and methodical approach, and you’ll be much more
successful in diagnosing and resolving issues.

I have tried to convey techniques and methods that will help you survive even the most chaotic database
environments. To summarize these thoughts, a DBA’s manifesto, of sorts:

Automate and monitor through scripts and schedulers. Be the first to know when something •	
is broken.

Strive for repeatability and efficiency in processes and scripts. Be consistent.•	

Keep it simple. If a module is more than a page long, it’s too long. Don’t implement a script •	
or feature that another DBA won’t be able to understand or maintain. Sometimes, the simple
solution is the correct solution.

Remain calm regardless of the disaster. Be respectful.•	

Don’t be afraid to seek or take advice. Welcome feedback and criticism. Listen to others. •	
Entertain the thought that you might be wrong.

Take advantage of graphical tools, but always know how to implement a feature manually.•	

Expect failure, predict failure, prepare for failure. You don’t know what will go wrong, but you •	
do know something will go wrong. Be happy that you prepared for failure. The best lessons are
painful.

Test and document your operating procedures. This will help you stay calm(er) and focused •	
when in stressful database-down situations.

Don’t write code to implement a feature that the database vendor has already provided •	
a solution for (replication, disaster recovery, backup and recovery, and so on).

Become proficient with SQL, procedural SQL, and OS commands. These skills separate •	
the weak from the strong. The best DBAs posses both SA and developer expertise.

Continually investigate new features and technology. Learning is a never ending process. •	
Question everything, reevaluate, and look for a better way. Verify your solutions with
repeatable, peer-reviewed tests. Document and freely share your knowledge.

Do what it takes to get the job done. You compete with the world now. Work harder and •	
smarter.

The job of a DBA can be quite rewarding. It can also be very painful and stressful. Hopefully, the techniques
documented in this book will get you from being mostly stressed to an occasionally happy state.

667

Chapter 23

Pluggable Databases

New with Oracle Database 12c is Oracle Multitenant. This feature allows you to create and maintain many pluggable
databases within an overarching multitenant container database. Following is a concise introduction to pluggable
terminology.

A multitenant container database (CDB) is defined as a database capable of housing one or more pluggable
databases. A container is defined as a collection of data files and metadata that exist within a CDB. A pluggable
database is a special type of container that can be easily provisioned by cloning another database. If need be,
a pluggable database can also be transferred from one CDB to another.

Every CDB contains a master set of data files and metadata known as the root container. Each CDB also contains
a seed container, which is used as a template for creating other pluggable databases. Each CDB consists of one master
root container, one seed container, and zero, or one or more, pluggable databases.

A pluggable enabled CDB must be created with the ENABLE PLUGGABLE DATABASE clause. A database that was not
created in this manner (a non-CDB) cannot contain pluggable databases. A non-CDB was the only type of database
available prior to Oracle Database 12c. Each CDB consists of the following elements:

One root container, named •	 CDB$ROOT. The root contains the master set of data dictionary
views, which have metadata regarding the root as well as every child pluggable database
within the CDB.

One static seed container, named •	 PDB$SEED. This container exists solely as a template for
providing data files and metadata used to create new pluggable databases within the CDB.

Zero, or one or more, pluggable databases (with a maximum of 252). Each pluggable database •	
is self-contained and functions like an isolated non-CDB database. Additionally, each
pluggable database contains its own data files and application objects (users, tables, indexes
and so on). When connected to a pluggable database, there is no visibility to the root container
or any other pluggable databases present within the CDB.

New with Oracle Database 12c there is a CDB level of data dictionary views that overarch the DBA/ALL/USER-level
views. The CDB-level views report across all containers (root, seed, and all pluggable databases) in a CDB. For
instance, if you wanted to view all users within a CDB database, you would do so from the root container, by querying
CDB_USERS. If you’re not using a CDB, then DBA_USERS is still an accurate view for reporting all user information. Many
of the data dictionary views now contain a new column, named CON_ID, that is a unique identifier for each container
within the CDB. The root container has a CON_ID of 1. The seed has a CON_ID of 2. Each new pluggable database
created within the CDB is assigned a unique sequential container ID.

Table 23-1 defines terms used in a pluggable database environment. Refer back to this table as you read through
this chapter.

Chapter 23 ■ pluggable Databases

668

The goal of this chapter is to make you proficient in administering a container/pluggable database environment.
By the end of this chapter, you should understand how to create a pluggable environment, provision pluggable
databases, connect and navigate within a pluggable database, and transfer pluggable databases from one CDB to
another. The foundation for this starts with understanding the pluggable architecture.

Note ■ Oracle Multitenant is an extra cost option available with the enterprise edition. however, it is available for use
with one pluggable database for all editions. Check the Oracle licensing guide for details.

Understanding Pluggable Architecture
Pluggable databases have some important architectural differences with a non-CDB database environment.
Figure 23-1 displays a container database, named CDB, that contains a root container, a seed database, and two
pluggable databases, named SALESPDB and HRPDB.

Table 23-1. Summary of Pluggable Database Terms

Term Meaning

Container database (CDB),
multitenant database

A database capable of housing one or more pluggable databases

Pluggable database, (PDB) A set of data files and metadata that can be seamlessly transferred from
one CDB to another

Root container A master set of data files and metadata containing information regarding
all containers within a CDB. The root container is named CDB$ROOT.

Container A collection of data files and metadata. Can be root, seed, or a pluggable
database.

Seed pluggable database A template of data files and metadata used to create new pluggable
databases. The seed pluggable database is named PDB$SEED.

Plugging Associating the metadata and data files of a pluggable database
with a CDB

Unplugging Disassociating the metadata and data files of a pluggable database
from a CDB

Cloning Creating a pluggable database from a copy of another database (seed,
PDB, or non-CDB)

CON_ID A unique identifier for each container within a CDB. The CDB-level
views contain a CON_ID column that identifies the container with which
the information being viewed is associated.

CDB data dictionary views Views that contain metadata regarding all pluggable databases within
a CDB. These views only display meaningful information when queried
via a privileged connection from the root container. The pluggable
databases must be open for use.

non-CDB database An Oracle database created without the pluggable database feature
enabled (the only type of database that was available prior to 12c)

Chapter 23 ■ pluggable Databases

669

Take a minute to inspect Figure 23-1. If you’re a curious DBA, most likely dozens of thoughts immediately come
to mind. The following list highlights some key points to understand about the new architecture in Figure 23-1:

A connection to the •	 CDB database is synonymous with connecting to the CDB$ROOT root
container. The main purpose of the root container is to house metadata for any associated PDBs.

You can access the root container via the •	 SYS user, just as you would a non-CDB database.
In other words, when logged in to the database server, you can use OS authentication
to connect directly to the root container without specifying a username and password
(sqlplus / as sysdba). You do not need a listener running to connect to the root container.

The seed pluggable database container (•	 PDB$SEED) only exists as a template for creating new
pluggable databases. You can connect to the seed, but it is read-only, meaning you can’t issue
transactions against it.

Besides the two default containers (root and seed), for this particular CDB, two additional •	
pluggable databases have been manually created, named SALESPDB and HRPDB (more on
creating pluggable databases later in the chapter).

Pluggable databases exist within individual namespaces. Pluggable databases must be unique •	
within the CDB, but objects within a pluggable database follow the namespace rules of a
non-CDB database. For example, tablespace names and user names have to be unique within
the individual pluggable databases, but not within the CDB.

Each pluggable database has its own •	 SYSTEM and SYSAUX tablespaces and, optionally, a TEMP
tablespace.

Figure 23-1. Pluggable database architecture

Chapter 23 ■ pluggable Databases

670

If a pluggable database does not have its own •	 TEMP file, it can consume resources in the root
container TEMP file.

The •	 SYSTEM tablespace of each pluggable database contains information regarding the
pluggable database metadata, such as its users and objects; these metadata are accessible via
the DBA/ALL/USER-level views from the pluggable database and are visible via CDB-level views
from the root container.

The character set defined for the CDB is also used for all associated PDBs.•	

You can set the time zones for the CDB and all associated PDBs or you can set the time zone •	
individually per PDB.

Figure •	 23-1 shows a non-RAC configuration, so there is only one memory allocation and
one set of background processes. In other words, there is one instance. All pluggable
databases within the CDB use the same instance and background processes. If this were a
RAC configuration, then any connections to the RAC instance would share that instance and
background processes.

The CDB instance is started and stopped while connected as •	 SYS to the root container.
You can’t start/stop the CDB instance while connected to a pluggable database.

There is one initialization parameter file that is read by the instance when starting. A privileged •	
user connected to the root container can modify all initialization parameters. In contrast,
a privileged user connected to a pluggable database can only modify parameters applicable
to the currently connected pluggable database. When connected to a pluggable database
and modifying initialization parameters, these modifications only apply to the currently
connected pluggable database and persist for the pluggable database across database restarts.
The ISPDB_MODIFIABLE column in V$PARAMETER shows which parameters are modifiable while
connected as a privileged user to a pluggable database.

Application users can only access the pluggable databases via a network connection. •	
Therefore, a listener must be running and listening for service names corresponding to
associated pluggable databases. If a listener is not running, then there is no way for an
application user to connect to a pluggable database.

The individual pluggable databases aren’t stopped or started per se (not in the terms of a •	
database instance). When you start/stop a pluggable database, you are not allocating memory
or starting/stopping background processes. Rather, pluggable databases are either made
available or not (open or closed).

There is one set of control files for the CDB. The control files are managed while connected to •	
the root container as a privileged user.

There is one •	 UNDO tablespace for the CDB. All pluggable databases within the CDB use the
same UNDO tablespace (if RAC, then one active undo tablespace per instance).

There is one thread of redo (per instance) that is managed while connected to the root •	
container as a user with appropriate privileges. Only privileged connections to root can enable
archiving or switching online logs. Connections to users with SYSDBA privileges to pluggable
databases cannot alter online redo or archiving settings.

There is one alert log and set of trace files for a CDB. Any applicable database messages for •	
associated pluggable databases are written to the common CDB alert log.

Chapter 23 ■ pluggable Databases

671

Each container is assigned a unique container ID. The root container is assigned a container •	
ID of 1; the seed database is assigned a container ID of 2. Each subsequently created pluggable
database is assigned a unique sequential container ID.

There is one FRA for the CDB. Separate directories are not created for pluggable databases •	
within the FRA. RMAN backup files, control files, and online redo logs are placed in a directory
associated with the CDB and are not segregated by pluggable database.

The Flashback Database feature is turned on and off via a privileged connection to the root •	
container. You cannot enable flashback at the pluggable database level.

AWR, ADDM, and ASH reports are issued across all PDBs in the CDB. Resource consumption •	
is identified per pluggable database.

When resolving SQL performance issues, queries are associated with a particular pluggable •	
database via the CON_ID column in views such as V$SQL and V$SQLAREA.

The prior list may seem long, but once you digest the nuances of a pluggable database environment, you’ll be
able to effectively implement and manage this technology. One of the main points here is that you can have dozens or
more securely isolated pluggable databases housed within one CDB with only one instance (memory and background
processes), one thread of redo, and one set of control files to manage.

Paradigm Shift
It’s fairly common for a specific application to request that its database objects (users, tables, indexes, and so on) be
placed in a database isolated from other applications. Reasons cited for doing this are often security issues or performance
concerns. Before the advent of pluggable databases, think about how you solved the requirement of separate environments
for various applications and development teams. Two common solutions employed are as follows:

Create a separate database for each team/application that needs an environment. Sometimes •	
this approach is implemented with one database per server, which often translates into
additional hardware and licensing costs.

Create separate environments within one database. Usually this is achieved through separate •	
schemas and distinct tablespaces. This approach requires that there not be any database
object naming collisions between applications, for example, with objects such as user names,
tablespace names, and public synonyms.

Starting with Oracle Database 12c, pluggable databases give you another tool for addressing the prior needs.
Pluggable databases provide the security isolation requirement; there is no direct access from one pluggable database
to another. Even a user connected with SYSDBA privileges to a given pluggable database has no direct SQL access to
other pluggable databases within the CDB. This is just like with non-CDB databases. From a security and application
perspective, you have totally isolated pluggable databases within the larger CDB.

As a DBA, instead of having to implement and maintain dozens of individual databases and associated
operational tasks (such as provisioning new databases, installs, upgrades, tuning, availability, monitoring, replication,
disaster recovery, and B&R), you can manage any number of pluggable databases as if they were one database. From
the root container perspective, it’s similar to managing one non-CDB database.

Another significant advantage of the pluggable architecture is that a pluggable database can easily be cloned
or transferred from one CDB to another. This allows for more options when performing tasks such as provisioning
new databases, upgrading databases, load balancing, or moving application data from one environment to another
(such as from a development database to a test database). Creating a new environment can be done by cloning
another pluggable database. And, moving a pluggable database from a CDB simply requires that you unplug
(via SQL commands) the pluggable database from the CDB and then associate the metadata and data files (plug in)
with a new CDB.

Chapter 23 ■ pluggable Databases

672

B&R Implications
A pluggable environment has some interesting B&R architectural aspects. The following list highlights these features:

While connected to the root container with •	 SYSDBA or SYSBACKUP privileges, you have the
option of backing up all the data files within the CDB (root, seed, and all pluggable databases)
via one backup command. You also have the choice of performing B&R tasks at a pluggable
database level of granularity.

While connected directly to a pluggable database with •	 SYSDBA or SYSBACKUP privileges, you
can only back up and recover data files associated with the currently connected pluggable
database; you cannot view or operate on the root container data files or other pluggable
database data files.

An incomplete recovery of the entire CDB must be performed with a connection to the root •	
container with SYSDBA or SYSBACKUP privileges. All data files within the CDB (root container
and associated pluggable databases) are unavailable during an incomplete recovery of the
entire CDB.

A direct connection to a pluggable database with •	 SYSDBA or SYSBACKUP privileges can perform
an incomplete recovery only on the currently connected pluggable database without affecting
any other pluggable databases within the CDB.

Because there is a shared •	 UNDO tablespace, any point-in-time incomplete recoveries of a
pluggable database will also have to temporarily restore the root container’s UNDO tablespace
to an auxiliary database location so that it can participate in the point-in-time recovery of the
pluggable database.

This means that as a root-level DBA, you can treat B&R operations as if they were one database. From the
pluggable perspective, if need be, you can perform B&R per pluggable database.

Note ■ see Chapters 18 and 19 for examples of using rMaN to back up, restore, and recover in a pluggable environment.

Tuning Nuances
Tuning in a pluggable environment presents new challenges. For example, when an application team complains
about the poor performance of a pluggable database, because all pluggable databases within the CDB share the
same instance, background processes, and disk storage, how do you know which pluggable database within the CDB
might be consuming inordinate amounts of resources? To determine which pluggable database is performing poorly,
you’ll have to be aware of all the pluggable databases within the CDB and how to use the CDB-level views to identify
resource consumption per CDB.

The AWR, ADDM, and ASH reports now show resource usage at the pluggable database level; this will allow
you to focus your tuning efforts on the appropriate pluggable database. For any homegrown tuning SQL queries
that you’ve written, you’ll need to modify these to report on the CDB-level views where appropriate. Likewise, when
analyzing SQL statements, you’ll have to consider which pluggable database the SQL statement is executing within.

The previous sections of this chapter place an emphasis on discussion of the pluggable architecture. Before
creating a CDB, it’s critical that you understand these architectural underpinnings; hence, the lengthy introduction
to this topic. Now that you have a pluggable foundation, you’re ready to turn theoretical concepts into usable and
sustainable database technology. The first real task at hand is to create a CDB.

Chapter 23 ■ pluggable Databases

673

pLUGGaBLe ShIppING CONtaINerS: StreNGth IN NUMBerS

Security: pluggable databases within a CDb are similar to the shipping containers present on a large merchant
ship. each container is securely isolated and self-contained. If you were to find yourself inside a particular
shipping container, you wouldn’t necessarily be aware of any other containers on the mother ship. the captain
(SYS connection to the root container) is aware of all the containers on the vessel and can view the contents of
each container via the shipping manifest (CDb-level metadata views).

Granularity: If need be, repair and maintenance can be performed at the container level. likewise, you can take
pluggable databases offline for maintenance without affecting any other pluggable databases within the CDb.

Synergy: each container efficiently shares the ship’s communal resources, such as the engine, crew, and
navigation systems. this is similar to pluggable databases’ sharing a common sga, UNDO tablespace, Fra,
parameter file, and redo stream (online redo logs and archive redo logs) as well as background processes and
control files. economies of scale are generated through sharing a mutual database infrastructure; hardware and
human resource (Dba) costs are spread across many databases.

Provisioning: For this analogy, assume that you can easily replicate a shipping container (perhaps with a giant
three-dimensional scanner/printer); this would allow you to create containers as copies of existing containers.
similarly, pluggable databases can quickly and efficiently be created from existing databases (seed, pluggable
database, or non-CDb).

Transferability: When required, a shipping container can be easily transferred to another form of transportation
(another ship, a freight train, or piggyback on a semi-truck). In the same way, pluggable databases can be easily
unplugged and plugged into other CDbs. It doesn’t necessarily matter if the destination CDb is the same version
and type as the source CDb.

Creating a CDB
To use the pluggable database feature, you have to specifically create a pluggable enabled CDB. There are a several
different techniques for creating a CDB:

Manually issuing the SQL •	 CREATE DATABASE command

Using DBCA•	

Generating the required scripts with the DBCA, and then manually running the scripts to •	
create a CDB

Using RMAN to duplicate an existing CDB•	

The next two sections focus on showing you how to create a database with the CREATE DATABASE command
and the DBCA. For details on using RMAN to duplicate a CDB or pluggable database, see RMAN Recipes for Oracle
Database 12c, second edition, by Darl Kuhn (Apress, 2013).

Creating Manually with SQL
First, ensure that your ORACLE_SID, ORACLE_HOME, and PATH variables are set for your CDB environment (see Chapter 2
for details on setting OS variables); for example,

Chapter 23 ■ pluggable Databases

674

$ export ORACLE_SID=CDB
$ export ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
$ export PATH=$ORACLE_HOME/bin:$PATH

Next, create a parameter initialization file in the ORACLE_HOME/dbs directory. Make certain you set the
ENABLE_PLUGGABLE_DATABASE parameter to TRUE. Here, I’ve used an OS text editor to create a file named
initCDB.ora and placed within it the following parameter specifications:

db_name='CDB'
enable_pluggable_database=true
audit_trail='db'
control_files='/u01/dbfile/CDB/control01.ctl','/u01/dbfile/CDB/control02.ctl'
db_block_size=8192
db_domain=''
memory_target=629145600
memory_max_target=629145600
open_cursors=300
processes=300
remote_login_passwordfile='EXCLUSIVE'
undo_tablespace='UNDOTBS1'

Now, use an OS text editor to create a file named credb.sql, and place within it an appropriate CREATE DATABASE
statement:

CREATE DATABASE CDB
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 680
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
DATAFILE
'/u01/dbfile/CDB/system01.dbf' SIZE 500M
 EXTENT MANAGEMENT LOCAL
UNDO TABLESPACE undotbs1 DATAFILE
'/u01/dbfile/CDB/undotbs01.dbf' SIZE 800M
SYSAUX DATAFILE
'/u01/dbfile/CDB/sysaux01.dbf' SIZE 500M
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
'/u01/dbfile/CDB/temp01.dbf' SIZE 500M
DEFAULT TABLESPACE USERS DATAFILE
'/u01/dbfile/CDB/users01.dbf' SIZE 50M
LOGFILE GROUP 1
 ('/u01/oraredo/CDB/redo01a.rdo') SIZE 50M,
 GROUP 2
 ('/u01/oraredo/CDB/redo02a.rdo') SIZE 50M
USER sys IDENTIFIED BY foo
USER system IDENTIFIED BY foo
USER_DATA TABLESPACE userstbs DATAFILE
 '/u01/dbfile/CDB/userstbsp01.dbf' SIZE 500M
ENABLE PLUGGABLE DATABASE
SEED FILE_NAME_CONVERT = ('/u01/dbfile/CDB','/u01/dbfile/CDB/pdbseed');

Chapter 23 ■ pluggable Databases

675

There are a few clauses of the CREATE DATABASE statement relevant only to pluggable databases. For instance,
the ENABLE PLUGGABLE DATABASE clause is required if you want to create a pluggable database within the CDB.
The USER_DATA TABLESPACE clause specifies that an additional tablespace be created within the seed database; this
tablespace will also be replicated to any pluggable databases that are cloned from the seed database. Also, the SEED
FILE_NAME_CONVERT specifies how the seed database files will be named and in what directories they will be located.

Next, ensure you have created any directories referenced in the parameter file and the CREATE DATABASE statement:

$ mkdir -p /u01/dbfile/CDB/pdbseed
$ mkdir -p /u01/dbfile/CDB
$ mkdir -p /u01/oraredo/CDB

Now, start up your database in nomount mode, and run the credb.sql script:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> @credb.sql

If successful, you should see this:

Database created.

Oracle recommends that you use the catcon.pl Perl script to run any Oracle supplied SQL scripts for a CDB.
Therefore to create the data dictionary for a CDB use the catcon.pl Perl script. First change directories to
the ORACLE_HOME/rdbms/admin directory:

$ cd $ORACLE_HOME/rdbms/admin

Now use catcon.pl to run the catalog.sql script as SYS:

$ perl catcon.pl -u sys/foo -s -e -d $ORACLE_HOME/rdbms/admin -b catalog1
catalog.sql > catcon-catalog.log

Next, use catcon.pl to run the catproc.sql script as SYS:

$ perl catcon.pl -u sys/foo -s -e -d $ORACLE_HOME/rdbms/admin -b catproc1
catproc.sql > catcon-catproc.log

After you have created the data dictionary, as the SYSTEM schema, create the product user profile tables:

$ perl catcon.pl -u system/foo -s -e -d $ORACLE_HOME/sqlplus/admin -b pupbld1
pupbld.sql > catcon-pupbld.log

At this point, you should have a fully functional CDB database and can start creating pluggable databases within it.

Using the DBCA
You can use the DBCA utility to create a CDB through either a graphical interface or the command-line mode. When
using the graphical interface, you’ll be prompted as to whether or not you want to create a CDB.

This example walks you through using the command-line mode. First, ensure that your ORACLE_SID, ORACLE_HOME,
and PATH variables are set for your CDB environment (see Chapter 2 for details on setting OS variables); for example,

Chapter 23 ■ pluggable Databases

676

$ export ORACLE_SID=CDB
$ export ORACLE_HOME=/u01/app/oracle/product/12.1.0.1/db_1
$ export PATH=$ORACLE_HOME/bin:$PATH

Now, use the DBCA to create a CDB. When using the command-line mode of the DBCA, you must specify the
createAsContainerDatabase clause. The following bit of code creates a database named CDB:

dbca -silent -createDatabase -templateName General_Purpose.dbc -gdbname CDB
-sid CDB -responseFile NO_VALUE -characterSet AL32UTF8 -memoryPercentage 30
-emConfiguration LOCAL -createAsContainerDatabase true
-sysPassword foo -systemPassword foo

The prior code must be entered on one line (it only appears here on multiple lines in order to fit on the page).
The SID that you provide (in this example, CDB) must not exist in your oratab file. On Linux systems the oratab file is
usually located in the /etc directory. On other Unix systems (such as Solaris) the oratab file is generally located in the
/var/opt/oracle directory.

After pressing the Enter key, you should see some output similar to this:

Copying database files
...
9% complete
41% complete
Creating and starting Oracle instance
43% complete
48% complete
...

It will take the DBCA assistant several minutes to create the new CDB. Ensure that you have enough disk space
available when creating this database (approximately 5GB should be enough). After the DBCA is finished running,
you should have a fully functional CDB database and can start creating pluggable databases within it.

Generating CDB Create Scripts via DBCA
You can use the DBCA to generate the scripts required to create a CDB, and then you have the option of manually
running the scripts to carry out the process. This next bit of code invokes the DBCA utility from the command line and
generates the scripts needed to create a CDB named CDB1:

dbca -silent -generateScripts -templateName General_Purpose.dbc -gdbname CDB1
-sid CDB1 -responseFile NO_VALUE -characterSet AL32UTF8 -memoryPercentage 30
-emConfiguration LOCAL -createAsContainerDatabase true
-sysPassword foo -systemPassword foo

The prior code must be entered on one line when executed. Here is a snippet of typical output:

Database creation script generation
1% complete
.....
100% complete
Look at the log file "/orahome/app/oracle/admin/CDB1/scripts/CDB1.log"...

Chapter 23 ■ pluggable Databases

677

After the DBCA is finished running, change the directory to the location of the newly generated scripts:

$ cd $ORACLE_BASE/admin/CDB1/scripts

Now, display the scripts in the directory:

$ ls

Here is some sample output:

CDB1.log cloneDBCreation.sql lockAccount.sql
CDB1.sh init.ora postDBCreation.sql
CDB1.sql initCDB1Temp.ora postScripts.sql
CloneRmanRestore.sql initCDB1TempOMF.ora rmanRestoreDatafiles.sql
tempControl.ctl

To create the database, run the CDB1.sh script:

$ CDB1.sh

The prior shell script calls CDB1.sql, which subsequently invokes the RMAN utility. RMAN creates the required
data files from a backup and also creates a database named CDB1. You should be able to start the database after you’ve
set your ORACLE_SID OS variable to contain the name of the freshly created CDB.

Verifying that a CDB was Created
To verify whether a database was created as a CDB, first connect to the root container as SYS:

$ sqlplus / as sysdba

You can now confirm that the CDB was successfully created via this query. If a database was created as a CDB,
the CDB column of V$DATABASE will contain a YES value:

SQL> select name, cdb from v$database;

Here is some sample output:

NAME CDB
--------- ---
CDB YES

At this point, you should have two containers in your CDB database: the root container and the seed pluggable
database. You can check with this query:

SQL> select con_id, name from v$containers;

Here is some sample output:

CON_ID NAME
------ --------------------
 1 CDB$ROOT
 2 PDB$SEED

Chapter 23 ■ pluggable Databases

678

You should also have data files associated with the root and the seed database. You can view the data files
associated with each container via this query:

SQL> select con_id, file_name from cdb_data_files order by 1;

Here is some output:

CON_ID FILE_NAME
------ ---
 1 /u01/app/oracle/oradata/CDB/system01.dbf
 1 /u01/app/oracle/oradata/CDB/sysaux01.dbf
 1 /u01/app/oracle/oradata/CDB/undotbs01.dbf
 1 /u01/app/oracle/oradata/CDB/users01.dbf
 2 /u01/app/oracle/oradata/CDB/pdbseed/system01.dbf
 2 /u01/app/oracle/oradata/CDB/pdbseed/sysaux01.dbf

Note that if you had selected from DBA_DATA_FILES instead of CDB_DATA_FILES, you would only see the four data
files associated with the root container (the container you’re currently connected to); for example,

SQL> select file_name from dba_data_files;

FILE_NAME
--
/u01/app/oracle/oradata/CDB/system01.dbf
/u01/app/oracle/oradata/CDB/sysaux01.dbf
/u01/app/oracle/oradata/CDB/users01.dbf
/u01/app/oracle/oradata/CDB/undotbs01.dbf

Administrating the Root Container
When you manage a CDB, for the most part, you are connecting to the root container as SYS and performing tasks as
you would with a non-CDB database. However, there are several points to be aware of that are specific to maintaining
a CDB. The following tasks can only be performed while connected to the root container with SYSDBA privileges:

Starting/stopping instance•	

Enabling/disabling archive log mode•	

Managing instance settings that affect all databases within the CDB, such as overall memory size•	

B&R of all data files within the database•	

Managing control files (adding, restoring, removing, and so on)•	

Managing online redo logs•	

Managing the root •	 UNDO tablespace

Managing the root •	 TEMP tablespace

Creating common users and roles•	

These topics are discussed in the following sections.

Chapter 23 ■ pluggable Databases

679

Connecting to the Root Container
Connecting to the root container as SYS allows you to perform all the tasks you normally associate with database
administration. You can connect as SYS locally from the database server through OS authentication or a network
connection (which requires a listener and password file).

Through OS Authentication
If you have access to the database server, you can connect to the CDB the same as you would a non-CDB database.
First, ensure that the required OS variables have been set (see Chapter 2 for details):

$ echo $ORACLE_SID $ORACLE_HOME

CDB /u01/app/oracle/product/12.1.0.1/db_1

When using OS authentication, you can connect to the CDB root container without specifying a username
and password:

$ sqlplus / as sysdba

You can verify the SYS connection to the root container, as shown:

SQL> show user con_id con_name user

USER is "SYS"

CON_ID

1

CON_NAME

CDB$ROOT
USER is "SYS"

Through Network
If you’re initiating a remote connection through the network, then you need to first set up a listener on the target
database server and create a password file (see Chapter 2 for details). Once a listener and password file are
established, you can connect remotely over the network, as shown:

$ sqlplus user/pass@connection_string as sysdba

For details on how to implement a listener in a pluggable environment, see the section “Managing a Listener
in a Pluggable Database Environment,” later in this chapter.

Displaying Currently Connected Container Information
From SQL*Plus there are a couple of easy techniques for displaying the name of the CDB that you’re currently
connected to. This example uses the SHOW command to display the container ID, the name, and the user:

SQL> show con_id con_name user

Chapter 23 ■ pluggable Databases

680

You can also display the same information via an SQL query:

SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,
SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,
SYS_CONTEXT('USERENV', 'SESSION_USER') AS cur_user
FROM DUAL;

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER
-------------------- -------------------- --------------------
1 CDB$ROOT SYS

Starting/Stopping the Root Container
You can only start/stop the CDB while connected as a privileged user to the root container. The procedure for starting
and stopping the root container is the same as for a non-CDB database. To start a CDB, first connect as SYS, and issue
the startup command:

$ sqlplus / as sysdba
SQL> startup;

Starting the CDB database does not open any associated pluggable databases. You can open all pluggable
databases with this command:

SQL> alter pluggable database all open;

To shut down a CDB database, issue the following command:

SQL> shutdown immediate;

Just as with a non-CDB database, the prior line shuts down the CDB instance and disconnects any users
connected to the database. If any pluggable databases are open, they are closed, and users are disconnected.

Creating Common Users
There are two types of users in a pluggable environment: local and common. A local user is nothing more than a
regular user that is created in a pluggable database. The local type of user in a pluggable database behaves the same
as a user in a non-CDB environment. There’s nothing special about administering local users. You administer them as
you would a user in a non-CDB environment.

A common user is a new concept in Oracle Database 12c and only pertains to a pluggable database environment.
A common user is one that exists in the root container and in every pluggable database. This type of user must be
initially created in the root container and is automatically created in all existing pluggable databases as well as in any
pluggable databases created in the future.

Tip ■ the SYS and SYSTEM accounts are common users that Oracle creates automatically in a pluggable environment.

Chapter 23 ■ pluggable Databases

681

Common users must be created with the string C## or c## at the start of the username. For instance, the following
command creates a common user in all pluggable databases:

$ sqlplus / as sysdba

SQL> create user c##dba identified by foo;

Common users must be granted privileges from within each pluggable database. In other words, if you grant
privileges to a common user while connected to the root container, this does not cascade to the pluggable databases.
If you need to grant a common user a privilege that spans pluggable databases, then create a common role, and assign
it to the common user.

What use is there for a common user? One situation would be the performance of common DBA maintenance
activities across pluggable databases not requiring SYSDBA-level privileges. For example, you want to set up a DBA
account that has the privileges to create users, grants, and so on, but you don’t want to use an account such as SYS
(which has all privileges in all databases). In this scenario, you would create a common DBA user and also create
a DBA common role that contains the appropriate privileges. The common role would then be assigned to the
common DBA.

Creating Common Roles
Much like you can create a common user that spans all pluggable databases, you can, in the same manner, create
a common role. Common roles provide a single object to which you can grant privileges that are valid within all
pluggable databases associated with the root container.

A common role is created in the root container and is automatically created in all associated pluggable databases
as well as any pluggable databases created in the future. Like common users, common roles must start with the C## or
c## string; for example,

$ sqlplus / as sysdba
SQL> create role c##dbaprivs container = all;

Next, you can assign privileges, as desired, to the common role. Here, the DBA role is assigned to the previously
created role:

SQL> grant dba to c##dbaprivs container = all;

Now, if you assign this common role to a common user, the privileges associated with the role are in effect when
the common user connects to any pluggable database associated with the root container:

SQL> grant c##dbaprivs to c##dba container = all;

Reporting on Container Space
To report on all containers (root, seed, and all pluggable databases) within a CDB, you must follow this procedure:

Connect to the root container as a user with privileges to view the CDB-level views.•	

Make sure your query uses the CDB-level views where appropriate.•	

Ensure that any pluggable databases you wish to report on are open. If the pluggable •	
databases are not open, then no information will be displayed.

Chapter 23 ■ pluggable Databases

682

Here is a query that uses the CDB-level views to report basic space usage information relating to all containers
within a CDB:

SET LINES 132 PAGES 100
COL con_name FORM A15 HEAD "Container|Name"
COL tablespace_name FORM A15
COL fsm FORM 999,999,999,999 HEAD "Free|Space Meg."
COL apm FORM 999,999,999,999 HEAD "Alloc|Space Meg."
--
COMPUTE SUM OF fsm apm ON REPORT
BREAK ON REPORT ON con_id ON con_name ON tablespace_name
--
WITH x AS (SELECT c1.con_id, cf1.tablespace_name, SUM(cf1.bytes)/1024/1024 fsm
 FROM cdb_free_space cf1
 ,v$containers c1
 WHERE cf1.con_id = c1.con_id
 GROUP BY c1.con_id, cf1.tablespace_name),
 y AS (SELECT c2.con_id, cd.tablespace_name, SUM(cd.bytes)/1024/1024 apm
 FROM cdb_data_files cd
 ,v$containers c2
 WHERE cd.con_id = c2.con_id
 GROUP BY c2.con_id
 ,cd.tablespace_name)
SELECT x.con_id, v.name con_name, x.tablespace_name, x.fsm, y.apm
FROM x, y, v$containers v
WHERE x.con_id = y.con_id
AND x.tablespace_name = y.tablespace_name
AND v.con_id = y.con_id
UNION
SELECT vc2.con_id, vc2.name, tf.tablespace_name, null, SUM(tf.bytes)/1024/1024
FROM v$containers vc2, cdb_temp_files tf
WHERE vc2.con_id = tf.con_id
GROUP BY vc2.con_id, vc2.name, tf.tablespace_name
ORDER BY 1, 2;

Here is some sample output:

 Container Free Alloc
 CON_ID Name TABLESPACE_NAME Space Meg. Space Meg.
---------- --------------- --------------- ---------------- ----------------
 1 CDB$ROOT SYSAUX 42 780
 SYSTEM 7 790
 TEMP 88
 UNDOTBS1 206 230
 USERS 4 5
 2 PDB$SEED SYSAUX 2 640
 SYSTEM 5 260
 TEMP 87
********** *************** *************** ---------------- ----------------
sum 266 2,880

Chapter 23 ■ pluggable Databases

683

Make sure any pluggable databases you want to report on are open before attempting to query the CDB-level
views. If a pluggable database is not open, it won’t appear in the report output. For reference, here’s the statement
again to open all pluggable databases:

SQL> alter pluggable database all open;

Tip ■ reporting on tablespace and data file usage for an individual pluggable database isn’t significantly different
from reporting on the space in a non-CDb database. First, connect directly to the pluggable database as a user that has
privileges to select from the Dba-level views. then, run a report that queries the space-related views. see Chapter 4 for
a query for reporting on space usage in a non-CDb.

Switching Containers
Once you connect as a common user (such as SYS) to any container within the database (either the root or a pluggable
database), you can use the ALTER SESSION command to switch to another container for which you have been granted
access. For example, to set the current container to a pluggable database named SALESPDB, you would do as follows:

SQL> alter session set container = salespdb;

You can switch back to the root container by specifying the CDB$ROOT:

SQL> alter session set container = cdb$root;

You don’t need a listener to be up and running or a password file to switch containers. As long as the common
user has privileges, then the user is successfully switched to the new container context. Having the ability to switch
containers is especially useful when you need to connect to a pluggable database to troubleshoot issues and then
connect back to the root container.

Creating a Pluggable Database within a CDB
After you’ve created a CDB, you can start creating pluggable databases within it. When you instruct Oracle to create
a pluggable database, under the covers, it is actually copying data files from an existing database (seed, pluggable
database, or non-CDB) and then instantiating the CDB with the new pluggable database’s metadata. The key here is to
correctly reference what database you want Oracle to use as a template for creating the new pluggable database.

There are several tools for creating (cloning) a pluggable database; namely the CREATE PLUGGABLE DATABASE SQL
statement, the DBCA utility, and Enterprise Manager Cloud Control. This chapter focuses on using SQL and the DBCA
utilities. If you understand how to create pluggable databases using SQL and DBCA, you should easily be able to use
the Enterprise Manager screens to achieve the same objectives.

With the CREATE PLUGGABLE DATABASE statement, you can use any of the following sources to create
a pluggable database:

Seed database•	

Existing pluggable database (either local or remote)•	

Non-CDB database•	

Unplugged pluggable database•	

Chapter 23 ■ pluggable Databases

684

With the DBCA, you can create a pluggable database from any of the following sources:

Seed database•	

RMAN backup•	

Unplugged pluggable database•	

In the following sections, all the CREATE PLUGGABLE DATABASE variants of creating a pluggable database are
covered. With the DBCA, I only show how to create a pluggable database from the seed database. You should be able
to modify that example for your various needs.

Cloning the Seed Database
The CREATE PLUGGABLE DATASE statement can be used to create a pluggable database by copying the seed database’s
data files. To do this, first connect to the root container database as the SYS user:

$ sqlplus / as sysdba

The following SQL statement creates a pluggable database named SALESPDB:

CREATE PLUGGABLE DATABASE salespdb
ADMIN USER salesadm IDENTIFIED BY foo
FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/pdbseed',
 '/u01/app/oracle/oradata/CDB/salespdb');

After running the prior code, you should see some output similar to this:

Pluggable database created.

Note ■ If you’re using OMF, you don’t need to specify the FILE_NAME_CONVERT clause when creating a pluggable
database, because Oracle automatically determines the names and locations of the pluggable database data files.

Note that the FILE_NAME_CONVERT clause in this example has two strings. One specifies the location of the seed
database data files:

/u01/app/oracle/oradata/CDB/pdbseed

The second string is the location where you want the new pluggable database’s data files created:

/u01/app/oracle/oradata/CDB/salespdb

You’ll have to modify these strings to the appropriate values for your environment.
There are several options available when using the CREATE PLUGGABLE DATABASE statement to create a pluggable

database. Table 23-2 summarizes the meanings of the various clauses.

Chapter 23 ■ pluggable Databases

685

Cloning an Existing Pluggable Database
You can create a pluggable database from an existing pluggable database within the currently connected (local) CDB,
or you can create a pluggable database as a copy of a pluggable database from a remote CDB. These two techniques
are detailed in the next two sections.

Local
In this example an existing pluggable database (SALESPDB) is used to create a new pluggable database (SALESPDB2).
First, connect to the root container, and place the existing source pluggable database in read-only mode:

$ sqlplus / as sysdba
SQL> alter pluggable database salespdb close;
SQL> alter pluggable database salespdb open read only;

Now, run the following SQL to create the new pluggable database:

CREATE PLUGGABLE DATABASE salespdb2
FROM salespdb
FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/salespdb',
 '/u01/dbfile/CDB/salespb2')
STORAGE (MAXSIZE 6G MAX_SHARED_TEMP_SIZE 100M);

In the prior example the data files (associated with SALESPDB) in the /u01/app/oracle/oradata/CDB/salespdb
directory are used to create data files in the /u01/dbfile/CDB/salespdb2 directory. The destination directory will be
created for you if it doesn’t pre exist. You can also specify governing restrictions on the cloned pluggable database,
such as limiting its maximum size to 6GB and the maximum amount of shared resources it can consume in the shared
temporary tablespace to 100MB.

Table 23-2. Pluggable Database Creation Options

Parameter Description

ADMIN USER A local user that is created and used for administrative tasks. This user is assigned
the PDB_DBA role.

MAXSIZE Maximum amount of storage a pluggable database can consume; if not specified,
then there is no limit to the amount of storage a pluggable database can use

MAX_SHARED_TEMP_SIZE Maximum amount of shared temporary tablespace that can be used by sessions
connected to the pluggable database

DEFAULT TABLESPACE Specifies the default permanent tablespace assigned to new users created within the
pluggable database

DATAFILE Path and file name of the data file associated with the default tablespace

PATH_PREFIX Specifies that any new data files added to the pluggable database must exist within
this directory or its subdirectories

FILE_NAME_CONVERT Specifies the location of the seed database data files and the location where they
should be copied

Chapter 23 ■ pluggable Databases

686

Remote
You can also create a pluggable database as a clone of a remote pluggable database. First, you need to create a
database link from the CDB to the pluggable database that will serve as the source for the clone. Both the local user
and the user specified in the database link must have the CREATE PLUGGABLE DATABASE privilege.

This example shows a local connection as SYS to the root container. This is the database in which the new
pluggable database will be created:

$ sqlplus / as sysdba

In this database, create a database link to the pluggable database in the remote CDB. The remote CDB contains
a pluggable database named SALESPDB, with a user that has been created with the CREATE PLUGGABLE DATABASE
privilege granted to it. This is the user that will be used in the database link:

create database link salespdb
connect to mv_maint identified by foo
using 'speed2:1521/salespdb';

Next, connect to the remote database that contains the pluggable database that will be cloned:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba

Close the pluggable database, and open it in read-only mode:

SQL> alter pluggable database salespdb close;
SQL> alter pluggable database salespdb open read only;

Now, connect to the destination CDB as SYS, and create the new pluggable database by cloning the remote
pluggable database, as shown:

$ sqlplus / as sysdba

CREATE PLUGGABLE DATABASE salespdb3
FROM salespdb@salespdb
FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB/salespdb',
 '/u01/dbfile/CDB2/salespdb3');

Cloning from a Non-CDB Database
There are three ways of creating a pluggable database from an existing non-CDB:

Using the •	 DBMS_PDB package to generate metadata and then creating the pluggable database
with CREATE PLUGGABLE DATABASE SQL statement

Data Pump (using the transportable tablespace feature)•	

GoldenGate replication•	

The following example uses the DBMS_PDB package to create a pluggable database from a non-CDB. For details
on Data Pump and GoldenGate, see the Oracle Database Utilities Guide and GoldenGate-specific documentation,
respectively, available from the Technology Network area of the Oracle web site (http://otn.oracle.com).

http://otn.oracle.com/

Chapter 23 ■ pluggable Databases

687

Note ■ When using the DBMS_PDB package to convert a non-CDb to a pluggable database, the non-CDb must be
Oracle12c or higher.

First, place the non-CDB in read-only mode:

SQL> startup mount;
SQL> alter database open read only;

Then, run the DBMS_PDB package to create an XML file that describes the structure of the non-CDB database:

BEGIN
 DBMS_PDB.DESCRIBE(pdb_descr_file => '/orahome/oracle/ncdb.xml');
END;
/

After the XML file is created, shut down the non-CDB database:

SQL> shutdown immediate;

Next, set your oracle OS variables (such as ORACLE_SID and ORACLE_HOME), and connect to the CDB database that
will house the non-CDB as a pluggable database:

$ sqlplus / as sysdba

Now, you can optionally check to see if the non-CDB is compatible with the CDB in which it will be plugged.
When you run this code provide the directory and name of the XML file that was created previously:

SET SERVEROUTPUT ON
DECLARE
hold_var boolean;
begin
hold_var := DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/orahome/oracle/ncdb.xml');
if hold_var then
 dbms_output.put_line('YES');
else
 dbms_output.put_line('NO');
end if;
end;
/

If there are no compatibility issues, a YES is displayed by the prior code; a NO is displayed if the pluggable database
is not compatible. You can query the contents of the PDB_PLUG_IN_VIOLATIONS view for details on why a pluggable
database is not compatible with a CDB.

Chapter 23 ■ pluggable Databases

688

Next, use the following SQL to create a pluggable database from the non-CDB. You must specify details such as
the name and location of the previously created XML file, the location of the non-CDB data files, and the location
where you want the new data files created:

CREATE PLUGGABLE DATABASE dkpdb
USING '/orahome/oracle/ncdb.xml'
COPY
FILE_NAME_CONVERT = ('/u01/dbfile/dk/',
 '/u01/dbfile/CDB/dkpdb/');

If successful, you should see this:

Pluggable database created.

Now, connect as SYS to the newly created pluggable database:

$ sqlplus sys/foo@'speed2:1521/dkpdb' as sysdba

As a last step, run the following script:

SQL> @?/rdbms/admin/noncdb_to_pdb.sql

You should now be able to open the pluggable database and begin using it.

Unplugging a Pluggable Database from a CDB
Before plugging a pluggable database into another CDB, it must first be unplugged. Unplugging translates to
disassociating a pluggable database from a CDB and generating an XML file that describes the pluggable database
being unplugged. This XML file can be used in the future to plug the pluggable database into another CDB.

Here are the steps required to unplug a pluggable database:

 1. Close the pluggable database (which changes its open mode to MOUNTED)

 2. Unplug the pluggable database via the ALTER PLUGGABLE DATABASE ... UNPLUG
command

First, connect to the root container as the SYS user, and then close the pluggable database:

$ sqlplus / as sysdba
SQL> alter pluggable database dkpdb close immediate;

Next, unplug the pluggable database. Make sure you specify a directory that exists in your environment for the
location of the XML file:

alter pluggable database dkpdb unplug into
'/orahome/oracle/dba/dkpdb.xml';

The XML file contains metadata regarding the pluggable database, such as its data files. This XML is required if
you want to plug the pluggable database into another CDB.

Note ■ Once a pluggable database is unplugged, it must be dropped before it can be plugged back into the original CDb.

Chapter 23 ■ pluggable Databases

689

Plugging an Unplugged Pluggable Database into a CDB
Before a pluggable database can be plugged into a CDB, it must be compatible with a CDB in terms of data file
endianness and compatible database options installed. You can verify the compatibility via the DBMS_PDB package.
You must provide as input to the package the directory and name of the XML file created when the pluggable database
was unplugged. Here is an example:

SET SERVEROUTPUT ON
DECLARE
hold_var boolean;
begin
hold_var := DBMS_PDB.CHECK_PLUG_COMPATIBILITY(pdb_descr_file=>'/orahome/oracle/dba/dkpdb.xml');
if hold_var then
 dbms_output.put_line('YES');
else
 dbms_output.put_line('NO');
end if;
end;
/

If there are no compatibility issues, a YES is displayed by the prior code; a NO is displayed if the pluggable database
is not compatible. You can query the contents of the PDB_PLUG_IN_VIOLATIONS view for details on why a pluggable
database is not compatible with a CDB.

Plugging in a pluggable database is done with the CREATE PLUGGABLE DATABASE command. When you plug a
pluggable database into a CDB, you must provide some key pieces of information, using these two clauses:

•	 USING clause: This clause specifies the location of the XML file created when the pluggable
database was unplugged

•	 COPY FILE_NAME_CONVERT clause: This clause specifies the source of the pluggable database
data files and the location where the pluggable database data files will be created within the
destination CDB.

To plug in a pluggable database, connect to the CDB as a privileged user, and run the following:

CREATE PLUGGABLE DATABASE dkpdb
USING '/orahome/oracle/dba/dkpdb.xml'
COPY
FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/CDB1/dkpdb',
 '/u01/dbfile/CDB2/dkpdb');

You can now open the pluggable database and begin using it.

Using the DBCA to Create a Pluggable Database from the Seed Database
You can use the DBCA utility to create a pluggable database from the seed database by specifying the –createPDBFrom
DEFAULT clause. Here is an example that creates a pluggable database named HRPDB within a CDB named CDB:

dbca -silent -createPluggableDatabase -sourceDB CDB -pdbName hrpdb
-createPDBFrom DEFAULT
-pdbAdminUserName adminplug -pdbAdminPassword foo
-pdbDatafileDestination /u01/dbfile/CDB/hrpdb

Chapter 23 ■ pluggable Databases

690

The prior lines of code must be entered on one line. Also, if the pluggable database destination directory
doesn’t exist, the DBCA will automatically create it. As the command progresses, you should see output similar
to this:

Creating Pluggable Database
4% complete
12% complete
...
Completing Pluggable Database Creation
100% complete
Look at the log file "/orahome/app/oracle/cfgtoollogs/dbca/CDB.log" for further details.

As a last step, you should inspect the log file and ensure that there were no issues with the creation of the
pluggable database.

Checking the Status of Pluggable Databases
After creating a pluggable database, you may want to check its status. You can view the status of all pluggable
databases within a CDB while connected as a privileged user in the root container. For instance, a user with DBA
privileges can report on the status of all pluggable databases via this query:

SQL> select pdb_id, pdb_name, status from cdb_pdbs;

Here is some sample output:

 PDB_ID PDB_NAME STATUS
---------- -------------------- -------------
 2 PDB$SEED NORMAL
 3 SALESPDB NORMAL
 4 HRPDB NORMAL

This next query reports on whether or not the pluggable databases are open:

SQL> select con_id, name, open_mode from v$pdbs;

Here is some sample output:

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 SALESPDB READ WRITE
 4 HRPDB READ WRITE

If you run the prior queries while connected directly to a pluggable database, no information will be displayed in
CDB_PDBS. Also, the V$PDBS will only display information for the currently connected pluggable database.

Chapter 23 ■ pluggable Databases

691

Administrating Pluggable Databases
You can perform many database administrative tasks while connected directly to the pluggable database. You can
open/close a pluggable database, check its status, show currently connected users, and so on. You can administer
a pluggable database as a privileged connection (such as SYS) to the root container, or you can perform tasks while
connected as a privileged user directly to the pluggable database itself.

Keep in mind that when you connect as SYS to a pluggable database within the CDB, you can only perform
SYS-privileged operations for the pluggable database to which you are connected. You cannot start/stop the container
instance or view data dictionary information related to other pluggable databases within the CDB.

Connecting to a Pluggable Database
You can connect to a pluggable database as SYS either locally or over the network. To make a local connection, first
connect to the root container as SYS, then use the SET CONTAINER command to connect to the desired pluggable
database:

$ sqlplus / as sysdba
SQL> alter session set container=salespdb;

The prior connection doesn’t require a listener or password file; a connection over the network requires both.
This next example makes a network connection via SQL*Plus and specifies the host, listener port, and service name of
the pluggable database:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba

If you’re unsure how to set up a listener and a password file, see Chapter 2. For instructions on how to register
a pluggable database service name with the listener, see the next section.

Managing a Listener in a Pluggable Database Environment
Recall from Chapter 2 that a listener is the process that enables remote network connections to a database. Most
database environments require a listener in order to operate. When a client attempts to connect to a remote database,
the client provides three key pieces of information: the host the listener is on, the host port the listener is listening on,
and a database service name.

Each database has one or more service names assigned to it. By default there is usually one service name that
is derived from the database unique name and domain. You can manually create one or more service names for a
database. DBAs sometimes create more than one service so that resource usage can be controlled or monitored for
each service. For example, a service may be created for a sales application, and a service may be created for the HR
application. Each application connects to the database via its service name. The service connection information
appears in the SERVICE_NAME column of the V$SESSION view for each session.

If you start a default listener with no listener.ora file in place, the PMON background process will automatically
register any databases (including any pluggable) as a service:

$ lsnrctl start

Eventually (after a minute or two), you should see the databases (including any pluggable) registered with the
default listener.

Chapter 23 ■ pluggable Databases

692

Note ■ When starting the listener, if there is a listener.ora file present, the listener will attempt to statically register
any service names that appear in the listener.ora file.

By default the pluggable databases are registered with a service name that is the same as the pluggable database
name. The default service is typically the one that you would use to make SYS connections:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba

You can verify which services are running by connecting as SYS to the root container and querying:

SQL> select name, network_name, pdb from v$services order by pdb, name;

You can also verify which services a listener is listing for via the lsnrctl utility:

$ lsnrctl services

Oracle recommends that you configure an additional service (besides the default service) for any applications
that need to access a pluggable database. You can manually configure services by using the SRVCTL utility or the
DBMS_SERVICE package. This example shows how to configure a service via the DBMS_SERVICE package. First, connect
as SYS to the pluggable database that you want to create the service in via the default service:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba

Make sure the pluggable database is open for read-write mode:

SQL> SELECT con_id, name, open_mode FROM v$pdbs;

Next, create a service. This code creates and starts a service named SALESWEST:

exec DBMS_SERVICE.CREATE_SERVICE(service_name => 'SALESWEST', network_name => 'SALESWEST');
exec DBMS_SERVICE.START_SERVICE(service_name => 'SALESWEST');

Now, application users can connect to the SALESPDB pluggable database via the service:

$ sqlplus user/pass@speed2:1521/saleswest

Caution ■ If you have multiple CDb databases on one server, ensure that the pluggable database service names are
unique across all CDb databases on the server. It’s not advisable to register two pluggable database databases with the
exact same name with one common listener. this will lead to confusion as to which pluggable database you are actually
connecting to.

Chapter 23 ■ pluggable Databases

693

Showing the Currently Connected Pluggable Database
From SQL*Plus there are a couple of easy techniques for displaying the name of the pluggable database that you’re
currently connected to. This example uses the SHOW command to display the container ID, the name, and the user:

SQL> show con_id con_name user

Here is some sample output:

CON_ID

3

CON_NAME

SALESPDB

USER is "SYS"

You can also display the same information via an SQL query:

SELECT SYS_CONTEXT('USERENV', 'CON_ID') AS con_id,
SYS_CONTEXT('USERENV', 'CON_NAME') AS cur_container,
SYS_CONTEXT('USERENV', 'SESSION_USER') AS cur_user
FROM DUAL;

Here is some sample output:

CON_ID CUR_CONTAINER CUR_USER
---------- --------------- ----------
3 SALESPDB SYS

Keep in mind that the SYS_CONTEXT function can be used to display other useful information, such as the
SERVICE_NAME, DB_UNIQUE_NAME, INSTANCE_NAME, and SERVER_HOST; for example,

SELECT
 SYS_CONTEXT('USERENV', 'SERVICE_NAME') as service_name,
 SYS_CONTEXT('USERENV', 'DB_UNIQUE_NAME') as db_unique_name,
 SYS_CONTEXT('USERENV', 'INSTANCE_NAME') as instance_name,
 SYS_CONTEXT('USERENV', 'SERVER_HOST') as server_host
from dual;

Starting/Stopping a Pluggable Database
When you start/stop a pluggable database, you aren’t starting/stopping an instance. Rather, you are making
the pluggable database either available or unavailable, open or closed. You can change the open mode of a
pluggable database from either a connection to the root container as SYS or a direct connection to the pluggable
database as SYS.

Chapter 23 ■ pluggable Databases

694

From Root Container
To change the open mode of a pluggable database from the root container, do as follows:

$ sqlplus / as sysdba
SQL> alter pluggable database salespdb open;

You can also start a pluggable database in a particular state, such as read-only:

SQL> startup pluggable database salespdb open read only;

To close a pluggable database, you can specify the name of the pluggable database:

SQL> alter pluggable database salespdb close immediate;

You can also open or close all pluggable databases while connected to the root container as SYS:

SQL> alter pluggable database all open;
SQL> alter pluggable database all close immediate;

From Pluggable
To open/start a pluggable database, connect to the pluggable database as SYS:

$ sqlplus sys/foo@salespdb as sysdba
SQL> startup;

To shut down the database, issue the following command:

SQL> shutdown immediate;

Modifying Initialization Parameters Specific to a Pluggable Database
Oracle allows some initialization parameters to be modified while connected as a privileged user to a pluggable
database. You can view these parameters via the following query:

SELECT name
FROM v$parameter
WHERE ispdb_modifiable='TRUE'
ORDER BY name;

Here is a snippet of the output:

NAME

sort_area_size
sql_trace
sqltune_category
star_transformation_enabled
statistics_level

Chapter 23 ■ pluggable Databases

695

When you make initialization parameter changes while connected directly to a pluggable database, these
changes only affect the currently connected pluggable database. The parameter changes do not affect the root
container or other pluggable databases. For example, say you wanted to change the value of OPEN_CURSORS. First,
connect directly to the pluggable database as a privileged user, and issue the ALTER SYSTEM statement:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba
SQL> alter system set open_cursors=100;

The prior change modifies the value of OPEN_CURSORS only for the SALESPDB pluggable database. Furthermore,
the setting of OPEN_CURSORS for SALESPDB will persist across database restarts.

Renaming a Pluggable Database
Occasionally, you may be required to rename a pluggable database. For instance, the database may have been
originally misnamed, or you may no longer be using the database and want to append an _OLD to its name. To rename
a pluggable database, first connect to it as a SYSDBA-privileged account:

$ sqlplus sys/foo@invpdb as sysdba

Next, stop the pluggable database, and restart it in restricted mode:

SQL> shutdown immediate;
SQL> startup restrict;

Now, the pluggable database can be renamed:

SQL> alter pluggable database INVPDB rename global_name to INVPDB_OLD;

Limiting the Amount of Space Consumed by a Pluggable Database
You can place an overall limit on the amount of disk space a pluggable database can consume. I would recommend
placing some reasonable limit on the overall size of each pluggable database, especially if you work in an environment
in which there are different DBAs or groups managing separate pluggable databases within the same CDB, and each
DBA/group is unaware of the space that the other databases are consuming.

In this example an overall limit of 20GB is placed on a pluggable database. First, connect to the pluggable
database as SYS:

$ sqlplus sys/foo@speed2:1521/salespdb as sysdba

Then, alter the pluggable databases’ maximum size limit. This command limits the size of the pluggable database
to a maximum of 2GB:

SQL> alter pluggable database salespdb storage(maxsize 20G);

Viewing Pluggable Database History
If you need to view when a pluggable database was created, you can query the CDB_PDB_HISTORY view, as shown:

COL db_name FORM A10
COL con_id FORM 999
COL pdb_name FORM A15

Chapter 23 ■ pluggable Databases

696

COL operation FORM A16
COL op_timestamp FORM A10
COL cloned_from_pdb_name FORMAT A15
--
SELECT db_name, con_id, pdb_name, operation,
 op_timestamp, cloned_from_pdb_name
FROM cdb_pdb_history
WHERE con_id > 2
ORDER BY con_id;

Here is some sample output:

DB_NAME CON_ID PDB_NAME OPERATION OP_TIMESTA CLONED_FROM_PDB
---------- ------ --------------- ---------------- ---------- ---------------
CDB 3 SALESPDB CREATE 04-DEC-12 PDB$SEED
CDB 4 HRPDB CREATE 10-FEB-13 PDB$SEED

In this way, you can determine when a pluggable database was created and from what source.

Dropping a Pluggable Database
Occasionally, you may need to drop a pluggable database. You may want to do so because you don’t need the pluggable
database anymore or because you are transferring (unplugging/plugging) to a different CDB and you want to drop the
pluggable database from the original CDB. If you need to remove a pluggable database, you can do it in two ways:

Drop the pluggable database and its data files.•	

Drop the pluggable database, and leave its data files in place.•	

If you never plan on using the pluggable database again, then you can drop it and specify that the data files also
be removed. If you plan on plugging the pluggable database into a different CDB, then (of course) don’t drop the data
files, as doing so removes them from disk.

To drop a pluggable database, first connect to the root container as a privileged account, and close the pluggable
database:

$ sqlplus / as sysdba
SQL> alter pluggable database dkpdb close immediate;

This example drops the pluggable database and its data files:

SQL> drop pluggable database dkpdb including datafiles;

If successful, you should see this message:

Pluggable database dropped.

This next example drops a pluggable database without removing the data files. You may want to do this if you’re
moving the pluggable database to a different CDB:

SQL> drop pluggable database dkpdb;

In this manner, the pluggable database is disassociated from the CDB, but its data files remain intact on disk.

Chapter 23 ■ pluggable Databases

697

Summary
New with Oracle Database 12c, a pluggable database is a collection of data files and metadata that exist within a CDB.
Pluggable databases have several interesting architectural features:

When connected to a pluggable database, you have no visibility to other pluggable databases •	
that exist within the CDB. It’s as if you are connected to an isolated database.

Multiple pluggable databases share common database resources (memory structures, •	
background processes, and so on) within the CDB. From the root container level, you can
manage many DBA databases as if they were one database.

You can shut down a pluggable database without affecting other pluggable databases within •	
the CDB.

New pluggable databases can be quickly created by cloning the seed database, an existing •	
pluggable database, or a non-CDB.

Pluggable databases can be easily transferred from one CDB to another by unplugging from •	
one CDB and plugging the pluggable database into another CDB.

These features provide new ways in which you can create and manage databases. The main advantage of
pluggable database technology is that it allows you to consolidate many databases into one overarching database.
This generates economies of scale, in that more databases can be implemented and maintained on fewer servers with
less support personnel. As a DBA, understanding this technology and how to implement it makes you all the more
valuable to your company.

Godspeed.

A���������
Active session history (ASH), 653, 655
addbw command, 600
ADD LOGFILE GROUP statement, 113–114
ADRCI utility, 644
ADR_HOME directory, 4
Advanced row compression, 172
ADVISE FAILURE command, 543, 545
alert.log file, 642–643
alias command, 59
ALTER DATABASE BACKUP CONTROLFILE

TO TRACE statement, 96
ALTER DATABASE command, 546
ALTER DATABASE DATAFILE . . .

OFFLINE FOR DROP statement, 92
ALTER DATABASE DROP LOGFILE MEMBER

statement, 116
ALTER DATABASE MOVE DATAFILE command, 93
ALTER DATABASE RENAME FILE command, 95
ALTER DATABASE RENAME FILE statement, 94–95
ALTER SEQUENCE statement, 257
ALTER SESSION statement, 101
ALTER SYSTEM KILL SESSION statement, 658
ALTER SYSTEM SWITCH LOGFILE statement, 114
ALTER TABLE . . . MOVE statement, 190
ALTER TABLE . . . SHRINK SPACE statement, 190
ALTER TABLESPACE . . . ADD DATAFILE statement, 90
ALTER TABLESPACE . . . OFFLINE IMMEDIATE, 92
ALTER TABLESPACE . . . OFFLINE NORMAL statement, 91
ALTER TABLESPACE statement, 82, 84, 91, 95
ALTER TABLE statement, 167
ALTER USER command, 137
Amazon Web Services (AWS), 609
ARCHIVE_LAG_TARGET initialization parameter, 108
Archivelog mode

architectural decisions, 117
archive log destination, 124
backing up archive redo log files, 125

disabling, 123
enable, 123
redo file location

FRA, 121
LOG_ARCHIVE_DEST_N

database, 118
user-defined disk location, 118

Un-Oraclethodox, FRA, 122
Archive redo log file, 117
AUTOALLOCATE clause, 80
Autoincrementing (identity) column, 169
Automatic database diagnostic

monitor (ADDM), 653–654
Automatic Diagnostic Repository Command

Interpreter (ADRCI), 641
Automatic workload repository (AWR), 653–654
Automating jobs

cron utility, 613
background process, 619
cron daemon process, 619
crontab entry, 621
default editor, 623
editing cron table directly, 622
enabling access, 620
etc/crontab file, 619
files and directory, 620
loading, 623–624
redirecting output, 624
root user, 619
troubleshooting, 625
var/spool/cron directory, 619

DBA
database and listener, 626, 628
e-mail, 626
files older, 633
locked production accounts, 632
OS script, 626
redo log destination, 630
RMAN backups, 635

Index

699

runlevels, 629
SQL*Plus process, 634
truncating large log files, 631

Linux/Unix environment, 613
Oracle Scheduler utility

COPY_JOB procedure, 617
CREATE_JOB procedure, 614
vs. cron, 618
deleting, 617
DISABLE procedure, 616
ENABLE procedure, 616
JOB_CLASS parameter, 615
logging history, 615
modification, 616
orahome/oracle/bin directory, 614
PL/SQL package, 614
REPEAT_INTERVAL parameter, 615
run, 617
stopping, 616
view details, 615

autotrace tool, 187

B���������
BACKUP AS COPY command, 556, 563
backup.bsh script, 625
backup command, 601
BACKUP command, 484, 493, 503, 555
Backup retention policy

CLEAR command, 499
delete obsolete backups, 499
recovery window, 498
redundancy, 499

BACKUP VALIDATE command, 527, 555
Bash Shell Backslash, 57
BASIC compression algorithm, 502
BasicFiles, 280

LOB column, 281
SecureFile migration, 293
vs. SecureFiles, 280
space, 299

BFILE command, 159
BIGFILE clause, 87
Binary file (BFILE), 278, 301
Binary large object (BLOB), 278, 298
Bitmap index, 220
Bitmap join index, 221
BLOB command, 159
Block-level recovery, 555
BLOCKRECOVER command, 556
Bottlenecks identification, OS utility

database application, 644
Linux/Unix environments, 645
mapping, 648

performance and monitoring, 645
top command, 647
vmstat utility, 646

B&R architectural aspects, 672
B-tree index, 209, 214, 216
BUILD DEFERRED clause, 419

C���������
CATALOG command, 498
CATALOG DEVICE TYPE SBT_TAPE

BACKUPPIECE command, 597
cat command, 641
CB_RAD_COUNTS view, 274
CDB_USERS, 128
Central MV Log, 444
CHANGE FAILURE command, 545
Character data type

CHAR, 156
NVARCHAR2 and NCHAR, 156
VARCHAR2, 155

Character large object (CLOB), 278, 296
CHECK LOGICAL clause, 526, 635
chkconfig command, 627–628
CHSCHED command, 600
CLEAR command, 499, 501
CLOB command, 159
Clustered table, 154
cmdline attribute, 594
Cold-backup strategy

archivelog mode database, 459
noarchivelog mode database

backup copies, 454
backup location, 453
database locations and names, 453
disk space, 453
flashback database, 452
with online redo logs, 454–455
without online redo logs, 455
restart database, 454
shut down database, 454

RMAN scenario, 459
scripts

cbdir variables, 457
coldback.sql script, 457
coldrest.sql script, 458

Comma-separated-value (CSV) files, 387
Common roles, root container, 681
Common users, root container, 680
Complete recovery

block-level recovery, 555
control files, 475–478
data file

mount mode database, 553
open, 552

■ index

700

Automating jobs (cont.)

entire database
backup control file, 550
current control file, 550

nondefault location, 554
pluggable database, 556–557
restore-and-recovery scenario

database open, 474
data file data file, 472
mount mode, 472
online logs, 471
RECOVER DATABASE statement, 475
RECOVER DATAFILE statement, 473
RECOVER TABLESPACE, 475
RMAN, 473
SYSTEM tablespace, 475

tablespace
mount mode, 551
open, 550
read-only tablespace, 551
temporary restore tablespace, 552

testing
backup files validation, 548
backup preview, 547
media recovery, 548

Complete refreshable MV
architectural components, 409
CREATE MATERIALIZED VIEW . . . AS SELECT

statement, 407
CREATE MATERIALIZED VIEW system

privilege, 407
CREATE TABLE system privilege, 407
DBMS_MVIEW package, 408
REFRESH procedure, 408
SEGMENT CREATION IMMEDIATE clause, 407
USER_MVIEWS data dictionary, 407
USER_OBJECTS view, 407
USER_SEGMENTS view, 407–408

Compressed data, 172
Concatenated index, 217
CONFIGURE ARCHIVELOG DELETION

command, 500
CONFIGURE CHANNEL command, 494
CONFIGURE CHANNEL . . . FORMAT command, 494
CONFIGURE . . . CLEAR commands, 506
CONFIGURE command, 493, 503–504, 509, 596
conn.bsh script, 68
Constraints, tables

checking for specific data conditions, 199
creating foreign key constraints, 197
creating primary key constraints, 194
creating unique key constraints, 196
definition, 153
disabling, 200
enabling, 202
NOT NULL constraint, 200

Container database (CDB)
creation

DBCA utility, 675
scripts generation using DBCA, 676
with SQL, 673
techniques, 673

definition, 667
verification, 677

CREATE ANY VIEW privilege, 237
CREATE CONTROLFILE statement, 96–97
CREATE DATABASE command, 261
CREATE GLOBAL TEMPORARY TABLE statement, 192
CREATE OR REPLACE method, 245
CREATE PLUGGABLE DATABASE SQL statement, 683
CREATE SCHEMA statement, 135
CREATE SYNONYM command, 248
CREATE TABLE AS SELECT statement (CTAS), 176
CREATE TABLESPACE statement, 79, 86, 309
CREATE TABLE statement, 161, 240
CREATE USER SQL statement, 133
CREATE VIEW statement, 238
cron utility, 437

background process, 619
cron daemon process, 619
crontab entry, 621
default editor, 623
editing cron table, 622
enabling access, 620
etc/crontab file, 619
files and directory, 620
loading, 623
redirecting output, 624
root user, 619
troubleshooting, 625

CROSSCHECK command, 500
CTAS statement, 393
CTIME column, 144

D���������
Database buffer cache, 53
Database Configuration Assistant (dbca) utility, 25

CREATE DATABASE statement, 48
find command, 47
graphical mode, 46
mydb.rsp file, 47
OS command line, 46
rman utility, 47
silent mode, 46–47

Database directory object, 345
Database environment

OS command prompt, 56
rerunning commands

Bash shell, 62
Ctrl+P and Ctrl+N, 62

■ index

701

history command, 63
ls-altr command, 64
reverse search, 63
set-o command, 63
up and down arrow keys scrolling, 62

scripts, dba_setup, 65
shell aliases, 59
shell function, 60
shell scripts

conn.bsh, 68
dba_fcns, 65
filesp.bsh, 69
lock.sql, 72
login.sql, 71
tbsp_chk.bsh, 66
top.sql, 71
users.sql, 74

SQL prompt, 58
SQL scripts

.bashrc file, 75
directories creation, 75
HOME/bin directory, 75

Database index
bitmap index creation, 220
bitmap join index creation, 221
B-tree index creation, 214
concatenated index creation, 217
foreign key columns

index determination, 232
index implementation, 231
table locks, 234

function-based index creation, 218
guidelines for index creation, 235
index maintenance

display DDL, 227
drop index, 230
monitor index, 229
rebuild index, 227
rename index, 226
UNUSABLE index, 228

invisible index creation, 224
key-compressed index creation, 223
parallelism, 223
proactive index creation, 206
reactive index creation, 206
redo generation avoidance, 224
reverse-key index creation, 222
robustness

index placement in tablespace, 212
index size, 209
index type, 208
naming standards, 213
portable scripts creation, 213
separate tablespace creation, 211
storage parameters, 212

ROWID, 205
unique index creation, 219

Database offline. See Incomplete recovery
Database online. See Complete recovery
Database point-in-time recovery (DBPITR), 562.

See also Incomplete recovery
Database Upgrade Assistant (DBUA), 17
Database writer writes blocks (DBWn), 53
Data definition language (DDL), 246
Data dictionary

architecture
dynamic performance, 262
read-only view, 259
static view, 260–261

DBMS_STATS package, 271
derivable documentation, 266–267
metadata

database issues, 263
logical and physical structure, 263
Oracle database, 264
relationship, 264–265
SQL queries, 265
TABLESPACE_NAME column, 265
tablespaces, 263

object dependency, 273–275
primary key and foreign key, 272–273
SQL query, 259
table row count, 270–271
user information, 267–269

Data files
data dictionary views, 77
offline data file operations

re-creating the control file and OS commands, 96
using SQL and OS commands, 94

online data file operations, 93
Data manipulation language (DML), 83, 260
Data Pump utility, 182

additional dump files, 372
COMPRESSION parameter, 374
consistent export files, 367–368
copying data files, 356–357
database directory object, 345
data export, 347–348
data file paths and names, 358–359
data pump jobs

database alert log, 381
data dictionary views, 380
interactive command mode status, 381
log file, 380
OS utilities, 382
status table, 381

data remapping, 370
DBMS_DATAPUMP and DBMS_METADATA

built-in PL/SQL packages, 344
DDL file, 373
DISABLE_ARCHIVE_LOGGING parameter, 376

■ index

702

Database environment (cont.)

dump files, 366
ENCRYPTION parameter, 375
exclude objects, 364
expdp and impdp utilities, 344
export and import

entire database, 350–351
Linux server, 354
schema level, 352
Solaris box, 354
table level, 353
tablespace level, 353
transferring data, 354

export job components, 345
file size estimation, 365
filtering data and objects, 360

constraint and trigger DDL, 364
exclude objects, 365
EXCLUDE parameter, 362–363
include objects, 365
INCLUDE parameter, 364
percentage data, 362
query, 361
statistics, 363
table and index, 364

import job components, 346
interactive command mode

export interactive commands, 377
import interactive commands, 378
KILL_JOB command, 379
running job and view, 378–379
STOP_JOB parameter, 379

legacy parameters, 382, 384
log file suppression, 371
master process, 344
old exp/imp utilities, 343
parallelism, 371–372
parameter file, 349
PL/SQL packages, 346
REMAP_TABLESPACE feature, 359
REUSE_DUMPFILES parameter, 373
segment and storage attributes, 360
status table, 344
TABLE_EXISTS_ACTION and CONTENT

parameters, 368–369
table import, 349
table-level compression, 374
table renaming, 369
tablespace metadata, 358
testing database, 354–355
TRANSFORM parameter, 359
user clone, 366
VIEWS_AS_TABLES parameter, 375
worker process, 344

Data transfer element (DTE), 609
DATE data type, 157

Date/Time data type, 157
DBA/ALL/USER_CONSTRAINTS views, 220
DBA/ALL/USER_EXTENTS, 187, 189
DBA/ALL/USER_INDEXES views, 216
DBA_DEPENDENCIES view, 273–274
dba_fcns script, 65
DBA_ROLE_PRIVS view, 149
DBA_SEQUENCES view, 255
dba_setup script, 65
DBA_SYS_PRIVS view, 147
DBA_TAB_PARTITIONS view, 323
DBA_USERS_WITH_DEFPWD

view, 131–132
DBCA, 675–676, 689
DB_CREATE_FILE_DEST, 525
DB_FLASHBACK_RETENTION_TARGET

parameter, 572
DBMS_METADATA package, 82
DBMS_SCHEDULER package, 614, 618
DBMS_SPACE package, 187–188
DBMS_STATS package, 333
DBMS_UNDO_ADV package, 660
dbora script, 627–628
DB_WRITER_PROCESSES parameter, 113
DDL, 424
DDL_LOCK_TIMEOUT parameter, 178
DDL LOGGING, 177
Decision support system (DSS), 312
DEFAULT_PWD$ view, 130
Default user, 127
Deferred segment creation, 167
DELETE command, 500
DELETE NOPROMPT OBSOLETE

command, 499
DELETE OBSOLETE command, 499
DELETE statement, 185
Deterministic, 218
DEVDB database, 573
DICT_COLUMNS view, 267
DISABLE procedure, 616
Displaying archivelog mode, 123
Displaying tablespace size, 89
DISTINCT clauses, 207
DML statements, 207
DOP_JOB procedure, 617
DROP CATALOG command, 530
Drop database, 48
DROP SEQUENCE statement, 256
DROP SYNONYM statement, 251
DROP TABLE command, 193
DROP TABLESPACE statement, 85
DROP TABLE statement, 183
DROP USER statement, 140–141
DROP VIEW statement, 247
DUPLICATE DATABASE command, 573

■ index

703

E���������
echo command, 513, 620
ENABLED column, 617
ENABLE PLUGGABLE DATABASE clause, 667
ENABLE procedure, 616
EXCLUDE command, 518
exp and imp utilities, 182
EXPLAIN_MVIEW procedure, 421
export command, 26
Extended character types, 159
EXTENT MANAGEMENT LOCAL clause, 80
External table, 154

advanced transformation
CREATE TABLE statement, 395
embedded transformation, 396
EXA_INFO table, 395
exa_trans function, 395
pipelined function, 394
rec_exa_type, 394

CSV file, 387
architectural components, 388–389
CREATE TABLE . . . ORGANIZATION

EXTERNAL statement, 390
database object creation, 390
directory object and granting access, 389
EXADATA_ET, 390
ex.csv file, 389
loading regular table, 393
SQL generation, 391
steps to access, 389
view metadata, 392

data selection, 387
definition, 387
vs. SQL*Loader, 388
text files, 396
unloading and loading data

advantage, 397
components, 397–398
definition, 397
directory object, 398
dump file creation, 399
dump file compression, 400
dump file encryption, 401
elapsed time reduction, parallel process, 400
INV_DW, 399
INV table, 399
ORACLE_DATAPUMP access driver, 401
Oracle Wallet, 401

F���������
Fast refreshable MV

adding records, 412
architectural components, 412–413
<base table name>_PK1, 411

complex query, 421
implementation steps, 410
log, 410
MLOG$_<base table name>, 411
Oracle features, 414
PRIMARY KEY clause, 410
ROWID clause, 410
RUPD$_<base table name>, 411
SALES table, 410
SELECT statement, 410
USER_MVIEWS view, 413
USER_OBJECTS, 411

FAST_START_MTTR_TARGET, 113
filesp.bsh script, 69
find command, 10, 12, 641
Flashback database feature, 571
FLASHBACK TABLE statement, 184
Foreign keys, 225

check index, 232
index on, 231
table locks, 234

FORMAT command, 493
Full-table scans, 205
Function-based index, 218

G���������
GET_DDL function, 182, 246, 250
groupadd command, 7
GROUP BY clauses, 207
groupdel command, 7
groupmod command, 7

H���������
Hash clustered table, 154
Heap-organized table

creation, 161
description, 153

history command, 63
Hot-backup strategy

ALTER DATABASE BEGIN BACKUP
statement, 462

archivelog mode, 461
archive redo logs, 463, 468
backup location, 461
control files, 463
frozen SCN, 469–470
NLS_DATE_FORMAT parameter, 462
online redo logs, 463
OS Utility, 462
script

hotback.sql script, 464
ORACLE_HOME OS variable, 464
ORACLE_SID OS variables, 464
SQL*Plus hbdir variable, 464–465

■ index

704

split-block issue, 466
redo stream, 466–467
restore and recovery, 468

tablespaces out of backup mode, 462

I, J���������
Incomplete recovery

archived redo log file, 564
archive redo logs/unarchived online

redo log, 479
cancel-based incomplete recovery, 479–480
database back, 479
Data Pump dump file, 567
DBPITR, 562
log sequence-based recovery, 565
OPEN RESETLOGS clause, 481
RESTORE DATABASE UNTIL command, 563
restore point, 566
SCN based incomplete recovery, 479
SCN-based recovery, 566
steps, 562
testing environment, 479
time based incomplete recovery, 480
time-based recovery, 565
TSPITR, 563
type of, 564
user-managed incomplete recovery, 479

INCREMENT BY setting, 257
Index-organized tables (IOT), 154
INDEX_STATS view, 216
Init.ora scenario, 104
insertvol command, 609
INSTEAD OF trigger, 242–243
INTERVAL data type, 158
Interval partition type, 306
inventory.xml file, 14
Invisible columns, 166
Invisible index, 224
INV_MGMT user, 132
ISDATE function, 181
ISNUM function, 180

K���������
Key-compressed index, 223

L���������
Large objects (LOB)

BasicFiles vs. SecureFiles, 280
binary file (BFILE), 278, 301
binary large object (BLOB), 278, 298
character large object (CLOB), 278, 296
chunks, 278

column
adding columns, 287
BasicFiles, 281
cache descriptions, 287
in-and out of line, 288
moving columns, 286
partition, 285
removing column, 287
SecureFiles, 284
tablespace, 283

index, 278
locators, 278
LONG and LONG RAW, 277
metadata, 296
national character large object (NCLOB), 278
SecureFiles, 280

BasicFiles migration, 293
deduplication, 290
degrees of compression, 289
encryption feature, 291

space, 299
VARCHAR2 data type, 277

LELLISON user, 149
Linux/Unix, 531
LIST BACKUP command, 533
LIST BACKUP SUMARY command, 534
Listener.log file, 631
LIST FAILURE command, 543, 545
LOB data type, 159
lock.sql script, 72
LOG_ARCHIVE_FORMAT, 118
Log buffer, 53
login.sql script, 71
lsbackup command, 601
lsclass command, 593
lsjob command, 604
LSPIECE command, 598
lssched command, 601
lsuser command, 594, 607
lsvol command, 603, 609

M���������
MAILTO variable, 625
Managing control files

ALTER SESSION statement, 101
binary file, 99
data dictionary, 99
init.ora scenario, 104
moving, 105
names and locations, 102
remove, 106
spfile or init.ora file, 100
spfile scenario, 103
V$DATABASE, 100

■ index

705

man tar command, 16
Materialized view (MV)

complete refreshable (see Complete refreshable MV)
compressing, 416
database performance report, 404
data dictionary view, 405
DDL view, 424
dropping, 424
encrypting columns, 417
fast refreshable (see Fast refreshable MV)
groups

adding to refresh group, 449
CHANGE function, 447
creation, 447
DBA_RGROUP and DBA_RCHILD views, 448
DBMS_MVIEW vs. DBMS_REFRESH, 448
dropping, 449
INTERVAL calculation, 447
refreshing, 448
removing from refresh group, 449

indexes, 415
logs

CREATE TABLE privilege, 430
creating, 430
dropping, 434
indexing columns, 432
master table, 430
moving, 433
Oracle internal trigger, 430
row count, 433
shrinking space, 432
terminology and features, 430
viewing space, 432

master tables, 403
modification

ALTER MATERIALIZED VIEW . . . MOVE
TABLESPACE statement, 429

base table DDL, 425
ON PREBUILT TABLE clause, 427
parallelism, 429
recreation, 425
redo logging, 428
underlying table preservation, 426

never refreshable, 420
ON COMMIT refreshable, 419
partitioning, 416
prebuilt table, 418
query rewrite, 420
refresh

automatic, 436
efficient performance, 438
interval, 437
manual, 435
ORA-12034 error handling, 439
progress determination, 440

real-time refresh progress, 440
remote (see Remote MV refreshes)
within time period, 441
viewing last refresh times, 440

SALES_DAILY, 404
sales table, 403
tablespace, 414
terminology, 405
unpopulated, 419

MAX SQL function, 308
Media recovery testing, 548
MESSAGE_TEXT LIKE command, 644
MHURD user, 149
mkdev command, 609
mkdir command, 32, 75
mkmf command, 594
mkuser command, 593
MV_CAPABILITIES_TABLE, 423

N���������
NCLOB command, 159
Nested table, 154
Net Configuration Assistant (netca), 39
Network data management protocol (NDMP), 588
Never refreshable MV, 420
NEXT clause, 437
NLS_DATE_FORMAT, 512
NOLOGGING feature, 174
NOLOGGING option, 428
Nonpluggable database, 89
NORESETLOGS clause, 96
NOT NULL constraint, 200
NOVALIDATE clause, 202
Numeric data type, 156
NVARCHAR2 and NCHAR data type, 156

O���������
Object table, 154
ON COMMIT DELETE ROWS, 192
ON COMMIT refreshable MV, 419
Online redo logs

ADD LOGFILE GROUP statement, 113
ALTER DATABASE ADD LOGFILE

MEMBER statement, 115
archivelog mode, 107
configuration, 108
GoldenGate/Streams, 106
log writer, 107
mechanisms, 108
moving/renaming, 116
optimal number determination, 112
Oracle LogMiner utility, 106
recovering transactions, 106

■ index

706

remove, 115
resizing and dropping, 114
V$INSTANCE_RECOVERY, 111
V$LOGFILE View, 110
V$LOG_HISTORY, 110
V$LOG View, 110

opatch utility, 18
OPEN_CURSORS parameter, 658–659
OPEN RESETLOGS clause, 481
OPEN RESETLOGS command, 560, 581
Optimal Flexible Architecture (OFA)

automatic diagnostic repository, 4
directory structure and file names, 2
Oracle base directory, 3
Oracle home directory, 3
Oracle inventory directory, 3
Oracle Network Files Directory, 4

Oracle binaries installations
database, 5
existing copy

binaries copy, OS utility, 15
Oracle home attachment, 16

free disk space, 7
graphical installer

components and utilities, 20
DISPLAY variable, 20, 22
install X software and networking

utilities, PC, 20
runInstaller utility, 20, 23
scp command, 21
secure networking, 20
ssh utility, 22
startx command, 20
troubleshoot, 20, 24
xhost command, 20, 22
X Window System emulation, 20

graphical or silent install, 10
interim patches, 18
memory and swap space, 7
OFA (see Optimal Flexible Architecture (OFA))
operating system software, 7
operating system version and kernel, 7
Oracle Database 11g Release 2, 10
Oracle Database 12c Release 1 scenario, 12
oraInst.loc file creation, 9
OS Groups and user creation, 5
reinstallation, 18
software download page, 8
system architecture, 7
troubleshoot issues, 13
unzip the files, 8
upgrading software, 17

Oracle B-tree hierarchical index, 215
Oracle (circa version 8), 217
Oracle database

architecture, 52

one server database
advantages and disadvantages, 51
applications and users, 51
architecture, 49
multiple applications and users, 50
multiple databases, 50
multiple pluggable databases, 50

OS authentication, 42
startup command, 44
stopping database, 45

Oracle Database 11g, 315–316
Oracle Database 12c, 253
Oracle Enterprise Manager (OEM), 604
ORACLE_HOME directory, 18
Oracle internal trigger, 430
Oracle listener

database connection, 39
manually configuring, 37
netca, 39

Oracle Managed Files (OMF), 86
Oracle Scheduler utility

COPY_JOB procedure, 617
CREATE_JOB procedure, 614
vs. cron, 618
deleting, 617
DISABLE procedure, 616
ENABLE procedure, 616
JOB_CLASS parameter, 615
logging history, 615
modification, 616
orahome/oracle/bin directory, 614
PL/SQL package, 614
REPEAT_INTERVAL parameter, 615
run, 617
stopping, 616
view details, 615

Oracle Secure Backup (OSB)
Cloud Module, 610
command-line access, 592
configuration

backup command, 592
database backup storage selector, 595
media family, 594
users and class, 593

database backup, 596
definition, 585
editions, 585
enterprise backup management, 585
file system backup

backup window command, 599–600
data set files, 598
on-demand backup, 601
schedules and triggers, 600

file system restore
catalog-based restore, 602
obtar command, 603

■ index

707

obtool utility, 602
raw restore, 602

installation
admin user, 591
configuration, 590
Linux server, 591
obparameters file, 590
Oracle Technology Network, 589
OS command, 591
output, 589
server, 590
setup script, 589
uncompress utility, 589

job monitoring
job transcripts, 606
log files, 607
lsjob command, 604
obtool utility, 604

restore database, 597
software upgrading, 611
terminology

daemons, 588
domain and servers, 586
interfaces, 587
users and classes, 588

virtual test device, 608
Oracle wallet, 293, 417
oraenv utility, 27
oraInst.loc file, 9
ORDER BY clauses, 207
OVERFLOW clause, 194

P, Q���������
P_0 PROCESSES, 171
PARALLEL clause, 171
PARALLEL_THREADS_PER_CPU, 171
Partitioned table, 154
Partitioning

benefits, 303
indexes

architecture, 337
global index, 338–340
LOCAL clause, 336
partial, 340–341
prefixed vs. nonprefixed, 338
ROWID values, 335
tablespace, 337
types, 338
USER_IND_PARTITIONS table, 336
USER_PART_INDEXES, 338

maintenance
ADD PARTITION clause, 327–328
dropping, 332–333

exchange, 329–330
existing table, 326–327
manipulating data, 335
merging, 331–332
metadata, 323
moving, 324–325
removing rows, 334
renaming, 330
splitting, 331
statistics, 333
updated rows, 325–326

OLTP databases, 304
Oracle partitioning terminology, 304
parallelism, 303
pruning, 341–342
table creation

based on date, 316–318
based on number, 318–319
composite partitioning, 314–315
MAX SQL function, 308
NUMBER implementation, 306–307
parent table, 319–321
PARTITION BY HASH clause, 313–314
PARTITION BY RANGE clause, 306
PARTITION BY SYSTEM clause, 322
strategies, 305
tablespaces (see Tablespaces partitions)
TIMESTAMP implementation, 309
virtual column, 322

tables, 304–305
PASSWORD_REUSE_MAX setting, 138
PASSWORD_REUSE_TIME setting, 138
PCTTHRESHOLD, 194
PERFSTAT user, 656
ping command, 638
PL/SQL role, 150
Pluggable databases

administrative tasks
connecting to pluggable database, 691
displaying connected pluggable database, 693
dropping pluggable database, 696
limiting amount of disk space, 695
managing listener, 691
modifying initialization parameters, 694
renaming pluggable database, 695
starting/stopping, 693
viewing pluggable database history, 695

architecture
advantages, 671
B&R implications, 672
CDB, 668
tuning, 672

CDB (see also Container database (CDB))
checking status, 690
cloning existing pluggable database, 685

■ index

708

Oracle Secure Backup (OSB) (cont.)

cloning from non-CDB database, 686
cloning seed database, 684
CREATE PLUGGABLE DATABASE SQL

statement, 683
creation options, 685
plugging unplugged pluggable database, 689
unplugging from CDB, 688
using DBCA, 689

pluggable shipping containers, 673
root container (see Root container)
terminologies, 668

Process identifiers (PIDs), 647
Program global area (PGA), 53
ps command, 619
ps utility, 650
PURGE_LOG procedure, 615
PURGE_MVIEW_FROM_LOG procedure, 446
pwd command, 63

R���������
RAW data type, 158
README.txt, 19
Read-only tables, 167
RECOVER command, 484, 541, 550, 558
RECOVER DATABASE command, 549
RECOVER DATABASE UNTIL command, 563
RECOVER DATAFILE commands, 552
RECOVER TABLE command, 567
RECOVER TABLESPACE command, 550
RECOVER TABLESPACE UNTIL command, 563
Recovery Manager (RMAN), 27
RECYCLEBIN feature, 184
Reference partition type, 306
Referential integrity constraints. See Foreign keys
Remote MV refreshes

architectures, 443
base table information, 444
central MV Log, 444
master database, 442
setup, 442

RENAME statement, 246
REPAIR FAILURE command, 544
REPORT command, 534
REPORT SCHEMA command, 516
RESETLOGS, 96
RESTORE command, 484, 541, 550, 563
RESTORE CONTROLFILE command, 560
RESTORE DATABASE command, 549, 563
RESTORE DATABASE UNTIL command, 563
RESTORE DATAFILE command, 552
RESTORE . . . PREVIEW command, 547
RESTORE TABLESPACE command, 550
RESTORE . . . VALIDATE command, 527, 548
RESTORE . . . VALIDATE HEADER command, 548

Reverse-key index, 209, 222
REVOKE statement, 149
$RMAN_BACKUP_JOB_DETAILS, 536
RMAN backups, 511

command initialization
ECHO, 513
NLS_DATE_FORMAT, 512
SHOW ALL, 513

corruption
BACKUP . . . VALIDATE, 527
RESTORE . . . VALIDATE, 527
VALIDATE, 526

execution
archive redo logs, 516
autobackup, 514
backup sets vs. image copies, 515
control file, 516
data files, 515
data files (not backed up), 518
EXCLUDE command, 518
FRA, 517
full backup vs. incremental level=0, 514
parallelism, 520
repository, 520
skip offline or inaccessible files, 519
SKIP READONLY command, 518
spfile, 516
tablespaces, 515

incremental backup features
block change tracking, 525
incremental level, 523
updating backup, 524

Oracle secure backup, 511
output

cron, 531
data dictionary, 533
Linux/Unix, 531
shell script (rmanback.bsh), 531
SPOOL LOG command, 532

pluggable databases, 521
root container, 521
SYSDBA/SYSBACKUP privileges, 522

recovery catalog
back up, 530
creation, 528
DROP CATALOG command, 530
synchronization, 530
target database register, 529
version, 530

report
LIST, 533
REPORT command, 534
SQL, 535

types of, 511
RMAN CATALOG command, 96

■ index

709

RMAN configuration
architectural components

auxiliary database, 485
backup/back up, 485
backup piece file, 485
backup set, 485
channel(s), 484
DBA, 484
FRA, 485
image copy, 485
media manager, 485
memory buffers (PGA or SGA) 485
Oracle server processes, 484
PL/SQL packages, 485
recovery catalog, 485
RMAN client, 484
snapshot control file, 485
target database, 484

architectural decision
archive redo log destination and file format, 492
archive redo logs’ deletion policy, 500
backing up, 495
BACKUP . . . FORMAT, 493
backup retention policy (see Backup

retention policy)
backup sets/image copy, 502
backup user specification, 491
binary compression, 504
block change tracking, 503
CONFIGURE CHANNEL . . . FORMAT, 494
CONFIGURE command, 509
control file autobackup, 494
CONTROL_FILE_RECORD_KEEP_TIME

initialization parameter, 498
cron utility, 507, 510
CROSSCHECK command, 510
default location, 492
DELETE NOPROMPT OBSOLETE, 510
ECHO parameter, 509
encryption algorithm, 504
FRA, 493
implementation, 488, 508
incremental backups, 502
incrementally updated backups, 502
informational output, 506
media manager, 497
miscellaneous settings, 506
NLS_DATE_FORMAT OS variable, 509
online/offline backups, 491
oraset variable, 509
parallelism degree, 500
recovery catalog, 497
remotely/locally, 490
snapshot control file, 496
specifying location of, 495

orapwd utility, 487

OS variables, 486
PATH variable, 486
rman and sqlplus, 486
SQL statements, 505
SYSDBA privileges, 487–488
types of

block change tracking, 486
full backup, 486
incremental level 0 backup, 486
incremental level 1 backup, 486
incrementally updated backup, 486

RMAN duplicate database, 355
RMAN REPORT SCHEMA command, 553
RMAN restore and recovery

complete recovery (see Complete recovery)
control file

autobackup, 560
recovery catalog, 560
specific backup piece file, 561

Data Recovery Advisor
change failure, 545
listing failure, 543
repairing failure, 544
suggesting corrective action, 543

DBA, 539
flashback table feature

recycle bin feature, 568
RESTORE POINT, 570
SCN, 570
SHOW RECYCLEBIN statement, 569
time-consuming, 568
TIMESTAMP, 570
undo tablespace, 570

incomplete recovery
archived redo log file, 564
Data Pump dump file, 567
DBPITR, 562
log sequence-based recovery, 565
RESTORE DATABASE UNTIL command, 563
restore point, 566
SCN-based recovery, 566
SQL query, 563
steps, 562
time-based recovery, 565
TSPITR, 563
type of, 564

media recovery, 540
RECOVER command, 541
redo log file, 542

default location, 558
nondefault Location, 559

RESTORE command, 541
server, 572

building block, 573
control file restore, 576
control file aware, 577

■ index

710

copy, 574
database recover, 579
database rename, 582
data file, control file and dump/trace file, 576
data file location, 578
init.ora file creation, 575
mount mode, 576
nomount mode, 576
online redo logs, 580
open, 581
oracle binaries install, 575
originating database, 574
OS variable, 575
temp file, 581

spfile, 561
SQL*Plus, 539
steps, 542
stop/start Oracle, 546

RMAN sql command, 553
rmbw command, 600
rmsched command, 601
ROLLBACK statement, 185
Root container

connection
reporting on container space, 681
switching containers, 683
with SYSDBA privileges, 678
through network, 679
through OS authentication, 679

creating common roles, 681
creating common users, 680
displaying connection information, 679
starting/stopping, 680

ROWID data type, 158
ROWID DATA TYPE, 191
Row identifier (ROWID), 205
ROWNUM pseudocolumn, 651–652, 659
runInstaller command, 11

S���������
SALESPDB pluggable database, 522
Scheduling utility, 436–437
scp command, 21
script command, 532
SecureFile

advanced features
deduplication, 290
degrees of compression, 289
encryption feature, 291

vs. BasicFiles, 280
LOB column, 284
space, 300

SEGMENT SPACE MANAGEMENT
AUTO clause, 80

SELECT statement, 246

Sequence
autoincrementing column, 253–254
creation, 251–252
definition, 251
dropping, 256
gap-free sequences, 254
metadata, 255–256
pseudocolumns, 252–253
renaming, 256
resetting, 256–258
single/multiple sequence, 255
unique values, 254–255

service command, 619
SET_ATTRIBUTE procedure, 616
SET EDITOR command, 643
SET HOMEPATH command, 644
SET NEWNAME command, 554, 578
SET_SCHEDULER_ATTRIBUTE procedure, 615
SET SQLPROMPT command, 58
setup.exe command, 11
Shell script, 436
SHOW ALERT command, 643
SHOW ALL command, 513
SHOW command, 503
SHOW HOMES command, 644
SHUTDOWN ABORT statement, 546
SHUTDOWN command, 100, 546
SHUTDOWN IMMEDIATE statement, 45, 546
SKIP INACCESSIBLE command, 519
SKIP OFFLINE command, 519
SKIP READONLY command, 518
Smoke test, 137
Spfile, 103, 516
SPOOL LOG command, 532
SQL, 535
SQL*Plus, 227

DROP DATABASE statement, 48
Oracle database

CREATE DATABASE statement, 32, 34
data dictionary creation, 36
initialization file, 30
OFA structures, 36
OS variables, 30
TEMP tablespace, 34

Oracle listener, 39
OS variables

LD_LIBRARY_PATH, 26
manually intensive approach, 26
ORACLE_HOME, 25
ORACLE_SID, 26
oraenv file, 27–28
oraset file, 29
oratab file, 26
PATH variable, 26

password file, 40
variables, 59

■ index

711

SQL*Plus PASSWORD command, 137
SQL statement, 553
SQL TEXT column, 650
STARTUP command, 100, 546
STARTUP NOMOUNT command, 262, 560
START WITH clause, 437
startx command, 20–21
STATE column, 239
Statspack, 655
Status table, 345
STOP_JOB procedure, 616
SWITCH command, 554
SWITCH_DIR variable, 630–631
Switching containers, 683
Synonyms

creation, 248
definition, 247
dropping, 251
generates synonyms, 249
metadata, 250
public synonyms, 248–249
renaming, 250–251
types, 247
USER2’s EMP table, 247

SYS_CONTEXT function, 268
SYSDBA role, 128
SYSOPER role, 128
System administrators (SAs), 629
system partition type, 306
SYSTEM schema, 128
SYSTEM tablespace, 136
SYS vs. SYSTEM schema, 128

T������
Tables

character data type
CHAR, 156
NVARCHAR2 and NCHAR, 156
VARCHAR2, 155

constraints
checking for specific data conditions, 199
creating foreign key constraints, 197
creating primary key constraints, 194
creating unique key constraints, 196
disabling, 200
enabling, 202
NOT NULL constraint, 200
types, 194

creation
autoincrementing (identity) column, 169
avoiding redo creation, 174
compressing table data, 172
default parallel SQL execution, 171
deferred segment creation, 167
factors to be considered, 160

from a query, 176
guidelines, 162
heap-organized table, 161
index-organized tables (IOTs), 193
invisible columns, 166
read-only tables, 167
temporary table, 192
virtual columns, 164

Date/Time data type, 157
definition, 153
displaying table DDL, 182
dropping, 183
extended character types, 159
LOB data type, 159
modification

adding column, 179
altering column, 179
dropping unused column, 181
locking, 178
renaming column, 181
renaming table, 179

numeric data type, 156
RAW data type, 158
removing data from table, 185
restoring dropped table, 184
ROWID data type, 158
types, 153
viewing and adjusting high-water mark

lowering method, 190
performance-related issues, 186
readjusting, 190
rebuilding table, 190
selecting from data dictionary extents view, 189
space detecting methods, 187–188

Tablespace point-in-time recovery (TSPITR), 563
Tablespaces

ampersand variables for CREATE
TABLESPACE scripts, 81

APP user, 78
AUTOALLOCATE clause, 80
AUTOEXTEND feature, 80
best practices for creating and managing, 82
bigfile feature, 87
codes for creating, 79
CREATE TABLESPACE statement, 79
database space usage, 89
data dictionary views, 77
DBMS_METADATA package, 82
default table compression, 88
dropping, 84
EXTENT MANAGEMENT LOCAL clause, 80
human resources application, 79
inventory application, 79
logical storage objects and physical storage, 77
NOLOGGING clause, 83
objects, 77

■ index

712

offline and online data files, 91
partitions

advantage, 312
CREATE TABLESPACE statement, 309
data files, 311–312
nonpartitioned table, 310
P1_TBSP tablespace, 309
single tablespace, 310–311
storage clauses, 312

read-only mode, 84
read/write mode, 84
reasons for separate tablespaces, 79
rename, 82
resize, 90
SEGMENT SPACE MANAGEMENT AUTO clause, 80
SYSAUX tablespace, 78
SYSTEM tablespace, 78
TEMP tablespace, 78
UNDO tablespace, 78
UNIFORM SIZE [size] clause, 80
USERS tablespace, 78
using Oracle managed files, 86

TAIL option, 643
tar command, 15
TARGET parameter, 484
tar-tvf <tarfile_name> command, 15–16
tbsp_chk.bsh script, 66
telnet command, 638
Temporary table, 153
TEMPORARY TABLESPACE, 211
THRESH_GET_WORRIED variable, 630
THRESH_SPACE_CRIT variable, 630
TIMESTAMP data type, 157
tnsping command, 639
TO NONE command, 499
top.sql script, 71
Troubleshooting

automating job, 625
bottlenecks(see Bottlenecks identification)
locking issues

COMMIT/ROLLBACK, 657
KILL command, 658
OS command, 658
output, 657
space-related issue, 656
SQL statement, 656

open-cursor issues, 658
OS Watcher tool, 650
SQL statement

ADDM report, 654
ASH report, 655
AWR report, 654
diagnosing database, 653
monitoring real-time statistics, 651
Oracle performance utility, 653

Statspack, 655
V$SYSSTAT and V$SESSTAT views, 653

temporary tablespace issues
determination, 663
SQL view, 664

triaging
ADRCI utility, 643
alert log and trace files, 640
database availability, 637
nondatabase component, 637
OS tools, 642
removing files, 641

undo tablespace issues
determination, 659
SQL view, 661

Troubleshooting oracle installation issues, 14
TRUNCATE statement, 185

U���������
unalias command, 60
UNIFORM SIZE [size] clause, 80
UNION clauses, 207
Unique index, 219
Unpopulated MV, 419
UNTIL SCN clause, 566
unzip command, 9
userdel command, 7
USER_DUMP_DEST initialization

parameter, 101
USERENV namespace, 268
User-managed backups and recovery

archivelog mode database
complete recovery (see Complete recovery)
incomplete recovery (see Incomplete recovery)

cold-backup strategy (see Cold-backup strategy)
hot backup strategy (see Hot backup strategy)

usermod command, 7
USER_ROLE_PRIVS view, 150
Users, 127

ALTER USER command, 137
creation, 132

CREATE USER SQL statement, 133
INV_MGMT user, 132
OS authentication, 134
schemas, 134

DBA role, 128
DBA_USERS_WITH_DEFPWD view, 131–132
default, 127
default permanent tablespace and

temporary tablespace, 135–137
DEFAULT_PWD$ view, 130
different user logging in, 138–139
DROP USER statement, 140–141
grouping and assigning privileges, 149–150

■ index

713

limiting database resource usage, 145, 147
modifying users, 139
MV_MAINT, 129–130
object privileges, 148–149
password security, 142–143
password strength, 144–145
SQL statements, 128
SYS account, 129
SYSDBA role, 128
SYSOPER role, 128
system privileges, 147
SYSTEM schema, 128

users.sql script, 74
USERS tablespace, 548
USER_TABLES view, 260

V���������
V$CONTROLFILE_RECORD_SECTION, 99
V$CONTROLFILE view, 102
V$DATABASE_BLOCK_CORRUPTION, 527, 555–556
V$LOG_HISTORY, 111
V$SESSTAT view, 653
V$SQL_MONITOR view, 652
V$SQLSTATS view, 652
V$SYSSTAT view, 653
VALIDATE command, 526, 555
VALIDATE DATABASE command, 543

VALIDATE HEADER clause, 636
VARCHAR2 data type, 155
view command, 642
Views

creation, 237, 239
definition, 244–245
dropping, 247
INSTEAD OF triggers, 242–243
invisible column, 243–244
read-only views, 240
renaming, 246
SQL query, 245–246
updatable join view, 240, 242
updation, 239
uses, 237
WITH CHECK OPTION, 239

Virtual columns, 164
Virtual partition type, 306
VRMAN_OUTPUT view, 533

W���������
WITH CHECK OPTION, 239
WITHOUT VALIDATION clause, 330

X, Y, Z���������
xargs command, 641
xhost command, 20, 22, 24

■ index

714

Users (OSB) (cont.)

Pro Oracle Database 12c
Administration

Second Edition

Darl Kuhn

Pro Oracle Database 12c Administration

Copyright © 2013 by Darl Kuhn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5728-8

ISBN-13 (electronic): 978-1-4302-5729-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: Bernard Lopuz, Fuad Arshad, Bill Padfield
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Lisa Vecchione
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code

To Brandi, Lisa, and Heidi.

—Darl Kuhn

vii

Contents

About the Author ��� xxxiii

About the Technical Reviewers �� xxxv

Acknowledgments �� xxxvii

Introduction ��� xxxix

Chapter 1: Installing the Oracle Binaries ■ ���1

Understanding the OFA ��1

Oracle Inventory Directory ��� 3

Oracle Base Directory �� 3

Oracle Home Directory �� 3

Oracle Network Files Directory �� 4

Automatic Diagnostic Repository �� 4

Installing Oracle ��5

Step 1� Create the OS Groups and User ��� 5

Step 2� Ensure That the OS Is Adequately Configured ��� 7

Step 3� Obtain the Oracle Installation Software ��� 8

Step 4� Unzip the Files ��� 8

Step 5: Creating oraInst�loc File ��� 9

Step 6� Configure the Response File, and Run the Installer ��� 10

Step 7� Troubleshoot Any Issues �� 13

Installing with a Copy of an Existing Installation ���14

Step 1� Copy the Binaries, Using an OS Utility ��� 15

Step 2� Attach the Oracle Home ��� 16

■ Contents

viii

Upgrading Oracle Software ���17

Reinstalling After Failed Installation ��18

Applying Interim Patches ��18

Installing Remotely with the Graphical Installer ��19

Step 1� Install X Software and Networking Utilities on the Local PC ��� 20

Step 2� Start an X Session on the Local Computer �� 21

Step 3� Copy the Oracle Installation Media to the Remote Server ��� 21

Step 4� Run the xhost Command ��� 22

Step 5� Log In to the Remote Computer from X ��� 22

Step 6� Ensure that the DISPLAY Variable Is Set Correctly on the Remote Computer �� 22

Step 7� Execute the runInstaller Utility �� 23

Step 8� Troubleshoot �� 24

Summary ���24

Chapter 2: Implementing a Database ■ ��25

Setting OS Variables ��25

A Manually Intensive Approach ��� 26

Oracle’s Approach to Setting OS Variables �� 26

My Approach to Setting OS Variables �� 28

Creating a Database ��29

Step 1� Set the OS Variables �� 30

Step 2: Configure the Initialization File �� 30

Step 3: Create the Required Directories �� 32

Step 4: Create the Database �� 32

Step 5� Create a Data Dictionary ��� 36

Configuring and Implementing the Listener ��37

Manually Configuring a Listener �� 37

Implementing a Listener with the Net Configuration Assistant ��� 39

Connecting to a Database through the Network �� 39

Creating a Password File ���40

■ Contents

ix

Starting and Stopping the Database ���41

Understanding OS Authentication �� 42

Starting the Database �� 42

Stopping the Database �� 45

Using the dbca to Create a Database ��46

Dropping a Database ���48

How Many Databases on One Server? ��49

Understanding Oracle Architecture ���52

Summary ���53

Chapter 3: Configuring an Efficient Environment ■ ��55

Customizing Your OS Command Prompt ���56

Customizing Your SQL Prompt ���58

Creating Shortcuts for Frequently Used Commands ���59

Using Aliases ��� 59

Using a Function �� 60

Rerunning Commands Quickly ��62

Scrolling with the Up and Down Arrow Keys ��� 62

Using Ctrl+P and Ctrl+N �� 62

Listing the Command History �� 63

Searching in Reverse ��� 63

Setting the Command Editor �� 63

Developing Standard Scripts ���64

dba_setup �� 65

dba_fcns �� 65

tbsp_chk�bsh ��� 66

conn�bsh �� 68

filesp�bsh ��� 69

login�sql ��� 71

top�sql �� 71

lock�sql �� 72

users�sql �� 74

■ Contents

x

Organizing Scripts ���74

Step 1: Create Directories ��� 75

Step 2: Copy Files to Directories �� 75

Step 3: Configure the Startup File�� 75

Summary ���76

Chapter 4: Tablespaces and Data Files ■ ��77

Understanding the First Five ���78

Understanding the Need for More ���78

Creating Tablespaces ��79

Renaming a Tablespace ��82

Controlling the Generation of Redo ���83

Changing a Tablespace’s Write Mode ��84

Dropping a Tablespace ��84

Using Oracle Managed Files ��86

Creating a Bigfile Tablespace ���87

Enabling Default Table Compression within a Tablespace ��88

Displaying Tablespace Size ���89

Altering Tablespace Size ���90

Toggling Data Files Offline and Online ���91

Renaming or Relocating a Data File ��93

Performing Online Data File Operations �� 93

Performing Offline Data File Operations �� 94

Summary ���98

Chapter 5: Managing Control Files, Online Redo Logs, and Archiving ■ �����������������������������99

Managing Control Files��99

Viewing Control File Names and Locations ��� 102

Adding a Control File ��� 102

Moving a Control File ��� 105

Removing a Control File ��� 106

■ Contents

xi

Managing Online Redo Logs ��106

Displaying Online Redo Log Information �� 109

Determining the Optimal Size of Online Redo Log Groups �� 110

Determining the Optimal Number of Redo Log Groups�� 112

Adding Online Redo Log Groups �� 113

Resizing and Dropping Online Redo Log Groups ��� 114

Adding Online Redo Log Files to a Group �� 115

Removing Online Redo Log Files from a Group ��� 115

Moving or Renaming Redo Log Files ��� 116

Implementing Archivelog Mode ���117

Making Architectural Decisions ��� 117

Setting the Archive Redo File Location �� 118

Thinking “Un-Oraclethodox” FRA Thoughts ��� 122

Enabling Archivelog Mode ��� 123

Disabling Archivelog Mode �� 123

Reacting to a Lack of Disk Space in Your Archive Log Destination �� 124

Backing Up Archive Redo Log Files ��� 125

Summary ���125

Chapter 6: Users and Basic Security ■ ���127

Managing Default Users ��127

Locking Accounts and Expiring Passwords ��� 128

Identifying DBA-Created Accounts ��� 130

Checking Default Passwords ��� 131

Creating Users ���132

Choosing a Username and Authentication Method �� 132

Assigning Default Permanent and Temporary Tablespaces ��� 135

Modifying Passwords ��137

Logging In as a Different User ���138

Modifying Users ��139

Dropping Users ��140

■ Contents

xii

Enforcing Password Security and Resource Limits ���141

Basic Password Security ��� 142

Password Strength �� 144

Limiting Database Resource Usage ��� 145

Managing Privileges ��147

Assigning Database System Privileges�� 147

Assigning Database Object Privileges ��� 148

Grouping and Assigning Privileges �� 149

Summary ���151

Chapter 7: Tables and Constraints ■ ���153

Understanding Table Types ��153

Understanding Data Types ���154

Character ��� 155

Numeric ��� 156

Date/Time �� 157

RAW ��� 158

ROWID �� 158

LOB �� 159

Extended Character Types ��� 159

Creating a Table ���160

Creating a Heap-Organized Table �� 161

Implementing Virtual Columns ��� 164

Implementing Invisible Columns ��� 166

Making Read-Only Tables �� 167

Understanding Deferred Segment Creation ��� 167

Creating a Table with an Autoincrementing (Identity) Column ��� 169

Allowing for Default Parallel SQL Execution �� 171

Compressing Table Data �� 172

Avoiding Redo Creation ��� 174

Creating a Table from a Query ��� 176

■ Contents

xiii

Modifying a Table ��178

Obtaining the Needed Lock ��� 178

Renaming a Table �� 179

Adding a Column ��� 179

Altering a Column �� 179

Renaming a Column �� 181

Dropping a Column �� 181

Displaying Table DDL ���182

Dropping a Table ��183

Undropping a Table ��184

Removing Data from a Table ���185

Using DELETE �� 185

Using TRUNCATE �� 185

Viewing and Adjusting the High-Water Mark���186

You need to be aware of a couple of performance-related issues regarding the
high-water mark ���186

Tracing to Detect Space Below the High-Water Mark ��� 187

Using DBMS_SPACE to Detect Space Below the High-Water Mark ��� 188

Selecting from Data Dictionary Extents View �� 189

Lowering the High-Water Mark ��� 190

Creating a Temporary Table ���192

Creating an Index-Organized Table ���193

Managing Constraints ���194

Creating Primary Key Constraints �� 194

Enforcing Unique Key Values ��� 196

Creating Foreign Key Constraints �� 197

Checking for Specific Data Conditions �� 199

Enforcing Not Null Conditions �� 200

Disabling Constraints ��� 200

Enabling Constraints �� 202

Summary ���204

■ Contents

xiv

Chapter 8: Indexes ■ ���205

Deciding When to Create an Index ��206

Proactively Creating Indexes ��� 206

Reactively Creating Indexes �� 206

Planning for Robustness ���207

Determining Which Type of Index to Use ��� 208

Estimating the Size of an Index Before Creation ��� 209

Creating Separate Tablespaces for Indexes ��� 211

Creating Portable Scripts ��� 213

Establishing Naming Standards��� 213

Creating Indexes��214

Creating B-tree Indexes ��� 214

Creating Concatenated Indexes ��� 217

Implementing Function-Based Indexes ��� 218

Creating Unique Indexes �� 219

Implementing Bitmap Indexes ��� 220

Creating Bitmap Join Indexes �� 221

Implementing Reverse-Key Indexes �� 222

Creating Key-Compressed Indexes �� 223

Parallelizing Index Creation ��� 223

Avoiding Redo Generation When Creating an Index ��� 224

Implementing Invisible Indexes ��� 224

Maintaining Indexes ��226

Renaming an Index �� 226

Displaying Code to Recreate an Index ��� 227

Rebuilding an Index ��� 227

Making Indexes Unusable �� 228

Monitoring Index Usage ��� 229

Dropping an Index ��� 230

■ Contents

xv

Indexing Foreign Key Columns ��230

Implementing an Index on a Foreign Key Column ��� 231

Determining if Foreign Key Columns Are Indexed ��� 232

Summary ���234

Chapter 9: Views, Synonyms, and Sequences ■ ���237

Implementing Views ��237

Creating a View �� 237

Checking Updates �� 239

Creating Read-Only Views ��� 240

Updatable Join Views �� 240

Creating an INSTEAD OF Trigger �� 242

Implementing an Invisible Column �� 243

Modifying a View Definition ��� 244

Displaying the SQL Used to Create a View ��� 245

Renaming a View ��� 246

Dropping a View ��� 247

Managing Synonyms ���247

Creating a Synonym �� 248

Creating Public Synonyms ��� 248

Dynamically Generating Synonyms ��� 249

Displaying Synonym Metadata �� 250

Renaming a Synonym �� 250

Dropping a Synonym ��� 251

Managing Sequences ��251

Creating a Sequence ��� 251

Using Sequence Pseudocolumns �� 252

Autoincrementing Columns ��� 253

Implementing Multiple Sequences That Generate Unique Values ��� 254

Creating One Sequence or Many ��� 255

Viewing Sequence Metadata ��� 255

Renaming a Sequence ��� 256

■ Contents

xvi

Dropping a Sequence �� 256

Resetting a Sequence �� 256

Summary ���258

Chapter 10: Data Dictionary Fundamentals ■ ���259

Data Dictionary Architecture ���259

Static Views ��� 260

Dynamic Performance Views ��� 262

A Different View of Metadata���263

A Few Creative Uses of the Data Dictionary ��266

Derivable Documentation �� 266

Displaying User Information �� 267

Displaying Table Row Counts ��� 270

Showing Primary Key and Foreign Key Relationships ��� 272

Displaying Object Dependencies ��� 273

Summary ���275

Chapter 11: Large Objects ■ ���277

Describing LOB Types ��277

Illustrating LOB Locators, Indexes, and Chunks ��278

Distinguishing Between BasicFiles and SecureFiles ���280

BasicFiles �� 280

SecureFiles �� 280

Creating a Table with a LOB Column ���281

Creating a BasicFiles LOB Column �� 281

Implementing a LOB in a Specific Tablespace ��� 283

Creating a SecureFiles LOB Column �� 284

Implementing a Partitioned LOB �� 285

Maintaining LOB Columns ���286

Moving a LOB Column ��� 286

Adding a LOB Column �� 287

Removing a LOB Column ��� 287

■ Contents

xvii

Caching LOBs��� 287

Storing LOBs In- and Out of Line ��� 288

Implementing SecureFiles Advanced Features ���289

Compressing LOBs �� 289

Deduplicating LOBs ��� 290

Encrypting LOBs �� 291

Migrating BasicFiles to SecureFiles �� 293

Loading LOBs ��296

Loading a CLOB ��� 296

Loading a BLOB ��� 298

Measuring LOB Space Consumed ���299

BasicFiles Space Used��� 299

SecureFiles Space Used �� 300

Reading BFILEs ���301

Summary ���302

Chapter 12: Partitioning: Divide and Conquer ■ ���303

What Tables Should Be Partitioned? ��304

Creating Partitioned Tables ���305

Partitioning by Range �� 306

Placing Partitions in Tablespaces �� 309

Partitioning by List ��� 313

Partitioning by Hash �� 313

Blending Different Partitioning Methods ��� 314

Creating Partitions on Demand �� 316

Partitioning to Match a Parent Table �� 319

Partitioning on a Virtual Column �� 322

Giving an Application Control over Partitioning ��� 322

Maintaining Partitions ���323

Viewing Partition Metadata ��� 323

Moving a Partition �� 324

Automatically Moving Updated Rows �� 325

■ Contents

xviii

Partitioning an Existing Table �� 326

Adding a Partition �� 327

Exchanging a Partition with an Existing Table ��� 329

Renaming a Partition ��� 330

Splitting a Partition �� 331

Merging Partitions ��� 331

Dropping a Partition ��� 332

Generating Statistics for a Partition ��� 333

Removing Rows from a Partition ��� 334

Manipulating Data Within a Partition ��� 335

Partitioning Indexes ���335

Partitioning an Index to Follow Its Table �� 335

Partitioning an Index Differently from Its Table ��� 338

Partial Indexes ��� 340

Partition Pruning ���341

Summary ���342

Chapter 13: Data Pump ■ ��343

Data Pump Architecture ��344

Getting Started ��346

Taking an Export �� 347

Importing a Table ��� 349

Using a Parameter File �� 349

Exporting and Importing with Granularity ���350

Exporting and Importing an Entire Database ��� 350

Schema Level �� 352

Table Level ��� 353

Tablespace Level ��� 353

Transferring Data ���354

Exporting and Importing Directly Across the Network ��� 354

Copying Data Files ��� 356

■ Contents

xix

Features for Manipulating Storage ��358

Exporting Tablespace Metadata ��� 358

Specifying Different Data File Paths and Names ��� 358

Importing into a Tablespace Different from the Original �� 359

Changing the Size of Data Files ��� 359

Changing Segment and Storage Attributes ��� 360

Filtering Data and Objects ���360

Specifying a Query �� 361

Exporting a Percentage of the Data ��� 362

Excluding Objects from the Export File �� 362

Excluding Statistics ��� 363

Including Only Specific Objects in an Export File �� 364

Exporting Table, Index, Constraint, and Trigger DDL �� 364

Excluding Objects from Import �� 364

Including Objects in Import �� 365

Common Data Pump Tasks ��365

Estimating the Size of Export Jobs �� 365

Listing the Contents of Dump Files �� 366

Cloning a User ��� 366

Creating a Consistent Export ��� 367

Importing When Objects Already Exist ��� 368

Renaming a Table �� 369

Remapping Data �� 370

Suppressing a Log File �� 371

Using Parallelism ��� 371

Specifying Additional Dump Files �� 372

Reusing Output File Names ��� 372

Creating a Daily DDL File ��� 373

Compressing Output �� 374

Changing Table Compression Characteristics on Import ��� 374

Encrypting Data ��� 375

■ Contents

xx

Exporting Views As Tables ��� 375

Disabling Logging of Redo on Import �� 376

Interactive Command Mode ��376

Entering Interactive Command Mode �� 376

Attaching to a Running Job ��� 378

Stopping and Restarting a Job �� 379

Terminating a Data Pump Job ��� 379

Monitoring Data Pump Jobs ��380

Data Pump Log File�� 380

Data Dictionary Views �� 380

Database Alert Log �� 381

Status Table ��� 381

Interactive Command Mode Status ��� 381

OS Utilities ��� 382

Data Pump Legacy Mode ���382

Data Pump Mapping to the exp Utility ��� 383

Data Pump Mapping to the imp Utility ��� 384

Summary ���385

Chapter 14: External Tables ■ ���387

SQL*Loader vs� External Tables ���387

Loading CSV Files into the Database ���388

Creating a Directory Object and Granting Access �� 389

Creating an External Table ��� 390

Generating SQL to Create an External Table �� 391

Viewing External Table Metadata��� 392

Loading a Regular Table from the External Table �� 393

Performing Advanced Transformations ���394

Viewing Text Files from SQL ��396

■ Contents

xxi

Unloading and Loading Data Using an External Table ���397

Enabling Parallelism to Reduce Elapsed Time ��� 400

Compressing a Dump File �� 400

Encrypting a Dump File ��� 401

Summary ���402

Chapter 15: Materialized Views ■ ���403

Understanding MVs ���403

MV Terminology ��� 405

Referencing Useful Views �� 405

Creating Basic Materialized Views ��406

Creating a Complete Refreshable MV �� 406

Creating a Fast Refreshable MV �� 410

Going Beyond the Basics ���414

Creating MVs and Specifying Tablespace for MVs and Indexes �� 414

Creating Indexes on MVs ��� 415

Partitioning MVs �� 416

Compressing an MV ��� 416

Encrypting MV Columns��� 417

Building an MV on a Prebuilt Table �� 418

Creating an Unpopulated MV ��� 419

Creating an MV Refreshed on Commit ��� 419

Creating a Never Refreshable MV �� 420

Creating MVs for Query Rewrite �� 420

Creating a Fast Refreshable MV Based on a Complex Query �� 421

Viewing MV DDL �� 424

Dropping an MV ��� 424

Modifying MVs ���425

Modifying Base Table DDL and Propagating to MVs �� 425

Toggling Redo Logging on an MV �� 428

Altering Parallelism ��� 429

Moving an MV �� 429

■ Contents

xxii

Managing MV Logs ��430

Creating an MV Log ��� 430

Indexing MV Log Columns ��� 432

Viewing Space Used by an MV Log �� 432

Shrinking the Space in an MV Log ��� 432

Checking the Row Count of an MV Log �� 433

Moving an MV Log ��� 433

Dropping an MV Log �� 434

Refreshing MVs ���435

Manually Refreshing MVs from SQL*Plus �� 435

Automating Refreshes, Using a Shell Script and Scheduling Utility �� 436

Creating an MV with a Refresh Interval ��� 437

Efficiently Performing a Complete Refresh �� 438

Handling the ORA-12034 Error �� 439

Monitoring MV Refreshes ��439

Viewing MVs’ Last Refresh Times �� 440

Determining Whether a Refresh Is in Progress �� 440

Monitoring Real-Time Refresh Progress �� 440

Checking Whether MVs Are Refreshing Within a Time Period�� 441

Creating Remote MV Refreshes���442

Understanding Remote-Refresh Architectures �� 443

Viewing MV Base Table Information �� 444

Determining How Many MVs Reference a Central MV Log �� 444

Managing MVs in Groups ��446

Creating an MV Group �� 447

Altering an MV Refresh Group ��� 447

Refreshing an MV Group �� 448

DBMS_MVIEW vs� DBMS_REFRESH �� 448

Determining MVs in a Group �� 448

Adding an MV to a Refresh Group �� 449

■ Contents

xxiii

Removing MVs from a Refresh Group �� 449

Dropping an MV Refresh Group ��� 449

Summary ���450

Chapter 16: User-Managed Backup and Recovery ■ ��451

Implementing a Cold-Backup Strategy for a Noarchivelog Mode Database �����������������������������452

Making a Cold Backup of a Noarchivelog Mode Database �� 452

Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs ��� 454

Restoring a Cold Backup in Noarchivelog Mode Without Online Redo Logs �� 455

Scripting a Cold Backup and Restore �� 456

Making a Cold Backup of an Archivelog Mode Database ��459

Implementing a Hot Backup Strategy ��460

Making a Hot Backup �� 460

Scripting Hot Backups ��� 463

Understanding the Split-Block Issue ��� 466

Understanding the Need for Redo Generated During Backup ��� 468

Understanding that Data Files are Updated ��� 469

Performing a Complete Recovery of an Archivelog Mode Database ���470

Restoring and Recovering with the Database Offline �� 471

Restoring and Recovering with a Database Online�� 474

Restoring Control Files �� 475

Performing an Incomplete Recovery of an Archivelog Mode Database�������������������������������������479

Summary ���481

Chapter 17: Configuring RMAN ■ ��483

Understanding RMAN ��484

Starting RMAN ���486

RMAN Architectural Decisions ���488

Running the RMAN Client Remotely or Locally �� 490

Specifying the Backup User��� 491

Using Online or Offline Backups �� 491

Setting the Archive Redo Log Destination and File Format ��� 491

■ Contents

xxiv

Configuring the RMAN Backup Location and File Format �� 492

Setting the Autobackup of the Control File �� 494

Specifying the Location of the Autobackup of the Control File �� 495

Backing Up Archive Redo Logs �� 495

Determining the Location for the Snapshot Control File �� 496

Using a Recovery Catalog �� 497

Using a Media Manager ��� 497

Setting the CONTROL_FILE_RECORD_KEEP_TIME Initialization Parameter �� 498

Configuring RMAN’s Backup Retention Policy ��� 498

Configuring the Archive Redo Logs’ Deletion Policy �� 500

Setting the Degree of Parallelism �� 500

Using Backup Sets or Image Copies �� 501

Using Incremental Backups ��� 502

Using Incrementally Updated Backups �� 502

Using Block Change Tracking �� 503

Configuring Binary Compression ��� 503

Configuring Encryption �� 504

Configuring Miscellaneous Settings �� 505

Configuring Informational Output �� 506

Segueing from Decision to Action ���507

Summary ���510

Chapter 18: RMAN Backups and Reporting ■ ���511

Preparing to Run RMAN Backup Commands ���512

Setting NLS_DATE_FORMAT �� 512

Setting ECHO Setting ECHO ��� 513

Showing Variables ��� 513

Running Backups ��513

Backing Up the Entire Database �� 513

Backing Up Tablespaces �� 515

Backing Up Data Files �� 515

Backing Up the Control File ��� 516

■ Contents

xxv

Backing up the spfile ��� 516

Backing Up Archive Redo Logs �� 516

Backing Up FRA ��� 517

Excluding Tablespaces from Backups ��� 518

Backing Up Data Files Not Backed Up ��� 518

Skipping Read-Only Tablespaces �� 518

Skipping Offline or Inaccessible Files �� 519

Backing Up Large Files in Parallel ��� 520

Adding RMAN Backup Information to the Repository �� 520

Taking Backups of Pluggable Databases ��521

While Connected to the Root Container ��� 521

While Connected to a Pluggable Database �� 522

Creating Incremental Backups ��523

Taking Incremental-Level Backups�� 523

Making Incrementally Updating Backups �� 524

Using Block Change Tracking �� 525

Checking for Corruption in Data Files and Backups ��526

Using VALIDATE �� 526

Using BACKUP…VALIDATE �� 527

Using RESTORE…VALIDATE ��� 527

Using a Recovery Catalog ��528

Creating a Recovery Catalog ��� 528

Registering a Target Database ��� 529

Backing Up the Recovery Catalog�� 530

Synchronizing the Recovery Catalog ��� 530

Recovery Catalog Versions �� 530

Dropping a Recovery Catalog �� 530

Logging RMAN Output ���531

Redirecting Output to a File ��� 531

Capturing Output with Linux/Unix Logging Commands ��� 531

■ Contents

xxvi

Logging Output to a File �� 532

Querying for Output in the Data Dictionary �� 533

RMAN Reporting ��533

Using LIST �� 533

Using REPORT �� 534

Using SQL �� 535

Summary ���538

Chapter 19: RMAN Restore and Recovery ■ ���539

Determining if Media Recovery Is Required ��540

Determining What to Restore ��541

How the Process Works ��� 541

Using Data Recovery Advisor ��� 542

Using RMAN to Stop/Start Oracle ��546

Shutting Down ��� 546

Starting Up ��� 546

Complete Recovery ���547

Testing Restore and Recovery ��� 547

Restoring and Recovering the Entire Database ��� 549

Restoring and Recovering Tablespaces ��� 550

Restoring Read-Only Tablespaces ��� 551

Restoring Temporary Tablespaces ��� 552

Restoring and Recovering Data Files ��� 552

Restoring Data Files to Nondefault Locations �� 554

Performing Block-Level Recovery ��� 555

Restoring a Container Database and Its Associated Pluggable Databases ��� 556

Restoring Archive Redo Log Files ��558

Restoring to the Default Location �� 558

Restoring to a Nondefault Location ��� 559

■ Contents

xxvii

Restoring a Control File ���559

Using a Recovery Catalog �� 560

Using an Autobackup ��� 560

Specifying a Backup File Name ��� 561

Restoring the spfile ���561

Incomplete Recovery ���562

Determining the Type of Incomplete Recovery �� 564

Performing Time-Based Recovery ��� 565

Performing Log Sequence-Based Recovery �� 565

Performing SCN-Based Recovery �� 566

Restoring to a Restore Point �� 566

Restoring Tables to a Previous Point ��� 567

Flashing Back a Table ��568

FLASHBACK TABLE TO BEFORE DROP �� 568

Flashing Back a Table to a Previous Point in Time ��� 569

Flashing Back a Database ���571

Restoring and Recovering to Different Server ���572

Step 1� Create an RMAN Backup on the Originating Database �� 574

Step 2� Copy the RMAN Backup to the Destination Server �� 574

Step 3� Ensure That Oracle Is Installed �� 575

Step 4� Source the Required OS Variables ��� 575

Step 5� Create an init�ora File for the Database to Be Restored �� 575

Step 6� Create Any Required Directories for Data Files, Control Files, and Dump/Trace Files ��������������������������� 576

Step 7� Start Up the Database in Nomount Mode �� 576

Step 8� Restore the Control File from the RMAN Backup��� 576

Step 9� Start Up the Database in Mount Mode �� 576

Step 10� Make the Control File Aware of the Location of the RMAN Backups ��� 577

Step 11� Rename and Restore the Data Files to Reflect New Directory Locations �� 577

Step 12� Recover the Database ��� 579

Step 13� Set the New Location for the Online Redo Logs �� 580

Step 14� Open the Database �� 581

■ Contents

xxviii

Step 15� Add the Temp File �� 581

Step 16� Rename the Database ��� 582

Summary ���584

Chapter 20: Oracle Secure Backup ■ ��585

OSB Editions and Features ��585

OSB Terminology ���586

OSB Administrative Domain and Servers��� 586

OSB Interfaces ��� 587

OSB Users and Classes �� 588

OSB Daemons �� 588

Download and Installation ���588

Command-Line Access to OSB ��592

OSB Configuration ���592

Configuring Users and Classes �� 593

Configuring Media Families ��� 594

Configuring Database Backup Storage Selector �� 595

Database Backup ��596

Database Restore ��597

Filesystem Backup ��598

Creating Data Set Files �� 598

Configuring Backup Windows �� 599

Configuring Backup Schedules and Triggers ��� 600

Performing On-Demand Filesystem Backups �� 601

Filesystem Restore ��602

Performing Catalog-Based Restore ��� 602

Performing a Raw Restore ��� 602

Performing an obtar Restore ��� 603

■ Contents

xxix

OSB Job Monitoring ���604

Listing Jobs ��� 604

Showing Job Transcripts ��� 606

Monitoring OSB Logs ��� 607

Virtual Test Devices ���608

Oracle Database Backup in the Cloud ���609

OSB Software Upgrades ��611

Summary ���612

Chapter 21: Automating Jobs ■ ��613

Automating Jobs with Oracle Scheduler ���614

Creating and Scheduling a Job �� 614

Viewing Job Details ��� 615

Modifying Job Logging History �� 615

Modifying a Job ��� 616

Stopping a Job ��� 616

Disabling a Job �� 616

Enabling a Job ��� 616

Copying a Job �� 617

Running a Job Manually �� 617

Deleting a Job �� 617

Oracle Scheduler vs� cron ���618

Automating Jobs via cron ��618

How cron Works ��� 619

Enabling Access to cron �� 620

Understanding cron Table Entries �� 621

Scheduling a Job to Run Automatically ��� 622

Redirecting cron Output ��� 624

Troubleshooting cron ��� 625

Examples of Automated DBA Jobs ��626

Starting and Stopping the Database and Listener ��� 626

Checking for Archive Redo Destination Fullness ��� 630

■ Contents

xxx

Truncating Large Log Files �� 631

Checking for Locked Production Accounts �� 632

Checking for Files Older Than a Certain Age ��� 633

Checking for Too Many Processes ��� 634

Verifying the Integrity of RMAN Backups ��� 635

Summary ���636

Chapter 22: Database Troubleshooting ■ ��637

Quickly Triaging ���637

Checking Database Availability �� 637

Investigating Disk Fullness �� 639

Inspecting the Alert Log ��� 642

Identifying Bottlenecks via OS Utilities ��644

Identifying System Bottlenecks ��� 645

Mapping an Operating System Process to an SQL Statement ��� 648

Finding Resource-Intensive SQL Statements ��651

Monitoring Real-Time SQL Execution Statistics �� 651

Running Oracle Diagnostic Utilities ��� 653

Detecting and Resolving Locking Issues ���656

Resolving Open-Cursor Issues ��658

Troubleshooting Undo Tablespace Issues ��659

Determining if Undo Is Correctly Sized �� 659

Viewing SQL That Is Consuming Undo Space �� 661

Handling Temporary Tablespace Issues ��662

Determining if Temporary Tablespace Is Sized Correctly ��� 663

Viewing SQL That Is Consuming Temporary Space ��� 664

Summary ���665

■ Contents

xxxi

Chapter 23: Pluggable Databases ■ ���667

Understanding Pluggable Architecture ��668

Paradigm Shift ��� 671

B&R Implications ��� 672

Tuning Nuances ��� 672

Creating a CDB ��673

Creating Manually with SQL �� 673

Using the DBCA �� 675

Generating CDB Create Scripts via DBCA �� 676

Verifying that a CDB was Created �� 677

Administrating the Root Container ��678

Connecting to the Root Container �� 679

Displaying Currently Connected Container Information ��� 679

Starting/Stopping the Root Container �� 680

Creating Common Users �� 680

Creating Common Roles �� 681

Reporting on Container Space ��� 681

Switching Containers ��� 683

Creating a Pluggable Database within a CDB ��683

Cloning the Seed Database ��� 684

Cloning an Existing Pluggable Database ��� 685

Cloning from a Non-CDB Database �� 686

Unplugging a Pluggable Database from a CDB �� 688

Plugging an Unplugged Pluggable Database into a CDB ��� 689

Using the DBCA to Create a Pluggable Database from the Seed Database ��� 689

Checking the Status of Pluggable Databases �� 690

Administrating Pluggable Databases ��691

Connecting to a Pluggable Database ��� 691

Managing a Listener in a Pluggable Database Environment ��� 691

Showing the Currently Connected Pluggable Database �� 693

Starting/Stopping a Pluggable Database ��� 693

■ Contents

xxxii

Modifying Initialization Parameters Specific to a Pluggable Database ��� 694

Renaming a Pluggable Database ��� 695

Limiting the Amount of Space Consumed by a Pluggable Database ��� 695

Viewing Pluggable Database History ��� 695

Dropping a Pluggable Database �� 696

Summary ���697

Index ���699

xxxiii

About the Author

Darl Kuhn is currently a database administrator working for Oracle
Corporation. He has written books on a variety of IT topics, including SQL,
performance tuning, Linux, backup and recovery, Oracle Recovery Manager,
and database administration. Darl also teaches Oracle classes at Regis
University and does volunteer work for the Rocky Mountain Oracle Users Group.

xxxv

About the Technical Reviewers

Fuad Arshad has been a database administrator for more than 16 years. He has
experience in all aspects of the Oracle database, from management to tuning, and
is an Oracle Certified Expert. He frequently blogs about Oracle
(http://www.fuadarshad.com) as well as participating in online forums and social
media (http://www.twitter.com/fuadar). Fuad has presented at the conferences
Collaborate and Oracle OpenWorld on topics ranging from Oracle Real Application
Clusters to Oracle Database Appliance. Fuad currently works for a Fortune 500
company. He lives in Lindenhurst, Illinois, with his family.

Bernard Lopuz is a senior principal technical support analyst at Oracle
Corporation since 2001, and he is an Oracle Certified Professional (OCP). Before he
became an Oracle DBA, he was a programmer developing Unisys Linc and Oracle
applications, as well as interactive voice response (IVR) applications such as
telephone banking voice-processing applications. Bernard was coauthor of the
Linux Recipes for Oracle DBAs (Apress, 2008) and technical reviewer of three other
books, namely, Oracle RMAN Recipes (Apress, 2007), Pro Oracle Database 11g
Administration (Apress, 2010), and Pro Oracle SQL (Apress, 2010). He has a
bachelor’s degree in computer engineering from the Mapúa Institute of Technology
in Manila, Philippines. Bernard was born in Iligan, Philippines, and now resides in
Ottawa, Canada, with his wife, Leizle, and daughters, Juliet and Carol. Aside from
tinkering with computers, Bernard is a soccer and basketball fanatic.

Bill Padfield is an Oracle Certified Professional, working as a senior database
administrator for a large telecommunications company in Denver, Colorado. Bill
helps administer and manage a data warehouse environment consisting of more
than 100 databases. He has been an Oracle database administrator for more than
16 years and has worked in the IT industry since 1985. Bill also teaches graduate
database courses at Regis University. He presently resides in Aurora, Colorado, with
his wife, Oyuna, and son, Evan.

http://www.fuadarshad.com
http://www.twitter.com/fuadar

xxxvii

Acknowledgments

Special thanks go to Jonathan Gennick. His vision and keen organizational and writing skills have made this
book a much greater sum than its parts. A big thank-you to Bernard Lopuz, who made countless suggestions and
modifications that contributed tremendously to the quality of the final product. Bernard also authored Chapter 20,
on Oracle Secure Backup. Thanks also to Fuad Arshad, who provided a technical review of several chapters to help
keep us on schedule. I would like to thank as well the coordinating editor, Kevin Shea; the copy editor, Lisa Vecchione;
and the entire Apress production team.

Finally, my thanks to the numerous database administrators, system administrators, and developers from whom
I’ve learned database administration techniques over the years: Roger Murphy, Bob Suehrstedt, Scott Schulze,
Dave Jennings, Pete Mullineaux, Shawn Heisdorffer, Tim Gorman, Sujit Pattanaik, Ken Toney, Janet Bacon,
Sue Wagner, Doug Davis, Ken Roberts, Mehran Sowdaey, Dan Fink, Steve Roughton, Barb Sannwald,
Andy Brown, Guido Handley, Nehru Kaja, Tim Colbert, Patrick Gates, Bill Padfield, Bob Mason, Glenn Balanoff,
Ravi Narayanaswamy, Kevin Bayer, Abdul Ebadi, Kevin Hoyt, Trent Sherman, Sandra Montijo, Sean Best,
Roy Backstrom, Mohan Koneru, John Lilly, Todd Wichers, Mike Tanaka, Will Thornburg, Ashley Jackson, Aaron Isom,
Carson Vowles, Kevin Cook, Doug Cushing, Jeff Sherard, Liz Brill, Greg Roberts, Debbie Earman, Ennio Murroni,
Beth Loker, Bob Sell, Mike O’Neill, Tom Wheltle, Gabor Gyurovszky, Gary Smith, Mark Lutze, and Jim Stark.

—Darl Kuhn

	Pro Oracle Database 12c Administration
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Installing the Oracle Binaries
	Understanding the OFA
	Oracle Inventory Directory
	Oracle Base Directory
	Oracle Home Directory
	Oracle Network Files Directory
	Automatic Diagnostic Repository

	Installing Oracle
	Step 1. Create the OS Groups and User
	Step 2. Ensure That the OS Is Adequately Configured
	Step 3. Obtain the Oracle Installation Software
	Step 4. Unzip the Files
	Step 5: Creating oraInst.loc File
	Step 6. Configure the Response File, and Run the Installer
	Oracle Database 11g Release 2 Scenario
	Oracle Database 12c Release 1 Scenario

	Step 7. Troubleshoot Any Issues

	Installing with a Copy of an Existing Installation
	Step 1. Copy the Binaries, Using an OS Utility
	Step 2. Attach the Oracle Home

	Upgrading Oracle Software
	Reinstalling After Failed Installation
	Applying Interim Patches
	Installing Remotely with the Graphical Installer
	Step 1. Install X Software and Networking Utilities on the Local PC
	Step 2. Start an X Session on the Local Computer
	Step 3. Copy the Oracle Installation Media to the Remote Server
	Step 4. Run the xhost Command
	Step 5. Log In to the Remote Computer from X
	Step 6. Ensure that the DISPLAY Variable Is Set Correctly on the Remote Computer
	Step 7. Execute the runInstaller Utility
	Step 8. Troubleshoot

	Summary

	Chapter 2: Implementing a Database
	Setting OS Variables
	A Manually Intensive Approach
	Oracle’s Approach to Setting OS Variables
	Understanding oratab
	Using oraenv

	My Approach to Setting OS Variables

	Creating a Database
	Step 1. Set the OS Variables
	Step 2: Configure the Initialization File
	Step 3: Create the Required Directories
	Step 4: Create the Database
	Step 5. Create a Data Dictionary

	Configuring and Implementing the Listener
	Manually Configuring a Listener
	Implementing a Listener with the Net Configuration Assistant
	Connecting to a Database through the Network

	Creating a Password File
	Starting and Stopping the Database
	Understanding OS Authentication
	Starting the Database
	Stopping the Database

	Using the dbca to Create a Database
	Dropping a Database
	How Many Databases on One Server?
	Understanding Oracle Architecture
	Summary

	Chapter 3: Configuring an Efficient Environment
	Customizing Your OS Command Prompt
	Customizing Your SQL Prompt
	Creating Shortcuts for Frequently Used Commands
	Using Aliases
	Using a Function

	Rerunning Commands Quickly
	Scrolling with the Up and Down Arrow Keys
	Using Ctrl+P and Ctrl+N
	Listing the Command History
	Searching in Reverse
	Setting the Command Editor

	Developing Standard Scripts
	dba_setup
	dba_fcns
	tbsp_chk.bsh
	conn.bsh
	filesp.bsh
	login.sql
	top.sql
	lock.sql
	users.sql

	Organizing Scripts
	Step 1: Create Directories
	Step 2: Copy Files to Directories
	Step 3: Configure the Startup File

	Summary

	Chapter 4: Tablespaces and Data Files
	Understanding the First Five
	Understanding the Need for More
	Creating Tablespaces
	Renaming a Tablespace
	Controlling the Generation of Redo
	Changing a Tablespace’s Write Mode
	Dropping a Tablespace
	Using Oracle Managed Files
	Creating a Bigfile Tablespace
	Enabling Default Table Compression within a Tablespace
	Displaying Tablespace Size
	Altering Tablespace Size
	Toggling Data Files Offline and Online
	Renaming or Relocating a Data File
	Performing Online Data File Operations
	Performing Offline Data File Operations
	Using SQL and OS Commands
	Re-Creating the Control File and OS Commands

	Summary

	Chapter 5: Managing Control Files, Online Redo Logs, and Archiving
	Managing Control Files
	Viewing Control File Names and Locations
	Adding a Control File
	Spfile Scenario
	Init.ora Scenario

	Moving a Control File
	Removing a Control File

	Managing Online Redo Logs
	Displaying Online Redo Log Information
	Determining the Optimal Size of Online Redo Log Groups
	Determining the Optimal Number of Redo Log Groups
	Adding Online Redo Log Groups
	Resizing and Dropping Online Redo Log Groups
	Adding Online Redo Log Files to a Group
	Removing Online Redo Log Files from a Group
	Moving or Renaming Redo Log Files

	Implementing Archivelog Mode
	Making Architectural Decisions
	Setting the Archive Redo File Location
	Setting the Archive Location to a User-Defined Disk Location (non-FRA)
	Using the FRA for Archive Log Files

	Thinking “ Un-Oraclethodox” FRA Thoughts
	Enabling Archivelog Mode
	Disabling Archivelog Mode
	Reacting to a Lack of Disk Space in Your Archive Log Destination
	Backing Up Archive Redo Log Files

	Summary

	Chapter 6: Users and Basic Security
	Managing Default Users
	Locking Accounts and Expiring Passwords
	Identifying DBA-Created Accounts
	Checking Default Passwords

	Creating Users
	Choosing a Username and Authentication Method
	Creating a User with Database Authentication
	Creating a User with OS Authentication
	Understanding Schemas vs. Users

	Assigning Default Permanent and Temporary Tablespaces

	Modifying Passwords
	Logging In as a Different User
	Modifying Users
	Dropping Users
	Enforcing Password Security and Resource Limits
	Basic Password Security
	Password Strength
	Limiting Database Resource Usage

	Managing Privileges
	Assigning Database System Privileges
	Assigning Database Object Privileges
	Grouping and Assigning Privileges

	Summary

	Chapter 7: Tables and Constraints
	Understanding Table Types
	Understanding Data Types
	Character
	VARCHAR2
	CHAR
	NVARCHAR2 and NCHAR

	Numeric
	Date/Time
	RAW
	ROWID
	LOB
	Extended Character Types

	Creating a Table
	Creating a Heap-Organized Table
	Implementing Virtual Columns
	Implementing Invisible Columns
	Making Read-Only Tables
	Understanding Deferred Segment Creation
	Creating a Table with an Autoincrementing (Identity) Column
	Allowing for Default Parallel SQL Execution
	Compressing Table Data
	Avoiding Redo Creation
	Creating a Table from a Query

	Modifying a Table
	Obtaining the Needed Lock
	Renaming a Table
	Adding a Column
	Altering a Column
	Renaming a Column
	Dropping a Column

	Displaying Table DDL
	Dropping a Table
	Undropping a Table
	Removing Data from a Table
	Using DELETE
	Using TRUNCATE

	Viewing and Adjusting the High-Water Mark
	You need to be aware of a couple of performance-related issues regarding the high-water mark
	Tracing to Detect Space Below the High-Water Mark
	Using DBMS_SPACE to Detect Space Below the High-Water Mark
	Selecting from Data Dictionary Extents View
	Lowering the High-Water Mark
	Shrinking a Table
	Moving a Table

	Creating a Temporary Table
	Creating an Index-Organized Table
	Managing Constraints
	Creating Primary Key Constraints
	Enforcing Unique Key Values
	Creating Foreign Key Constraints
	Checking for Specific Data Conditions
	Enforcing Not Null Conditions
	Disabling Constraints
	Enabling Constraints

	Summary

	Chapter 8: Indexes
	Deciding When to Create an Index
	Proactively Creating Indexes
	Reactively Creating Indexes

	Planning for Robustness
	Determining Which Type of Index to Use
	Estimating the Size of an Index Before Creation
	Creating Separate Tablespaces for Indexes
	Inheriting Storage Parameters from the Tablespace
	Placing Indexes in Tablespace s, Based on Extent Size

	Creating Portable Scripts
	Establishing Naming Standards

	Creating Indexes
	Creating B-tree Index es
	Creating Concatenated Index es
	Implementing Function-Based Index es
	Creating Unique Index es
	Implementing Bitmap Index es
	Creating Bitmap Join Index es
	Implementing Reverse-Key Index es
	Creating Key-Compressed Index es
	Parallelizing Index Creation
	Avoiding Redo Generation When Creating an Index
	Implementing Invisible Index es
	Making an Existing Index Invisible
	Guaranteeing Application Behavior Is Unchanged When You Add an Index

	Maintaining Indexes
	Renaming an Index
	Displaying Code to Recreate an Index
	Rebuilding an Index
	Making Indexes Unusable
	Monitoring Index Usage
	Dropping an Index

	Indexing Foreign Key Columns
	Implementing an Index on a Foreign Key Column
	Determining if Foreign Key Columns Are Index ed

	Summary

	Chapter 9: Views, Synonyms, and Sequences
	Implementing Views
	Creating a View
	Checking Updates
	Creating Read-Only Views
	Updatable Join Views
	Creating an INSTEAD OF Trigger
	Implementing an Invisible Column
	Modifying a View Definition
	Displaying the SQL Used to Create a View
	Renaming a View
	Dropping a View

	Managing Synonyms
	Creating a Synonym
	Creating Public Synonyms
	Dynamically Generating Synonyms
	Displaying Synonym Metadata
	Renaming a Synonym
	Dropping a Synonym

	Managing Sequences
	Creating a Sequence
	Using Sequence Pseudocolumns
	Autoincrementing Columns
	Implementing Multiple Sequences That Generate Unique Values
	Creating One Sequence or Many
	Viewing Sequence Metadata
	Renaming a Sequence
	Dropping a Sequence
	Resetting a Sequence

	Summary

	Chapter 10: Data Dictionary Fundamentals
	Data Dictionary Architecture
	Static Views
	Dynamic Performance Views

	A Different View of Metadata
	A Few Creative Uses of the Data Dictionary
	Derivable Documentation
	Displaying User Information
	Displaying Table Row Counts
	Showing Primary Key and Foreign Key Relationships
	Displaying Object Dependencies

	Summary

	Chapter 11: Large Objects
	Describing LOB Types
	Illustrating LOB Locators, Indexes, and Chunks
	Distinguishing Between BasicFiles and SecureFiles
	BasicFiles
	SecureFiles

	Creating a Table with a LOB Column
	Creating a BasicFiles LOB Column
	Implementing a LOB in a Specific Tablespace
	Creating a SecureFiles LOB Column
	Implementing a Partitioned LOB

	Maintaining LOB Columns
	Moving a LOB Column
	Adding a LOB Column
	Removing a LOB Column
	Caching LOBs
	Storing LOBs In- and Out of Line

	Implementing SecureFiles Advanced Features
	Compressing LOBs
	Deduplicating LOBs
	Encrypting LOBs
	Migrating BasicFiles to SecureFiles
	Creating a New Table
	Moving a Table to SecureFiles Architecture
	Migrating with Online Redefinition

	Loading LOBs
	Loading a CLOB
	Loading a BLOB

	Measuring LOB Space Consumed
	BasicFiles Space Used
	SecureFiles Space Used

	Reading BFILEs
	Summary

	Chapter 12: Partitioning: Divide and Conquer
	What Tables Should Be Partitioned?
	Creating Partitioned Tables
	Partitioning by Range
	Implementing a NUMBER for the Partition Key Column
	Implementing a TIMESTAMP for the Partition Key Column

	Placing Partitions in Tablespaces
	Partitioning by List
	Partitioning by Hash
	Blending Different Partitioning Methods
	Creating Partitions on Demand
	Adding Yearly Partitions, Based on Date
	Adding Weekly Partitions, Based on Date
	Adding Daily Partitions, Based on Number

	Partitioning to Match a Parent Table
	Partitioning on a Virtual Column
	Giving an Application Control over Partitioning

	Maintaining Partitions
	Viewing Partition Metadata
	Moving a Partition
	Automatically Moving Updated Rows
	Partitioning an Existing Table
	Adding a Partition
	Range
	List
	Hash

	Exchanging a Partition with an Existing Table
	Renaming a Partition
	Splitting a Partition
	Merging Partitions
	Dropping a Partition
	Generating Statistics for a Partition
	Removing Rows from a Partition
	Manipulating Data Within a Partition

	Partitioning Indexes
	Partitioning an Index to Follow Its Table
	Partitioning an Index Differently from Its Table
	Partial Indexes

	Partition Pruning
	Summary

	Chapter 13: Data Pump
	Data Pump Architecture
	Getting Started
	Taking an Export
	Step 1. Creating a Database Directory Object
	Step 2. Granting Access to the Directory
	Step 3. Taking an Export

	Importing a Table
	Using a Parameter File

	Exporting and Importing with Granularity
	Exporting and Importing an Entire Database
	Schema Level
	Table Level
	Tablespace Level

	Transferring Data
	Exporting and Importing Directly Across the Network
	Copying Data Files

	Features for Manipulating Storage
	Exporting Tablespace Metadata
	Specifying Different Data File Paths and Names
	Importing into a Tablespace Different from the Original
	Changing the Size of Data Files
	Changing Segment and Storage Attributes

	Filtering Data and Objects
	Specifying a Query
	Exporting a Percentage of the Data
	Excluding Objects from the Export File
	Excluding Statistics
	Including Only Specific Objects in an Export File
	Exporting Table, Index, Constraint, and Trigger DDL
	Excluding Objects from Import
	Including Objects in Import

	Common Data Pump Tasks
	Estimating the Size of Export Jobs
	Listing the Contents of Dump Files
	Cloning a User
	Creating a Consistent Export
	Importing When Objects Already Exist
	Renaming a Table
	Remapping Data
	Suppressing a Log File
	Using Parallelism
	Specifying Additional Dump Files
	Reusing Output File Names
	Creating a Daily DDL File
	Compressing Output
	Changing Table Compression Characteristics on Import
	Encrypting Data
	Exporting Views As Tables
	Disabling Logging of Redo on Import

	Interactive Command Mode
	Entering Interactive Command Mode
	Attaching to a Running Job
	Stopping and Restarting a Job
	Terminating a Data Pump Job

	Monitoring Data Pump Jobs
	Data Pump Log File
	Data Dictionary Views
	Database Alert Log
	Status Table
	Interactive Command Mode Status
	OS Utilities

	Data Pump Legacy Mode
	Data Pump Mapping to the exp Utility
	Data Pump Mapping to the imp Utility

	Summary

	Chapter 14: External Tables
	SQL*Loader vs. External Tables
	Loading CSV Files into the Database
	Creating a Directory Object and Granting Access
	Creating an External Table
	Generating SQL to Create an External Table
	Viewing External Table Metadata
	Loading a Regular Table from the External Table

	Performing Advanced Transformations
	Viewing Text Files from SQL
	Unloading and Loading Data Using an External Table
	Enabling Parallelism to Reduce Elapsed Time
	Compressing a Dump File
	Encrypting a Dump File

	Summary

	Chapter 15: Materialized Views
	Understanding MVs
	MV Terminology
	Referencing Useful Views

	Creating Basic Materialized Views
	Creating a Complete Refreshable MV
	Creating a Fast Refreshable MV

	Going Beyond the Basics
	Creating MVs and Specifying Tablespace for MVs and Indexes
	Creating Indexes on MVs
	Partitioning MVs
	Compressing an MV
	Encrypting MV Columns
	Building an MV on a Prebuilt Table
	Creating an Unpopulated MV
	Creating an MV Refreshed on Commit
	Creating a Never Refreshable MV
	Creating MVs for Query Rewrite
	Creating a Fast Refreshable MV Based on a Complex Query
	Viewing MV DDL
	Dropping an MV

	Modifying MVs
	Modifying Base Table DDL and Propagating to MVs
	Recreating an MV to Reflect Base Table Modifications
	Altering an MV but Preserving the Underlying Table
	Altering an MV Created on a Prebuilt Table

	Toggling Redo Logging on an MV
	Altering Parallelism
	Moving an MV

	Managing MV Logs
	Creating an MV Log
	Indexing MV Log Columns
	Viewing Space Used by an MV Log
	Shrinking the Space in an MV Log
	Checking the Row Count of an MV Log
	Moving an MV Log
	Dropping an MV Log

	Refreshing MVs
	Manually Refreshing MVs from SQL*Plus
	Automating Refreshes, Using a Shell Script and Scheduling Utility
	Creating an MV with a Refresh Interval
	Efficiently Performing a Complete Refresh
	Handling the ORA-12034 Error

	Monitoring MV Refreshes
	Viewing MVs’ Last Refresh Times
	Determining Whether a Refresh Is in Progress
	Monitoring Real-Time Refresh Progress
	Checking Whether MVs Are Refreshing Within a Time Period

	Creating Remote MV Refreshes
	Understanding Remote-Refresh Architectures
	Viewing MV Base Table Information
	Determining How Many MVs Reference a Central MV Log

	Managing MVs in Groups
	Creating an MV Group
	Altering an MV Refresh Group
	Refreshing an MV Group
	DBMS_MVIEW vs. DBMS_REFRESH
	Determining MVs in a Group
	Adding an MV to a Refresh Group
	Removing MVs from a Refresh Group
	Dropping an MV Refresh Group

	Summary

	Chapter 16: User-Managed Backup and Recovery
	Implementing a Cold-Backup Strategy for a Noarchivelog Mode Database
	Making a Cold Backup of a Noarchivelog Mode Database
	Step 1. Determine Where to Copy the Backup Files and How Much Space Is Required
	Step 2. Identify the Locations and Names of the Database Files to Copy
	Step 3. Shut Down the Database
	Step 4. Create Backup Copies of the Files
	Step 5. Restart Your Database

	Restoring a Cold Backup in Noarchivelog Mode with Online Redo Logs
	Step 1. Shut Down the Instance
	Step 2. Copy the Files Back from the Backup
	Step 3. Start Up the database

	Restoring a Cold Backup in Noarchivelog Mode Without Online Redo Logs
	Step 1. Shut Down the Instance
	Step 2. Copy the Files Back from the Backup
	Step 3. Start Up the Database in Mount Mode
	Step 4. Open the Database with the OPEN RESETLOGS Clause

	Scripting a Cold Backup and Restore

	Making a Cold Backup of an Archivelog Mode Database
	Implementing a Hot Backup Strategy
	Making a Hot Backup
	Step 1. Ensure That the Database Is in Archivelog Mode
	Step 2. Determine Where to Copy the Backup Files
	Step 3. Identify Which Files Need to Be Backed Up
	Step 4. Note the Maximum Sequence Number of the Online Redo Logs
	Step 5. Alter the Database/Tablespaces into Backup Mode
	Step 6. Copy the Data Files with an OS Utility
	Step 7. Alter the Database/Tablespaces out of Backup Mode
	Step 8. Archive the Current Online Redo Log, and Note the Maximum Sequence Number of the Online Redo Logs
	Step 9. Back Up the Control File
	Step 10. Back Up Any Archive Redo Logs Generated During the Backup

	Scripting Hot Backups
	Understanding the Split-Block Issue
	Understanding the Need for Redo Generated During Backup
	Understanding that Data Files are Updated

	Performing a Complete Recovery of an Archivelog Mode Database
	Restoring and Recovering with the Database Offline
	Step 1. Place Your Database in Mount Mode
	Step 2. Restore the Data File from the Backup
	Step 3. Issue the Appropriate RECOVER Statement
	Step 4. Alter Your Database Open

	Restoring and Recovering with a Database Online
	Restoring Control Files
	Restoring a Damaged Control File When Multiplexed
	Restoring When All Control Files Are Damaged
	Step 1. Shut Down the Database
	Step 2. Restore the Control File from the Backup
	Step 3. Start the Database in Mount Mode, and Initiate Database Recovery
	Step 4. Apply Redo Contained in the Online Redo Logs
	Step 5. Open the Database with RESETLOGS

	Performing an Incomplete Recovery of an Archivelog Mode Database
	Summary

	Chapter 17: Configuring RMAN
	Understanding RMAN
	Starting RMAN
	RMAN Architectural Decisions
	Running the RMAN Client Remotely or Locally
	Specifying the Backup User
	Using Online or Offline Backups
	Setting the Archive Redo Log Destination and File Format
	Configuring the RMAN Backup Location and File Format
	Default Location
	FRA
	BACKUP…FORMAT
	CONFIGURE CHANNEL…FORMAT

	Setting the Autobackup of the Control File
	Specifying the Location of the Autobackup of the Control File
	Backing U p Archive Redo Logs
	Determining the Location for the Snapshot Control File
	Using a Recovery Catalog
	Using a Media Manager
	Setting the CONTROL_FILE_RECORD_KEEP_TIME Initialization Parameter
	Configuring RMAN’s Backup Retention Policy
	Recovery Window
	Redundancy
	Deleting Backups, Based on Retention Policy
	Clearing the Retention Policy

	Configuring the Archive Redo Logs’ Deletion Policy
	Setting the Degree of Parallelism
	Using Backup Sets or Image Copies
	Using Incremental Backups
	Using Incrementally Updated Backups
	Using Block Change Tracking
	Configuring Binary Compression
	Configuring Encryption
	Configuring Miscellaneous Settings
	Configuring Informational Output

	Segueing from Decision to Action
	Summary

	Chapter 18: RMAN Backups and Reporting
	Preparing to Run RMAN Backup Commands
	Setting NLS_DATE_FORMAT
	Setting ECHO Setting ECHO
	Showing Variables

	Running Backups
	Backing Up the Entire Database
	Full Backup vs. Incremental Level=0
	Backup Sets vs. Image Copies

	Backing Up Tablespaces
	Backing Up Data Files
	Backing Up the Control File
	Backing up the spfile
	Backing Up Archive Redo Logs
	Backing Up FRA
	Excluding Tablespaces from Backups
	Backing Up Data Files Not Backed Up
	Skipping Read-Only Tablespaces
	Skipping Offline or Inaccessible Files
	Backing Up Large Files in Parallel
	Adding RMAN Backup Information to the Repository

	Taking Backups of Pluggable Databases
	While Connected to the Root Container
	While Connected to a Pluggable Database

	Creating Incremental Backups
	Taking Incremental-Level Backups
	Making Incrementally Updating Backups
	Using Block Change Tracking

	Checking for Corruption in Data Files and Backups
	Using VALIDATE
	Using BACKUP…VALIDATE
	Using RESTORE…VALIDATE

	Using a Recovery Catalog
	Creating a Recovery Catalog
	Registering a Target Database
	Backing Up the Recovery Catalog
	Synchronizing the Recovery Catalog
	Recovery Catalog Versions
	Dropping a Recovery Catalog

	Logging RMAN Output
	Redirecting Output to a File
	Capturing Output with Linux/Unix Logging Commands
	Capturing Output with tee
	Capturing Output with script

	Logging Output to a File
	Querying for Output in the Data Dictionary

	RMAN Reporting
	Using LIST
	Using REPORT
	Using SQL

	Summary

	Chapter 19: RMAN Restore and Recovery
	Determining if Media Recovery Is Required
	Determining What to Restore
	How the Process Works
	Using Data Recovery Advisor
	Listing Failures
	Suggesting Corrective Action
	Repairing Failures
	Changing the Status of a Failure

	Using RMAN to Stop/Start Oracle
	Shutting Down
	Starting Up

	Complete Recovery
	Testing Restore and Recovery
	Previewing Backups Used for Recovery
	Validating Backup Files Before Restoring
	Testing Media Recovery

	Restoring and Recovering the Entire Database
	Using the Current Control File
	Using the Backup Control File

	Restoring and Recovering Tablespaces
	Restoring Tablespaces While the Database Is Open
	Restoring Tablespaces While the Database Is in Mount Mode

	Restoring Read-Only Tablespaces
	Restoring Temporary Tablespaces
	Restoring and Recovering Data Files
	Restoring and Recovering Data Files While the Database Is Open
	Restoring and Recovering Data Files While the Database Is Not Open

	Restoring Data Files to Nondefault Locations
	Performing Block-Level Recovery
	Restoring a Container Database and Its Associated Pluggable Databases
	Restoring and Recovering All Data Files
	Restoring and Recovering Root Container Data Files
	Restoring and Recovering a Pluggable Database

	Restoring Archive Redo Log Files
	Restoring to the Default Location
	Restoring to a Nondefault Location

	Restoring a Control File
	Using a Recovery Catalog
	Using an Autobackup
	Specifying a Backup File Name

	Restoring the spfile
	Incomplete Recovery
	Determining the Type of Incomplete Recovery
	Performing Time-Based Recovery
	Performing Log Sequence-Based Recovery
	Performing SCN-Based Recovery
	Restoring to a Restore Point
	Restoring Tables to a Previous Point

	Flashing Back a Table
	FLASHBACK TABLE TO BEFORE DROP
	Flashing Back a Table to a Previous Point in Time
	FLASHBACK TABLE TO SCN
	FLASHBACK TABLE TO TIMESTAMP
	FLASHBACK TABLE TO RESTORE POINT

	Flashing Back a Database
	Restoring and Recovering to Different Server
	Step 1. Create an RMAN Backup on the Originating Database
	Step 2. Copy the RMAN Backup to the Destination Server
	Step 3. Ensure That Oracle Is Installed
	Step 4. Source the Required OS Variables
	Step 5. Create an init.ora File for the Database to Be Restored
	Step 6. Create Any Required Directories for Data Files, Control Files, and Dump/Trace Files
	Step 7. Start Up the Database in Nomount Mode
	Step 8. Restore the Control File from the RMAN Backup
	Step 9. Start Up the Database in Mount Mode
	Step 10. Make the Control File Aware of the Location of the RMAN Backups
	Step 11. Rename and Restore the Data Files to Reflect New Directory Locations
	Step 12. Recover the Database
	Step 13. Set the New Location for the Online Redo Logs
	Step 14. Open the Database
	Step 15. Add the Temp File
	Step 16. Rename the Database

	Summary

	Chapter 20: Oracle Secure Backup
	OSB Editions and Features
	OSB Terminology
	OSB Administrative Domain and Servers
	OSB Interfaces
	OSB Users and Classes
	OSB Daemons

	Download and Installation
	Command-Line Access to OSB
	OSB Configuration
	Configuring Users and Classes
	Configuring Media Families
	Configuring Database Backup Storage Selector

	Database Backup
	Database Restore
	Filesystem Backup
	Creating Data Set Files
	Configuring Backup Windows
	Configuring Backup Schedules and Triggers
	Performing On-Demand Filesystem Backups

	Filesystem Restore
	Performing Catalog-Based Restore
	Performing a Raw Restore
	Performing an obtar Restore

	OSB Job Monitoring
	Listing Jobs
	Showing Job Transcripts
	Monitoring OSB Logs

	Virtual Test Devices
	Oracle Database Backup in the Cloud
	OSB Software Upgrades
	Summary

	Chapter 21: Automating Jobs
	Automating Jobs with Oracle Scheduler
	Creating and Scheduling a Job
	Viewing Job Details
	Modifying Job Logging History
	Modifying a Job
	Stopping a Job
	Disabling a Job
	Enabling a Job
	Copying a Job
	Running a Job Manually
	Deleting a Job

	Oracle Scheduler vs. cron
	Automating Jobs via cron
	How cron Works
	Enabling Access to cron
	Understanding cron Table Entries
	Scheduling a Job to Run Automatically
	Editing the cron Table Directly
	Setting Default Editor
	Loading the cron Table from a File

	Redirecting cron Output
	Troubleshooting cron

	Examples of Automated DBA Jobs
	Starting and Stopping the Database and Listener
	Checking for Archive Redo Destination Fullness
	Truncating Large Log Files
	Checking for Locked Production Accounts
	Checking for Files Older Than a Certain Age
	Checking for Too Many Processes
	Verifying the Integrity of RMAN Backups

	Summary

	Chapter 22: Database Troubleshooting
	Quickly Triaging
	Checking Database Availability
	Investigating Disk Fullness
	Locating the Alert Log and Trace Files
	Removing Files

	Inspecting the Alert Log
	Viewing the Alert Log via OS Tools
	Viewing the Alert Log Using the ADRCI Utility

	Identifying Bottlenecks via OS Utilities
	Identifying System Bottlenecks
	Using vmstat
	Using top

	Mapping an Operating System Process to an SQL Statement

	Finding Resource-Intensive SQL Statements
	Monitoring Real-Time SQL Execution Statistics
	Running Oracle Diagnostic Utilities
	Using AWR
	Using ADDM
	Using ASH
	Using Statspack

	Detecting and Resolving Locking Issues
	Resolving Open-Cursor Issues
	Troubleshooting Undo Tablespace Issues
	Determining if Undo Is Correctly Sized
	Viewing SQL That Is Consuming Undo Space

	Handling Temporary Tablespace Issues
	Determining if Temporary Tablespace Is Sized Correctly
	Viewing SQL That Is Consuming Temporary Space

	Summary

	Chapter 23: Pluggable Databases
	Understanding Pluggable Architecture
	Paradigm Shift
	B&R Implications
	Tuning Nuances

	Creating a CDB
	Creating Manually with SQL
	Using the DBCA
	Generating CDB Create Scripts via DBCA
	Verifying that a CDB was Created

	Administrating the Root Container
	Connecting to the Root Container
	Through OS Authentication
	Through Network

	Displaying Currently Connected Container Information
	Starting/Stopping the Root Container
	Creating Common Users
	Creating Common Roles
	Reporting on Container Space
	Switching Containers

	Creating a Pluggable Database within a CDB
	Cloning the Seed Database
	Cloning an Existing Pluggable Database
	Local
	Remote

	Cloning from a Non-CDB Database
	Unplugging a Pluggable Database from a CDB
	Plugging an Unplugged Pluggable Database into a CDB
	Using the DBCA to Create a Pluggable Database from the Seed Database
	Checking the Status of Pluggable Databases

	Administrating Pluggable Databases
	Connecting to a Pluggable Database
	Managing a Listener in a Pluggable Database Environment
	Showing the Currently Connected Pluggable Database
	Starting/Stopping a Pluggable Database
	From Root Container
	From Pluggable

	Modifying Initialization Parameters Specific to a Pluggable Database
	Renaming a Pluggable Database
	Limiting the Amount of Space Consumed by a Pluggable Database
	Viewing Pluggable Database History
	Dropping a Pluggable Database

	Summary

	Index

