

Professional
C# 2008

Christian Nagel
 Bill Evjen
 Jay Glynn

Morgan Skinner
Karli Watson

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

ffirs.indd ivffirs.indd iv 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

Professional
C# 2008

(Continued)

Acknowledgments .. xiii

Introduction ...xlvii

Part I: The C# Language

Chapter 1: .NET Architecture ..3

Chapter 2: C# Basics ...25

Chapter 3: Objects and Types ...75

Chapter 4: Inheritance ..101

Chapter 5: Arrays ...121

Chapter 6: Operators and Casts ..141

Chapter 7: Delegates and Events ..177

Chapter 8: Strings and Regular Expressions ..203

Chapter 9: Generics ...223

Chapter 10: Collections ..247

Chapter 11: Language Integrated Query ..297

Chapter 12: Memory Management and Pointers ..329

Chapter 13: Reflection ...357

Chapter 14: Errors and Exceptions ..377

Part II: Visual Studio

Chapter 15: Visual Studio 2008 ..401

Chapter 16: Deployment ...443

Part III: Base Class Libraries

Chapter 17: Assemblies ..469

Chapter 18: Tracing and Events ..509

Chapter 19: Threading and Synchronization ...533

Chapter 20: Security ..583

Chapter 21: Localization ...639

Chapter 22: Transactions ...679

Chapter 23: Windows Services ...715

Chapter 24: Interoperability ..749

ffirs.indd iffirs.indd i 2/19/08 5:35:26 PM2/19/08 5:35:26 PM

Part IV: Data

Chapter 25: Manipulating Files and the Registry ...791

Chapter 26: Data Access ..845

Chapter 27: LINQ to SQL ...895

Chapter 28: Manipulating XML..921

Chapter 29: LINQ to XML ..967

Chapter 30:.NET Programming with SQLServer ..985

Part V: Presentation

Chapter 31: Windows Forms ...1017

Chapter 32: Data Binding ...1061

Chapter 33: Graphics with GDI+ ..1093

Chapter 34: Windows Presentation Foundation ..1149

Chapter 35: Advanced WPF ..1199

Chapter 36: Add-Ins ...1251

Chapter 37: ASP.NET Pages ..1273

Chapter 38: ASP.NET Development ...1311

Chapter 39: ASP.NET AJAX ...1355

Chapter 40: Visual Studio Tools for Office ...1385

Part VI: Communication

Chapter 41: Accessing the Internet ..1423

Chapter 42: Windows Communication Foundation ...1455

Chapter 43: Windows Workflow Foundation ...1487

Chapter 44: Enterprise Services ..1527

Chapter 45: Message Queuing ..1555

Chapter 46: Directory Services ...1587

Chapter 47: Peer-to-Peer Networking ..1625

Chapter 48: Syndication ...1643

Part VII: Appendices

Appendix A: ADO.NET Entity Framework ..1655

Appendix B: C#, Visual Basic, and C++/CLI ..1681

Appendix C: Windows Vista and Windows Server 2008 ..1711

Index ...1731

ffirs.indd iiffirs.indd ii 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

Professional
C# 2008

ffirs.indd iiiffirs.indd iii 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

ffirs.indd ivffirs.indd iv 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

Professional
C# 2008

Christian Nagel
 Bill Evjen
 Jay Glynn

Morgan Skinner
Karli Watson

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 2/19/08 5:35:27 PM2/19/08 5:35:27 PM

Wrox Professional C# 2008
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-19137-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
 permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
 Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
 warranties with respect to the accuracy or completeness of the contents of this work and specifically
 disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
 warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or dis-
appeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
 vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 2/19/08 5:35:28 PM2/19/08 5:35:28 PM

www.wiley.com

To my brother George – moving strong from basketball to coding (they’re practically the same thing, aren’t they?).
Congrats and keep moving forward in C# land!

 —Bill Evjen

for Donna
 —Karli Watson

To my parents, Joan and Donald Skinner, for their ever present love, support, and encouragement.
The world was made a sweeter place by their being in it and their memory will be cherished forever.

Thanks Mum & Dad — you were brilliant.

“Love is as strong as death.
Many waters cannot quench love,

neither can the floods drown it.” (Song of Songs 8: 6 -7)
 —Morgan Skinner

ffirs.indd viiffirs.indd vii 2/19/08 5:35:28 PM2/19/08 5:35:28 PM

ffirs.indd viiiffirs.indd viii 2/19/08 5:35:28 PM2/19/08 5:35:28 PM

 About the Authors
 Christian Nagel of thinktecture is a software architect and developer who offers training and consulting
on how to design and develop Microsoft .NET solutions. He looks back on more than 20 years of software
development experience. Christian started his computing career with PDP 11 and VAX/VMS platforms,
covering a variety of languages and platforms. Since the year 2000, when .NET was just a technology
preview, he has been working with various .NET technologies to build numerous .NET solutions. With
his profound knowledge of Microsoft technologies, he has written numerous .NET books, and is certified
as a Microsoft Certified Trainer and Professional Developer for ASP.NET. Christian speaks at international
conferences such as TechEd and Tech Days, and supports .NET user groups with INETA Europe. You can
contact Christian via his Web sites, www.christiannagel.com and www.thinktecture.com .

 Bill Evjen, Microsoft MVP is an active proponent of .NET Technologies and community - based
learning initiatives for .NET. He has been actively involved with .NET since the first bits were released
in 2000. In the same year, Bill founded the St. Louis .NET User Group (www.stlnet.org), one of the
world ’ s first such groups. Bill is also the founder and former executive director of the International .NET
Association (www.ineta.org), which represents more than 450,000 members worldwide.

 Based in St. Louis, Missouri, Bill is an acclaimed author (more than 15 books to date) and speaker
on ASP.NET and SML Web services. In addition to writing and speaking at conferences such as
DevConnections, VSLive, and TechEd, Bill works closely with Microsoft as a Microsoft regional director.
Bill is the technical architect for Lipper (www.lipperweb.com), a wholly owned subsidiary of Reuters,
the international news and financial services company. He graduated from Western Washington
University in Bellingham, Washington with a Russian language degree. When he isn ’ t tinkering on the
computer, he can usually be found at his summer house in Toivakka, Finland. You can reach Bill at
 evjen@yahoo.cpm .

 Morgan Skinner began his computing career at a young age on the Sinclair ZX80 at school, where he
was underwhelmed by some code a teacher had written and so began programming in assembly
language. Since then he ’ s used all sorts of languages and platforms, including VAX Macro Assembler,
Pascal, Modula2, Smalltalk, X86 assembly language, PowerBuilder, C/C++, VB, and currently C# (of
course). He ’ s been programming in .NET since the PDC release in 2000, and liked it so much he joined
Microsoft in 2001. He now works in premier support for developers and spends most of his time
assisting customers with C#. You can reach Morgan at www.morganskinner.com .

 Jay Glynn started writing software nearly 20 years ago, writing applications for the PICK operating
system using PICK basic. Since then, he has created software using Paradox PAL and Object PAL,
Delphi, VBA, Visual Basic, C, C++, Java, and of course, C#. He is currently a project coordinator and
architect for a large financial services company in Nashville, Tennessee, working on software for the
TabletPC platform. You can contact Jay at jlsglynn@hotmail.com .

 Karli Watson is a freelance author and a technical consultant of 3form Ltd (www.3form.net) and Boost
.net, and an associate technologist at Content Master (www.contentmaster.com). He started out with
the intention of becoming a world - famous nanotechnologist, so perhaps one day you might recognize
his name as he receives a Nobel Prize. For now, though, Karli ’ s main academic interest is the .NET
Framework, and all the boxes of tricks it contains. A snowboarding enthusiast, Karli also loves cooking,
spends far too much time playing Anarchy Online and EVE, and wishes he had a cat. As yet, nobody has
seen fit to publish Karli ’ s first novel, but the rejection letters make an attractive pile. If he ever puts
anything up there, you can visit Karli online at http://www.karliwatson.com .

ffirs.indd ixffirs.indd ix 2/19/08 5:35:28 PM2/19/08 5:35:28 PM

ffirs.indd xffirs.indd x 2/19/08 5:35:29 PM2/19/08 5:35:29 PM

Acquisitions Editor
Katie Mohr

Development Editors
Ami Frank Sullivan
Lori Cerreto

Technical Editors
Michael Erickson
Doug Holland

Production Editor
Daniel Scribner

Copy Editor
Kim Cofer
Nancy Rapaport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Word One:
Edward Moyer
Jen Larsen
Amy Rasmussen
Corina Copp
Scott Klemp
Joshua Chase

Indexer
Ron Strauss

Credits

ffirs.indd xiffirs.indd xi 2/19/08 5:35:29 PM2/19/08 5:35:29 PM

ffirs.indd xiiffirs.indd xii 2/19/08 5:35:29 PM2/19/08 5:35:29 PM

 Acknowledgments

 Bill Evjen:

 The .NET Framework 3.5 release came quickly for us writers and it wouldn ’ t have been possible to
produce this book as fast as they came out if it weren ’ t for the dedication of the teams built for it.
Tremendous thanks to Katie Mohr for being more than patient with me in getting this and some other
.NET 3.5 books out the door. Also, big thanks go out to Ami Sullivan for getting at me and helping me be
 somewhat on schedule. Other big thanks go to all the editors of the book including Lori Cerreto, Daniel
Scribner, and the copyeditors.

 Finally, to the ones that paid the biggest price for this writing session — my wife, Tuija, and the three
kids: Sofia, Henri, and Kalle. Thanks for all you do!

 Karli Watson:

 Thanks to all at Wiley for helping me through this project and reigning in my strange British stylings,
to assorted clients for giving me the time to write, and to Donna for keeping me sane and coping with
my temperamental back. Thanks also to friends and family for being patient with my deadline - laden
lifestyle.

ffirs.indd xiiiffirs.indd xiii 2/19/08 5:35:29 PM2/19/08 5:35:29 PM

ffirs.indd xivffirs.indd xiv 2/19/08 5:35:29 PM2/19/08 5:35:29 PM

Contents

Acknowledgments xiii
Introduction xlvii

Part I: The C# Language 1

Chapter 1: .NET Architecture 3

The Relationship of C# to .NET 4
The Common Language Runtime 4

Platform Independence 4
Performance Improvement 4
Language Interoperability 5

A Closer Look at Intermediate Language 7
Support for Object Orientation and Interfaces 7
Distinct Value and Reference Types 8
Strong Data Typing 8
Error Handling with Exceptions 14
Use of Attributes 15

Assemblies 15
Private Assemblies 16
Shared Assemblies 16
Reflection 17

.NET Framework Classes 17
Namespaces 18
Creating .NET Applications Using C# 19

Creating ASP .NET Applications 19
Creating Windows Forms 21
Using the Windows Presentation Foundation (WPF) 21
Windows Controls 21
Windows Services 21
Windows Communication Foundation (WCF) 22

The Role of C# in the .NET Enterprise Architecture 22
Summary 23

ftoc.indd xvftoc.indd xv 2/19/08 8:30:27 PM2/19/08 8:30:27 PM

Contents

xvi

Chapter 2: C# Basics 25

Before We Start 25
Your First C# Program 26

The Code 26
Compiling and Running the Program 26
A Closer Look 27

Variables 29
Initialization of Variables 29
Type Inference 30
Variable Scope 31
Constants 34

Predefined Data Types 34
Value Types and Reference Types 35
CTS Types 36
Predefined Value Types 36
Predefined Reference Types 40

Flow Control 42
Conditional Statements 42
Loops 45
Jump Statements 49

Enumerations 50
Arrays 51
Namespaces 52

The using Directive 53
Namespace Aliases 54

The Main() Method 55
Multiple Main() Methods 55
Passing Arguments to Main() 56

More on Compiling C# Files 57
Console I/O 58
Using Comments 60

Internal Comments within the Source Files 60
XML Documentation 61

The C# Preprocessor Directives 63
#define and #undef 63
#if, #elif, #else, and #endif 64
#warning and #error 65
#region and #endregion 65
#line 65
#pragma 66

C# Programming Guidelines 66

ftoc.indd xviftoc.indd xvi 2/19/08 8:30:28 PM2/19/08 8:30:28 PM

Contents

xvii

 Rules for Identifiers 66
Usage Conventions 67

Summary 73

Chapter 3: Objects and Types 75

Classes and Structs 76
Class Members 76

Data Members 77
Function Members 77

Anonymous Types 91
Structs 92

Structs Are Value Types 93
Structs and Inheritance 94
Constructors for Structs 94

Partial Classes 95
Static Classes 96
The Object Class 97

System.Object Methods 97
The ToString() Method 98

Extension Methods 99
Summary 100

Chapter 4: Inheritance 101

Types of Inheritance 101
Implementation versus Interface Inheritance 101
Multiple Inheritance 102
Structs and Classes 102

Implementation Inheritance 103
Virtual Methods 104
Hiding Methods 104
Calling Base Versions of Functions 106
Abstract Classes and Functions 106
Sealed Classes and Methods 107
Constructors of Derived Classes 107

Modifiers 112
Visibility Modifiers 112
Other Modifiers 113

Interfaces 114
Defining and Implementing Interfaces 115
Derived Interfaces 118

Summary 120

ftoc.indd xviiftoc.indd xvii 2/19/08 8:30:29 PM2/19/08 8:30:29 PM

Contents

xviii

Chapter 5: Arrays 121

Simple Arrays 121
Array Declaration 121
Array Initialization 122
Accessing Array Elements 123
Using Reference Types 123

Multidimensional Arrays 125
Jagged Arrays 126
Array Class 127

Properties 127
Creating Arrays 127
Copying Arrays 128
Sorting 129

Array and Collection Interfaces 132
IEnumerable 132
ICollection 132
IList 132

Enumerations 133
IEnumerator Interface 134
foreach Statement 134
yield Statement 134

Summary 139

Chapter 6: Operators and Casts 141

Operators 141
Operator Shortcuts 143
The Conditional Operator 144
The checked and unchecked Operators 145
The is Operator 146
The as Operator 146
The sizeof Operator 146
The typeof Operator 146
Nullable Types and Operators 147
The Null Coalescing Operator 147
Operator Precedence 147

Type Safety 148
Type Conversions 149
Boxing and Unboxing 152

Comparing Objects for Equality 153
Comparing Reference Types for Equality 153
Comparing Value Types for Equality 154

ftoc.indd xviiiftoc.indd xviii 2/19/08 8:30:29 PM2/19/08 8:30:29 PM

Contents

xix

Operator Overloading 155
How Operators Work 156
Operator Overloading Example: The Vector Struct 157
Which Operators Can You Overload? 163

User-Defined Casts 164
Implementing User-Defined Casts 165
Multiple Casting 171

Summary 175

Chapter 7: Delegates and Events 177

Delegates 177
Declaring Delegates in C# 178
Using Delegates in C# 179
Simple Delegate Example 182
BubbleSorter Example 184
Multicast Delegates 187
Anonymous Methods 190
Lambda Expressions 191
Covariance and Contra-variance 193

Events 194
The Receiver’s View of Events 195
Defining Events 197

Summary 201

Chapter 8: Strings and Regular Expressions 203

System.String 204
Building Strings 205
StringBuilder Members 208
Format Strings 209

Regular Expressions 214
Introduction to Regular Expressions 215
The RegularExpressionsPlayground Example 216
Displaying Results 219
Matches, Groups, and Captures 220

Summary 222

Chapter 9: Generics 223

Overview 223
Performance 224
Type Safety 225

ftoc.indd xixftoc.indd xix 2/19/08 8:30:30 PM2/19/08 8:30:30 PM

Contents

xx

Binary Code Reuse 225
Code Bloat 226
Naming Guidelines 226

Creating Generic Classes 226
Generic Classes’ Features 231

Default Values 231
Constraints 232
Inheritance 234
Static Members 235

Generic Interfaces 235
Generic Methods 236
Generic Delegates 238

Implementing Methods Called by Delegates 238
Using Generic Delegates with the Array Class 240

Other Generic Framework Types 243
Nullable<T> 243
EventHandler<TEventArgs> 244
ArraySegment<T> 245

Summary 246

Chapter 10: Collections 247

Collection Interfaces and Types 247
Lists 250

Creating Lists 252
Read-Only Collections 261

Queues 261
Stacks 266
Linked Lists 268
Sorted Lists 275
Dictionaries 278

Key Type 278
Dictionary Example 280
Lookup 283
Other Dictionary Classes 284

HashSet 286
Bit Arrays 289

BitArray 289
BitVector32 291

Performance 294
Summary 296

ftoc.indd xxftoc.indd xx 2/19/08 8:30:30 PM2/19/08 8:30:30 PM

Contents

xxi

Chapter 11: Language Integrated Query 297

LINQ Overview 297
Query using List<T> 298
Extension Methods 304
Lambda Expressions 306
LINQ Query 307
Deferred Query Execution 307

Standard Query Operators 309
Filtering 311
Filtering with Index 312
Type Filtering 312
Compound from 313
Sorting 314
Grouping 315
Grouping with Nested Objects 316
Join 317
Set Operations 318
Partitioning 319
Aggregate Operators 321
Conversion 322
Generation Operators 323

Expression Trees 324
LINQ Providers 327
Summary 328

Chapter 12: Memory Management and Pointers 329

Memory Management Under the Hood 329
Value Data Types 330
Reference Data Types 331
Garbage Collection 333

Freeing Unmanaged Resources 334
Destructors 335
The IDisposable Interface 336
Implementing IDisposable and a Destructor 337

Unsafe Code 339
Accessing Memory Directly with Pointers 339
Pointer Example: PointerPlayaround 347
Using Pointers to Optimize Performance 352

Summary 355

ftoc.indd xxiftoc.indd xxi 2/19/08 8:30:30 PM2/19/08 8:30:30 PM

Contents

xxii

Chapter 13: Reflection 357

Custom Attributes 358
Writing Custom Attributes 358
Custom Attribute Example: WhatsNewAttributes 362

Reflection 365
The System.Type Class 365
The TypeView Example 367
The Assembly Class 370
Completing the WhatsNewAttributes Example 371

Summary 376

Chapter 14: Errors and Exceptions 377

Exception Classes 378
Catching Exceptions 379

Implementing Multiple Catch Blocks 382
Catching Exceptions from Other Code 385
System.Exception Properties 386
What Happens If an Exception Isn’t Handled? 386
Nested try Blocks 387

User-Defined Exception Classes 389
Catching the User-Defined Exceptions 390
Throwing the User-Defined Exceptions 391
Defining the User-Defined Exception Classes 394

Summary 397

Part II: Visual Studio 399

Chapter 15: Visual Studio 2008 401

Working with Visual Studio 2008 401
Creating a Project 406
Solutions and Projects 412
Windows Application Code 415
Reading in Visual Studio 6 Projects 416
Exploring and Coding a Project 416
Building a Project 427
Debugging 430

Refactoring 434
Multi-Targeting 436
WPF, WCF, WF, and More 438

ftoc.indd xxiiftoc.indd xxii 2/19/08 8:30:31 PM2/19/08 8:30:31 PM

Contents

xxiii

Building WPF Applications in Visual Studio 438
Building WF Applications in Visual Studio 439

Summary 441

Chapter 16: Deployment 443

Designing for Deployment 443
Deployment Options 444

Xcopy 444
Copy Web Tool 444
Publishing Web Sites 444
Deployment Projects 444
ClickOnce 444

Deployment Requirements 444
Deploying the .NET Runtime 446
Simple Deployment 446

Xcopy 447
Xcopy and Web Applications 447
Copy Web Tool 447
Publishing a Web Site 447

Installer Projects 448
What Is Windows Installer? 449
Creating Installers 449

ClickOnce 458
ClickOnce Operation 458
Publishing an Application 459
ClickOnce Settings 459
Application Cache 460
Security 460
Advanced Options 460

Summary 466

Part III: Base Class Libraries 467

Chapter 17: Assemblies 469

What Are Assemblies? 469
Features of Assemblies 470
Assembly Structure 470
Assembly Manifests 472
Namespaces, Assemblies, and Components 472
Private and Shared Assemblies 472

ftoc.indd xxiiiftoc.indd xxiii 2/19/08 8:30:31 PM2/19/08 8:30:31 PM

Contents

xxiv

Satellite Assemblies 473
Viewing Assemblies 473

Creating Assemblies 474
Creating Modules and Assemblies 474
Assembly Attributes 475

Dynamic Loading and Creating Assemblies 478
Application Domains 481
Shared Assemblies 485

Strong Names 486
Integrity Using Strong Names 486
Global Assembly Cache 487
Creating a Shared Assembly 489
Create a Strong Name 489
Install the Shared Assembly 491
Using the Shared Assembly 491
Delayed Signing of Assemblies 492
References 493
Native Image Generator 494

Configuring .NET Applications 495
Configuration Categories 496
Configuring Directories for Assembly Searches 497

Versioning 499
Version Numbers 499
Getting the Version Programmatically 500
Application Configuration Files 500
Publisher Policy Files 504
Runtime Version 506

Summary 507

Chapter 18: Tracing and Events 509

Tracing 509
Trace Sources 511
Trace Switches 512
Trace Listeners 512
Filters 515
Asserts 516

Event Logging 517
Event-Logging Architecture 518
Event-Logging Classes 519
Creating an Event Source 521

ftoc.indd xxivftoc.indd xxiv 2/19/08 8:30:32 PM2/19/08 8:30:32 PM

Contents

xxv

Writing Event Logs 522
Resource Files 522
Event Log Listener 526

Performance Monitoring 527
Performance-Monitoring Classes 528
Performance Counter Builder 528
Adding PerformanceCounter Components 529
perfmon.exe 531

Summary 532

Chapter 19: Threading and Synchronization 533

Overview 534
Asynchronous Delegates 535

Polling 535
Wait Handle 536
Asynchronous Callback 537

The Thread Class 538
Passing Data to Threads 540
Background Threads 541
Thread Priority 542
Controlling Threads 543

Thread Pools 543
Threading Issues 545

Race Condition 545
Deadlock 548

Synchronization 549
lock Statement and Thread Safety 550
Interlocked 555
Monitor 557
Wait Handle 557
Mutex 559
Semaphore 560
Events 562
ReaderWriterLockSlim 564

Timers 568
COM Apartments 569
Event-Based Asynchronous Pattern 570

BackgroundWorker 571
Creating an Event-Based Asynchronous Component 576

Summary 581

ftoc.indd xxvftoc.indd xxv 2/19/08 8:30:32 PM2/19/08 8:30:32 PM

Contents

xxvi

Chapter 20: Security 583

Authentication and Authorization 583
Identity and Principal 583
Roles 585
Declarative Role-Based Security 585
Client Application Services 586

Encryption 591
Signature 594
Key Exchange and Secure Transfer 596

Access Control to Resources 599
Code Access Security 602

Permissions 603
Code Groups 613
Code Access Permissions and Permissions Sets 618
Policy Levels: Machine, User, and Enterprise 621

Managing Security Policies 622
Managing Code Groups and Permissions 626
Turning Security On and Off 626
Creating a Code Group 626
Deleting a Code Group 627
Changing a Code Group’s Permissions 627
Creating and Applying Permissions Sets 628
Distributing Code Using a Strong Name 630
Distributing Code Using Certificates 631

Summary 637

Chapter 21: Localization 639

Namespace System.Globalization 639
Unicode Issues 640
Cultures and Regions 641
Cultures in Action 645
Sorting 650

Resources 651
Creating Resource Files 651
Resource File Generator 651
ResourceWriter 652
Using Resource Files 653
The System.Resources Namespace 659

Windows Forms Localization Using Visual Studio 659
Changing the Culture Programmatically 663
Using Custom Resource Messages 665

ftoc.indd xxviftoc.indd xxvi 2/19/08 8:30:32 PM2/19/08 8:30:32 PM

Contents

xxvii

Automatic Fallback for Resources 666
Outsourcing Translations 666

Localization with ASP.NET 667
Localization with WPF 669

WPF Application 670
.NET Resources 670
Localization with XAML 671

A Custom Resource Reader 673
Creating a DatabaseResourceReader 674
Creating a DatabaseResourceSet 676
Creating a DatabaseResourceManager 676
Client Application for DatabaseResourceReader 677

Creating Custom Cultures 677
Summary 678

Chapter 22: Transactions 679

Overview 679
Transaction Phases 680
ACID Properties 681

Database and Entity Classes 681
Traditional Transactions 683

ADO.NET Transactions 683
System.EnterpriseServices 684

System.Transactions 685
Committable Transactions 687
Transaction Promotion 690
Dependent Transactions 692
Ambient Transactions 694

Isolation Level 701
Custom Resource Managers 703

Transactional Resources 704
Transactions with Windows Vista and Windows Server 2008 710
Summary 713

Chapter 23: Windows Services 715

What Is a Windows Service? 715
Windows Services Architecture 716

Service Program 717
Service Control Program 718
Service Configuration Program 718

ftoc.indd xxviiftoc.indd xxvii 2/19/08 8:30:33 PM2/19/08 8:30:33 PM

Contents

xxviii

System.ServiceProcess Namespace 718
Creating a Windows Service 719

A Class Library Using Sockets 719
TcpClient Example 722
Windows Service Project 725
Threading and Services 730
Service Installation 730
Installation Program 730

Monitoring and Controlling the Service 734
MMC Computer Management 735
net.exe 736
sc.exe 736
Visual Studio Server Explorer 737
ServiceController Class 737

Troubleshooting 745
Interactive Services 745
Event Logging 746

Power Events 746
Summary 748

Chapter 24: Interoperability 749

.NET and COM 750
Metadata 750
Freeing Memory 750
Interfaces 751
Method Binding 752
Data Types 753
Registration 753
Threading 753
Error Handling 754
Event Handling 754

Marshaling 755
Using a COM Component from a .NET Client 756

Creating a COM Component 756
Creating a Runtime Callable Wrapper 762
Using the RCW 763
Primary Interop Assemblies 764
Threading Issues 764
Adding Connection Points 765
Using ActiveX Controls in Windows Forms 768
Using COM Objects from within ASP .NET 771

ftoc.indd xxviiiftoc.indd xxviii 2/19/08 8:30:33 PM2/19/08 8:30:33 PM

Contents

xxix

Using a .NET Component from a COM Client 771
COM Callable Wrapper 771
Creating a .NET Component 772
Creating a Type Library 772
COM Interop Attributes 774
COM Registration 777
Creating a COM Client 778
Adding Connection Points 780
Creating a Client with a Sink Object 781
Running Windows Forms Controls in Internet Explorer 782

Platform Invoke 783
Summary 787

Part IV: Data 789

Chapter 25: Manipulating Files and the Registry 791

Managing the File System 791
.NET Classes That Represent Files and Folders 792
The Path Class 795
Example: A File Browser 796

Moving, Copying, and Deleting Files 800
Example: FilePropertiesAndMovement 801
Looking at the Code for FilePropertiesAndMovement 802

Reading and Writing to Files 805
Reading a File 805
Writing to a File 807
Streams 808
Buffered Streams 810
Reading and Writing to Binary Files Using FileStream 810
Reading and Writing to Text Files 815

Reading Drive Information 822
File Security 824

Reading ACLs from a File 824
Reading ACLs from a Directory 825
Adding and Removing ACLs from a File 827

Reading and Writing to the Registry 828
The Registry 829
The .NET Registry Classes 830
Example: SelfPlacingWindow 833

Reading and Writing to Isolated Storage 839
Summary 844

ftoc.indd xxixftoc.indd xxix 2/19/08 8:30:33 PM2/19/08 8:30:33 PM

Contents

xxx

Chapter 26: Data Access 845

ADO.NET Overview 846
Namespaces 846
Shared Classes 847
Database-Specific Classes 847

Using Database Connections 849
Managing Connection Strings 850
Using Connections Efficiently 852
Transactions 854

Commands 855
Executing Commands 856
Calling Stored Procedures 860

Fast Data Access: The Data Reader 863
Managing Data and Relationships: The DataSet Class 865

Data Tables 866
Data Relationships 873
Data Constraints 874

XML Schemas: Generating Code with XSD 877
Populating a DataSet 883

Populating a DataSet Class with a Data Adapter 883
Populating a DataSet from XML 884

Persisting DataSet Changes 884
Updating with Data Adapters 885
Writing XML Output 887

Working with ADO.NET 889
Tiered Development 889
Key Generation with SQL Server 890
Naming Conventions 892

Summary 894

Chapter 27: LINQ to SQL 895

LINQ to SQL and Visual Studio 2008 897
Calling the Products Table Using LINQ to SQL — Creating the Console Application 897
Adding a LINQ to SQL Class 898
Introducing the O/R Designer 899
Creating the Product Object 900

How Objects Map to LINQ Objects 902
The DataContext Object 903
The Table<TEntity> Object 907

Working Without the O/R Designer 907

ftoc.indd xxxftoc.indd xxx 2/19/08 8:30:33 PM2/19/08 8:30:33 PM

Contents

xxxi

Creating Your Own Custom Object 908
Querying with Your Custom Object and LINQ 908
Limiting the Columns Called with the Query 910
Working with Column Names 910
Creating Your Own DataContext Object 911

Custom Objects and the O/R Designer 912
Querying the Database 914

Using Query Expressions 914
Query Expressions in Detail 915
Filtering Using Expressions 916
Performing Joins 916
Grouping Items 918

Stored Procedures 919
Summary 920

Chapter 28: Manipulating XML 921

XML Standards Support in .NET 922
Introducing the System.Xml Namespace 922
Using System.Xml Classes 923
Reading and Writing Streamed XML 924

Using the XmlReader Class 924
Validating with XmlReader 928
Using the XmlWriter Class 930

Using the DOM in .NET 931
Using the XmlDocument Class 933

Using XPathNavigators 937
The System.Xml.XPath Namespace 937
The System.Xml.Xsl Namespace 942

XML and ADO.NET 948
Converting ADO.NET Data to XML 948
Converting XML to ADO.NET Data 954

Serializing Objects in XML 956
Serialization Without Source Code Access 963

Summary 965

Chapter 29: LINQ to XML 967

LINQ to XML and .NET 3.5 968
New Objects for Creating XML Documents 968
Visual Basic 2008 Ventures Down Another Path 968
Namespaces and Prefixes 968

ftoc.indd xxxiftoc.indd xxxi 2/19/08 8:30:34 PM2/19/08 8:30:34 PM

Contents

xxxii

New XML Objects from the .NET Framework 3.5 969
XDocument 969
XElement 969
XNamespace 971
XComment 973
XAttribute 974

Using LINQ to Query XML Documents 974
Querying Static XML Documents 975
Querying Dynamic XML Documents 976

Working Around the XML Document 978
Reading from an XML Document 978
Writing to an XML Document 979

Using LINQ to SQL with LINQ to XML 981
Setting up the LINQ to SQL Components 981
Querying the Database and Outputting XML 982

Summary 983

Chapter 30: .NET Programming with SQL Server 985

.NET Runtime Host 986
Microsoft.SqlServer.Server 987
User-Defined Types 988

Creating UDTs 988
Using UDTs 993
Using UDTs from Client-Side Code 994
Creating User-Defined Aggregates 996
Using User-Defined Aggregates 997

Stored Procedures 998
Creating Stored Procedures 998
Using Stored Procedures 999

User-Defined Functions 1000
Creating User-Defined Functions 1000
Using User-Defined Functions 1001

Triggers 1001
Creating Triggers 1002
Using Triggers 1003

XML Data Type 1003
Tables with XML Data 1003
Reading XML Values 1005
Query of Data 1008
XML Data Modification Language (XML DML) 1010

ftoc.indd xxxiiftoc.indd xxxii 2/19/08 8:30:34 PM2/19/08 8:30:34 PM

Contents

xxxiii

XML Indexes 1010
Strongly Typed XML 1011

Summary 1013

Part V: Presentation 1015

Chapter 31: Windows Forms 1017

Creating a Windows Form Application 1018
Class Hierarchy 1023

Control Class 1023
Size and Location 1023
Appearance 1024
User Interaction 1024
Windows Functionality 1025
Miscellaneous Functionality 1026

Standard Controls and Components 1026
Button 1026
CheckBox 1028
RadioButton 1028
ComboBox, ListBox, and CheckedListBox 1029
DateTimePicker 1031
ErrorProvider 1031
HelpProvider 1032
ImageList 1033
Label 1033
ListView 1033
PictureBox 1035
ProgressBar 1035
TextBox, RichTextBox, and MaskedTextBox 1036
Panel 1037
FlowLayoutPanel and TableLayoutPanel 1037
SplitContainer 1038
TabControl and TabPages 1038
ToolStrip 1039
MenuStrip 1041
ContextMenuStrip 1042
ToolStripMenuItem 1042
ToolStripManager 1042
ToolStripContainer 1042

Forms 1043
Form Class 1043

ftoc.indd xxxiiiftoc.indd xxxiii 2/19/08 8:30:34 PM2/19/08 8:30:34 PM

Contents

xxxiv

Multiple Document Interface 1047
Custom Controls 1048

Summary 1059

Chapter 32: Data Binding 1061

The DataGridView Control 1061
Displaying Tabular Data 1062
Data Sources 1063

DataGridView Class Hierarchy 1072
Data Binding 1075

Simple Binding 1075
Data-Binding Objects 1076

Visual Studio .NET and Data Access 1080
Creating a Connection 1080
Selecting Data 1084
Updating the Data Source 1084
Other Common Requirements 1085

Summary 1092

Chapter 33: Graphics with GDI+ 1093

Understanding Drawing Principles 1094
GDI and GDI+ 1094
Drawing Shapes 1096
Painting Shapes Using OnPaint() 1099
Using the Clipping Region 1100

Measuring Coordinates and Areas 1102
Point and PointF 1102
Size and SizeF 1103
Rectangle and RectangleF 1105
Region 1106

A Note About Debugging 1106
Drawing Scrollable Windows 1107
World, Page, and Device Coordinates 1113
Colors 1114

Red-Green-Blue Values 1114
The Named Colors 1115
Graphics Display Modes and the Safety Palette 1115

The Safety Palette 1116
Pens and Brushes 1116

Brushes 1117
Pens 1117

ftoc.indd xxxivftoc.indd xxxiv 2/19/08 8:30:34 PM2/19/08 8:30:34 PM

Contents

xxxv

Drawing Shapes and Lines 1118
Displaying Images 1120
Issues When Manipulating Images 1123
Drawing Text 1123
Simple Text Example 1124
Fonts and Font Families 1125
Example: Enumerating Font Families 1126
Editing a Text Document: The CapsEditor Sample 1129

The Invalidate() Method 1133
Calculating Item Sizes and Document Size 1134
OnPaint() 1135
Coordinate Transforms 1137
Responding to User Input 1138

Printing 1141
Implementing Print and Print Preview 1143

Summary 1147

Chapter 34: Windows Presentation Foundation 1149

Overview 1149
XAML 1150
Cooperation of Designers and Developers 1154
Class Hierarchy 1155
Namespaces 1156

Shapes 1159
Transformation 1162
Brushes 1163

SolidColorBrush 1163
LinearGradientBrush 1164
RadialGradientBrush 1164
DrawingBrush 1165
ImageBrush 1165
VisualBrush 1166

Controls 1167
Simple Controls 1167
Content Controls 1168
Headered Content Controls 1170
Items Controls 1171
Headered Items Controls 1171

Layout 1172
StackPanel 1172
WrapPanel 1173

ftoc.indd xxxvftoc.indd xxxv 2/19/08 8:30:35 PM2/19/08 8:30:35 PM

Contents

xxxvi

Canvas 1173
DockPanel 1174
Grid 1175

Event Handling 1176
Styles, Templates, and Resources 1177

Styles 1177
Resources 1178
Triggers 1182
Templates 1184
Styling a ListBox 1192

Summary 1198

Chapter 35: Advanced WPF 1199

Data Binding 1199
Overview 1200
Binding with XAML 1200
Simple Object Binding 1203
Object Data Provider 1206
List Binding 1208
Value Conversion 1212
Adding List Items Dynamically 1213
Data Templates 1214
Binding to XML 1217
Binding Validation 1219

Command Bindings 1224
Animations 1228

Timeline 1229
Triggers 1233
Storyboard 1235

Adding 3-D Features in WPF 1237
Triangle 1238

Windows Forms Integration 1245
WPF Controls Within Windows Forms 1245
Windows Forms Controls Within WPF Applications 1247

WPF Browser Application 1249
Summary 1249

Chapter 36: Add-Ins 1251

System.AddIn Architecture 1251
Issues with Add-ins 1252
Pipeline Architecture 1253

ftoc.indd xxxviftoc.indd xxxvi 2/19/08 8:30:35 PM2/19/08 8:30:35 PM

Contents

xxxvii

Discovery 1254
Activation and Isolation 1255
Contracts 1257
Lifetime 1258
Versioning 1259

Add-In Sample 1259
Calculator Contract 1261
Calculator Add-In View 1261
Calculator Add-In Adapter 1262
Calculator Add-In 1264
Calculator Host View 1265
Calculator Host Adapter 1265
Calculator Host 1267
Additional Add-Ins 1271

Summary 1271

Chapter 37: ASP.NET Pages 1273

ASP.NET Introduction 1274
State Management in ASP.NET 1274

ASP.NET Web Forms 1275
The ASP.NET Code Model 1278
ASP.NET Server Controls 1279

ADO.NET and Data Binding 1295
Updating the Event-Booking Application 1295
More on Data Binding 1302

Application Configuration 1308
Summary 1309

Chapter 38: ASP.NET Development 1311

User and Custom Controls 1312
User Controls 1312
Custom Controls 1318

Master Pages 1323
Accessing Master Page Content from Web Pages 1325
Nested Master Pages 1326
Master Pages in PCSDemoSite 1326

Site Navigation 1328
Navigation in PCSDemoSite 1330

Security 1331
Adding Forms Authentication Using the Security Wizard 1332
Implementing a Login System 1334

ftoc.indd xxxviiftoc.indd xxxvii 2/19/08 8:30:35 PM2/19/08 8:30:35 PM

Contents

xxxviii

Login Web Server Controls 1336
Securing Directories 1336
Security in PCSDemoSite 1337

Themes 1339
Applying Themes to Pages 1339
Defining Themes 1340
Themes in PCSDemoSite 1340

Web Parts 1344
Web Parts Application Components 1344
Web Parts Example 1346

Summary 1353

Chapter 39: ASP.NET AJAX 1355

What Is Ajax? 1356
What Is ASP.NET AJAX? 1358

Core Functionality 1359
ASP.NET AJAX Control Toolkit 1361

Using ASP.NET AJAX 1361
ASP.NET AJAX Web Site Example 1362
ASP.NET AJAX-Enabled Web Site Configuration 1365
Adding ASP.NET AJAX Functionality 1368
Using the AJAX Library 1374

Summary 1383

Chapter 40: Visual Studio Tools for Office 1385

VSTO Overview 1386
Project Types 1386
Project Features 1389

VSTO Fundamentals 1390
Office Object Model 1391
VSTO Namespaces 1391
Host Items and Host Controls 1392
Basic VSTO Project Structure 1394
The Globals Class 1397
Event Handling 1397

Building VSTO Solutions 1398
Managing Application-Level Add-Ins 1399
Interacting with Applications and Documents 1400
UI Customization 1401

Example Application 1405

ftoc.indd xxxviiiftoc.indd xxxviii 2/19/08 8:30:35 PM2/19/08 8:30:35 PM

Contents

xxxix

VBA Interoperability 1415
Summary 1418

Part VI: Communication 1421

Chapter 41: Accessing the Internet 1423

The WebClient Class 1424
Downloading Files 1424
Basic Web Client Example 1424
Uploading Files 1426

WebRequest and WebResponse Classes 1426
Other WebRequest and WebResponse Features 1427

Displaying Output as an HTML Page 1429
Allowing Simple Web Browsing from Your Applications 1430
Launching Internet Explorer Instances 1432
Giving Your Application More IE-Type Features 1432
Printing Using the WebBrowser Control 1437
Displaying the Code of a Requested Page 1438
The Web Request and Web Response Hierarchy 1438

Utility Classes 1440
URIs 1440
IP Addresses and DNS Names 1441

Lower-Level Protocols 1443
Lower-Level Classes 1444

Summary 1453

Chapter 42: Windows Communication Foundation 1455

WCF Overview 1456
SOAP 1457
WSDL 1457
JSON 1458

Simple Service and Client 1458
Service Contract 1460
Service Implementation 1460
WCF Service Host and WCF Test Client 1461
Custom Service Host 1463
WCF Client 1464
Diagnostics 1466

Contracts 1467
Data Contract 1468

ftoc.indd xxxixftoc.indd xxxix 2/19/08 8:30:35 PM2/19/08 8:30:35 PM

Contents

xl

Versioning 1468
Service Contract 1469
Message Contract 1470

Service Implementation 1471
Error Handling 1476

Binding 1477
Hosting 1480

Custom Hosting 1480
WAS Hosting 1481

Clients 1482
Duplex Communication 1484
Summary 1486

Chapter 43: Windows Workflow Foundation 1487

Hello World 1488
Activities 1489

IfElseActivity 1490
ParallelActivity 1491
CallExternalMethodActivity 1492
DelayActivity 1493
ListenActivity 1493
Activity Execution Model 1494

Custom Activities 1495
Activity Validation 1497
Themes and Designers 1498
ActivityToolboxItem and Icons 1500
Custom Composite Activities 1502

Workflows 1508
Sequential Workflows 1509
State Machine Workflows 1509
Passing Parameters to a Workflow 1511
Returning Results from a Workflow 1512
Binding Parameters to Activities 1513

The Workflow Runtime 1514
Workflow Services 1515

The Persistence Service 1517
The Tracking Service 1518
Custom Services 1520

Integration with Windows Communication Foundation 1521
Hosting Workflows 1524
The Workflow Designer 1526
Summary 1526

ftoc.indd xlftoc.indd xl 2/19/08 8:30:36 PM2/19/08 8:30:36 PM

Contents

xli

Chapter 44: Enterprise Services 1527

Overview 1527
History 1528
Where to Use Enterprise Services 1528
Contexts 1529
Automatic Transactions 1529
Distributed Transactions 1530
Object Pooling 1530
Role-Based Security 1530
Queued Components 1530
Loosely Coupled Events 1530

Creating a Simple COM+ Application 1531
The ServicedComponent Class 1531
Sign the Assembly 1532
Assembly Attributes 1532
Creating the Component 1533

Deployment 1534
Automatic Deployment 1534
Manual Deployment 1534
Creating an Installer Package 1535

Component Services Explorer 1536
Client Application 1538
Transactions 1539

Transaction Attributes 1539
Transaction Results 1540

Sample Application 1540
Entity Classes 1541
The OrderControl Component 1543
The OrderData Component 1544
The OrderLineData Component 1546
Client Application 1548

 Integrating WCF and Enterprise Services 1549
WCF Service Façade 1549
Client Application 1553

Summary 1554

Chapter 45: Message Queuing 1555

Overview 1555
When to Use Message Queuing 1556
Message Queuing Features 1557

Message Queuing Products 1558

ftoc.indd xliftoc.indd xli 2/19/08 8:30:36 PM2/19/08 8:30:36 PM

Contents

xlii

Message Queuing Architecture 1559
Messages 1559
Message Queue 1559

Message Queuing Administrative Tools 1560
Creating Message Queues 1560
Message Queue Properties 1561

Programming Message Queuing 1562
Creating a Message Queue 1562
Finding a Queue 1563
Opening Known Queues 1563
Sending a Message 1565
Receiving Messages 1567

Course Order Application 1569
Course Order Class Library 1570
Course Order Message Sender 1570
Sending Priority and Recoverable Messages 1571
Course Order Message Receiver 1573

Receiving Results 1576
Acknowledgment Queues 1576
Response Queues 1577

Transactional Queues 1577
Message Queuing with WCF 1579

Entity Classes with a Data Contract 1579
WCF Service Contract 1580
WCF Message Receiver Application 1581
WCF Message Sender Application 1583

Message Queue Installation 1585
Summary 1585

Chapter 46: Directory Services 1587

The Architecture of Active Directory 1588
Features 1588
Active Directory Concepts 1588
 Characteristics of Active Directory Data 1592
Schema 1592

Administration Tools for Active Directory 1594
Active Directory Users and Computers 1594
ADSI Edit 1595

Programming Active Directory 1596
Classes in System.DirectoryServices 1598
Binding 1598
Cache 1605

ftoc.indd xliiftoc.indd xlii 2/19/08 8:30:36 PM2/19/08 8:30:36 PM

Contents

xliii

Creating New Objects 1605
Updating Directory Entries 1606
Accessing Native ADSI Objects 1607
Searching in Active Directory 1608

Searching for User Objects 1611
User Interface 1611
Get the Schema Naming Context 1612
Get the Property Names of the User Class 1613
Search for User Objects 1614

Account Management 1616
Display User Information 1618
Create a User 1618
Reset a Password 1618
Create a Group 1619
Add a User to a Group 1619
Finding Users 1619

DSML 1620
Classes in System.DirectoryServices.Protocols 1621
Searching for Active Directory Objects with DSML 1621

Summary 1623

Chapter 47: Peer-to-Peer Networking 1625

Peer-to-Peer Networking Overview 1625
Client-Server Architecture 1626
P2P Architecture 1627
P2P Architectural Challenges 1627
P2P Terminology 1628
P2P Solutions 1629

Microsoft Windows Peer-to-Peer Networking 1629
Peer Name Resolution Protocol (PNRP) 1629
People Near Me 1632

Building P2P Applications 1632
System.Net.PeerToPeer 1633
System.Net.PeerToPeer.Collaboration 1638

Summary 1642

Chapter 48: Syndication 1643

Overview of System.Servicemodel.Syndication 1643
Syndication Reader 1645
Offering Syndication Feeds 1647
Summary 1652

ftoc.indd xliiiftoc.indd xliii 2/19/08 8:30:36 PM2/19/08 8:30:36 PM

Contents

xliv

Part VII: Appendices 1653

Appendix A: ADO.NET Entity Framework 1655

Overview of the ADO.NET Entity Framework 1656
Entity Framework Layers 1657

Logical 1657
Conceptual 1659
Mapping 1660

Entities 1661
Object Context 1664
Relationships 1666

Table per Hierarchy 1666
Table per Type 1668

 Object Query 1670
Updates 1674

Object Tracking 1674
Change Information 1675
Attaching and Detaching Entities 1677
Storing Entity Changes 1677

LINQ to Entities 1678
Summary 1679

Appendix B: C#, Visual Basic, and C++/CLI 1681

Namespaces 1682
Defining Types 1683

Reference Types 1683
Value Types 1684
Type Inference 1685
Interfaces 1685
Enumerations 1686

Methods 1687
Method Parameters and Return Types 1687
Parameter Modifiers 1688
Constructors 1689
Properties 1690
Object Initializers 1691
Extension Methods 1692

Static Members 1692
Arrays 1693
Control Statements 1694

if Statement 1694

ftoc.indd xlivftoc.indd xliv 2/19/08 8:30:37 PM2/19/08 8:30:37 PM

Contents

xlv

Conditional Operator 1694
switch Statement 1694

Loops 1696
for Statement 1696
while and do . . . while Statements 1696
foreach Statement 1697

Exception Handling 1697
Inheritance 1699

Access Modifiers 1699
Keywords 1699

Resource Management 1701
IDisposable Interface Implementation 1701
Using Statement 1702
Override Finalize 1702

Delegates 1703
Events 1705
Generics 1707
LINQ Queries 1708
C++/CLI Mixing Native and Managed Code 1708
C# Specifics 1709
Summary 1710

Appendix C: Windows Vista and Windows Server 2008 1711

Vista Bridge 1711
User Account Control 1712

Applications Requiring Admin Privileges 1712
Shield Icon 1713

Directory Structure 1715
New Controls and Dialogs 1716

Command Link 1717
Task Dialog 1718
File Dialogs 1721

Search 1722
OLE DB Provider 1724
Advanced Query Syntax 1728

Summary 1729

Index 1731

ftoc.indd xlvftoc.indd xlv 2/19/08 8:30:37 PM2/19/08 8:30:37 PM

ftoc.indd xlviftoc.indd xlvi 2/19/08 8:30:37 PM2/19/08 8:30:37 PM

 Introduction

 If we were to describe the C# language and its associated environment, the .NET Framework, as the most
important new technology for developers for many years, we would not be exaggerating. .NET is
designed to provide a new environment within which you can develop almost any application to run on
Windows, whereas C# is a new programming language that has been designed specifically to work with
.NET. Using C# you can, for example, write a dynamic Web page, an XML Web service, a component of a
distributed application, a database access component, a classic Windows desktop application, or even a
new smart client application that allows for online/offline capabilities. This book covers the .NET
Framework 3.5. If you are coding using version 1.0, 1.1, 2.0, or even 3.0, there may be sections of the book
that will not work for you. We try to notify you of items that are new to the .NET Framework 3.5
specifically.

 Don ’ t be fooled by the .NET label. The NET bit in the name is there to emphasize Microsoft ’ s belief that
distributed applications, in which the processing is distributed between client and server, are the way
forward, but C# is not just a language for writing Internet or network - aware applications. It provides a
means for you to code up almost any type of software or component that you might need to write for the
Windows platform. Between them, C# and .NET are set both to revolutionize the way that you write
programs, and to make programming on Windows much easier than it has ever been.

 That ’ s quite a substantial claim, and it needs to be justified. After all, we all know how quickly computer
technology changes. Every year Microsoft brings out new software, programming tools, or versions of
Windows, with the claim that these will be hugely beneficial to developers. So what ’ s different about
.NET and C#?

 The Significance of . NET and C#
 In order to understand the significance of .NET, it is useful to remind ourselves of the nature of many of
the Windows technologies that have appeared in the past 10 years or so. Although they may look quite
different on the surface, all of the Windows operating systems from Windows 3.1 (introduced in 1992)
through Windows Server 2008 have the same familiar Windows API at their core. As we ’ ve progressed
through new versions of Windows, huge numbers of new functions have been added to the API, but this
has been a process of evolving and extending the API rather than replacing it.

 The same can be said for many of the technologies and frameworks that we ’ ve used to develop software
for Windows. For example, COM (Component Object Model) originated as OLE (Object Linking and
Embedding). At the time, it was, to a large extent, simply a means by which different types of Office
documents could be linked, so that, for example, you could place a small Excel spreadsheet in your Word
document. From that it evolved into COM, DCOM (Distributed COM), and eventually COM+ — a
sophisticated technology that formed the basis of the way almost all components communicated, as well
as implementing transactions, messaging services, and object pooling.

 Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned about
backward compatibility. Over the years, a huge base of third - party software has been written for
Windows, and Windows wouldn ’ t have enjoyed the success it has had if every time Microsoft
introduced a new technology it broke the existing code base!

 Although backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology
evolves and adds new features, it ends up a bit more complicated than it was before.

flast.indd xlviiflast.indd xlvii 2/19/08 5:35:39 PM2/19/08 5:35:39 PM

Introduction

xlviii

 It was clear that something had to change. Microsoft couldn ’ t go on forever extending the same
development tools and languages, always making them more and more complex in order to satisfy the
conflicting demands of keeping up with the newest hardware and maintaining backward compatibility
with what was around when Windows first became popular in the early 1990s. There comes a point
where you have to start with a clean slate if you want a simple yet sophisticated set of languages,
environments, and developer tools, which makes it easy for developers to write state - of - the - art software.

 This fresh start is what C# and .NET are all about. Roughly speaking, .NET is a framework — an API —
 for programming on the Windows platform. Along with the .NET Framework, C# is a language that has
been designed from scratch to work with .NET, as well as to take advantage of all the progress in
developer environments and in our understanding of object - oriented programming principles that have
taken place over the past 20 years.

 Before we continue, we should make it clear that backward compatibility has not been lost in the
process. Existing programs will continue to work, and .NET was designed with the ability to work with
existing software. Presently, communication between software components on Windows almost entirely
takes place using COM. Taking account of this, .NET does have the ability to provide wrappers around
existing COM components so that .NET components can talk to them.

 It is true that you don ’ t need to learn C# in order to write code for .NET. Microsoft has extended C++,
provided another new language called J#, and made substantial changes to Visual Basic to turn it into the
more powerful language Visual Basic .NET, in order to allow code written in either of these languages to
target the .NET environment. These other languages, however, are hampered by the legacy of having
evolved over the years rather than having been written from the start with today ’ s technology in mind.

 This book will equip you to program in C#, while at the same time provide the necessary background in
how the .NET architecture works. We not only cover the fundamentals of the C# language but also go on
to give examples of applications that use a variety of related technologies, including database access,
dynamic Web pages, advanced graphics, and directory access. The only requirement is that you be
familiar with at least one other high - level language used on Windows — either C++, Visual Basic, or J++.

 Advantages of . NET
 We ’ ve talked in general terms about how great .NET is, but we haven ’ t said much about how it helps to make
your life as a developer easier. In this section, we discuss some of the improved features of .NET in brief.

 Object - oriented programming — Both the .NET Framework and C# are entirely based on
object - oriented principles right from the start.

 Good design — A base class library, which is designed from the ground up in a highly intuitive
way.

 Language independence — With .NET, all of the languages — Visual Basic .NET, C#, J#, and
managed C++ — compile to a common Intermediate Language . This means that languages are
interoperable in a way that has not been seen before.

 Better support for dynamic Web pages — Though ASP offered a lot of flexibility, it was also
inefficient because of its use of interpreted scripting languages, and the lack of object - oriented
design often resulted in messy ASP code. .NET offers an integrated support for Web pages,
using a new technology — ASP.NET. With ASP.NET, code in your pages is compiled, and may
be written in a .NET - aware high - level language such as C# or Visual Basic 2008.

 Efficient data access — A set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also
available to allow access to the file system, and to directories. In particular, XML support is built
into .NET, allowing you to manipulate data, which may be imported from or exported to
non - Windows platforms.

❑

❑

❑

❑

❑

flast.indd xlviiiflast.indd xlviii 2/19/08 5:35:40 PM2/19/08 5:35:40 PM

Introduction

xlix

 Code sharing — .NET has completely revamped the way that code is shared between
applications, introducing the concept of the assembly , which replaces the traditional DLL.
Assemblies have formal facilities for versioning, and different versions of assemblies can exist
side by side.

 Improved security — Each assembly can also contain built - in security information that can
indicate precisely who or what category of user or process is allowed to call which methods on
which classes. This gives you a very fine degree of control over how the assemblies that you
deploy can be used.

 Zero - impact installation — There are two types of assemblies: shared and private. Shared
assemblies are common libraries available to all software, whereas private assemblies are
intended only for use with particular software. A private assembly is entirely self - contained, so
the process of installing it is simple. There are no registry entries; the appropriate files are
simply placed in the appropriate folder in the file system.

 Support for Web services — .NET has fully integrated support for developing Web services as
easily as you ’ d develop any other type of application.

 Visual Studio 2008 — .NET comes with a developer environment, Visual Studio 2008, which
can cope equally well with C++, C#, and Visual Basic 2008, as well as with ASP.NET code. Visual
Studio 2008 integrates all the best features of the respective language - specific environments of
Visual Studio .NET 2002/2003/2005 and Visual Studio 6.

 C# — C# is a new object - oriented language intended for use with .NET.

 We look more closely at the benefits of the .NET architecture in Chapter 1 , “ .NET Architecture. ”

 Looking at What ’ s New in the . NET
Framework 3.5

 The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The.NET
Framework 2.0 was introduced in 2005 and was considered a major release of the Framework. The .NET
Framework 3.5, though not as big a release as the 2.0 release, is still considered a rather major release of
the product with many outstanding new features.

 With each release of the Framework, Microsoft has always tried to ensure that there were minimal
breaking changes to code developed. Thus far, Microsoft has been very successful at this goal.

 Make sure that you create a staging server to completely test the upgrading of your applica-
tions to the .NET Framework 3.5 as opposed to just upgrading a live application.

 The following section details some of the changes that are new to C# 2008, the .NET Framework 3.5, as
well as new additions to Visual Studio 2008 — the development environment for the .NET Framework 3.5.

 Implicitly Typed Variables
 Using C# 2008, you can now declare a variable and allow the compiler to determine the type of the item
implicitly. You will find that LINQ uses this capability to work with the queries that are created. To work
with this new capability, you use the var keyword:

var x = 5;

❑

❑

❑

❑

❑

❑

flast.indd xlixflast.indd xlix 2/19/08 5:35:40 PM2/19/08 5:35:40 PM

Introduction

l

 When you use this statement, the compiler will actually use the value of 5 to figure out the type that this
needs to be. That means, in this case, that the statement will actually be as you would expect:

int x = 5;

 Automatically Implemented Properties
 A common task of declaring your properties just got easier with C# 2008. Prior to this release, you would
declare your properties as such:

private int _myItem;

public int MyItem
{
 get {
 return myItem
 }

 set {
 myItem = value;
 }
}

 Now you can let the compiler do the work for you on your behalf. Instead of constantly putting the
preceding structure in your code over and over again, you are now able to use the shortcut of automatic
implemented properties:

public int MyProperty { get; set; }

 Using this syntax will produce the same results as the lengthy example. The compiler will perform the
operation of converting this short form to the proper format on your behalf, making your code simpler
to read and work with and allowing you to code your solutions faster than before.

 Object and Collection Initializers
 C# 2008 now allows you to assign values to an object ’ s properties at the moment the property is
initialized. For instance, suppose you have the following object in your code:

public class MyStructure
{
 public int MyProperty1 { get; set; }
 public int MyProperty2 { get; set; }
}

 Using C# 2008, you can instantiate the MyStructure object as follows:

MyStructure myStructure = new MyStructure() { MyProperty1 = 5,
 MyProperty2 = 10 };

 This same capability allows you to declare many items of a collection at once:

List < int > myInts = new List < int > () { 5, 10, 15, 20, 25 };

 In this case, all the numbers are added to the myInts object as if you used the Add() method.

 Built - In ASP . NET AJAX Support
 Although you could build ASP.NET AJAX web pages using the .NET Framework 2.0, this required
additional installs. You will find that ASP.NET AJAX support is now built into ASP.NET 3.5 and Visual
Studio 2008.

flast.indd lflast.indd l 2/19/08 5:35:40 PM2/19/08 5:35:40 PM

Introduction

li

 Now, every page that you build using ASP.NET with the .NET Framework 3.5 is Ajax - enabled (you can
see all the Ajax configuration in the Web.config file). You will also find some new server controls within
the ASP.NET toolbox of controls that allow you to add Ajax capabilities to your Web sites. See Chapter 39
for more information on ASP.NET AJAX.

 . NET Language Integrated Query Framework (LINQ)
 One of the coolest features and most anticipated of the bunch, LINQ offers you the ability to easily access
underlying data. Microsoft has provided LINQ as a lightweight fa ç ade that provides a strongly typed
interface to the underlying data stores. LINQ provides the means for developers to stay within the
coding environment that they are used to and access the underlying data as objects that work with the
IDE, IntelliSense, and even debugging.

 Using LINQ, you can query against objects, data sets, the SQL Server database, XML, and more. The nice
thing is that regardless of the underlying data source, getting at the data is done in the same manner
because LINQ provides a structured way to query the data.

 An example of getting at a pseudo XML document and grabbing all the customer names within the XML
file is presented here:

XDocument xdoc = XDocument.Load(@”C:\Customers.xml”);

var query = from people in xdoc.Descendants(“CustomerName”)
 select people.Value;

Console.WriteLine(“{0} Customers Found”, query.Count());
Console.WriteLine();

foreach (var item in query)
{
 Console.WriteLine(item);
}

 Chapters 11 , 27 , and 29 all cover various aspects of LINQ.

 Multi - Targeting within Visual Studio
 In many cases, .NET developers are now working with multiple .NET applications that are targeted at
either of the .NET Frameworks of 2.0, 3.0, or now 3.5. It would be silly to have to continue to have
multiple versions of Visual Studio on your development computer in order to work with multiple
versions of the .NET Framework.

 For this reason, you will find that the latest version of Visual Studio 2008 now supports the ability to
target the version of the framework that you are interested in working with. Now when creating a new
application, you are giving the option of creating an application that targets either the .NET Framework
2.0, 3.0, or 3.5.

 Supporting the Latest Application Types
 It wasn ’ t that long ago that the .NET Framework 3.0 was released and with it came some dramatic new
capabilities. Included in that version was the ability to build a new application type using the Windows
Presentation Foundation (WPF) as well as applications and libraries based on the Windows
Communication Foundation (WCF), and the Windows Workflow Foundation (WF).

 With the release of Visual Studio 2008, you will find that you are now able to build these applications —
 they are all now available as project types with new controls and Visual Studio wizards and capabilities.

flast.indd liflast.indd li 2/19/08 5:35:41 PM2/19/08 5:35:41 PM

Introduction

lii

 Where C# Fits In
 In one sense, C# can be seen as being the same thing to programming languages as .NET is to the
Windows environment. Just as Microsoft has been adding more and more features to Windows and the
Windows API over the past decade, Visual Basic 2008 and C++ have undergone expansion. Although
Visual Basic and C++ have ended up as hugely powerful languages as a result of this, both languages
also suffer from problems due to the legacies from how they have evolved.

 In the case of Visual Basic 6 and earlier versions, the main strength of the language was the fact that it
was simple to understand and made many programming tasks easy, largely hiding the details of the
Windows API and the COM component infrastructure from the developer. The downside to this was
that Visual Basic was never truly object oriented, so that large applications quickly became disorganized
and hard to maintain. As well, because Visual Basic ’ s syntax was inherited from early versions of BASIC
(which, in turn, was designed to be intuitively simple for beginning programmers to understand, rather
than to write large commercial applications), it didn ’ t really lend itself to well - structured or object -
 oriented programs.

 C++, on the other hand, has its roots in the ANSI C++ language definition. It isn ’ t completely ANSI -
 compliant for the simple reason that Microsoft first wrote its C++ compiler before the ANSI definition
had become official, but it comes close. Unfortunately, this has led to two problems. First, ANSI C++ has
its roots in a decade - old state of technology, and this shows up in a lack of support for modern concepts
(such as Unicode strings and generating XML documentation) and for some archaic syntax structures
designed for the compilers of yesteryear (such as the separation of declaration from definition of
member functions). Second, Microsoft has been simultaneously trying to evolve C++ into a language
that is designed for high - performance tasks on Windows, and in order to achieve that, it has been forced
to add a huge number of Microsoft - specific keywords as well as various libraries to the language. The
result is that on Windows, the language has become a complete mess. Just ask C++ developers how
many definitions for a string they can think of: char* , LPTSTR , string , CString (MFC version),
 CString (WTL version), wchar_t* , OLECHAR* , and so on.

 Now enter .NET — a completely new environment that is going to involve new extensions to both
languages. Microsoft has gotten around this by adding yet more Microsoft - specific keywords to C++,
and by completely revamping Visual Basic into Visual Basic .NET into Visual Basic 2008, a language that
retains some of the basic VB syntax but that is so different in design that it can be considered, for all
practical purposes, a new language.

 It ’ s in this context that Microsoft has decided to give developers an alternative — a language designed
specifically for .NET, and designed with a clean slate. C# is the result. Officially, Microsoft describes C#
as a “ simple, modern, object - oriented, and type - safe programming language derived from C and C++. ”
Most independent observers would probably change that to “ derived from C, C++, and Java. ” Such
descriptions are technically accurate but do little to convey the beauty or elegance of the language.
Syntactically, C# is very similar to both C++ and Java, to such an extent that many keywords are the
same, and C# also shares the same block structure with braces ({}) to mark blocks of code, and
semicolons to separate statements. The first impression of a piece of C# code is that it looks quite like
C++ or Java code. Beyond that initial similarity, however, C# is a lot easier to learn than C++, and of
comparable difficulty to Java. Its design is more in tune with modern developer tools than both of those
other languages, and it has been designed to provide, simultaneously, the ease of use of Visual Basic and
the high - performance, low - level memory access of C++, if required. Some of the features of C# are:

 Full support for classes and object - oriented programming, including both interface and
implementation inheritance, virtual functions, and operator overloading.

 A consistent and well - defined set of basic types.

 Built - in support for automatic generation of XML documentation.

❑

❑

❑

flast.indd liiflast.indd lii 2/19/08 5:35:41 PM2/19/08 5:35:41 PM

Introduction

liii

 Automatic cleanup of dynamically allocated memory.

 The facility to mark classes or methods with user - defined attributes. This can be useful for
documentation and can have some effects on compilation (for example, marking methods to be
compiled only in debug builds).

 Full access to the .NET base class library, as well as easy access to the Windows API (if you really
need it, which won ’ t be all that often).

 Pointers and direct memory access are available if required, but the language has been designed
in such a way that you can work without them in almost all cases.

 Support for properties and events in the style of Visual Basic.

 Just by changing the compiler options, you can compile either to an executable or to a library of
.NET components that can be called up by other code in the same way as ActiveX controls
(COM components).

 C# can be used to write ASP.NET dynamic Web pages and XML Web services.

 Most of these statements, it should be pointed out, do also apply to Visual Basic 2008 and Managed C++.
The fact that C# is designed from the start to work with .NET, however, means that its support for the
features of .NET is both more complete, and offered within the context of a more suitable syntax than for
those other languages. Though the C# language itself is very similar to Java, there are some
improvements; in particular, Java is not designed to work with the .NET environment.

 Before we leave the subject, we should point out a couple of limitations of C#. The one area the language is
not designed for is time - critical or extremely high - performance code — the kind where you really are
worried about whether a loop takes 1,000 or 1,050 machine cycles to run through, and you need to clean up
your resources the millisecond they are no longer needed. C++ is likely to continue to reign supreme among
low - level languages in this area. C# lacks certain key facilities needed for extremely high - performance apps,
including the ability to specify inline functions and destructors that are guaranteed to run at particular
points in the code. However, the proportions of applications that fall into this category are very low.

 What You Need to Write and Run C# Code
 The .NET Framework 3.5 will run on Windows XP, 2003, Vista, and the latest Windows Server 2008. In
order to write code using .NET, you will need to install the .NET 3.5 SDK.

 Also, unless you are intending to write your C# code using a text editor or some other third - party
developer environment, you will almost certainly also want Visual Studio 2008. The full SDK isn ’ t
needed to run managed code, but the .NET runtime is needed. You may find you need to distribute the
.NET runtime with your code for the benefit of those clients who do not have it already installed.

 What This Book Covers
 This book starts by reviewing the overall architecture of .NET in Chapter 1 in order to give you the
background you need to be able to write managed code. After that the book is divided into a number of
sections that cover both the C# language and its application in a variety of areas.

 Part I: The C# Language
 This section gives a good grounding in the C# language itself. This section doesn ’ t presume knowledge
of any particular language, although it does assume you are an experienced programmer. You start by
looking at C# ’ s basic syntax and data types, and then explore the object - oriented features of C# before
moving on to look at more advanced C# programming topics.

❑

❑

❑

❑

❑

❑

❑

flast.indd liiiflast.indd liii 2/19/08 5:35:41 PM2/19/08 5:35:41 PM

Introduction

liv

 Part II: Visual Studio
 This section looks at the main IDE utilized by C# developers world - wide: Visual Studio 2005. The two
chapters in this section look at the best way to use the tool to build applications based upon either the .NET
Framework 2.0 or 3.0. In addition to this, this section also focuses on the deployment of your projects.

 Part III: Base Class Libraries
 In this section, you look at the principles of programming in the .NET environment. In particular, you
look at security, threading localization, transactions, how to build Windows services, and how to
generate your own libraries as assemblies.

 Part IV: Data
 Here, you look at accessing databases with ADO.NET and LINQ, and at interacting with directories and
files. This part also extensively covers support in .NET for XML and on the Windows operating system
side, and the .NET features of SQL Server 2008. Within the large space of LINQ, particular focus is put on
LINQ to SQL and LINQ to XML.

 Part V: Presentation
 This section focuses on building classic Windows applications, which are called Windows Forms in .NET.
Windows Forms are the thick - client version of applications, and using .NET to build these types of
applications is a quick and easy way of accomplishing this task. In addition to looking at Windows Forms,
you take a look at GDI+, which is the technology you will use for building applications that include
advanced graphics. This section also covers writing components that will run on Web sites, serving up Web
pages. This covers the tremendous number of new features that ASP.NET 3.5 provides. Finally, this section
also shows how to build applications based upon the Windows Presentation Foundation and VSTO.

 Part VI: Communication
 This section is all about communication. It covers Web services for platform - independent
communication, .NET Remoting for communication between .NET clients and servers, Enterprise
Services for the services in the background, and DCOM communication. With Message Queuing
asynchronous, disconnected communication is shown. This section also looks at utilizing the Windows
Communication Foundation and the Windows Workflow Foundation.

 Part VII: Appendices (Online)
 This section includes three appendices focused on how to build applications that take into account the
new features and barriers found in Windows Vista. Also, this section looks at the upcoming ADO.NET
Entities technology and how to use this new technology in your C# applications. You can find these three
appendices online at www.wrox.com . See “ Source Code and Appendices ” later in this introduction for
instructions.

 Conventions
 We have used a number of different styles of text and layout in the book to help differentiate between the
different kinds of information. Here are examples of the styles we use and an explanation of what they mean.

flast.indd livflast.indd liv 2/19/08 5:35:42 PM2/19/08 5:35:42 PM

Introduction

lv

 Bullets appear indented, with each new bullet marked as follows:

 Important Words are in italics.

 Keys that you press on the keyboard take the form Ctrl + Enter.

 Code appears in a number of different ways. If it ’ s a word that we ’ re talking about in the text — for
example, when discussing the if...else loop — it ’ s in this font . If it ’ s a block of code that you can
type in as a program and run, it appears like this:

 public static void Main()
 {
 AFunc(1,2,”abc”);
 }

 // If we haven’t reached the end, return true, otherwise
 // set the position to invalid, and return false.
 pos++;
 if (pos < 4)
 return true;
 else {
 pos = -1;
 return false;
 }

 Advice, hints, and background information come in an italicized, indented font like this.

 We demonstrate the syntactical usage of methods, properties (and so on) using the following format:

Regsvcs BookDistributor.dll [COM+AppName] [TypeLibrary.tbl]

 Here, italicized parts indicate object references, variables, or parameter values to be inserted; the square
braces indicate optional parameters.

 Source Code and Appendices
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for downloading at www.wrox.com . Once at the site, simply locate the book ’ s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 19137 - 8.

 Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save

❑

❑

 Important pieces of information come in boxes like this.

flast.indd lvflast.indd lv 2/19/08 5:35:42 PM2/19/08 5:35:42 PM

Introduction

lvi

another reader hours of frustration, and at the same time you will be helping us provide even higher -
 quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book ’ s errata, is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error already on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check the
information and, if appropriate, post a message to the book ’ s errata page and fix the problem in
subsequent editions of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based -
 system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Supply the required information to join as well as any optional information you wish to provide
and click Submit.

 You will receive an email with information describing how to verify your account and complete the
joining process.

 You can read messages in the forums without joining P2P, but you must join in order to post your own
messages.

 Once you join, you can post new messages and respond to other users ’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum emailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd lviflast.indd lvi 2/19/08 5:35:42 PM2/19/08 5:35:42 PM

Professional
C# 2008

flast.indd lviiflast.indd lvii 2/19/08 5:35:42 PM2/19/08 5:35:42 PM

flast.indd lviiiflast.indd lviii 2/19/08 5:35:43 PM2/19/08 5:35:43 PM

Part I

The C# Language

Chapter 1: .NET Architecture

Chapter 2: C# Basics

Chapter 3: Objects and Types

Chapter 4: Inheritance

Chapter 5: Arrays

Chapter 6: Operators and Casts

Chapter 7: Delegates and Events

Chapter 8: Strings and Regular Expressions

Chapter 9: Generics

Chapter 10: Collections

Chapter 11: Language Integrated Query

Chapter 12: Memory Management and Pointers

Chapter 13: Refl ection

Chapter 14: Errors and Exceptions

c01.indd 1c01.indd 1 2/19/08 4:56:40 PM2/19/08 4:56:40 PM

c01.indd 2c01.indd 2 2/19/08 4:56:41 PM2/19/08 4:56:41 PM

 . NET Architecture

 Throughout this book, we emphasize that the C# language must be considered in parallel with the
.NET Framework, rather than viewed in isolation. The C# compiler specifically targets .NET,
which means that all code written in C# will always run within the .NET Framework. This has two
important consequences for the C# language:

 1. The architecture and methodologies of C# reflect the underlying methodologies of .NET.

 2. In many cases, specific language features of C# actually depend on features of .NET, or of
the .NET base classes.

 Because of this dependence, it is important to gain some understanding of the architecture and
methodology of .NET before you begin C# programming. That is the purpose of this chapter. The
following is an outline of what this chapter covers:

❑ This chapter begins by explaining what happens when all code (including C#) that targets
.NET is compiled and run.

❑ Once you have this broad overview, you take a more detailed look at the Microsoft
Intermediate Language (MSIL or simply IL); the assembly language that all compiled code
ends up in on .NET. In particular, you see how IL, in partnership with the Common Type
System (CTS) and Common Language Specification (CLS), works to give you interoperability
between languages that target .NET. This chapter also discusses where common languages
(including Visual Basic and C++) fit into .NET.

❑ Next, you move on to examine some of the other features of .NET, including assemblies,
namespaces, and the .NET base classes.

❑ The chapter finishes with a brief look at the kinds of applications you can create as a C#
developer.

c01.indd 3c01.indd 3 2/19/08 4:56:41 PM2/19/08 4:56:41 PM

Part I: The C# Language

4

 The Relationship of C# to . NET
 C# is a relatively new programming language and is significant in two respects:

❑ It is specifically designed and targeted for use with Microsoft ’ s .NET Framework (a feature - rich
platform for the development, deployment, and execution of distributed applications).

❑ It is a language based on the modern object - oriented design methodology, and, when designing
it, Microsoft learned from the experience of all the other similar languages that have been
around since object - oriented principles came to prominence some 20 years ago.

 One important thing to make clear is that C# is a language in its own right. Although it is designed to
generate code that targets the .NET environment, it is not itself part of .NET. Some features are
supported by .NET but not by C#, and you might be surprised to learn that some features of the C#
language are not supported by .NET (for example, some instances of operator overloading)!

 However, because the C# language is intended for use with .NET, it is important for you to have an
understanding of this Framework if you want to develop applications in C# effectively. Therefore, this
chapter takes some time to peek underneath the surface of .NET. Let ’ s get started.

 The Common Language Runtime
 Central to the .NET Framework is its runtime execution environment, known as the Common Language
Runtime (CLR) or the .NET runtime . Code running under the control of the CLR is often termed
 managed code .

 However, before it can be executed by the CLR, any source code that you develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

 1. Compilation of source code to IL.

 2. Compilation of IL to platform - specific code by the CLR.

 This two - stage compilation process is very important, because the existence of the IL (managed code) is
the key to providing many of the benefits of .NET.

 Microsoft Intermediate Language shares with Java byte code the idea that it is a low - level language with
a simple syntax (based on numeric codes rather than text), which can be very quickly translated into
native machine code. Having this well - defined universal syntax for code has significant advantages:
platform independence, performance improvement, and language interoperability.

 Platform Independence
 First, platform independence means that the same file containing byte code instructions can be placed on
any platform; at runtime, the final stage of compilation can then be easily accomplished so that the code will
run on that particular platform. In other words, by compiling to IL you obtain platform independence for
.NET, in much the same way as compiling to Java byte code gives Java platform independence.

 Note that the platform independence of .NET is only theoretical at present because, at the time of writing, a
complete implementation of .NET is available only for Windows. However, a partial implementation is
available (see, for example, the Mono project, an effort to create an open source implementation of .NET,
at www.go-mono.com).

 Performance Improvement
 Although we previously made comparisons with Java, IL is actually a bit more ambitious than Java byte
code. IL is always Just - in - Time compiled (known as JIT compilation), whereas Java byte code was often

c01.indd 4c01.indd 4 2/19/08 4:56:41 PM2/19/08 4:56:41 PM

Chapter 1: .NET Architecture

5

interpreted. One of the disadvantages of Java was that, on execution, the process of translating from Java
byte code to native executable resulted in a loss of performance (with the exception of more recent cases,
where Java is JIT compiled on certain platforms).

 Instead of compiling the entire application in one go (which could lead to a slow startup time), the JIT
compiler simply compiles each portion of code as it is called (just in time). When code has been compiled
once, the resultant native executable is stored until the application exits so that it does not need to be
recompiled the next time that portion of code is run. Microsoft argues that this process is more efficient
than compiling the entire application code at the start, because of the likelihood that large portions of
any application code will not actually be executed in any given run. Using the JIT compiler, such code
will never be compiled.

 This explains why we can expect that execution of managed IL code will be almost as fast as executing
native machine code. What it does not explain is why Microsoft expects that we will get a performance
 improvement . The reason given for this is that, because the final stage of compilation takes place at
runtime, the JIT compiler will know exactly what processor type the program will run on. This means
that it can optimize the final executable code to take advantage of any features or particular machine
code instructions offered by that particular processor.

 Traditional compilers will optimize the code, but they can only perform optimizations that are
independent of the particular processor that the code will run on. This is because traditional compilers
compile to native executable before the software is shipped. This means that the compiler does not know
what type of processor the code will run on beyond basic generalities, such as that it will be an x86 -
 compatible processor or an Alpha processor. The older Visual Studio 6, for example, optimizes for a
generic Pentium machine, so the code that it generates cannot take advantage of hardware features of
Pentium III processors. However, the JIT compiler can do all the optimizations that Visual Studio 6 can,
and in addition, it will optimize for the particular processor that the code is running on.

 Language Interoperability
 The use of IL not only enables platform independence; it also facilitates language interoperability . Simply
put, you can compile to IL from one language, and this compiled code should then be interoperable with
code that has been compiled to IL from another language.

 You are probably now wondering which languages aside from C# are interoperable with .NET; the
following sections briefly discuss how some of the other common languages fit into .NET.

 Visual Basic 2008
 Visual Basic .NET 2002 underwent a complete revamp from Visual Basic 6 to bring it up to date with the
first version of the .NET Framework. The Visual Basic language itself had dramatically evolved from
VB6, and this meant that VB6 was not a suitable language for running .NET programs. For example, VB6
is heavily integrated into Component Object Model (COM) and works by exposing only event handlers
as source code to the developer — most of the background code is not available as source code. Not only
that; it does not support implementation inheritance, and the standard data types that Visual Basic 6
uses are incompatible with .NET.

 Visual Basic 6 was upgraded to Visual Basic .NET in 2002, and the changes that were made to the
language are so extensive you might as well regard Visual Basic as a new language. Existing Visual
Basic 6 code does not compile to the present Visual Basic 2008 code (or to Visual Basic .NET 2002, 2003,
and 2005 for that matter). Converting a Visual Basic 6 program to Visual Basic 2008 requires extensive
changes to the code. However, Visual Studio 2008 (the upgrade of Visual Studio for use with .NET) can
do most of the changes for you. If you attempt to read a Visual Basic 6 project into Visual Studio 2008, it
will upgrade the project for you, which means that it will rewrite the Visual Basic 6 source code into
Visual Basic 2008 source code. Although this means that the work involved for you is heavily cut down,

c01.indd 5c01.indd 5 2/19/08 4:56:41 PM2/19/08 4:56:41 PM

Part I: The C# Language

6

you will need to check through the new Visual Basic 2008 code to make sure that the project still works
as intended because the conversion might not be perfect.

 One side effect of this language upgrade is that it is no longer possible to compile Visual Basic 2008 to
native executable code. Visual Basic 2008 compiles only to IL, just as C# does. If you need to continue
coding in Visual Basic 6, you can do so, but the executable code produced will completely ignore the
.NET Framework, and you will need to keep Visual Studio 6 installed if you want to continue to work in
this developer environment.

 Visual C++ 2008
 Visual C++ 6 already had a large number of Microsoft - specific extensions on Windows. With Visual C++
.NET, extensions have been added to support the .NET Framework. This means that existing C++ source
code will continue to compile to native executable code without modification. It also means, however,
that it will run independently of the .NET runtime. If you want your C++ code to run within the .NET
Framework, you can simply add the following line to the beginning of your code:

 #using < mscorlib.dll >

 You can also pass the flag /clr to the compiler, which then assumes that you want to compile to
managed code, and will hence emit IL instead of native machine code. The interesting thing about C++ is
that when you compile to managed code, the compiler can emit IL that contains an embedded native
executable. This means that you can mix managed types and unmanaged types in your C++ code. Thus
the managed C++ code

class MyClass
{

defines a plain C++ class, whereas the code

ref class MyClass
{

gives you a managed class, just as if you had written the class in C# or Visual Basic 2008. The advantage
of using managed C++ over C# code is that you can call unmanaged C++ classes from managed C++
code without having to resort to COM interop.

 The compiler raises an error if you attempt to use features that are not supported by .NET on managed
types (for example, templates or multiple inheritances of classes). You will also find that you will need to
use nonstandard C++ features when using managed classes.

 Because of the freedom that C++ allows in terms of low - level pointer manipulation and so on, the C++
compiler is not able to generate code that will pass the CLR ’ s memory type - safety tests. If it is important
that your code be recognized by the CLR as memory type - safe, you will need to write your source code
in some other language (such as C# or Visual Basic 2008).

 COM and COM +
 Technically speaking, COM and COM+ are not technologies targeted at .NET, because components
based on them cannot be compiled into IL (although it is possible to do so to some degree using
managed C++, if the original COM component was written in C++). However, COM+ remains an
important tool, because its features are not duplicated in .NET. Also, COM components will still work —
 and .NET incorporates COM interoperability features that make it possible for managed code to call up
COM components and vice versa (this is discussed in Chapter 24 , “ Interoperability ”). In general,
however, you will probably find it more convenient for most purposes to code new components as .NET
components, so that you can take advantage of the .NET base classes as well as the other benefits of
running as managed code.

c01.indd 6c01.indd 6 2/19/08 4:56:42 PM2/19/08 4:56:42 PM

Chapter 1: .NET Architecture

7

 A Closer Look at Intermediate Language
 From what you learned in the previous section, Microsoft Intermediate Language obviously plays a
fundamental role in the .NET Framework. As C# developers, we now understand that our C# code will
be compiled into IL before it is executed (indeed, the C# compiler compiles only to managed code). It
makes sense, then, to now take a closer look at the main characteristics of IL, because any language that
targets .NET will logically need to support the main characteristics of IL, too.

 Here are the important features of IL:

❑ Object orientation and use of interfaces

❑ Strong distinction between value and reference types

❑ Strong data typing

❑ Error handling using exceptions

❑ Use of attributes

 The following sections explore each of these characteristics.

 Support for Object Orientation and Interfaces
 The language independence of .NET does have some practical limitations. IL is inevitably going to
implement some particular programming methodology, which means that languages targeting it need to
be compatible with that methodology. The particular route that Microsoft has chosen to follow for IL is
that of classic object - oriented programming, with single implementation inheritance of classes.

 If you are unfamiliar with the concepts of object orientation, refer to Appendix B , “ C#, Visual Basic,
C++/CLI, ” for more information.

 In addition to classic object - oriented programming, IL also brings in the idea of interfaces, which saw
their first implementation under Windows with COM. Interfaces built using .NET produce interfaces
that are not the same as COM interfaces. They do not need to support any of the COM infrastructure
(for example, they are not derived from IUnknown , and they do not have associated globally unique
identifiers, more commonly know as GUIDs). However, they do share with COM interfaces the idea that
they provide a contract, and classes that implement a given interface must provide implementations of
the methods and properties specified by that interface.

 You have now seen that working with .NET means compiling to IL, and that in turn means that you will
need to use traditional object - oriented methodologies. However, that alone is not sufficient to give you
language interoperability. After all, C++ and Java both use the same object - oriented paradigms, but they
are still not regarded as interoperable. We need to look a little more closely at the concept of language
interoperability.

 To start with, we need to consider exactly what we mean by language interoperability. After all, COM
allowed components written in different languages to work together in the sense of calling each other ’ s
methods. What was inadequate about that? COM, by virtue of being a binary standard, did allow
components to instantiate other components and call methods or properties against them, without
worrying about the language in which the respective components were written. To achieve this,
however, each object had to be instantiated through the COM runtime, and accessed through an
interface. Depending on the threading models of the relative components, there may have been large
performance losses associated with marshaling data between apartments or running components or both
on different threads. In the extreme case of components hosted as an executable rather than DLL files,
separate processes would need to be created to run them. The emphasis was very much that components
could talk to each other but only via the COM runtime. In no way with COM did components written in

c01.indd 7c01.indd 7 2/19/08 4:56:42 PM2/19/08 4:56:42 PM

Part I: The C# Language

8

different languages directly communicate with each other, or instantiate instances of each other — it was
always done with COM as an intermediary. Not only that, but the COM architecture did not permit
implementation inheritance, which meant that it lost many of the advantages of object - oriented
programming.

 An associated problem was that, when debugging, you would still need to debug components written
in different languages independently. It was not possible to step between languages in the debugger.
Therefore, what we really mean by language interoperability is that classes written in one language
should be able to talk directly to classes written in another language. In particular:

❑ A class written in one language can inherit from a class written in another language.

❑ The class can contain an instance of another class, no matter what the languages of the two
classes are.

❑ An object can directly call methods against another object written in another language.

❑ Objects (or references to objects) can be passed around between methods.

❑ When calling methods between languages you can step between the method calls in the
debugger, even when this means stepping between source code written in different languages.

 This is all quite an ambitious aim, but amazingly, .NET and IL have achieved it. In the case of stepping
between methods in the debugger, this facility is really offered by the Visual Studio integrated
development environment (IDE) rather than by the CLR itself.

 Distinct Value and Reference Types
 As with any programming language, IL provides a number of predefined primitive data types. One
characteristic of IL, however, is that it makes a strong distinction between value and reference types.
 Value types are those for which a variable directly stores its data, whereas reference types are those for
which a variable simply stores the address at which the corresponding data can be found.

 In C++ terms, using reference types can be considered to be similar to accessing a variable through a
pointer, whereas for Visual Basic, the best analogy for reference types are objects, which in Visual Basic 6
are always accessed through references. IL also lays down specifications about data storage: instances of
reference types are always stored in an area of memory known as the managed heap , whereas value types
are normally stored on the stack (although if value types are declared as fields within reference types,
they will be stored inline on the heap). Chapter 2 , “ C# Basics, ” discusses the stack and the heap and
how they work.

 Strong Data Typing
 One very important aspect of IL is that it is based on exceptionally strong data typing . That means that all
variables are clearly marked as being of a particular, specific data type (there is no room in IL, for
example, for the Variant data type recognized by Visual Basic and scripting languages). In particular, IL
does not normally permit any operations that result in ambiguous data types.

 For instance, Visual Basic 6 developers are used to being able to pass variables around without worrying
too much about their types, because Visual Basic 6 automatically performs type conversion. C++
developers are used to routinely casting pointers between different types. Being able to perform this
kind of operation can be great for performance, but it breaks type safety. Hence, it is permitted only
under certain circumstances in some of the languages that compile to managed code. Indeed, pointers

c01.indd 8c01.indd 8 2/19/08 4:56:43 PM2/19/08 4:56:43 PM

Chapter 1: .NET Architecture

9

(as opposed to references) are permitted only in marked blocks of code in C#, and not at all in Visual
Basic (although they are allowed in managed C++). Using pointers in your code causes it to fail the
memory type - safety checks performed by the CLR.

 You should note that some languages compatible with .NET, such as Visual Basic 2008, still allow some
laxity in typing, but that is possible only because the compilers behind the scenes ensure that the type
safety is enforced in the emitted IL.

 Although enforcing type safety might initially appear to hurt performance, in many cases the benefits
gained from the services provided by .NET that rely on type safety far outweigh this performance loss.
Such services include:

❑ Language interoperability

❑ Garbage collection

❑ Security

❑ Application domains

 The following sections take a closer look at why strong data typing is particularly important for these
features of .NET.

 The Importance of Strong Data Typing for Language Interoperability
 If a class is to derive from or contains instances of other classes, it needs to know about all the data types
used by the other classes. This is why strong data typing is so important. Indeed, it is the absence of any
agreed - on system for specifying this information in the past that has always been the real barrier to
inheritance and interoperability across languages. This kind of information is simply not present in a
standard executable file or DLL.

 Suppose that one of the methods of a Visual Basic 2008 class is defined to return an Integer — one of
the standard data types available in Visual Basic 2008. C# simply does not have any data type of that
name. Clearly, you will be able to derive from the class, use this method, and use the return type from C#
code, only if the compiler knows how to map Visual Basic 2008 ’ s Integer type to some known type that
is defined in C#. So, how is this problem circumvented in .NET?

 Common Type System
 This data type problem is solved in .NET using the Common Type System (CTS). The CTS defines the
predefined data types that are available in IL, so that all languages that target the .NET Framework will
produce compiled code that is ultimately based on these types.

 For the previous example, Visual Basic 2008 ’ s Integer is actually a 32 - bit signed integer, which maps
exactly to the IL type known as Int32 . This will therefore be the data type specified in the IL code.
Because the C# compiler is aware of this type, there is no problem. At source code level, C# refers to
 Int32 with the keyword int , so the compiler will simply treat the Visual Basic 2008 method as if it
returned an int .

 The CTS does not specify merely primitive data types but a rich hierarchy of types, which includes well -
 defined points in the hierarchy at which code is permitted to define its own types. The hierarchical
structure of the CTS reflects the single - inheritance object - oriented methodology of IL, and resembles
Figure 1 - 1 .

c01.indd 9c01.indd 9 2/19/08 4:56:43 PM2/19/08 4:56:43 PM

Part I: The C# Language

10

 The following table explains the types shown in Figure 1 - 1 .

Built-in Value
Types

User-defined
Value Types

Value Type

Pointer Types

Type
Reference

Type

Enumerations

Interface Types

Self-describing
Types

ArraysClass Types

User-defined
Reference

Types

Delegates Boxed Value
Types

Figure 1-1

Type Meaning

Type Base class that represents any type.

Value Type Base class that represents any value type.

Reference Types Any data types that are accessed through a reference and stored
on the heap.

Built-in Value Types Includes most of the standard primitive types, which represent
numbers, Boolean values, or characters.

Enumerations Sets of enumerated values.

User-defined Value Types Types that have been defined in source code and are stored as
value types. In C# terms, this means any struct.

Interface Types Interfaces.

Pointer Types Pointers.

Self-describing Types Data types that provide information about themselves for the
benefit of the garbage collector (see the next section).

Arrays Any type that contains an array of objects.

Class Types Types that are self-describing but are not arrays.

Delegates Types that are designed to hold references to methods.

User-defined Reference
Types

Types that have been defined in source code and are stored as
reference types. In C# terms, this means any class.

Boxed Value Types A value type that is temporarily wrapped in a reference so that it
can be stored on the heap.

c01.indd 10c01.indd 10 2/19/08 4:56:43 PM2/19/08 4:56:43 PM

Chapter 1: .NET Architecture

11

 We will not list all of the built - in value types here, because they are covered in detail in Chapter 3 ,
 “ Objects and Types. ” In C#, each predefined type recognized by the compiler maps onto one of the IL
built - in types. The same is true in Visual Basic 2008.

Common Language Specification
 The Common Language Specification (CLS) works with the CTS to ensure language interoperability. The
CLS is a set of minimum standards that all compilers targeting .NET must support. Because IL is a very
rich language, writers of most compilers will prefer to restrict the capabilities of a given compiler to
support only a subset of the facilities offered by IL and the CTS. That is fine, as long as the compiler
supports everything that is defined in the CLS.

 It is perfectly acceptable to write non - CLS - compliant code. However, if you do, the compiled IL code is
not guaranteed to be fully language interoperable.

 For example, take case sensitivity. IL is case sensitive. Developers who work with case - sensitive
languages regularly take advantage of the flexibility that this case sensitivity gives them when selecting
variable names. Visual Basic 2008, however, is not case sensitive. The CLS works around this by
indicating that CLS - compliant code should not expose any two names that differ only in their case.
Therefore, Visual Basic 2008 code can work with CLS - compliant code.

 This example shows that the CLS works in two ways. First, it means that individual compilers do not
have to be powerful enough to support the full features of .NET — this should encourage the
development of compilers for other programming languages that target .NET. Second, it provides a
guarantee that, if you restrict your classes to exposing only CLS - compliant features, then code written in
any other compliant language can use your classes.

 The beauty of this idea is that the restriction to using CLS - compliant features applies only to public and
protected members of classes and public classes. Within the private implementations of your classes, you
can write whatever non - CLS code you want, because code in other assemblies (units of managed code;
see later in this chapter) cannot access this part of your code anyway.

 We will not go into the details of the CLS specifications here. In general, the CLS will not affect your C#
code very much because there are very few non - CLS - compliant features of C# anyway.

 Garbage Collection
 The garbage collector is .NET ’ s answer to memory management and in particular to the question of what
to do about reclaiming memory that running applications ask for. Up until now, two techniques have
been used on the Windows platform for de - allocating memory that processes have dynamically
requested from the system:

❑ Make the application code do it all manually.

❑ Make objects maintain reference counts.

 Having the application code responsible for deallocating memory is the technique used by lower - level,
high - performance languages such as C++. It is efficient, and it has the advantage that (in general)
resources are never occupied for longer than necessary. The big disadvantage, however, is the frequency
of bugs. Code that requests memory also should explicitly inform the system when it no longer requires
that memory. However, it is easy to overlook this, resulting in memory leaks.

 Although modern developer environments do provide tools to assist in detecting memory leaks, they
remain difficult bugs to track down. That ’ s because they have no effect until so much memory has been
leaked that Windows refuses to grant any more to the process. By this point, the entire computer may
have appreciably slowed down due to the memory demands being made on it.

 Maintaining reference counts is favored in COM. The idea is that each COM component maintains a
count of how many clients are currently maintaining references to it. When this count falls to zero, the

c01.indd 11c01.indd 11 2/19/08 4:56:44 PM2/19/08 4:56:44 PM

Part I: The C# Language

12

component can destroy itself and free up associated memory and resources. The problem with this is
that it still relies on the good behavior of clients to notify the component that they have finished with it.
It takes only one client not to do so, and the object sits in memory. In some ways, this is a potentially
more serious problem than a simple C++ - style memory leak because the COM object may exist in its
own process, which means that it will never be removed by the system. (At least with C++ memory
leaks, the system can reclaim all memory when the process terminates.)

 The .NET runtime relies on the garbage collector instead. The purpose of this program is to clean up
memory. The idea is that all dynamically requested memory is allocated on the heap (that is true for all
languages, although in the case of .NET, the CLR maintains its own managed heap for .NET applications
to use). Every so often, when .NET detects that the managed heap for a given process is becoming full
and therefore needs tidying up, it calls the garbage collector. The garbage collector runs through
variables currently in scope in your code, examining references to objects stored on the heap to identify
which ones are accessible from your code — that is, which objects have references that refer to them. Any
objects that are not referred to are deemed to be no longer accessible from your code and can therefore be
removed. Java uses a system of garbage collection similar to this.

 Garbage collection works in .NET because IL has been designed to facilitate the process. The principle
requires that you cannot get references to existing objects other than by copying existing references and
that IL be type safe. In this context, what we mean is that if any reference to an object exists, then there is
sufficient information in the reference to exactly determine the type of the object.

 It would not be possible to use the garbage collection mechanism with a language such as unmanaged
C++, for example, because C++ allows pointers to be freely cast between types.

 One important aspect of garbage collection is that it is not deterministic. In other words, you cannot
guarantee when the garbage collector will be called; it will be called when the CLR decides that it is
needed, though it is also possible to override this process and call up the garbage collector in your code.

 Security
 .NET can really excel in terms of complementing the security mechanisms provided by Windows
because it can offer code - based security, whereas Windows really offers only role - based security.

 Role - based security is based on the identity of the account under which the process is running (that is, who
owns and is running the process). Code - based security , by contrast, is based on what the code actually
does and on how much the code is trusted. Thanks to the strong type safety of IL, the CLR is able to
inspect code before running it to determine required security permissions. .NET also offers a mechanism
by which code can indicate in advance what security permissions it will require to run.

 The importance of code - based security is that it reduces the risks associated with running code of
dubious origin (such as code that you have downloaded from the Internet). For example, even if code is
running under the administrator account, it is possible to use code - based security to indicate that that
code should still not be permitted to perform certain types of operations that the administrator account
would normally be allowed to do, such as read or write to environment variables, read or write to the
registry, or access the .NET reflection features.

 Security issues are covered in more depth in Chapter 20 , “ Security. ”

 Application Domains
 Application domains are an important innovation in .NET and are designed to ease the overhead
involved when running applications that need to be isolated from each other but that also need to be
able to communicate with each other. The classic example of this is a Web server application, which may
be simultaneously responding to a number of browser requests. It will, therefore, probably have a
number of instances of the component responsible for servicing those requests running simultaneously.

c01.indd 12c01.indd 12 2/19/08 4:56:44 PM2/19/08 4:56:44 PM

Chapter 1: .NET Architecture

13

 In pre - .NET days, the choice would be between allowing those instances to share a process (with the
resultant risk of a problem in one running instance bringing the whole Web site down) or isolating those
instances in separate processes (with the associated performance overhead).

 Up until now, the only means of isolating code has been through processes. When you start a new
application, it runs within the context of a process. Windows isolates processes from each other through
address spaces. The idea is that each process has available 4GB of virtual memory in which to store its
data and executable code (4GB is for 32 - bit systems; 64 - bit systems use more memory). Windows
imposes an extra level of indirection by which this virtual memory maps into a particular area of actual
physical memory or disk space. Each process gets a different mapping, with no overlap between the
actual physical memories that the blocks of virtual address space map to (see Figure 1 - 2).

Physical memory
or disk space

PROCESS 1

4GB virtual
memory

Physical
Memory

Physical memory
or disk space

PROCESS 2

4GB virtual
memory

Figure 1-2

 In general, any process is able to access memory only by specifying an address in virtual memory —
 processes do not have direct access to physical memory. Hence, it is simply impossible for one process to
access the memory allocated to another process. This provides an excellent guarantee that any badly
behaved code will not be able to damage anything outside of its own address space. (Note that on
Windows 95/98, these safeguards are not quite as thorough as they are on Windows NT/2000/
XP/2003/Vista, so the theoretical possibility exists of applications crashing Windows by writing to
inappropriate memory.)

 Processes do not just serve as a way to isolate instances of running code from each other. On Windows
NT/2000/XP/2003/Vista systems, they also form the unit to which security privileges and permissions
are assigned. Each process has its own security token, which indicates to Windows precisely what
operations that process is permitted to do.

 Although processes are great for security reasons, their big disadvantage is in the area of performance.
Often, a number of processes will actually be working together, and therefore need to communicate with
each other. The obvious example of this is where a process calls up a COM component, which is an
executable and therefore is required to run in its own process. The same thing happens in COM when
surrogates are used. Because processes cannot share any memory, a complex marshaling process must be
used to copy data between the processes. This results in a very significant performance hit. If you need
components to work together and do not want that performance hit, you must use DLL - based components
and have everything running in the same address space — with the associated risk that a badly behaved
component will bring everything else down.

c01.indd 13c01.indd 13 2/19/08 4:56:44 PM2/19/08 4:56:44 PM

Part I: The C# Language

14

 Application domains are designed as a way of separating components without resulting in the
performance problems associated with passing data between processes. The idea is that any one process
is divided into a number of application domains. Each application domain roughly corresponds to a
single application, and each thread of execution will be running in a particular application domain (see
Figure 1 - 3).

PROCESS - 4GB virtual memory

APPLICATION DOMAIN:
an application uses some

of this virtual memory

APPLICATION DOMAIN:
another application uses

some of this virtual memory

Figure 1-3

 If different executables are running in the same process space, then they are clearly able to easily share
data, because, theoretically, they can directly see each other ’ s data. However, although this is possible in
principle, the CLR makes sure that this does not happen in practice by inspecting the code for each
running application to ensure that the code cannot stray outside of its own data areas. This looks, at first,
like an almost impossible task to pull off — after all, how can you tell what the program is going to do
without actually running it?

 In fact, it is usually possible to do this because of the strong type safety of the IL. In most cases, unless
code is using unsafe features such as pointers, the data types it is using will ensure that memory is not
accessed inappropriately. For example, .NET array types perform bounds checking to ensure that no
out - of - bounds array operations are permitted. If a running application does need to communicate or
share data with other applications running in different application domains, it must do so by calling on
.NET ’ s remoting services.

 Code that has been verified to check that it cannot access data outside its application domain (other than
through the explicit remoting mechanism) is said to be memory type safe . Such code can safely be run
alongside other type - safe code in different application domains within the same process.

 Error Handling with Exceptions
 The .NET Framework is designed to facilitate handling of error conditions using the same mechanism,
based on exceptions, that is employed by Java and C++. C++ developers should note that because of IL ’ s
stronger typing system, there is no performance penalty associated with the use of exceptions with IL in
the way that there is in C++. Also, the finally block, which has long been on many C++ developers ’
wish lists, is supported by .NET and by C#.

 Exceptions are covered in detail in Chapter 14 , “ Errors and Exceptions. ” Briefly, the idea is that certain
areas of code are designated as exception handler routines, with each one able to deal with a particular
error condition (for example, a file not being found, or being denied permission to perform some
operation). These conditions can be defined as narrowly or as widely as you want. The exception
architecture ensures that when an error condition occurs, execution can immediately jump to the
exception handler routine that is most specifically geared to handle the exception condition in question.

c01.indd 14c01.indd 14 2/19/08 4:56:45 PM2/19/08 4:56:45 PM

Chapter 1: .NET Architecture

15

 The architecture of exception handling also provides a convenient means to pass an object containing
precise details of the exception condition to an exception handling routine. This object might include an
appropriate message for the user and details of exactly where in the code the exception was detected.

 Most exception - handling architecture, including the control of program flow when an exception occurs,
is handled by the high - level languages (C#, Visual Basic 2008, C++), and is not supported by any special
IL commands. C#, for example, handles exceptions using try{} , catch{} , and finally{} blocks of
code. (For more details, see Chapter 14 .)

 What .NET does do, however, is provide the infrastructure to allow compilers that target .NET to
support exception handling. In particular, it provides a set of .NET classes that can represent the
exceptions, and the language interoperability to allow the thrown exception objects to be interpreted by
the exception - handling code, regardless of what language the exception - handling code is written in. This
language independence is absent from both the C++ and Java implementations of exception handling,
although it is present to a limited extent in the COM mechanism for handling errors, which involves
returning error codes from methods and passing error objects around. The fact that exceptions are
handled consistently in different languages is a crucial aspect of facilitating multi - language development.

 Use of Attributes
 Attributes are familiar to developers who use C++ to write COM components (through their use in
Microsoft ’ s COM Interface Definition Language [IDL]). The initial idea of an attribute was that it
provided extra information concerning some item in the program that could be used by the compiler.

 Attributes are supported in .NET — and hence now by C++, C#, and Visual Basic 2008. What is,
however, particularly innovative about attributes in .NET is that you can define your own custom
attributes in your source code. These user - defined attributes will be placed with the metadata for the
corresponding data types or methods. This can be useful for documentation purposes, in which they can
be used in conjunction with reflection technology to perform programming tasks based on attributes. In
addition, in common with the .NET philosophy of language independence, attributes can be defined in
source code in one language and read by code that is written in another language.

 Attributes are covered in Chapter 13 , “ Reflection. ”

 Assemblies
 An assembly is the logical unit that contains compiled code targeted at the .NET Framework. Assemblies
are not covered in detail in this chapter because they are covered thoroughly in Chapter 17 ,
 “ Assemblies, ” but we summarize the main points here.

 An assembly is completely self - describing and is a logical rather than a physical unit, which means that
it can be stored across more than one file (indeed, dynamic assemblies are stored in memory, not on file
at all). If an assembly is stored in more than one file, there will be one main file that contains the entry
point and describes the other files in the assembly.

 Note that the same assembly structure is used for both executable code and library code. The only real
difference is that an executable assembly contains a main program entry point, whereas a library
assembly does not.

 An important characteristic of assemblies is that they contain metadata that describes the types and
methods defined in the corresponding code. An assembly, however, also contains assembly metadata
that describes the assembly itself. This assembly metadata, contained in an area known as the manifest ,
allows checks to be made on the version of the assembly, and on its integrity.

 ildasm , a Windows - based utility, can be used to inspect the contents of an assembly, including the
manifest and metadata. ildasm is discussed in Chapter 17 , “ Assemblies. ”

c01.indd 15c01.indd 15 2/19/08 4:56:45 PM2/19/08 4:56:45 PM

Part I: The C# Language

16

 The fact that an assembly contains program metadata means that applications or other assemblies that
call up code in a given assembly do not need to refer to the registry, or to any other data source, to find
out how to use that assembly. This is a significant break from the old COM way of doing things, in which
the GUIDs of the components and interfaces had to be obtained from the registry, and in some cases, the
details of the methods and properties exposed would need to be read from a type library.

 Having data spread out in up to three different locations meant there was the obvious risk of something
getting out of synchronization, which would prevent other software from being able to use the
component successfully. With assemblies, there is no risk of this happening, because all the metadata is
stored with the program executable instructions. Note that even though assemblies are stored across
several files, there are still no problems with data going out of synchronization. This is because the file
that contains the assembly entry point also stores details of, and a hash of, the contents of the other files,
which means that if one of the files gets replaced, or in any way tampered with, this will almost certainly
be detected and the assembly will refuse to load.

 Assemblies come in two types: private and shared assemblies.

 Private Assemblies
 Private assemblies are the simplest type. They normally ship with software and are intended to be used
only with that software. The usual scenario in which you will ship private assemblies is when you are
supplying an application in the form of an executable and a number of libraries, where the libraries
contain code that should be used only with that application.

 The system guarantees that private assemblies will not be used by other software because an application
may load only private assemblies that are located in the same folder that the main executable is loaded
in, or in a subfolder of it.

 Because you would normally expect that commercial software would always be installed in its own
directory, there is no risk of one software package overwriting, modifying, or accidentally loading
private assemblies intended for another package. And, because private assemblies can be used only by
the software package that they are intended for, you have much more control over what software uses
them. There is, therefore, less need to take security precautions because there is no risk, for example, of
some other commercial software overwriting one of your assemblies with some new version of it (apart
from software that is designed specifically to perform malicious damage). There are also no problems
with name collisions. If classes in your private assembly happen to have the same name as classes in
someone else ’ s private assembly, that does not matter, because any given application will be able to see
only the one set of private assemblies.

 Because a private assembly is entirely self - contained, the process of deploying it is simple. You simply
place the appropriate file(s) in the appropriate folder in the file system (no registry entries need to be
made). This process is known as zero impact (xcopy) installation .

 Shared Assemblies
 Shared assemblies are intended to be common libraries that any other application can use. Because
any other software can access a shared assembly, more precautions need to be taken against the
following risks:

❑ Name collisions, where another company ’ s shared assembly implements types that have the
same names as those in your shared assembly. Because client code can theoretically have access
to both assemblies simultaneously, this could be a serious problem.

❑ The risk of an assembly being overwritten by a different version of the same assembly — the
new version being incompatible with some existing client code.

c01.indd 16c01.indd 16 2/19/08 4:56:46 PM2/19/08 4:56:46 PM

Chapter 1: .NET Architecture

17

 The solution to these problems is placing shared assemblies in a special directory subtree in the file
system, known as the global assembly cache (GAC). Unlike with private assemblies, this cannot be done
by simply copying the assembly into the appropriate folder — it needs to be specifically installed into
the cache. This process can be performed by a number of .NET utilities and requires certain checks on the
assembly, as well as the set up of a small folder hierarchy within the assembly cache that is used to
ensure assembly integrity.

 To prevent name collisions, shared assemblies are given a name based on private key cryptography
(private assemblies are simply given the same name as their main file name). This name is known as a
 strong name ; it is guaranteed to be unique and must be quoted by applications that reference a shared
assembly.

 Problems associated with the risk of overwriting an assembly are addressed by specifying version
information in the assembly manifest and by allowing side - by - side installations.

 Reflection
 Because assemblies store metadata, including details of all the types and members of these types that are
defined in the assembly, it is possible to access this metadata programmatically. Full details of this are
given in Chapter 13 , “ Reflection. ” This technique, known as reflection , raises interesting possibilities,
because it means that managed code can actually examine other managed code, and can even examine
itself, to determine information about that code. This is most commonly used to obtain the details of
attributes, although you can also use reflection, among other purposes, as an indirect way of
instantiating classes or calling methods, given the names of those classes or methods as strings. In this
way, you could select classes to instantiate methods to call at runtime, rather than at compile time, based
on user input (dynamic binding).

 . NET Framework Classes
 Perhaps one of the biggest benefits of writing managed code, at least from a developer ’ s point of view, is
that you get to use the .NET base class library .

 The .NET base classes are a massive collection of managed code classes that allow you to do almost any of
the tasks that were previously available through the Windows API. These classes follow the same object
model that IL uses, based on single inheritance. This means that you can either instantiate objects of
whichever .NET base class is appropriate or derive your own classes from them.

 The great thing about the .NET base classes is that they have been designed to be very intuitive and easy to
use. For example, to start a thread, you call the Start() method of the Thread class. To disable a TextBox ,
you set the Enabled property of a TextBox object to false . This approach — though familiar to Visual
Basic and Java developers, whose respective libraries are just as easy to use — will be a welcome relief
to C++ developers, who for years have had to cope with such API functions as GetDIBits() ,
 RegisterWndClassEx() , and IsEqualIID() , as well as a whole plethora of functions that required
Windows handles to be passed around.

 However, C++ developers always had easy access to the entire Windows API, unlike Visual Basic 6 and
Java developers who were more restricted in terms of the basic operating system functionality that they
have access to from their respective languages. What is new about the .NET base classes is that they
combine the ease of use that was typical of the Visual Basic and Java libraries with the relatively
comprehensive coverage of the Windows API functions. Many features of Windows still are not available
through the base classes, and for those you will need to call into the API functions, but in general, these
are now confined to the more exotic features. For everyday use, you will probably find the base classes
adequate. Moreover, if you do need to call into an API function, .NET offers a so - called platform - invoke that

c01.indd 17c01.indd 17 2/19/08 4:56:46 PM2/19/08 4:56:46 PM

Part I: The C# Language

18

ensures data types are correctly converted, so the task is no harder than calling the function directly from
C++ code would have been — regardless of whether you are coding in C#, C++, or Visual Basic 2008.

 WinCV, a Windows - based utility, can be used to browse the classes, structs, interfaces, and enums in
the base class library. WinCV is discussed in Chapter 15 , “ Visual Studio 2008. ”

 Although Chapter 3 is nominally dedicated to the subject of base classes, once we have completed our
coverage of the syntax of the C# language, most of the rest of this book shows you how to use various
classes within the .NET base class library for the .NET Framework 3.5. That is how comprehensive
base classes are. As a rough guide, the areas covered by the .NET 3.5 base classes include:

❑ Core features provided by IL (including the primitive data types in the CTS discussed in
Chapter 3 , “ Objects and Types ”)

❑ Windows GUI support and controls (see Chapters 31 , “ Windows Forms, ” and 34 , “ Windows
Presentation Foundation ”)

❑ Web Forms (ASP.NET, discussed in Chapters 37 , “ ASP.NET Pages ” and 38 , “ ASP.NET
Development ”)

❑ Data access (ADO.NET; see Chapters 26 , “ Data Access, ” 30 , “ .NET Programming with SQL
Server, ” 27 and 29 , “ LINQ to SQL ” and “ LINQ to XML ” and 28 , “ Manipulating XML ”)

❑ Directory access (see Chapter 46 , “ Directory Services ”)

❑ File system and registry access (see Chapter 25 , “ Manipulating Files and the Registry ”)

❑ Networking and Web browsing (see Chapter 41 , “ Accessing the Internet ”)

❑ .NET attributes and reflection (see Chapter 13 , “ Reflection ”)

❑ Access to aspects of the Windows OS (environment variables and so on; see Chapter 20 ,
 “ Security ”)

❑ COM interoperability (see Chapters 44 , “ Enterprise Services ” and 24 , “ Interoperability ”)

 Incidentally, according to Microsoft sources, a large proportion of the .NET base classes have actually
been written in C#!

 Namespaces
 Namespaces are the way that .NET avoids name clashes between classes. They are designed to prevent
situations in which you define a class to represent a customer, name your class Customer , and then someone
else does the same thing (a likely scenario — the proportion of businesses that have customers seems to be
quite high).

 A namespace is no more than a grouping of data types, but it has the effect that the names of all data
types within a namespace are automatically prefixed with the name of the namespace. It is also possible
to nest namespaces within each other. For example, most of the general - purpose .NET base classes are in
a namespace called System . The base class Array is in this namespace, so its full name is System.Array .

 .NET requires all types to be defined in a namespace; for example, you could place your Customer class
in a namespace called YourCompanyName . This class would have the full name YourCompanyName
.Customer .

 If a namespace is not explicitly supplied, the type will be added to a nameless global namespace.

 Microsoft recommends that for most purposes you supply at least two nested namespace names: the first
one represents the name of your company, and the second one represents the name of the technology or
software package of which the class is a member, such as YourCompanyName.SalesServices.Customer .

c01.indd 18c01.indd 18 2/19/08 4:56:46 PM2/19/08 4:56:46 PM

Chapter 1: .NET Architecture

19

This protects, in most situations, the classes in your application from possible name clashes with classes
written by other organizations.

 Chapter 2 , “ C# Basics, ” looks more closely at namespaces.

 Creating . NET Applications Using C#
 C# can also be used to create console applications: text - only applications that run in a DOS window. You
will probably use console applications when unit testing class libraries, and for creating UNIX or Linux
daemon processes. More often, however, you will use C# to create applications that use many of the
technologies associated with .NET. This section gives you an overview of the different types of
applications that you can write in C#.

 Creating ASP . NET Applications
 Active Server Pages (ASP) is a Microsoft technology for creating Web pages with dynamic content. An
ASP page is basically an HTML file with embedded chunks of server - side VBScript or JavaScript. When
a client browser requests an ASP page, the Web server delivers the HTML portions of the page,
processing the server - side scripts as it comes to them. Often these scripts query a database for data and
mark up that data in HTML. ASP is an easy way for clients to build browser - based applications.

 However, ASP is not without its shortcomings. First, ASP pages sometimes render slowly because the
server - side code is interpreted instead of compiled. Second, ASP files can be difficult to maintain because
they are unstructured; the server - side ASP code and plain HTML are all jumbled up together. Third, ASP
sometimes makes development difficult because there is little support for error handling and type -
 checking. Specifically, if you are using VBScript and want to implement error handling in your pages,
you must use the On Error Resume Next statement, and follow every component call with a check to
 Err.Number to make sure that the call has gone well.

 ASP.NET is a complete revision of ASP that fixes many of its problems. It does not replace ASP;
rather, ASP.NET pages can live side by side on the same server with legacy ASP applications. Of course,
you can also program ASP.NET with C#!

 The following section explores the key features of ASP.NET. For more details, refer to Chapters 37 , “ ASP.
NET Pages, ” 38 , “ ASP.NET Development, ” and 39 , “ ASP.NET AJAX. ”

 Features of ASP . NET
 First, and perhaps most important, ASP.NET pages are structured . That is, each page is effectively a class
that inherits from the .NET System.Web.UI.Page class and can override a set of methods that are
evoked during the Page object ’ s lifetime. (You can think of these events as page - specific cousins of the
 OnApplication_Start and OnSession_Start events that went in the global.asa files of plain old
ASP.) Because you can factor a page ’ s functionality into event handlers with explicit meanings, ASP.NET
pages are easier to understand.

 Another nice thing about ASP.NET pages is that you can create them in Visual Studio 2008, the same
environment in which you create the business logic and data access components that those ASP.NET
pages use. A Visual Studio 2008 project, or solution , contains all of the files associated with an application.
Moreover, you can debug your classic ASP pages in the editor as well; in the old days of Visual InterDev,
it was often a vexing challenge to configure InterDev and the project ’ s Web server to turn debugging on.

 For maximum clarity, the ASP.NET code - behind feature lets you take the structured approach even
further. ASP.NET allows you to isolate the server - side functionality of a page to a class, compile that class
into a DLL, and place that DLL into a directory below the HTML portion. A code - behind directive at
the top of the page associates the file with its DLL. When a browser requests the page, the Web server
fires the events in the class in the page ’ s code - behind DLL.

c01.indd 19c01.indd 19 2/19/08 4:56:47 PM2/19/08 4:56:47 PM

Part I: The C# Language

20

 Last, but not least, ASP.NET is remarkable for its increased performance. Whereas classic ASP pages are
interpreted with each page request, the Web server caches ASP.NET pages after compilation. This means
that subsequent requests of an ASP.NET page execute more quickly than the first.

 ASP.NET also makes it easy to write pages that cause forms to be displayed by the browser, which you
might use in an intranet environment. The traditional wisdom is that form - based applications offer a
richer user interface but are harder to maintain because they run on so many different machines. For this
reason, people have relied on form - based applications when rich user interfaces were a necessity and
extensive support could be provided to the users.

 Web Forms
 To make Web page construction even easier, Visual Studio 2008 supplies Web Forms . They allow you to
build ASP.NET pages graphically in the same way that Visual Basic 6 or C++ Builder windows are
created; in other words, by dragging controls from a toolbox onto a form, then flipping over to the code
aspect of that form and writing event handlers for the controls. When you use C# to create a Web Form,
you are creating a C# class that inherits from the Page base class and an ASP.NET page that designates
that class as its code behind. Of course, you do not have to use C# to create a Web Form; you can use
Visual Basic 2008 or another .NET - compliant language just as well.

 In the past, the difficulty of Web development discouraged some teams from attempting it. To succeed in
Web development, you needed to know so many different technologies, such as VBScript, ASP, DHTML,
JavaScript, and so on. By applying the Form concepts to Web pages, Web Forms have made Web
development considerably easier.

 Web Server Controls
 The controls used to populate a Web Form are not controls in the same sense as ActiveX controls. Rather,
they are XML tags in the ASP.NET namespace that the Web browser dynamically transforms into HTML
and client - side script when a page is requested. Amazingly, the Web server is able to render the same
server - side control in different ways, producing a transformation appropriate to the requestor ’ s
particular Web browser. This means that it is now easy to write fairly sophisticated user interfaces for
Web pages, without worrying about how to ensure that your page will run on any of the available
browsers — because Web Forms will take care of that for you.

 You can use C# or Visual Basic 2008 to expand the Web Form toolbox. Creating a new server - side control
is simply a matter of implementing .NET ’ s System.Web.UI.WebControls.WebControl class.

 XML Web Services
 Today, HTML pages account for most of the traffic on the World Wide Web. With XML, however,
computers have a device - independent format to use for communicating with each other on the Web. In
the future, computers may use the Web and XML to communicate information rather than dedicated
lines and proprietary formats such as Electronic Data Interchange (EDI). XML Web services are designed
for a service - oriented Web, in which remote computers provide each other with dynamic information
that can be analyzed and reformatted, before final presentation to a user. An XML Web service is an easy
way for a computer to expose information to other computers on the Web in the form of XML.

 In technical terms, an XML Web service on .NET is an ASP.NET page that returns XML instead of HTML
to requesting clients. Such pages have a code - behind DLL containing a class that derives from the
 WebService class. The Visual Studio 2008 IDE provides an engine that facilitates Web service
development.

 An organization might choose to use XML Web services for two main reasons. The first reason is that
they rely on HTTP; XML Web services can use existing networks (HTTP) as a medium for conveying
information. The other is that because XML Web services use XML, the data format is self - describing,
nonproprietary, and platform - independent.

c01.indd 20c01.indd 20 2/19/08 4:56:47 PM2/19/08 4:56:47 PM

Chapter 1: .NET Architecture

21

 Creating Windows Forms
 Although C# and .NET are particularly suited to Web development, they still offer splendid support for
so - called fat - client or thick - client apps — applications that must be installed on the end user ’ s machine
where most of the processing takes place. This support is from Windows Forms .

 A Windows Form is the .NET answer to a Visual Basic 6 Form. To design a graphical window interface,
you just drag controls from a toolbox onto a Windows Form. To determine the window ’ s behavior, you
write event - handling routines for the form ’ s controls. A Windows Form project compiles to an executable
that must be installed alongside the .NET runtime on the end user ’ s computer. Like other .NET project
types, Windows Form projects are supported by both Visual Basic 2008 and C#. Chapter 31 , “ Windows
Forms, ” examines Windows Forms more closely.

 Using the Windows Presentation Foundation (WPF)
 One of the newest technologies to hit the block is the Windows Presentation Foundation (WPF). WPF
makes use of XAML in building applications. XAML stands for Extensible Application Markup
Language. This new way of creating applications within a Microsoft environment is something that was
introduced in 2006 and is part of the .NET Framework 3.0 and 3.5. This means that to run any WPF
application, you need to make sure that the .NET Framework 3.0 or 3.5 is installed on the client machine.
WPF applications are available for Windows Vista, Windows XP, Windows Server 2003, and Windows
Server 2008 (the only operating systems that allow for the installation of the .NET Framework 3.0 or 3.5).

 XAML is the XML declaration that is used to create a form that represents all the visual aspects and
behaviors of the WPF application. Though it is possible to work with a WPF application
programmatically, WPF is a step in the direction of declarative programming, which the industry is
moving to. Declarative programming means that instead of creating objects through programming in a
compiled language such as C#, VB, or Java, you declare everything through XML - type programming.
Chapter 34 , “ Windows Presentation Foundation ” details how to build these new types of applications
using XAML and C#.

 Windows Controls
 Although Web Forms and Windows Forms are developed in much the same way, you use different kinds
of controls to populate them. Web Forms use Web server controls, and Windows Forms use Windows
Controls .

 A Windows Control is a lot like an ActiveX control. After a Windows Control is implemented, it compiles
to a DLL that must be installed on the client ’ s machine. In fact, the .NET SDK provides a utility that
creates a wrapper for ActiveX controls, so that they can be placed on Windows Forms. As is the case with
Web Controls, Windows Control creation involves deriving from a particular class, System.Windows
.Forms.Control .

 Windows Services
 A Windows Service (originally called an NT Service) is a program designed to run in the background in
Windows NT/2000/XP/2003/Vista (but not Windows 9x). Services are useful when you want a program to
be running continuously and ready to respond to events without having been explicitly started by the user.
A good example is the World Wide Web Service on Web servers, which listens for Web requests from clients.

 It is very easy to write services in C#. .NET Framework base classes are available in the System
.ServiceProcess namespace that handles many of the boilerplate tasks associated with services. In
addition, Visual Studio .NET allows you to create a C# Windows Service project, which uses C# source

c01.indd 21c01.indd 21 2/19/08 4:56:47 PM2/19/08 4:56:47 PM

Part I: The C# Language

22

code for a basic Windows Service. Chapter 23 , “ Windows Services, ” explores how to write C# Windows
Services.

 Windows Communication Foundation (WCF)
 Looking at how you move data and services from one point to another using Microsoft - based
technologies, you will find that there are a lot of choices at your disposal. For instance, you can use
ASP.NET Web services, .NET Remoting, Enterprise Services, and MSMQ for starters. What technology
should you use? Well, it really comes down to what you are trying to achieve, because each technology is
better used in a particular situation.

 With that in mind, Microsoft brought all of these technologies together, and with the release of the .NET
Framework 3.0 as well as it s inclusion in the .NET Framework 3.5, you now have a single way to move
data — the Windows Communication Foundation (WCF). WCF provides you with the ability to build your
service one time and then expose this service in a multitude of ways (under different protocols even) by
just making changes within a configuration file. You will find that WCF is a powerful new way of
connecting disparate systems. Chapter 42 , “ Windows Communication Foundation, ” covers this in detail.

 The Role of C# in the . NET Enterprise
Architecture

 C# requires the presence of the .NET runtime, and it will probably be a few years before most clients —
 particularly most home computers — have .NET installed. In the meantime, installing a C# application is
likely to mean also installing the .NET redistributable components. Because of that, it is likely that we
will see many C# applications first in the enterprise environment. Indeed, C# arguably presents an
outstanding opportunity for organizations that are interested in building robust, n - tiered client - server
applications.

 When combined with ADO.NET, C# has the ability to access quickly and generically data stores such as
SQL Server and Oracle databases. The returned datasets can easily be manipulated using the ADO.NET
object model or LINQ, and automatically render as XML for transport across an office intranet.

 Once a database schema has been established for a new project, C# presents an excellent medium for
implementing a layer of data access objects, each of which could provide insertion, updates, and deletion
access to a different database table.

 Because it ’ s the first component - based C language, C# is a great language for implementing a business
object tier, too. It encapsulates the messy plumbing for intercomponent communication, leaving
developers free to focus on gluing their data access objects together in methods that accurately enforce
their organizations ’ business rules. Moreover, with attributes, C# business objects can be outfitted for
method - level security checks, object pooling, and JIT activation supplied by COM+ Services.
Furthermore, .NET ships with utility programs that allow your new .NET business objects to interface
with legacy COM components.

 To create an enterprise application with C#, you create a Class Library project for the data access objects
and another for the business objects. While developing, you can use Console projects to test the methods
on your classes. Fans of extreme programming can build Console projects that can be executed
automatically from batch files to unit test that working code has not been broken.

 On a related note, C# and .NET will probably influence the way you physically package your reusable
classes. In the past, many developers crammed a multitude of classes into a single physical component
because this arrangement made deployment a lot easier; if there was a versioning problem, you knew

c01.indd 22c01.indd 22 2/19/08 4:56:48 PM2/19/08 4:56:48 PM

Chapter 1: .NET Architecture

23

just where to look. Because deploying .NET enterprise components involves simply copying files into
directories, developers can now package their classes into more logical, discrete components without
encountering “ DLL Hell. ”

 Last, but not least, ASP.NET pages coded in C# constitute an excellent medium for user interfaces.
Because ASP.NET pages compile, they execute quickly. Because they can be debugged in the Visual
Studio 2008 IDE, they are robust. Because they support full - scale language features such as early
binding, inheritance, and modularization, ASP.NET pages coded in C# are tidy and easily maintained.

 Seasoned developers acquire a healthy skepticism about strongly hyped new technologies and
languages and are reluctant to use new platforms simply because they are urged to. If you are an
enterprise developer in an IT department, though, or if you provide application services across the
World Wide Web, let us assure you that C# and .NET offer at least four solid benefits, even if some of the
more exotic features like XML Web services and server - side controls don ’ t pan out:

❑ Component conflicts will become infrequent and deployment is easier because different versions
of the same component can run side by side on the same machine without conflicting.

❑ Your ASP.NET code will not look like spaghetti code.

❑ You can leverage a lot of the functionality in the .NET base classes.

❑ For applications requiring a Windows Forms user interface, C# makes it very easy to write this
kind of application.

 Windows Forms have, to some extent, been downplayed due to the advent of Web Forms and Internet -
 based applications. However, if you or your colleagues lack expertise in JavaScript, ASP, or related
technologies, Windows Forms are still a viable option for creating a user interface with speed and ease. Just
remember to factor your code so that the user interface logic is separate from the business logic and the
data access code. Doing so will allow you to migrate your application to the browser at some point in the
future if you need to. In addition, it is likely that Windows Forms will remain the dominant user interface
for applications for use in homes and small businesses for a long time to come. In addition to this, the new
smart client features of Windows Forms (the ability to easily work in an online/offline mode) will bring a
new round of exciting applications.

 Summary
 This chapter has covered a lot of ground, briefly reviewing important aspects of the .NET Framework
and C# ’ s relationship to it. It started by discussing how all languages that target .NET are compiled into
Microsoft Intermediate Language (IL) before this is compiled and executed by the Common Language
Runtime (CLR). This chapter also discussed the roles of the following features of .NET in the compilation
and execution process:

❑ Assemblies and .NET base classes

❑ COM components

❑ JIT compilation

❑ Application domains

❑ Garbage collection

 Figure 1 - 4 provides an overview of how these features come into play during compilation and execution.

c01.indd 23c01.indd 23 2/19/08 4:56:48 PM2/19/08 4:56:48 PM

Part I: The C# Language

24

 You learned about the characteristics of IL, particularly its strong data typing and object orientation, and
how these characteristics influence the languages that target .NET, including C#. You also learned how
the strongly typed nature of IL enables language interoperability, as well as CLR services such as garbage
collection and security. There was also a focus on the Common Language Specification (CLS) and the
Common Type System (CTS) to help deal with language interoperability.

 Finally, you learned how C# could be used as the basis for applications that are built on several .NET
technologies, including ASP.NET.

 Chapter 2 discusses how to write code in C#.

ASSEMBLY
containing IL

CODE

COMPILATION

EXECUTION

Language
Interoperability

through CTS
and CLS

VB.NET
Source Code

.NET base
classes

Assemblies
loaded

CLR ORGANIZES:

C# Source
Code

ASSEMBLY
containing IL

CODE

JIT
compilation

Security
permissions
granted

Memory type
safety checked

Creates App
Domain

Garbage collector
cleans up sources

PROCESS

Application domain

CODE EXECUTES
HERE COM interop

services

legacy COM
component

Figure 1-4

c01.indd 24c01.indd 24 2/19/08 4:56:48 PM2/19/08 4:56:48 PM

 C# Basics

 Now that you understand more about what C# can do, you will want to learn how to use it. This
chapter gives you a good start in that direction by providing you with a basic knowledge of the
fundamentals of C# programming, which is built on in subsequent chapters. The main topics
covered are:

❑ Declaring variables

❑ Initialization and scope of variables

❑ Predefined C# data types

❑ Dictating the flow of execution within a C# program using loops and conditional
statements

❑ Enumerations

❑ Namespaces

❑ The Main() method

❑ Basic command - line C# compiler options

❑ Using System.Console to perform console I/O

❑ Using comments and documentation features

❑ Preprocessor directives

 ❑ Guidelines and conventions for good programming in C#

 By the end of this chapter, you will know enough C# to write simple programs, though without
using inheritance or other object - oriented features, which are covered in later chapters.

 Before We Star t
 As already mentioned, C# is an object - oriented language. Throughout this chapter and later
chapters, we assume that you have a good grasp of the concepts behind object - oriented (OO)
programming. In other words, we expect that you understand what we mean by classes , objects ,

c02.indd 25c02.indd 25 2/19/08 4:59:26 PM2/19/08 4:59:26 PM

Part I: The C# Language

26

 interfaces , and inheritance . If you have programmed in C++ or Java before, you should have a pretty good
grounding in object - oriented programming (OOP). However, if you do not have a background in OOP,
you may find it helpful to familiarize yourself with OOP basics before continuing.

 In this chapter, we make many comparisons among C#, C++, Java, and Visual Basic 6 as we walk
through the basics of C#. If you are an experienced developer in these programs, you might prefer to
read a comparison between C# and your selected language before reading this chapter. If so, we have
also made available separate documents for download on the Wrox Press Web site (www.wrox.com) that
give introductions to C# from the point of view of each of these languages.

 Your First C# Program
 Let ’ s start by compiling and running the simplest possible C# program — a simple class consisting of a
console application that writes a message to the screen.

 Later chapters present a number of code samples. The most common technique for writing C# programs
is to use Visual Studio 2008 to generate a basic project and add your own code to it. However, because
the aim of these early chapters is to teach the C# language, we are going to keep things simple and avoid
relying on Visual Studio 2008 until Chapter 15 , “ Visual Studio 2008. ” Instead, we will present the code
as simple files that you can type in using any text editor and compile from the command line.

 The Code
 Type the following into a text editor (such as Notepad), and save it with a .cs extension (for example,
 First.cs). The Main() method is shown here:

using System;

namespace Wrox.ProCSharp.Basics
{
 class MyFirstCSharpClass
 {
 static void Main()
 {
 Console.WriteLine(“This isn’t at all like Java!”);
 Console.ReadLine();
 return;
 }
 }
}

 Compiling and Running the Program
 You can compile this program by simply running the C# command - line compiler (csc.exe) against the
source file, like this:

csc First.cs

 If you want to compile code from the command line using the csc command, you should be aware that
the .NET command - line tools, including csc , are available only if certain environment variables have
been set up. Depending on how you installed .NET (and Visual Studio 2008), this may or may not be the
case on your machine.

c02.indd 26c02.indd 26 2/19/08 4:59:27 PM2/19/08 4:59:27 PM

Chapter 2: C# Basics

27

 If you do not have the environment variables set up, you have the following two options. The first is to run
the batch file %Microsoft Visual Studio 2008%\Common7\Tools\vsvars32.bat from the
command prompt before running csc , where %Microsoft Visual Studio 2008 is the folder to
which Visual Studio 2008 has been installed. The second, and easier, way is to use the Visual Studio 2008
command prompt instead of the usual command prompt window. You will find the Visual Studio 2008 command
prompt in the Start Menu, under Programs, Microsoft Visual Studio 2008, Microsoft Visual Studio Tools.
It is simply a command prompt window that automatically runs vsvars32.bat when it opens.

 Compiling the code produces an executable file named First.exe , which you can run from the
command line or from Windows Explorer like any other executable. Give it a try:

 csc First.cs

Microsoft (R) Visual C# Compiler version 9.00.20404
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

 First.exe

This isn’t at all like Java!

 Well, maybe that message isn ’ t quite true! This program has some fairly fundamental similarities to Java,
although there are one or two points (such as the capitalized Main() function) to catch the unwary
Java or C++ developer. Let ’ s look more closely at what ’ s going on in the code.

 A Closer Look
 First, a few general comments about C# syntax. In C#, as in other C - style languages, most statements end
in a semicolon (;) and can continue over multiple lines without needing a continuation character (such
as the underscore in Visual Basic). Statements can be joined into blocks using curly braces ({}). Single -
 line comments begin with two forward slash characters (//), and multiline comments begin with a slash
and an asterisk (/*) and end with the same combination reversed (*/). In these aspects, C# is identical to
C++ and Java but different from Visual Basic. It is the semicolons and curly braces that give C# code such
a different visual appearance from Visual Basic code. If your background is predominantly Visual Basic,
take extra care to remember the semicolon at the end of every statement. Omitting this is usually the
biggest single cause of compilation errors among developers new to C - style languages. Another thing to
remember is that C# is case sensitive. That means that variables named myVar and MyVar are two
different variables.

 The first few lines in the previous code example have to do with namespaces (mentioned later in this
chapter), which are a way to group together associated classes. This concept will be familiar to Java and
C++ developers but may be new to Visual Basic 6 developers. C# namespaces are basically the same
as C++ namespaces or, equivalently, Java packages, but there is no comparable concept in Visual Basic 6.
The namespace keyword declares the namespace your class should be associated with. All code within
the braces that follow it is regarded as being within that namespace. The using statement specifies a
namespace that the compiler should look at to find any classes that are referenced in your code but that
aren ’ t defined in the current namespace. This serves the same purpose as the import statement in Java
and the using namespace statement in C++.

using System;

namespace Wrox.ProCSharp.Basics
{

 The reason for the presence of the using statement in the First.cs file is that you are going to use a
library class, System.Console . The using System statement allows you to refer to this class simply as
 Console (and similarly for any other classes in the System namespace). The standard System
namespace is where the most commonly used .NET types reside. It is important to realize that

c02.indd 27c02.indd 27 2/19/08 4:59:28 PM2/19/08 4:59:28 PM

Part I: The C# Language

28

everything you do in C# depends on the .NET base classes. In this case, you are using the Console class
within the System namespace in order to write to the console window. C# has no built - in keywords of
its own for input or output; it is completely reliant on the .NET classes.

 Because almost every C# program uses classes in the System namespace, we will assume that a using
System; statement is present in the file for all code snippets in this chapter.

 Next, you declare a class called MyFirstClass . However, because it has been placed in a namespace
called Wrox.ProCSharp.Basics , the fully qualified name of this class is Wrox.ProCSharp.Basics
.MyFirstCSharpClass :

 class MyFirstCSharpClass
 {

 As in Java, all C# code must be contained within a class. Classes in C# are similar to classes in Java and
C++, and very roughly comparable to class modules in Visual Basic 6. The class declaration consists of
the class keyword, followed by the class name and a pair of curly braces. All code associated with the
class should be placed between these braces.

 Next, you declare a method called Main() . Every C# executable (such as console applications, Windows
applications, and Windows services) must have an entry point — the Main() method (note the capital M):

 static void Main()
 {

 The method is called when the program is started, like the main() function in C++ or Java, or Sub
Main() in a Visual Basic 6 module. This method must return either nothing (void) or an integer (int).
A C# method corresponds to a method in C++ and Java (sometimes referred to in C++ as a member
function). It also corresponds to either a Visual Basic Function or a Visual Basic Sub , depending on
whether the method returns anything (unlike Visual Basic, C# makes no conceptual distinction between
functions and subroutines).

 Note the format of method definitions in C#:

 [modifiers] return_type MethodName([parameters])
{
 // Method body. NB. This code block is pseudo-code.
}

 Here, the first square brackets represent certain optional keywords. Modifiers are used to specify certain
features of the method you are defining, such as where the method can be called from. In this case, you
have two modifiers: public and static . The public modifier means that the method can be accessed
from anywhere, so it can be called from outside your class. This is the same meaning as public in C++
and Java, and Public in Visual Basic. The static modifier indicates that the method does not operate
on a specific instance of your class and therefore is called without first instantiating the class. This is
important because you are creating an executable rather than a class library. Once again, this has the
same meaning as the static keyword in C++ and Java, though in this case there is no Visual Basic
equivalent (the Static keyword in Visual Basic has a different meaning). You set the return type to
 void , and in the example, you don ’ t include any parameters.

 Finally, we come to the code statements themselves:

 Console.WriteLine(“This isn’t at all like Java!”);
 Console.ReadLine();
 return;

 In this case, you simply call the WriteLine() method of the System.Console class to write a line of
text to the console window. WriteLine() is a static method, so you don ’ t need to instantiate a
 Console object before calling it.

c02.indd 28c02.indd 28 2/19/08 4:59:28 PM2/19/08 4:59:28 PM

Chapter 2: C# Basics

29

 Console.ReadLine() reads user input. Adding this line forces the application to wait for the carriage
return key to be pressed before the application exits, and, in the case of Visual Studio 2008, the console
window disappears.

 You then call return to exit from the method (also, because this is the Main() method, you exit the
program as well.). You specified void in your method header, so you don ’ t return any values. The return
statement is equivalent to return in C++ and Java, and Exit Sub or Exit Function in Visual Basic.

 Now that you have had a taste of basic C# syntax, you are ready for more detail. Because it is virtually
impossible to write any nontrivial program without variables , we will start by looking at variables in C#.

 Variables
 You declare variables in C# using the following syntax:

datatype identifier;

 For example:

int i;

 This statement declares an int named i . The compiler won ’ t actually let you use this variable in an
expression until you have initialized it with a value.

 Once it has been declared, you can assign a value to the variable using the assignment operator, =:

i = 10;

 You can also declare the variable and initialize its value at the same time:

int i = 10;

 This syntax is identical to C++ and Java syntax but very different from Visual Basic syntax for declaring
variables. If you are coming from Visual Basic 6, you should also be aware that C# doesn ’ t distinguish
between objects and simple types, so there is no need for anything like the Set keyword, even if you
want your variable to refer to an object. The C# syntax for declaring variables is the same no matter what
the data type of the variable.

 If you declare and initialize more than one variable in a single statement, all of the variables will be of
the same data type:

int x = 10, y =20; // x and y are both ints

 To declare variables of different types, you need to use separate statements. You cannot assign different
data types within a multiple variable declaration:

int x = 10;
bool y = true; // Creates a variable that stores true or false
int x = 10, bool y = true; // This won’t compile!

 Notice the // and the text after it in the preceding examples. These are comments. The // character sequence
tells the compiler to ignore the text that follows on this line because it is for a human to better understand the
program and not part of the program itself. We further explain comments in code later in this chapter.

 Initialization of Variables
 Variable initialization demonstrates an example of C# ’ s emphasis on safety. Briefly, the C# compiler
requires that any variable be initialized with some starting value before you refer to that variable in an
operation. Most modern compilers will flag violations of this as a warning, but the ever - vigilant C#

c02.indd 29c02.indd 29 2/19/08 4:59:29 PM2/19/08 4:59:29 PM

Part I: The C# Language

30

compiler treats such violations as errors. This prevents you from unintentionally retrieving junk values
from memory that is left over from other programs.

 C# has two methods for ensuring that variables are initialized before use:

❑ Variables that are fields in a class or struct, if not initialized explicitly, are by default zeroed out
when they are created (classes and structs are discussed later).

❑ Variables that are local to a method must be explicitly initialized in your code prior to any state-
ments in which their values are used. In this case, the initialization doesn ’ t have to happen when
the variable is declared, but the compiler will check all possible paths through the method and
will flag an error if it detects any possibility of the value of a local variable being used before it is
initialized.

 C# ’ s approach contrasts with C++ ’ s approach, in which the compiler leaves it up to the programmer to
make sure that variables are initialized before use, and with Visual Basic ’ s approach, in which all
variables are zeroed out automatically.

 For example, you can ’ t do the following in C#:

public static int Main()
{
 int d;
 Console.WriteLine(d); // Can’t do this! Need to initialize d before use
 return 0;
}

 Notice that this code snippet demonstrates defining Main() so that it returns an int instead of void .

 When you attempt to compile these lines, you will receive this error message:

Use of unassigned local variable ‘d’

 Consider the following statement:

Something objSomething;

 In C++, this line would create an instance of the Something class on the stack. In C#, this same line of
code would create only a reference for a Something object, but this reference would not yet actually refer
to any object. Any attempt to call a method or property against this variable would result in an error.

 Instantiating a reference object in C# requires use of the new keyword. You create a reference as shown in
the previous example and then point the reference at an object allocated on the heap using the new
keyword:

objSomething = new Something(); // This creates a Something on the heap

 Type Inference
 Type inference makes use of the var keyword. The syntax for declaring the variable changes somewhat.
The compiler “ infers ” what the type of the variable is by what the variable is initialized to. For example,

int someNumber = 0;

becomes

var someNumber = 0;

 Even though someNumber is never declared as being an int , the compiler figures this out and
 someNumber is an int for as long as it is in scope. Once compiled, the two preceding statements are equal.

c02.indd 30c02.indd 30 2/19/08 4:59:29 PM2/19/08 4:59:29 PM

Chapter 2: C# Basics

31

 Here is a short program to demonstrate:

using System;

namespace Wrox.ProCSharp.Basics
{
 class Program
 {
 static void Main(string[] args)
 {
 var name = “Bugs Bunny”;
 var age = 25;
 var isRabbit = true;

 Type nameType = name.GetType();
 Type ageType = age.GetType();
 Type isRabbitType = isRabbit.GetType();

 Console.WriteLine(“name is type “ + nameType.ToString());
 Console.WriteLine(“age is type “ + ageType.ToString());
 Console.WriteLine(“isRabbit is type “ + isRabbitType.ToString());
 }
 }
}

 The output from this program is:

name is type System.String
age is type System.Int32
isRabbit is type System.Bool

 There are a few rules that you need to follow. The variable must be initialized. Otherwise, the compiler
doesn ’ t have anything to infer the type from. The initializer cannot be null, and the initializer must be an
expression. You can ’ t set the initializer to an object unless you create a new object in the initializer. We
examine this more closely in the discussion of anonymous types in Chapter 3 , “ Objects and Types. ”

 Once the variable has been declared and the type inferred, the variable ’ s type cannot be changed. This is
unlike the Variant type used in Visual Basic. Once established, the variable ’ s type follows all of the
strong typing rules that any other variable type must follow.

 Variable Scope
 The scope of a variable is the region of code from which the variable can be accessed. In general, the
scope is determined by the following rules:

❑ A field (also known as a member variable) of a class is in scope for as long as its containing class
is in scope (this is the same as for C++, Java, and VB).

❑ A local variable is in scope until a closing brace indicates the end of the block statement or
method in which it was declared.

❑ A local variable that is declared in a for , while , or similar statement is in scope in the body of
that loop. (C++ developers will recognize that this is the same behavior as the ANSI standard for
C++. Early versions of the Microsoft C++ compiler did not comply with this standard but
scoped such variables to remain in scope after the loop terminated.)

c02.indd 31c02.indd 31 2/19/08 4:59:29 PM2/19/08 4:59:29 PM

Part I: The C# Language

32

 Scope Clashes for Local Variables
 It ’ s common in a large program to use the same variable name for different variables in different parts of
the program. This is fine as long as the variables are scoped to completely different parts of the program
so that there is no possibility for ambiguity. However, bear in mind that local variables with the same
name can ’ t be declared twice in the same scope. For example, you can ’ t do this:

int x = 20;
// some more code
int x = 30;

 Consider the following code sample:

using System;

namespace Wrox.ProCSharp.Basics
{
 public class ScopeTest
 {
 public static int Main()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(i);
 } // i goes out of scope here

 // We can declare a variable named i again, because
 // there’s no other variable with that name in scope

 for (int i = 9; i > = 0; i--)
 {
 Console.WriteLine(i);
 } // i goes out of scope here.
 return 0;
 }
 }
}

 This code simply prints out the numbers from 0 to 9, and then back again from 9 to 0, using two for
loops. The important thing to note is that you declare the variable i twice in this code, within the same
method. You can do this because i is declared in two separate loops, so each i variable is local to its
own loop.

 Here ’ s another example:

public static int Main()
{
 int j = 20;
 for (int i = 0; i < 10; i++)
 {
 int j = 30; // Can’t do this - j is still in scope
 Console.WriteLine(j + i);
 }
 return 0;
}

c02.indd 32c02.indd 32 2/19/08 4:59:30 PM2/19/08 4:59:30 PM

Chapter 2: C# Basics

33

 If you try to compile this, you ’ ll get an error:

ScopeTest.cs(12,14): error CS0136: A local variable named ‘j’ cannot be declared in
this scope because it would give a different meaning to ‘j’, which is already used
in a ‘parent or current’ scope to denote something else.

 This occurs because the variable j , which is defined before the start of the for loop, is still in scope
within the for loop, and won ’ t go out of scope until the Main() method has finished executing.
Although the second j (the illegal one) is in the loop ’ s scope, that scope is nested within the Main()
method ’ s scope. The compiler has no way to distinguish between these two variables, so it won ’ t allow
the second one to be declared. This, again, is different from C++, where variable hiding is permitted.

 Scope Clashes for Fields and Local Variables
 In certain circumstances, however, you can distinguish between two identifiers with the same name
(although not the same fully qualified name) and the same scope, and in this case the compiler will allow
you to declare the second variable. The reason is that C# makes a fundamental distinction between
variables that are declared at the type level (fields) and variables that are declared within methods
(local variables).

 Consider the following code snippet:

using System;

namespace Wrox.ProCSharp.Basics
{
 class ScopeTest2
 {
 static int j = 20;
 Console.WriteLine(j);

 public static void Main()
 {
 int j = 30;
 Console.WriteLine(j);
 return;
 }
 }
}

 This code will compile, even though you have two variables named j in scope within the Main()
method: the j that was defined at the class level, and doesn ’ t go out of scope until the class is destroyed
(when the Main() method terminates, and the program ends); and the j defined in Main() . In this case,
the new variable named j that you declare in the Main() method hides the class - level variable with the
same name, so when you run this code, the number 30 will be displayed.

 However, what if you want to refer to the class - level variable? You can actually refer to fields of a class or
struct from outside the object, using the syntax object.fieldname . In the previous example, you are
accessing a static field (you look at what this means in the next section) from a static method, so you
can ’ t use an instance of the class; you just use the name of the class itself:

 ...
 public static void Main()
 {
 int j = 30;
 Console.WriteLine(j);
 Console.WriteLine(ScopeTest2.j);
 }
 ...

c02.indd 33c02.indd 33 2/19/08 4:59:30 PM2/19/08 4:59:30 PM

Part I: The C# Language

34

 If you were accessing an instance field (a field that belongs to a specific instance of the class), you would
need to use the this keyword instead. This keyword performs the same role as this in C++ and Java,
and Me in Visual Basic.

 Constants
 As the name implies, a constant is a variable whose value cannot be changed throughout its lifetime.
Prefixing a variable with the const keyword when it is declared and initialized designates that variable
as a constant:

const int a = 100; // This value cannot be changed.

 Constants will be familiar to Visual Basic and C++ developers. C++ developers should, however, note
that C# does not permit all the subtleties of C++ constants. In C++, not only could variables be declared
as constant, but depending on the declaration, you could have constant pointers, variable pointers to
constants, constant methods (that don ’ t change the contents of the containing object), constant
parameters to methods, and so on. These subtleties have been discarded in C#, and all you can do is
declare local variables and fields to be constant.

 Constants have the following characteristics:

❑ They must be initialized when they are declared, and once a value has been assigned, it can
never be overwritten.

❑ The value of a constant must be computable at compile time. Therefore, you can ’ t initialize a
constant with a value taken from a variable. If you need to do this, you will need to use a read -
 only field (this is explained in Chapter 3 , “ Objects and Types ”).

❑ Constants are always implicitly static. However, notice that you don ’ t have to (and, in fact, are
not permitted to) include the static modifier in the constant declaration.

 At least three advantages exist to using constants in your programs:

❑ Constants make your programs easier to read by replacing magic numbers and strings with
readable names whose values are easy to understand.

❑ Constants make your programs easier to modify. For example, assume that you have a SalesTax
constant in one of your C# programs, and that constant is assigned a value of 6 percent. If the
sales tax rate changes at a later point in time, you can modify the behavior of all tax calculations
simply by assigning a new value to the constant; you don ’ t have to hunt throughout your code
for the value .06 and change each one, hoping that you will find all of them.

❑ Constants help to prevent mistakes in your programs. If you attempt to assign another value to
a constant somewhere in your program other than at the point where the constant is declared,
the compiler will flag the error.

 Predefined Data Types
 Now that you have seen how to declare variables and constants, let ’ s take a closer look at the data types
available in C#. As you will see, C# is much stricter about the types available and their definitions than
some other languages are.

c02.indd 34c02.indd 34 2/19/08 4:59:30 PM2/19/08 4:59:30 PM

Chapter 2: C# Basics

35

 Value Types and Reference Types
 Before examining the data types in C#, it is important to understand that C# distinguishes between two
categories of data type:

❑ Value types

❑ Reference types

 The next few sections look in detail at the syntax for value and reference types. Conceptually, the
difference is that a value type stores its value directly, whereas a reference type stores a reference to the value.
Value types in C# are basically the same as simple types (integer, float, but not pointers or references)
in Visual Basic or C++. Reference types are the same as reference types in Visual Basic and are similar to
types accessed through pointers in C++.

 These types are stored in different places in memory; value types are stored in an area known as the
 stack , and reference types are stored in an area known as the managed heap . It is important to be aware of
whether a type is a value type or a reference type because of the different effect each assignment has. For
example, int is a value type, which means that the following statement will result in two locations in
memory storing the value 20:

// i and j are both of type int
i = 20;
j = i;

 However, consider the following code. For this code, assume that you have defined a class called
 Vector . Assume that Vector is a reference type and has an int member variable called Value :

Vector x, y;
x = new Vector();
x.Value = 30; // Value is a field defined in Vector class
y = x;
Console.WriteLine(y.Value);
y.Value = 50;
Console.WriteLine(x.Value);

 The crucial point to understand is that after executing this code, there is only one Vector object around.
 x and y both point to the memory location that contains this object. Because x and y are variables of a
reference type, declaring each variable simply reserves a reference — it doesn ’ t instantiate an object of the
given type. This is the same as declaring a pointer in C++ or an object reference in Visual Basic. In
neither case is an object actually created. In order to create an object, you have to use the new keyword,
as shown. Because x and y refer to the same object, changes made to x will affect y and vice versa. Hence
the code will display 30 then 50 .

 C++ developers should note that this syntax is like a reference, not a pointer. We use the . notation,
not - > , to access object members. Syntactically, C# references look more like C++ reference variables.
However, behind the superficial syntax, the real similarity is with C++ pointers.

 If a variable is a reference, it is possible to indicate that it does not refer to any object by setting its value
to null :

y = null;

c02.indd 35c02.indd 35 2/19/08 4:59:31 PM2/19/08 4:59:31 PM

Part I: The C# Language

36

 This is the same as setting a reference to null in Java, a pointer to NULL in C++, or an object reference in
Visual Basic to Nothing . If a reference is set to null , then clearly it is not possible to call any nonstatic
member functions or fields against it; doing so would cause an exception to be thrown at runtime.

 In languages like C++, the developer can choose whether a given value is to be accessed directly or via a
pointer. Visual Basic is more restrictive, taking the view that COM objects are reference types and simple
types are always value types. C# is similar to Visual Basic in this regard: whether a variable is a value or
reference is determined solely by its data type, so int , for example, is always a value type. It is not
possible to declare an int variable as a reference (although in Chapter 6 , “ Operators and Casts, ” which
covers boxing , you see it is possible to wrap value types in references of type object).

 In C#, basic data types like bool and long are value types. This means that if you declare a bool
variable and assign it the value of another bool variable, you will have two separate bool values in
memory. Later, if you change the value of the original bool variable, the value of the second bool
variable does not change. These types are copied by value.

 In contrast, most of the more complex C# data types, including classes that you yourself declare, are
reference types. They are allocated upon the heap, have lifetimes that can span multiple function calls,
and can be accessed through one or several aliases. The Common Language Runtime (CLR) implements
an elaborate algorithm to track which reference variables are still reachable and which have been
orphaned. Periodically, the CLR will destroy orphaned objects and return the memory that they once
occupied back to the operating system. This is done by the garbage collector.

 C# has been designed this way because high performance is best served by keeping primitive types (like
 int and bool) as value types and larger types that contain many fields (as is usually the case with classes)
as reference types. If you want to define your own type as a value type, you should declare it as a struct.

 CTS Types
 As mentioned in Chapter 1 , “ .NET Architecture, ” the basic predefined types recognized by C# are not
intrinsic to the language but are part of the .NET Framework. For example, when you declare an int in
C#, what you are actually declaring is an instance of a .NET struct, System.Int32 . This may sound like
a small point, but it has a profound significance: it means that you are able to treat all the primitive data
types syntactically as if they were classes that supported certain methods. For example, to convert an
 int i to a string , you can write:

string s = i.ToString();

 It should be emphasized that, behind this syntactical convenience, the types really are stored as primitive
types, so there is absolutely no performance cost associated with the idea that the primitive types are
notionally represented by .NET structs.

 The following sections review the types that are recognized as built - in types in C#. Each type is listed,
along with its definition and the name of the corresponding .NET type (CTS type). C# has 15 predefined
types, 13 value types, and 2 (string and object) reference types.

 Predefined Value Types
 The built - in value types represent primitives, such as integer and floating - point numbers, character, and
Boolean types.

c02.indd 36c02.indd 36 2/19/08 4:59:31 PM2/19/08 4:59:31 PM

Chapter 2: C# Basics

37

 Integer Types
 C# supports eight predefined integer types, shown in the following table.

 Name CTS Type Description Range (min:max)

 sbyte System.SByte 8 - bit signed integer - 128:127 (- 2 7 :2 7 - 1)

 short System.Int16 16 - bit signed integer - 32,768:32,767 (- 2 15 :2 15 - 1)

 int System.Int32 32 - bit signed integer - 2,147,483,648:2,147,483,647
(- 2 31 :2 31 - 1)

 long System.Int64 64 - bit signed integer - 9,223,372,036,854,775,808:
9,223,372,036,854,775,807 (- 2 63 :2 63 - 1)

 byte System.Byte 8 - bit unsigned integer 0:255 (0:2 8 - 1)

 ushort System.UInt16 16 - bit unsigned integer 0:65,535 (0:2 16 - 1)

 uint System.UInt32 32 - bit unsigned integer 0:4,294,967,295 (0:2 32 - 1)

 ulong System.UInt64 64 - bit unsigned integer 0:18,446,744,073,709,551,615 (0:2 64 - 1)

 Future versions of Windows will target 64 - bit processors, which can move bits into and out of memory
in larger chunks to achieve faster processing times. Consequently, C# supports a rich palette of signed
and unsigned integer types ranging in size from 8 to 64 bits.

 Many of these type names will be new to programmers experienced in Visual Basic. C++ and Java
developers should be careful; some C# types have the same names as C++ and Java types but have
different definitions. For example, in C#, an int is always a 32 - bit signed integer. In C++ an int is a
signed integer, but the number of bits is platform - dependent (32 bits on Windows). In C#, all data types
have been defined in a platform - independent manner to allow for the possible future porting of C# and
.NET to other platforms.

 A byte is the standard 8 - bit type for values in the range 0 to 255 inclusive. Be aware that, in keeping
with its emphasis on type safety, C# regards the byte type and the char type as completely distinct, and
any programmatic conversions between the two must be explicitly requested. Also be aware that unlike
the other types in the integer family, a byte type is by default unsigned. Its signed version bears the
special name sbyte .

 With .NET, a short is no longer quite so short; it is now 16 bits long. The int type is 32 bits long. The
 long type reserves 64 bits for values. All integer - type variables can be assigned values in decimal or in
hex notation. The latter require the 0x prefix:

long x = 0x12ab;

 If there is any ambiguity about whether an integer is int , uint , long , or ulong , it will default to an int .
To specify which of the other integer types the value should take, you can append one of the following
characters to the number:

uint ui = 1234U;
long l = 1234L;
ulong ul = 1234UL;

 You can also use lowercase u and l , although the latter could be confused with the integer 1 (one).

c02.indd 37c02.indd 37 2/19/08 4:59:32 PM2/19/08 4:59:32 PM

Part I: The C# Language

38

 Floating - Point Types
 Although C# provides a plethora of integer data types, it supports floating - point types as well. They will
be familiar to C and C++ programmers.

Name CTS Type Description
Significant
Figures Range (approximate)

float System.Single 32-bit single-precision
floating point

7 ±1.5 × 10�45 to ±3.4 × 1038

double System.Double 64-bit double-precision
floating point

15/16 ±5.0 × 10�324 to ±1.7 × 10308

 The float data type is for smaller floating - point values, for which less precision is required. The double
data type is bulkier than the float data type but offers twice the precision (15 digits).

 If you hard - code a non - integer number (such as 12.3) in your code, the compiler will normally assume
that you want the number interpreted as a double . If you want to specify that the value is a float , you
append the character F (or f) to it:

float f = 12.3F;

 The Decimal Type
 The decimal type represents higher - precision floating - point numbers, as shown in the following table.

 Name CTS Type Description
 Significant
Figures Range (approximate)

 decimal System.Decimal 128 - bit high - precision
decimal notation

 28 ± 1.0 × 10� 28 to
± 7.9 × 10 28

 One of the great things about the CTS and C# is the provision of a dedicated decimal type for financial
calculations. How you use the 28 digits that the decimal type provides is up to you. In other words, you
can track smaller dollar amounts with greater accuracy for cents or larger dollar amounts with more
rounding in the fractional area. Bear in mind, however, that decimal is not implemented under the hood
as a primitive type, so using decimal will have a performance effect on your calculations.

 To specify that your number is a decimal type rather than a double , float , or an integer, you can
append the M (or m) character to the value, as shown in the following example:

decimal d = 12.30M;

 The Boolean Type
 The C# bool type is used to contain Boolean values of either true or false .

 Name CTS Type Description
 Significant
Figures Range (approximate)

 bool System.Boolean Represents true or false NA true false

c02.indd 38c02.indd 38 2/19/08 4:59:32 PM2/19/08 4:59:32 PM

Chapter 2: C# Basics

39

 You cannot implicitly convert bool values to and from integer values. If a variable (or a function return
type) is declared as a bool , you can only use values of true and false . You will get an error if you try
to use zero for false and a non - zero value for true , as is possible to do in C++.

 The Character Type
 For storing the value of a single character, C# supports the char data type.

 Name CTS Type Values

 char System.Char Represents a single 16 - bit (Unicode) character

 Although this data type has a superficial resemblance to the char type provided by C and C++, there is a
significant difference. A C++ char represents an 8 - bit character, whereas a C# char contains 16 bits. This is
part of the reason that implicit conversions between the char type and the 8 - bit byte type are not permitted.

 Although 8 bits may be enough to encode every character in the English language and the digits 0 – 9,
they aren ’ t enough to encode every character in more expansive symbol systems (such as Chinese). In a
gesture toward universality, the computer industry is moving away from the 8 - bit character set and
toward the 16 - bit Unicode scheme, of which the ASCII encoding is a subset.

 Literals of type char are signified by being enclosed in single quotation marks, for example ‘ A ’ . If you try
to enclose a character in double quotation marks, the compiler will treat this as a string and throw an error.

 As well as representing char s as character literals, you can represent them with four - digit hex Unicode
values (for example ‘ \u0041 ’), as integer values with a cast (for example, (char)65), or as
hexadecimal values (‘ \x0041 ’). You can also represent them with an escape sequence, as shown in
the following table.

 Escape Sequence Character

 \ ‘ Single quotation mark

 \ “ Double quotation mark

 \\ Backslash

 \0 Null

 \a Alert

 \b Backspace

 \f Form feed

 \n Newline

 \r Carriage return

 \t Tab character

 \v Vertical tab

 C++ developers should note that because C# has a native string type, you don ’ t need to represent strings
as arrays of char s.

c02.indd 39c02.indd 39 2/19/08 4:59:33 PM2/19/08 4:59:33 PM

Part I: The C# Language

40

 Predefined Reference Types
 C# supports two predefined reference types, object and string , described in the following table.

 Name CTS Type Description

 object System.Object The root type. All other types in the CTS are derived (including value
types) from object .

 string System.String Unicode character string.

 The object Type
 Many programming languages and class hierarchies provide a root type, from which all other objects in
the hierarchy are derived. C# and .NET are no exception. In C#, the object type is the ultimate parent
type from which all other intrinsic and user - defined types are derived. This is a key feature of C# that
distinguishes it from both Visual Basic 6.0 and C++, although its behavior here is very similar to Java. All
types implicitly derive ultimately from the System.Object class. This means that you can use the
 object type for two purposes:

❑ You can use an object reference to bind to an object of any particular subtype. For example, in
Chapter 6 , “ Operators and Casts, ” you will see how you can use the object type to box a value
object on the stack to move it to the heap. object references are also useful in reflection, when
code must manipulate objects whose specific types are unknown. This is similar to the role
played by a void pointer in C++ or by a Variant data type in VB.

❑ The object type implements a number of basic, general - purpose methods, which include
 Equals() , GetHashCode() , GetType() , and ToString() . Responsible user - defined classes
may need to provide replacement implementations of some of these methods using an object -
 oriented technique known as overriding , which is discussed in Chapter 4 , “ Inheritance. ” When
you override ToString() , for example, you equip your class with a method for intelligently
providing a string representation of itself. If you don ’ t provide your own implementations for
these methods in your classes, the compiler will pick up the implementations in object , which
may or may not be correct or sensible in the context of your classes.

 We examine the object type in more detail in subsequent chapters.

 The string Type
 Veterans of C and C++ probably have battle scars from wrestling with C - style strings. A C or C++ string
is nothing more than an array of characters, so the client programmer has to do a lot of work just to copy
one string to another or to concatenate two strings. In fact, for a generation of C++ programmers,
implementing a string class that wraps up the messy details of these operations was a rite of passage
requiring many hours of teeth gnashing and head scratching. Visual Basic programmers have a
somewhat easier life, with a string type, and Java people have it even better, with a String class that is
in many ways very similar to a C# string.

 C# recognizes the string keyword, which under the hood is translated to the .NET class, System
.String . With it, operations like string concatenation and string copying are a snap:

string str1 = “Hello “;
string str2 = “World”;
string str3 = str1 + str2; // string concatenation

c02.indd 40c02.indd 40 2/19/08 4:59:33 PM2/19/08 4:59:33 PM

Chapter 2: C# Basics

41

 Despite this style of assignment, string is a reference type. Behind the scenes, a string object is
allocated on the heap, not the stack, and when you assign one string variable to another string, you get
two references to the same string in memory. However, with string there are some differences from the
usual behavior for reference types. For example, should you make changes to one of these strings, this will
create an entirely new string object, leaving the other string unchanged. Consider the following code:

using System;

class StringExample
{
 public static int Main()
 {
 string s1 = “a string”;
 string s2 = s1;
 Console.WriteLine(“s1 is “ + s1);
 Console.WriteLine(“s2 is “ + s2);
 s1 = “another string”;
 Console.WriteLine(“s1 is now “ + s1);
 Console.WriteLine(“s2 is now “ + s2);
 return 0;
 }
}

 The output from this is:

s1 is a string
s2 is a string
s1 is now another string
s2 is now a string

 Changing the value of s1 had no effect on s2 , contrary to what you ’ d expect with a reference type!
What ’ s happening here is that when s1 is initialized with the value a string , a new string object is
allocated on the heap. When s2 is initialized, the reference points to this same object, so s2 also has the
value a string . However, when you now change the value of s1 , instead of replacing the original value,
a new object will be allocated on the heap for the new value. The s2 variable will still point to the original
object, so its value is unchanged. Under the hood, this happens as a result of operator overloading, a
topic that is explored in Chapter 6 , “ Operators and Casts. ” In general, the string class has been
implemented so that its semantics follow what you would normally intuitively expect for a string.

 String literals are enclosed in double quotation marks (“ ... ”); if you attempt to enclose a string in single
quotation marks, the compiler will take the value as a char , and throw an error. C# strings can contain
the same Unicode and hexadecimal escape sequences as char s. Because these escape sequences start
with a backslash, you can ’ t use this character unescaped in a string. Instead, you need to escape it with
two backslashes (\\):

string filepath = “C:\\ProCSharp\\First.cs”;

 Even if you are confident that you can remember to do this all the time, typing all of those double
backslashes can prove annoying. Fortunately, C# gives you an alternative. You can prefix a string literal
with the at character (@) and all the characters in it will be treated at face value; they won ’ t be interpreted
as escape sequences:

string filepath = @”C:\ProCSharp\First.cs”;

 This even allows you to include line breaks in your string literals:

string jabberwocky = @”’Twas brillig and the slithy toves
Did gyre and gimble in the wabe.”;

c02.indd 41c02.indd 41 2/19/08 4:59:34 PM2/19/08 4:59:34 PM

Part I: The C# Language

42

 Then the value of jabberwocky would be this:

‘Twas brillig and the slithy toves
Did gyre and gimble in the wabe.

 Flow Control
 This section looks at the real nuts and bolts of the language: the statements that allow you to control the
 flow of your program rather than executing every line of code in the order it appears in the program.

 Conditional Statements
 Conditional statements allow you to branch your code depending on whether certain conditions are met
or on the value of an expression. C# has two constructs for branching code — the if statement, which
allows you to test whether a specific condition is met, and the switch statement, which allows you to
compare an expression with a number of different values.

 The if Statement
 For conditional branching, C# inherits the C and C++ if...else construct. The syntax should be fairly
intuitive for anyone who has done any programming with a procedural language:

if (condition)
 statement(s)
else
 statement(s)

 If more than one statement is to be executed as part of either condition, these statements will need to be
joined together into a block using curly braces ({...}). (This also applies to other C# constructs where
statements can be joined into a block, such as the for and while loops):

bool isZero;
if (i == 0)
{
 isZero = true;
 Console.WriteLine(“i is Zero”);
}
else
{
 isZero = false;
 Console.WriteLine(“i is Non-zero”);
}

 The syntax here is similar to C++ and Java but once again different from Visual Basic. Visual Basic
developers should note that C# does not have any statement corresponding to Visual Basic ’ s EndIf .
Instead, the rule is that each clause of an if contains just one statement. If you need more than one
statement, as in the preceding example, you should enclose the statements in braces, which will cause
the whole group of statements to be treated as a single block statement.

 If you want to, you can use an if statement without a final else statement. You can also combine else
if clauses to test for multiple conditions:

using System;

namespace Wrox.ProCSharp.Basics
{
 class MainEntryPoint

c02.indd 42c02.indd 42 2/19/08 4:59:34 PM2/19/08 4:59:34 PM

Chapter 2: C# Basics

43

 {
 static void Main(string[] args)
 {
 Console.WriteLine(“Type in a string”);
 string input;
 input = Console.ReadLine();
 if (input == “”)
 {
 Console.WriteLine(“You typed in an empty string.”);
 }
 else if (input.Length < 5)
 {
 Console.WriteLine(“The string had less than 5 characters.”);
 }
 else if (input.Length < 10)
 {
 Console.WriteLine(“The string had at least 5 but less than 10
 Characters.”);
 }
 Console.WriteLine(“The string was “ + input);
 }
 }
}

 There is no limit to how many else if s you can add to an if clause.

 You ’ ll notice that the previous example declares a string variable called input , gets the user to enter text
at the command line, feeds this into input , and then tests the length of this string variable. The code
also shows how easy string manipulation can be in C#. To find the length of input , for example, use
 input.Length .

 One point to note about if is that you don ’ t need to use the braces if there ’ s only one statement in the
conditional branch:

if (i == 0) Let’s add some brackets here.
 Console.WriteLine(“i is Zero”); // This will only execute if i == 0
Console.WriteLine(“i can be anything”); // Will execute whatever the
 // value of i

 However, for consistency, many programmers prefer to use curly braces whenever they use an if
statement.

 The if statements presented also illustrate some of the C# operators that compare values. Note in
particular that, like C++ and Java, C# uses == to compare variables for equality. Do not use = for this
purpose. A single = is used to assign values.

 In C#, the expression in the if clause must evaluate to a Boolean. C++ programmers should be
particularly aware of this; in C#, unlike in C++, it is not possible to test an integer (returned from a
function, say) directly. In C#, you have to convert the integer that is returned to a Boolean true or
 false , for example, by comparing the value with zero or with null :

if (DoSomething() != 0)
{
 // Non-zero value returned
}
else
{
 // Returned zero
}

c02.indd 43c02.indd 43 2/19/08 4:59:34 PM2/19/08 4:59:34 PM

Part I: The C# Language

44

 This restriction is there in order to prevent some common types of runtime bugs that occur in C++. In
particular, in C++ it was common to mistype = when == was intended, resulting in unintentional
assignments. In C# this will normally result in a compile - time error, because unless you are working
with bool values, = will not return a bool .

 The switch Statement
 The switch...case statement is good for selecting one branch of execution from a set of mutually
exclusive ones. It will be familiar to C++ and Java programmers and is similar to the Select Case
statement in Visual Basic.

 It takes the form of a switch argument followed by a series of case clauses. When the expression in the
 switch argument evaluates to one of the values beside a case clause, the code immediately following
the case clause executes. This is one example where you don ’ t need to use curly braces to join statements
into blocks; instead, you mark the end of the code for each case using the break statement. You can also
include a default case in the switch statement, which will execute if the expression evaluates to none
of the other cases. The following switch statement tests the value of the integerA variable:

switch (integerA)
{
 case 1:
 Console.WriteLine(“integerA =1”);
 break;
 case 2:
 Console.WriteLine(“integerA =2”);
 break;
 case 3:
 Console.WriteLine(“integerA =3”);
 break;
 default:
 Console.WriteLine(“integerA is not 1,2, or 3”);
 break;
}

 Note that the case values must be constant expressions; variables are not permitted.

 Though the switch...case statement should be familiar to C and C++ programmers, C# ’ s switch...
case is a bit safer than its C++ equivalent. Specifically, it prohibits fall - through conditions in almost all
cases. This means that if a case clause is fired early on in the block, later clauses cannot be fired unless
you use a goto statement to mark that you want them fired, too. The compiler enforces this restriction
by flagging every case clause that is not equipped with a break statement as an error similar to this:

Control cannot fall through from one case label (‘case 2:’) to another

 Although it is true that fall - through behavior is desirable in a limited number of situations, in the vast
majority of cases, it is unintended and results in a logical error that ’ s hard to spot. Isn ’ t it better to code
for the norm rather than for the exception?

 By getting creative with goto statements, however, you can duplicate fall - through functionality in your
 switch...cases . But, if you find yourself really wanting to, you probably should reconsider your
approach. The following code illustrates both how to use goto to simulate fall - through, and how messy
the resultant code can get:

// assume country and language are of type string
switch(country)
{
 case “America”:
 CallAmericanOnlyMethod();

c02.indd 44c02.indd 44 2/19/08 4:59:35 PM2/19/08 4:59:35 PM

Chapter 2: C# Basics

45

 goto case “Britain”;
 case “France”:
 language = “French”;
 break;
 case “Britain”:
 language = “English”;
 break;
}

 There is one exception to the no - fall - through rule, however, in that you can fall through from one case
to the next if that case is empty. This allows you to treat two or more cases in an identical way (without
the need for goto statements):

switch(country)
{
 case “au”:
 case “uk”:
 case “us”:
 language = “English”;
 break;
 case “at”:
 case “de”:
 language = “German”;
 break;
}

 One intriguing point about the switch statement in C# is that the order of the cases doesn ’ t matter — you
can even put the default case first! As a result, no two cases can be the same. This includes different
constants that have the same value, so you can ’ t, for example, do this:

// assume country is of type string
const string england = “uk”;
const string britain = “uk”;
switch(country)
{
 case england:
 case britain: // This will cause a compilation error.
 language = “English”;
 break;
}

 The previous code also shows another way in which the switch statement is different in C# compared to
C++: In C#, you are allowed to use a string as the variable being tested.

 Loops
 C# provides four different loops (for , while , do...while , and foreach) that allow you to execute a
block of code repeatedly until a certain condition is met. The for , while , and do...while loops are
essentially identical to those encountered in C++.

 The for Loop
 C# for loops provide a mechanism for iterating through a loop where you test whether a particular
condition holds before you perform another iteration. The syntax is

for (initializer; condition; iterator)
 statement(s)

c02.indd 45c02.indd 45 2/19/08 4:59:35 PM2/19/08 4:59:35 PM

Part I: The C# Language

46

where

❑ The initializer is the expression evaluated before the first loop is executed (usually initializing a
local variable as a loop counter).

❑ The condition is the expression checked before each new iteration of the loop (this must evaluate
to true for another iteration to be performed).

❑ The iterator is an expression evaluated after each iteration (usually incrementing the loop
counter).

 The iterations end when the condition evaluates to false .

 The for loop is a so - called pretest loop because the loop condition is evaluated before the loop statements
are executed, and so the contents of the loop won ’ t be executed at all if the loop condition is false .

 The for loop is excellent for repeating a statement or a block of statements for a predetermined number
of times. The following example is typical of the use of a for loop. The following code will write out all
the integers from 0 to 99:

for (int i = 0; i < 100; i=i+1) // This is equivalent to
 // For i = 0 To 99 in VB.
{
 Console.WriteLine(i);
}

 Here, you declare an int called i and initialize it to zero. This will be used as the loop counter. You
then immediately test whether it is less than 100. Because this condition evaluates to true , you execute
the code in the loop, displaying the value 0. You then increment the counter by one, and walk through the
process again. Looping ends when i reaches 100.

 Actually, the way the preceding loop is written isn ’ t quite how you would normally write it. C# has a
shorthand for adding 1 to a variable, so instead of i = i + 1 , you can simply write i++ :

for (int i = 0; i < 100; i++)
{
 // etc.
 }

 C# for loop syntax is far more powerful than the Visual Basic For...Next loop because the iterator can
be any statement. In Visual Basic, all you can do is add or subtract some number from the loop control
variable. In C# you can do anything; for example, you can multiply the loop control variable by 2.

 You can also make use of type inference for the iteration variable i in the preceding example. Using type
inference the loop construct would be:

for (var i = 0; i < 100; i++)
...

 It ’ s not unusual to nest for loops so that an inner loop executes once completely for each iteration of an
outer loop. This scheme is typically employed to loop through every element in a rectangular
multidimensional array. The outermost loop loops through every row, and the inner loop loops through
every column in a particular row. The following code displays rows of numbers. It also uses another
 Console method, Console.Write() , which does the same as Console.WriteLine() but doesn ’ t send
a carriage return to the output.

c02.indd 46c02.indd 46 2/19/08 4:59:35 PM2/19/08 4:59:35 PM

Chapter 2: C# Basics

47

using System;

namespace Wrox.ProCSharp.Basics
{
 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 // This loop iterates through rows...
 for (int i = 0; i < 100; i+=10)
 {
 // This loop iterates through columns...
 for (int j = i; j < i + 10; j++)
 {
 Console.Write(“ “ + j);
 }
 Console.WriteLine();
 }
 }
 }
}

 Although j is an integer, it will be automatically converted to a string so that the concatenation can take
place. C++ developers will note that this is far easier than string handling ever was in C++; for Visual
Basic developers this is familiar ground.

 C and C++ programmers should take note of one particular feature of the preceding example. The
counter variable in the innermost loop is effectively redeclared with each successive iteration of the outer
loop. This syntax is legal not only in C# but in C++ as well.

 The preceding sample results in this output:

 csc NumberTable.cs

Microsoft (R) Visual C# Compiler version 9.00.20404
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49
 50 51 52 53 54 55 56 57 58 59
 60 61 62 63 64 65 66 67 68 69
 70 71 72 73 74 75 76 77 78 79
 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99

 Although it is technically possible to evaluate something other than a counter variable in a for loop ’ s
test condition, it is certainly not typical. It is also possible to omit one (or even all) of the expressions in
the for loop. In such situations, however, you should consider using the while loop.

c02.indd 47c02.indd 47 2/19/08 4:59:36 PM2/19/08 4:59:36 PM

Part I: The C# Language

48

 The while Loop
 The while loop is identical to the while loop in C++ and Java, and the While...Wend loop in Visual
Basic. Like the for loop, while is a pretest loop. The syntax is similar, but while loops take only one
expression:

while(condition)
 statement(s);

 Unlike the for loop, the while loop is most often used to repeat a statement or a block of statements for
a number of times that is not known before the loop begins. Usually, a statement inside the while loop ’ s
body will set a Boolean flag to false on a certain iteration, triggering the end of the loop, as in the
following example:

bool condition = false;
while (!condition)
{
 // This loop spins until the condition is true.
 DoSomeWork();
 condition = CheckCondition(); // assume CheckCondition() returns a bool
}

 All of C# ’ s looping mechanisms, including the while loop, can forgo the curly braces that follow them if
they intend to repeat just a single statement and not a block of statements. Again, many programmers
consider it good practice to use braces all of the time.

 The do . . . while Loop
 The do...while loop is the post - test version of the while loop. It does the same thing with the same
syntax as do...while in C++ and Java, and the same thing as Loop...While in Visual Basic. This
means that the loop ’ s test condition is evaluated after the body of the loop has been executed.
Consequently, do...while loops are useful for situations in which a block of statements must be
executed at least one time, as in this example:

bool condition;
do
{
 // This loop will at least execute once, even if Condition is false.
 MustBeCalledAtLeastOnce();
 condition = CheckCondition();
} while (condition);

 The foreach Loop
 The foreach loop is the final C# looping mechanism that we discuss. Whereas the other looping
mechanisms were present in the earliest versions of C and C++, the foreach statement is a new addition
(borrowed from Visual Basic), and a very welcome one at that.

 The foreach loop allows you to iterate through each item in a collection. For now, we won ’ t worry
about exactly what a collection is (it is explained fully in Chapter 10 , “ Collections ”); we will just say that
it is an object that contains other objects. Technically, to count as a collection, it must support an interface
called IEnumerable . Examples of collections include C# arrays, the collection classes in the System
.Collection namespaces, and user - defined collection classes. You can get an idea of the syntax of
 foreach from the following code, if you assume that arrayOfInts is (unsurprisingly) an array of int s:

foreach (int temp in arrayOfInts)
{
 Console.WriteLine(temp);
}

c02.indd 48c02.indd 48 2/19/08 4:59:36 PM2/19/08 4:59:36 PM

Chapter 2: C# Basics

49

 Here, foreach steps through the array one element at a time. With each element, it places the value of
the element in the int variable called temp and then performs an iteration of the loop.

 Here is another situation where type inference can be used. The foreach loop would become:

foreach (var temp in arrayOfInts)
 ...

 temp would be inferred to int because that is what the collection item type is.

 An important point to note with foreach is that you can ’ t change the value of the item in the collection
(temp in the preceding code), so code such as the following will not compile:

foreach (int temp in arrayOfInts)
{
 temp++;
 Console.WriteLine(temp);
}

 If you need to iterate through the items in a collection and change their values, you will need to use a
 for loop instead.

 Jump Statements
 C# provides a number of statements that allow you to jump immediately to another line in the program.
The first of these is, of course, the notorious goto statement.

 The goto Statement
 The goto statement allows you to jump directly to another specified line in the program, indicated by a
 label (this is just an identifier followed by a colon):

goto Label1;
 Console.WriteLine(“This won’t be executed”);
Label1:
 Console.WriteLine(“Continuing execution from here”);

 A couple of restrictions are involved with goto . You can ’ t jump into a block of code such as a for loop,
you can ’ t jump out of a class, and you can ’ t exit a finally block after try...catch blocks (Chapter 14 ,
 “ Errors and Exceptions, ” looks at exception handling with try...catch...finally).

 The reputation of the goto statement probably precedes it, and in most circumstances, its use is sternly
frowned upon. In general, it certainly doesn ’ t conform to good object - oriented programming practice.
However, there is one place where it is quite handy: jumping between cases in a switch statement,
particularly because C# ’ s switch is so strict on fall - through. You saw the syntax for this earlier in this
chapter.

 The break Statement
 You have already met the break statement briefly — when you used it to exit from a case in a switch
statement. In fact, break can also be used to exit from for , foreach , while , or do...while loops.
Control will switch to the statement immediately after the end of the loop.

 If the statement occurs in a nested loop, control will switch to the end of the innermost loop. If the break
occurs outside of a switch statement or a loop, a compile - time error will occur.

 The continue Statement
 The continue statement is similar to break , and must also be used within a for , foreach , while , or
 do...while loop. However, it exits only from the current iteration of the loop, meaning that execution
will restart at the beginning of the next iteration of the loop, rather than outside the loop altogether.

c02.indd 49c02.indd 49 2/19/08 4:59:37 PM2/19/08 4:59:37 PM

Part I: The C# Language

50

 The return Statement
 The return statement is used to exit a method of a class, returning control to the caller of the method. If
the method has a return type, return must return a value of this type; otherwise if the method returns
 void , you should use return without an expression.

 Enumerations
 An enumeration is a user - defined integer type. When you declare an enumeration, you specify a set of
acceptable values that instances of that enumeration can contain. Not only that, but you can give the
values user - friendly names. If, somewhere in your code, you attempt to assign a value that is not in the
acceptable set of values to an instance of that enumeration, the compiler will flag an error. This concept
may be new to Visual Basic programmers. C++ does support enumerations (or enums), but C#
enumerations are far more powerful than their C++ counterparts.

 Creating an enumeration can save you a lot of time and headaches in the long run. At least three benefits
exist to using enumerations instead of plain integers:

❑ As mentioned, enumerations make your code easier to maintain by helping to ensure that your
variables are assigned only legitimate, anticipated values.

❑ Enumerations make your code clearer by allowing you to refer to integer values by descriptive
names rather than by obscure “ magic ” numbers.

❑ Enumerations make your code easier to type, too. When you go to assign a value to an instance of
an enumerated type, the Visual Studio .NET IDE will, through IntelliSense, pop up a list box
of acceptable values in order to save you some keystrokes and to remind you of what the possi-
ble options are.

 You can define an enumeration as follows:

public enum TimeOfDay
{
 Morning = 0,
 Afternoon = 1,
 Evening = 2
}

 In this case, you use an integer value to represent each period of the day in the enumeration. You can
now access these values as members of the enumeration. For example, TimeOfDay.Morning will return
the value 0 . You will typically use this enumeration to pass an appropriate value into a method and
iterate through the possible values in a switch statement:

class EnumExample
{
 public static int Main()
 {
 WriteGreeting(TimeOfDay.Morning);
 return 0;
 }

 static void WriteGreeting(TimeOfDay timeOfDay)
 {
 switch(timeOfDay)
 {
 case TimeOfDay.Morning:
 Console.WriteLine(“Good morning!”);

c02.indd 50c02.indd 50 2/19/08 4:59:37 PM2/19/08 4:59:37 PM

Chapter 2: C# Basics

51

 break;
 case TimeOfDay.Afternoon:
 Console.WriteLine(“Good afternoon!”);
 break;
 case TimeOfDay.Evening:
 Console.WriteLine(“Good evening!”);
 break;
 default:
 Console.WriteLine(“Hello!”);
 break;
 }
 }
}

 The real power of enums in C# is that behind the scenes they are instantiated as structs derived from the
base class, System.Enum . This means it is possible to call methods against them to perform some useful
tasks. Note that because of the way the .NET Framework is implemented there is no performance loss
associated with treating the enums syntactically as structs. In practice, once your code is compiled,
enums will exist as primitive types, just like int and float .

 You can retrieve the string representation of an enum as in the following example, using the earlier
 TimeOfDay enum:

TimeOfDay time = TimeOfDay.Afternoon;
Console.WriteLine(time.ToString());

 This will return the string Afternoon .

 Alternatively, you can obtain an enum value from a string:

TimeOfDay time2 = (TimeOfDay) Enum.Parse(typeof(TimeOfDay), “afternoon”, true);
Console.WriteLine((int)time2);

 This code snippet illustrates both obtaining an enum value from a string and converting to an integer.
To convert from a string, you need to use the static Enum.Parse() method, which, as shown, takes three
parameters. The first is the type of enum you want to consider. The syntax is the keyword typeof
followed by the name of the enum class in brackets. (Chapter 6 , “ Operators and Casts, ” explores the
 typeof operator in more detail.) The second parameter is the string to be converted, and the third
parameter is a bool indicating whether you should ignore case when doing the conversion. Finally, note
that Enum.Parse() actually returns an object reference — you need to explicitly convert this to the
required enum type (this is an example of an unboxing operation). For the preceding code, this returns
the value 1 as an object, corresponding to the enum value of TimeOfDay.Afternoon . On converting
explicitly to an int , this produces the value 1 again.

 Other methods on System.Enum do things such as return the number of values in an enum definition or
list the names of the values. Full details are in the MSDN documentation.

 Arrays
 We won ’ t say too much about arrays in this chapter because arrays are covered in detail in Chapter 5 ,
 “ Arrays. ” However, we ’ ll give you just enough syntax here that you can code one - dimensional arrays.
Arrays in C# are declared by fixing a set of square brackets to the end of the variable type of the
individual elements (note that all the elements in an array must be of the same data type).

c02.indd 51c02.indd 51 2/19/08 4:59:37 PM2/19/08 4:59:37 PM

Part I: The C# Language

52

 A note to Visual Basic users: arrays in C# use square brackets, not parentheses. C++ users will be
familiar with the square brackets but should carefully check the code presented here because C# syntax
for actually declaring array variables is not the same as C++ syntax.

 For example, whereas int represents a single integer, int[] represents an array of integers:

int[] integers;

 To initialize the array with specific dimensions, you can use the new keyword, giving the size in the
square brackets after the type name:

// Create a new array of 32 ints.
int[] integers = new int[32];

 All arrays are reference types and follow reference semantics. Hence, in this code, even though the
individual elements are primitive value types, the integers array is a reference type. So if you later
write

int [] copy = integers;

this will simply assign the variable copy to refer to the same array — it won ’ t create a new array.

 To access an individual element within the array, you use the usual syntax, placing the index of the
element in square brackets after the name of the array. All C# arrays use zero - based indexing, so you can
reference the first variable with the index zero:

integers[0] = 35;

 Similarly, you reference the 32 element value with an index value of 31:

integers[31] = 432;

 C# ’ s array syntax is flexible. In fact, C# allows you to declare arrays without initializing them so that the
array can be dynamically sized later in the program. With this technique, you are basically creating a
 null reference and later pointing that reference at a dynamically allocated stretch of memory locations
requested with the new keyword:

int[] integers;
integers = new int[32];

 You can find out how many elements are in any array by using this syntax:

int numElements = integers.Length; // integers is any reference to an array.

 Namespaces
 As you have seen, namespaces provide a way of organizing related classes and other types. Unlike a file
or a component, a namespace is a logical, rather than a physical, grouping. When you define a class in a
C# file, you can include it within a namespace definition. Later, when you define another class that
performs related work in another file, you can include it within the same namespace, creating a logical
grouping that gives an indication to other developers using the classes how they are related and used:

namespace CustomerPhoneBookApp
{
 using System;

 public struct Subscriber
 {
 // Code for struct here...
 }
}

c02.indd 52c02.indd 52 2/19/08 4:59:38 PM2/19/08 4:59:38 PM

Chapter 2: C# Basics

53

 Placing a type in a namespace effectively gives that type a long name, consisting of the type ’ s namespace
as a series of names separated with periods (.), terminating with the name of the class. In the preceding
example, the full name of the Subscriber struct is CustomerPhoneBookApp.Subscriber . This allows
distinct classes with the same short name to be used within the same program without ambiguity. This
full name is often called the fully qualified name.

 You can also nest namespaces within other namespaces, creating a hierarchical structure for your types:

namespace Wrox
{
 namespace ProCSharp
 {
 namespace Basics
 {
 class NamespaceExample
 {
 // Code for the class here...
 }
 }
 }
}

 Each namespace name is composed of the names of the namespaces it resides within, separated with
periods, starting with the outermost namespace and ending with its own short name. So the full name
for the ProCSharp namespace is Wrox.ProCSharp , and the full name of NamespaceExample class is
 Wrox.ProCSharp.Basics.NamespaceExample .

 You can use this syntax to organize the namespaces in your namespace definitions too, so the previous
code could also be written as follows:

namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 // Code for the class here...
 }
}

 Note that you are not permitted to declare a multipart namespace nested within another namespace.

 Namespaces are not related to assemblies. It is perfectly acceptable to have different namespaces in the
same assembly or to define types in the same namespace in different assemblies.

 The using Directive
 Obviously, namespaces can grow rather long and tiresome to type, and the ability to indicate a particular
class with such specificity may not always be necessary. Fortunately, as noted at the beginning of the
chapter, C# allows you to abbreviate a class ’ s full name. To do this, list the class ’ s namespace at the top of
the file, prefixed with the using keyword. Throughout the rest of the file, you can refer to the types in the
namespace simply by their type names:

using System;
using Wrox.ProCSharp;

 As remarked earlier, virtually all C# source code will have the statement using System; simply
because so many useful classes supplied by Microsoft are contained in the System namespace.

c02.indd 53c02.indd 53 2/19/08 4:59:38 PM2/19/08 4:59:38 PM

Part I: The C# Language

54

 If two namespaces referenced by using statements contain a type of the same name, you will need to
use the full (or at least a longer) form of the name to ensure that the compiler knows which type is
to be accessed. For example, say classes called NamespaceExample exist in both the Wrox.ProCSharp
.Basics and Wrox.ProCSharp.OOP namespaces. If you then create a class called Test in the
 Wrox.ProCSharp namespace, and instantiate one of the NamespaceExample classes in this class, you
need to specify which of these two classes you ’ re talking about:

using Wrox.ProCSharp;

class Test
{
 public static int Main()
 {
 Basics.NamespaceExample nSEx = new Basics.NamespaceExample();
 // do something with the nSEx variable.
 return 0;
 }
}

 Because using statements occur at the top of C# files, in the same place that C and C++ list #include
statements, it ’ s easy for programmers moving from C++ to C# to confuse namespaces with C++ - style
header files. Don ’ t make this mistake. The using statement does no physical linking between files, and
C# has no equivalent to C++ header files.

 Your organization will probably want to spend some time developing a namespace schema so that its
developers can quickly locate functionality that they need and so that the names of the organization ’ s
homegrown classes won ’ t conflict with those in off - the - shelf class libraries. Guidelines on establishing your
own namespace scheme along with other naming recommendations are discussed later in this chapter.

 Namespace Aliases
 Another use of the using keyword is to assign aliases to classes and namespaces. If you have a very long
namespace name that you want to refer to several times in your code but don ’ t want to include in a
simple using statement (for example, to avoid type name conflicts), you can assign an alias to the
namespace. The syntax for this is:

using alias = NamespaceName;

 The following example (a modified version of the previous example) assigns the alias Introduction to
the Wrox.ProCSharp.Basics namespace and uses this to instantiate a NamespaceExample object,
which is defined in this namespace. Notice the use of the namespace alias qualifier (::). This forces the
search to start with the Introduction namespace alias. If a class called Introduction had been
introduced in the same scope, a conflict would happen. The :: operator allows the alias to be referenced
even if the conflict exists. The NamespaceExample class has one method, GetNamespace() , which uses
the GetType() method exposed by every class to access a Type object representing the class ’ s type. You
use this object to return a name of the class ’ s namespace:

using System;
using Introduction = Wrox.ProCSharp.Basics;
class Test
{
 public static int Main()
 {
 Introduction::NamespaceExample NSEx =
 new Introduction::NamespaceExample();

c02.indd 54c02.indd 54 2/19/08 4:59:38 PM2/19/08 4:59:38 PM

Chapter 2: C# Basics

55

 Console.WriteLine(NSEx.GetNamespace());
 return 0;
 }
}

namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 public string GetNamespace()
 {
 return this.GetType().Namespace;
 }
 }
}

 The Main() Method
 As you saw at the start of this chapter, C# programs start execution at a method named Main() .
This must be a static method of a class (or struct), and must have a return type of either int or void .

 Although it is common to specify the public modifier explicitly, because by definition the method must
be called from outside the program, it doesn ’ t actually matter what accessibility level you assign to the
entry - point method — it will run even if you mark the method as private .

 Multiple Main() Methods
 When a C# console or Windows application is compiled, by default the compiler looks for exactly one
 Main() method in any class matching the signature that was just described and makes that class method
the entry point for the program. If there is more than one Main() method, the compiler will return an
error message. For example, consider the following code called MainExample.cs :

using System;

namespace Wrox.ProCSharp.Basics
{
 class Client
 {
 public static int Main()
 {
 MathExample.Main();
 return 0;
 }
 }

 class MathExample
 {
 static int Add(int x, int y)
 {
 return x + y;
 }

 public static int Main()

(continued)

c02.indd 55c02.indd 55 2/19/08 4:59:39 PM2/19/08 4:59:39 PM

Part I: The C# Language

56

 {
 int i = Add(5,10);
 Console.WriteLine(i);
 return 0;
 }
 }
}

 This contains two classes, both of which have a Main() method. If you try to compile this code in the
usual way, you will get the following errors:

 csc MainExample.cs

Microsoft (R) Visual C# Compiler version 9.00.20404
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

MainExample.cs(7,23): error CS0017: Program ‘MainExample.exe’ has more than
one entry point defined: ‘Wrox.ProCSharp.Basics.Client.Main()’
MainExample.cs(21,23): error CS0017: Program ‘MainExample.exe’ has more than
one entry point defined: ‘Wrox.ProCSharp.Basics.MathExample.Main()’

 However, you can explicitly tell the compiler which of these methods to use as the entry point for the
program by using the /main switch, together with the full name (including namespace) of the class to
which the Main() method belongs:

csc MainExample.cs /main:Wrox.ProCSharp.Basics.MathExample

 Passing Arguments to Main()
 The examples so far have shown only the Main() method without any parameters. However, when the
program is invoked, you can get the CLR to pass any command - line arguments to the program by
including a parameter. This parameter is a string array, traditionally called args (although C# will accept
any name). The program can use this array to access any options passed through the command line
when the program is started.

 The following sample, ArgsExample.cs , loops through the string array passed in to the Main() method
and writes the value of each option to the console window:

using System;

namespace Wrox.ProCSharp.Basics
{
 class ArgsExample
 {
 public static int Main(string[] args)
 {
 for (int i = 0; i < args.Length; i++)
 {
 Console.WriteLine(args[i]);
 }
 return 0;
 }
 }
}

(continued)

c02.indd 56c02.indd 56 2/19/08 4:59:39 PM2/19/08 4:59:39 PM

Chapter 2: C# Basics

57

 You can compile this as usual using the command line. When you run the compiled executable, you can
pass in arguments after the name of the program, for example:

 ArgsExample /a /b /c

/a
/b
/c

 More on Compiling C# Files
 You have seen how to compile console applications using csc.exe , but what about other types of
applications? What if you want to reference a class library? The full set of compilation options for the C#
compiler is of course detailed in the MSDN documentation, but we list here the most important options.

 To answer the first question, you can specify what type of file you want to create using the /target
switch, often abbreviated to /t . This can be one of those shown in the following table.

 Option Output

 /t:exe A console application (the default)

 /t:library A class library with a manifest

 /t:module A component without a manifest

 /t:winexe A Windows application (without a console window)

 If you want a nonexecutable file (such as a DLL) to be loadable by the .NET runtime, you must compile
it as a library. If you compile a C# file as a module, no assembly will be created. Although modules
cannot be loaded by the runtime, they can be compiled into another manifest using the /addmodule
switch.

 Another option we need to mention is /out . This allows you to specify the name of the output file
produced by the compiler. If the /out option isn ’ t specified, the compiler will base the name of the output
file on the name of the input C# file, adding an extension according to the target type (for example, exe
for a Windows or console application or dll for a class library). Note that the /out and /t , or /target ,
options must precede the name of the file you want to compile.

 If you want to reference types in assemblies that aren ’ t referenced by default, you can use the
/reference or /r switch, together with the path and file name of the assembly. The following
example demonstrates how you can compile a class library and then reference that library in another
assembly. It consists of two files:

❑ The class library

❑ A console application, which will call a class in the library

 The first file is called MathLibrary.cs and contains the code for your DLL. To keep things simple, it
contains just one (public) class, MathLib , with a single method that adds two int s:

namespace Wrox.ProCSharp.Basics
{
 public class MathLib
 {
 public int Add(int x, int y)

(continued)

c02.indd 57c02.indd 57 2/19/08 4:59:39 PM2/19/08 4:59:39 PM

Part I: The C# Language

58

 {
 return x + y;
 }
 }
}

 You can compile this C# file into a .NET DLL using the following command:

csc /t:library MathLibrary.cs

 The console application, MathClient.cs , will simply instantiate this object and call its Add() method,
displaying the result in the console window:

using System;

namespace Wrox.ProCSharp.Basics
{
 class Client
 {
 public static void Main()
 {
 MathLib mathObj = new MathLib();
 Console.WriteLine(mathObj.Add(7,8));
 }
 }
}

 You can compile this code using the /r switch to point at or reference the newly compiled DLL:

csc MathClient.cs /r:MathLibrary.dll

 You can then run it as normal just by entering MathClient at the command prompt. This displays the
number 15 — the result of your addition.

 Console I/O
 By this point, you should have a basic familiarity with C# ’ s data types, as well as some knowledge of how
the thread - of - control moves through a program that manipulates those data types. In this chapter, you have
also used several of the Console class ’ s static methods used for reading and writing data. Because these
methods are so useful when writing basic C# programs, this section quickly reviews them in more detail.

 To read a line of text from the console window, you use the Console.ReadLine() method. This will
read an input stream (terminated when the user presses the Return key) from the console window and
return the input string. There are also two corresponding methods for writing to the console, which you
have already used extensively:

❑ Console.Write() — Writes the specified value to the console window.

❑ Console.WriteLine() — This does the same, but adds a newline character at the end of the
output.

 Various forms (overloads) of these methods exist for all of the predefined types (including object), so in
most cases you don ’ t have to convert values to strings before you display them.

 For example, the following code lets the user input a line of text and displays that text:

string s = Console.ReadLine();
Console.WriteLine(s);

(continued)

c02.indd 58c02.indd 58 2/19/08 4:59:40 PM2/19/08 4:59:40 PM

Chapter 2: C# Basics

59

 Console.WriteLine() also allows you to display formatted output in a way comparable to C ’ s
 printf() function. To use WriteLine() in this way, you pass in a number of parameters. The first is a
string containing markers in curly braces where the subsequent parameters will be inserted into the text.
Each marker contains a zero - based index for the number of the parameter in the following list. For
example, {0} represents the first parameter in the list. Consider the following code:

int i = 10;
int j = 20;
Console.WriteLine(“{0} plus {1} equals {2}”, i, j, i + j);

 This code displays:

10 plus 20 equals 30

 You can also specify a width for the value, and justify the text within that width, using positive values
for right - justification and negative values for left - justification. To do this, use the format { n , w } , where n
is the parameter index and w is the width value:

int i = 940;
int j = 73;
Console.WriteLine(“ {0,4}\n+{1,4}\n ---- \n {2,4}”, i, j, i + j);

 The result of this is:

 940
+ 73

 1013

 Finally, you can also add a format string, together with an optional precision value. It is not possible to
give a complete list of potential format strings because, as you will see in Chapter 8 , “ Strings and
Regular Expressions, ” you can define your own format strings. However, the main ones in use for the
predefined types are shown in the following table.

 String Description

 C Local currency format.

 D Decimal format. Converts an integer to base 10, and pads with leading zeros if a precision
specifier is given.

 E Scientific (exponential) format. The precision specifier sets the number of decimal places
(6 by default). The case of the format string (e or E) determines the case of the exponen-
tial symbol.

 F Fixed - point format; the precision specifier controls the number of decimal places. Zero is
acceptable.

 G General format. Uses E or F formatting, depending on which is more compact.

 N Number format. Formats the number with commas as thousands separators, for example
32,767.44.

 P Percent format.

 X Hexadecimal format. The precision specifier can be used to pad with leading zeros.

c02.indd 59c02.indd 59 2/19/08 4:59:40 PM2/19/08 4:59:40 PM

Part I: The C# Language

60

 Note that the format strings are normally case insensitive, except for e / E .

 If you want to use a format string, you should place it immediately after the marker that gives the
parameter number and field width, and separate it with a colon. For example, to format a decimal value
as currency for the computer ’ s locale, with precision to two decimal places, you would use C2 :

decimal i = 940.23m;
decimal j = 73.7m;
Console.WriteLine(“ {0,9:C2}\n+{1,9:C2}\n ---------\n {2,9:C2}”, i, j, i + j);

 The output of this in U.S. currency is:

 $940.23
+ $73.70

 $1,013.93

 As a final trick, you can also use placeholder characters instead of these format strings to map out
formatting. For example:

double d = 0.234;
Console.WriteLine(“{0:#.00}”, d);

 This displays as .23 , because the # symbol is ignored if there is no character in that place, and zeros will
either be replaced by the character in that position if there is one or be printed as a zero.

 Using Comments
 The next topic — adding comments to your code — looks very simple on the surface but can be complex.

 Internal Comments within the Source Files
 As noted earlier in this chapter, C# uses the traditional C - type single - line (// ...) and multiline
(/* ... */) comments:

// This is a single-line comment
/* This comment
 spans multiple lines. */

 Everything in a single - line comment, from the // to the end of the line, will be ignored by the compiler,
and everything from an opening /* to the next */ in a multiline comment combination will be ignored.
Obviously, you can ’ t include the combination */ in any multiline comments, because this will be treated
as the end of the comment.

 It is actually possible to put multiline comments within a line of code:

Console.WriteLine(/* Here’s a comment! */ “This will compile.”);

 Use inline comments with care because they can make code hard to read. However, they can be useful
when debugging if, say, you temporarily want to try running the code with a different value somewhere:

DoSomething(Width, /*Height*/ 100);

 Comment characters included in string literals are, of course, treated like normal characters:

string s = “/* This is just a normal string .*/”;

c02.indd 60c02.indd 60 2/19/08 4:59:41 PM2/19/08 4:59:41 PM

Chapter 2: C# Basics

61

 XML Documentation
 In addition to the C - type comments, illustrated in the preceding section, C# has a very neat feature that
we want to highlight: the ability to produce documentation in XML format automatically from special
comments. These comments are single - line comments but begin with three slashes (///) instead of the
usual two. Within these comments, you can place XML tags containing documentation of the types and
type members in your code.

 The tags in the following table are recognized by the compiler.

 Tag Description

 < c > Marks up text within a line as code, for example < c > int i = 10; < /c > .

 < code > Marks multiple lines as code.

 < example > Marks up a code example.

 < exception > Documents an exception class. (Syntax is verified by the compiler.)

 < include > Includes comments from another documentation file. (Syntax is verified by
the compiler.)

 < list > Inserts a list into the documentation.

 < param > Marks up a method parameter. (Syntax is verified by the compiler.)

 < paramref > Indicates that a word is a method parameter. (Syntax is verified by the compiler.)

 < permission > Documents access to a member. (Syntax is verified by the compiler.)

 < remarks > Adds a description for a member.

 < returns > Documents the return value for a method.

 < see > Provides a cross - reference to another parameter. (Syntax is verified by the compiler.)

 < seealso > Provides a “ see also ” section in a description. (Syntax is verified by the compiler.)

 < summary > Provides a short summary of a type or member.

 < value > Describes a property.

 To see how this works, add some XML comments to the MathLibrary.cs file from the “ More on
Compiling C# Files ” section, and call it Math.cs . You will add a < summary > element for the class and for
its Add() method, and also a < returns > element and two < param > elements for the Add() method:

// Math.cs
namespace Wrox.ProCSharp.Basics
{

 /// < summary >
 /// Wrox.ProCSharp.Basics.Math class.
 /// Provides a method to add two integers.
 /// < /summary >
 public class Math

(continued)

c02.indd 61c02.indd 61 2/19/08 4:59:41 PM2/19/08 4:59:41 PM

Part I: The C# Language

62

 {
 /// < summary >
 /// The Add method allows us to add two integers.
 /// < /summary >
 /// < returns > Result of the addition (int) < /returns >
 /// < param name=”x” > First number to add < /param >
 /// < param name=”y” > Second number to add < /param >
 public int Add(int x, int y)
 {
 return x + y;
 }
 }
}

 The C# compiler can extract the XML elements from the special comments and use them to generate an
XML file. To get the compiler to generate the XML documentation for an assembly, you specify the /doc
option when you compile, together with the name of the file you want to be created:

csc /t:library /doc:Math.xml Math.cs

 The compiler will throw an error if the XML comments do not result in a well - formed XML document.

 This will generate an XML file named Math.xml , which looks like this:

 < ?xml version=”1.0”? >
 < doc >
 < assembly >
 < name > Math < /name >
 < /assembly >
 < members >
 < member name=”T:Wrox.ProCSharp.Basics.Math” >
 < summary >
 Wrox.ProCSharp.Basics.Math class.
 Provides a method to add two integers.
 < /summary >
 < /member >
 < member name=
 “M:Wrox.ProCSharp.Basics.Math.Add(System.Int32,System.Int32)” >
 < summary >
 The Add method allows us to add two integers.
 < /summary >
 < returns > Result of the addition (int) < /returns >
 < param name=”x” > First number to add < /param >
 < param name=”y” > Second number to add < /param >
 < /member >
 < /members >
 < /doc >

 Notice how the compiler has actually done some work for you; it has created an < assembly > element
and also added a < member > element for each type or member of a type in the file. Each < member >
element has a name attribute with the full name of the member as its value, prefixed by a letter that
indicates whether this is a type (T:), field (F:), or member (M:).

(continued)

c02.indd 62c02.indd 62 2/19/08 4:59:42 PM2/19/08 4:59:42 PM

Chapter 2: C# Basics

63

 The C# Preprocessor Directives
 Besides the usual keywords, most of which you have now encountered, C# also includes a number of
commands that are known as preprocessor directives . These commands never actually get translated to
any commands in your executable code, but instead they affect aspects of the compilation process. For
example, you can use preprocessor directives to prevent the compiler from compiling certain portions of
your code. You might do this if you are planning to release two versions of the code — a basic version
and an enterprise version that will have more features. You could use preprocessor directives to prevent
the compiler from compiling code related to the additional features when you are compiling the basic
version of the software. Another scenario is that you might have written bits of code that are intended to
provide you with debugging information. You probably don ’ t want those portions of code compiled
when you actually ship the software.

 The preprocessor directives are all distinguished by beginning with the # symbol.

 C++ developers will recognize the preprocessor directives as something that plays an important part in
C and C++. However, there aren ’ t as many preprocessor directives in C#, and they are not used as often.
C# provides other mechanisms, such as custom attributes, that achieve some of the same effects as C++
directives. Also, note that C# doesn ’ t actually have a separate preprocessor in the way that C++ does.
The so - called preprocessor directives are actually handled by the compiler. Nevertheless, C# retains the
name preprocessor directive because these commands give the impression of a preprocessor.

 The next sections briefly cover the purposes of the preprocessor directives.

 #define and #undef
 #define is used like this:

#define DEBUG

 What this does is tell the compiler that a symbol with the given name (in this case DEBUG) exists. It is a
little bit like declaring a variable, except that this variable doesn ’ t really have a value — it just exists.
And this symbol isn ’ t part of your actual code; it exists only for the benefit of the compiler, while the
compiler is compiling the code, and has no meaning within the C# code itself.

 #undef does the opposite, and removes the definition of a symbol:

#undef DEBUG

 If the symbol doesn ’ t exist in the first place, then #undef has no effect. Similarly, #define has no effect if
a symbol already exists.

 You need to place any #define and #undef directives at the beginning of the C# source file, before any
code that declares any objects to be compiled.

 #define isn ’ t much use on its own, but when combined with other preprocessor directives, especially
 #if , it becomes very powerful.

 Incidentally, you might notice some changes from the usual C# syntax. Preprocessor directives are not
terminated by semicolons and normally constitute the only command on a line. That ’ s because for the
preprocessor directives, C# abandons its usual practice of requiring commands to be separated by semi-
colons. If it sees a preprocessor directive, it assumes that the next command is on the next line.

c02.indd 63c02.indd 63 2/19/08 4:59:42 PM2/19/08 4:59:42 PM

Part I: The C# Language

64

 #if, #elif, #else, and #endif
 These directives inform the compiler whether to compile a block of code. Consider this method:

 int DoSomeWork(double x)
 {
 // do something
 #if DEBUG
 Console.WriteLine(“x is “ + x);
 #endif
 }

 This code will compile as normal, except for the Console.WriteLine() method call that is contained
inside the #if clause. This line will be executed only if the symbol DEBUG has been defined by a previous
 #define directive. When the compiler finds the #if directive, it checks to see if the symbol concerned
exists and compiles the code inside the #if clause only if the symbol does exist. Otherwise, the compiler
simply ignores all the code until it reaches the matching #endif directive. Typical practice is to define
the symbol DEBUG while you are debugging and have various bits of debugging - related code inside #if
clauses. Then, when you are close to shipping, you simply comment out the #define directive, and all
the debugging code miraculously disappears, the size of the executable file gets smaller, and your end
users don ’ t get confused by being shown debugging information. (Obviously, you would do more
testing to make sure your code still works without DEBUG defined.) This technique is very common in
C and C++ programming and is known as conditional compilation .

 The #elif (= else if) and #else directives can be used in #if blocks and have intuitively obvious
meanings. It is also possible to nest #if blocks:

#define ENTERPRISE
#define W2K

// further on in the file

#if ENTERPRISE
 // do something
 #if W2K
 // some code that is only relevant to enterprise
 // edition running on W2K
 #endif
#elif PROFESSIONAL
 // do something else
#else
 // code for the leaner version
#endif

 Note that, unlike the situation in C++, using #if is not the only way to compile code conditionally. C#
provides an alternative mechanism through the Conditional attribute, which is explored in Chapter 13 ,
 “ Reflection. ”

 #if and #elif support a limited range of logical operators too, using the operators ! , = = , != , and || .
A symbol is considered to be true if it exists and false if it doesn ’ t. For example:

#if W2K & & (ENTERPRISE==false) // if W2K is defined but ENTERPRISE isn’t

c02.indd 64c02.indd 64 2/19/08 4:59:42 PM2/19/08 4:59:42 PM

Chapter 2: C# Basics

65

 #warning and #error
 Two other very useful preprocessor directives are #warning and #error . These will respectively cause a
warning or an error to be raised when the compiler encounters them. If the compiler sees a #warning
directive, it will display whatever text appears after the #warning to the user, after which compilation
continues. If it encounters a #error directive, it will display the subsequent text to the user as if it were a
compilation error message and then immediately abandon the compilation, so no IL code will be
generated.

 You can use these directives as checks that you haven ’ t done anything silly with your #define
statements; you can also use the #warning statements to remind yourself to do something:

#if DEBUG & & RELEASE
 #error “You’ve defined DEBUG and RELEASE simultaneously!”
#endif

#warning “Don’t forget to remove this line before the boss tests the code!”
 Console.WriteLine(“*I hate this job.*”);

 #region and #endregion
 The #region and #endregion directives are used to indicate that a certain block of code is to be treated
as a single block with a given name, like this:

#region Member Field Declarations
 int x;
 double d;
 Currency balance;
#endregion

 This doesn ’ t look that useful by itself; it doesn ’ t affect the compilation process in any way. However, the
real advantage is that these directives are recognized by some editors, including the Visual Studio .NET
editor. These editors can use these directives to lay out your code better on the screen. You will see how
this works in Chapter 15 , “ Visual Studio 2008. ”

 #line
 The #line directive can be used to alter the file name and line number information that is output by the
compiler in warnings and error messages. You probably won ’ t want to use this directive that often. It ’ s
most useful when you are coding in conjunction with some other package that alters the code you are
typing in before sending it to the compiler. In this situation, line numbers, or perhaps the file names
reported by the compiler, won ’ t match up to the line numbers in the files or the file names you are
editing. The #line directive can be used to restore the match. You can also use the syntax #line
default to restore the line to the default line numbering:

#line 164 “Core.cs” // We happen to know this is line 164 in the file
 // Core.cs, before the intermediate
 // package mangles it.

// later on

#line default // restores default line numbering

c02.indd 65c02.indd 65 2/19/08 4:59:43 PM2/19/08 4:59:43 PM

Part I: The C# Language

66

 #pragma
 The #pragma directive can either suppress or restore specific compiler warnings. Unlike command - line
options, the #pragma directive can be implemented on a class or method level, allowing a fine - grained
control of what warnings are suppressed and when. The following example disables the “ field not used ”
warning and then restores it after the MyClass class compiles:

#pragma warning disable 169
public class MyClass
{
 int neverUsedField;
}
#pragma warning restore 169

 C# Programming Guidelines
 The final section of this chapter supplies the guidelines you need to bear in mind when writing C#
programs.

 Rules for Identifiers
 This section examines the rules governing what names you can use for variables, classes, methods, and
so on. Note that the rules presented in this section are not merely guidelines: they are enforced by the C#
compiler.

 Identifiers are the names you give to variables, to user - defined types such as classes and structs, and to
members of these types. Identifiers are case sensitive, so, for example, variables named interestRate
and InterestRate would be recognized as different variables. Following are a few rules determining
what identifiers you can use in C#:

❑ They must begin with a letter or underscore, although they can contain numeric characters.

❑ You can ’ t use C# keywords as identifiers.

 The following table lists the C# reserved keywords.

 abstract event New struct

 as explicit Null switch

 base extern Object this

 bool false Operator throw

 break finally Out true

 byte fixed Override try

 case float Params typeof

 catch for Private uint

 char foreach Protected ulong

 checked goto Public unchecked

 class if Readonly unsafe

c02.indd 66c02.indd 66 2/19/08 4:59:43 PM2/19/08 4:59:43 PM

Chapter 2: C# Basics

67

 const implicit Ref ushort

 continue in Return using

 decimal int Sbyte virtual

 default interface Sealed volatile

 delegate internal Short void

 do is Sizeof while

 double lock Stackalloc

 else long Static

 enum namespace String

 If you do need to use one of these words as an identifier (for example, if you are accessing a class written
in a different language), you can prefix the identifier with the @ symbol to indicate to the compiler that
what follows is to be treated as an identifier, not as a C# keyword (so abstract is not a valid identifier,
but @abstract is).

 Finally, identifiers can also contain Unicode characters, specified using the syntax \uXXXX , where XXXX is
the four - digit hex code for the Unicode character. The following are some examples of valid identifiers:

❑ Name

❑ Ü berflu ß

❑ _Identifier

❑ \u005fIdentifier

 The last two items in this list are identical and interchangeable (because 005f is the Unicode code for the
underscore character), so obviously these identifiers couldn ’ t both be declared in the same scope. Note
that although syntactically you are allowed to use the underscore character in identifiers, this isn ’ t
recommended in most situations. That ’ s because it doesn ’ t follow the guidelines for naming variables
that Microsoft has written to ensure that developers use the same conventions, making it easier to read
each other ’ s code.

 Usage Conventions
 In any development language, there usually arise certain traditional programming styles. The styles are
not part of the language itself but are conventions concerning, for example, how variables are named or
how certain classes, methods, or functions are used. If most developers using that language follow the
same conventions, it makes it easier for different developers to understand each other ’ s code — which in
turn generally helps program maintainability. For example, a common (though not universal) convention
in Visual Basic 6 was that variables that represent strings have names beginning with lowercase s or
lowercase str , as in the Visual Basic 6 statements Dim sResult As String or Dim strMessage As
String . Conventions do, however, depend on the language and the environment. For example, C++
developers programming on the Windows platform have traditionally used the prefixes psz or lpsz to
indicate strings — char *pszResult; char *lpszMessage; — but on Unix machines it ’ s more
common not to use any such prefixes: char *Result; char *Message; .

c02.indd 67c02.indd 67 2/19/08 4:59:44 PM2/19/08 4:59:44 PM

Part I: The C# Language

68

 You ’ ll notice from the sample code in this book that the convention in C# is to name variables without
prefixes: string Result; string Message; .

 The convention by which variable names are prefixed with letters that represent the data type is known
as Hungarian notation. It means that other developers reading the code can immediately tell from the
variable name what data type the variable represents. Hungarian notation is widely regarded as redun-
dant in these days of smart editors and IntelliSense.

 Whereas, with many languages, usage conventions simply evolved as the language was used, with C#
and the whole of the .NET Framework, Microsoft has written very comprehensive usage guidelines,
which are detailed in the .NET/C# MSDN documentation. This should mean that, right from the start,
.NET programs will have a high degree of interoperability in terms of developers being able to
understand code. The guidelines have also been developed with the benefit of some 20 years ’ hindsight
in object - oriented programming, and as a result have been carefully thought out and appear to have
been well received in the developer community, to judge by the relevant newsgroups. Hence the
guidelines are well worth following.

 It should be noted, however, that the guidelines are not the same as language specifications. You should
try to follow the guidelines when you can. Nevertheless, you won ’ t run into problems if you do have a
good reason for not doing so — for example, you won ’ t get a compilation error because you don ’ t follow
these guidelines. The general rule is that if you don ’ t follow the usage guidelines you must have a
convincing reason. Departing from the guidelines should be a positive decision rather than simply not
bothering. Also, if you compare the guidelines with the samples in the remainder of this book, you ’ ll
notice that in numerous examples we have chosen not to follow the conventions. That ’ s usually because
the conventions are designed for much larger programs than our samples, and although they are great if
you are writing a complete software package, they are not really so suitable for small 20 - line standalone
programs. In many cases, following the conventions would have made our samples harder, rather than
easier, to follow.

 The full guidelines for good programming style are quite extensive. This section is confined to describing
some of the more important guidelines, as well as the ones most likely to surprise you. If you want to
make absolutely certain that your code follows the usage guidelines completely, you will need to refer to
the MSDN documentation.

 Naming Conventions
 One important aspect to making your programs understandable is how you choose to name your
items — and that includes naming variables, methods, classes, enumerations, and namespaces.

 It is intuitively obvious that your names should reflect the purpose of the item and should not clash with
other names. The general philosophy in the .NET Framework is also that the name of a variable should
reflect the purpose of that variable instance and not the data type. For example, height is a good name
for a variable, whereas integerValue isn ’ t. However, you will probably feel that that principle is an
ideal that is hard to achieve. Particularly when you are dealing with controls, in most cases, you ’ ll
probably be happier sticking with variable names like confirmationDialog and
 chooseEmployeeListBox , which do indicate the data type in the name.

 The following sections look at some of the things you need to think about when choosing names.

Casing of Names
 In many cases you should use Pascal casing for names. Pascal casing means that the first letter of each
word in a name is capitalized: EmployeeSalary , ConfirmationDialog , PlainTextEncoding . You
will notice that essentially all of the names of namespaces, classes, and members in the base classes
follow Pascal casing. In particular, the convention of joining words using the underscore character is
discouraged. So, you should try not to use names like employee_salary . It has also been common in

c02.indd 68c02.indd 68 2/19/08 4:59:44 PM2/19/08 4:59:44 PM

Chapter 2: C# Basics

69

other languages to use all capitals for names of constants. This is not advised in C# because such names
are harder to read — the convention is to use Pascal casing throughout:

 const int MaximumLength;

 The only other casing scheme that you are advised to use is camel casing . Camel casing is similar to Pascal
casing, except that the first letter of the first word in the name is not capitalized: employeeSalary ,
 confirmationDialog , plainTextEncoding . Following are three situations in which you are advised
to use camel casing:

❑ For names of all private member fields in types:

 public int subscriberId;

 Note, however, that often it is conventional to prefix names of member fields with an underscore:

 public int _subscriberId;

❑ For names of all parameters passed to methods:

 public void RecordSale(string salesmanName, int quantity);

❑ To distinguish items that would otherwise have the same name. A common example is when a
property wraps around a field:

 private string employeeName;

 public string EmployeeName
 {
 get
 {
 return employeeName;

 }

 }

 If you are doing this, you should always use camel casing for the private member and Pascal casing for
the public or protected member, so that other classes that use your code see only names in Pascal case
(except for parameter names).

 You should also be wary about case sensitivity. C# is case sensitive, so it is syntactically correct for names
in C# to differ only by the case, as in the previous examples. However, you should bear in mind that
your assemblies might at some point be called from Visual Basic .NET applications — and Visual Basic
.NET is not case sensitive . Hence, if you do use names that differ only by case, it is important to do so only
in situations in which both names will never be seen outside your assembly. (The previous example
qualifies as okay because camel case is used with the name that is attached to a private variable.)
Otherwise, you may prevent other code written in Visual Basic .NET from being able to use your
assembly correctly.

 Name Styles
 You should be consistent about your style of names. For example, if one of the methods in a class is
called ShowConfirmationDialog() , then you should not give another method a name like
 ShowDialogWarning() or WarningDialogShow() . The other method should be called
 ShowWarningDialog() .

c02.indd 69c02.indd 69 2/19/08 4:59:44 PM2/19/08 4:59:44 PM

Part I: The C# Language

70

 Namespace Names
 Namespace names are particularly important to design carefully to avoid risk of ending up with the
same name for one of your namespaces as someone else uses. Remember, namespace names are the only
way that .NET distinguishes names of objects in shared assemblies. So, if you use the same namespace
name for your software package as another package, and both packages get installed on the same
computer, there are going to be problems. Because of this, it ’ s almost always a good idea to create a
top - level namespace with the name of your company and then nest successive namespaces that narrow
down the technology, group, or department you are working in or the name of the package your
classes are intended for. Microsoft recommends namespace names that begin with < CompanyName >
. < TechnologyName > as in these two examples:

WeaponsOfDestructionCorp.RayGunControllers
WeaponsOfDestructionCorp.Viruses

 Names and Keywords
 It is important that the names do not clash with any keywords. In fact, if you attempt to name an item in
your code with a word that happens to be a C# keyword, you ’ ll almost certainly get a syntax error
because the compiler will assume that the name refers to a statement. However, because of the
possibility that your classes will be accessed by code written in other languages, it is also important that
you don ’ t use names that are keywords in other .NET languages. Generally speaking, C++ keywords are
similar to C# keywords, so confusion with C++ is unlikely, and those commonly encountered keywords
that are unique to Visual C++ tend to start with two underscore characters. Like C#, C++ keywords are
spelled in lowercase, so if you hold to the convention of naming your public classes and members with
Pascal - style names, they will always have at least one uppercase letter in their names, and there will be
no risk of clashes with C++ keywords. However, you are more likely to have problems with Visual Basic
.NET, which has many more keywords than C# does, and being non - case - sensitive means that you
cannot rely on Pascal - style names for your classes and methods.

 The following table lists the keywords and standard function calls in Visual Basic .NET, which you
should avoid, if possible, in whatever case combination, for your public C# classes.

 Abs Do Loc RGB

 Add Double Local Right

 AddHandler Each Lock RmDir

 AddressOf Else LOF Rnd

 Alias ElseIf Log RTrim

 And Empty Long SaveSettings

 Ansi End Loop Second

 AppActivate Enum LTrim Seek

 Append EOF Me Select

 As Erase Mid SetAttr

 Asc Err Minute SetException

 Assembly Error MIRR Shared

 Atan Event MkDir Shell

c02.indd 70c02.indd 70 2/19/08 4:59:45 PM2/19/08 4:59:45 PM

Chapter 2: C# Basics

71

 Auto Exit Module Short

 Beep Exp Month Sign

 Binary Explicit MustInherit Sin

 BitAnd ExternalSource MustOverride Single

 BitNot False MyBase SLN

 BitOr FileAttr MyClass Space

 BitXor FileCopy Namespace Spc

 Boolean FileDateTime New Split

 ByRef FileLen Next Sqrt

 Byte Filter Not Static

 ByVal Finally Nothing Step

 Call Fix NotInheritable Stop

 Case For NotOverridable Str

 Catch Format Now StrComp

 CBool FreeFile NPer StrConv

 CByte Friend NPV Strict

 CDate Function Null String

 CDbl FV Object Structure

 CDec Get Oct Sub

 ChDir GetAllSettings Off Switch

 ChDrive GetAttr On SYD

 Choose GetException Open SyncLock

 Chr GetObject Option Tab

 CInt GetSetting Optional Tan

 Class GetType Or Text

 Clear GoTo Overloads Then

 CLng Handles Overridable Throw

 Close Hex Overrides TimeOfDay

 Collection Hour ParamArray Timer

 Command If Pmt TimeSerial

 Compare Iif PPmt TimeValue

 Const Implements Preserve To

c02.indd 71c02.indd 71 2/19/08 4:59:45 PM2/19/08 4:59:45 PM

Part I: The C# Language

72

 Use of Properties and Methods
 One area that can cause confusion in a class is whether a particular quantity should be represented by a
property or a method. The rules here are not hard and fast, but in general, you ought to use a property if
something really should look and feel like a variable. (If you ’ re not sure what a property is, see Chapter 3 ,
 “ Objects and Types. ”) This means, among other things, that:

❑ Client code should be able to read its value. Write - only properties are not recommended, so, for
example, use a SetPassword() method, not a write - only Password property.

❑ Reading the value should not take too long. The fact that something is a property usually
suggests that reading it will be relatively quick.

❑ Reading the value should not have any observable and unexpected side effect. Further, setting
the value of a property should not have any side effect that is not directly related to the property.
Setting the width of a dialog box has the obvious effect of changing the appearance of the dialog
box on the screen. That ’ s fine, because that ’ s obviously related to the property in question.

 Cos Imports Print Today

 CreateObject In Private Trim

 CShort Inherits Property Try

 CSng Input Public TypeName

 CStr InStr Put TypeOf

 CurDir Int PV UBound

 Date Integer QBColor UCase

 DateAdd Interface Raise Unicode

 DateDiff Ipmt RaiseEvent Unlock

 DatePart IRR Randomize Until

 DateSerial Is Rate Val

 DateValue IsArray Read Weekday

 Day IsDate ReadOnly While

 DDB IsDbNull ReDim Width

 Decimal IsNumeric Remove With

 Declare Item RemoveHandler WithEvents

 Default Kill Rename Write

 Delegate Lcase Replace WriteOnly

 DeleteSetting Left Reset Xor

 Dim Lib Resume Year

 Dir Line Return

c02.indd 72c02.indd 72 2/19/08 4:59:46 PM2/19/08 4:59:46 PM

Chapter 2: C# Basics

73

❑ It should be possible to set properties in any order. In particular, it is not good practice when
setting a property to throw an exception because another related property has not yet been set.
For example, if in order to use a class that accesses a database, you need to set
 ConnectionString , UserName , and Password , then the author of the class should make sure
the class is implemented so that the user really can set them in any order.

❑ Successive reads of a property should give the same result. If the value of a property is likely to
change unpredictably, you should code it up as a method instead. Speed , in a class that moni-
tors the motion of an automobile, is not a good candidate for a property. Use a GetSpeed()
method here; but, Weight and EngineSize are good candidates for properties because they will
not change for a given object.

 If the item you are coding satisfies all of the preceding criteria, it is probably a good candidate for a
property. Otherwise, you should use a method.

 Use of Fields
 The guidelines are pretty simple here. Fields should almost always be private, except that in some cases
it may be acceptable for constant or read - only fields to be public. The reason is that if you make a field
public, you may hinder your ability to extend or modify the class in the future.

 The previous guidelines should give you a foundation of good practices, and you should also use them
in conjunction with good object - oriented programming style.

 A final helpful note to keep in mind is that Microsoft has been fairly careful about being consistent and
has followed its own guidelines when writing the .NET base classes. So a very good way to get an
intuitive feel for the conventions to follow when writing .NET code is to simply look at the base classes —
 see how classes, members, and namespaces are named, and how the class hierarchy works. Consistency
between the base classes and your classes will help in readability and maintainability.

 Summary
 This chapter examined some of the basic syntax of C#, covering the areas needed to write simple C#
programs. We covered a lot of ground, but much of it will be instantly recognizable to developers who
are familiar with any C - style language (or even JavaScript).

 You have seen that although C# syntax is similar to C++ and Java syntax, there are many minor
differences. You have also seen that in many areas this syntax is combined with facilities to write code
very quickly, for example high - quality string handling facilities. C# also has a strongly defined type
system, based on a distinction between value and reference types. Chapters 3 and 4 cover the C# object -
 oriented programming features.

c02.indd 73c02.indd 73 2/19/08 4:59:46 PM2/19/08 4:59:46 PM

c02.indd 74c02.indd 74 2/19/08 4:59:47 PM2/19/08 4:59:47 PM

 Objects and Types

 So far, you ’ ve been introduced to some of the building blocks of the C# language, including
variables, data types, and program flow statements, and you have seen a few very short complete
programs containing little more than the Main() method. What you haven ’ t really seen yet is how
to put all of these together to form a longer, complete program. The key to this lies in working with
classes — the subject of this chapter. In particular, this chapter covers:

❑ The differences between classes and structs

❑ Class members

❑ Passing values by value and by reference

❑ Method overloading

❑ Constructors and static constructors

❑ Read - only fields

❑ Partial classes

❑ Static classes

❑ The Object class, from which all other types are derived

 Note that we cover inheritance and features related to inheritance in Chapter 4 , “ Inheritance. ”

 This chapter introduces the basic syntax associated with classes. However, we assume that you
are already familiar with the underlying principles of using classes — for example, that you know
what a constructor or a property is. This chapter is largely confined to applying those principles
in C# code.

 In this chapter, we introduce and explain those concepts that are not necessarily supported by
most object - oriented languages. For example, although object constructors are a widely used
concept that you should be familiar with, static constructors are something new to C#, so this
chapter explains how static constructors work.

c03.indd 75c03.indd 75 2/19/08 5:01:08 PM2/19/08 5:01:08 PM

76

Part I: The C# Language

 Classes and Structs
 Classes and structs are essentially templates from which you can create objects. Each object contains data
and has methods to manipulate and access that data. The class defines what data and functionality each
particular object (called an instance) of that class can contain. For example, if you have a class that
represents a customer, it might define fields such as CustomerID , FirstName , LastName , and Address ,
which you will use to hold information about a particular customer. It might also define functionality
that acts upon the data stored in these fields. You can then instantiate an object of this class to represent
one specific customer, set the field values for that instance, and use its functionality.

class PhoneCustomer
{
 public const string DayOfSendingBill = “Monday”;
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

 Structs differ from classes in the way that they are stored in memory and accessed (classes are reference
types stored in the heap; structs are value types stored on the stack), and in some of their features (for
example, structs don ’ t support inheritance). You will tend to use structs for smaller data types
for performance reasons. In terms of syntax, however, structs look very similar to classes; the main
difference is that you use the keyword struct instead of class to declare them. For example,
if you wanted all PhoneCustomer instances to be allocated on the stack instead of the managed heap,
you could write:

struct PhoneCustomerStruct
{
 public const string DayOfSendingBill = “Monday”;
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

 For both classes and structs, you use the keyword new to declare an instance. This keyword creates the
object and initializes it; in the following example, the default behavior is to zero out its fields:

PhoneCustomer myCustomer = new PhoneCustomer(); // works for a class
PhoneCustomerStruct myCustomer2 = new PhoneCustomerStruct();// works for a struct

 In most cases, you ’ ll use classes much more often than structs. Therefore, we discuss classes first and
then the differences between classes and structs and the specific reasons why you might choose to use a
struct instead of a class. Unless otherwise stated, however, you can assume that code presented for
a class will work equally well for a struct.

 Class Members
 The data and functions within a class are known as the class ’ s members . Microsoft ’ s official terminology
distinguishes between data members and function members. In addition to these members, classes can
contain nested types (such as other classes). All members of a class can be declared as public (in which
case they are directly accessible from outside the class) or as private (in which case they are visible only
to other code within the class), just as in Visual Basic, C++, and Java. C# also has variants on this theme,
such as protected (which indicates a member is visible only to the class in question and to any derived
classes). Chapter 4 provides a comprehensive list of the different accessibilities.

c03.indd 76c03.indd 76 2/19/08 5:01:08 PM2/19/08 5:01:08 PM

Chapter 3: Objects and Types

77

 Data Members
 Data members are those members that contain the data for the class — fields, constants, and events. Data
members can be either static (associated with the class as a whole) or instance (each instance of the class
has its own copy of the data). As usual for object - oriented languages, a class member is always an
instance member unless it is explicitly declared as static .

 Fields are any variables associated with the class. You have already seen fields in use in the
 PhoneCustomer class in the previous example.

 Once you have instantiated a PhoneCustomer object, you can then access these fields using the
 Object.FieldName syntax, as shown in this example:

PhoneCustomer Customer1 = new PhoneCustomer();
Customer1.FirstName = “Simon”;

 Constants can be associated with classes in the same way as variables. You declare a constant using the
 const keyword. Once again, if it is declared as public , it will be accessible from outside the class.

class PhoneCustomer
{
 public const string DayOfSendingBill = “Monday”;
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

 Events are class members that allow an object to notify a caller whenever something noteworthy
happens, such as a field or property of the class changing, or some form of user interaction occurring.
The client can have code, known as an event handler, that reacts to the event. Chapter 7 , “ Delegates and
Events, ” looks at events in detail.

 Function Members
 Function members are those members that provide some functionality for manipulating the data in the
class. They include methods, properties, constructors, finalizers, operators, and indexers.

 Methods are functions that are associated with a particular class. They can be either instance methods,
which work on a particular instance of a class, or static methods, which provide more generic
functionality that doesn ’ t require you to instantiate a class (like the Console.WriteLine() method).
Methods are discussed in the next section.

 Properties are sets of functions that can be accessed from the client in a similar way to the public fields of
the class. C# provides a specific syntax for implementing read and write properties on your classes, so
you don ’ t have to jury - rig methods whose names have the words Get or Set embedded in them.
Because there ’ s a dedicated syntax for properties that is distinct from that for normal functions, the
illusion of objects as actual things is strengthened for client code.

 Constructors are special functions that are called automatically when an object is instantiated. They must
have the same name as the class to which they belong and cannot have a return type. Constructors are
useful for initializing the values of fields.

 Finalizers are similar to constructors but are called when the CLR detects that an object is no longer
needed. They have the same name as the class, preceded by a tilde (~). C++ programmers should note
that finalizers are used much less frequently in C# than their nearest C++ equivalent, destructors,
because the CLR handles garbage collection automatically. Also, it is impossible to predict precisely
when a finalizer will be called. Finalizers are discussed in Chapter 12 , “ Memory Management
and Pointers. ”

c03.indd 77c03.indd 77 2/19/08 5:01:09 PM2/19/08 5:01:09 PM

78

Part I: The C# Language

 Operators , at their simplest, are actions like + or – . When you add two integers, you are, strictly speaking,
using the + operator for integers. However, C# also allows you to specify how existing operators will
work with your own classes (operator overloading). Chapter 6 , “ Operators and Casts, ” looks at operators
in detail.

 Indexers allow your objects to be indexed in the same way as an array or collection. This topic is also
covered in Chapter 6 .

 Methods
 In Visual Basic, C, and C++, you could define global functions that were not associated with a particular
class. This is not the case in C#. As noted earlier, in C# every function must be associated with a class
or struct.

 Note that official C# terminology does in fact make a distinction between functions and methods. In C#
terminology, the term “ function member ” includes not only methods, but also other nondata members of a
class or struct. This includes indexers, operators, constructors, destructors, and also — perhaps somewhat
surprisingly — properties. These are contrasted with data members: fields, constants, and events.

Declaring Methods
 The syntax for defining a method in C# is just what you ’ d expect from a C - style language and is virtually
identical to the syntax in C++ and Java. The main syntactical difference from C++ is that, in C#, each
method is separately declared as public or private. It is not possible to use public: blocks to group
several method definitions. Also, all C# methods are declared and defined in the class definition. There is
no facility in C# to separate the method implementation as there is in C++.

 In C#, the definition of a method consists of any method modifiers (such as the method ’ s accessibility),
the type of the return value, followed by the name of the method, followed by a list of input arguments
enclosed in parentheses, followed by the body of the method enclosed in curly braces:

[modifiers] return_type MethodName([parameters])
{
 // Method body
}

 Each parameter consists of the name of the type of the parameter, and the name by which it can be
referenced in the body of the method. Also, if the method returns a value, a return statement must be
used with the return value to indicate each exit point. For example:

public bool IsSquare(Rectangle rect)
{
 return (rect.Height == rect.Width);
}

 This code uses one of the .NET base classes, System.Drawing.Rectangle , which represents
a rectangle.

 If the method doesn ’ t return anything, you specify a return type of void because you can ’ t omit the
return type altogether, and if it takes no arguments, you still need to include an empty set of parentheses
after the method name (as with the Main() method). In this case, including a return statement is
optional — the method returns automatically when the closing curly brace is reached. You should note
that a method can contain as many return statements as required:

public bool IsPositive(int value)
{
 if (value < 0)
 return false;
 return true;
}

c03.indd 78c03.indd 78 2/19/08 5:01:09 PM2/19/08 5:01:09 PM

Chapter 3: Objects and Types

79

 Invoking Methods
 The syntax for invoking a method is exactly the same in C# as it is in C++ and Java. And, the only
difference between C# and Visual Basic is that round brackets must always be used when invoking the
method in C# — this is actually simpler than the Visual Basic 6 set of rules whereby brackets were
sometimes necessary and at other times not allowed.

 The following example, MathTest , illustrates the syntax for definition and instantiation of classes, and
definition and invocation of methods. Besides the class that contains the Main() method, it defines a
class named MathTest , which contains a couple of methods and a field.

using System;

namespace Wrox.ProCSharp.MathTestSample
{
 class MainEntryPoint
 {
 static void Main()
 {
 // Try calling some static functions.
 Console.WriteLine(“Pi is “ + MathTest.GetPi());
 int x = MathTest.GetSquareOf(5);
 Console.WriteLine(“Square of 5 is “ + x);

 // Instantiate at MathTest object
 MathTest math = new MathTest(); // this is C#’s way of
 // instantiating a reference type

 // Call non-static methods
 math.value = 30;
 Console.WriteLine(
 “Value field of math variable contains “ + math.value);
 Console.WriteLine(“Square of 30 is “ + math.GetSquare());
 }
 }

 // Define a class named MathTest on which we will call a method
 class MathTest
 {
 public int value;

 public int GetSquare()
 {
 return value*value;
 }

 public static int GetSquareOf(int x)
 {
 return x*x;
 }

 public static double GetPi()
 {
 return 3.14159;
 }
 }
}

c03.indd 79c03.indd 79 2/19/08 5:01:10 PM2/19/08 5:01:10 PM

80

Part I: The C# Language

 Running the MathTest example produces these results:

 csc MathTest.cs

Microsoft (R) Visual C# Compiler version 9.00.20404
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

MathTest.exe
Pi is 3.14159
Square of 5 is 25
Value field of math variable contains 30
Square of 30 is 900

 As you can see from the code, the MathTest class contains a field that contains a number, as well as a
method to find the square of this number. It also contains two static methods, one to return the value of
pi and one to find the square of the number passed in as a parameter.

 Some features of this class are not really good examples of C# program design. For example, GetPi()
would usually be implemented as a const field, but following good design here would mean using
some concepts that we have not yet introduced.

 Most of the syntax in the preceding example should be familiar to C++ and Java developers. If your
background is in Visual Basic, just think of the MathTest class as being like a Visual Basic class module that
implements fields and methods. There are a couple of points to watch out for though, whatever your language.

Passing Parameters to Methods
 In general, parameters can be passed into methods by reference or by value. When a variable is passed
by reference, the called method gets the actual variable — so any changes made to the variable inside the
method persist when the method exits. But, when a variable is passed by value, the called method gets
an identical copy of the variable — which means any changes made are lost when the method exits. For
complex data types, passing by reference is more efficient because of the large amount of data that must
be copied when passing by value.

 In C#, all parameters are passed by value unless you specifically say otherwise. This is the same behavior
as in C++ but the opposite of Visual Basic. However, you need to be careful in understanding the
implications of this for reference types. Because reference type variables hold only a reference to an object,
it is this reference that will be copied, not the object itself. Hence, changes made to the underlying
object will persist. Value type variables, in contrast, hold the actual data, so a copy of the data itself will
be passed into the method. An int , for instance, is passed by value to a method, and any changes that
the method makes to the value of that int do not change the value of the original int object. Conversely,
if an array or any other reference type, such as a class, is passed into a method, and the method uses the
reference to change a value in that array, the new value is reflected in the original array object.

 Here is an example, ParameterTest.cs , that demonstrates this:

using System;

namespace Wrox.ProCSharp.ParameterTestSample
{
 class ParameterTest
 {
 static void SomeFunction(int[] ints, int i)
 {
 ints[0] = 100;
 i = 100;
 }

 public static int Main()

c03.indd 80c03.indd 80 2/19/08 5:01:10 PM2/19/08 5:01:10 PM

Chapter 3: Objects and Types

81

 {
 int i = 0;
 int[] ints = { 0, 1, 2, 4, 8 };
 // Display the original values.
 Console.WriteLine(“i = “ + i);
 Console.WriteLine(“ints[0] = “ + ints[0]);
 Console.WriteLine(“Calling SomeFunction...”);

 // After this method returns, ints will be changed,
 // but i will not.
 SomeFunction(ints, i);
 Console.WriteLine(“i = “ + i);
 Console.WriteLine(“ints[0] = “ + ints[0]);
 return 0;
 }
 }
}

 The output of this is:

 csc ParameterTest.cs

Microsoft (R) Visual C# Compiler version 9.00.20404
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

ParameterTest.exe
i = 0
ints[0] = 0
Calling SomeFunction...
i = 0
ints[0] = 100

 Notice how the value of i remains unchanged, but the value changed in ints is also changed in the
original array.

 The behavior of strings is different again. This is because strings are immutable (if you alter a string ’ s
value, you create an entirely new string), so strings don ’ t display the typical reference - type behavior.
Any changes made to a string within a method call won ’ t affect the original string. This point is
discussed in more detail in Chapter 8 , “ Strings and Regular Expressions. ”

 ref Parameters
 As mentioned, passing variables by value is the default, but you can force value parameters to be passed
by reference. To do so, use the ref keyword. If a parameter is passed to a method, and if the input
argument for that method is prefixed with the ref keyword, any changes that the method makes to the
variable will affect the value of the original object:

static void SomeFunction(int[] ints, ref int i)
{
 ints[0] = 100;
 i = 100; // The change to i will persist after SomeFunction() exits.
}

 You will also need to add the ref keyword when you invoke the method:

SomeFunction(ints, ref i);

c03.indd 81c03.indd 81 2/19/08 5:01:10 PM2/19/08 5:01:10 PM

82

Part I: The C# Language

 Adding the ref keyword in C# serves the same purpose as using the & syntax in C++ to specify passing
by reference. However, C# makes the behavior more explicit (thus hopefully preventing bugs) by
requiring the use of the ref keyword when invoking the method.

 Finally, it is also important to understand that C# continues to apply initialization requirements to
parameters passed to methods. Any variable must be initialized before it is passed into a method,
whether it is passed in by value or by reference.

out Parameters
 In C - style languages, it is common for functions to be able to output more than one value from a single
routine. This is accomplished using output parameters, by assigning the output values to variables
that have been passed to the method by reference. Often, the starting values of the variables that are
passed by reference are unimportant. Those values will be overwritten by the function, which may never
even look at any previous value.

 It would be convenient if you could use the same convention in C#. However, C# requires that variables
be initialized with a starting value before they are referenced. Although you could initialize your input
variables with meaningless values before passing them into a function that will fill them with real,
meaningful ones, this practice seems at best needless and at worst confusing. However, there is a way to
short - circuit the C# compiler ’ s insistence on initial values for input arguments.

 You do this with the out keyword. When a method ’ s input argument is prefixed with out , that method
can be passed a variable that has not been initialized. The variable is passed by reference, so any changes
that the method makes to the variable will persist when control returns from the called method. Again,
you also need to use the out keyword when you call the method, as well as when you define it:

static void SomeFunction(out int i)
{
 i = 100;
}

public static int Main()
{
 int i; // note how i is declared but not initialized.
 SomeFunction(out i);
 Console.WriteLine(i);
 return 0;
}

 The out keyword is an example of something new in C# that has no analogy in either Visual Basic or
C++ and that has been introduced to make C# more secure against bugs. If an out parameter isn ’ t
assigned a value within the body of the function, the method won ’ t compile.

Method Overloading
 C# supports method overloading — several versions of the method that have different signatures (that
is, the same name, but a different number of parameters and or different parameter data types).
However, C# does not support default parameters in the way that, say, C++ or Visual Basic does. In
order to overload methods, you simply declare the methods with the same name but different numbers
or types of parameters:

class ResultDisplayer
{
 void DisplayResult(string result)
 {
 // implementation
 }

c03.indd 82c03.indd 82 2/19/08 5:01:10 PM2/19/08 5:01:10 PM

Chapter 3: Objects and Types

83

 void DisplayResult(int result)
 {
 // implementation
 }
}

 Because C# does not support optional parameters, you will need to use method overloading to achieve
the same effect:

class MyClass
{
 int DoSomething(int x) // want 2nd parameter with default value 10
 {
 DoSomething(x, 10);
 }

 int DoSomething(int x, int y)
 {
 // implementation
 }
}

 As in any language, method overloading carries with it the potential for subtle runtime bugs if the
wrong overload is called. Chapter 4 discusses how to code defensively against these problems.
For now, you should know that C# does place some minimum differences on the parameters of
overloaded methods:

❑ It is not sufficient for two methods to differ only in their return type.

❑ It is not sufficient for two methods to differ only by virtue of a parameter having been declared
as ref or out .

 Properties
 Properties are unusual in that they represent an idea that C# has taken from Visual Basic, not from C++
and Java. The idea of a property is that it is a method or pair of methods that are dressed to look like a
field as far as any client code is concerned. A good example of this is the Height property of a Windows
Form. Suppose that you have the following code:

// mainForm is of type System.Windows.Forms
mainForm.Height = 400;

 On executing this code, the height of the window will be set to 400, and you will see the window resize
on the screen. Syntactically, this code looks like you ’ re setting a field, but in fact you are calling a
property accessor that contains code to resize the form.

 To define a property in C#, you use the following syntax:

public string SomeProperty
{
 get
 {
 return “This is the property value.”;
 }
 set
 {
 // do whatever needs to be done to set the property.
 }
}

c03.indd 83c03.indd 83 2/19/08 5:01:11 PM2/19/08 5:01:11 PM

84

Part I: The C# Language

 The get accessor takes no parameters and must return the same type as the declared property. You
should not specify any explicit parameters for the set accessor either, but the compiler assumes it takes
one parameter, which is of the same type again, and which is referred to as value . As an example, the
following code contains a property called ForeName , which sets a field called foreName and applies
a length limit:

private string foreName;

public string ForeName
{
 get
 {
 return foreName;
 }
 set
 {
 if (value.Length > 20)
 // code here to take error recovery action
 // (eg. throw an exception)
 else
 foreName = value;
 }
}

 Note the naming convention used here. You take advantage of C# ’ s case sensitivity by using the same
name, Pascal - cased for the public property, and camel - cased for the equivalent private field if there is
one. Some developers prefer to use field names that are prefixed by an underscore: _ foreName ; this
provides an extremely convenient way of identifying fields.

 Visual Basic 6 programmers should remember that C# does not distinguish between Visual Basic 6 Set
and Visual Basic 6 Let : In C#, the write accessor is always identified with the keyword set .

 Read - Only and Write - Only Properties
 It is possible to create a read - only property by simply omitting the set accessor from the property
definition. Thus, to make ForeName read - only in the previous example:

private string foreName;

public string ForeName
{
 get
 {
 return foreName;
 }
}

 It is similarly possible to create a write - only property by omitting the get accessor. However, this is
regarded as poor programming practice because it could be confusing to authors of client code. In
general, it is recommended that if you are tempted to do this, you should use a method instead.

Access Modifiers for Properties
 C# does allow the set and get accessors to have differing access modifiers. This would allow a property
to have a public get and a private or protected set . This can help control how or when a property can
be set. In the following code example, notice that the set has a private access modifier and the get does
not have any. In this case, the get takes on the access level of the property. One of the accessors must

c03.indd 84c03.indd 84 2/19/08 5:01:11 PM2/19/08 5:01:11 PM

Chapter 3: Objects and Types

85

follow the access level of the property. A compile error will be generated if the get accessor has the
 protected access level associated with it because that would make both accessors have a different
access level from the property.

public string Name
{
 get
 {
 return _name;
 }
 private set
 {
 _name = value;
 }
}

 Auto - Implemented Properties
 If there isn ’ t going to be any logic in the properties set and get , then auto - implemented properties can
be used. Auto - implemented properties implement the backing member variable automatically. The code
for the previous example would look like this:

public string ForeName {get; set;}

 The declaration private string foreName; is not needed. The compiler will create this automatically.

 By using auto - implemented properties, validation of the property cannot be done at the property set.
So in the previous example we could not have checked to see if it is less than 20 characters. Also both
accessors must be present. So an attempt to make a property read - only would cause an error:

public string ForeName {get;}

 However, the access level of each accessor can be different. So the following is acceptable:

public string ForeName {get; private set;}

A Note About Inlining
Some developers may worry that the previous sections have presented a number of sit-
uations in which standard C# coding practices have led to very small functions — for
example, accessing a field via a property instead of directly. Is this going to hurt perfor-
mance because of the overhead of the extra function call? The answer is that there is no
need to worry about performance loss from these kinds of programming methodolo-
gies in C#. Recall that C# code is compiled to IL, then JIT compiled at runtime to native
executable code. The JIT compiler is designed to generate highly optimized code and
will ruthlessly inline code as appropriate (in other words, it replaces function calls with
inline code). A method or property whose implementation simply calls another method
or returns a field will almost certainly be inlined. Note, however, that the decision of
where to inline is made entirely by the CLR. There is no way for you to control which
methods are inlined by using, for example, some keyword similar to the inline
keyword of C++.

c03.indd 85c03.indd 85 2/19/08 5:01:11 PM2/19/08 5:01:11 PM

86

Part I: The C# Language

 Constructors
 The syntax for declaring basic constructors in C# is the same as in Java and C++. You declare a method
that has the same name as the containing class and that does not have any return type:

public class MyClass
{
 public MyClass()
 {
 }
 // rest of class definition

 As in C++ and Java, it ’ s not necessary to provide a constructor for your class. We haven ’ t supplied one
for any of the examples so far in this book. In general, if you don ’ t supply any constructor, the compiler
will just make up a default one for you behind the scenes. It will be a very basic constructor that just
initializes all the member fields by zeroing them out (null reference for reference types, zero for
numeric data types, and false for bool s). Often, that will be adequate; if not, you ’ ll need to write your
own constructor.

For C++ programmers: Because primitive fields in C# are by default initialized by
being zeroed out, whereas primitive fields in C++ are by default uninitialized, you
may find that you don’t need to write constructors in C# as often as you would in C++.

 Constructors follow the same rules for overloading as other methods (that is, you can provide as many
overloads to the constructor as you want, provided they are clearly different in signature):

 public MyClass() // zero-parameter constructor
 {
 // construction code
 }
 public MyClass(int number) // another overload
 {
 // construction code
 }

 Note, however, that if you supply any constructors that take parameters, the compiler will not
automatically supply a default one. This is done only if you have not defined any constructors at all. In
the following example, because a one - parameter constructor is defined, the compiler assumes that this
is the only constructor you want to be available, so it will not implicitly supply any others:

public class MyNumber
{
 private int number;
 public MyNumber(int number)
 {
 this.number = number;
 }
}

 This code also illustrates typical use of the this keyword to distinguish member fields from parameters
of the same name. If you now try instantiating a MyNumber object using a no - parameter constructor,
you will get a compilation error:

MyNumber numb = new MyNumber(); // causes compilation error

c03.indd 86c03.indd 86 2/19/08 5:01:12 PM2/19/08 5:01:12 PM

Chapter 3: Objects and Types

87

 We should mention that it is possible to define constructors as private or protected, so that they are
invisible to code in unrelated classes too:

public class MyNumber
{
 private int number;
 private MyNumber(int number) // another overload
 {
 this.number = number;
 }
}

 This example hasn ’ t actually defined any public or even any protected constructors for MyNumber . This
would actually make it impossible for MyNumber to be instantiated by outside code using the new
operator (though you might write a public static property or method in MyNumber that can instantiate
the class). This is useful in two situations:

 ❑ If your class serves only as a container for some static members or properties and therefore
should never be instantiated

❑ If you want the class to only ever be instantiated by calling some static member function
(this is the so - called class factory approach to object instantiation)

 Static Constructors
 One novel feature of C# is that it is also possible to write a static no - parameter constructor for a class.
Such a constructor will be executed only once, as opposed to the constructors written so far, which are
instance constructors that are executed whenever an object of that class is created. There is no equivalent
to the static constructor in C++ or Visual Basic 6.

class MyClass
{
 static MyClass()
 {
 // initialization code
 }
 // rest of class definition
}

 One reason for writing a static constructor is if your class has some static fields or properties that need to
be initialized from an external source before the class is first used.

 The .NET runtime makes no guarantees about when a static constructor will be executed, so you
should not place any code in it that relies on it being executed at a particular time (for example, when an
assembly is loaded). Nor is it possible to predict in what order static constructors of different classes will
execute. However, what is guaranteed is that the static constructor will run at most once, and that it
will be invoked before your code makes any reference to the class. In C#, the static constructor usually
seems to be executed immediately before the first call to any member of the class.

 Notice that the static constructor does not have any access modifiers. It ’ s never called by any other C#
code, but always by the .NET runtime when the class is loaded, so any access modifier like public
or private would be meaningless. For this same reason, the static constructor can never take any
parameters, and there can be only one static constructor for a class. It should also be obvious that a static
constructor can access only static members, not instance members, of the class.

c03.indd 87c03.indd 87 2/19/08 5:01:12 PM2/19/08 5:01:12 PM

88

Part I: The C# Language

 Note that it is possible to have a static constructor and a zero - parameter instance constructor defined in
the same class. Although the parameter lists are identical, there is no conflict. That ’ s because the static
constructor is executed when the class is loaded, but the instance constructor is executed whenever an
instance is created — so there won ’ t be any confusion about which constructor gets executed when.

 Note that if you have more than one class that has a static constructor, the static constructor that will be
executed first is undefined. This means that you should not put any code in a static constructor that
depends on other static constructors having been or not having been executed. However, if any static
fields have been given default values, these will be allocated before the static constructor is called.

 The next example illustrates the use of a static constructor and is based on the idea of a program that has
user preferences (which are presumably stored in some configuration file). To keep things simple, we ’ ll
assume just one user preference — a quantity called BackColor , which might represent the background
color to be used in an application. And because we don ’ t want to get into the details of writing code to
read data from an external source here, we ’ ll make the assumption that the preference is to have a
background color of red on weekdays and green on weekends. All the program will do is display the
preference in a console window — but this is enough to see a static constructor at work.

namespace Wrox.ProCSharp.StaticConstructorSample
{
 public class UserPreferences
 {
 public static readonly Color BackColor;

 static UserPreferences()
 {
 DateTime now = DateTime.Now;
 if (now.DayOfWeek == DayOfWeek.Saturday
 || now.DayOfWeek == DayOfWeek.Sunday)
 BackColor = Color.Green;
 else
 BackColor = Color.Red;
 }

 private UserPreferences()
 {
 }
 }
}

 This code shows how the color preference is stored in a static variable, which is initialized in the static
constructor. This field is declared as read - only, which means that its value can only be set in a
constructor. You learn about read - only fields in more detail later in this chapter. The code uses a few
helpful structs that Microsoft has supplied as part of the Framework class library, System.DateTime
and System.Drawing.Color . DateTime implements both a static property, Now , which returns the
current time, and an instance property, DayOfWeek , which works out what day of the week a date - time
represents. Color (which is discussed in Chapter 33 , “ Graphics with GDI+ ”) is used to store colors. It
implements various static properties, such as Red and Green as used in this example, which return
commonly used colors. In order to use Color , you need to reference the System.Drawing.dll
assembly when compiling, and you must add a using statement for the System.Drawing namespace:

using System;
using System.Drawing;

c03.indd 88c03.indd 88 2/19/08 5:01:12 PM2/19/08 5:01:12 PM

Chapter 3: Objects and Types

89

 You test the static constructor with this code:

 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“User-preferences: BackColor is: “ +
 UserPreferences.BackColor.ToString());
 }
 }

 Compiling and running this code results in this output:

 StaticConstructor.exe

User-preferences: BackColor is: Color [Red]

 Of course if the code is executed during the weekend, your color preference would be Green .

Calling Constructors from Other Constructors
 You may sometimes find yourself in the situation where you have several constructors in a class, perhaps
to accommodate some optional parameters, for which the constructors have some code in common.
For example, consider this:

class Car
{
 private string description;
 private uint nWheels;
 public Car(string description, uint nWheels)
 {
 this.description = description;
 this.nWheels = nWheels;
 }

 public Car(string description)
 {
 this.description = description;
 this.nWheels = 4;
 }
// etc.

 Both constructors initialize the same fields. It would clearly be neater to place all the code in one place,
and C# has a special syntax, known as a constructor initializer, to allow this:

class Car
{
 private string description;
 private uint nWheels;

 public Car(string description, uint nWheels)
 {
 this.description = description;
 this.nWheels = nWheels;
 }

 public Car(string description) : this(description, 4)
 {
 }
 // etc

c03.indd 89c03.indd 89 2/19/08 5:01:13 PM2/19/08 5:01:13 PM

90

Part I: The C# Language

 In this context, the this keyword simply causes the constructor with the nearest matching parameters to
be called. Note that any constructor initializer is executed before the body of the constructor. Say that the
following code is run:

Car myCar = new Car(“Proton Persona”);

 In this example, the two - parameter constructor executes before any code in the body of the one -
 parameter constructor (though in this particular case, because there is no code in the body of the
one - parameter constructor, it makes no difference).

 A C# constructor initializer may contain either one call to another constructor in the same class (using
the syntax just presented) or one call to a constructor in the immediate base class (using the same syntax,
but using the keyword base instead of this). It is not possible to put more than one call in the initializer.

 The syntax for constructor initializers in C# is similar to that for constructor initialization lists in C++,
but C++ developers should beware: Behind the similarity in syntax, C# initializers follow very different
rules for what can be placed in them. Whereas you can use a C++ initialization list to indicate initial
values of any member variables or to call a base constructor, the only thing you can put in a C# initializer
is one call to one other constructor. This forces C# classes to follow a strict sequence for how they get
constructed, whereas C++ allows some leniency. This issue is studied more in Chapter 4 , where you see
that the sequence enforced by C# arguably amounts to no more than good programming practice
anyway.

 readonly Fields
 The concept of a constant as a variable that contains a value that cannot be changed is something that C#
shares with most programming languages. However, constants don ’ t necessarily meet all requirements.
On occasion, you may have some variable whose value shouldn ’ t be changed, but where the value is
not known until runtime. C# provides another type of variable that is useful in this scenario: the
 readonly field.

 The readonly keyword gives a bit more flexibility than const , allowing for situations in which you
might want a field to be constant but also need to carry out some calculations to determine its initial
value. The rule is that you can assign values to a readonly field inside a constructor, but not anywhere
else. It ’ s also possible for a readonly field to be an instance rather than a static field, having a different
value for each instance of a class. This means that, unlike a const field, if you want a readonly field to
be static, you have to declare it as such.

 Suppose that you have an MDI program that edits documents, and, for licensing reasons, you want to
restrict the number of documents that can be opened simultaneously. Now assume that you are selling
different versions of the software, and it ’ s possible that customers can upgrade their licenses to open
more documents simultaneously. Clearly this means you can ’ t hard - code the maximum number in the
source code. You ’ d probably need a field to represent this maximum number. This field will have to be
read in — perhaps from a registry key or some other file storage — each time the program is launched.
So your code might look something like this:

 public class DocumentEditor
 {
 public static readonly uint MaxDocuments;

 static DocumentEditor()
 {
 MaxDocuments = DoSomethingToFindOutMaxNumber();
 }

c03.indd 90c03.indd 90 2/19/08 5:01:13 PM2/19/08 5:01:13 PM

Chapter 3: Objects and Types

91

 In this case, the field is static, because the maximum number of documents needs to be stored only once
per running instance of the program. This is why it is initialized in the static constructor. If you had an
instance readonly field, you would initialize it in the instance constructor(s). For example, presumably
each document you edit has a creation date, which you wouldn ’ t want to allow the user to change
(because that would be rewriting the past!). Note that the field is also public — you don ’ t normally need
to make readonly fields private, because by definition they cannot be modified externally (the same
principle also applies to constants).

 As noted earlier, date is represented by the class System.DateTime . The following code uses a System
.DateTime constructor that takes three parameters (the year, month, and day of the month — you can
find details of this and other DateTime constructors in the MSDN documentation):

 public class Document
 {
 public readonly DateTime CreationDate;

 public Document()
 {
 // Read in creation date from file. Assume result is 1 Jan 2002
 // but in general this can be different for different instances
 // of the class
 CreationDate = new DateTime(2002, 1, 1);
 }
 }

 CreationDate and MaxDocuments in the previous code snippet are treated like any other field, except
that because they are read - only, they cannot be assigned outside the constructors:

void SomeMethod()
{
 MaxDocuments = 10; // compilation error here. MaxDocuments is readonly
}

 It ’ s also worth noting that you don ’ t have to assign a value to a readonly field in a constructor. If you
don ’ t do so, it will be left with the default value for its particular data type or whatever value you
initialized it to at its declaration. That applies to both static and instance readonly fields.

 Anonymous Types
 Chapter 2 discussed the var keyword in reference to implicitly typed variables. When used with the
 new keyword, anonymous types can be created. An anonymous type is simply a nameless class
that inherits from object . The definition of the class is inferred from the initializer, just like in
implicitly typed variables.

 If you needed an object that contained a person ’ s first, middle, and last name the declaration would look
like this:

var captain = new {FirstName = “James”, MiddleName = “T”, LastName = “Kirk”};

 This would produce an object with FirstName , MiddleName , and LastName properties. If you were to
create another object that looked like this:

var doctor = new {FirstName = “Leonard”, MiddleName = “”, LastName = “McCoy”};

The types of captain and doctor are the same. You could set captain = doctor , for example.

c03.indd 91c03.indd 91 2/19/08 5:01:13 PM2/19/08 5:01:13 PM

92

Part I: The C# Language

 If the values that are being set come from another object, then the initializer can be abbreviated. If you
already have a class that contains the properties FirstName , MiddleName , and LastName and you have
an instance of that class with the instance name person , then the captain object could be initialized
like this:

var captain = new (person.FirstName, person.MidleName, person.LastName};

 The property names from the person object would be projected to the new object named captain . So
the object named captain would have the FirstName , MiddleName , and LastName properties.

 The actual type name of these new objects is unknown. The compiler “ makes up ” a name for the type,
but only the compiler will ever be able to make use of it. So you can ’ t and shouldn ’ t plan on using any
type reflection on the new objects because you will not get consistent results.

 Structs
 So far, you have seen how classes offer a great way of encapsulating objects in your program. You have
also seen how they are stored on the heap in a way that gives you much more flexibility in data lifetime,
but with a slight cost in performance. This performance cost is small thanks to the optimizations of
managed heaps. However, in some situations all you really need is a small data structure. In this case, a
class provides more functionality than you need, and for performance reasons you will probably prefer
to use a struct. Look at this example:

class Dimensions
{
 public double Length;
 public double Width;
}

 This code defines a class called Dimensions , which simply stores the length and width of some item.
Perhaps you ’ re writing a furniture - arranging program to let people experiment with rearranging their
furniture on the computer, and you want to store the dimensions of each item of furniture. It looks like
you ’ re breaking the rules of good program design by making the fields public, but the point is that you
don ’ t really need all the facilities of a class for this. All you have is two numbers, which you ’ ll find
convenient to treat as a pair rather than individually. There is no need for a lot of methods, or for you to
be able to inherit from the class, and you certainly don ’ t want to have the .NET runtime go to the trouble
of bringing in the heap with all the performance implications, just to store two double s.

 As mentioned earlier in this chapter, the only thing you need to change in the code to define a type as a
struct instead of a class is to replace the keyword class with struct :

 struct Dimensions
 {
 public double Length;
 public double Width;
 }

 Defining functions for structs is also exactly the same as defining them for classes. The following code
demonstrates a constructor and a property for a struct:

struct Dimensions
{
 public double Length;
 public double Width;

 Dimensions(double length, double width)

c03.indd 92c03.indd 92 2/19/08 5:01:14 PM2/19/08 5:01:14 PM

Chapter 3: Objects and Types

93

 {
 Length=length;
 Width=width;
 }

 public double Diagonal
 {
 get
 {
 return Math.Sqrt(Length*Length + Width*Width);
 }
 }
}

 In many ways, you can think of structs in C# as being like scaled - down classes. They are basically the
same as classes but designed more for cases where you simply want to group some data together. They
differ from classes in the following ways:

❑ Structs are value types, not reference types. This means they are stored either in the stack or in-
line (if they are part of another object that is stored on the heap) and have the same lifetime re-
strictions as the simple data types.

❑ Structs do not support inheritance.

❑ There are some differences in the way constructors work for structs. In particular, the compiler
always supplies a default no - parameter constructor, which you are not permitted to replace.

❑ With a struct, you can specify how the fields are to be laid out in memory (this is examined in
Chapter 13 , “ Reflection, ” which covers attributes).

 Because structs are really intended to group data items together, you ’ ll sometimes find that most or all of
their fields are declared as public. This is, strictly speaking, contrary to the guidelines for writing .NET
code — according to Microsoft, fields (other than const fields) should always be private and wrapped
by public properties. However, for simple structs, many developers would nevertheless consider public
fields to be acceptable programming practice.

 C++ developers beware — structs in C# are very different from classes in their implementation. This is
unlike C++, in which classes and structs are virtually the same thing.

 The following sections look at some of these differences between structs and classes in more detail.

 Structs Are Value Types
 Although structs are value types, you can often treat them syntactically in the same way as classes. For
example, with the definition of the Dimensions class in the previous section, you could write:

 Dimensions point = new Dimensions();
 point.Length = 3;
 point.Width = 6;

 Note that because structs are value types, the new operator does not work in the same way as it does for
classes and other reference types. Instead of allocating memory on the heap, the new operator simply
calls the appropriate constructor, according to the parameters passed to it, initializing all fields. Indeed,
for structs it is perfectly legal to write:

 Dimensions point;
 point.Length = 3;
 point.Width = 6;

c03.indd 93c03.indd 93 2/19/08 5:01:14 PM2/19/08 5:01:14 PM

94

Part I: The C# Language

 If Dimensions was a class, this would produce a compilation error, because point would contain an
uninitialized reference — an address that points nowhere, so you could not start setting values to its
fields. For a struct, however, the variable declaration actually allocates space on the stack for the entire
struct, so it ’ s ready to assign values to. Note, however, that the following code would cause a
compilation error, with the compiler complaining that you are using an uninitialized variable:

 Dimensions point;
 Double D = point.Length;

 Structs follow the same rules as any other data type — everything must be initialized before use. A struct
is considered fully initialized either when the new operator has been called against it, or when values
have been individually assigned to all its fields. And of course, a struct defined as a member field of a
class is initialized by being zeroed - out automatically when the containing object is initialized.

 The fact that structs are value types will affect performance, though depending on how you use your
struct, this can be good or bad. On the positive side, allocating memory for structs is very fast because
this takes place inline or on the stack. The same goes for removing structs when they go out of scope. On
the negative side, whenever you pass a struct as a parameter or assign a struct to another struct (as in
 A=B , where A and B are structs), the full contents of the struct are copied, whereas for a class only the
reference is copied. This will result in a performance loss that depends on the size of the struct,
emphasizing the fact that structs are really intended for small data structures. Note, however, that when
passing a struct as a parameter to a method, you can avoid this performance loss by passing it as a ref
parameter — in this case, only the address in memory of the struct will be passed in, which is just as fast
as passing in a class. If you do this, though, be aware that it means the called method can in principle
change the value of the struct.

 Structs and Inheritance
 Structs are not designed for inheritance. This means that it is not possible to inherit from a struct. The
only exception to this is that structs, in common with every other type in C#, derive ultimately from the
class System.Object . Hence, structs also have access to the methods of System.Object , and it is even
possible to override them in structs — an obvious example would be overriding the ToString()
method. The actual inheritance chain for structs is that each struct derives from a class, System
.ValueType , which in turn derives from System.Object . ValueType does not add any new members
to Object , but provides implementations of some of them that are more suitable for structs. Note that
you cannot supply a different base class for a struct: every struct is derived from ValueType .

 Constructors for Structs
 You can define constructors for structs in exactly the same way that you can for classes, except that you
are not permitted to define a constructor that takes no parameters. This may seem nonsensical, and the
reason is buried in the implementation of the .NET runtime. Some rare circumstances exist in which the
.NET runtime would not be able to call a custom zero - parameter constructor that you have supplied.
Microsoft has therefore taken the easy way out and banned zero - parameter constructors for structs in C#.

 That said, the default constructor, which initializes all fields to zero values, is always present implicitly,
even if you supply other constructors that take parameters. It ’ s also impossible to circumvent the default
constructor by supplying initial values for fields. The following code will cause a compile - time error:

 struct Dimensions
 {
 public double Length = 1; // error. Initial values not allowed
 public double Width = 2; // error. Initial values not allowed
 }

c03.indd 94c03.indd 94 2/19/08 5:01:14 PM2/19/08 5:01:14 PM

Chapter 3: Objects and Types

95

 Of course, if Dimensions had been declared as a class, this code would have compiled without
any problems.

 Incidentally, you can supply a Close() or Dispose() method for a struct in the same way you do for
a class.

 Par tial Classes
 The partial keyword allows the class, struct, or interface to span across multiple files. Typically, a class
will reside entirely in a single file. However, in situations where multiple developers need access to the
same class, or more likely in the situation where a code generator of some type is generating part of a
class, then having the class in multiple files can be beneficial.

 The way that the partial keyword is used is to simply place partial before class, struct , or
 interface . In the following example the class TheBigClass resides in two separate source files,
 BigClassPart1.cs and BigClassPart2.cs :

//BigClassPart1.cs
partial class TheBigClass
{
 public void MethodOne()
 {
 }
}

//BigClassPart2.cs
partial class TheBigClass
{
 public void MethodTwo()
 {
 }
}

 When the project that these two source files are part of is compiled, a single type called TheBigClass
will be created with two methods, MethodOne() and MethodTwo() .

 If any of the following keywords are used in describing the class, the same must apply to all partials of
the same type:

❑ public

❑ private

❑ protected

❑ internal

❑ abstract

❑ sealed

❑ new

❑ generic constraints

c03.indd 95c03.indd 95 2/19/08 5:01:15 PM2/19/08 5:01:15 PM

96

Part I: The C# Language

 Nested partials are allowed as long as the partial keyword precedes the class keyword in the nested
type. Attributes, XML comments, interfaces, generic - type parameter attributes, and members will be
combined when the partial types are compiled into the type. Given the two source files:

//BigClassPart1.cs
[CustomAttribute]
partial class TheBigClass : TheBigBaseClass, IBigClass
{
 public void MethodOne()
 {
 }
}

//BigClassPart2.cs
[AnotherAttribute]
partial class TheBigClass : IOtherBigClass
{
 public void MethodTwo()
 {
 }
}

After the compile, the equivalent source file would be:

[CustomAttribute]
[AnotherAttribute]
partial class TheBigClass : TheBigBaseClass, IBigClass, IOtherBigClass
{
 public void MethodOne()
 {
 }

 public void MethodTwo()
 {
 }
}

 Static Classes
 Earlier, this chapter discussed static constructors and how they allowed the initialization of static
member variables. If a class contains nothing but static methods and properties, the class itself can
become static. A static class is functionally the same as creating a class with a private static constructor.
An instance of the class can never be created. By using the static keyword, the compiler can help by
checking that instance members are never accidentally added to the class. If they are, a compile error
happens. This can help guarantee that an instance is never created. The syntax for a static class looks
like this:

static class StaticUtilities
{
 public static void HelperMethod()
 {
 }
}

c03.indd 96c03.indd 96 2/19/08 5:01:15 PM2/19/08 5:01:15 PM

Chapter 3: Objects and Types

97

 An object of type StaticUtilities is not needed to call the HelperMethod() . The type name is used
to make the call:

StaticUtilities.HelperMethod();

 The Object Class
 As indicated earlier, all .NET classes are ultimately derived from System.Object . In fact, if you don ’ t
specify a base class when you define a class, the compiler will automatically assume that it derives
from Object . Because inheritance has not been used in this chapter, every class you have seen here is
actually derived from System.Object . (As noted earlier, for structs this derivation is indirect: A struct
is always derived from System.ValueType , which in turn derives from System.Object .)

 The practical significance of this is that, besides the methods and properties and so on that you define,
you also have access to a number of public and protected member methods that have been defined for
the Object class. These methods are available in all other classes that you define.

 System.Object Methods
 For the time being, we simply summarize the purpose of each method in the following list, and then, in
the next section, we provide more detail about the ToString() method in particular.

❑ ToString() — This is intended as a fairly basic, quick - and - easy string representation; use it
when you just want a quick idea of the contents of an object, perhaps for debugging purposes. It
provides very little choice of how to format the data: For example, dates can in principle be ex-
pressed in a huge variety of different formats, but DateTime.ToString() does not offer you any
choice in this regard. If you need a more sophisticated string representation that, for example,
takes account of your formatting preferences or of the culture (the locale), then you should imple-
ment the IFormattable interface (see Chapter 8 , “ Strings and Regular Expressions ”).

❑ GetHashCode() — This is used if objects are placed in a data structure known as a map (also
known as a hash table or dictionary). It is used by classes that manipulate these structures in
order to determine where to place an object in the structure. If you intend your class to be used as
a key for a dictionary, you will need to override GetHashCode() . Some fairly strict requirements
exist for how you implement your overload, and you learn about those when you examine dic-
tionaries in Chapter 10 , “ Collections. ”

❑ Equals() (both versions) and ReferenceEquals() — As you ’ ll gather by the existence of
three different methods aimed at comparing the equality of objects, the .NET Framework has
quite a sophisticated scheme for measuring equality. Subtle differences exist between how these
three methods, along with the comparison operator, == , are intended to be used. Not only that,
but restrictions also exist on how you should override the virtual, one - parameter version of
 Equals() if you choose to do so, because certain base classes in the System.Collections
namespace call the method and expect it to behave in certain ways. You explore the use of these
methods in Chapter 6 , “ Operators and Casts, ” when you examine operators.

❑ Finalize() — This method is covered in Chapter 12 , “ Memory Management and Pointers. ” It
is intended as the nearest that C# has to C++ - style destructors and is called when a reference ob-
ject is garbage collected to clean up resources. The Object implementation of Finalize() actu-
ally does nothing and is ignored by the garbage collector. You will normally override Final-
ize() if an object owns references to unmanaged resources that need to be removed when the
object is deleted. The garbage collector cannot do this directly because it only knows about man-
aged resources, so it relies on any finalizers that you supply.

c03.indd 97c03.indd 97 2/19/08 5:01:15 PM2/19/08 5:01:15 PM

98

Part I: The C# Language

❑ GetType() — This method returns an instance of a class derived from System.Type . This ob-
ject can provide an extensive range of information about the class of which your object is a
member, including base type, methods, properties, and so on. System.Type also provides the
entry point into .NET ’ s reflection technology. Chapter 13 , “ Reflection, ” examines this topic.

❑ MemberwiseClone() — This is the only member of System.Object that isn ’ t examined in de-
tail anywhere in the book. There is no need to because it is fairly simple in concept. It simply
makes a copy of the object and returns a reference (or in the case of a value type, a boxed refer-
ence) to the copy. Note that the copy made is a shallow copy — this means that it copies all the
value types in the class. If the class contains any embedded references, then only the references
will be copied, not the objects referred to. This method is protected and so cannot be called to
copy external objects. It is also not virtual, so you cannot override its implementation.

 The ToString() Method
 You ’ ve already encountered ToString() in Chapter 2 , “ C# Basics. ” It provides the most convenient way
to get a quick string representation of an object.

 For example:

int i = -50;
string str = i.ToString(); // returns “-50”

 Here ’ s another example:

enum Colors {Red, Orange, Yellow};
// later on in code...
Colors favoriteColor = Colors.Orange;
string str = favoriteColor.ToString(); // returns “Orange”

 Object.ToString() is actually declared as virtual, and all these examples are taking advantage of the
fact that its implementation in the C# predefined data types has been overridden for us in order to
return correct string representations of those types. You might not think that the Colors enum counts as
a predefined data type. It actually gets implemented as a struct derived from System.Enum , and
 System.Enum has a rather clever override of ToString() that deals with all the enums you define.

 If you don ’ t override ToString() in classes that you define, your classes will simply inherit the
 System.Object implementation — which displays the name of the class. If you want ToString() to
return a string that contains information about the value of objects of your class, you will need to
override it. To illustrate this, the following example, Money , defines a very simple class, also called
 Money , which represents U.S. currency amounts. Money simply acts as a wrapper for the decimal class
but supplies a ToString() method. Note that this method must be declared as override because it is
replacing (overriding) the ToString() method supplied by Object . Chapter 4 discusses overriding in
more detail. The complete code for this example is as follows. Note that it also illustrates use of
properties to wrap fields:

using System;

namespace Wrox.ProCSharp.OOCSharp
{
 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 Money cash1 = new Money();
 cash1.Amount = 40M;

c03.indd 98c03.indd 98 2/19/08 5:01:16 PM2/19/08 5:01:16 PM

Chapter 3: Objects and Types

99

 Console.WriteLine(“cash1.ToString() returns: “ + cash1.ToString());
 Console.ReadLine();
 }
 }
 class Money
 {
 private decimal amount;

 public decimal Amount
 {
 get
 {
 return amount;
 }
 set
 {
 amount = value;
 }
 }
 public override string ToString()
 {
 return “$” + Amount.ToString();
 }
 }

}

 This example is here just to illustrate syntactical features of C#. C# already has a predefined type to
represent currency amounts, decimal , so in real life, you wouldn ’ t write a class to duplicate this
functionality unless you wanted to add various other methods to it. And in many cases, due to
formatting requirements, you ’ d probably use the String.Format() method (which is covered in
Chapter 8) rather than ToString() to display a currency string.

 In the Main() method, you first instantiate a Money object. The ToString() method is then
called, which actually executes the override version of the method. Running this code gives the
following results:

StringRepresentations
cash1.ToString() returns: $40

 Extension Methods
 There are many ways to extend a class. If you have the source for the class, then inheritance, which is
covered in Chapter 4 , is a great way to add functionality to your objects. What if the source code isn ’ t
available? Extension methods can help by allowing you to change a class without requiring the source
code for the class.

 Extension methods are static methods that can appear to be part of a class without actually being in the
source code for the class. Let ’ s say that the Money class from the previous example needs to have a
method AddToAmount(decimal amountToAdd) . However, for whatever reason the original source for
the assembly cannot be changed directly. All that you have to do is create a static class and add the
 AddToAmount method as a static method. Here is what the code would look like:

namespace Chapter3.Extensions
{
 public static class MoneyExtension

(continued)

c03.indd 99c03.indd 99 2/19/08 5:01:16 PM2/19/08 5:01:16 PM

100

Part I: The C# Language

 {
 public static void AddToAmount(this Money money, decimal amountToAdd)
 {
 money.Amount += amountToAdd;
 }
 }
}

 Notice the parameters for the AddToAmount method. For an extension method, the first parameter is the
type that is being extended preceded by the this keyword. This is what tells the compiler that this
method is part of the Money type. In this example Money is the type that is being extended. In the
extension method you have access to all the public methods and properties of the type being extended.

 In the main program the AddToAmount method appears just as another method. The first parameter
doesn ’ t appear, and you do not have to do anything with it. To use the new method, you make the call
just like any other method:

cash1.AddToAmount(10M);

 Even though the extension method is static, you use standard instance method syntax. Notice that we
called AddToAmount using the cash1 instance variable and not using the type name.

 If the extension method has the same name as a method in the class, the extension method will never be
called. Any instance methods already in the class take precedence.

 Summary
 This chapter examined C# syntax for declaring and manipulating objects. You have seen how to declare
static and instance fields, properties, methods, and constructors. You have also seen that C# adds some
new features not present in the OOP model of some other languages — for example, static constructors
provide a means of initializing static fields, whereas structs allow you to define types that do not require
the use of the managed heap, which could lead to performance gains. You have also seen how all types
in C# derive ultimately from the type System.Object , which means that all types start with a basic set
of useful methods, including ToString() .

 We mentioned inheritance a few times throughout this chapter. We examine implementation and
interface inheritance in C# in Chapter 4 .

(continued)

c03.indd 100c03.indd 100 2/19/08 5:01:16 PM2/19/08 5:01:16 PM

 Inheritance

 Chapter 3 , “ Objects and Types, ” examined how to use individual classes in C#. The focus in that
chapter was how to define methods, constructors, properties, and other members of a single
class (or a single struct). Although you did learn that all classes are ultimately derived from the class
 System.Object , you did not see how to create a hierarchy of inherited classes. Inheritance is the
subject of this chapter. In this chapter, you will see how C# and the .NET Framework handle
inheritance. Topics covered include:

❑ Types of inheritance

❑ Implementing inheritance

❑ Access modifiers

❑ Interfaces

 Types of Inheritance
 Let ’ s start off by reviewing exactly what C# does and does not support as far as inheritance is
concerned.

 Implementation versus Interface Inheritance
 In object - oriented programming, there are two distinct types of inheritance — implementation
inheritance and interface inheritance:

❑ Implementation inheritance means that a type derives from a base type, taking all the base
type ’ s member fields and functions. With implementation inheritance, a derived type adopts
the base type ’ s implementation of each function, unless it is indicated in the definition of the
derived type that a function implementation is to be overridden. This type of inheritance is
most useful when you need to add functionality to an existing type, or when a number of
 related types share a significant amount of common functionality. A good example of this
comes in the Windows Forms classes, which are discussed in Chapter 31 , “ Windows Forms. ”
Specific examples are the base class System.Windows.Forms.Control , which provides a

c04.indd 101c04.indd 101 2/19/08 5:01:27 PM2/19/08 5:01:27 PM

102

Part I: The C# Language

very sophisticated implementation of a generic Windows control, and numerous other classes such
as System.Windows.Forms.TextBox and System.Windows.Forms.ListBox that are derived
from Control and that override functions or provide new functions to implement specific types
of control.

❑ Interface inheritance means that a type inherits only the signatures of the functions and does
not inherit any implementations. This type of inheritance is most useful when you want to spec-
ify that a type makes certain features available. For example, certain types can indicate that they
provide a resource cleanup method called Dispose() by deriving from an interface, System
.IDisposable (see Chapter 12 , “ Memory Management and Pointers ”). Because the way that
one type cleans up resources is likely to be very different from the way that another type cleans
up resources, there is no point in defining any common implementation, so interface inheritance
is appropriate here. Interface inheritance is often regarded as providing a contract: By deriving
from an interface, a type is guaranteed to provide certain functionality to clients.

 Traditionally, languages such as C++ have been very strong on implementation inheritance. Indeed,
implementation inheritance has been at the core of the C++ programming model. Although Visual Basic
6 did not support any implementation inheritance of classes, it did support interface inheritance thanks
to its underlying COM foundations.

 C# supports both implementation and interface inheritance. Both are baked into the framework and the
language from the ground up, thereby allowing you to decide which to use based on the architecture of
the application.

 Multiple Inheritance
 Some languages such as C++ support what is known as multiple inheritance , in which a class derives
from more than one other class. The benefits of using multiple inheritance are debatable: On one hand,
there is no doubt that it is possible to use multiple inheritance to write extremely sophisticated, yet
compact, code, as demonstrated by the C++ ATL library. On the other hand, code that uses multiple
implementation inheritance is often difficult to understand and debug (a point that is equally well
demonstrated by the C++ ATL library). As mentioned, making it easy to write robust code was one of
the crucial design goals behind the development of C#. Accordingly, C# does not support multiple
implementation inheritance. It does, however, allow types to be derived from multiple interfaces —
 multiple interface inheritance. This means that a C# class can be derived from one other class, and any
number of interfaces. Indeed, we can be more precise: Thanks to the presence of System.Object as a
common base type, every C# class (except for Object) has exactly one base class, and may additionally
have any number of base interfaces.

 Structs and Classes
 Chapter 3 distinguishes between structs (value types) and classes (reference types). One restriction of
using a struct is that structs do not support inheritance, beyond the fact that every struct is automatically
derived from System.ValueType . In fact, we should be more careful. It ’ s true that it is not possible to
code a type hierarchy of structs; however, it is possible for structs to implement interfaces. In other words,
structs don ’ t really support implementation inheritance, but they do support interface inheritance. We
can summarize the situation for any types that you define as follows:

❑ Structs are always derived from System.ValueType . They can also be derived from any
number of interfaces.

❑ Classes are always derived from one other class of your choosing. They can also be derived
from any number of interfaces.

c04.indd 102c04.indd 102 2/19/08 5:01:27 PM2/19/08 5:01:27 PM

103

Chapter 4: Inheritance

 Implementation Inheritance
 If you want to declare that a class derives from another class, use the following syntax:

class MyDerivedClass : MyBaseClass
{
 // functions and data members here
}

 This syntax is very similar to C++ and Java syntax. However, C++ programmers, who will be used to the
concepts of public and private inheritance, should note that C# does not support private inheritance, hence
the absence of a public or private qualifier on the base class name. Supporting private inheritance would
have complicated the language for very little gain. In practice, private inheritance is used extremely rarely
in C++ anyway.

 If a class (or a struct) also derives from interfaces, the list of base class and interfaces is separated by
commas:

public class MyDerivedClass : MyBaseClass, IInterface1, IInterface2
{
 // etc.
 }

 For a struct, the syntax is as follows:

public struct MyDerivedStruct : IInterface1, IInterface2
{
 // etc.
 }

 If you do not specify a base class in a class definition, the C# compiler will assume that System.Object
is the base class. Hence, the following two pieces of code yield the same result:

class MyClass : Object // derives from System.Object
{
 // etc.
}

 and

class MyClass // derives from System.Object
{
 // etc.
}

 For the sake of simplicity, the second form is more common.

 Because C# supports the object keyword, which serves as a pseudonym for the System.Object class,
you can also write:

class MyClass : object // derives from System.Object
{
 // etc.
}

 If you want to reference the Object class, use the object keyword, which is recognized by intelligent
editors such as Visual Studio .NET and thus facilitates editing your code.

c04.indd 103c04.indd 103 2/19/08 5:01:28 PM2/19/08 5:01:28 PM

104

Part I: The C# Language

 Virtual Methods
 By declaring a base class function as virtual , you allow the function to be overridden in any derived classes:

class MyBaseClass
{
 public virtual string VirtualMethod()
 {
 return “This method is virtual and defined in MyBaseClass”;
 }
}

 It is also permitted to declare a property as virtual . For a virtual or overridden property, the syntax is
the same as for a nonvirtual property, with the exception of the keyword virtual , which is added to the
definition. The syntax looks like this:

public virtual string ForeName
{
 get { return fName;}
 set { fName = value;}
}
private string foreName;

 For simplicity, the following discussion focuses mainly on methods, but it applies equally well to
properties.

 The concepts behind virtual functions in C# are identical to standard OOP concepts. You can override a
virtual function in a derived class, and when the method is called, the appropriate method for the type
of object is invoked. In C#, functions are not virtual by default but (aside from constructors) can be
explicitly declared as virtual . This follows the C++ methodology: for performance reasons, functions
are not virtual unless indicated. In Java, by contrast, all functions are virtual. C# does differ from C++
syntax, though, because it requires you to declare when a derived class ’ s function overrides another
function, using the override keyword:

class MyDerivedClass : MyBaseClass
{
 public override string VirtualMethod()
 {
 return “This method is an override defined in MyDerivedClass.”;
 }
}

 This syntax for method overriding removes potential runtime bugs that can easily occur in C++, when
a method signature in a derived class unintentionally differs slightly from the base version, resulting in
the method failing to override the base version. In C#, this is picked up as a compile - time error because the
compiler would see a function marked as override but no base method for it to override.

 Neither member fields nor static functions can be declared as virtual. The concept simply wouldn ’ t make
sense for any class member other than an instance function member.

 Hiding Methods
 If a method with the same signature is declared in both base and derived classes, but the methods are
not declared as virtual and override , respectively, then the derived class version is said to hide the
base class version.

 In most cases, you would want to override methods rather than hide them; by hiding them you risk
calling the wrong method for a given class instance. However, as shown in the following example,

c04.indd 104c04.indd 104 2/19/08 5:01:28 PM2/19/08 5:01:28 PM

105

Chapter 4: Inheritance

C# syntax is designed to ensure that the developer is warned at compile time about this potential
problem, thus making it safer to hide methods if that is your intention. This also has versioning benefits
for developers of class libraries.

 Suppose that you have a class called HisBaseClass :

class HisBaseClass
{
 // various members
}

 At some point in the future you write a derived class that adds some functionality to HisBaseClass . In
particular, you add a method called MyGroovyMethod() , which is not present in the base class:

class MyDerivedClass: HisBaseClass
{
 public int MyGroovyMethod()
 {
 // some groovy implementation
 return 0;
 }
}

 One year later, you decide to extend the functionality of the base class. By coincidence, you add a method
that is also called MyGroovyMethod() and that has the same name and signature as yours, but probably
doesn ’ t do the same thing. When you compile your code using the new version of the base class, you
have a potential clash because your program won ’ t know which method to call. It ’ s all perfectly legal in
C#, but because your MyGroovyMethod() is not intended to be related in any way to the base class
 MyGroovyMethod() , the result is that running this code does not yield the result you want. Fortunately,
C# has been designed to cope very well with these types of conflicts.

 In these situations, C# generates a compilation warning that reminds you to use the new keyword to
declare that you intend to hide a method, like this:

class MyDerivedClass : HisBaseClass
{
 public new int MyGroovyMethod()
 {
 // some groovy implementation
 return 0;
 }
}

 However, because your version of MyGroovyMethod() is not declared as new , the compiler will pick up
on the fact that it ’ s hiding a base class method without being instructed to do so and will generate a
warning (this applies whether or not you declared MyGroovyMethod() as virtual). If you want, you
can rename your version of the method. This is the recommended course of action because it will
eliminate future confusion. However, if you decide not to rename your method for whatever reason (for
example, if you ’ ve published your software as a library for other companies, so you can ’ t change the
names of methods), all your existing client code will still run correctly, picking up your version of
 MyGroovyMethod() . That ’ s because any existing code that accesses this method must be doing so
through a reference to MyDerivedClass (or a further derived class).

 Your existing code cannot access this method through a reference to HisBaseClass ; it would generate a
compilation error when compiled against the earlier version of HisBaseClass . The problem can happen
in only client code you have yet to write. C# arranges things so that you get a warning that a potential
problem might occur in future code — you will need to pay attention to this warning and take care not
to attempt to call your version of MyGroovyMethod() through any reference to HisBaseClass in any

c04.indd 105c04.indd 105 2/19/08 5:01:28 PM2/19/08 5:01:28 PM

106

Part I: The C# Language

future code you add. However, all your existing code will still work fine. It may be a subtle point, but it ’ s
quite an impressive example of how C# is able to cope with different versions of classes.

 Calling Base Versions of Functions
 C# has a special syntax for calling base versions of a method from a derived class: base. < MethodName > () .
For example, if you want a method in a derived class to return 90 percent of the value returned by the base
class method, you can use the following syntax:

class CustomerAccount
{
 public virtual decimal CalculatePrice()
 {
 // implementation
 return 0.0M;
 }
}
class GoldAccount : CustomerAccount
{
 public override decimal CalculatePrice()
 {
 return base.CalculatePrice() * 0.9M;
 }
}

 Java uses a similar syntax, with the exception that Java uses the keyword super rather than base .
C++ has no similar keyword but instead requires specification of the class name (CustomerAccount::
CalculatePrice()). Any equivalent to base in C++ would have been ambiguous because C++ supports
multiple inheritance.

 Note that you can use the base. < MethodName > () syntax to call any method in the base class — you
don ’ t have to call it from inside an override of the same method.

 Abstract Classes and Functions
 C# allows both classes and functions to be declared as abstract. An abstract class cannot be instantiated,
whereas an abstract function does not have an implementation, and must be overridden in any non -
 abstract derived class. Obviously, an abstract function is automatically virtual (although you don ’ t need
to supply the virtual keyword; doing so results in a syntax error). If any class contains any abstract
functions, that class is also abstract and must be declared as such:

abstract class Building
{
 public abstract decimal CalculateHeatingCost(); // abstract method
}

 C++ developers will notice some syntactical differences in C# here. C# does not support the = 0 syntax to
declare abstract functions. In C#, this syntax would be misleading because = < value > is allowed in
member fields in class declarations to supply initial values:

abstract class Building
{
 private bool damaged = false; // field
 public abstract decimal CalculateHeatingCost(); // abstract method
}

c04.indd 106c04.indd 106 2/19/08 5:01:29 PM2/19/08 5:01:29 PM

107

Chapter 4: Inheritance

 C++ developers should also note the slightly different terminology: In C++, abstract functions are often
described as pure virtual; in the C# world, the only correct term to use is abstract.

 Sealed Classes and Methods
 C# allows classes and methods to be declared as sealed . In the case of a class, this means that you can ’ t
inherit from that class. In the case of a method, this means that you can ’ t override that method.

sealed class FinalClass
{
 // etc
}
class DerivedClass : FinalClass // wrong. Will give compilation error
{
 // etc
}

 Java developers will recognize sealed as the C# equivalent of Java ’ s final .

 The most likely situation in which you ’ ll mark a class or method as sealed will be if the class or method
is internal to the operation of the library, class, or other classes that you are writing, so that you ensure
that any attempt to override some of its functionality will lead to instability in the code. You might also
mark a class or method as sealed for commercial reasons, in order to prevent a third party from
extending your classes in a manner that is contrary to the licensing agreements. In general, however, you
should be careful about marking a class or member as sealed because by doing so you are severely
restricting how it can be used. Even if you don ’ t think it would be useful to inherit from a class or
override a particular member of it, it ’ s still possible that at some point in the future someone will
encounter a situation you hadn ’ t anticipated in which it is useful to do so. The .NET base class library
frequently uses sealed classes in order to make these classes inaccessible to third - party developers who
might want to derive their own classes from them. For example, string is a sealed class.

 Declaring a method as sealed serves a similar purpose as for a class:

class MyClass
{
 public sealed override void FinalMethod()
 {
 // etc.
 }
}
class DerivedClass : MyClass
{
 public override void FinalMethod() // wrong. Will give compilation error
 {
 }
}

 In order to use the sealed keyword on a method or property, it must have first been overridden from a
base class. If you do not want a method or property in a base class overridden, then don ’ t mark it as
virtual.

 Constructors of Derived Classes
 Chapter 3 discusses how constructors can be applied to individual classes. An interesting question arises
as to what happens when you start defining your own constructors for classes that are part of a hierarchy,
inherited from other classes that may also have custom constructors.

c04.indd 107c04.indd 107 2/19/08 5:01:29 PM2/19/08 5:01:29 PM

108

Part I: The C# Language

 Assume that you have not defined any explicit constructors for any of your classes. This means that the
compiler supplies default zeroing - out constructors for all your classes. There is actually quite a lot going on
under the hood when that happens, but the compiler is able to arrange it so that things work out nicely
throughout the class hierarchy and every field in every class gets initialized to whatever its default value is.
When you add a constructor of your own, however, you are effectively taking control of construction. This
has implications right down through the hierarchy of derived classes, and you have to make sure that you
don ’ t inadvertently do anything to prevent construction through the hierarchy from taking place smoothly.

 You might be wondering why there is any special problem with derived classes. The reason is that when you
create an instance of a derived class, there is actually more than one constructor at work. The constructor of
the class you instantiate isn ’ t by itself sufficient to initialize the class — the constructors of the base classes
must also be called. That ’ s why we ’ ve been talking about construction through the hierarchy.

 To see why base class constructors must be called, you ’ re going to develop an example based on
a cell phone company called MortimerPhones. The example contains an abstract base class,
 GenericCustomer , which represents any customer. There is also a (non - abstract) class,
 Nevermore60Customer , that represents any customer on a particular rate called the Nevermore60
rate. All customers have a name, represented by a private field. Under the Nevermore60 rate, the first
few minutes of the customer ’ s call time are charged at a higher rate, necessitating the need for the
field highCostMinutesUsed , which details how many of these higher - cost minutes each customer has
used up. The class definitions look like this:

abstract class GenericCustomer
{
 private string name;
 // lots of other methods etc.
}
class Nevermore60Customer : GenericCustomer
{
 private uint highCostMinutesUsed;
 // other methods etc.
}

 We won ’ t worry about what other methods might be implemented in these classes, because we are
concentrating solely on the construction process here. And if you download the sample code for this
chapter, you ’ ll find that the class definitions include only the constructors.

 Take a look at what happens when you use the new operator to instantiate a Nevermore60Customer :

 GenericCustomer customer = new Nevermore60Customer();

 Clearly, both of the member fields name and highCostMinutesUsed must be initialized when
customer is instantiated. If you don ’ t supply constructors of your own, but rely simply on the default
constructors, then you ’ d expect name to be initialized to the null reference, and highCostMinutesUsed
initialized to zero. Let ’ s look in a bit more detail at how this actually happens.

 The highCostMinutesUsed field presents no problem: the default Nevermore60Customer constructor
supplied by the compiler will initialize this field to zero.

 What about name ? Looking at the class definitions, it ’ s clear that the Nevermore60Customer constructor
can ’ t initialize this value. This field is declared as private, which means that derived classes don ’ t have access
to it. So, the default Nevermore60Customer constructor simply won ’ t know that this field exists. The only
code items that have that knowledge are other members of GenericCustomer . This means that if name is
going to be initialized, that ’ ll have to be done by some constructor in GenericCustomer . No matter how big
your class hierarchy is, this same reasoning applies right down to the ultimate base class, System.Object .

 Now that you have an understanding of the issues involved, you can look at what actually happens
whenever a derived class is instantiated. Assuming that default constructors are used throughout, the

c04.indd 108c04.indd 108 2/19/08 5:01:29 PM2/19/08 5:01:29 PM

109

Chapter 4: Inheritance

compiler first grabs the constructor of the class it is trying to instantiate, in this case Nevermore60Customer .
The first thing that the default Nevermore60Customer constructor does is attempt to run the default
constructor for the immediate base class, GenericCustomer . The GenericCustomer constructor
attempts to run the constructor for its immediate base class, System.Object . System.Object doesn ’ t
have any base classes, so its constructor just executes and returns control to the GenericCustomer
constructor. That constructor now executes, initializing name to null , before returning control
to the Nevermore60Customer constructor. That constructor in turn executes, initializing
 highCostMinutesUsed to zero, and exits. At this point, the Nevermore60Customer instance
has been successfully constructed and initialized.

 The net result of all this is that the constructors are called in order of System.Object first, then
progressing down the hierarchy until the compiler reaches the class being instantiated. Notice also that in
this process, each constructor handles initialization of the fields in its own class. That ’ s how it should
normally work, and when you start adding your own constructors you should try to stick to that principle.

 Notice the order in which this happens. It ’ s always the base class constructors that get called first. This
means that there are no problems with a constructor for a derived class invoking any base class methods,
properties, and any other members that it has access to, because it can be confident that the base class
has already been constructed and its fields initialized. It also means that if the derived class doesn ’ t like
the way that the base class has been initialized, it can change the initial values of the data, provided that
it has access to do so. However, good programming practice almost invariably means you ’ ll try to
prevent that situation from occurring if you can, and you will trust the base class constructor to deal
with its own fields.

 Now that you know how the process of construction works, you can start fiddling with it by adding
your own constructors.

 Adding a Constructor in a Hierarchy
 We ’ ll take the easiest case first and see what happens if you simply replace the default constructor
somewhere in the hierarchy with another constructor that takes no parameters. Suppose that you decide
that you want everyone ’ s name to be initially set to the string “ < no name > ” instead of to the null
reference. You ’ d modify the code in GenericCustomer like this:

 public abstract class GenericCustomer
 {
 private string name;
 public GenericCustomer()
 : base() // We could omit this line without affecting the compiled code.
 {
 name = “ < no name > ”;
 }

 Adding this code will work fine. Nevermore60Customer still has its default constructor, so the sequence
of events described earlier will proceed as before, except that the compiler will use the custom
 GenericCustomer constructor instead of generating a default one, so the name field will always be
initialized to “ < no name > ” as required.

 Notice that in your constructor you ’ ve added a call to the base class constructor before the
 GenericCustomer constructor is executed, using a syntax similar to that used earlier when we discussed
how to get different overloads of constructors to call each other. The only difference is that this time you
use the base keyword instead of this to indicate that it ’ s a constructor to the base class rather than a
constructor to the current class you want to call. There are no parameters in the brackets after the base
keyword — that ’ s important because it means you are not passing any parameters to the base constructor,
so the compiler will have to look for a parameterless constructor to call. The result of all this is that the
compiler will inject code to call the System.Object constructor, just as would happen by default anyway.

c04.indd 109c04.indd 109 2/19/08 5:01:30 PM2/19/08 5:01:30 PM

110

Part I: The C# Language

 In fact, you can omit that line of code and write the following (as was done for most of the constructors
so far in this chapter):

 public GenericCustomer()
 {
 name = “ < no name > ”;
 }

 If the compiler doesn ’ t see any reference to another constructor before the opening curly brace,
it assumes that you intended to call the base class constructor; this fits in with the way that default
constructors work.

 The base and this keywords are the only keywords allowed in the line that calls another constructor.
Anything else causes a compilation error. Also note that only one other constructor can be specified.

 So far, this code works fine. One way to mess up the progression through the hierarchy of constructors,
however, is to declare a constructor as private :

 private GenericCustomer()
 {
 name = “ < no name > ”;
 }

 If you try this, you ’ ll find you get an interesting compilation error, which could really throw you if you
don ’ t understand how construction down a hierarchy works:

‘Wrox.ProCSharp.GenericCustomer()’ is inaccessible due to its protection level

 The interesting thing is that the error occurs not in the GenericCustomer class, but in the derived class,
 Nevermore60Customer . What ’ s happened is that the compiler has tried to generate a default constructor
for Nevermore60Customer but has not been able to because the default constructor is supposed to
invoke the no - parameter GenericCustomer constructor. By declaring that constructor as private ,
you ’ ve made it inaccessible to the derived class. A similar error occurs if you supply a constructor to
GenericCustomer , which takes parameters, but at the same time you fail to supply a no - parameter
constructor. In this case, the compiler will not generate a default constructor for GenericCustomer , so
when it tries to generate the default constructors for any derived class, it will again find that it can ’ t
because a no - parameter base class constructor is not available. A workaround would be to add your own
constructors to the derived classes, even if you don ’ t actually need to do anything in these constructors, so
that the compiler doesn ’ t try to generate any default constructors for them.

 Now that you have all the theoretical background you need, you ’ re ready to move on to an example of
how you can neatly add constructors to a hierarchy of classes. In the next section, you start adding
constructors that take parameters to the MortimerPhones example.

 Adding Constructors with Parameters to a Hierarchy
 You ’ re going to start with a one - parameter constructor for GenericCustomer , which specifies that
customers can be instantiated only when they supply their names:

 abstract class GenericCustomer
 {
 private string name;
 public GenericCustomer(string name)
 {
 this.name = name;
 }

 So far, so good. However, as mentioned previously, this will cause a compilation error when the compiler
tries to create a default constructor for any derived classes because the default compiler - generated

c04.indd 110c04.indd 110 2/19/08 5:01:30 PM2/19/08 5:01:30 PM

111

Chapter 4: Inheritance

constructors for Nevermore60Customer will try to call a no - parameter GenericCustomer constructor,
and GenericCustomer does not possess such a constructor. Therefore, you ’ ll need to supply your own
constructors to the derived classes to avoid a compilation error:

class Nevermore60Customer : GenericCustomer
{
 private uint highCostMinutesUsed;
 public Nevermore60Customer(string name)
 : base(name)
 {
 }

 Now instantiation of Nevermore60Customer objects can occur only when a string containing
the customer ’ s name is supplied, which is what you want anyway. The interesting thing is what the
 Nevermore60Customer constructor does with this string. Remember that it can ’ t initialize the name field
itself because it has no access to private fields in its base class. Instead, it passes the name through to the
base class for the GenericCustomer constructor to handle. It does this by specifying that the base class
constructor to be executed first is the one that takes the name as a parameter. Other than that, it doesn ’ t
take any action of its own.

 Next, you ’ re going to investigate what happens if you have different overloads of the constructor as well
as a class hierarchy to deal with. To this end, assume that Nevermore60 customers may have been
referred to MortimerPhones by a friend as part of one of those sign - up - a - friend - and - get - a - discount
offers. This means that when you construct a Nevermore60Customer , you may need to pass in the
referrer ’ s name as well. In real life, the constructor would have to do something complicated with the
name, such as process the discount, but here you ’ ll just store the referrer ’ s name in another field.

 The Nevermore60Customer definition will now look like this:

class Nevermore60Customer : GenericCustomer
{
 public Nevermore60Customer(string name, string referrerName)
 : base(name)
 {
 this.referrerName = referrerName;
 }

 private string referrerName;
 private uint highCostMinutesUsed;

 The constructor takes the name and passes it to the GenericCustomer constructor for processing.
 referrerName is the variable that is your responsibility here, so the constructor deals with that
parameter in its main body.

 However, not all Nevermore60Customers will have a referrer, so you still need a constructor that
doesn ’ t require this parameter (or a constructor that gives you a default value for it). In fact, you will
specify that if there is no referrer, then the referrerName field should be set to “ < None > ” , using the
following one - parameter constructor:

public Nevermore60Customer(string name)
 : this(name, “ < None > ”)
{
}

 You now have all your constructors set up correctly. It ’ s instructive to examine the chain of events that
now occurs when you execute a line like this:

GenericCustomer customer = new Nevermore60Customer(“Arabel Jones”);

c04.indd 111c04.indd 111 2/19/08 5:01:31 PM2/19/08 5:01:31 PM

112

Part I: The C# Language

 The compiler sees that it needs a one - parameter constructor that takes one string, so the constructor it
will identify is the last one that you ’ ve defined:

public Nevermore60Customer(string Name)
 : this(Name, “ < None > ”)

 When you instantiate customer , this constructor will be called. It immediately transfers control to the
corresponding Nevermore60Customer two - parameter constructor, passing it the values “ Arabel Jones ” ,
and “ < None > ” . Looking at the code for this constructor, you see that it in turn immediately passes control
to the one - parameter GenericCustomer constructor, giving it the string “ Arabel Jones ” , and in turn that
constructor passes control to the System.Object default constructor. Only now do the constructors
execute. First, the System.Object constructor executes. Next comes the GenericCustomer constructor,
which initializes the name field. Then the Nevermore60Customer two - parameter constructor gets control
back, and sorts out initializing the referrerName to “ < None > ” . Finally, the Nevermore60Customer one -
 parameter constructor gets to execute; this constructor doesn ’ t do anything else.

 As you can see, this is a very neat and well - designed process. Each constructor handles initialization of the
variables that are obviously its responsibility, and, in the process, your class is correctly instantiated and
prepared for use. If you follow the same principles when you write your own constructors for your classes,
you should find that even the most complex classes get initialized smoothly and without any problems.

 Modifiers
 You have already encountered quite a number of so - called modifiers — keywords that can be applied to
a type or to a member. Modifiers can indicate the visibility of a method, such as public or private , or
the nature of an item, such as whether a method is virtual or abstract . C# has a number of modifiers,
and at this point it ’ s worth taking a minute to provide the complete list.

 Visibility Modifiers
 Visibility modifiers indicate which other code items can view an item.

 Modifier Applies To Description

 public Any types or members The item is visible to any other code.

 protected Any member of a type,
also any nested type

 The item is visible only to any derived type.

 internal Any member of a type,
also any nested type

 The item is visible only within its contain-
ing assembly.

 private Any types or members The item is visible only inside the type to
which it belongs.

 protected internal Any member of a type,
also any nested type

 The item is visible to any code within its
containing assembly and also to any code
inside a derived type.

 Note that type definitions can be internal or public, depending on whether you want the type to be
visible outside its containing assembly.

c04.indd 112c04.indd 112 2/19/08 5:01:31 PM2/19/08 5:01:31 PM

113

Chapter 4: Inheritance

public class MyClass
{
 // etc.

 You cannot define types as protected, private, or protected internal because these visibility levels would be
meaningless for a type contained in a namespace. Hence these visibilities can be applied only to members.
However, you can define nested types (that is, types contained within other types) with these visibilities
because in this case the type also has the status of a member. Hence, the following code is correct:

public class OuterClass
{
 protected class InnerClass
 {
 // etc.
 }
 // etc.
}

 If you have a nested type, the inner type is always able to see all members of the outer type. Therefore, with
the preceding code, any code inside InnerClass always has access to all members of OuterClass , even
where those members are private.

 Other Modifiers
 The modifiers in the following table can be applied to members of types and have various uses. A few of
these modifiers also make sense when applied to types.

 Modifier Applies To Description

 new Function members The member hides an inherited member with the same
signature.

 static All members The member does not operate on a specific instance of
the class.

 virtual Classes and function
members only

 The member can be overridden by
a derived class.

 abstract Function members
only

 A virtual member that defines the signature of the member,
but doesn ’ t provide an implementation.

 override Function members
only

 The member overrides an inherited virtual or abstract
member.

 sealed Classes, methods,
and properties

 For classes, the class cannot be inherited from. For properties
and methods, the member overrides an inherited virtual
member, but cannot be overridden by any members in any
derived classes. Must be used in conjunction with
override .

 extern Static [DllImport]
methods only

 The member is implemented externally, in a different
language.

c04.indd 113c04.indd 113 2/19/08 5:01:31 PM2/19/08 5:01:31 PM

114

Part I: The C# Language

Of these, internal and protected internal are the ones that are new to C# and the .NET Framework.
internal acts in much the same way as public, but access is confined to other code in the same
assembly — that is, code that is being compiled at the same time in the same program. You can use internal
to ensure that all the other classes that you are writing have access to a particular member, while at the same
time hiding it from other code written by other organizations. protected internal combines protected and
internal, but in an OR sense, not an AND sense. A protected internal member can be seen by any code in the
same assembly. It can also be seen by any derived classes, even those in other assemblies.

 Interfaces
 As mentioned earlier, by deriving from an interface, a class is declaring that it implements certain
functions. Because not all object - oriented languages support interfaces, this section examines C# ’ s
implementation of interfaces in detail.

 Developers familiar with COM should be aware that, although, conceptually, C# interfaces are similar
to COM interfaces, they are not the same thing. The underlying architecture is different. For example,
C# interfaces are not derived from IUnknown . A C# interface provides a contract stated in terms of
.NET functions. Unlike a COM interface, a C# interface does not represent any kind of binary standard.

 This section illustrates interfaces by presenting the complete definition of one of the interfaces that has
been predefined by Microsoft, System.IDisposable . IDisposable contains one method, Dispose() ,
which is intended to be implemented by classes to clean up code:

public interface IDisposable
{
 void Dispose();
}

 This code shows that declaring an interface works syntactically in pretty much the same way as
declaring an abstract class. You should be aware, however, that it is not permitted to supply
implementations of any of the members of an interface. In general, an interface can only contain
declarations of methods, properties, indexers, and events.

 You can never instantiate an interface; it contains only the signatures of its members. An interface has
neither constructors (how can you construct something that you can ’ t instantiate?) nor fields (because
that would imply some internal implementation). An interface definition is also not allowed to contain
operator overloads, although that ’ s not because there is any problem in principle with declaring them —
 there isn ’ t; it is because interfaces are usually intended to be public contracts, and having operator
overloads would cause some incompatibility problems with other .NET languages, such as Visual Basic
.NET, which do not support operator overloading.

 It is also not permitted to declare modifiers on the members in an interface definition. Interface members
are always implicitly public , and cannot be declared as virtual or static . That ’ s up to implementing
classes to decide. It is therefore fine for implementing classes to declare access modifiers, as is done in
the example in this section.

 Take for example IDisposable . If a class wants to declare publicly that it implements the Dispose()
method, it must implement IDisposable — which in C# terms means that the class derives from
 IDisposable .

class SomeClass : IDisposable
{
 // This class MUST contain an implementation of the
 // IDisposable.Dispose() method, otherwise
 // you get a compilation error.

c04.indd 114c04.indd 114 2/19/08 5:01:32 PM2/19/08 5:01:32 PM

115

Chapter 4: Inheritance

 public void Dispose()
 {
 // implementation of Dispose() method
 }
 // rest of class
}

 In this example, if SomeClass derives from IDisposable but doesn ’ t contain a Dispose()
implementation with the exact same signature as defined in IDisposable , you get a compilation error
because the class would be breaking its agreed - on contract to implement IDisposable . Of course,
there ’ s no problem for the compiler about a class having a Dispose() method but not deriving from
 IDisposable . The problem, then, would be that other code would have no way of recognizing that
 SomeClass has agreed to support the IDisposable features.

 IDisposable is a relatively simple interface because it defines only one method. Most interfaces will
contain more members.

 Another good example of an interface is provided by the foreach loop in C#. In principle, the
 foreach loop works internally by querying the object to find out whether it implements an interface
called System.Collections.IEnumerable . If it does, the C# compiler will inject IL code, which uses
the methods on this interface to iterate through the members of the collection. If it doesn ’ t, foreach
will raise an exception. The IEnumerable interface is examined in more detail in Chapter 10 ,
 “ Collections. ” It ’ s worth pointing out that both IEnumerable and IDisposable are somewhat special
interfaces to the extent that they are actually recognized by the C# compiler, which takes account of
these interfaces in the code that it generates. Obviously, any interfaces that you define yourself won ’ t
be so privileged!

 Defining and Implementing Interfaces
 This section illustrates how to define and use interfaces through developing a short program that follows
the interface inheritance paradigm. The example is based on bank accounts. Assume that you are writing
code that will ultimately allow computerized transfers between bank accounts. And assume for this
example that there are many companies that may implement bank accounts, but they have all mutually
agreed that any classes that represent bank accounts will implement an interface, IBankAccount , which
exposes methods to deposit or withdraw money, and a property to return the balance. It is this interface
that will allow outside code to recognize the various bank account classes implemented by different
bank accounts. Although the aim is to allow the bank accounts to talk to each other to allow transfers of
funds between accounts, we won ’ t introduce that feature just yet.

 To keep things simple, you will keep all the code for the example in the same source file. Of course, if
something like the example were used in real life, you could surmise that the different bank account
classes would not only be compiled to different assemblies, but would also be hosted on different
machines owned by the different banks. That ’ s all much too complicated for our purposes here. However,
to maintain some attempt at realism, you will define different namespaces for the different companies.

 To begin, you need to define the IBankAccount interface:

namespace Wrox.ProCSharp
{
 public interface IBankAccount
 {
 void PayIn(decimal amount);
 bool Withdraw(decimal amount);
 decimal Balance

(continued)

c04.indd 115c04.indd 115 2/19/08 5:01:32 PM2/19/08 5:01:32 PM

116

Part I: The C# Language

 {
 get;
 }
 }
}

 Notice the name of the interface, IBankAccount . It ’ s a convention that an interface name traditionally
starts with the letter I, so that you know that it ’ s an interface.

 Chapter 2 , “ C# Basics, ” pointed out that, in most cases, .NET usage guidelines discourage the so - called
Hungarian notation in which names are preceded by a letter that indicates the type of object being de-
fined. Interfaces are one of the few exceptions in which Hungarian notation is recommended.

 The idea is that you can now write classes that represent bank accounts. These classes don ’ t have to be
related to each other in any way; they can be completely different classes. They will, however, all declare
that they represent bank accounts by the mere fact that they implement the IBankAccount interface.

 Let ’ s start off with the first class, a saver account run by the Royal Bank of Venus:

namespace Wrox.ProCSharp.VenusBank
{
 public class SaverAccount : IBankAccount
 {
 private decimal balance;
 public void PayIn(decimal amount)
 {
 balance += amount;
 }
 public bool Withdraw(decimal amount)
 {
 if (balance > = amount)
 {
 balance -= amount;
 return true;
 }
 Console.WriteLine(“Withdrawal attempt failed.”);
 return false;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
 public override string ToString()
 {
 return String.Format(“Venus Bank Saver: Balance = {0,6:C}”, balance);
 }
 }
}

 It should be pretty obvious what the implementation of this class does. You maintain a private field,
 balance , and adjust this amount when money is deposited or withdrawn. You display an error message
if an attempt to withdraw money fails because there is insufficient money in the account. Notice also

(continued)

c04.indd 116c04.indd 116 2/19/08 5:01:32 PM2/19/08 5:01:32 PM

117

Chapter 4: Inheritance

that, because we want to keep the code as simple as possible, you are not implementing extra properties,
such as the account holder ’ s name! In real life that would be pretty essential information, but for this
example it ’ s unnecessarily complicated.

 The only really interesting line in this code is the class declaration:

public class SaverAccount : IBankAccount

 You ’ ve declared that SaverAccount is derived from one interface, IBankAccount , and you have not
explicitly indicated any other base classes (which of course means that SaverAccount is derived directly
from System.Object). By the way, derivation from interfaces acts completely independently from
derivation from classes.

 Being derived from IBankAccount means that SaverAccount gets all the members of IBankAccount .
But because an interface doesn ’ t actually implement any of its methods, SaverAccount must provide its
own implementations of all of them. If any implementations are missing, you can rest assured that the
compiler will complain. Recall also that the interface just indicates the presence of its members. It ’ s up to
the class to decide if it wants any of them to be virtual or abstract (though abstract functions are
of course only allowed if the class itself is abstract). For this particular example, you don ’ t have any
reason to make any of the interface functions virtual.

 To illustrate how different classes can implement the same interface, assume that the Planetary Bank of
Jupiter also implements a class to represent one of its bank accounts — a Gold Account:

namespace Wrox.ProCSharp.JupiterBank
{
 public class GoldAccount : IBankAccount
 {
 // etc
 }
}

 We won ’ t present details of the GoldAccount class here; in the sample code, it ’ s basically identical to the
implementation of SaverAccount . We stress that GoldAccount has no connection with SaverAccount ,
other than that both happen to implement the same interface.

 Now that you have your classes, you can test them out. You first need a couple of using statements:

using System;
using Wrox.ProCSharp;
using Wrox.ProCSharp.VenusBank;
using Wrox.ProCSharp.JupiterBank;

 Now you need a Main() method:

namespace Wrox.ProCSharp
{
 class MainEntryPoint
 {
 static void Main()
 {
 IBankAccount venusAccount = new SaverAccount();
 IBankAccount jupiterAccount = new GoldAccount();
 venusAccount.PayIn(200);
 venusAccount.Withdraw(100);
 Console.WriteLine(venusAccount.ToString());
 jupiterAccount.PayIn(500);

(continued)

c04.indd 117c04.indd 117 2/19/08 5:01:33 PM2/19/08 5:01:33 PM

118

Part I: The C# Language

 jupiterAccount.Withdraw(600);
 jupiterAccount.Withdraw(100);
 Console.WriteLine(jupiterAccount.ToString());
 }
 }
}

 This code (which if you download the sample, you can find in the file BankAccounts.cs) produces this
output:

C: > BankAccounts
Venus Bank Saver: Balance = £ 100.00
Withdrawal attempt failed.
Jupiter Bank Saver: Balance = £ 400.00

 The main point to notice about this code is the way that you have declared both your reference variables
as IBankAccount references. This means that they can point to any instance of any class that implements
this interface. However, it also means that you can call only methods that are part of this interface
through these references — if you want to call any methods implemented by a class that are not part of the
interface, you need to cast the reference to the appropriate type. In the example code, you were able to
call ToString() (not implemented by IBankAccount) without any explicit cast, purely because
 ToString() is a System.Object method, so the C# compiler knows that it will be supported by any
class (put differently, the cast from any interface to System.Object is implicit). Chapter 6 , “ Operators
and Casts, ” covers the syntax for how to perform casts.

 Interface references can in all respects be treated like class references — but the power of an interface
reference is that it can refer to any class that implements that interface. For example, this allows you to
form arrays of interfaces, where each element of the array is a different class:

IBankAccount[] accounts = new IBankAccount[2];
accounts[0] = new SaverAccount();
accounts[1] = new GoldAccount();

Note, however, that we’d get a compiler error if we tried something like this:

accounts[1] = new SomeOtherClass(); // SomeOtherClass does NOT implement
 // IBankAccount: WRONG!!

 This causes a compilation error similar to this:

Cannot implicitly convert type ‘Wrox.ProCSharp. SomeOtherClass’ to ‘Wrox.ProCSharp.
IBankAccount’

 Derived Interfaces
 It ’ s possible for interfaces to inherit from each other in the same way that classes do. This concept is
illustrated by defining a new interface, ITransferBankAccount , which has the same features as
 IBankAccount but also defines a method to transfer money directly to a different account:

namespace Wrox.ProCSharp
{
 public interface ITransferBankAccount : IBankAccount
 {
 bool TransferTo(IBankAccount destination, decimal amount);
 }
}

(continued)

c04.indd 118c04.indd 118 2/19/08 5:01:33 PM2/19/08 5:01:33 PM

119

Chapter 4: Inheritance

 Because ITransferBankAccount is derived from IBankAccount , it gets all the members of
 IBankAccount as well as its own. That means that any class that implements (derives from)
ITransferBankAccount must implement all the methods of IBankAccount , as well as the new
TransferTo() method defined in ITransferBankAccount . Failure to implement all of these methods
will result in a compilation error.

 Note that the TransferTo() method uses an IBankAccount interface reference for the destination
account. This illustrates the usefulness of interfaces: when implementing and then invoking this method,
you don ’ t need to know anything about what type of object you are transferring money to — all you
need to know is that this object implements IBankAccount .

 To illustrate ITransferBankAccount , assume that the Planetary Bank of Jupiter also offers a current
account. Most of the implementation of the CurrentAccount class is identical to the implementations of
 SaverAccount and GoldAccount (again, this is just to keep this example simple — that won ’ t normally
be the case), so in the following code just the differences are highlighted:

public class CurrentAccount : ITransferBankAccount
{
 private decimal balance;
 public void PayIn(decimal amount)
 {
 balance += amount;
 }
 public bool Withdraw(decimal amount)
 {
 if (balance > = amount)
 {
 balance -= amount;
 return true;
 }
 Console.WriteLine(“Withdrawal attempt failed.”);
 return false;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }

 public bool TransferTo(IBankAccount destination, decimal amount)
 {
 bool result;
 if ((result == Withdraw(amount))
 destination.PayIn(amount);
 return result;
 }

 public override string ToString()
 {

 return String.Format(“Jupiter Bank Current Account: Balance = {0,6:C}”,
balance);

 }
}

c04.indd 119c04.indd 119 2/19/08 5:01:33 PM2/19/08 5:01:33 PM

120

Part I: The C# Language

 The class can be demonstrated with this code:

static void Main()
{
 IBankAccount venusAccount = new SaverAccount();
 ITransferBankAccount jupiterAccount = new CurrentAccount();
 venusAccount.PayIn(200);
 jupiterAccount.PayIn(500);
 jupiterAccount.TransferTo(venusAccount, 100);
 Console.WriteLine(venusAccount.ToString());
 Console.WriteLine(jupiterAccount.ToString());
}

 This code (CurrentAccount.cs) produces the following output, which, as you can verify, shows that
the correct amounts have been transferred:

C: > CurrentAccount
Venus Bank Saver: Balance = £ 300.00
Jupiter Bank Current Account: Balance = £ 400.00

 Summary
 This chapter examined how to code inheritance in C#. You have seen that C# offers rich support for both
multiple interface and single implementation inheritance. You have also learned that C# provides a
number of useful syntactical constructs designed to assist in making code more robust, such as the
 override keyword, which indicates when a function should override a base function; the new keyword,
which indicates when a function hides a base function; and rigid rules for constructor initializers that are
designed to ensure that constructors are designed to interoperate in a robust manner.

c04.indd 120c04.indd 120 2/19/08 5:01:34 PM2/19/08 5:01:34 PM

 Arrays

 If you need to work with multiple objects of the same type, you can use collections and arrays.
C# has a special notation to declare and use arrays. Behind the scenes, the Array class comes into
play, which offers several methods to sort and filter the elements inside the array.

 Using an enumerator, you can iterate through all the elements of an array.

 This chapter discusses the following:

❑ Simple arrays

❑ Multidimensional arrays

❑ Jagged arrays

❑ The Array class

❑ Interfaces for arrays

❑ Enumerations

 Simple Arrays
 If you need to use multiple objects of the same type, you can use an array. An array is a data
structure that contains a number of elements of the same type.

 Array Declaration
 An array is declared by defining the type of the elements inside the array followed by empty
brackets and a variable name; for example, an array containing integer elements is declared
like this:

int[] myArray;

c05.indd 121c05.indd 121 2/19/08 5:01:46 PM2/19/08 5:01:46 PM

Part I: The C# Language

122

 Array Initialization
 After declaring an array, memory must be allocated to hold all the elements of the array. An array is a
reference type, so memory on the heap must be allocated. You do this by initializing the variable of the
array using the new operator with the type and the number of elements inside the array. Here you
specify the size of the array:

myArray = new int[4];

 Value and reference types are covered in Chapter 3 , “ Objects and Types. ”

 With this declaration and initialization, the variable myArray references four integer values that are
allocated on the managed heap (see Figure 5 - 1).

Stack

myArray

Managed Heap

int

int

int

int

 Figure 5 - 1

The array cannot be resized after the size was specified without copying all
elements. If you don’t know the number of elements that should be in the array in
advance, you can use a collection. Collections are covered in Chapter 10,
“Collections.”

 Instead of using a separate line for the declaration and initialization, you can declare and initialize an
array in a single line:

int[] myArray = new int[4];

 You can also assign values to every array element using an array initializer. Array initializers can be used
only while declaring an array variable, not after the array is declared.

int[] myArray = new int[4] {4, 7, 11, 2};

 If you initialize the array using curly brackets, the size of the array can also be left out, because the
compiler can count the number of elements itself:

int[] myArray = new int[] {4, 7, 11, 2};

 There ’ s even a shorter form using the C# compiler. Using curly brackets you can write the array
declaration and initialization. The code generated from the compiler is the same as in the
previous example.

int[] myArray = {4, 7, 11, 2};

c05.indd 122c05.indd 122 2/19/08 5:01:48 PM2/19/08 5:01:48 PM

Chapter 5: Arrays

123

 Accessing Array Elements
 After an array is declared and initialized, you can access the array elements using an indexer. Arrays
only support indexers that have integer parameters.

 With custom classes, you can also create indexers that support other types. You can read about creating
custom indexers in Chapter 6 , “ Operators and Casts. ”

 With the indexer, you pass the element number to access the array. The indexer always starts with a
value of 0 for the first element. The highest number you can pass to the indexer is the number of
elements minus one, because the index starts at zero. In the following example, the array myArray is
declared and initialized with four integer values. The elements can be accessed with indexer values 0, 1,
2, and 3.

int[] myArray = new int[] {4, 7, 11, 2};
int v1 = myArray[0]; // read first element
int v2 = myArray[1]; // read second element
myArray[3] = 44; // change fourth element

If you use a wrong indexer value where no element exists, an exception of type
IndexOutOfRangeException is thrown.

 If you don ’ t know the number of elements in the array, you can use the Length property that is used in
this for statement:

 for (int i = 0; i < myArray.Length; i++)
 {
 Console.WriteLine(myArray[i]);
 }

 Instead of using a for statement to iterate through all elements of the array, you can also use the
 foreach statement:

 foreach (int val in myArray)
 {
 Console.WriteLine(val);
 }

 The foreach statement makes use of the IEnumerable and IEnumerator interfaces, which are
 discussed later in this chapter.

 Using Reference Types
 In addition to being able to declare arrays of predefined types, you can also declare arrays of custom
types. Let ’ s start with this Person class with two constructors, the properties FirstName and LastName
using auto - implemented properties, and an override of the ToString() method from the Object class:

public class Person
{
 public Person()
 {
 }

 public Person(string firstName, string lastName)
 (continued)

c05.indd 123c05.indd 123 2/19/08 5:01:48 PM2/19/08 5:01:48 PM

Part I: The C# Language

124

 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public override string ToString()
 {
 return String.Format(“{0} {1}”,
 FirstName, LastName);
 }
}

 Declaring an array of two Person elements is similar to declaring an array of int :

Person[] myPersons = new Person[2];

 However, you must be aware that if the elements in the array are reference types, memory must be
allocated for every array element. In case you use an item in the array where no memory was allocated, a
 NullReferenceException is thrown.

 Chapter 14 , “ Errors and Exceptions, ” gives you all the information you need about errors and
exceptions.

 You can allocate every element of the array by using an indexer starting from 0:

myPersons[0] = new Person(“Ayrton”, “Senna”);
myPersons[1] = new Person(“Michael”, “Schumacher”);

 Figure 5 - 2 shows the objects in the managed heap with the Person array. myPersons is a variable that is
stored on the stack. This variable references an array of Person elements that is stored on the managed
heap. This array has enough space for two references. Every item in the array references a Person object
that is also stored in the managed heap.

myPersons Reference Person

Person

Reference

Managed HeapStack

 Figure 5 - 2

(continued)

 As with the int type, you can also use an array initializer with custom types:

Person[] myPersons = { new Person(“Ayrton”, “Senna”),
 new Person(“Michael”,
 “Schumacher”) };

c05.indd 124c05.indd 124 2/19/08 5:01:48 PM2/19/08 5:01:48 PM

Chapter 5: Arrays

125

 Multidimensional Arrays
 Ordinary arrays (also known as 1 - dimensional arrays) are indexed by a single integer. A multidimensional
array is indexed by two or more integers.

 Figure 5 - 3 shows the mathematical notation for a 2 - dimensional array that has three rows and three
columns. The first row has the values 1, 2, and 3, and the third row has the values 7, 8, and 9.

1, 2, 3
4, 5, 6
7, 8, 9

a �

 Figure 5 - 3

 Declaring this 2 - dimensional array with C# is done by putting a comma inside the brackets. The array is
initialized by specifying the size of every dimension (also known as rank). Then the array elements can
be accessed by using two integers with the indexer:

int[,] twodim = new int[3, 3];
twodim[0, 0] = 1;
twodim[0, 1] = 2;
twodim[0, 2] = 3;
twodim[1, 0] = 4;
twodim[1, 1] = 5;
twodim[1, 2] = 6;
twodim[2, 0] = 7;
twodim[2, 1] = 8;
twodim[2, 2] = 9;

 You cannot change the rank after declaring an array.

 You can also initialize the 2 - dimensional array by using an array indexer if you know the value for the
elements in advance. For the initialization of the array, one outer curly bracket is used, and every row is
initialized by using curly brackets inside the outer curly brackets.

int[,] twodim = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
 };

 When using an array initializer, you must initialize every element of the array. It is not possible to leave
the initialization for some values.

 By using two commas inside the brackets, you can declare a 3 - dimensional array:

int[,,] threedim = {
 { { 1, 2 }, { 3, 4 } },
 { { 5, 6 }, { 7, 8 } },
 { { 9, 10 }, { 11, 12 } }
 };

Console.WriteLine(threedim[0, 1, 1]);

c05.indd 125c05.indd 125 2/19/08 5:01:49 PM2/19/08 5:01:49 PM

Part I: The C# Language

126

 Jagged Arrays
 A 2 - dimensional array has a rectangular size (for example, 3 × 3 elements). A jagged array is more
flexible in sizing the array. With a jagged array every row can have a different size.

 Figure 5 - 4 contrasts a 2 - dimensional array that has 3 × 3 elements with a jagged array. The jagged array
shown contains three rows where the first row has two elements, the second row has six elements, and
the third row has three elements.

Two-Dimensional Array Jagged Array

1 2 1 2

3 4 5 6 7 8

9 10 11

3

4 5 6

7 8 9

 Figure 5 - 4

 A jagged array is declared by placing one pair of opening and closing brackets after another. With the
initialization of the jagged array, only the size that defines the number of rows in the first pair of brackets
is set. The second brackets that define the number of elements inside the row are kept empty because
every row has a different number of elements. Next, the element number of the rows can be set
for every row:

 int[][] jagged = new int[3][];
 jagged[0] = new int[2] { 1, 2 };
 jagged[1] = new int[6] { 3, 4, 5, 6, 7, 8 };
 jagged[2] = new int[3] { 9, 10, 11 };

 Iterating through all elements of a jagged array can be done with nested for loops. In the outer for loop
every row is iterated, and the inner for loop iterates through every element inside a row.

 for (int row = 0; row < jagged.Length; row++)
 {
 for (int element = 0;
 element < jagged[row].Length; element++)
 {
 Console.WriteLine(
 “row: {0}, element: {1}, value: {2}”,
 row, element, jagged[row][element]);
 }
 }

 The outcome of the iteration displays the rows and every element within the rows:

row: 0, element: 0, value: 1
row: 0, element: 1, value: 2
row: 1, element: 0, value: 3
row: 1, element: 1, value: 4
row: 1, element: 2, value: 5
row: 1, element: 3, value: 6
row: 1, element: 4, value: 7
row: 1, element: 5, value: 8
row: 2, element: 1, value: 9
row: 2, element: 2, value: 10
row: 2, element: 3, value: 11

c05.indd 126c05.indd 126 2/19/08 5:01:49 PM2/19/08 5:01:49 PM

Chapter 5: Arrays

127

 Array Class
 Declaring an array with brackets is a C# notation of using the Array class. Using the C# syntax behind
the scenes creates a new class that derives from the abstract base class Array . It is possible, in this way,
to use methods and properties that are defined with the Array class with every C# array. For example,
you ’ ve already used the Length property or iterated through the array by using the foreach statement.
By doing this, you are using the GetEnumerator() method of the Array class.

 Properties
 The Array class contains the properties listed in the following table that you can use with every array
instance. More properties are available, which are discussed later in this chapter.

 Property Description

 Length The Length property returns the number of elements inside the array. If the array
is a multidimensional array, you get the number of elements of all ranks. If you
need to know the number of elements within a dimension, you can use the
 GetLength() method instead.

 LongLength The Length property returns an int value; the LongLength property returns the
length in a long value. If the array contains more elements than fit into a 32 - bit
 int value, you need to use the LongLength property to get the number of ele-
ments.

 Rank With the Rank property you get the number of dimensions of the array.

 Creating Arrays
 The Array class is abstract, so you cannot create an array by using a constructor. However, instead of
using the C# syntax to create array instances, it is also possible to create arrays by using the static
 CreateInstance() method. This is extremely useful if you don ’ t know the type of the elements in
advance, because the type can be passed to the CreateInstance() method as a Type object.

 The following example shows how to create an array of type int with a size of 5. The first argument
of the CreateInstance() method requires the type of the elements, and the second argument defines
the size. You can set values with the SetValue() method, and read values with the GetValue()
method.

Array intArray1 = Array.CreateInstance(typeof(int), 5);
for (int i = 0; i < 5; i++)
{
 intArray1.SetValue(33, i);
}

for (int i = 0; i < 5; i++)
{
 Console.WriteLine(intArray1.GetValue(i));
}

 You can also cast the created array to an array declared as int[] :

int[] intArray2 = (int[])intArray1;

c05.indd 127c05.indd 127 2/19/08 5:01:50 PM2/19/08 5:01:50 PM

Part I: The C# Language

128

 The CreateInstance() method has many overloads to create multidimensional arrays and also to
create arrays that are not 0 - based. The following example creates a 2 - dimensional array with 2 × 3
elements. The first dimension is 1 - based; the second dimension is 10 - based.

int[] lengths = { 2, 3 };
int[] lowerBounds = { 1, 10 };
Array racers = Array.CreateInstance(typeof(Person), lengths, lowerBounds);

 Setting the elements of the array, the SetValue() method accepts indices for every dimension:

racers.SetValue(new Person(“Alain”, “Prost”), 1, 10);
racers.SetValue(new Person(“Emerson”, “Fittipaldi”), 1, 11);
racers.SetValue(new Person(“Ayrton”, “Senna”), 1, 12);
racers.SetValue(new Person(“Ralf”, “Schumacher”), 2, 10);
racers.SetValue(new Person(“Fernando”, “Alonso”), 2, 11);
racers.SetValue(new Person(“Jenson”, “Button”), 2, 12);

 Although the array is not 0 - based you can assign it to a variable with the normal C# notation. You just
have to pay attention to not crossing the boundaries.

Person[,] racers2 = (Person[,])racers;
Person first = racers2[1, 10];
Person last = racers2[2, 12];

 Copying Arrays
 Because arrays are reference types, assigning an array variable to another one just gives you two
variables referencing the same array. For copying arrays, the array implements the interface
 ICloneable . The Clone() method that is defined with this interface creates a shallow copy of the array.

 If the elements of the array are value types, as in the following code segment, all values are copied, as
you can see in Figure 5 - 5 .

int[] intArray1 = {1, 2};
int[] intArray2 = (int[])intArray1.Clone();

intArray1 1

2

intArray2 1

2

 Figure 5 - 5

 If the array contains reference types, only the references are copied; not the elements. Figure 5 - 6 shows the
variables beatles and beatlesClone , where beatlesClone is created by calling the Clone() method
from beatles . The Person objects that are referenced are the same with beatles and beatlesClone . If
you change a property of an element of beatlesClone , you change the same object of beatles .

Person[] beatles = {
 new Person(“John”, “Lennon”),
 new Person(“Paul”, “McCartney”)
 };
Person[] beatlesClone = (Person[])beatles.Clone();

c05.indd 128c05.indd 128 2/19/08 5:01:50 PM2/19/08 5:01:50 PM

Chapter 5: Arrays

129

 Instead of using the Clone() method, you can use the Array.Copy() method, which creates a shallow
copy as well. But there ’ s one important difference with Clone() and Copy() : Clone() creates a new
array; with Copy() you have to pass an existing array with the same rank and enough elements.

 If you need a deep copy of an array containing reference types, you have to iterate the array and create
new objects.

 Sorting
 The Array class implements a bubble - sort for sorting the elements in the array. The Sort() method requires
the interface IComparable to be implemented by the elements in the array. Simple types such as System.
String and System.Int32 implement IComparable , so you can sort elements containing these types.

 With the sample program, the array name contains elements of type string, and this array can be sorted:

string[] names = {
 “Christina Aguilera”,
 “Shakira”,
 “Beyonce”,
 “Gwen Stefani”
 };

Array.Sort(names);

foreach (string name in names)
{
 Console.WriteLine(name);
}

 The output of the application shows the sorted result of the array:

Beyonce
Christina Aguilera
Gwen Stefani
Shakira

 If you are using custom classes with the array, you must implement the interface IComparable . This
interface defines just one method, CompareTo() , that must return 0 if the objects to compare are equal, a
value smaller than 0 if the instance should go before the object from the parameter, and a value larger
than 0 if the instance should go after the object from the parameter.

 Change the Person class to implement the interface IComparable . The comparison is done on the value
of the LastName . Because the LastName is of type string , and the String class already implements the

beatles Reference Person

Reference

beatlesClone Reference Person

Reference

 Figure 5 - 6

c05.indd 129c05.indd 129 2/19/08 5:01:50 PM2/19/08 5:01:50 PM

Part I: The C# Language

130

 IComparable interface, with the implementation you can rely on the CompareTo() method of the
 String class. If the LastName has the same value, the FirstName is compared:

 public class Person : IComparable
 {
 public int CompareTo(object obj)
 {
 Person other = obj as Person;
 int result = this.LastName.CompareTo(
 other.LastName);
 if (result == 0)
 {
 result = this.FirstName.CompareTo(
 other.FirstName);
 }
 return result;
 }
//...

 Now it is possible to sort an array of Person objects by the last name:

 Person[] persons = {
 new Person(“Emerson”, “Fittipaldi”),
 new Person(“Niki”, “Lauda”),
 new Person(“Ayrton”, “Senna”),
 new Person(“Michael”, “Schumacher”)
 };

 Array.Sort(persons);

 foreach (Person p in persons)
 {
 Console.WriteLine(p);
 }

 Using the sort of the Person class, the output returns the names sorted by the last name:

Emerson Fittipaldi
Niki Lauda
Michael Schumacher
Ayrton Senna

 If the Person object should be sorted differently, or if you don ’ t have the option to change the class that
is used as an element in the array, you can implement the interface IComparer . This interface defines
the method Compare() . The interface IComparable must be implemented by the class that should be
compared. The IComparer interface is independent of the class to compare. That ’ s why the Compare()
method defines two arguments that should be compared. The return value is similar to the
 CompareTo() method of the IComparable interface.

 The class PersonComparer implements the IComparer interface to sort Person objects either
by firstName or by lastName . The enumeration PersonCompareType defines the different
sorting options that are available with the PersonComparer : FirstName and LastName . How
the compare should happen is defined with the constructor of the class PersonComparer where a
 PersonCompareType value is set. The Compare() method is implemented with a switch statement
to compare either by LastName or by FirstName .

c05.indd 130c05.indd 130 2/19/08 5:01:51 PM2/19/08 5:01:51 PM

Chapter 5: Arrays

131

 public class PersonComparer : IComparer
 {
 public enum PersonCompareType
 {
 FirstName,
 LastName
 }

 private PersonCompareType compareType;

 public PersonComparer(
 PersonCompareType compareType)
 {
 this.compareType = compareType;
 }

 public int Compare(object x, object y)
 {
 Person p1 = x as Person;
 Person p2 = y as Person;
 switch (compareType)
 {
 case PersonCompareType.FirstName:
 return p1.FirstName.CompareTo(
 p2.FirstName);
 case PersonCompareType.LastName:
 return p1.LastName.CompareTo(
 p2.LastName);
 default:
 throw new ArgumentException(
 “unexpected compare type”);
 }
 }
 }

 Now you can pass a PersonComparer object to the second argument of the Array.Sort() method.
Here the persons are sorted by first name:

 Array.Sort(persons,
 new PersonComparer(
 PersonComparer.PersonCompareType.
 FirstName));
 foreach (Person p in persons)
 {
 Console.WriteLine(p);
 }

 The persons array is now sorted by the first name:

Ayrton Senna
Emerson Fittipaldi
Michael Schumacher
Niki Lauda

 The Array class also offers Sort methods that require a delegate as an argument. Chapter 7 , “ Dele-
gates and Events, ” discusses how to use delegates.

c05.indd 131c05.indd 131 2/19/08 5:01:51 PM2/19/08 5:01:51 PM

Part I: The C# Language

132

 Array and Collection Interfaces
 The Array class implements the interfaces IEnumerable , ICollection , and IList for accessing and
enumerating the elements of the array. Because with a custom array a class is created that derives from
the abstract class Array , you can use the methods and properties of the implemented interfaces with an
array variable.

 IEnumerable
 IEnumerable is an interface that is used by the foreach statement to iterate through the array. Because
this is a very special feature, it is discussed in the next section, “ Enumerations. ”

 ICollection
 The interface ICollection derives from the interface IEnumerable and has additional properties and
methods as shown in the following table. This interface is mainly used to get the number of elements in
a collection and for synchronization.

 ICollection Interface
Properties and
Methods Description

 Count The Count property gives you the number of elements inside the collec-
tion. The Count property returns the same value as the Length property.

 IsSynchronized
SyncRoot

 The property IsSynchronized defines whether the collection is thread -
 safe. For arrays, this property always returns false . For synchronized
access, the SyncRoot property can be used for
thread - safe access. Chapter 19 , “ Threading and Synchronization, ” explains
threads and synchronization, and there you can read how to implement
thread safety with collections.

 CopyTo() With the CopyTo() method you can copy the elements of an array to an
existing array. This is similar to the static method Array.Copy() .

 IList
 The IList interface derives from the interface ICollection and defines additional properties and
methods. The major reason why the Array class implements the IList interface is that the IList interface
defines the Item property for accessing the elements using an indexer. Many of the other IList members
are implemented by the Array class by throwing a NotSupportedExceptio n , because these do not apply
to arrays. All the properties and methods of the IList interface are shown in the following table.

 IList Interface Description

 Add() The Add() method is used to add elements to a collection. With arrays, the
method throws a NotSupportedException .

 Clear() The Clear() method empties all elements of the array. Value types are set to
 0 , reference types to null .

c05.indd 132c05.indd 132 2/19/08 5:01:52 PM2/19/08 5:01:52 PM

Chapter 5: Arrays

133

 IList Interface Description

 Contains() With the Contains() method, you can find out if an element is within the
array. The return value is true or false . This method does a linear search
through all elements of the array until the element is found.

 IndexOf() The IndexOf() method does a linear search through all elements of the array
similar to the Contains() method. What ’ s different is that the IndexOf()
method returns the index of the first element found.

 Insert()
Remove()
RemoveAt()

 With collections, the Insert() method is used to insert elements; with
 Remove() and RemoveAt() , elements can be removed. With arrays, all these
methods throw a NotSupportedException .

 IsFixedSize Because arrays are always fixed in size, this property always returns true .

 IsReadOnly Arrays are always read/write, so this property returns false . In Chapter 10 ,
 “ Collections, ” you can read how to create a read - only collection from an array.

 Item The Item property allows accessing the array using an integer index.

 Enumerations
 By using the foreach statement you can iterate elements of a collection without the need to know the
number of elements inside the collection. The foreach statement uses an enumerator. Figure 5 - 7 shows the
relationship between the client invoking the foreach method and the collection. The array or collection
implements the IEnumerable interface with the GetEnumerator() method. The GetEnumerator()
method returns an enumerator implementing the IEnumerable interface. The interface IEnumerable then
is used by the foreach statement to iterate through the collection.

 The GetEnumerator() method is defined with the interface IEnumerable . The foreach
 statement doesn ’ t really need this interface implemented in the collection class. It ’ s enough to have a
method with the name GetEnumerator() that returns an object implementing the IEnumerator
interface.

Client

Enumerator

IEnumerator

IEnumerable

Collection

 Figure 5 - 7

c05.indd 133c05.indd 133 2/19/08 5:01:52 PM2/19/08 5:01:52 PM

Part I: The C# Language

134

 IEnumerator Interface
 The foreach statement uses the methods and properties of the IEnumerator interface to iterate
all elements in a collection. The properties and methods from this interface are defined in the
following table.

 IEnumerator Interface
Properties and Methods Description

 MoveNext() The MoveNext() method moves to the next element of the collection
and returns true if there ’ s an element. If the collection does not
contain any more elements, the value false is returned.

 Current The property Current returns the element where the cursor is
positioned.

 Reset() The method Reset() repositions the cursor to the beginning of the
collection. Many enumerators throw a NotSupportedException .

 foreach Statement
 The C# foreach statement is not resolved to a foreach statement in the IL code. Instead, the C#
compiler converts the foreach statement to methods and properties of the IEnumerable interface.
Here ’ s a simple foreach statement to iterate all elements in the persons array and to display them
person by person:

foreach (Person p in persons)
{
 Console.WriteLine(p);
}

 The foreach statement is resolved to the following code segment. First, the GetEnumerator() method
is invoked to get an enumerator for the array. Inside a while loop — as long as MoveNext() returns
 true — the elements of the array are accessed using the Current property:

IEnumerator enumerator = persons.GetEnumerator();
while (enumerator.MoveNext())
{
 Person p = (Person)enumerator.Current;
 Console.WriteLine(p);
}

 yield Statement
 C# 1.0 made it easy to iterate through collections by using the foreach statement. With C# 1.0, it was still
a lot of work to create an enumerator. C# 2.0 adds the yield statement for creating enumerators easily.

 yield return returns one element of a collection and moves the position to the next element, and yield
break stops the iteration.

 The next example shows the implementation of a simple collection using the yield return
statement. The class HelloCollection contains the method GetEnumerator() . The implementation of

c05.indd 134c05.indd 134 2/19/08 5:01:53 PM2/19/08 5:01:53 PM

Chapter 5: Arrays

135

the GetEnumerator() method contains two yield return statements where the strings Hello and
 World are returned.

using System;
using System.Collections;

namespace Wrox.ProCSharp.Arrays
{
 public class HelloCollection
 {

 public IEnumerator GetEnumerator()
 {
 yield return “Hello”;
 yield return “World”;
 }

 }

 A method or property that contains yield statements is also known as an iterator block . An iterator
block must be declared to return an IEnumerator or IEnumerable interface. This block may contain
multiple yield return or yield break statements; a return statement is not allowed.

 Now it is possible to iterate through the collection using a foreach statement:

 public class Program
 {
 HelloCollection helloCollection =
 new HelloCollection();
 foreach (string s in helloCollection)
 {
 Console.WriteLine(s);
 }
 }
}

 With an iterator block the compiler generates a yield type, including a state machine, as shown with the
following code segment. The yield type implements the properties and methods of the interfaces
 IEnumerator and IDisposable . In the sample, you can see the yield type as the inner class
 Enumerator . The GetEnumerator() method of the outer class instantiates and returns a new yield
type. Within the yield type, the variable state defines the current position of the iteration and is
changed every time the method MoveNext() is invoked. MoveNext() encapsulates the code of the
iterator block and sets the value of the current variable so that the Current property returns an object
depending on the position.

public class HelloCollection
{
 public IEnumerator GetEnumerator()
 {
 Enumerator enumerator = new Enumerator();
 return enumerator;
 }

 public class Enumerator : IEnumerator, IDisposable
 {
 private int state;
 private object current;

 public Enumerator(int state)

(continued)

c05.indd 135c05.indd 135 2/19/08 5:01:53 PM2/19/08 5:01:53 PM

Part I: The C# Language

136

 {
 this.state = state;
 }
 bool System.Collections.IEnumerator.MoveNext()
 {
 switch (state)
 {
 case 0:
 current = “Hello”;
 state = 1;
 return true;
 case 1:
 current = “World”;
 state = 2;
 return true;
 case 2:
 break;
 }

 return false;
 }

 void System.Collections.IEnumerator.Reset()
 {
 throw new NotSupportedException();
 }

 object System.Collections.IEnumerator.Current
 {
 get
 {
 return current;
 }
 }

 void IDisposable.Dispose()
 {
 }
 }
}

 Now, using the yield return statement makes it easy to implement a class that allows iterating
through a collection in different ways. The class MusicTitles allows iterating the titles in a default way
with the GetEnumerator() method, in reverse order with the Reverse() method, and to iterate
through a subset with the Subset() method:

 public class MusicTitles
 {
 string[] names = {
 “Tubular Bells”, “Hergest Ridge”,
 “Ommadawn”, “Platinum” };

 public IEnumerator GetEnumerator()

(continued)

c05.indd 136c05.indd 136 2/19/08 5:01:53 PM2/19/08 5:01:53 PM

Chapter 5: Arrays

137

 {
 for (int i = 0; i < 4; i++)
 {
 yield return names[i];
 }
 }

 public IEnumerable Reverse()
 {
 for (int i = 3; i > = 0; i--)
 {
 yield return names[i];
 }
 }

 public IEnumerable Subset(int index,
 int length)
 {
 for (int i = index; i < index + length;
 i++)
 {
 yield return names[i];
 }
 }
 }

 The client code to iterate through the string array first uses the GetEnumerator() method, which you don ’ t
have to write in your code because this one is used by default. Then the titles are iterated in reverse, and
finally a subset is iterated by passing the index and number of items to iterate to the Subset() method:

 MusicTitles titles = new MusicTitles();
 foreach (string title in titles)
 {
 Console.WriteLine(title);
 }
 Console.WriteLine();

 Console.WriteLine(“reverse”);
 foreach (string title in titles.Reverse())
 {
 Console.WriteLine(title);
 }
 Console.WriteLine();

 Console.WriteLine(“subset”);
 foreach (string title in
 titles.Subset(2, 2))
 {
 Console.WriteLine(title);
 }

 With the yield statement you can also do more complex things, for example, returning an enumerator
from yield return .

 With the TicTacToe game, players alternate putting a cross or a circle in one of nine fields. These moves
are simulated by the GameMoves class. The methods Cross() and Circle() are the iterator blocks for

c05.indd 137c05.indd 137 2/19/08 5:01:54 PM2/19/08 5:01:54 PM

Part I: The C# Language

138

creating iterator types. The variables cross and circle are set to Cross() and Circle() inside
the constructor of the GameMoves class. By setting these fields the methods are not invoked, but set to the
iterator types that are defined with the iterator blocks. Within the Cross() iterator block, information
about the move is written to the console and the move number is incremented. If the move number is
higher than 9, the iteration ends with yield break ; otherwise, the enumerator object of the cross yield
type is returned with each iteration. The Circle() iterator block is very similar to the Cross() iterator
block; it just returns the circle iterator type with each iteration.

 public class GameMoves
 {
 private IEnumerator cross;
 private IEnumerator circle;

 public GameMoves()
 {
 cross = Cross();
 circle = Circle();
 }

 private int move = 0;

 public IEnumerator Cross()
 {
 while (true)
 {
 Console.WriteLine(“Cross, move {0}”,
 move);
 move++;
 if (move > 9)
 yield break;
 yield return circle;
 }
 }

 public IEnumerator Circle()
 {
 while (true)
 {
 Console.WriteLine(“Circle, move {0}”,
 move);
 move++;
 if (move > 9)
 yield break;
 yield return cross;
 }
 }
 }

 From the client program you can use the class GameMoves as follows. The first move is set by setting
enumerator to the enumerator type returned by game.Cross() . enumerator.MoveNext invokes one
iteration defined with the iterator block that returns the other enumerator. The returned value can be
accessed with the Current property and is set to the enumerator variable for the next loop:

 GameMoves game = new GameMoves();
 IEnumerator enumerator = game.Cross();
 while (enumerator.MoveNext())

c05.indd 138c05.indd 138 2/19/08 5:01:54 PM2/19/08 5:01:54 PM

Chapter 5: Arrays

139

 {
 enumerator =
 (IEnumerator)enumerator.Current;
 }

 The outcome of this program shows alternating moves until the last move:

Cross, move 0
Circle, move 1
Cross, move 2
Circle, move 3
Cross, move 4
Circle, move 5
Cross, move 6
Circle, move 7
Cross, move 8

 Summary
 In this chapter, you ’ ve seen the C# notation to create and use simple, multidimensional, and jagged
arrays. The Array class is used behind the scenes of C# arrays, and this way you can invoke properties
and methods of this class with array variables.

 You ’ ve seen how to sort elements in the array by using the IComparable and IComparer interfaces. The
features of the IEnumerable , ICollection , and IList interfaces as implemented with the Array class
were described, and finally, you ’ ve seen the advantages of the yield statement. Moving on, the next
chapter focuses on operators and casts, in which you read about creating a custom indexer. Chapter 7
gives you information about delegates and events. Some methods of the Array class use delegates as
parameters. Chapter 10 is about collection classes that already have been mentioned in this chapter.
Collection classes give you more flexibility of the size, and there you can also read about other containers
such as dictionaries and linked lists.

c05.indd 139c05.indd 139 2/19/08 5:01:54 PM2/19/08 5:01:54 PM

c05.indd 140c05.indd 140 2/19/08 5:01:54 PM2/19/08 5:01:54 PM

 Operators and Casts

 The preceding chapters have covered most of what you need to start writing useful programs
using C#. This chapter completes the discussion of the essential language elements and begins to
illustrate some powerful aspects of C# that allow you to extend the capabilities of the C# language.
Specifically, this chapter discusses the following:

❑ The operators available in C#

❑ The idea of equality when dealing with reference and value types

❑ Data conversion between the primitive data types

❑ Converting value types to reference types using boxing

❑ Converting between reference types by casting

❑ Overloading the standard operators to support operations on the custom types you define

❑ Adding cast operators to the custom types you define to support seamless data
type - conversions

 Operators
 Although most of C# ’ s operators should be familiar to C and C++ developers, this section
discusses the most important operators for the benefit of new programmers and Visual Basic
converts, as well as to shed light on some of the changes introduced with C#.

c06.indd 141c06.indd 141 2/19/08 5:02:06 PM2/19/08 5:02:06 PM

142

Part I: The C# Language

 C# supports the operators listed in the following table.

Category Operator

Arithmetic + - * / %

Logical & | ^ ~ && || !

String concatenation +

Increment and decrement ++ --

Bit shifting << >>

Comparison == != < ><= >=

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Member access (for objects and structs) .

Indexing (for arrays and indexers) []

Cast ()

Conditional (the ternary operator) ?:

Delegate concatenation and removal (discussed in
Chapter 7, “Delegates and Events”)

+ -

Object creation new

Type information sizeof is typeof as

Overflow exception control checked unchecked

Indirection and address []

Namespace alias qualifier (discussed in Chapter 2,
“C# Basics”)

::

Null coalescing operator ??

 Note that four specific operators (sizeof , * , - > , and & , listed in the following table), however, are
available only in unsafe code (code that bypasses C# ’ s type - safety checking), which is discussed in
Chapter 12 , “ Memory Management and Pointers. ” It is also important to note that the sizeof operator
keywords, when used with the .NET Framework 1.0 and 1.1, require the unsafe mode. This is not a
requirement since the .NET Framework 2.0.

Category Operator

Operator keywords sizeof (for .NET Framework versions 1.0 and 1.1 only)

Operators * -> &

c06.indd 142c06.indd 142 2/19/08 5:02:07 PM2/19/08 5:02:07 PM

143

Chapter 6: Operators and Casts

 One of the biggest pitfalls to watch out for when using C# operators is that, like other C - style languages,
C# uses different operators for assignment (=) and comparison (==). For instance, the following
statement means let x equal three :

x = 3;

 If you now want to compare x to a value, you need to use the double equals sign == :

if (x == 3)
{

}

 Fortunately, C# ’ s strict type - safety rules prevent the very common C error where assignment is
performed instead of comparison in logical statements. This means that in C# the following statement
will generate a compiler error:

if (x = 3)
{

}

 Visual Basic programmers who are accustomed to using the ampersand (&) character to concatenate
strings will have to make an adjustment. In C#, the plus sign (+) is used instead for concatenation,
whereas the & symbol denotes a bitwise AND between two different integer values. The symbol | allows
you to perform a bitwise OR between two integers. Visual Basic programmers also might not recognize
the modulus (%) arithmetic operator. This returns the remainder after division, so, for example, x % 5
returns 2 if x is equal to 7 .

 You will use few pointers in C#, and, therefore, few indirection operators. More specifically, the only
place you will use them is within blocks of unsafe code, because that is the only place in C# where pointers
are allowed. Pointers and unsafe code are discussed in Chapter 12 , “ Memory Management and Pointers. ”

 Operator Shortcuts
 The following table shows the full list of shortcut assignment operators available in C#.

Shortcut Operator Equivalent To

x++, ++x x = x + 1

x--, --x x = x – 1

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x >>= y x = x >> y

x <<= y x = x << y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

c06.indd 143c06.indd 143 2/19/08 5:02:07 PM2/19/08 5:02:07 PM

144

Part I: The C# Language

 You may be wondering why there are two examples each for the ++ increment and the - - decrement
operators. Placing the operator before the expression is known as a prefix , placing the operator after the
expression is known as a postfix , and it is important to note that there is a difference in the way they behave.

 The increment and decrement operators can act both as whole expressions and within expressions. When
used by themselves, the effect of both the prefix and postfix versions is identical and corresponds to the
statement x = x + 1 . When used within larger expressions, the prefix operator will increment the value
of x before the expression is evaluated; in other words, x is incremented and the new value is used in the
expression. In contrast, the postfix operator increments the value of x after the expression is evaluated —
 the expression is evaluated using the original value of x . The following example uses the increment
operator (++) as an example to demonstrate the difference between the prefix and postfix behavior:

int x = 5;

if (++x == 6) // true - x is incremented to 6 before the evaluation
{
 Console.WriteLine(“This will execute”);
}

if (x++ == 7) // false - x is incremented to 7 after the evaluation
{
 Console.WriteLine(“This won’t”);
}

 The first if condition evaluates to true , because x is incremented from 5 to 6 before the expression is
evaluated. The condition in the second if statement is false , however, because x is incremented to 7
only after the entire expression has been evaluated (while x = 6).

 The prefix and postfix operators - - x and x - - behave in the same way, but decrement rather than
increment the operand.

 The other shortcut operators, such as += and - = , require two operands, and are used to modify the value
of the first operand by performing an arithmetic, logical, or bitwise operation on it. For example, the next
two lines are equivalent:

x += 5;
x = x + 5;

 The following sections look at some of the primary and cast operators that you will frequently use
within your C# code.

 The Conditional Operator
 The conditional operator (?:), also known as the ternary operator, is a shorthand form of the if...else
construction. It gets its name from the fact that it involves three operands. It allows you to evaluate a
condition, returning one value if that condition is true, or another value if it is false. The syntax is:

 condition ? true_value : false_value

 Here, condition is the Boolean expression to be evaluated, true_value is the value that will be returned if
 condition is true, and false_value is the value that will be returned otherwise.

 When used sparingly, the conditional operator can add a dash of terseness to your programs. It is
especially handy for providing one of a couple of arguments to a function that is being invoked. You can
use it to quickly convert a Boolean value to a string value of true or false . It is also handy for
displaying the correct singular or plural form of a word, for example:

c06.indd 144c06.indd 144 2/19/08 5:02:07 PM2/19/08 5:02:07 PM

145

Chapter 6: Operators and Casts

int x = 1;
string s = x + “ “;
s += (x == 1 ? “man” : “men”);
Console.WriteLine(s);

 This code displays 1 man if x is equal to one but will display the correct plural form for any other number.
Note, however, that if your output needs to be localized to different languages, you will have to write
more sophisticated routines to take into account the different grammatical rules of different languages.

 The checked and unchecked Operators
 Consider the following code:

byte b = 255;
b++;
Console.WriteLine(b.ToString());

 The byte data type can hold values only in the range zero to 255, so incrementing the value of b causes
an overflow. How the CLR handles this depends on a number of issues, including compiler options, so
whenever there ’ s a risk of an unintentional overflow, you need some way of making sure that you get
the result you want.

 To do this, C# provides the checked and unchecked operators. If you mark a block of code as checked ,
the CLR will enforce overflow checking, and throw an OverflowException if an overflow occurs. Let ’ s
change the code to include the checked operator:

byte b = 255;
checked
{
 b++;
}
Console.WriteLine(b.ToString());

 When you try to run this code, you will get an error message like this:

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an
overflow.
 at Wrox.ProCSharp.Basics.OverflowTest.Main(String[] args)

 You can enforce overflow checking for all unmarked code in your program by specifying the /checked
compiler option.

 If you want to suppress overflow checking, you can mark the code as unchecked :

byte b = 255;
unchecked
{
 b++;
}
Console.WriteLine(b.ToString());

 In this case, no exception will be raised, but you will lose data — because the byte type cannot hold a
value of 256, the overflowing bits will be discarded, and your b variable will hold a value of zero (0).

 Note that unchecked is the default behavior. The only time you are likely to need to explicitly use the
 unchecked keyword is if you need a few unchecked lines of code inside a larger block that you have
explicitly marked as checked .

c06.indd 145c06.indd 145 2/19/08 5:02:08 PM2/19/08 5:02:08 PM

146

Part I: The C# Language

 The is Operator
 The is operator allows you to check whether an object is compatible with a specific type. The phrase “ is
compatible ” means that an object either is of that type or is derived from that type. For example, to check
whether a variable is compatible with the object type, you could use the following bit of code:

int i = 10;
if (i is object)
{
 Console.WriteLine(“i is an object”);
}

 int , like all C# data types, inherits from object ; therefore the expression i is object will evaluate to
 true in this case, and the appropriate message will be displayed.

 The as Operator
 The as operator is used to perform explicit type conversions of reference types. If the type being
converted is compatible with the specified type, conversion is performed successfully. However, if the
types are incompatible, the as operator returns the value null . As shown in the following code,
attempting to convert an object reference to a string will return null if the object reference does not
actually refer to a string instance:

object o1 = “Some String”;
object o2 = 5;

string s1 = o1 as string; // s1 = “Some String”
string s2 = o2 as string; // s2 = null

 The as operator allows you to perform a safe type conversion in a single step without the need to first
test the type using the is operator and then perform the conversion.

 The sizeof Operator
 You can determine the size (in bytes) required on the stack by a value type using the sizeof operator:

unsafe
{
 Console.WriteLine(sizeof(int));
}

 This will display the number 4 , because an int is 4 bytes long.

 Notice that you can use the sizeof operator only in unsafe code. Chapter 12 , “ Memory Management
and Pointers, ” looks at unsafe code in more detail.

 The typeof Operator
 The typeof operator returns a System.Type object representing a specified type. For example,
 typeof(string) will return a Type object representing the System.String type. This is useful when
you want to use reflection to find information about an object dynamically. Chapter 13 , “ Reflection, ”
looks at reflection.

c06.indd 146c06.indd 146 2/19/08 5:02:08 PM2/19/08 5:02:08 PM

147

Chapter 6: Operators and Casts

 Nullable Types and Operators
 Looking at the Boolean type, you have a true or false value that you can assign to this type. However,
what if you wanted to define the value of the type as undefined? This is where using nullable types can
have a distinct value to your applications. If you use nullable types in your programs, you must always
consider the effect a null value can have when used in conjunction with the various operators. Usually,
when using a unary or binary operator with nullable types, the result will be null if one or both of the
operands is null . For example:

int? a = null;

int? b = a + 4; // b = null
int? c = a * 5; // c = null

 However, when comparing nullable types, if only one of the operands is null , the comparison will
always equate to false . This means that you cannot assume a condition is true just because its opposite
is false , as often happens in programs using non - nullable types. For example:

int? a = null;
int? b = -5;

if (a > = b)
 Console.WriteLine(“a > = b”);
else
 Console.WriteLine(“a < b”);

 The possibility of a null value means that you cannot freely combine nullable and non - nullable types
in an expression. This is discussed in the “ Type Conversions ” section later in this chapter.

 The Null Coalescing Operator
 The null coalescing operator (??) provides a shorthand mechanism to cater to the possibility of null
values when working with nullable and reference types. The operator is placed between two operands
— the first operand must be a nullable type or reference type, and the second operand must be of the
same type as the first or of a type that is implicitly convertible to the type of the first operand. The null
coalescing operator evaluates as follows: If the first operand is not null , then the overall expression has
the value of the first operand. However, if the first operand is null , then the overall expression has the
value of the second operand. For example:

int? a = null;
int b;

b = a ?? 10; // b has the value 10
a = 3;
b = a ?? 10; // b has the value 3

 If the second operand cannot be implicitly converted to the type of the first operand, a compile - time
error is generated.

 Operator Precedence
 The following table shows the order of precedence of the C# operators. The operators at the top of the
table are those with the highest precedence (that is, the ones evaluated first in an expression containing
multiple operators).

c06.indd 147c06.indd 147 2/19/08 5:02:08 PM2/19/08 5:02:08 PM

148

Part I: The C# Language

 In complex expressions, you should avoid relying on operator precedence to produce the correct result.
Using parentheses to specify the order in which you want operators applied clarifies your code and
prevents potential confusion.

 Type Safety
 Chapter 1 , “ .NET Architecture, ” noted that the Intermediate Language (IL) enforces strong type safety
upon its code. Strong typing enables many of the services provided by .NET, including security and
language interoperability. As you would expect from a language compiled into IL, C# is also strongly
typed. Among other things, this means that data types are not always seamlessly interchangeable. This
section looks at conversions between primitive types.

 C# also supports conversions between different reference types and allows you to define how data types
that you create behave when converted to and from other types. Both of these topics are discussed later in
this chapter.

 Generics, a feature included in C#, allows you to avoid some of the most common situations in which
you would need to perform type conversions. See Chapter 9 , “ Generics, ” for details.

Group Operators

Primary () . [] x++ x-- new typeof sizeof
checked unchecked

Unary + - ! ~ ++x --x and casts

Multiplication/division * / %

Group Operators

Addition/subtraction + -

Bitwise shift operators << >>

Relational < ><= >= is as

Comparison == !=

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Boolean AND &&

Boolean OR ||

Conditional operator ?:

Assignment = += -= *= /= %= &= |= ^= <<= >>= >>>=

c06.indd 148c06.indd 148 2/19/08 5:02:09 PM2/19/08 5:02:09 PM

149

Chapter 6: Operators and Casts

 Type Conversions
 Often, you need to convert data from one type to another. Consider the following code:

byte value1 = 10;
byte value2 = 23;
byte total;
total = value1 + value2;
Console.WriteLine(total);

 When you attempt to compile these lines, you get the following error message:

Cannot implicitly convert type ‘int’ to ‘byte’

 The problem here is that when you add 2 bytes together, the result will be returned as an int , not as
another byte . This is because a byte can contain only 8 bits of data, so adding 2 bytes together could
very easily result in a value that cannot be stored in a single byte . If you do want to store this result in a
 byte variable, you are going to have to convert it back to a byte . The following sections discuss two
conversion mechanisms supported by C# — implicit and explicit .

 Implicit Conversions
 Conversion between types can normally be achieved automatically (implicitly) only if you can guarantee
that the value is not changed in any way. This is why the previous code failed; by attempting a
conversion from an int to a byte , you were potentially losing 3 bytes of data. The compiler is not going
to let you do that unless you explicitly tell it that that ’ s what you want to do. If you store the result in a
 long instead of a byte , however, you will have no problems:

byte value1 = 10;
byte value2 = 23;
long total; // this will compile fine
total = value1 + value2;
Console.WriteLine(total);

 Your program has compiled with no errors at this point because a long holds more bytes of data than a
 byte , so there is no risk of data being lost. In these circumstances, the compiler is happy to make the
conversion for you, without your needing to ask for it explicitly.

 The following table shows the implicit type conversions supported in C#.

From To

sbyte short, int, long, float, double, decimal

byte short, ushort, int, uint, long, ulong, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

int long, float, double, decimal

uint long, ulong, float, double, decimal

long, ulong float, double, decimal

float Double

char ushort, int, uint, long, ulong, float, double, decimal

c06.indd 149c06.indd 149 2/19/08 5:02:09 PM2/19/08 5:02:09 PM

150

Part I: The C# Language

 As you would expect, you can perform implicit conversions only from a smaller integer type to a larger
one, not from larger to smaller. You can also convert between integers and floating - point values;
however, the rules are slightly different here. Though you can convert between types of the same size,
such as int / uint to float and long / ulong to double , you can also convert from long / ulong back to
 float . You might lose 4 bytes of data doing this, but this only means that the value of the float you
receive will be less precise than if you had used a double ; this is regarded by the compiler as an
acceptable possible error because the magnitude of the value is not affected. You can also assign an
unsigned variable to a signed variable as long as the limits of value of the unsigned type fit between the
limits of the signed variable.

 Nullable types introduce additional considerations when implicitly converting value types:

❑ Nullable types implicitly convert to other nullable types following the conversion rules
described for non - nullable types in the previous table; that is, int? implicitly converts to long? ,
 float? , double? , and decimal? .

❑ Non - nullable types implicitly convert to nullable types according to the conversion rules
described in the preceding table; that is, int implicitly converts to long? , float? , double? ,
and decimal? .

❑ Nullable types do not implicitly convert to non - nullable types; you must perform an explicit con-
version as described in the next section. This is because there is the chance a nullable type will
have the value null , which cannot be represented by a non - nullable type.

 Explicit Conversions
 Many conversions cannot be implicitly made between types, and the compiler will give you an error if
any are attempted. These are some of the conversions that cannot be made implicitly:

❑ int to short — Data loss is possible.

❑ int to uint — Data loss is possible.

❑ uint to int — Data loss is possible.

❑ float to int — You will lose everything after the decimal point.

❑ Any numeric type to char — Data loss is possible.

❑ decimal to any numeric type — The decimal type is internally structured differently from both
integers and floating - point numbers.

❑ int? to int — The nullable type may have the value null .

 However, you can explicitly carry out such conversions using casts . When you cast one type to another,
you deliberately force the compiler to make the conversion. A cast looks like this:

long val = 30000;
int i = (int)val; // A valid cast. The maximum int is 2147483647

 You indicate the type to which you are casting by placing its name in parentheses before the value to be
converted. If you are familiar with C, this is the typical syntax for casts. If you are familiar with the C++
special cast keywords such as static_cast , note that these do not exist in C# and that you have to use
the older C - type syntax.

 Casting can be a dangerous operation to undertake. Even a simple cast from a long to an int can cause
problems if the value of the original long is greater than the maximum value of an int :

long val = 3000000000;
int i = (int)val; // An invalid cast. The maximum int is 2147483647

c06.indd 150c06.indd 150 2/19/08 5:02:10 PM2/19/08 5:02:10 PM

151

Chapter 6: Operators and Casts

 In this case, you will not get an error, but you also will not get the result you expect. If you run this code
and output the value stored in i , this is what you get:

-1294967296

 It is good practice to assume that an explicit cast will not give the results you expect. As you saw earlier,
C# provides a checked operator that you can use to test whether an operation causes an arithmetic
overflow. You can use the checked operator to check that a cast is safe and to force the runtime to throw
an overflow exception if it is not:

long val = 3000000000;
int i = checked((int)val);

 Bearing in mind that all explicit casts are potentially unsafe, you should take care to include code in your
application to deal with possible failures of the casts. Chapter 14 , “ Errors and Exceptions, ” introduces
structured exception handling using the try and catch statements.

 Using casts, you can convert most primitive data types from one type to another; for example, in this
code, the value 0.5 is added to price , and the total is cast to an int :

double price = 25.30;
int approximatePrice = (int)(price + 0.5);

 This will give the price rounded to the nearest dollar. However, in this conversion, data is lost — namely,
everything after the decimal point. Therefore, such a conversion should never be used if you want to go
on to do more calculations using this modified price value. However, it is useful if you want to output the
approximate value of a completed or partially completed calculation — if you do not want to bother the
user with lots of figures after the decimal point.

 This example shows what happens if you convert an unsigned integer into a char :

ushort c = 43;
char symbol = (char)c;
Console.WriteLine(symbol);

 The output is the character that has an ASCII number of 43, the + sign. You can try any kind of
conversion you want between the numeric types (including char), and it will work, such as converting a
 decimal into a char , or vice versa.

 Converting between value types is not restricted to isolated variables, as you have seen. You can convert
an array element of type double to a struct member variable of type int :

struct ItemDetails
{
 public string Description;
 public int ApproxPrice;
}

//...

double[] Prices = { 25.30, 26.20, 27.40, 30.00 };

ItemDetails id;
id.Description = “Whatever”;
id.ApproxPrice = (int)(Prices[0] + 0.5);

 To convert a nullable type to a non - nullable type or another nullable type where data loss may occur,
you must use an explicit cast. This is true even when converting between elements with the same basic
underlying type, for example, int? to int or float? to float . This is because the nullable type may
have the value null , which cannot be represented by the non - nullable type. As long as an explicit cast

c06.indd 151c06.indd 151 2/19/08 5:02:10 PM2/19/08 5:02:10 PM

152

Part I: The C# Language

between two equivalent non - nullable types is possible, so is the explicit cast between nullable types.
However, when casting from a nullable to non - nullable type and the variable has the value null , an
 InvalidOperationException is thrown. For example:

int? a = null;
int b = (int)a; // Will throw exception

 Using explicit casts and a bit of care and attention, you can convert any instance of a simple value type to
almost any other. However, there are limitations on what you can do with explicit type conversions — as
far as value types are concerned, you can only convert to and from the numeric and char types and
 enum types. You cannot directly cast Booleans to any other type or vice versa.

 If you need to convert between numeric and string, you can use methods provided in the .NET class
library. The Object class implements a ToString() method, which has been overridden in all the .NET
predefined types and which returns a string representation of the object:

int i = 10;
string s = i.ToString();

 Similarly, if you need to parse a string to retrieve a numeric or Boolean value, you can use the Parse()
method supported by all the predefined value types:

string s = “100”;
int i = int.Parse(s);
Console.WriteLine(i + 50); // Add 50 to prove it is really an int

 Note that Parse() will register an error by throwing an exception if it is unable to convert the string (for
example, if you try to convert the string Hello to an integer). Again, exceptions are covered in Chapter 14 .

 Boxing and Unboxing
 In Chapter 2 , “ C# Basics, ” you learned that all types, both the simple predefined types such as int and
 char , and the complex types such as classes and structs, derive from the object type. This means that
you can treat even literal values as though they were objects:

string s = 10.ToString();

 However, you also saw that C# data types are divided into value types, which are allocated on the stack,
and reference types, which are allocated on the heap. How does this square with the ability to call
methods on an int , if the int is nothing more than a 4 - byte value on the stack?

 The way C# achieves this is through a bit of magic called boxing . Boxing and its counterpart, unboxing ,
allow you to convert value types to reference types and then back to value types. We include this in the
section on casting because this is essentially what you are doing — you are casting your value to the
 object type. Boxing is the term used to describe the transformation of a value type to a reference type.
Basically, the runtime creates a temporary reference - type box for the object on the heap.

 This conversion can occur implicitly, as in the preceding example, but you can also perform it explicitly:

int myIntNumber = 20;
object myObject = myIntNumber;

 Unboxing is the term used to describe the reverse process, where the value of a previously boxed value
type is cast back to a value type. We use the term cast here, because this has to be done explicitly. The
syntax is similar to explicit type conversions already described:

int myIntNumber = 20;
object myObject = myIntNumber; // Box the int
int mySecondNumber = (int)myObject; // Unbox it back into an int

c06.indd 152c06.indd 152 2/19/08 5:02:10 PM2/19/08 5:02:10 PM

153

Chapter 6: Operators and Casts

 You can only unbox a variable that has previously been boxed. If you execute the last line when
 myObject is not a boxed int , you will get an exception thrown at runtime.

 One word of warning: when unboxing, you have to be careful that the receiving value variable has
enough room to store all the bytes in the value being unboxed. C# ’ s int s, for example, are only 32 bits
long, so unboxing a long value (64 bits) into an int as shown here will result in an
 InvalidCastException :

long myLongNumber = 333333423;
object myObject = (object)myLongNumber;
int myIntNumber = (int)myObject;

 Comparing Objects for Equality
 After discussing operators and briefly touching on the equality operator, it is worth considering for a
moment what equality means when dealing with instances of classes and structs. Understanding the
mechanics of object equality is essential for programming logical expressions and is important when
implementing operator overloads and casts, which is the topic of the rest of this chapter.

 The mechanisms of object equality are different depending on whether you are comparing reference
types (instances of classes) or value types (the primitive data types, instances of structs or enums). The
following sections present the equality of reference and value types independently.

 Comparing Reference Types for Equality
 You might be surprised to learn that System.Object defines three different methods for comparing
objects for equality: ReferenceEquals() and two versions of Equals() . Add to this the comparison
operator (==), and you actually have four ways of comparing for equality. Some subtle differences exist
between the different methods, which are examined next.

 The ReferenceEquals() Method
 ReferenceEquals() is a static method that tests whether two references refer to the same instance of
a class, specifically whether the two references contain the same address in memory. As a static
method, it is not possible to override, so the System.Object implementation is what you always have.
 ReferenceEquals() will always return true if supplied with two references that refer to the same
object instance, and false otherwise. It does, however, consider null to be equal to null :

SomeClass x, y;
x = new SomeClass();
y = new SomeClass();
bool B1 = ReferenceEquals(null, null); // returns true
bool B2 = ReferenceEquals(null,x); // returns false
bool B3 = ReferenceEquals(x, y); // returns false because x and y
 // point to different objects

 The virtual Equals() Method
 The System.Object implementation of the virtual version of Equals() also works by comparing
references. However, because this method is virtual, you can override it in your own classes in order to
compare objects by value. In particular, if you intend instances of your class to be used as keys in a
dictionary, you will need to override this method to compare values. Otherwise, depending on how you
override Object.GetHashCode() , the dictionary class that contains your objects will either not work at
all or will work very inefficiently. One point you should note when overriding Equals() is that your
override should never throw exceptions. Once again, this is because doing so could cause problems for
dictionary classes and possibly certain other .NET base classes that internally call this method.

c06.indd 153c06.indd 153 2/19/08 5:02:11 PM2/19/08 5:02:11 PM

154

Part I: The C# Language

 The static Equals() Method
 The static version of Equals() actually does the same thing as the virtual instance version. The
difference is that the static version takes two parameters and compares them for equality. This method is
able to cope when either of the objects is null , and, therefore, provides an extra safeguard against
throwing exceptions if there is a risk that an object might be null . The static overload first checks
whether the references it has been passed are null . If they are both null , it returns true (because null
is considered to be equal to null). If just one of them is null , it returns false . If both references actually
refer to something, it calls the virtual instance version of Equals() . This means that when you override
the instance version of Equals() , the effect is as if you were overriding the static version as well.

 Comparison Operator (==)
 It is best to think of the comparison operator as an intermediate option between strict value comparison
and strict reference comparison. In most cases, writing the following means that you are comparing
references:

bool b = (x == y); // x, y object references

 However, it is accepted that there are some classes whose meanings are more intuitive if they are treated
as values. In those cases, it is better to override the comparison operator to perform a value comparison.
Overriding operators is discussed next, but the obvious example of this is the System.String class for
which Microsoft has overridden this operator to compare the contents of the strings rather than their
references.

 Comparing Value Types for Equality
 When comparing value types for equality, the same principles hold as for reference types:
 ReferenceEquals() is used to compare references, Equals() is intended for value comparisons, and
the comparison operator is viewed as an intermediate case. However, the big difference is that value
types need to be boxed in order to be converted to references so that methods can be executed on them.
In addition, Microsoft has already overloaded the instance Equals() method in the System.ValueType
class in order to test equality appropriate to value types. If you call sA.Equals(sB) where sA and sB are
instances of some struct, the return value will be true or false , according to whether sA and sB contain
the same values in all their fields. On the other hand, no overload of == is available by default for your
own structs. Writing (sA == sB) in any expression will result in a compilation error unless you have
provided an overload of == in your code for the struct in question.

 Another point is that ReferenceEquals() always returns false when applied to value types because,
to call this method, the value types will need to be boxed into objects. Even if you write the following,
you will still get the answer of false :

bool b = ReferenceEquals(v,v); // v is a variable of some value type

 The reason for this is that v will be boxed separately when converting each parameter, which means you
get different references. Because of this, there really is no reason to call ReferenceEquals() to compare
value types because it doesn ’ t make much sense.

 Although the default override of Equals() supplied by System.ValueType will almost certainly be
adequate for the vast majority of structs that you define, you might want to override it again for your
own structs in order to improve performance. Also, if a value type contains reference types as fields, you
might want to override Equals() to provide appropriate semantics for these fields because the default
override of Equals() will simply compare their addresses.

c06.indd 154c06.indd 154 2/19/08 5:02:11 PM2/19/08 5:02:11 PM

155

Chapter 6: Operators and Casts

 Operator Overloading
 This section looks at another type of member that you can define for a class or a struct: the operator
overload .

 Operator overloading is something that will be familiar to C++ developers. However, because the
concept will be new to both Java and Visual Basic developers, we explain it here. C++ developers will
probably prefer to skip ahead to the main operator overloading example.

 The point of operator overloading is that you do not always just want to call methods or properties on
objects. Often, you need to do things like adding quantities together, multiplying them, or performing
logical operations such as comparing objects. Suppose that you had defined a class that represents a
mathematical matrix. Now in the world of math, matrices can be added together and multiplied, just like
numbers. Therefore, it is quite plausible that you would want to write code like this:

Matrix a, b, c;
// assume a, b and c have been initialized
Matrix d = c * (a + b);

 By overloading the operators, you can tell the compiler what + and * do when used in conjunction with
a Matrix object, allowing you to write code like the preceding. If you were coding in a language that did
not support operator overloading, you would have to define methods to perform those operations. The
result would certainly be less intuitive and would probably look something like this:

Matrix d = c.Multiply(a.Add(b));

 With what you have learned so far, operators like + and * have been strictly for use with the predefined
data types, and for good reason: The compiler knows what all the common operators mean for those
data types. For example, it knows how to add two long s or how to divide one double by another
 double , and it can generate the appropriate intermediate language code. When you define your own
classes or structs, however, you have to tell the compiler everything: what methods are available to call,
what fields to store with each instance, and so on. Similarly, if you want to use operators with your own
types, you will have to tell the compiler what the relevant operators mean in the context of that class.
The way you do that is by defining overloads for the operators.

 The other thing we should stress is that overloading is not concerned just with arithmetic operators. You
also need to consider the comparison operators, == , < , > , != , > = , and < = . Take the statement if (a==b) .
For classes, this statement will, by default, compare the references a and b . It tests to see if the references
point to the same location in memory, rather than checking to see if the instances actually contain the
same data. For the string class, this behavior is overridden so that comparing strings really does
compare the contents of each string. You might want to do the same for your own classes. For structs, the
 == operator does not do anything at all by default. Trying to compare two structs to see if they are equal
produces a compilation error unless you explicitly overload == to tell the compiler how to perform the
comparison.

 A large number of situations exist in which being able to overload operators will allow you to generate
more readable and intuitive code, including:

❑ Almost any mathematical object such as coordinates, vectors, matrices, tensors, functions, and
so on. If you are writing a program that does some mathematical or physical modeling, you will
almost certainly use classes representing these objects.

❑ Graphics programs that use mathematical or coordinate - related objects when calculating
positions onscreen.

❑ A class that represents an amount of money (for example, in a financial program).

c06.indd 155c06.indd 155 2/19/08 5:02:12 PM2/19/08 5:02:12 PM

156

Part I: The C# Language

❑ A word processing or text analysis program that uses classes representing sentences, clauses,
and so on; you might want to use operators to combine sentences (a more sophisticated version
of concatenation for strings).

 However, there are also many types for which operator overloading would not be relevant. Using
operator overloading inappropriately will make code that uses your types far more difficult to
understand. For example, multiplying two DateTime objects just does not make any sense conceptually.

 How Operators Work
 To understand how to overload operators, it ’ s quite useful to think about what happens when the
compiler encounters an operator. Using the addition operator (+) as an example, suppose that
the compiler processes the following lines of code:

int myInteger = 3;
uint myUnsignedInt = 2;
double myDouble = 4.0;
long myLong = myInteger + myUnsignedInt;
double myOtherDouble = myDouble + myInteger;

 What happens when the compiler encounters the following line?

long myLong = myInteger + myUnsignedInt;

 The compiler identifies that it needs to add two integers and assign the result to a long . However, the
expression myInteger + myUnsignedInt is really just an intuitive and convenient syntax for calling a
method that adds two numbers together. The method takes two parameters, myInteger and
 myUnsignedInt , and returns their sum. Therefore, the compiler does the same thing as it does for any
method call — it looks for the best matching overload of the addition operator based on the parameter
types — in this case, one that takes two integers. As with normal overloaded methods, the desired return
type does not influence the compiler ’ s choice as to which version of a method it calls. As it happens, the
overload called in the example takes two int parameters and returns an int ; this return value is
subsequently converted to a long .

 The next line causes the compiler to use a different overload of the addition operator:

double myOtherDouble = myDouble + myInteger;

 In this instance, the parameters are a double and an int , but there is not an overload of the addition
operator that takes this combination of parameters. Instead, the compiler identifies the best matching
overload of the addition operator as being the version that takes two double s as its parameters, and it
implicitly casts the int to a double . Adding two double s requires a different process from adding two
integers. Floating - point numbers are stored as a mantissa and an exponent. Adding them involves bit -
 shifting the mantissa of one of the double s so that the two exponents have the same value, adding the
mantissas, then shifting the mantissa of the result and adjusting its exponent to maintain the highest
possible accuracy in the answer.

 Now, you are in a position to see what happens if the compiler finds something like this:

Vector vect1, vect2, vect3;
// initialize vect1 and vect2
vect3 = vect1 + vect2;
vect1 = vect1*2;

 Here, Vector is the struct, which is defined in the following section. The compiler will see that it needs
to add two Vector instances, vect1 and vect2 , together. It will look for an overload of the addition
operator, which takes two Vector instances as its parameters.

c06.indd 156c06.indd 156 2/19/08 5:02:12 PM2/19/08 5:02:12 PM

157

Chapter 6: Operators and Casts

 If the compiler finds an appropriate overload, it will call up the implementation of that operator. If it
cannot find one, it will look to see if there is any other overload for + that it can use as a best match —
 perhaps something that has two parameters of other data types that can be implicitly converted to
 Vector instances. If the compiler cannot find a suitable overload, it will raise a compilation error, just as
it would if it could not find an appropriate overload for any other method call.

 Operator Overloading Example: The Vector Struct
 This section demonstrates operator overloading through developing a struct named Vector that
represents a 3 - dimensional mathematical vector. Do not worry if mathematics is not your strong point —
 we will keep the vector example very simple. As far as you are concerned, a 3D - vector is just a set of
three numbers (double s) that tell you how far something is moving. The variables representing the
numbers are called x , y , and z : x tells you how far something moves east, y tells you how far it moves
north, and z tells you how far it moves upward (in height). Combine the three numbers and you get the
total movement. For example, if x=3.0 , y=3.0 , and z=1.0 (which you would normally write as (3.0,
3.0, 1.0) , you ’ re moving 3 units east, 3 units north, and rising upward by 1 unit.

 You can add or multiply vectors by other vectors or by numbers. Incidentally, in this context, we use the
term scalar , which is math - speak for a simple number — in C# terms that is just a double . The
significance of addition should be clear. If you move first by the vector (3.0, 3.0, 1.0) then you
move by the vector (2.0, - 4.0, - 4.0) , the total amount you have moved can be worked out by
adding the two vectors. Adding vectors means adding each component individually, so you get (5.0,
 - 1.0, - 3.0) . In this context, mathematicians write c=a+b , where a and b are the vectors and c is the
resulting vector. You want to be able to use the Vector struct the same way.

 The fact that this example will be developed as a struct rather than a class is not significant. Operator
overloading works in the same way for both structs and classes.

 The following is the definition for Vector — containing the member fields, constructors, a ToString()
override so you can easily view the contents of a Vector , and, finally, that operator overload:

namespace Wrox.ProCSharp.OOCSharp
{
 struct Vector
 {
 public double x, y, z;

 public Vector(double x, double y, double z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public Vector(Vector rhs)
 {
 x = rhs.x;
 y = rhs.y;
 z = rhs.z;
 }

 public override string ToString()
 {
 return “(“ + x + “ , “ + y + “ , “ + z + “)”;
 }

c06.indd 157c06.indd 157 2/19/08 5:02:12 PM2/19/08 5:02:12 PM

158

Part I: The C# Language

 This example has two constructors that require the initial value of the vector to be specified, either by
passing in the values of each component or by supplying another Vector whose value can be copied.
Constructors like the second one that takes a single Vector argument are often termed copy constructors
because they effectively allow you to initialize a class or struct instance by copying another instance.
Note that to keep things simple, the fields are left as public . We could have made them private and
written corresponding properties to access them, but it would not have made any difference to the
example, other than to make the code longer.

 Here is the interesting part of the Vector struct — the operator overload that provides support for the
addition operator:

 public static Vector operator + (Vector lhs, Vector rhs)
 {
 Vector result = new Vector(lhs);
 result.x += rhs.x;
 result.y += rhs.y;
 result.z += rhs.z;

 return result;
 }
 }
}

 The operator overload is declared in much the same way as a method, except that the operator
keyword tells the compiler it is actually an operator overload you are defining. The operator keyword
is followed by the actual symbol for the relevant operator, in this case the addition operator (+). The
return type is whatever type you get when you use this operator. Adding two vectors results in a vector,
therefore, the return type is also a Vector . For this particular override of the addition operator, the
return type is the same as the containing class, but that is not necessarily the case as you will see later in
this example. The two parameters are the things you are operating on. For binary operators (those that
take two parameters), like the addition and subtraction operators, the first parameter is the value on the
left of the operator, and the second parameter is the value on the right.

 Note that it is convention to name your left - hand parameters lhs (for left - hand side) and your right -
 hand parameters rhs (for right - hand side).

 C# requires that all operator overloads be declared as public and static , which means that they are
associated with their class or struct, not with a particular instance. Because of this, the body of the
operator overload has no access to non - static class members and has no access to the this identifier. This
is fine because the parameters provide all the input data the operator needs to know to perform its task.

 Now that you understand the syntax for the addition operator declaration, you can look at what
happens inside the operator:

 {
 Vector result = new Vector(lhs);
 result.x += rhs.x;
 result.y += rhs.y;
 result.z += rhs.z;

 return result;
 }

 This part of the code is exactly the same as if you were declaring a method, and you should easily be
able to convince yourself that this really will return a vector containing the sum of lhs and rhs as
defined. You simply add the members x , y , and z together individually.

c06.indd 158c06.indd 158 2/19/08 5:02:13 PM2/19/08 5:02:13 PM

159

Chapter 6: Operators and Casts

 Now all you need to do is write some simple code to test the Vector struct. Here it is:

 static void Main()
 {
 Vector vect1, vect2, vect3;

 vect1 = new Vector(3.0, 3.0, 1.0);
 vect2 = new Vector(2.0, -4.0, -4.0);
 vect3 = vect1 + vect2;

 Console.WriteLine(“vect1 = “ + vect1.ToString());
 Console.WriteLine(“vect2 = “ + vect2.ToString());
 Console.WriteLine(“vect3 = “ + vect3.ToString());
 }

 Saving this code as Vectors.cs and compiling and running it returns this result:

 Vectors

vect1 = (3 , 3 , 1)
vect2 = (2 , -4 , -4)
vect3 = (5 , -1 , -3)

 Adding More Overloads
 In addition to adding vectors, you can multiply and subtract them and compare their values. In this
section, you develop the Vector example further by adding a few more operator overloads. You will
not develop the complete set that you ’ d probably need for a fully functional Vector type, but just
enough to demonstrate some other aspects of operator overloading. First, you ’ ll overload the
multiplication operator to support multiplying vectors by a scalar and multiplying vectors by
another vector.

 Multiplying a vector by a scalar simply means multiplying each component individually by the scalar:
for example, 2 * (1.0, 2.5, 2.0) returns (2.0, 5.0, 4.0) . The relevant operator overload looks
like this:

public static Vector operator * (double lhs, Vector rhs)
{
 return new Vector(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z);
}

 This by itself, however, is not sufficient. If a and b are declared as type Vector , it will allow you to write
code like this:

b = 2 * a;

 The compiler will implicitly convert the integer 2 to a double in order to match the operator overload
signature. However, code like the following will not compile:

b = a * 2;

 The thing is that the compiler treats operator overloads exactly as method overloads. It examines all the
available overloads of a given operator to find the best match. The preceding statement requires the first
parameter to be a Vector and the second parameter to be an integer, or something that an integer can be
implicitly converted to. You have not provided such an overload. The compiler cannot start swapping
the order of parameters, so the fact that you ’ ve provided an overload that takes a double followed by
a Vector is not sufficient. You need to explicitly define an overload that takes a Vector followed by a

c06.indd 159c06.indd 159 2/19/08 5:02:13 PM2/19/08 5:02:13 PM

160

Part I: The C# Language

 double as well. There are two possible ways of implementing this. The first way involves breaking
down the vector multiplication operation in the same way that you have done for all operators so far:

public static Vector operator * (Vector lhs, double rhs)
{
 return new Vector(rhs * lhs.x, rhs * lhs.y, rhs *lhs.z);
}

 Given that you have already written code to implement essentially the same operation, however, you
might prefer to reuse that code by writing:

public static Vector operator * (Vector lhs, double rhs)
{
 return rhs * lhs;
}

 This code works by effectively telling the compiler that if it sees a multiplication of a Vector by a
 double , it can simply reverse the parameters and call the other operator overload. The sample code for
this chapter uses the second version, because it looks neater and illustrates the idea in action. This
version also makes for more maintainable code because it saves duplicating the code to perform the
multiplication in two separate overloads.

 Next, you need to overload the multiplication operator to support vector multiplication. Mathematics
provides a couple of ways of multiplying vectors together, but the one we are interested in here is known
as the dot product or inner product , which actually gives a scalar as a result. That ’ s the reason for this
example, to demonstrate that arithmetic operators don ’ t have to return the same type as the class in
which they are defined.

 In mathematical terms, if you have two vectors (x, y, z) and (X, Y, Z) , then the inner product is
defined to be the value of x*X + y*Y + z*Z . That might look like a strange way to multiply two things
together, but it is actually very useful because it can be used to calculate various other quantities.
Certainly, if you ever end up writing code that displays complex 3D graphics, for example using
Direct3D or DirectDraw, you will almost certainly find your code needs to work out inner products of
vectors quite often as an intermediate step in calculating where to place objects on the screen. What
concerns us here is that we want people using your Vector to be able to write double X = a*b to
calculate the inner product of two Vector objects (a and b). The relevant overload looks like this:

public static double operator * (Vector lhs, Vector rhs)
{
 return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
}

 Now that you understand the arithmetic operators, you can check that they work using a simple test
method:

static void Main()
{
 // stuff to demonstrate arithmetic operations
 Vector vect1, vect2, vect3;
 vect1 = new Vector(1.0, 1.5, 2.0);
 vect2 = new Vector(0.0, 0.0, -10.0);

 vect3 = vect1 + vect2;

 Console.WriteLine(“vect1 = “ + vect1);
 Console.WriteLine(“vect2 = “ + vect2);
 Console.WriteLine(“vect3 = vect1 + vect2 = “ + vect3);
 Console.WriteLine(“2*vect3 = “ + 2*vect3);

c06.indd 160c06.indd 160 2/19/08 5:02:13 PM2/19/08 5:02:13 PM

161

Chapter 6: Operators and Casts

 vect3 += vect2;

 Console.WriteLine(“vect3+=vect2 gives “ + vect3);

 vect3 = vect1*2;

 Console.WriteLine(“Setting vect3=vect1*2 gives “ + vect3);

 double dot = vect1*vect3;

 Console.WriteLine(“vect1*vect3 = “ + dot);
}

 Running this code (Vectors2.cs) produces the following result:

 Vectors2

vect1 = (1 , 1.5 , 2)
vect2 = (0 , 0 , -10)
vect3 = vect1 + vect2 = (1 , 1.5 , -8)
2*vect3 = (2 , 3 , -16)
vect3+=vect2 gives (1 , 1.5 , -18)
Setting vect3=vect1*2 gives (2 , 3 , 4)
vect1*vect3 = 14.5

 This shows that the operator overloads have given the correct results, but if you look at the test code
closely, you might be surprised to notice that it actually used an operator that wasn ’ t overloaded — the
addition assignment operator, += :

 vect3 += vect2;

 Console.WriteLine(“vect3 += vect2 gives “ + vect3);

 Although += normally counts as a single operator, it can be broken down into two steps: the addition
and the assignment. Unlike the C++ language, C# will not actually allow you to overload the = operator,
but if you overload + , the compiler will automatically use your overload of + to work out how to
perform a += operation. The same principle works for all of the assignment operators such as - = , *= , /= ,
 & = , and so on.

 Overloading the Comparison Operators
 C# has six comparison operators, and they come in three pairs:

❑ == and !=

❑ > and <

❑ > = and < =

 The C# language requires that you overload these operators in pairs. That is, if you overload == , you
must overload != too; otherwise, you get a compiler error. In addition, the comparison operators must
return a bool . This is the fundamental difference between these operators and the arithmetic operators.
The result of adding or subtracting two quantities, for example, can theoretically be any type depending
on the quantities. You have already seen that multiplying two Vector objects can be implemented to
give a scalar. Another example involves the .NET base class System.DateTime . It ’ s possible to subtract
two DateTime instances, but the result is not a DateTime ; instead it is a System.TimeSpan instance. By
contrast, it doesn ’ t really make much sense for a comparison to return anything other than a bool .

c06.indd 161c06.indd 161 2/19/08 5:02:14 PM2/19/08 5:02:14 PM

162

Part I: The C# Language

 If you overload == and != , you must also override the Equals() and GetHashCode() methods
inherited from System.Object ; otherwise, you ’ ll get a compiler warning. The reasoning is that the
 Equals() method should implement the same kind of equality logic as the == operator.

 Apart from these differences, overloading the comparison operators follows the same principles as
overloading the arithmetic operators. However, comparing quantities isn ’ t always as simple as you
might think. For example, if you simply compare two object references, you will compare the memory
address where the objects are stored. This is rarely the desired behavior of a comparison operator, and so
you must code the operator to compare the value of the objects and return the appropriate Boolean
response. The following example overrides the == and != operators for the Vector struct. Here is the
implementation of == :

public static bool operator == (Vector lhs, Vector rhs)
{
 if (lhs.x == rhs.x & & lhs.y == rhs.y & & lhs.z == rhs.z)
 return true;
 else
 return false;
}

 This approach simply compares two Vector objects for equality based on the values of their
components. For most structs, that is probably what you will want to do, though in some cases you may
need to think carefully about what you mean by equality. For example, if there are embedded classes,
should you simply compare whether the references point to the same object (shallow comparison) or
whether the values of the objects are the same (deep comparison)?

 A shallow comparison is where the objects point to the same point in memory, whereas deep
comparisons are working with values and properties of the object to deem equality. You want to perform
equality checks depending on the depth to help you decide what you will want to verify.

 Don ’ t be tempted to overload the comparison operator by calling the instance version of the Equals()
method inherited from System.Object . If you do and then an attempt is made to evaluate
(objA == objB) , when objA happens to be null , you will get an exception as the .NET runtime
tries to evaluate null.Equals(objB) . Working the other way around (overriding Equals() to call
the comparison operator) should be safe.

 You also need to override the != operator. The simple way to do this is:

public static bool operator != (Vector lhs, Vector rhs)
{
 return ! (lhs == rhs);
}

 As usual, you should quickly check that your override works with some test code. This time you ’ ll
define three Vector objects and compare them:

static void Main()
{
 Vector vect1, vect2, vect3;

 vect1 = new Vector(3.0, 3.0, -10.0);
 vect2 = new Vector(3.0, 3.0, -10.0);
 vect3 = new Vector(2.0, 3.0, 6.0);

 Console.WriteLine(“vect1==vect2 returns “ + (vect1==vect2));
 Console.WriteLine(“vect1==vect3 returns “ + (vect1==vect3));
 Console.WriteLine(“vect2==vect3 returns “ + (vect2==vect3));

c06.indd 162c06.indd 162 2/19/08 5:02:14 PM2/19/08 5:02:14 PM

163

Chapter 6: Operators and Casts

 Console.WriteLine();

 Console.WriteLine(“vect1!=vect2 returns “ + (vect1!=vect2));
 Console.WriteLine(“vect1!=vect3 returns “ + (vect1!=vect3));
 Console.WriteLine(“vect2!=vect3 returns “ + (vect2!=vect3));
}

 Compiling this code (the Vectors3.cs sample in the code download) generates the following compiler
warning because you haven ’ t overridden Equals() for your Vector . For our purposes here, that does
not matter, so we will ignore it.

 csc Vectors3.cs

Microsoft (R) Visual C# 2008 Compiler version 3.05.20706.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

Vectors3.cs(5,11): warning CS0660: ‘Wrox.ProCSharp.OOCSharp.Vector’ defines
 operator == or operator != but does not override Object.Equals(object o)
Vectors3.cs(5,11): warning CS0661: ‘Wrox.ProCSharp.OOCSharp.Vector’ defines
 operator == or operator != but does not override Object.GetHashCode()

 Running the example produces these results at the command line:

 Vectors3

vect1==vect2 returns True
vect1==vect3 returns False
vect2==vect3 returns False

vect1!=vect2 returns False
vect1!=vect3 returns True
vect2!=vect3 returns True

 Which Operators Can You Overload?
 It is not possible to overload all of the available operators. The operators that you can overload are listed
in the following table.

Category Operators Restrictions

Arithmetic binary +, *, /, -, % None.

Arithmetic unary +, -, ++, -- None.

Bitwise binary &, |, ^, <<, >> None.

Bitwise unary !, ~true, false The true and false operators must be
overloaded as a pair.

Comparison ==, !=,>=, <=>, <, Comparison operators must be
 overloaded in pairs.

c06.indd 163c06.indd 163 2/19/08 5:02:14 PM2/19/08 5:02:14 PM

164

Part I: The C# Language

 User - Defined Casts
 Earlier in this chapter, you learned that you can convert values between predefined data types through a
process of casting . You also saw that C# allows two different types of casts: implicit and explicit. This
section looks at these types of casts.

 For an explicit cast, you explicitly mark the cast in your code by writing the destination data type inside
parentheses:

 int I = 3;
 long l = I; // implicit
 short s = (short)I; // explicit

 For the predefined data types, explicit casts are required where there is a risk that the cast might fail or
some data might be lost. The following are some examples:

❑ When converting from an int to a short , the short might not be large enough to hold the
value of the int .

❑ When converting from signed to unsigned data types, incorrect results will be returned if the
signed variable holds a negative value.

❑ When converting from floating - point to integer data types, the fractional part of the number will
be lost.

❑ When converting from a nullable type to a non - nullable type, a value of null will cause an
exception.

 By making the cast explicit in your code, C# forces you to affirm that you understand there is a risk of
data loss, and therefore presumably you have written your code to take this into account.

 Because C# allows you to define your own data types (structs and classes), it follows that you will need
the facility to support casts to and from those data types. The mechanism is that you can define a cast as
a member operator of one of the relevant classes. Your cast operator must be marked as either implicit
or explicit to indicate how you are intending it to be used. The expectation is that you follow the same
guidelines as for the predefined casts: If you know that the cast is always safe whatever the value held
by the source variable, then you define it as implicit . If, however, you know there is a risk of

Category Operators Restrictions

Assignment +=, -=, *=, /=, >>=, <<=, %=, &=,
|=, ^=

You cannot explicitly overload these
operators; they are overridden implic-
itly when you override the individual
operators such as +, -, %, and so on.

Index [] You cannot overload the index operator
directly. The indexer member type, dis-
cussed in Chapter 2, “C# Basics,” allows
you to support the index operator on
your classes and structs.

Cast () You cannot overload the cast operator
directly. User-defined casts (discussed
next) allow you to define custom cast
behavior.

c06.indd 164c06.indd 164 2/19/08 5:02:15 PM2/19/08 5:02:15 PM

165

Chapter 6: Operators and Casts

something going wrong for certain values — perhaps some loss of data or an exception being thrown —
 then you should define the cast as explicit .

 You should define any custom casts you write as explicit if there are any source data
values for which the cast will fail or if there is any risk of an exception being
thrown.

 The syntax for defining a cast is similar to that for overloading operators discussed earlier in this chapter.
This is not a coincidence — a cast is regarded as an operator whose effect is to convert from the source
type to the destination type. To illustrate the syntax, the following is taken from an example struct
named Currency , which is introduced later in this section:

public static implicit operator float (Currency value)
{
 // processing
}

 The return type of the operator defines the target type of the cast operation, and the single parameter is
the source object for the conversion. The cast defined here allows you to implicitly convert the value of a
 Currency into a float . Note that if a conversion has been declared as implicit , the compiler will
permit its use either implicitly or explicitly. If it has been declared as explicit , the compiler will only
permit it to be used explicitly. In common with other operator overloads, casts must be declared as both
 public and static .

 C++ developers will notice that this is different from what they are used to with C++, in which casts are
instance members of classes.

 Implementing User - Defined Casts
 This section illustrates the use of implicit and explicit user - defined casts in an example called
 SimpleCurrency (which, as usual, is available in the code download). In this example, you define a
struct, Currency , which holds a positive USD ($) monetary value. C# provides the decimal type for this
purpose, but it is possible you will still want to write your own struct or class to represent monetary
values if you want to perform sophisticated financial processing and therefore want to implement
specific methods on such a class.

 The syntax for casting is the same for structs and classes. This example happens to be for a struct, but
would work just as well if you declared Currency as a class.

 Initially, the definition of the Currency struct is:

 struct Currency
 {
 public uint Dollars;
 public ushort Cents;

 public Currency(uint dollars, ushort cents)
 {
 this.Dollars = dollars;

(continued)

c06.indd 165c06.indd 165 2/19/08 5:02:15 PM2/19/08 5:02:15 PM

166

Part I: The C# Language

 this.Cents = cents;
 }

 public override string ToString()
 {
 return string.Format(“${0}.{1,-2:00}”, Dollars,Cents);
 }
 }

 The use of unsigned data types for the Dollar and Cents fields ensures that a Currency instance can
hold only positive values. It is restricted this way in order to illustrate some points about explicit casts
later on. You might want to use a class like this to hold, for example, salary information for employees of
a company (people ’ s salaries tend not to be negative!). To keep the class simple, the fields are public, but
usually you would make them private and define corresponding properties for the dollars and cents.

 Start by assuming that you want to be able to convert Currency instances to float values, where the
integer part of the float represents the dollars. In other words, you would like to be able to write code
like this:

 Currency balance = new Currency(10,50);
 float f = balance; // We want f to be set to 10.5

 To be able to do this, you need to define a cast. Hence, you add the following to your Currency
definition:

 public static implicit operator float (Currency value)
 {
 return value.Dollars + (value.Cents/100.0f);
 }

 The preceding cast is implicit. It is a sensible choice in this case because, as should be clear from the
definition of Currency , any value that can be stored in the currency can also be stored in a float . There
is no way that anything should ever go wrong in this cast.

 There is a slight cheat here — in fact, when converting a uint to a float , there can be a loss in
precision, but Microsoft has deemed this error sufficiently marginal to count the uint - to - float cast
as implicit.

 However, if you have a float that you would like to be converted to a Currency , the conversion is not
guaranteed to work. A float can store negative values, which Currency instances can ’ t, and a float
can store numbers of a far higher magnitude than can be stored in the (uint) Dollar field of Currency .
Therefore, if a float contains an inappropriate value, converting it to a Currency could give
unpredictable results. Because of this risk, the conversion from float to Currency should be defined as
explicit. Here is the first attempt, which will not give quite the correct results, but it is instructive to
examine why:

 public static explicit operator Currency (float value)
 {
 uint dollars = (uint)value;
 ushort cents = (ushort)((value-dollars)*100);
 return new Currency(dollars, cents);
 }

 The following code will now successfully compile:

 float amount = 45.63f;
 Currency amount2 = (Currency)amount;

(continued)

c06.indd 166c06.indd 166 2/19/08 5:02:16 PM2/19/08 5:02:16 PM

167

Chapter 6: Operators and Casts

 However, the following code, if you tried it, would generate a compilation error, because it attempts to
use an explicit cast implicitly:

 float amount = 45.63f;
 Currency amount2 = amount; // wrong

 By making the cast explicit, you warn the developer to be careful because data loss might occur.
However, as you will soon see, this is not how you want your Currency struct to behave. Try writing a
test harness and running the sample. Here is the Main() method, which instantiates a Currency struct
and attempts a few conversions. At the start of this code, you write out the value of balance in two
different ways (this will be needed to illustrate something later in the example):

static void Main()
{
 try
 {
 Currency balance = new Currency(50,35);

 Console.WriteLine(balance);
 Console.WriteLine(“balance is “ + balance);
 Console.WriteLine(“balance is (using ToString()) “ + balance.ToString());

 float balance2= balance;

 Console.WriteLine(“After converting to float, = “ + balance2);

 balance = (Currency) balance2;

 Console.WriteLine(“After converting back to Currency, = “ + balance);
 Console.WriteLine(“Now attempt to convert out of range value of “ +
 “-$100.00 to a Currency:”);

 checked
 {
 balance = (Currency) (-50.5);
 Console.WriteLine(“Result is “ + balance.ToString());
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(“Exception occurred: “ + e.Message);
 }
}

 Notice that the entire code is placed in a try block to catch any exceptions that occur during your casts.
In addition, the lines that test converting an out - of - range value to Currency are placed in a checked
block in an attempt to trap negative values. Running this code gives this output:

 SimpleCurrency

50.35
Balance is $50.35
Balance is (using ToString()) $50.35
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$100.00 to a Currency:
Result is $4294967246.60486

c06.indd 167c06.indd 167 2/19/08 5:02:16 PM2/19/08 5:02:16 PM

168

Part I: The C# Language

 This output shows that the code did not quite work as expected. First, converting back from float to
 Currency gave a wrong result of $50.34 instead of $50.35 . Second, no exception was generated when
you tried to convert an obviously out - of - range value.

 The first problem is caused by rounding errors. If a cast is used to convert from a float to a uint , the
computer will truncate the number rather than rounding it. The computer stores numbers in binary rather
than decimal, and the fraction 0.35 cannot be exactly represented as a binary fraction (just as 1/3 cannot
be represented exactly as a decimal fraction; it comes out as 0.3333 recurring). The computer ends up
storing a value very slightly lower than 0.35 that can be represented exactly in binary format. Multiply
by 100 and you get a number fractionally less than 35, which is truncated to 34 cents. Clearly, in this
situation, such errors caused by truncation are serious, and the way to avoid them is to ensure that some
intelligent rounding is performed in numerical conversions instead. Luckily, Microsoft has written a
class that will do this: System.Convert . The System.Convert object contains a large number of static
methods to perform various numerical conversions, and the one that we want is Convert.ToUInt16() .
Note that the extra care taken by the System.Convert methods does come at a performance cost. You
should use them only when you need them.

 Let ’ s examine the second problem — why the expected overflow exception wasn ’ t thrown. The issue
here is this: The place where the overflow really occurs isn ’ t actually in the Main() routine at all — it is
inside the code for the cast operator, which is called from the Main() method. The code in this method
was not marked as checked .

 The solution is to ensure that the cast itself is computed in a checked context too. With both this change
and the fix for the first problem, the revised code for the conversion looks like the following:

 public static explicit operator Currency (float value)
 {
 checked
 {
 uint dollars = (uint)value;
 ushort cents = Convert.ToUInt16((value-dollars)*100);
 return new Currency(dollars, cents);
 }
 }

 Note that you use Convert.ToUInt16() to calculate the cents, as described earlier, but you do not use it
for calculating the dollar part of the amount. System.Convert is not needed when working out the
dollar amount because truncating the float value is what you want there.

 It is worth noting that the System.Convert methods also carry out their own overflow checking.
Hence, for the particular case we are considering, there is no need to place the call to Convert
.ToUInt16() inside the checked context. The checked context is still required, however, for the explicit
casting of value to dollars.

 You won ’ t see a new set of results with this new checked cast just yet because you have some more
modifications to make to the SimpleCurrency example later in this section.

 If you are defining a cast that will be used very often, and for which performance is at an absolute pre-
mium, you may prefer not to do any error checking. That is also a legitimate solution, provided that the
behavior of your cast and the lack of error checking are very clearly documented.

 Casts Between Classes
 The Currency example involves only classes that convert to or from float — one of the predefined
data types. However, it is not necessary to involve any of the simple data types. It is perfectly legitimate
to define casts to convert between instances of different structs or classes that you have defined. You
need to be aware of a couple of restrictions, however:

c06.indd 168c06.indd 168 2/19/08 5:02:16 PM2/19/08 5:02:16 PM

169

Chapter 6: Operators and Casts

❑ You cannot define a cast if one of the classes is derived from the other (these types of casts
already exist, as you will see).

❑ The cast must be defined inside the definition of either the source or the destination data type.

 To illustrate these requirements, suppose that you have the class hierarchy shown in Figure 6 - 1 .

System Object

A

B

C D

Figure 6-1

 In other words, classes C and D are indirectly derived from A . In this case, the only legitimate user -
 defined cast between A , B , C , or D would be to convert between classes C and D , because these classes are
not derived from each other. The code to do so might look like this (assuming that you want the casts to
be explicit, which is usually the case when defining casts between user - defined casts):

 public static explicit operator D(C value)
 {
 // and so on
 }
 public static explicit operator C(D value)
 {
 // and so on
 }

 For each of these casts, you have a choice of where you place the definitions — inside the class definition
of C or inside the class definition of D , but not anywhere else. C# requires you to put the definition of a
cast inside either the source class (or struct) or the destination class (or struct). A side effect of this is that
you cannot define a cast between two classes unless you have access to edit the source code for at least
one of them. This is sensible because it prevents third parties from introducing casts into your classes.

 Once you have defined a cast inside one of the classes, you cannot also define the same cast inside the
other class. Obviously, there should be only one cast for each conversion — otherwise, the compiler
would not know which one to pick.

 Casts Between Base and Derived Classes
 To see how these casts work, start by considering the case where the source and destination are both
reference types, and consider two classes, MyBase and MyDerived , where MyDerived is derived directly
or indirectly from MyBase .

c06.indd 169c06.indd 169 2/19/08 5:02:17 PM2/19/08 5:02:17 PM

170

Part I: The C# Language

 First, from MyDerived to MyBase, it is always possible (assuming the constructors are available) to write:

MyDerived derivedObject = new MyDerived();
MyBase baseCopy = derivedObject;

 In this case, you are casting implicitly from MyDerived to MyBase . This works because of the rule that
any reference to a type MyBase is allowed to refer to objects of class MyBase or to objects of anything
derived from MyBase . In OO programming, instances of a derived class are, in a real sense, instances of
the base class, plus something extra. All the functions and fields defined on the base class are defined
in the derived class too.

 Alternatively, you can write:

MyBase derivedObject = new MyDerived();
MyBase baseObject = new MyBase();
MyDerived derivedCopy1 = (MyDerived) derivedObject; // OK
MyDerived derivedCopy2 = (MyDerived) baseObject; // Throws exception

 This code is perfectly legal C# (in a syntactic sense, that is) and illustrates casting from a base class to a
derived class. However, the final statement will throw an exception when executed. When you perform
the cast, the object being referred to is examined. Because a base class reference can in principle refer to a
derived class instance, it is possible that this object is actually an instance of the derived class that you
are attempting to cast to. If that is the case, the cast succeeds, and the derived reference is set to refer to
the object. If, however, the object in question is not an instance of the derived class (or of any class
derived from it), the cast fails and an exception is thrown.

 Notice that the casts that the compiler has supplied, which convert between base and derived class, do
not actually do any data conversion on the object in question. All they do is set the new reference to refer
to the object if it is legal for that conversion to occur. To that extent, these casts are very different in
nature from the ones that you will normally define yourself. For example, in the SimpleCurrency
example earlier, you defined casts that convert between a Currency struct and a float . In the float - to -
 Currency cast, you actually instantiated a new Currency struct and initialized it with the required
values. The predefined casts between base and derived classes do not do this. If you actually want to
convert a MyBase instance into a real MyDerived object with values based on the contents of the MyBase
instance, you would not be able to use the cast syntax to do this. The most sensible option is usually to
define a derived class constructor that takes a base class instance as a parameter and have this
constructor perform the relevant initializations:

class DerivedClass : BaseClass
{
 public DerivedClass(BaseClass rhs)
 {
 // initialize object from the Base instance
 }
 // etc.

 Boxing and Unboxing Casts
 The previous discussion focused on casting between base and derived classes where both participants
were reference types. Similar principles apply when casting value types, although in this case it is not
possible to simply copy references — some copying of data must take place.

 It is not, of course, possible to derive from structs or primitive value types. Casting between base and
derived structs invariably means casting between a primitive type or a struct and System.Object .
(Theoretically, it is possible to cast between a struct and System.ValueType , though it is hard to see
why you would want to do this.)

c06.indd 170c06.indd 170 2/19/08 5:02:17 PM2/19/08 5:02:17 PM

171

Chapter 6: Operators and Casts

 The cast from any struct (or primitive type) to object is always available as an implicit cast — because it
is a cast from a derived to a base type — and is just the familiar process of boxing . For example, with the
 Currency struct:

Currency balance = new Currency(40,0);
object baseCopy = balance;

 When this implicit cast is executed, the contents of balance are copied onto the heap into a boxed object,
and the baseCopy object reference is set to this object. What actually happens behind the scenes is this:
When you originally defined the Currency struct, the .NET Framework implicitly supplied another
(hidden) class, a boxed Currency class, which contains all the same fields as the Currency struct, but it
is a reference type, stored on the heap. This happens whenever you define a value type — whether it is a
 struct or enum , and similar boxed reference types exist corresponding to all the primitive value types of
 int , double , uint , and so on. It is not possible, or necessary, to gain direct programmatic access to any
of these boxed classes in source code, but they are the objects that are working behind the scenes
whenever a value type is cast to object . When you implicitly cast Currency to object , a boxed
 Currency instance gets instantiated and initialized with all the data from the Currency struct. In the
preceding code, it is this boxed Currency instance that baseCopy will refer to. By these means, it is
possible for casting from derived to base type to work syntactically in the same way for value types as
for reference types.

 Casting the other way is known as unboxing . Just as for casting between a base reference type and a
derived reference type, it is an explicit cast because an exception will be thrown if the object being cast is
not of the correct type:

object derivedObject = new Currency(40,0);
object baseObject = new object();
Currency derivedCopy1 = (Currency)derivedObject; // OK
Currency derivedCopy2 = (Currency)baseObject; // Exception thrown

 This code works in a way similar to the code presented earlier for reference types. Casting
 derivedObject to Currency works fine because derivedObject actually refers to a boxed Currency
instance — the cast will be performed by copying the fields out of the boxed Currency object into a new
 Currency struct. The second cast fails because baseObject does not refer to a boxed Currency object.

 When using boxing and unboxing, it is important to understand that both processes actually copy the
data into the new boxed or unboxed object. Hence, manipulations on the boxed object, for example, will
not affect the contents of the original value type.

 Multiple Casting
 One thing you will have to watch for when you are defining casts is that if the C# compiler is presented
with a situation in which no direct cast is available to perform a requested conversion, it will attempt to
find a way of combining casts to do the conversion. For example, with the Currency struct, suppose the
compiler encounters a few lines of code like this:

Currency balance = new Currency(10,50);
long amount = (long)balance;
double amountD = balance;

 You first initialize a Currency instance, and then you attempt to convert it to a long . The trouble is that
you haven ’ t defined the cast to do that. However, this code will still compile successfully. What will
happen is that the compiler will realize that you have defined an implicit cast to get from Currency to
 float , and the compiler already knows how to explicitly cast a float to a long . Hence, it will compile
that line of code into IL code that converts balance first to a float , and then converts that result to a

c06.indd 171c06.indd 171 2/19/08 5:02:17 PM2/19/08 5:02:17 PM

172

Part I: The C# Language

 long . The same thing happens in the final line of the code, when you convert balance to a double .
However, because the cast from Currency to float and the predefined cast from float to double are
both implicit, you can write this conversion in your code as an implicit cast. If you had preferred, you
could have specified the casting route explicitly:

Currency balance = new Currency(10,50);
long amount = (long)(float)balance;
double amountD = (double)(float)balance;

 However, in most cases, this would be seen as needlessly complicating your code. The following code,
by contrast, would produce a compilation error:

Currency balance = new Currency(10,50);
long amount = balance;

 The reason is that the best match for the conversion that the compiler can find is still to convert first to
 float then to long . The conversion from float to long needs to be specified explicitly, though.

 Not all of this by itself should give you too much trouble. The rules are, after all, fairly intuitive and
designed to prevent any data loss from occurring without the developer knowing about it. However, the
problem is that if you are not careful when you define your casts, it is possible for the compiler to figure
out a path that leads to unexpected results. For example, suppose that it occurs to someone else in the
group writing the Currency struct that it would be useful to be able to convert a uint containing the
total number of cents in an amount into a Currency (cents, not dollars, because the idea is not to lose the
fractions of a dollar). Therefore, this cast might be written to try to achieve this:

public static implicit operator Currency (uint value)
{
 return new Currency(value/100u, (ushort)(value%100));
} // Do not do this!

 Note the u after the first 100 in this code to ensure that value/100u is interpreted as a uint . If you had
written value/100 , the compiler would have interpreted this as an int , not a uint .

 The code comment Do not do this is clearly commented in this code, and here is why. Look at the
following code snippet; all it does is convert a uint containing 350 into a Currency and back again.
What do you think bal2 will contain after executing this?

uint bal = 350;
Currency balance = bal;
uint bal2 = (uint)balance;

 The answer is not 350 but 3 ! Moreover, it all follows logically. You convert 350 implicitly to a Currency ,
giving the result balance.Dollars = 3 , balance.Cents = 50 . Then the compiler does its usual
figuring out of the best path for the conversion back. Balance ends up being implicitly converted to a
 float (value 3.5), and this is converted explicitly to a uint with value 3 .

 Of course, other instances exist in which converting to another data type and back again causes data loss.
For example, converting a float containing 5.8 to an int and back to a float again will lose the
fractional part, giving you a result of 5 , but there is a slight difference in principle between losing the
fractional part of a number and dividing an integer by more than 100! Currency has suddenly become a
rather dangerous class that does strange things to integers!

 The problem is that there is a conflict between how your casts interpret integers. The casts between
 Currency and float interpret an integer value of 1 as corresponding to one dollar, but the latest uint -
 to - Currency cast interprets this value as one cent. This is an example of very poor design. If you want
your classes to be easy to use, you should make sure that all of your casts behave in a way that is

c06.indd 172c06.indd 172 2/19/08 5:02:18 PM2/19/08 5:02:18 PM

173

Chapter 6: Operators and Casts

mutually compatible, in the sense that they intuitively give the same results. In this case, the solution is
obviously to rewrite the uint - to - Currency cast so that it interprets an integer value of 1 as one dollar:

public static implicit operator Currency (uint value)
{
 return new Currency(value, 0);
}

 Incidentally, you might wonder whether this new cast is necessary at all. The answer is that it could be
useful. Without this cast, the only way for the compiler to carry out a uint - to - Currency conversion
would be via a float . Converting directly is a lot more efficient in this case, so having this extra cast
provides performance benefits, though you need to make sure it gives the same result as via a float ,
which you have now done. In other situations, you may also find that separately defining casts for
different predefined data types allows more conversions to be implicit rather than explicit, though that is
not the case here.

 A good test of whether your casts are compatible is to ask whether a conversion will give the same
results (other than perhaps a loss of accuracy as in float - to - int conversions), regardless of which path
it takes. The Currency class provides a good example of this. Look at this code:

Currency balance = new Currency(50, 35);
ulong bal = (ulong) balance;

 At present, there is only one way that the compiler can achieve this conversion: by converting the
 Currency to a float implicitly, then to a ulong explicitly. The float - to - ulong conversion requires an
explicit conversion, but that is fine because you have specified one here.

 Suppose, however, that you then added another cast, to convert implicitly from a Currency to a uint .
You will actually do this by modifying the Currency struct by adding the casts both to and from uint .
This code is available as the SimpleCurrency2 example:

 public static implicit operator Currency (uint value)
 {
 return new Currency(value, 0);
 }

 public static implicit operator uint (Currency value)
 {
 return value.Dollars;
 }

 Now the compiler has another possible route to convert from Currency to ulong : to convert from
 Currency to uint implicitly, then to ulong implicitly. Which of these two routes will it take? C# does
have some precise rules to say how the compiler decides which is the best route if there are several
possibilities. (The rules are not detailed in this book, but if you are interested, details are in the MSDN
documentation.) The best answer is that you should design your casts so that all routes give the same
answer (other than possible loss of precision), in which case it doesn ’ t really matter which one the
compiler picks. (As it happens in this case, the compiler picks the Currency - to - uint - to - ulong route in
preference to Currency - to - float - to - ulong .)

 To test the SimpleCurrency2 sample, add this code to the test code for SimpleCurrency :

try
{
 Currency balance = new Currency(50,35);

 Console.WriteLine(balance);
 Console.WriteLine(“balance is “ + balance);

c06.indd 173c06.indd 173 2/19/08 5:02:18 PM2/19/08 5:02:18 PM

174

Part I: The C# Language

 Console.WriteLine(“balance is (using ToString()) “ + balance.ToString());

 uint balance3 = (uint) balance;

 Console.WriteLine(“Converting to uint gives “ + balance3);

 Running the sample now gives you these results:

 SimpleCurrency2

50
balance is $50.35
balance is (using ToString()) $50.35
Converting to uint gives 50
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$100.00 to a Currency:
Exception occurred: Arithmetic operation resulted in an overflow.

 The output shows that the conversion to uint has been successful, though as expected, you have lost the
cents part of the Currency in making this conversion. Casting a negative float to Currency has also
produced the expected overflow exception now that the float - to - Currency cast itself defines a
 checked context.

 However, the output also demonstrates one last potential problem that you need to be aware of when
working with casts. The very first line of output has not displayed the balance correctly, displaying 50
instead of $50.35 . Consider these lines:

 Console.WriteLine(balance);
 Console.WriteLine(“balance is “ + balance);
 Console.WriteLine(“balance is (using ToString()) “ + balance.ToString());

 Only the last two lines correctly display the Currency as a string. So what is going on? The problem
here is that when you combine casts with method overloads, you get another source of unpredictability.
We will look at these lines in reverse order.

 The third Console.WriteLine() statement explicitly calls the Currency.ToString() method,
ensuring that the Currency is displayed as a string. The second does not do so. However, the string
literal “ balance is ” passed to Console.WriteLine() makes it clear to the compiler that the
parameter is to be interpreted as a string. Hence, the Currency.ToString() method will be called
implicitly.

 The very first Console.WriteLine() method, however, simply passes a raw Currency struct to
 Console.WriteLine() . Now, Console.WriteLine() has many overloads, but none of them takes a
 Currency struct. So the compiler will start fishing around to see what it can cast the Currency to in
order to make it match up with one of the overloads of Console.WriteLine() . As it happens, one of
the Console.WriteLine() overloads is designed to display uint s quickly and efficiently, and it takes a
 uint as a parameter — you have now supplied a cast that converts Currency implicitly to uint .

 In fact, Console.WriteLine() has another overload that takes a double as a parameter and displays
the value of that double . If you look closely at the output from the first SimpleCurrency example, you
will find the very first line of output displayed Currency as a double , using this overload. In that
example, there wasn ’ t a direct cast from Currency to uint , so the compiler picked Currency - to - float -
 to - double as its preferred way of matching up the available casts to the available Console
.WriteLine() overloads. However, now that there is a direct cast to uint available in
 SimpleCurrency2 , the compiler has opted for this route.

c06.indd 174c06.indd 174 2/19/08 5:02:19 PM2/19/08 5:02:19 PM

175

Chapter 6: Operators and Casts

 The upshot of this is that if you have a method call that takes several overloads, and you attempt to pass
it a parameter whose data type doesn ’ t match any of the overloads exactly, then you are forcing the
compiler to decide not only what casts to use to perform the data conversion, but which overload, and
hence which data conversion, to pick. The compiler always works logically and according to strict rules,
but the results may not be what you expected. If there is any doubt, you are better off specifying which
cast to use explicitly.

 Summary
 This chapter looked at the standard operators provided by C#, described the mechanics of object
equality, and examined how the compiler converts the standard data types from one to another. It also
demonstrated how you can implement custom operator support on your data types using operator
overloads. Finally, the chapter looked at a special type of operator overload, the cast operator, which
allows you to specify how instances of your types are converted to other data types.

 Chapter 7 focuses on two closely related member types that you can implement in your types to support
very clean event - based object models: delegates and events.

c06.indd 175c06.indd 175 2/19/08 5:02:19 PM2/19/08 5:02:19 PM

c06.indd 176c06.indd 176 2/19/08 5:02:19 PM2/19/08 5:02:19 PM

 Delegates and Events

 Callback functions are an important part of programming in Windows. If you have a background
in C or C++ programming, you have seen callbacks used in many of the Windows APIs. With the
addition of the AddressOf keyword, Visual Basic developers are now able to take advantage of
the API that once was off limits. Callback functions are really pointers to a method call. Also known
as function pointers, they are a very powerful programming feature. .NET has implemented the
concept of a function pointer in the form of delegates. What makes them special is that, unlike the
C function pointer, the .NET delegate is type - safe. What this means is that a function pointer in C is
nothing but a pointer to a memory location. You have no idea what that pointer is really pointing
to. Things like parameters and return types are not known. As you see in this chapter, .NET has
made delegates a type - safe operation. Later in the chapter, you see how .NET uses delegates as the
means of implementing events.

 The main topics of this chapter are:

❑ Delegates

❑ Anonymous methods

❑ Lambda expressions

❑ Events

 Delegates
 Delegates exist for situations in which you want to pass methods around to other methods. To see
what that means, consider this line of code:

int i = int.Parse(“99”);

 You are so used to passing data to methods as parameters, as in this example, that you don ’ t
consciously think about it, and for this reason the idea of passing methods around instead of data
might sound a little strange. However, there are cases in which you have a method that does
something, and rather than operating on data, the method might need to do something that
involves invoking another method. To complicate things further, you do not know at compile time
what this second method is. That information is available only at runtime and hence will need to be

c07.indd 177c07.indd 177 2/19/08 5:02:31 PM2/19/08 5:02:31 PM

178

Part I: The C# Language

passed in as a parameter to the first method. That might sound confusing but should become clearer with
a couple of examples:

❑ Starting threads — It is possible in C# to tell the computer to start some new sequence of
execution in parallel with what it is currently doing. Such a sequence is known as a thread, and
starting one up is done using the Start() method on an instance of one of the base classes,
 System.Threading.Thread . If you tell the computer to start a new sequence of execution, you
have to tell it where to start that sequence. You have to supply it with the details of a method in
which execution can start. In other words, the constructor of the Thread class takes a parameter
that defines the method to be invoked by the thread.

❑ Generic library classes — Many libraries contain code to perform various standard tasks. It is
usually possible for these libraries to be self - contained, in the sense that you know when you
write to the library exactly how the task must be performed. However, sometimes the task
contains some subtask, which only the individual client code that uses the library knows how to
perform. For example, say that you want to write a class that takes an array of objects and sorts
them into ascending order. Part of the sorting process involves repeatedly taking two of the
objects in the array and comparing them in order to see which one should come first. If you
want to make the class capable of sorting arrays of any object, there is no way that it can tell in
advance how to do this comparison. The client code that hands your class the array of objects
will also have to tell your class how to do this comparison for the particular objects it wants
sorted. The client code will have to pass your class details of an appropriate method that can be
called and does the comparison.

❑ Events — The general idea here is that often you have code that needs to be informed when some
event takes place. GUI programming is full of situations like this. When the event is raised, the
runtime will need to know what method should be executed. This is done by passing the method
that handles the event as a parameter to a delegate. This is discussed later in the chapter.

 In C and C++, you can just take the address of a function and pass this as a parameter. There ’ s no type
safety with C. You can pass any function to a method where a function pointer is required.
Unfortunately, this direct approach not only causes some problems with type safety but also neglects the
fact that when you are doing object - oriented programming, methods rarely exist in isolation, but usually
need to be associated with a class instance before they can be called. As a result of these problems, the
.NET Framework does not syntactically permit this direct approach. Instead, if you want to pass
methods around, you have to wrap up the details of the method in a new kind of object, a delegate.
Delegates quite simply are a special type of object — special in the sense that, whereas all the objects
defined up to now contain data, a delegate contains the address of a method.

 Declaring Delegates in C#
 When you want to use a class in C#, you do so in two stages. First, you need to define the class — that is,
you need to tell the compiler what fields and methods make up the class. Then (unless you are using
only static methods), you instantiate an object of that class. With delegates it is the same thing. You have
to start off by defining the delegates you want to use. In the case of delegates, defining them means
telling the compiler what kind of method a delegate of that type will represent. Then, you have to create
one or more instances of that delegate. Behind the scenes, the compiler creates a class that represents the
delegate.

 The syntax for defining delegates looks like this:

delegate void IntMethodInvoker(int x);

 In this case, you have defined a delegate called IntMethodInvoker , and you have indicated that each
instance of this delegate can hold a reference to a method that takes one int parameter and returns

c07.indd 178c07.indd 178 2/19/08 5:02:32 PM2/19/08 5:02:32 PM

179

Chapter 7: Delegates and Events

 void . The crucial point to understand about delegates is that they are type - safe. When you define the
delegate, you have to give full details of the signature and the return type of the method that it is going
to represent.

 One good way of understanding delegates is by thinking of a delegate as something
that gives a name to a method signature and the return type.

 Suppose that you wanted to define a delegate called TwoLongsOp that will represent a method that takes
two long s as its parameters and returns a double . You could do it like this:

delegate double TwoLongsOp(long first, long second);

 Or, to define a delegate that will represent a method that takes no parameters and returns a string , you
might write this:

delegate string GetAString();

 The syntax is similar to that for a method definition, except that there is no method body and the
definition is prefixed with the keyword delegate . Because what you are doing here is basically defining
a new class, you can define a delegate in any of the same places that you would define a class — that is
to say either inside another class or outside of any class and in a namespace as a top - level object.
Depending on how visible you want your definition to be, you can apply any of the normal access
modifiers to delegate definitions — public , private , protected , and so on:

public delegate string GetAString();

 We really mean what we say when we describe defining a delegate as defining a new class. Delegates are
implemented as classes derived from the class System.MulticastDelegate , which is derived from
the base class, System.Delegate . The C# compiler is aware of this class and uses its delegate syntax
to shield you from the details of the operation of this class. This is another good example of how C#
works in conjunction with the base classes to make programming as easy as possible.

 After you have defined a delegate, you can create an instance of it so that you can use it to store details
of a particular method.

 There is an unfortunate problem with terminology here. With classes there are two distinct terms —
 class, which indicates the broader definition, and object, which means an instance of the class.
Unfortunately, with delegates there is only the one term. When you create an instance of a delegate,
what you have created is also referred to as a delegate. You need to be aware of the context to know which
meaning we are using when we talk about delegates.

 Using Delegates in C#
 The following code snippet demonstrates the use of a delegate. It is a rather long - winded way of calling
the ToString() method on an int :

private delegate string GetAString();

static void Main()
{
 int x = 40;
 GetAString firstStringMethod = new GetAString(x.ToString);
 Console.WriteLine(“String is {0}”, firstStringMethod());

(continued)

c07.indd 179c07.indd 179 2/19/08 5:02:33 PM2/19/08 5:02:33 PM

180

Part I: The C# Language

 // With firstStringMethod initialized to x.ToString(),
 // the above statement is equivalent to saying
 // Console.WriteLine(“String is {0}”, x.ToString());
}

 In this code, you instantiate a delegate of type GetAString , and you initialize it so it refers to the
 ToString() method of the integer variable x . Delegates in C# always syntactically take a one - parameter
constructor, the parameter being the method to which the delegate will refer. This method must match
the signature with which you originally defined the delegate. So in this case, you would get a
compilation error if you tried to initialize the variable firstStringMethod with any method that did
not take any parameters and return a string. Notice that, because int.ToString() is an instance
method (as opposed to a static one), you need to specify the instance (x) as well as the name of the method
to initialize the delegate properly.

 The next line actually uses the delegate to display the string. In any code, supplying the name of a
delegate instance, followed by brackets containing any parameters, has exactly the same effect as calling
the method wrapped by the delegate. Hence, in the preceding code snippet, the Console.WriteLine()
statement is completely equivalent to the commented - out line.

 In fact, supplying brackets to the delegate instance is the same as invoking the Invoke() method of the
delegate class. Because firstStringMethod is a variable of a delegate type, the C# compiler replaces
 firstStringMethod() with firstStringMethod.Invoke() :

firstStringMethod();
firstStringMethod.Invoke();

 For less typing, at every place where a delegate instance is needed, you can just pass the name of the
address. This is known by the term delegate inference . This C# feature works as long as the compiler can
resolve the delegate instance to a specific type. The example initialized the variable
 firstStringMethod of type GetAString with a new instance of the delegate GetAString :

 GetAString firstStringMethod = new GetAString(x.ToString);

 You can write the same just by passing the method name with the variable x to the variable
 firstStringMethod :

 GetAString firstStringMethod = x.ToString;

 The code that is created by the C# compiler is the same. The compiler detects that a delegate type is
required with firstStringMethod , so it creates an instance of the delegate type GetAString and
passes the address of the method with the object x to the constructor.

 Be aware that you can ’ t type the (and) as x.ToString() and pass it to the delegate variable. This
would be an invocation of the method. The invocation of x.ToString() returns a string object that can ’ t
be assigned to the delegate variable. You can only assign the address of a method to the delegate variable.

 Delegate inference can be used any place a delegate instance is required. Delegate inference can also be
used with events because events are based on delegates (as you can see later in this chapter).

 One feature of delegates is that they are type - safe to the extent that they ensure the signature of the
method being called is correct. However, interestingly, they do not care what type of object the method is
being called against or even whether the method is a static method or an instance method.

 An instance of a given delegate can refer to any instance or static method on any
object of any type, provided that the signature of the method matches the signature
of the delegate.

(continued)

c07.indd 180c07.indd 180 2/19/08 5:02:33 PM2/19/08 5:02:33 PM

181

Chapter 7: Delegates and Events

 To demonstrate this, the following example expands the previous code snippet so that it uses the
 firstStringMethod delegate to call a couple of other methods on another object — an instance method
and a static method. For this, you use the Currency struct, which is defined as follows. The Currency
struct has its own overload of ToString() and a static method with the same signature to
 GetCurrencyUnit() . This way the same delegate variable can be used to invoke these methods.

struct Currency
{
 public uint Dollars;
 public ushort Cents;

 public Currency(uint dollars, ushort cents)
 {
 this.Dollars = dollars;
 this.Cents = cents;
 }

 public override string ToString()
 {
 return string.Format(“${0}.{1,-2:00}”, Dollars,Cents);
 }

 public static string GetCurrencyUnit()
 {
 return “Dollar”;
 }

 public static explicit operator Currency (float value)
 {
 checked
 {
 uint dollars = (uint)value;
 ushort cents = (ushort)((value-dollars)*100);
 return new Currency(dollars, cents);
 }
 }

 public static implicit operator float (Currency value)
 {
 return value.Dollars + (value.Cents/100.0f);
 }

 public static implicit operator Currency (uint value)
 {
 return new Currency(value, 0);
 }

 public static implicit operator uint (Currency value)
 {
 return value.Dollars;
 }
}

c07.indd 181c07.indd 181 2/19/08 5:02:33 PM2/19/08 5:02:33 PM

182

Part I: The C# Language

 Now you can use your GetAString instance as follows:

 private delegate string GetAString();

 static void Main()
 {
 int x = 40;
 GetAString firstStringMethod = x.ToString;
 Console.WriteLine(“String is {0}”, firstStringMethod());

 Currency balance = new Currency(34, 50);

 // firstStringMethod references an instance method
 firstStringMethod = balance.ToString;
 Console.WriteLine(“String is {0}”, firstStringMethod());

 // firstStringMethod references a static method
 firstStringMethod = new GetAString(Currency.GetCurrencyUnit);
 Console.WriteLine(“String is {0}”, firstStringMethod());
 }

 This code shows how you can call a method via a delegate and subsequently reassign the delegate to
refer to different methods on different instances of classes, even static methods or methods against
instances of different types of class, provided that the signature of each method matches the delegate
definition.

 When you run the application, you get the output from the different methods that are referenced by the
delegate:

String is 40
String is $34.50
String is Dollar

 However, you still haven ’ t seen the process of actually passing a delegate to another method. Nor have
you actually achieved anything particularly useful yet. It is possible to call the ToString() method of
 int and Currency objects in a much more straightforward way than using delegates! Unfortunately, the
nature of delegates requires a fairly complex example before you can really appreciate their usefulness.
The next section presents two delegate examples. The first one simply uses delegates to call a couple
of different operations. It illustrates how to pass delegates to methods and how you can use arrays
of delegates — although arguably it still doesn ’ t do much that you couldn ’ t do a lot more simply without
delegates. Then, a second, much more complex example of a BubbleSorter class is presented, which
implements a method to sort out arrays of objects into increasing order. This class would be difficult to
write without delegates.

 Simple Delegate Example
 This example defines a MathOperations class that has a couple of static methods to perform two
operations on doubles. Then you use delegates to call up these methods. The math class looks like this:

class MathOperations
{
 public static double MultiplyByTwo(double value)
 {
 return value * 2;
 }

c07.indd 182c07.indd 182 2/19/08 5:02:34 PM2/19/08 5:02:34 PM

183

Chapter 7: Delegates and Events

 public static double Square(double value)
 {
 return value * value;
 }
}

 You call up these methods like this:

using System;

namespace Wrox.ProCSharp.Delegates
{
 delegate double DoubleOp(double x);

 class Program
 {
 static void Main()
 {
 DoubleOp[] operations =
 {
 MathOperations.MultiplyByTwo,
 MathOperations.Square
 };

 for (int i=0 ; i < operations.Length ; i++)
 {
 Console.WriteLine(“Using operations[{0}]:”, i);
 ProcessAndDisplayNumber(operations[i], 2.0);
 ProcessAndDisplayNumber(operations[i], 7.94);
 ProcessAndDisplayNumber(operations[i], 1.414);
 Console.WriteLine();
 }
 }

 static void ProcessAndDisplayNumber(DoubleOp action, double value)
 {
 double result = action(value);
 Console.WriteLine(
 “Value is {0}, result of operation is {1}”, value, result);
 }
 }
}

 In this code, you instantiate an array of DoubleOp delegates (remember that once you have defined a
delegate class, you can basically instantiate instances just like you can with normal classes, so putting
some into an array is no problem). Each element of the array gets initialized to refer to a different
operation implemented by the MathOperations class. Then, you loop through the array, applying
each operation to three different values. This illustrates one way of using delegates — that you can
group methods together into an array using them, so that you can call several methods in a loop.

 The key lines in this code are the ones in which you actually pass each delegate to the
 ProcessAndDisplayNumber() method, for example:

 ProcessAndDisplayNumber(operations[i], 2.0);

c07.indd 183c07.indd 183 2/19/08 5:02:34 PM2/19/08 5:02:34 PM

184

Part I: The C# Language

 Here, you are passing in the name of a delegate but without any parameters. Given that operations[i]
is a delegate, syntactically:

❑ operations[i] means the delegate (that is, the method represented by the delegate).

❑ operations[i](2.0) means actually call this method, passing in the value in parentheses .

 The ProcessAndDisplayNumber() method is defined to take a delegate as its first parameter:

 static void ProcessAndDisplayNumber(DoubleOp action, double value)

 Then, when in this method, you call:

 double result = action(value);

 This actually causes the method that is wrapped up by the action delegate instance to be called and its
return result stored in Result .

 Running this example gives you the following:

SimpleDelegate
Using operations[0]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 15.88
Value is 1.414, result of operation is 2.828

Using operations[1]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 63.0436
Value is 1.414, result of operation is 1.999396

 BubbleSorter Example
 You are now ready for an example that will show delegates working in a situation in which they are very
useful. You are going to write a class called BubbleSorter . This class implements a static method,
 Sort() , which takes as its first parameter an array of objects, and rearranges this array into ascending
order. For example, if you were to pass it this array of int s, {0, 5, 6, 2, 1} , it would rearrange this
array into {0, 1, 2, 5, 6} .

 The bubble - sorting algorithm is a well - known and very simple way of sorting numbers. It is best suited
to small sets of numbers, because for larger sets of numbers (more than about 10) far more efficient
algorithms are available). It works by repeatedly looping through the array, comparing each pair of
numbers and, if necessary, swapping them, so that the largest numbers progressively move to the end of
the array. For sorting int s, a method to do a bubble sort might look like this:

 for (int i = 0; i < sortArray.Length; i++)
 {
 for (int j = i + 1; j < sortArray.Length; j++)
 {
 if (sortArray[j] < sortArray[i]) // problem with this test
 {
 int temp = sortArray[i]; // swap ith and jth entries
 sortArray[i] = sortArray[j];
 sortArray[j] = temp;
 }
 }
 }

c07.indd 184c07.indd 184 2/19/08 5:02:34 PM2/19/08 5:02:34 PM

185

Chapter 7: Delegates and Events

 This is all very well for int s, but you want your Sort() method to be able to sort any object. In other
words, if some client code hands you an array of Currency structs or any other class or struct that it may
have defined, you need to be able to sort the array. This presents a problem with the line if(sortArray
[j] < sortArray[i]) in the preceding code, because that requires you to compare two objects on the
array to see which one is greater. You can do that for int s, but how are you to do it for some new class
that is unknown or undecided until runtime? The answer is the client code that knows about the class
will have to pass in a delegate wrapping a method that will do the comparison.

 You define the delegate like this:

 delegate bool Comparison(object x, object y);

 And you give your Sort method this signature:

 static public void Sort(object[] sortArray, Comparison comparison)

 The documentation for this method states that comparison must refer to a static method that takes two
arguments, and returns true if the value of the second argument is greater than (that is, should come
later in the array than) the first one.

 Now you are all set. Here is the definition for the BubbleSorter class:

 class BubbleSorter
 {
 static public void Sort(object[] sortArray, Comparison comparison)
 {
 for (int i = 0 ; i < sortArray.Length ; i++)
 {
 for (int j = i + 1 ; j < sortArray.Length ; j++)
 {
 if (comparison(sortArray[j], sortArray[i]))
 {
 object temp = sortArray[i];
 sortArray[i] = sortArray[j];
 sortArray[j] = temp;
 }
 }
 }
 }
 }

 To use this class, you need to define some other class, which you can use to set up an array that needs
sorting. For this example, assume that the Mortimer Phones mobile phone company has a list of
employees and wants them sorted according to salary. The employees are each represented by an
instance of a class, Employee , which looks like this:

 class Employee
 {
 private string name;
 private decimal salary;

 public Employee(string name, decimal salary)
 {
 this.name = name;
 this.salary = salary;
 }

(continued)

c07.indd 185c07.indd 185 2/19/08 5:02:35 PM2/19/08 5:02:35 PM

186

Part I: The C# Language

 public override string ToString()
 {
 return string.Format(“{0}, {1:C}”, name, salary);
 }

 public static bool CompareSalary(object x, object y)
 {
 Employee e1 = (Employee) x;
 Employee e2 = (Employee) y;
 return (e1.salary < e2.salary);
 }
 }

 Notice that in order to match the signature of the Comparison delegate, you had to define
 CompareSalary in this class as taking two object references, rather than Employee references, as
parameters. This means that you had to cast the parameters into Employee references in order to
perform the comparison.

 Instead of using objects as parameters here, strong typing generics can also be used. Chapter 9
explains generics and generic delegates.

 Now you are ready to write some client code to request a sort:

using System;

namespace Wrox.ProCSharp.Delegates
{
 delegate bool Comparison(object x, object y);

 class Program
 {
 static void Main()
 {
 Employee[] employees =
 {
 new Employee(“Bugs Bunny”, 20000),
 new Employee(“Elmer Fudd”, 10000),
 new Employee(“Daffy Duck”, 25000),
 new Employee(“Wiley Coyote”, (decimal)1000000.38),
 new Employee(“Foghorn Leghorn”, 23000),
 new Employee(“RoadRunner”, 50000)};

 BubbleSorter.Sort(employees, Employee.CompareSalary);

 foreach (var employee in employees)
 {
 Console.WriteLine(employee);
 }
 }
 }
}

 Running this code shows that the Employees are correctly sorted according to salary:

BubbleSorter
Elmer Fudd, $10,000.00
Bugs Bunny, $20,000.00

(continued)

c07.indd 186c07.indd 186 2/19/08 5:02:35 PM2/19/08 5:02:35 PM

187

Chapter 7: Delegates and Events

Foghorn Leghorn, $23,000.00
Daffy Duck, $25,000.00
RoadRunner, $50,000.00
Wiley Coyote, $1,000,000.38

 Multicast Delegates
 So far, each of the delegates you have used wraps just one single method call. Calling the delegate
amounts to calling that method. If you want to call more than one method, you need to make an explicit
call through a delegate more than once. However, it is possible for a delegate to wrap more than one
method. Such a delegate is known as a multicast delegate . If a multicast delegate is called, it will
successively call each method in order. For this to make sense, the delegate signature should return a
 void ; otherwise, you would only get the result of the last method that is invoked by the delegate.

 Consider the following code, which is adapted from the SimpleDelegate example. Although the syntax
is the same as before, it is actually a multicast delegate, Operations , that gets instantiated:

 delegate void DoubleOp(double value);
// delegate double DoubleOp(double value); // can’t do this now

 class MainEntryPoint
 {
 static void Main()
 {
 DoubleOp operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

 In the earlier example, you wanted to store references to two methods, so you instantiated an array of
delegates. Here, you simply add both operations into the same multicast delegate. Multicast delegates
recognize the operators + and += . Alternatively, you can also expand the last two lines of the preceding
code, as in this snippet:

 DoubleOp operation1 = MathOperations.MultiplyByTwo;
 DoubleOp operation2 = MathOperations.Square;
 DoubleOp operations = operation1 + operation2;

 Multicast delegates also recognize the operators - and - = to remove method calls from the delegate.

 In terms of what ’ s going on under the hood, a multicast delegate is a class derived from System
.MulticastDelegate , which in turn is derived from System.Delegate . System
.MulticastDelegate , and has additional members to allow chaining of method calls together into a list.

 To illustrate the use of multicast delegates, the following code recasts the SimpleDelegate example into
a new example, MulticastDelegate . Because you now need the delegate to refer to methods that
return void , you have to rewrite the methods in the MathOperations class, so they display their results
instead of returning them:

 class MathOperations
 {
 public static void MultiplyByTwo(double value)
 {
 double result = value * 2;
 Console.WriteLine(
 “Multiplying by 2: {0} gives {1}”, value, result);
 }
 (continued)

c07.indd 187c07.indd 187 2/19/08 5:02:35 PM2/19/08 5:02:35 PM

188

Part I: The C# Language

 public static void Square(double value)
 {
 double result = value * value;
 Console.WriteLine(“Squaring: {0} gives {1}”, value, result);
 }
 }

 To accommodate this change, you also have to rewrite ProcessAndDisplayNumber :

static void ProcessAndDisplayNumber(DoubleOp action, double valueToProcess)
{
 Console.WriteLine();
 Console.WriteLine(“ProcessAndDisplayNumber called with value = {0}”,
 valueToProcess);
 action(valueToProcess);
}

 Now you can try out your multicast delegate like this:

 static void Main()
 {
 DoubleOp operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

 ProcessAndDisplayNumber(operations, 2.0);
 ProcessAndDisplayNumber(operations, 7.94);
 ProcessAndDisplayNumber(operations, 1.414);
 Console.WriteLine();
 }

 Now, each time ProcessAndDisplayNumber is called, it will display a message to say that it has been
called. Then the following statement will cause each of the method calls in the action delegate instance
to be called in succession:

 action(value);

 Running this code produces this result:

MulticastDelegate

ProcessAndDisplayNumber called with value = 2
Multiplying by 2: 2 gives 4
Squaring: 2 gives 4

ProcessAndDisplayNumber called with value = 7.94
Multiplying by 2: 7.94 gives 15.88
Squaring: 7.94 gives 63.0436

ProcessAndDisplayNumber called with value = 1.414
Multiplying by 2: 1.414 gives 2.828
Squaring: 1.414 gives 1.999396

 If you are using multicast delegates, you should be aware that the order in which methods chained to the
same delegate will be called is formally undefined. You should, therefore, avoid writing code that relies
on such methods being called in any particular order.

Invoking multiple methods by one delegate might cause an even bigger problem . The multicast
delegate contains a collection of delegates to invoke one after the other. If one of the methods invoked

(continued)

c07.indd 188c07.indd 188 2/19/08 5:02:35 PM2/19/08 5:02:35 PM

189

Chapter 7: Delegates and Events

by a delegate throws an exception, the complete iteration stops. Have a look at the following
 MulticastIteration example. Here, a simple delegate named DemoDelegate that returns void
without arguments is defined. This delegate is meant to invoke the methods One() and Two() that
fulfill the parameter and return type requirements of the delegate. Be aware that method One() throws
an exception.

using System;

namespace Wrox.ProCSharp.Delegates
{
 public delegate void DemoDelegate();

 class Program
 {
 static void One()
 {
 Console.WriteLine(“One”);
 throw new Exception(“Error in one”);
 }

 static void Two()
 {
 Console.WriteLine(“Two”);
 }

 In the Main() method, delegate d1 is created to reference method One() ; next, the address of method
 Two() is added to the same delegate. d1 is invoked to call both methods. The exception is caught in a
 try / catch block.

 static void Main()
 {
 DemoDelegate d1 = One;
 d1 += Two;

 try
 {
 d1();
 }
 catch (Exception)
 {
 Console.WriteLine(“Exception caught”);
 }
 }
 }
}

 Only the first method is invoked by the delegate. Because the first method throws an exception, iterating
the delegates stops here and method Two() is never invoked. The result might differ because the order
of calling the methods is not defined.

One
Exception Caught

 Errors and exceptions are explained in detail in Chapter 14 , “ Errors and Exceptions. ”

 In such a scenario, you can avoid the problem by iterating the list on your own. The Delegate class
defines the method GetInvocationList() that returns an array of Delegate objects. You can now use

c07.indd 189c07.indd 189 2/19/08 5:02:36 PM2/19/08 5:02:36 PM

190

Part I: The C# Language

this delegate to invoke the methods associated with them directly, catch exceptions, and continue with
the next iteration:

 static void Main()
 {
 DemoDelegate d1 = One;
 d1 += Two;

 Delegate[] delegates = d1.GetInvocationList();
 foreach (DemoDelegate d in delegates)
 {
 try
 {
 d();
 }
 catch (Exception)
 {
 Console.WriteLine(“Exception caught”);
 }
 }
 }

 When you run the application with the code changes, you can see that the iteration continues with the
next method after the exception is caught:

One
Exception caught
Two

 Anonymous Methods
 Up to this point, a method must already exist in order for the delegate to work (that is, the delegate is
defined with the same signature as the method(s) it will be used with). However, there is another way to
use delegates — with anonymous methods. An anonymous method is a block of code that is used as the
parameter for the delegate.

 The syntax for defining a delegate with an anonymous method doesn ’ t change. It ’ s when the delegate is
instantiated that things change. The following is a very simple console application that shows how using
an anonymous method can work:

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 delegate string DelegateTest(string val);

 static void Main()
 {
 string mid = “, middle part,”;

 DelegateTest anonDel = delegate(string param)
 {
 param += mid;
 param += “ and this was added to the string.”;
 return param;
 };

c07.indd 190c07.indd 190 2/19/08 5:02:36 PM2/19/08 5:02:36 PM

191

Chapter 7: Delegates and Events

 Console.WriteLine(anonDel(“Start of string”));

 }
 }
}

 The delegate DelegateTest is defined inside the class Program . It takes a single string parameter.
Where things become different is in the Main method. When anonDel is defined, instead of passing in a
known method name, a simple block of code is used, prefixed by the delegate keyword, followed by a
parameter:

delegate (string param)
{
 param += mid;
 param += “ and this was added to the string.”;
 return param;
};

 As you can see, the block of code uses a method - level string variable, mid , which is defined outside of
the anonymous method and adds it to the parameter that was passed in. The code then returns the string
value. When the delegate is called, a string is passed in as the parameter and the returned string is
output to the console.

 The benefit of anonymous methods is to reduce the code you have to write. You don ’ t have to define a
method just to use it with a delegate. This becomes very evident when defining the delegate for an event.
(Events are discussed later in this chapter.) This can help reduce the complexity of code, especially where
there are several events defined. With anonymous methods, the code does not perform faster. The compiler
still defines a method; the method just has an automatically assigned name that you don ’ t need to know.

 A couple of rules must be followed when using anonymous methods. You can ’ t have a jump statement
(break , goto , or continue) in an anonymous method that has a target outside of the anonymous
method. The reverse is also true — a jump statement outside the anonymous method cannot have a
target inside the anonymous method.

 Unsafe code cannot be accessed inside an anonymous method. Also, ref and out parameters that are
used outside of the anonymous method cannot be accessed. Other variables defined outside of the
anonymous method can be used.

 If you have to write the same functionality more than once, don ’ t use anonymous methods. In this case,
instead of duplicating the code, writing a named method is the preferred way. You only have to write it
once and reference it by its name.

 Lambda Expressions
 C# 3.0 offers a new syntax for anonymous methods: Lambda expressions. Lambda expressions can be
used with delegate types. The previous example using anonymous methods is changed to use a Lambda
expression:

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 delegate string DelegateTest(string val);

 static void Main()

(continued)

c07.indd 191c07.indd 191 2/19/08 5:02:36 PM2/19/08 5:02:36 PM

192

Part I: The C# Language

 {
 string mid = “, middle part,”;

 DelegateTest anonDel = param = >
 {
 param += mid;
 param += “ and this was added to the string.”;
 return param;
 };

 Console.WriteLine(anonDel(“Start of string”));
 }
 }
}

 The left side of the Lambda operator = > lists the parameters needed with the anonymous method. There
are several ways to write this. For example, if a string parameter is needed as the delegate type defined
in the sample code, one way to write this is by defining the type and variable name inside brackets:

 (string param)

 With Lambda expressions there ’ s no need to add the variable type to the declaration because the
compiler knows about the type:

(param)

 If there ’ s only one parameter, the brackets can be removed:

 param

 The right side of the Lambda expression lists the implementation. With the sample program the
implementation was surrounded by curly brackets similar to the anonymous method earlier:

 {
 param += mid;
 param += “ and this was added to the string.”;
 return param;
 };

 If the implementation consists of just a single line, you can also remove the curly brackets and the return
statement because this is filled automatically by the compiler.

 For example, with the following delegate that requires an int parameter and returns a bool :

public delegate bool Predicate(int obj)

 you can declare a variable of the delegate and assign a Lambda expression. With the Lambda expression
here, on the left side the variable x is defined. This variable is automatically of type int because this is as
it is defined with the delegate. The implementation returns the Boolean result of comparing x > 5. If x is
larger than 5, true is returned, otherwise false.

Predicate p1 = x = > x > 5;

 You can pass this Lambda expression to a method that requires a Predicate parameter:

list.FindAll(x = > x > 5);

 The same Lambda expression is shown here, without using variable type inference by defining the
variable x of type int, and also adding the return statement to the implementation:

list.FindAll(int x) = > { return x > 5; });

(continued)

c07.indd 192c07.indd 192 2/19/08 5:02:37 PM2/19/08 5:02:37 PM

193

Chapter 7: Delegates and Events

 Using the older syntax, the same functionality is written by using an anonymous method:

list.FindAll(delegate(int x) { return x > 5; });

 With all these different variants, the C# compiler always creates the same IL code.

 Changing the SimpleDelegate sample shown earlier, you can eliminate the class MathOperations by
using Lambda expressions. The Main() method would then look like this:

static void Main()
{
 DoubleOp multByTwo = val = > val * 2;
 DoubleOp square = val = > val * val;

 DoubleOp [] operations = {multByTwo, square};

 for (int i=0 ; i < operations.Length ; i++)
 {
 Console.WriteLine(“Using operations[{0}]:”, i);
 ProcessAndDisplayNumber(operations[i], 2.0);
 ProcessAndDisplayNumber(operations[i], 7.94);
 ProcessAndDisplayNumber(operations[i], 1.414);
 Console.WriteLine();
 }
}

 Running this version will give you the same results as the previous example. The advantage is that it
eliminated a class.

 Lambda expressions can be used any place where the type is a delegate. Another use of Lambda expres-
sions is when the type is Expression or Expression < T > . Here the compiler creates an expression
tree. This feature is discussed in Chapter 11 , “ Language Integrated Query. ”

 Covariance and Contra - variance
 The method that is invoked by the delegate does not need the exact same types as defined by the
delegate declaration. Covariance and contra - variance are possible.

 Return Type Covariance
 The return type of a method can derive from the type defined by the delegate. In the example the
delegate MyDelegate1 is defined to return the type DelegateReturn . The method that is assigned to
the delegate instance d1 returns the type DelegateReturn2 that derives from the base class
 DelegateReturn and thus fulfills the requirements of the delegate. This behavior is known by the name
 return type covariance .

 public class DelegateReturn
 {
 }

 public class DelegateReturn2 : DelegateReturn
 {
 }

 public delegate DelegateReturn MyDelegate1();

 class Program

(continued)

c07.indd 193c07.indd 193 2/19/08 5:02:37 PM2/19/08 5:02:37 PM

194

Part I: The C# Language

 {
 static void Main()
 {
 MyDelegate1 d1 = Method1;
 d1();
 }

 static DelegateReturn2 Method1()
 {
 DelegateReturn2 d2 = new DelegateReturn2();
 return d2;
 }
 }

 Parameter Type Contra - variance
 The term parameter type contra - variance means that the parameters defined by the delegate might differ in
the method that is called by the delegate. Here it ’ s different from the return type because the method
might use a parameter type that derives from the type defined by the delegate. In the code sample the
delegate uses the parameter type DelegateParam2 , and the method that is assigned to the delegate
instance d2 uses the parameter type DelegateParam that is the base type of DelegateParam2 .

 public class DelegateParam
 {
 }
 public class DelegateParam2 : DelegateParam
 {
 }

 public delegate void MyDelegate2(DelegateParam2 p);

 class Program
 {
 static void Main()
 {
 MyDelegate2 d2 = Method2;
 DelegateParam2 p = new DelegateParam2();
 d2(p);
 }

 static void Method2(DelegateParam p)
 {
 }
 }

 Events
 Windows - based applications are message - based. This means that the application is communicating
with Windows and Windows is communicating with the application by using predefined messages. These
messages are structures that contain various pieces of information that the application and Windows will
use to determine what to do next. Prior to libraries such as MFC (Microsoft Foundation Classes) or to
development environments such as Visual Basic, the developer would have to handle the message that
Windows sends to the application. Visual Basic and now .NET wrap some of these incoming messages as

(continued)

c07.indd 194c07.indd 194 2/19/08 5:02:37 PM2/19/08 5:02:37 PM

195

Chapter 7: Delegates and Events

something called events. If you need to react to a specific incoming message, you would handle the
corresponding event. A common example of this is when the user clicks a button on a form. Windows is
sending a WM_MOUSECLICK message to the button ’ s message handler (sometimes referred to as the
Windows Procedure or WndProc). To the .NET developer, this is exposed as the Click event of the button.

 In developing object - based applications, another form of communication between objects is required.
When something of interest happens in one of your objects, chances are that other objects will want to be
informed. Again, events come to the rescue. Just as the .NET Framework wraps up Windows messages
in events, you can also utilize events as the communications medium between your objects.

 Delegates are used as the means of wiring up the event when the message is received by the application.
Believe it or not, in the preceding section on delegates, you learned just about everything you need to
know to understand how events work. However, one of the great things about how Microsoft has
designed C# events is that you don ’ t actually need to understand anything about the underlying
delegates in order to use them. So, this section starts off with a short discussion of events from the point
of view of the client software. It focuses on what code you need to write in order to receive notifications of
events, without worrying too much about what is happening behind the scenes — just so you can see
how easy handling events really is. After that, you write an example that generates events, and as you do
so, you should see how the relationship between events and delegates works.

 The discussion in this section will be of most use to C++ developers because C++ does not have any
concept similar to events. C# events, on the other hand, are quite similar in concept to Visual Basic
events, although the syntax and the underlying implementation are different in C#.

 In this context, the term “ event ” is used in two different senses. First, as something interesting that
happens, and second, as a precisely defined object in the C# language — the object that handles the
notification process. When we mean the latter, we will usually refer to it either as a C# event or, when
the meaning is obvious from the context, simply as an event.

 The Receiver ’ s View of Events
 The event receiver is any application, object, or component that wants to be notified when something
happens. To go along with the receiver, there will of course be the event sender. The sender ’ s job will be
to raise the event. The sender can be either another object or assembly in your application, or in the case
of system events such as mouse clicks or keyboard entry, the sender will be the .NET runtime. It is
important to note that the sender of the event will not have any knowledge of who or what the receiver
is. This is what makes events so useful.

 Now, somewhere inside the event receiver will be a method that is responsible for handling the event.
This event handler will be executed each time the event that it is registered to is raised. This is where the
delegate comes in. Because the sender has no idea who the receiver(s) will be, there cannot be any type
of reference set between the two. So the delegate is used as the intermediary. The sender defines the
delegate that will be used by the receiver. The receiver registers the event handler with the event. The
process of hooking up the event handler is known as wiring up an event. A simple example of wiring up
the Click event will help illustrate this process.

 First, create a simple Windows Forms application. Drag over a button control from the toolbox and place
it on the form. In the properties window rename the button to buttonOne . In the code editor, add the
following line of code in the Form1 constructor:

public Form1()
{
 InitializeComponent();
 buttonOne.Click += new EventHandler(Button_Click);
}

c07.indd 195c07.indd 195 2/19/08 5:02:37 PM2/19/08 5:02:37 PM

196

Part I: The C# Language

 Now in Visual Studio, you should have noticed that after you typed in the += operator, all you had to do
was press the Tab key a couple of times and the editor did the rest of the work for you. In most cases this
is fine. However, in this example the default handler name is not being used, so you should just enter the
text yourself.

 What is happening is that you are telling the runtime that when the Click event of buttonOne is raised,
that Button_Click method should be executed. EventHandler is the delegate that the event uses to assign
the handler (Button_Click) to the event (Click). Notice that you used the += operator to add this new
method to the delegate list. This is just like the multicast example that you looked at earlier in this chapter.
This means that you can add more than one handler for any event. Because this is a multicast delegate, all of
the rules about adding multiple methods apply; however, there is no guarantee as to the order in which the
methods are called. Go ahead and drag another button onto the form and rename it to buttonTwo . Now
connect the buttonTwo Click event to the same Button_Click method, as shown here:

buttonOne.Click += new EventHandler(Button_Click);
buttonTwo.Click += new EventHandler(Button_Click);

 With delegate inference you can also write the code as follows, where the compiler generates the same
code as in the previous version:

buttonOne.Click += Button_Click;
buttonTwo.Click += Button_Click;

 The EventHandler delegate is defined for you in the .NET Framework. It is in the System namespace,
and all of the events that are defined in the .NET Framework use it. As discussed earlier, a delegate
requires that all of the methods that are added to the delegate list must have the same signature. This
obviously holds true for event delegates as well. Here is the Button_Click method defined:

private void Button_Click(object sender, EventArgs e)
{

}

 A few things are important about this method. First, it always returns void . Event handlers cannot
return a value. Next are the parameters. As long as you use the EventHandler delegate, your
parameters will be object and EventArgs . The first parameter is the object that raised the event. In this
example it is either buttonOne or buttonTwo , depending on which button is clicked. By sending a
reference to the object that raised the event you can assign the same event handler to more than one
object. For example, you can define one button click handler for several buttons and then determine
which button was clicked by asking the sender parameter.

 The second parameter, EventArgs , is an object that contains other potentially useful information about
the event. This parameter could actually be any type as long as it is derived from EventArgs . The
 MouseDown event uses MouseDownEventArgs . It contains properties for which button was used, the X
and Y coordinates of the pointer, and other information related to the event. Notice the naming pattern
of ending the type with EventArgs . Later in the chapter, you’ll see how to create and use a custom
 EventArgs - based object.

 The name of the method should also be mentioned. As a convention, event handlers follow a naming
convention of object_event . object is the object that is raising the event, and event is the event being
raised. There is a convention and, for readability ’ s sake, it should be followed.

 The last thing to do in this example is to add some code to actually do something in the handler. Now
remember that two buttons are using the same handler. So, first you have to determine which button
raises the event, and then you can call the action that should be performed. In this example, you can just
output some text to a label control on the form. Drag a label control from the toolbox onto the form and
name it labelInfo . Then write the following code on the Button_Click method:

c07.indd 196c07.indd 196 2/19/08 5:02:38 PM2/19/08 5:02:38 PM

197

Chapter 7: Delegates and Events

if(((Button)sender).Name == “buttonOne”)
 labelInfo.Text = “Button One was pressed”;
else
 labelInfo.Text = “Button Two was pressed”;

 Notice that because the sender parameter is sent as object , you will have to cast it to whatever object is
raising the event, in this case Button . In this example, you use the Name property to determine what
button raised the event; however, you can also use another property. The Tag property is handy to use in
this scenario, because it can contain anything that you want to place in it. To see how the multicast
capability of the event delegate works, add another method to the Click event of buttonTwo . The
constructor of the form should look something like this now:

buttonOne.Click += new EventHandler(Button_Click);
buttonTwo.Click += new EventHandler(Button_Click);
buttonTwo.Click += new EventHandler(Button2_Click);

 If you let Visual Studio create the stub for you, you will have the following method at the end of the
source file. However, you have to add the call to the MessageBox.Show() function:

private void Button2_Click(object sender, EventArgs e)
{
 MessageBox.Show(“This only happens in Button 2 click event”);
}

 If you go back and make use of Lambda expressions, the methods Button_Click and Button2_Click
would not be needed. The code for the events would like this:

buttonOne.Click += (sender, e) = > labelInfo.Text = “Button One was pressed”;
buttonTwo.Click += (sender, e) = > labelInfo.Text = “Button Two was pressed”;
buttonTwo.Click += (sender, e) = >
 {
 MessageBox.Show(“This only happens in Button 2 click event”);
 };

 When you run this example, clicking buttonOne will change the text in the label. Clicking buttonTwo
will not only change the text but also display the MessageBox . Again, the important thing to remember
is that there is no guarantee that the label text will change before the MessageBox appears, so be careful
not to write dependent code in the handlers.

 You might have had to learn a lot of concepts to get this far, but the amount of coding you need to do in
the receiver is fairly trivial. Also bear in mind that you will find yourself writing event receivers a lot
more often than you write event senders. At least in the field of the Windows user interface, Microsoft
has already written all the event senders you are likely to need (these are in the .NET base classes, in the
 Windows.Forms namespace).

 Defining Events
 Receiving events and responding to them is only one side of the story. For events to be really useful, you
need the ability to define them and raise them in your code. The example in this section looks at creating,
raising, receiving, and optionally canceling an event.

 The example has a form raise an event that will be listened to by another class. When the event is raised,
the receiving object will determine if the process should execute and then cancel the event if the process
cannot continue. The goal in this case is to determine whether the number of seconds of the current time
is greater than or less than 30. If the number of seconds is less than 30, a property is set with a string that
represents the current time; if the number of seconds is greater than 30, the event is canceled and the
time string is set to an empty string.

c07.indd 197c07.indd 197 2/19/08 5:02:38 PM2/19/08 5:02:38 PM

198

Part I: The C# Language

 The form used to generate the event has a button and a label on it. In the example code to download the
button is named buttonRaise and the label is labelInfo . After you have created the form and added
the two controls, you will be able to create the event and the corresponding delegate. Add the following
code in the class declaration section of the form class:

public delegate void ActionEventHandler(object sender,
 ActionCancelEventArgs ev);

public static event ActionEventHandler Action;

 So, what exactly is going on with these two lines of code? First, you are declaring a new delegate type of
 ActionEventHandler . The reason that you have to create a new one and not use one of the predefined
delegates in the .NET Framework is that there will be a custom EventArgs class used. Remember that
the method signature must match the delegate. So, you now have a delegate to use; the next line actually
defines the event. In this case the Action event is defined, and the syntax for defining the event requires
that you specify the delegate that will be associated with the event. You can also use a delegate that is
defined in the .NET Framework. Nearly 100 classes are derived from the EventArgs class, so you might
find one that works for you. Again, because a custom EventArgs class is used in this example, a new
delegate type has to be created that matches it.

 Defining the event in one line is a C# shorthand notation to add methods that add and remove handler
methods and to declare a variable of a delegate. Instead of writing one line you can do the same with the
following lines. A variable of the event type as well as methods to add and remove event handlers are
declared. The syntax for defining the methods to add and remove event handlers is very similar to
properties. The variable value is also defined similarly to add and remove the event handler.

private static ActionEventHandler action;

public static event ActionEventHandler Action
{
 add
 {
 action += value;
 }
 remove
 {
 action -= value;
 }
}

 The long notation for defining an event is useful if more needs to be done than just adding and removing
the event handler: for example, to add synchronization for multiple thread access. The WPF controls
make use of the long notation to add bubbling and tunneling functionality with the events. You can read
more about bubbling and tunneling events in Chapter 34 , “ Windows Presentation Foundation. ”

 The new EventArgs - based class, ActionCancelEventArgs , is actually derived from
 CancelEventArgs , which is derived from EventArgs . CancelEventArgs and adds the Cancel
property. Cancel is a Boolean that informs the sender object that the receiver wants to cancel or stop the
event processing. In the ActionCancelEventArgs class a Message property has been added. This is a
string property that will contain textual information on the processing state of the event. Here is the code
for the ActionCancelEventArgs class:

public class ActionCancelEventArgs : System.ComponentModel.CancelEventArgs
{
 public ActionCancelEventArgs() : this(false) {}

 public ActionCancelEventArgs(bool cancel) : this(false, String.Empty) {}
 public ActionCancelEventArgs(bool cancel, string message) : base(cancel)

c07.indd 198c07.indd 198 2/19/08 5:02:39 PM2/19/08 5:02:39 PM

199

Chapter 7: Delegates and Events

 {
 this.Message = message;
 }

 public string Message { get; set; }
}

 You can see that all an EventArgs - based class does is carry information about an event to and from
the sender and receiver. Most times the information used from the EventArgs class will be used by the
receiver object in the event handler. However, sometimes the event handler can add information into
the EventArgs class and it will be available to the sender. This is how the example uses the EventArgs
class. Notice that a couple of constructors are available in the EventArgs class. This extra flexibility adds
to the usability of the class by others.

 At this point, an event has been declared, the delegate has been defined, and the EventArgs class
has been created. The next thing that has to happen is that the event needs to be raised. The only
thing that you really need to do is make a call to the event with the proper parameters as shown in
this example:

ActionCancelEventArgs e = new ActionCancelEventArgs();
Action(this, e);

 This sounds simple enough. Create the new ActionCancelEventArgs class and pass it in as one of the
parameters to the event. However, there is one small problem. What if the event hasn ’ t been used
anywhere yet? What if an event handler has not yet been defined for the event? The Action event would
actually be null. If you tried to raise the event, you would get a null reference exception. If you wanted
to derive a new form class and use the form that has the Action event defined as the base, you would
have to do something else whenever the Action event were raised. Currently, you would have to enable
another event handler in the derived form in order to get access to it. To make this process a little easier
and to catch the null reference error, you have to create a method with the name OnEventName where
 EventName is the name of the event. The example has a method named OnAction() . Here is the
complete code for the OnAction() method:

protected void OnAction(object sender, ActionCancelEventArgs e)
{
 if (Action != null)
 {
 Action(sender, e);
 }
}

 Not much to it, but it does accomplish what is needed. By making the method protected, only derived
classes have access to it. You can also see that the event is tested against null before it is raised. If you
were to derive a new class that contains this method and event, you would have to override the
 OnAction method and then you would be hooked into the event. To do this, you would have to call
 base.OnAction() in the override. Otherwise, the event would not be raised. This naming convention is
used throughout the .NET Framework and is documented in the .NET SDK documentation.

 Notice the two parameters that are passed into the OnAction method. They should look familiar to you
because they are the same parameters that will need to be passed to the event. If the event needed to be
raised from another object other than the one that the method is defined in, you would need to make the
accessor internal or public and not protected. Sometimes it makes sense to have a class that consists of
nothing but event declarations, and that these events are called from other classes. You would still want
to create the OnEventName methods. However, in that case they might be static methods.

c07.indd 199c07.indd 199 2/19/08 5:02:39 PM2/19/08 5:02:39 PM

200

Part I: The C# Language

 So, now that the event has been raised, something needs to handle it. Create a new class in the project
and call it BusEntity . Remember that the goal of this project is to check the seconds property of
the current time, and if it is less than 30, set a string value to the time, and if it is greater than 30, set the
string to :: and cancel the event. Here is the code:

using System;
using System.IO;
using System.ComponentModel;

namespace Wrox.ProCSharp.Delegates
{
 public class BusEntity
 {
 string time = String.Empty;

 public BusEntity()
 {
 Form1.Action += new Form1.ActionEventHandler(Form1_Action);
 }

 private void Form1_Action(object sender, ActionCancelEventArgs e)
 {
 e.Cancel = !DoActions();
 if(e.Cancel)
 e.Message = “Wasn’t the right time.”;
 }

 private bool DoActions()
 {
 bool retVal = false;
 DateTime tm = DateTime.Now;

 if(tm.Second < 30)
 {
 time = “The time is “ + DateTime.Now.ToLongTimeString();
 retVal = true;
 }
 else
 time = “”;

 return retVal;
 }

 public string TimeString
 {
 get {return time;}
 }
 }
}

 In the constructor, the handler for the Form1.Action event is declared. Notice that the syntax is very
similar to the Click event that you registered earlier. Because you used the same pattern for declaring
the event, the usage syntax stays consistent as well. Something else worth mentioning at this point is
how you were able to get a reference to the Action event without having a reference to Form1 in the

c07.indd 200c07.indd 200 2/19/08 5:02:39 PM2/19/08 5:02:39 PM

201

Chapter 7: Delegates and Events

 BusEntity class. Remember that in the Form1 class the Action event is declared static. This isn ’ t a
requirement, but it does make it easier to create the handler. You could have declared the event public,
but then an instance of Form1 would need to be referenced.

 When you coded the event in the constructor, you called the method that was added to the delegate list
 Form1_Action , in keeping with the naming standards. In the handler a decision on whether or not to
cancel the event needs to be made. The DoActions method returns a Boolean value based on the time
criteria described earlier. DoAction also sets the time string to the proper value.

 Next, the DoActions return value is set to the ActionCancelEventArgs Cancel property. Remember
that EventArg classes generally do not do anything other than carry values to and from the event
senders and receivers. If the event is canceled (e.Cancel = true) , the Message property is also set
with a string value that describes why the event was canceled.

 Now if you look at the code in the buttonRaise_Click event handler again you will be able to see how
the Cancel property is used:

private void buttonRaise_Click(object sender, EventArgs e)
{
 ActionCancelEventArgs cancelEvent = new ActionCancelEventArgs();
 OnAction(this, cancelEvent);
 if (cancelEvent.Cancel)
 labelInfo.Text = cancelEvent.Message;
 else
 labelInfo.Text = busEntity.TimeString;
}

 Note that the ActionCancelEventArgs object is created. Next, the event Action is raised, passing in
the newly created ActionCancelEventArgs object. When the OnAction method is called and the event
is raised, the code in the Action event handler in the BusEntity object is executed. If there were other
objects that had registered for the Action event, they too would execute. Something to keep in mind is
that if there were other objects handling this event, they would all see the same
 ActionCancelEventArgs object. If you needed to keep up with which object canceled the event and
whether more than one object canceled the event, you would need some type of list - based data structure
in the ActionCancelEventArgs class.

 After the handlers that have been registered with the event delegate have been executed, you can query
the ActionCancelEventArgs object to see if it has been canceled. If it has been canceled, lblInfo
will contain the Message property value. If the event has not been canceled, lblInfo will show the
current time.

 This should give you a basic idea of how you can utilize events and the EventArgs - based object in the
events to pass information around in your applications.

 Summary
 This chapter gave you the basics of delegates and events. You learned how to declare a delegate and add
methods to the delegate list. You also learned the process of declaring event handlers to respond to an
event, as well as how to create a custom event and use the patterns for raising the event.

 As a .NET developer, you will be using delegates and events extensively, especially when developing
Windows Forms applications. Events are the means that the .NET developer has to monitor the
various Windows messages that occur while the application is executing. Otherwise, you would have
to monitor the WndProc and catch the WM_MOUSEDOWN message instead of getting the mouse Click
event for a button.

c07.indd 201c07.indd 201 2/19/08 5:02:40 PM2/19/08 5:02:40 PM

202

Part I: The C# Language

 The use of delegates and events in the design of a large application can reduce dependencies and the
coupling of layers. This allows you to develop components that have a higher reusability factor.

 Anonymous methods and Lambda expressions are C# language features on delegates. With these, you
can reduce the amount of code you need to write. Lambda expressions are not only used with delegates,
as you can see in Chapter 11 , “ Language Integrated Query. ”

 The next chapter goes into the foundation of strings and regular expressions.

c07.indd 202c07.indd 202 2/19/08 5:02:40 PM2/19/08 5:02:40 PM

 Strings and Regular
Expressions

 Since the beginning of this book, you have been using strings almost constantly and might not
have realized that the stated mapping that the string keyword in C# actually refers to is the
 System.String .NET base class. System.String is a very powerful and versatile class, but
it is by no means the only string - related class in the .NET armory. This chapter starts by
reviewing the features of System.String and then looks at some nifty things you can do with
strings using some of the other .NET classes — in particular those in the System.Text and
System.Text.RegularExpressions namespaces. This chapter covers the following areas:

❑ Building strings — If you ’ re performing repeated modifications on a string, for example,
in order to build up a lengthy string prior to displaying it or passing it to some other
method or application, the String class can be very inefficient. For this kind of situation,
another class, System.Text.StringBuilder , is more suitable because it has been
designed exactly for this situation.

❑ Formatting expressions — We also take a closer look at those formatting expressions that
have been used in the Console.WriteLine() method throughout the past few
chapters. These formatting expressions are processed using a couple of useful interfaces,
 IFormatProvider and IFormattable . By implementing these interfaces on
your own classes, you can actually define your own formatting sequences so that
Console.WriteLine() and similar classes will display the values of your classes in
whatever way you specify.

❑ Regular expressions — .NET also offers some very sophisticated classes that deal with
 situations in which you need to identify or extract substrings that satisfy certain fairly
sophisticated criteria; for example, finding all occurrences within a string where a
 character or set of characters is repeated, finding all words that begin with s and contain at
least one n, or strings that adhere to employee ID or Social Security number constructions.
Although you can write methods to perform this kind of processing using the String
class, such methods are cumbersome to write. Instead, you can use some classes from
 System.Text.RegularExpressions , which are designed specifically to perform this
kind of processing.

c08.indd 203c08.indd 203 2/19/08 5:02:53 PM2/19/08 5:02:53 PM

204

Part I: The C# Language

 System.String
 Before examining the other string classes, this section quickly reviews some of the available methods in
the String class.

 System.String is a class specifically designed to store a string and allow a large number of operations
on the string. In addition, due to the importance of this data type, C# has its own keyword and
associated syntax to make it particularly easy to manipulate strings using this class.

 You can concatenate strings using operator overloads:

string message1 = “Hello”; // returns “Hello”
message1 += “, There”; // returns “Hello, There”
string message2 = message1 + “!”; // returns “Hello, There!”

 C# also allows extraction of a particular character using an indexer - like syntax:

char char4 = message[4]; // returns ‘a’. Note the char is zero-indexed

 This enables you to perform such common tasks as replacing characters, removing whitespace, and
capitalization. The following table introduces the key methods.

Method Purpose

Compare Compares the contents of strings, taking into account the culture (locale) in
assessing equivalence between certain characters

CompareOrdinal Same as Compare but doesn’t take culture into account

Concat Combines separate string instances into a single instance

CopyTo Copies a specific number of characters from the selected index to an entirely
new instance of an array

Format Formats a string containing various values and specifiers for how each value
should be formatted

IndexOf Locates the first occurrence of a given substring or character in the string

IndexOfAny Locates the first occurrence of any one of a set of characters in the string

Insert Inserts a string instance into another string instance at a specified index

Join Builds a new string by combining an array of strings

LastIndexOf Same as IndexOf but finds the last occurrence

LastIndexOfAny Same as IndexOfAny but finds the last occurrence

PadLeft Pads out the string by adding a specified repeated character to the left side
of the string

PadRight Pads out the string by adding a specified repeated character to the right side
of the string

Replace Replaces occurrences of a given character or substring in the string with
another character or substring

c08.indd 204c08.indd 204 2/19/08 5:02:54 PM2/19/08 5:02:54 PM

205

Chapter 8: Strings and Regular Expressions

Method Purpose

Split Splits the string into an array of substrings, the breaks occurring wherever a
given character occurs

Substring Retrieves the substring starting at a specified position in the string

ToLower Converts string to lowercase

ToUpper Converts string to uppercase

Trim Removes leading and trailing whitespace

 Please note that this table is not comprehensive but is intended to give you an idea of the features offered
by strings.

 Building Strings
 As you have seen, String is an extremely powerful class that implements a large number of very useful
methods. However, the String class has a shortcoming that makes it very inefficient for making
repeated modifications to a given string — it is actually an immutable data type, which means that once
you initialize a string object, that string object can never change. The methods and operators that appear
to modify the contents of a string actually create new strings, copying across the contents of the old
string if necessary. For example, look at the following code:

string greetingText = “Hello from all the guys at Wrox Press. “;
greetingText += “We do hope you enjoy this book as much as we enjoyed writing it.”;

 What happens when this code executes is this: first, an object of type System.String is created and
initialized to hold the text Hello from all the guys at Wrox Press. . Note the space after the
period. When this happens, the .NET runtime allocates just enough memory in the string to hold this
text (39 chars), and the variable greetingText is set to refer to this string instance.

 In the next line, syntactically it looks like more text is being added onto the string — though it is not.
Instead, what happens is that a new string instance is created with just enough memory allocated to
store the combined text — that ’ s 103 characters in total. The original text, Hello from all the
people at Wrox Press. , is copied into this new string instance along with the extra text, We do hope
you enjoy this book as much as we enjoyed writing it. . Then, the address stored in the
variable greetingText is updated, so the variable correctly points to the new String object. The old
 String object is now unreferenced — there are no variables that refer to it — and so will be removed the
next time the garbage collector comes along to clean out any unused objects in your application.

 By itself, that does not look too bad, but suppose that you wanted to encode that string by replacing each
letter (not the punctuation) with the character that has an ASCII code further on in the alphabet, as part
of some extremely simple encryption scheme. This would change the string to Ifmmp gspn bmm uif
hvst bu Xspy Qsftt. Xf ep ipqf zpv fokpz uijt cppl bt nvdi bt xf fokpzfe xsjujoh
ju. . Several ways of doing this exist, but the simplest and (if you are restricting yourself to using the
 String class) almost certainly the most efficient way is to use the String.Replace() method, which

c08.indd 205c08.indd 205 2/19/08 5:02:55 PM2/19/08 5:02:55 PM

206

Part I: The C# Language

replaces all occurrences of a given substring in a string with another substring. Using Replace() , the
code to encode the text looks like this:

string greetingText = “Hello from all the guys at Wrox Press. “;
greetingText += “We do hope you enjoy this book as much as we enjoyed writing it.”;

for(int i = ‘z’; i > = ‘a’ ; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

for(int i = ‘Z’; i > =’A’ ; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

Console.WriteLine(“Encoded:\n” + greetingText);

 For simplicity, this code does not wrap Z to A or z to a. These letters get encoded to [and {, respectively.

 Here, the Replace() method works in a fairly intelligent way, to the extent that it won ’ t actually create a
new string unless it actually makes changes to the old string. The original string contained 23 different
lowercase characters and 3 different uppercase ones. The Replace method will therefore have allocated
a new string 26 times in total, with each new string storing 103 characters. That means that because of
the encryption process, there will be string objects capable of storing a combined total of 2,678 characters
now sitting on the heap waiting to be garbage-collected! Clearly, if you use strings to do text processing
extensively, your applications will run into severe performance problems.

 To address this kind of issue, Microsoft has supplied the System.Text.StringBuilder class.
 StringBuilder is not as powerful as String in terms of the number of methods it supports. The
processing you can do on a StringBuilder is limited to substitutions and appending or removing text
from strings. However, it works in a much more efficient way.

 When you construct a string using the String class, just enough memory is allocated to hold the string.
The StringBuilder , however, normally allocates more memory than is actually needed. You, as a
developer, have the option to indicate how much memory the StringBuilder should allocate, but if
you do not, the amount will default to some value that depends on the size of the string that the
 StringBuilder instance is initialized with. The StringBuilder class has two main properties:

❑ Length , which indicates the length of the string that it actually contains

❑ Capacity , which indicates the maximum length of the string in the memory allocation

 Any modifications to the string take place within the block of memory assigned to the StringBuilder
instance, which makes appending substrings and replacing individual characters within strings very
efficient. Removing or inserting substrings is inevitably still inefficient because it means that the
following part of the string has to be moved. Only if you perform some operation that exceeds
the capacity of the string is it necessary to allocate new memory and possibly move the entire contained
string. In adding extra capacity, based on our experiments the StringBuilder appears to double its
capacity if it detects the capacity has been exceeded and no new value for the capacity has been set.

 For example, if you use a StringBuilder object to construct the original greeting string, you might
write this code:

c08.indd 206c08.indd 206 2/19/08 5:02:55 PM2/19/08 5:02:55 PM

207

Chapter 8: Strings and Regular Expressions

StringBuilder greetingBuilder =
 new StringBuilder(“Hello from all the guys at Wrox Press. “, 150);
greetingBuilder.AppendFormat(“We do hope you enjoy this book as much as we enjoyed
 writing it”);

 In order to use the StringBuilder class, you will need a System.Text reference in your code.

 This code sets an initial capacity of 150 for the StringBuilder . It is always a good idea to set some
capacity that covers the likely maximum length of a string, to ensure the StringBuilder does not need
to relocate because its capacity was exceeded. Theoretically, you can set as large a number as you can
pass in an int , although the system will probably complain that it does not have enough memory if you
actually try to allocate the maximum of 2 billion characters (this is the theoretical maximum that a
 StringBuilder instance is in principle allowed to contain).

 When the preceding code is executed, it first creates a StringBuilder object that looks like Figure 8 - 1 .

Hello from all the guys at Wrox Press.

39 characters

<uninitialized>

111 characters

 Figure 8 - 1

 Then, on calling the AppendFormat() method, the remaining text is placed in the empty space, without
the need for more memory allocation. However, the real efficiency gain from using a StringBuilder
comes when you are making repeated text substitutions. For example, if you try to encrypt the text in the
same way as before, you can perform the entire encryption without allocating any more memory
whatsoever:

StringBuilder greetingBuilder =
 new StringBuilder(“Hello from all the guys at Wrox Press. “, 150);
greetingBuilder.AppendFormat(“We do hope you enjoy this book as much as we “ +
 “enjoyed writing it”);

Console.WriteLine(“Not Encoded:\n” + greetingBuilder);

for(int i = ‘z’; i > =’a’ ; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

for(int i = ‘Z’; i > =’A’ ; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

Console.WriteLine(“Encoded:\n” + greetingBuilder);

 This code uses the StringBuilder.Replace() method, which does the same thing as
String.Replace() , but without copying the string in the process. The total memory allocated to hold
strings in the preceding code is 150 characters for the StringBuilder instance, as well as the memory
allocated during the string operations performed internally in the final Console.WriteLine() statement.

c08.indd 207c08.indd 207 2/19/08 5:02:55 PM2/19/08 5:02:55 PM

208

Part I: The C# Language

 Normally, you will want to use StringBuilder to perform any manipulation of strings and String to
store or display the final result.

 StringBuilder Members
 You have seen a demonstration of one constructor of StringBuilder , which takes an initial string and
capacity as its parameters. There are others. For example, you can supply only a string:

StringBuilder sb = new StringBuilder(“Hello”);

 Or you can create an empty StringBuilder with a given capacity:

StringBuilder sb = new StringBuilder(20);

 Apart from the Length and Capacity properties, there is a read - only MaxCapacity property that
indicates the limit to which a given StringBuilder instance is allowed to grow. By default, this is given
by int.MaxValue (roughly 2 billion, as noted earlier), but you can set this value to something lower
when you construct the StringBuilder object:

// This will both set initial capacity to 100, but the max will be 500.
// Hence, this StringBuilder can never grow to more than 500 characters,
// otherwise it will raise exception if you try to do that.
StringBuilder sb = new StringBuilder(100, 500);

 You can also explicitly set the capacity at any time, though an exception will be raised if you set it to a
value less than the current length of the string or a value that exceeds the maximum capacity:

StringBuilder sb = new StringBuilder(“Hello”);
sb.Capacity = 100;

 The following table lists the main StringBuilder methods.

Method Purpose

Append() Appends a string to the current string

AppendFormat() Appends a string that has been worked out from a format specifier

Insert() Inserts a substring into the current string

Remove() Removes characters from the current string

Replace() Replaces all occurrences of a character with another character or a substring
with another substring in the current string

ToString() Returns the current string cast to a System.String object (overridden from
System.Object)

 Several overloads of many of these methods exist.

 AppendFormat() is actually the method that is ultimately called when you call Console.
WriteLine() , which has responsibility for working out what all the format expressions like {0:D}
should be replaced with. This method is examined in the next section.

 There is no cast (either implicit or explicit) from StringBuilder to String . If you want to output the
contents of a StringBuilder as a String , you must use the ToString() method.

c08.indd 208c08.indd 208 2/19/08 5:02:56 PM2/19/08 5:02:56 PM

209

Chapter 8: Strings and Regular Expressions

 Now that you have been introduced to the StringBuilder class and have learned some of the ways in
which you can use it to increase performance, you should be aware that this class will not always give
you the increased performance that you are looking for. Basically, the StringBuilder class should be
used when you are manipulating multiple strings. However, if you are just doing something as simple as
concatenating two strings, you will find that System.String will be better-performing.

 Format Strings
 So far, a large number of classes and structs have been written for the code samples presented in this book,
and they have normally implemented a ToString() method in order to be able to display the contents of
a given variable. However, quite often users might want the contents of a variable to be displayed in
different, often culture - and locale - dependent, ways. The .NET base class, System.DateTime , provides
the most obvious example of this. For example, you might want to display the same date as 10 June 2008,
10 Jun 2008, 6/10/08 (USA), 10/6/08 (UK), or 10.06.2008 (Germany).

 Similarly, the Vector struct in Chapter 6 , “ Operators and Casts ” implements the Vector.ToString()
method to display the vector in the format (4, 56, 8) . There is, however, another very common way
of writing vectors, in which this vector would appear as 4i + 56j + 8k . If you want the classes that you
write to be user - friendly, they need to support the facility to display their string representations in any of
the formats that users are likely to want to use. The .NET runtime defines a standard way in which this
should be done: the IFormattable interface. Showing how to add this important feature to your classes
and structs is the subject of this section.

 As you probably know, you need to specify the format in which you want a variable displayed when
you call Console.WriteLine() . Therefore, this section uses this method as an example, although most
of the discussion applies to any situation in which you want to format a string. For example, if you want
to display the value of a variable in a list box or text box, you will normally use the String.Format()
method to obtain the appropriate string representation of the variable. However, the actual format
specifiers you use to request a particular format are identical to those passed to Console.WriteLine() .
Hence, you will focus on Console.WriteLine() as an example. You start by examining what actually
happens when you supply a format string to a primitive type, and from this, you will see how you can
plug format specifiers for your own classes and structs into the process.

 Chapter 2 , “ C# Basics, ” uses format strings in Console.Write() and Console.WriteLine() like this:

double d = 13.45;
int i = 45;
Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

 The format string itself consists mostly of the text to be displayed, but wherever there is a variable to be
formatted, its index in the parameter list appears in braces. You might also include other information
inside the braces concerning the format of that item. For example, you can include:

❑ The number of characters to be occupied by the representation of the item, prefixed by a comma.
A negative number indicates that the item should be left - justified, whereas a positive number
indicates that it should be right - justified. If the item actually occupies more characters than have
been requested, it will still appear in full.

❑ A format specifier, preceded by a colon. This indicates how you want the item to be formatted.
For example, you can indicate whether you want a number to be formatted as a currency or dis-
played in scientific notation.

 The following table lists the common format specifiers for the numeric types, which were briefly
discussed in Chapter 2 .

c08.indd 209c08.indd 209 2/19/08 5:02:56 PM2/19/08 5:02:56 PM

210

Part I: The C# Language

 If you want an integer to be padded with zeros, you can use the format specifier 0 (zero) repeated as
many times as the number length is required. For example, the format specifier 0000 will cause 3 to be
displayed as 0003 , and 99 to be displayed as 0099 , and so on.

 It is not possible to give a complete list because other data types can add their own specifiers. Showing
how to define your own specifiers for your own classes is the aim of this section.

 How the String Is Formatted
 As an example of how strings are formatted, if you execute the following statement:

Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

 Console.WriteLine() just passes the entire set of parameters to the static method, String.Format() .
This is the same method that you would call if you wanted to format these values for use in a string to be
displayed in a text box, for example. The implementation of the three - parameter overload of
 WriteLine() basically does this:

// Likely implementation of Console.WriteLine()

public void WriteLine(string format, object arg0, object arg1)
{
 Console.WriteLine(string.Format(format, arg0, arg1));
}

 The one - parameter overload of this method, which is in turn called in the preceding code sample, simply
writes out the contents of the string it has been passed, without doing any further formatting on it.

 String.Format() now needs to construct the final string by replacing each format specifier with a
suitable string representation of the corresponding object. However, as you saw earlier, for this process
of building up a string, you need a StringBuilder instance rather than a string instance. In this
example, a StringBuilder instance is created and initialized with the first known portion of the string,
the text “ The double is ” . Next, the StringBuilder.AppendFormat() method is called, passing in the

Specifier Applies To Meaning Example

C Numeric types Locale-specific mone-
tary value

$4834.50 (USA)
£4834.50 (UK)

D Integer types only General integer 4834

E Numeric types Scientific notation 4.834E+003

F Numeric types Fixed-point decimal 4384.50

G Numeric types General number 4384.5

N Numeric types Common locale-specific
format for numbers

4,384.50 (UK/USA)|4 384,50
(continental Europe)

P Numeric types Percentage notation 432,000.00%

X Integer types only Hexadecimal format 1120 (If you want to display
0x1120, you will have to write out
the 0x separately)

c08.indd 210c08.indd 210 2/19/08 5:02:57 PM2/19/08 5:02:57 PM

211

Chapter 8: Strings and Regular Expressions

first format specifier, {0,10:E} , as well as the associated object, double , in order to add the string
representation of this object to the string object being constructed. This process continues with
 StringBuilder.Append() and StringBuilder.AppendFormat() being called repeatedly until the
entire formatted string has been obtained.

 Now comes the interesting part: StringBuilder.AppendFormat() has to figure out how to format the
object. First, it probes the object to find out whether it implements an interface in the System namespace
called IFormattable . You can determine this quite simply by trying to cast an object to this interface
and seeing whether the cast succeeds, or by using the C# is keyword. If this test fails, AppendFormat()
calls the object ’ s ToString() method, which all objects either inherit from System.Object or override.
This is exactly what happens here because none of the classes written so far has implemented this
interface. That is why the overrides of Object.ToString() have been sufficient to allow the structs and
classes from earlier chapters such as Vector to get displayed in Console.WriteLine() statements.

 However, all of the predefined primitive numeric types do implement this interface, which means that
for those types, and in particular for double and int in the example, the basic ToString() method
inherited from System.Object will not be called. To understand what happens instead, you need to
examine the IFormattable interface.

 IFormattable defines just one method, which is also called ToString() . However, this method takes
two parameters as opposed to the System.Object version, which doesn ’ t take any parameters. The
following code shows the definition of IFormattable :

interface IFormattable
{
 string ToString(string format, IFormatProvider formatProvider);
}

 The first parameter that this overload of ToString() expects is a string that specifies the requested
format. In other words, it is the specifier portion of the string that appears inside the braces ({}) in the
string originally passed to Console.WriteLine() or String.Format() . For example, in the example
the original statement was:

Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

 Hence, when evaluating the first specifier, {0,10:E} , this overload will be called against the double
variable, d , and the first parameter passed to it will be E . StringBuilder.AppendFormat() will pass in
here the text that appears after the colon in the appropriate format specifier from the original string.

 We won ’ t worry about the second ToString() parameter in this book. It is a reference to an object that
implements the IFormatProvider interface. This interface gives further information that ToString()
might need to consider when formatting the object, such as culture - specific details (a .NET culture is similar
to a Windows locale; if you are formatting currencies or dates, you need this information). If you are calling
this ToString() overload directly from your source code, you might want to supply such an object.
However, StringBuilder.AppendFormat() passes in null for this parameter. If formatProvider is
 null , then ToString() is expected to use the culture specified in the system settings.

 Getting back to the example, the first item you want to format is a double , for which you are requesting
exponential notation, with the format specifier E . The StringBuilder.AppendFormat() method
establishes that the double does implement IFormattable , and will therefore call the two - parameter
 ToString() overload, passing it the string E for the first parameter and null for the second parameter.
It is now up to the double ’ s implementation of this method to return the string representation of the
 double in the appropriate format, taking into account the requested format and the current culture.
 StringBuilder.AppendFormat() will then sort out padding the returned string with spaces, if
necessary, to fill the 10 characters the format string specified.

c08.indd 211c08.indd 211 2/19/08 5:02:57 PM2/19/08 5:02:57 PM

212

Part I: The C# Language

 The next object to be formatted is an int , for which you are not requesting any particular format (the
format specifier was simply {1}). With no format requested, StringBuilder.AppendFormat() passes
in a null reference for the format string. The two - parameter overload of int.ToString() is expected to
respond appropriately. No format has been specifically requested; therefore, it will call the no - parameter
 ToString() method.

 This entire string formatting process is summarized in Figure 8 - 2 .

Console.WriteLine("The double is {0, 10:E} and the int contains {1}", D, 1)

String.Format("The double is {0, 10:E} and the int contains {1}", D, 1)

StringBuilder
("The double is")

StringBuilder.AppendFormat
("{0, 10:E}", D)

StringBuilder.Append
(" and the int contains ")

StringBuilder.AppendFormat
("0", D)

 Figure 8 - 2

 The FormattableVector Example
 Now that you know how format strings are constructed, in this section you extend the Vector example
from Chapter 6 , so that you can format vectors in a variety of ways. You can download the code for this
example from www.wrox.com . With your new knowledge of the principles involved now in hand, you
will discover that the actual coding is quite simple. All you need to do is implement IFormattable and
supply an implementation of the ToString() overload defined by that interface.

 The format specifiers you are going to support are:

❑ N — Should be interpreted as a request to supply a quantity known as the Norm of the Vector .
This is just the sum of squares of its components, which for mathematics buffs happens to be
equal to the square of the length of the Vector , and is usually displayed between double
vertical bars, like this: ||34.5|| .

❑ VE — Should be interpreted as a request to display each component in scientific format, just as
the specifier E applied to a double indicates (2.3E+01 , 4.5E+02 , 1.0E+00).

c08.indd 212c08.indd 212 2/19/08 5:02:57 PM2/19/08 5:02:57 PM

213

Chapter 8: Strings and Regular Expressions

❑ IJK — Should be interpreted as a request to display the vector in the form 23i + 450j + 1k .

❑ Anything else should simply return the default representation of the Vector (23, 450, 1.0) .

 To keep things simple, you are not going to implement any option to display the vector in combined IJK
and scientific format. You will, however, make sure you test the specifier in a case - insensitive way, so
that you allow ijk instead of IJK . Note that it is entirely up to you which strings you use to indicate the
format specifiers.

 To achieve this, you first modify the declaration of Vector so it implements IFormattable :

struct Vector : IFormattable
{
 public double x, y, z;

 // Beginning part of Vector

 Now you add your implementation of the two - parameter ToString() overload:

public string ToString(string format, IFormatProvider formatProvider)
{
 if (format == null)
 {
 return ToString();
 }

 string formatUpper = format.ToUpper();

 switch (formatUpper)
 {
 case “N”:
 return “|| “ + Norm().ToString() + “ ||”;
 case “VE”:
 return String.Format(“({0:E}, {1:E}, {2:E})”, x, y, z);
 case “IJK”:
 StringBuilder sb = new StringBuilder(x.ToString(), 30);
 sb.AppendFormat(“ i + “);
 sb.AppendFormat(y.ToString());
 sb.AppendFormat(“ j + “);
 sb.AppendFormat(z.ToString());
 sb.AppendFormat(“ k”);
 return sb.ToString();
 default:
 return ToString();
 }
}

 That is all you have to do! Notice how you take the precaution of checking whether format is null
before you call any methods against this parameter — you want this method to be as robust as
reasonably possible. The format specifiers for all the primitive types are case-insensitive, so that is the
behavior that other developers are going to expect from your class, too. For the format specifier VE , you
need each component to be formatted in scientific notation, so you just use String.Format() again to
achieve this. The fields x , y , and z are all double s. For the case of the IJK format specifier, there are
quite a few substrings to be added to the string, so you use a StringBuilder object to improve
performance.

c08.indd 213c08.indd 213 2/19/08 5:02:58 PM2/19/08 5:02:58 PM

214

Part I: The C# Language

 For completeness, you also reproduce the no - parameter ToString() overload developed earlier:

public override string ToString()
{
 return “(“ + x + “ , “ + y + “ , “ + z + “)”;
}

 Finally, you need to add a Norm() method that computes the square (norm) of the vector because you
didn ’ t actually supply this method when you developed the Vector struct:

public double Norm()
{
 return x*x + y*y + z*z;
}

 Now you can try your formattable vector with some suitable test code:

static void Main()
{
 Vector v1 = new Vector(1,32,5);
 Vector v2 = new Vector(845.4, 54.3, -7.8);
 Console.WriteLine(“\nIn IJK format,\nv1 is {0,30:IJK}\nv2 is {1,30:IJK}”,
 v1, v2);
 Console.WriteLine(“\nIn default format,\nv1 is {0,30}\nv2 is {1,30}”, v1, v2);
 Console.WriteLine(“\nIn VE format\nv1 is {0,30:VE}\nv2 is {1,30:VE}”, v1, v2);
 Console.WriteLine(“\nNorms are:\nv1 is {0,20:N}\nv2 is {1,20:N}”, v1, v2);
}

 The result of running this sample is this:

FormattableVector
In IJK format,
v1 is 1 i + 32 j + 5 k
v2 is 845.4 i + 54.3 j + -7.8 k

In default format,
v1 is (1 , 32 , 5)
v2 is (845.4 , 54.3 , -7.8)

In VE format
v1 is (1.000000E+000, 3.200000E+001, 5.000000E+000)
v2 is (8.454000E+002, 5.430000E+001, -7.800000E+000)

Norms are:
v1 is || 1050 ||
v2 is || 717710.49 ||

 This shows that your custom specifiers are being picked up correctly.

 Regular Expressions
 Regular expressions are part of those small technology areas that are incredibly useful in a wide
range of programs, yet rarely used among developers. You can think of regular expressions as a mini -
 programming language with one specific purpose: to locate substrings within a large string expression.
It is not a new technology; it originated in the Unix environment and is commonly used with the Perl
programming language. Microsoft ported it onto Windows, where up until now it has been used mostly
with scripting languages. Today, regular expressions are, however, supported by a number of .NET

c08.indd 214c08.indd 214 2/19/08 5:02:58 PM2/19/08 5:02:58 PM

215

Chapter 8: Strings and Regular Expressions

classes in the namespace System.Text.RegularExpressions . You can also find the use of regular
expressions in various parts of the .NET Framework. For instance, you will find that they are used
within the ASP.NET Validation server controls.

 If you are not familiar with the regular expressions language, this section introduces both regular
expressions and their related .NET classes. If you are already familiar with regular expressions, you will
probably want to just skim through this section to pick out the references to the .NET base classes. You
might like to know that the .NET regular expression engine is designed to be mostly compatible with
Perl 5 regular expressions, although it has a few extra features.

 Introduction to Regular Expressions
 The regular expressions language is designed specifically for string processing. It contains two features:

❑ A set of escape codes for identifying specific types of characters. You will be familiar with the use
of the * character to represent any substring in DOS expressions. (For example, the DOS
command Dir Re* lists the files with names beginning with Re .) Regular expressions use many
sequences like this to represent items such as any one character , a word break , one optional character ,
and so on.

❑ A system for grouping parts of substrings and intermediate results during a search operation.

 With regular expressions, you can perform quite sophisticated and high - level operations on strings. For
example, you can:

❑ Identify (and perhaps either flag or remove) all repeated words in a string (for example, “ The
computer books books ” to “ The computer books ”)

❑ Convert all words to title case (for example, “ this is a Title ” to “ This Is A Title ”)

❑ Convert all words longer than three characters to title case (for example, “ this is a Title ” to “ This
is a Title ”)

❑ Ensure that sentences are properly capitalized

❑ Separate the various elements of a URI (for example, given http://www.wrox.com , extract the
protocol, computer name, file name, and so on)

 Of course, all of these tasks can be performed in C# using the various methods on System.String and
 System.Text.StringBuilder . However, in some cases, this would require writing a fair amount of C#
code. If you use regular expressions, this code can normally be compressed to just a couple of lines.
Essentially, you instantiate a System.Text.RegularExpressions.RegEx object (or, even simpler,
invoke a static RegEx() method), pass it the string to be processed, and pass in a regular expression (a
string containing the instructions in the regular expressions language), and you ’ re done.

 A regular expression string looks at first sight rather like a regular string, but interspersed with escape
sequences and other characters that have a special meaning. For example, the sequence \b indicates the
beginning or end of a word (a word boundary), so if you wanted to indicate you were looking for the
characters th at the beginning of a word, you would search for the regular expression, \bth (that is, the
sequence word boundary - t - h). If you wanted to search for all occurrences of th at the end of a word,
you would write th\b (the sequence t - h - word boundary). However, regular expressions are much more
sophisticated than that and include, for example, facilities to store portions of text that are found in a
search operation. This section merely scratches the surface of the power of regular expressions.

 For more on regular expressions, please review the book Beginning Regular Expressions (ISBN
978 - 0 - 7645 - 7489 - 4).

c08.indd 215c08.indd 215 2/19/08 5:02:58 PM2/19/08 5:02:58 PM

216

Part I: The C# Language

 Suppose your application needed to convert U.S. phone numbers to an international format. In the
United States, the phone numbers have this format: 314 - 123 - 1234, which is often written as (314)
123 - 1234. When converting this national format to an international format you have to include +1
(the country code of the United States) and add brackets around the area code: +1 (314) 123 - 1234. As
find - and - replace operations go, that ’ s not too complicated. It would still require some coding effort if
you were going to use the String class for this purpose (which would mean that you would have to
write your code using the methods available from System.String). The regular expressions language
allows you to construct a short string that achieves the same result.

 This section is intended only as a very simple example, so it concentrates on searching strings to identify
certain substrings, not on modifying them.

 The RegularExpressionsPlayaround Example
 For the rest of this section, you develop a short example, called RegularExpressionsPlayaround, that
illustrates some of the features of regular expressions and how to use the .NET regular expressions
engine in C# by performing and displaying the results of some searches. The text you are going to use as
your sample document is an introduction to a Wrox Press book on ASP.NET (Professional ASP.NET 3.5: in
C# and VB , ISBN 978 - 0 - 470 - 18757 - 9).

string Text =
@”This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the 3.5
Release of .NET, this book will give you the information you need to master ASP.NET
and build a dynamic, successful, enterprise Web application.”;

 This code is valid C# code, despite all the line breaks. It nicely illustrates the utility of verbatim strings
that are prefixed by the @ symbol.

 This text is referred to as the input string . To get your bearings and get used to the regular expressions
.NET classes, you start with a basic plain text search that does not feature any escape sequences or
regular expression commands. Suppose that you want to find all occurrences of the string ion . This
search string is referred to as the pattern . Using regular expressions and the Text variable declared
previously, you can write this:

string Pattern = “ion”;
MatchCollection Matches = Regex.Matches(Text, Pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);
foreach (Match NextMatch in Matches)
{
 Console.WriteLine(NextMatch.Index);
}

 This code uses the static method Matches() of the Regex class in the System.Text.RegularExpressions
namespace. This method takes as parameters some input text, a pattern, and a set of optional flags taken
from the RegexOptions enumeration. In this case, you have specified that all searching should be case
insensitive. The other flag, ExplicitCapture , modifies the way that the match is collected in a way that,
for your purposes, makes the search a bit more efficient — you see why this is later (although it does have
other uses that we won ’ t explore here). Matches() returns a reference to a MatchCollectio n object. A
 match is the technical term for the results of finding an instance of the pattern in the expression. It is
represented by the class System.Text.RegularExpressions.Match . Therefore, you return a
 MatchCollection that contains all the matches, each represented by a Match object. In the preceding code,

c08.indd 216c08.indd 216 2/19/08 5:02:59 PM2/19/08 5:02:59 PM

217

Chapter 8: Strings and Regular Expressions

you simply iterate over the collection and use the Index property of the Match class, which returns the
index in the input text of where the match was found. Running this code results in three matches. The
following table details some of the RegexOptions enumerations.

Member Name Description

CultureInvariant Specifies that the culture of the string is ignored

ExplicitCapture Modifies the way the match is collected by making sure that valid
captures are the ones that are explicitly named

IgnoreCase Ignores the case of the string that is input

IgnorePatternWhitespace Removes unescaped whitespace from the string and enables com-
ments that are specified with the pound or hash sign

Multiline Changes the characters ^ and $ so that they are applied to the
beginning and end of each line and not just to the beginning and
end of the entire string

RightToLeft Causes the inputted string to be read from right to left instead of
the default left to right (ideal for some Asian and other languages
that are read in this direction)

Singleline Specifies a single-line mode where the meaning of the dot (.) is
changed to match every character

 So far, nothing is really new from the preceding example apart from some .NET base classes. However,
the power of regular expressions really comes from that pattern string. The reason is that the pattern
string does not have to contain only plain text. As hinted earlier, it can also contain what are known as
 meta - characters , which are special characters that give commands, as well as escape sequences, which
work in much the same way as C# escape sequences. They are characters preceded by a backslash (\)
and have special meanings.

 For example, suppose that you wanted to find words beginning with n . You could use the escape
sequence \b , which indicates a word boundary (a word boundary is just a point where an alphanumeric
character precedes or follows a whitespace character or punctuation symbol). You would write this:

string Pattern = @”\bn”;
MatchCollection Matches = Regex.Matches(Text, Pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);

 Notice the @ character in front of the string. You want the \b to be passed to the .NET regular expressions
engine at runtime — you don ’ t want the backslash intercepted by a well - meaning C# compiler that
thinks it ’ s an escape sequence intended for itself! If you want to find words ending with the sequence
 ion , you write this:

string Pattern = @”ion\b”;

 If you want to find all words beginning with the letter a and ending with the sequence ion (which has as
its only match the word application in the example), you will have to put a bit more thought into your
code. You clearly need a pattern that begins with \ba and ends with ion\b , but what goes in the

c08.indd 217c08.indd 217 2/19/08 5:02:59 PM2/19/08 5:02:59 PM

218

Part I: The C# Language

middle? You need to somehow tell the application that between the a and the ion there can be any
number of characters as long as none of them are whitespace. In fact, the correct pattern looks like this:

string Pattern = @”\ba\S*ion\b”;

 Eventually you will get used to seeing weird sequences of characters like this when working with
regular expressions. It actually works quite logically. The escape sequence \S indicates any character that
is not a whitespace character. The * is called a quantifier . It means that the preceding character can be
repeated any number of times, including zero times. The sequence \S* means any number of characters as
long as they are not whitespace characters . The preceding pattern will, therefore, match any single word that
begins with a and ends with ion .

 The following table lists some of the main special characters or escape sequences that you can use. It is
not comprehensive, but a fuller list is available in the MSDN documentation.

 If you want to search for one of the meta - characters, you can do so by escaping the corresponding
character with a backslash. For example, . (a single period) means any single character other than the
newline character, whereas \. means a dot.

 You can request a match that contains alternative characters by enclosing them in square brackets. For
example, [1|c] means one character that can be either 1 or c . If you wanted to search for any occurrence
of the words map or man , you would use the sequence ma[n|p] . Within the square brackets, you can also
indicate a range, for example [a - z] to indicate any single lowercase letter, [A - E] to indicate any
uppercase letter between A and E (including the letters A and E themselves), or [0 - 9] to represent a
single digit. If you want to search for an integer (that is, a sequence that contains only the characters 0
through 9), you could write [0 - 9]+ (note the use of the + character to indicate there must be at least one
such digit, but there may be more than one — so this would match 9, 83, 854, and so on).

Symbol Meaning Example Matches

^ Beginning of input text ^B B, but only if first character in text

$ End of input text X$ X, but only if last character in text

. Any single character except the new-
line character (\n)

i.ation isation, ization

* Preceding character may be repeated
zero or more times

ra*t rt, rat, raat, raaat, and so on

+ Preceding character may be repeated
one or more times

ra+t rat, raat, raaat and so on, but
not rt

? Preceding character may be repeated
zero or one time

ra?t rt and rat only

\s Any whitespace character \sa [space]a, \ta, \na (\t and \n
have the same meanings as in C#)

\S Any character that isn’t a whitespace \SF aF, rF, cF, but not \tf

\b Word boundary ion\b Any word ending in ion

\B Any position that isn’t a word boundary \BX\B Any X in the middle of a word

c08.indd 218c08.indd 218 2/19/08 5:03:00 PM2/19/08 5:03:00 PM

219

Chapter 8: Strings and Regular Expressions

 Displaying Results
 In this section, you code the RegularExpressionsPlayaround example, so you can get a feel for how
the regular expressions work.

 The core of the example is a method called WriteMatches() , which writes out all the matches from a
 MatchCollection in a more detailed format. For each match, it displays the index of where the match
was found in the input string, the string of the match, and a slightly longer string, which consists of the
match plus up to ten surrounding characters from the input text — up to five characters before the match
and up to five afterward. (It is fewer than five characters if the match occurred within five characters
of the beginning or end of the input text.) In other words, a match on the word messaging that occurs
near the end of the input text quoted earlier would display and messaging of d (five characters before
and after the match), but a match on the final word data would display g of data. (only one character
after the match), because after that you get to the end of the string. This longer string lets you see more
clearly where the regular expression locates the match:

static void WriteMatches(string text, MatchCollection matches)
{
 Console.WriteLine(“Original text was: \n\n” + text + “\n”);
 Console.WriteLine(“No. of matches: “ + matches.Count);
 foreach (Match nextMatch in matches)
 {
 int Index = nextMatch.Index;
 string result = nextMatch.ToString();
 int charsBefore = (Index < 5) ? Index : 5;
 int fromEnd = text.Length - Index - result.Length;
 int charsAfter = (fromEnd < 5) ? fromEnd : 5;
 int charsToDisplay = charsBefore + charsAfter + result.Length;

 Console.WriteLine(“Index: {0}, \tString: {1}, \t{2}”,
 Index, result,
 text.Substring(Index - charsBefore, charsToDisplay));
 }
}

 The bulk of the processing in this method is devoted to the logic of figuring out how many characters
in the longer substring it can display without overrunning the beginning or end of the input text. Note
that you use another property on the Match object, Value , which contains the string identified for the
match. Other than that, RegularExpressionsPlayaround simply contains a number of methods with
names like Find1 , Find2 , and so on, which perform some of the searches based on the examples in this
section. For example, Find2 looks for any string that contains a at the beginning of a word:

static void Find2()
{
 string text = @”This comprehensive compendium provides a broad and thorough
 investigation of all aspects of programming with ASP.NET. Entirely revised and
 updated for the 3.5 Release of .NET, this book will give you the information
 you need to master ASP.NET and build a dynamic, successful, enterprise Web
 application.”;
 string pattern = @”\ba”;
 MatchCollection matches = Regex.Matches(text, pattern,
 RegexOptions.IgnoreCase);
 WriteMatches(text, matches);
}

c08.indd 219c08.indd 219 2/19/08 5:03:00 PM2/19/08 5:03:00 PM

220

Part I: The C# Language

 Along with this comes a simple Main() method that you can edit to select one of the Find < n > ()
methods:

static void Main()
{
 Find1();
 Console.ReadLine();
}

 The code also needs to make use of the RegularExpressions namespace:

using System;
using System.Text.RegularExpressions;

 Running the example with the Find1() method shown previously gives these results:

RegularExpressionsPlayaround
Original text was:

This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the 3.5
Release of .NET, this book will give you the information you need to master ASP.NET
and build a dynamic, successful, enterprise Web application.

No. of matches: 1
Index: 291, String: application, Web application.

 Matches, Groups, and Captures
 One nice feature of regular expressions is that you can group characters. It works the same way as
compound statements in C#. In C#, you can group any number of statements by putting them in braces,
and the result is treated as one compound statement. In regular expression patterns, you can group
any characters (including meta - characters and escape sequences), and the result is treated as a single
character. The only difference is that you use parentheses instead of braces. The resultant sequence is
known as a group .

 For example, the pattern (an)+ locates any recurrences of the sequence an . The + quantifier applies only
to the previous character, but because you have grouped the characters together, it now applies to
repeats of an treated as a unit. This means that if you apply (an)+ to the input text, bananas came to
Europe late in the annals of history , the anan from bananas is identified. Yet, if you write
 an+ , the program selects the ann from annals , as well as two separate sequences of an from bananas .
The expression (an)+ identifies occurrences of an , anan , ananan , and so on, whereas the expression an+
identifies occurrences of an , ann , annn , and so on.

 You might wonder why with the preceding example (an)+ picks out anan from the word banana but
doesn ’ t identify either of the two occurrences of an from the same word. The rule is that matches must
not overlap. If there are a couple of possibilities that would overlap, then by default the longest possible
sequence will be matched.

 However, groups are actually more powerful than that. By default, when you form part of the pattern
into a group, you are also asking the regular expression engine to remember any matches against just
that group, as well as any matches against the entire pattern. In other words, you are treating that group

c08.indd 220c08.indd 220 2/19/08 5:03:01 PM2/19/08 5:03:01 PM

221

Chapter 8: Strings and Regular Expressions

as a pattern to be matched and returned in its own right. This can actually be extremely useful if you
want to break up strings into component parts.

 For example, URIs have the format < protocol > :// < address > : < port > , where the port is optional. An
example of this is http://www.wrox.com:4355 . Suppose that you want to extract the protocol, the
address, and the port from a URI, where you know that there may or may not be whitespace (but no
punctuation) immediately following the URI. You could do so using this expression:

\b(\S+)://(\S+)(?::(\S+))?\b

 Here is how this expression works: First, the leading and trailing \b sequences ensure that you consider
only portions of text that are entire words. Within that, the first group, (\S+):// , identifies one or more
characters that don ’ t count as whitespace, and that are followed by :// — the http:// at the start of an
HTTP URI. The brackets cause the http to be stored as a group. The subsequent (\S+) identifies the
string www.wrox.com in the URI. This group will end either when it encounters the end of the word (the
closing \b) or a colon (:) as marked by the next group.

 The next group identifies the port (:4355). The following ? indicates that this group is optional in the
match — if there is no :xxxx , this won ’ t prevent a match from being marked. This is very important
because the port number is not always specified in a URI — in fact, it is absent most of the time.
However, things are a bit more complicated than that. You want to indicate that the colon might or might
not appear too, but you don ’ t want to store this colon in the group. You ’ ve achieved this by having two
nested groups. The inner (\S+) identifies anything that follows the colon (for example, 4355). The outer
group contains the inner group preceded by the colon, and this group in turn is preceded by the
sequence ?: . This sequence indicates that the group in question should not be saved (you only want to
save 4355 ; you don ’ t need :4355 as well!). Don ’ t get confused by the two colons following each other —
 the first colon is part of the ?: sequence that says “ don ’ t save this group, ” and the second is text to be
searched for.

 If you run this pattern on the following string, you ’ ll get one match: http://www.wrox.com .

Hey I ’ ve just found this amazing URI at http:// what was it -- oh yes
http://www.wrox.com

 Within this match, you will find the three groups just mentioned as well as a fourth group, which
represents the match itself. Theoretically, it is possible that each group itself might return no, one, or
more than one match. Each of these individual matches is known as a capture . So, the first group, (\S+),
has one capture, http . The second group also has one capture (www.wrox.com). The third group,
however, has no captures, because there is no port number on this URI.

 Notice that the string contains a second http:// . Although this does match up to the first group, it will
not be captured by the search because the entire search expression does not match this part of the text.

 There isn ’ t space to show examples of C# code that uses groups and captures, but you should know that
the .NET RegularExpressions classes support groups and captures, through classes known as Group
and Capture . Also, the GroupCollection and CaptureCollection classes represent collections of
groups and captures. The Match class exposes the Groups() method, which returns the corresponding
 GroupCollection object. The Group class correspondingly implements the Captures() method, which
returns a CaptureCollection . The relationship between the objects is shown in Figure 8 - 3 .

c08.indd 221c08.indd 221 2/19/08 5:03:01 PM2/19/08 5:03:01 PM

222

Part I: The C# Language

 You might not want to return a Group object every time you just want to group some characters. A fair
amount of overhead is involved in instantiating the object, which is not necessary if all you want is to
group some characters as part of your search pattern. You can disable this by starting the group with the
character sequence ?: for an individual group, as was done for the URI example, or for all groups by
specifying the RegExOptions.ExplicitCaptures flag on the RegEx.Matches() method, as was done
in the earlier examples.

 Summary
 You have quite a number of available data types at your disposal when working with the .NET
Framework. One of the most used types in your applications (especially applications that focus on the
submission and retrieval of data) is the string data type. The importance of string is the reason that
this book has a complete chapter focused on how to use the string data type and manipulate it in your
applications.

 When working with strings in the past, it was quite common to just slice and dice the strings as needed
using concatenation. With the .NET Framework, you can use the StringBuilder class to accomplish a
lot of this task with better performance than before.

 Last, but hardly least, advanced string manipulation using regular expressions is an excellent tool to
search through and validate your strings.

 The next chapter takes a look at one of the more powerful features of C# — generics.

MatchCollectionRegEx

Matches()
method

Match()
method Match

GroupCollection

Group

CaptureCollection

Capture

Figure 8-3

c08.indd 222c08.indd 222 2/19/08 5:03:01 PM2/19/08 5:03:01 PM

 Generics

 A new feature of the CLR 2.0 is the introduction of generics. With CLR 1.0, creating a flexible class
or method that should use classes that are not known at compile time must be based on the
 Object class. With the Object class, there ’ s no type safety during compile time. Casting is
necessary. Also, using the Object class for value types has a performance impact.

 CLR 2.0 (.NET 3.5 is based on the CLR 2.0) supports generics. With generics, the Object class is no
longer necessary in such scenarios. Generic classes make use of generic types that are replaced
with specific types as needed. This allows for type safety: the compiler complains if a specific type
is not supported with the generic class.

 Generics are a great feature, especially with collection classes. Most of the .NET 1.0 collection
classes are based on the Object type. Starting with version 2.0, .NET offers collection classes that
are implemented as generics.

 Generics are not limited to classes; in this chapter, you also see generics with delegates, interfaces,
and methods.

 This chapter discusses the following:

❑ Generics overview

❑ Creating generic classes

❑ Features of generic classes

❑ Generic interfaces

❑ Generic methods

❑ Generic delegates

❑ Other generic framework types

 Overview
 Generics are not a completely new construct; similar concepts exist with other languages. For
example, C++ templates can be compared to generics. However, there ’ s a big difference between
C++ templates and .NET generics. With C++ templates, the source code of the template is required

c09.indd 223c09.indd 223 2/19/08 5:05:36 PM2/19/08 5:05:36 PM

Part I: The C# Language

224

when a template is instantiated with a specific type. Contrary to C++ templates, generics are not only a
construct of the C# language; generics are defined with the CLR. This makes it possible to instantiate
generics with a specific type in Visual Basic even though the generic class was defined with C#.

 The following sections look into the advantages and disadvantages of generics, particularly:

❑ Performance

❑ Type safety

❑ Binary code reuse

❑ Code bloat

❑ Naming guidelines

 Performance
 One of the big advantages of generics is performance. In Chapter 10 , you will see non - generic and
generic collection classes from the namespaces System.Collections and System.Collections.
Generic . Using value types with non - generic collection classes results in boxing and unboxing when the
value type is converted to a reference type and vice versa.

 Boxing and unboxing is discussed in Chapter 6 , “ Operators and Casts. ” Here is just a short refresher
about these terms.

 Value types are stored on the stack. Reference types are stored on the heap. C# classes are reference types;
structs are value types. .NET makes it easy to convert value types to reference types, and so you can use
a value type everywhere an object (which is a reference type) is needed. For example, an int can be
assigned to an object. The conversion from a value type to a reference type is known as boxing. Boxing
happens automatically if a method requires an object as a parameter, and a value type is passed. On the
other side, a boxed value type can be converted to a value type by using unboxing. With unboxing,
the cast operator is required.

 The following example shows the ArrayList class from the namespace System.Collections .
 ArrayList stores objects, the Add() method is defined to require an object as a parameter, and so an
integer type is boxed. When the values from an ArrayList are read, unboxing occurs when the object is
converted to an integer type. This may be obvious with the cast operator that is used to assign the first
element of the ArrayList collection to the variable i1 , but also happens inside the foreach statement
where the variable i2 of type int is accessed:

ArrayList list = new ArrayList();
list.Add(44); // boxing - convert a value type to a reference type

int i1 = (int)list[0]; // unboxing - convert a reference type to
 // a value type

foreach (int i2 in list)
{
 Console.WriteLine(i2); // unboxing
}

 Boxing and unboxing are easy to use, but have a big performance impact, especially when iterating
through many items.

 Instead of using objects, the List < T > class from the namespace System.Collections.Generic allows
you to define the type when it is used. In the example here, the generic type of the List < T > class is
defined as int , so the int type is used inside the class that is generated dynamically from the JIT
compiler. Boxing and unboxing no longer happens:

c09.indd 224c09.indd 224 2/19/08 5:05:37 PM2/19/08 5:05:37 PM

Chapter 9: Generics

225

List < int > list = new List < int > ();
list.Add(44); // no boxing - value types are stored in the List < int >

int i1 = list[0]; // no unboxing, no cast needed

foreach (int i2 in list)
{
 Console.WriteLine(i2);
}

 Type Safety
 Another feature of generics is type safety. As with the ArrayList class, if objects are used, any type can
be added to this collection. This example shows adding an integer, a string, and an object of type
 MyClass to the collection of type ArrayList :

ArrayList list = new ArrayList();
list.Add(44);
list.Add(“mystring”);
list.Add(new MyClass());

 Now if this collection is iterated using the following foreach statement, which iterates using integer
elements, the compiler accepts this code. However, because not all elements in the collection can be cast
to an int , a runtime exception will occur:

foreach (int i in list)
{
 Console.WriteLine(i);
}

 Errors should be detected as early as possible. With the generic class List < T > , the generic type T defines
what types are allowed. With a definition of List < int > , only integer types can be added to the
collection. The compiler doesn ’ t compile this code because the Add() method has invalid arguments:

List < int > list = new List < int > ();
list.Add(44);
list.Add(“mystring”); // compile time error
list.Add(new MyClass()); // compile time error

 Binary Code Reuse
 Generics allow better binary code reuse. A generic class can be defined once and can be instantiated with
many different types. Unlike C++ templates, it is not necessary to access the source code.

 As an example, here the List < T > class from the namespace System.Collections.Generic is
instantiated with an int , a string , and a MyClass type:

List < int > list = new List < int > ();
list.Add(44);

List < string > stringList = new List < string > ();
stringList.Add(“mystring”);

List < MyClass > myclassList = new List < MyClass > ();
myClassList.Add(new MyClass());

 Generic types can be defined in one language and used from any other .NET language.

c09.indd 225c09.indd 225 2/19/08 5:05:38 PM2/19/08 5:05:38 PM

Part I: The C# Language

226

 Code Bloat
 How much code is created with generics when instantiating them with different specific types?

 Because a generic class definition goes into the assembly, instantiating generic classes with specific types
doesn ’ t duplicate these classes in the IL code. However, when the generic classes are compiled by the JIT
compiler to native code, a new class for every specific value type is created. Reference types share all the
same implementation of the same native class. This is because with reference types only a 4 - byte
memory address (with 32 - bit systems) is needed within the generic instantiated class to reference a
reference type. Value types are contained within the memory of the generic instantiated class, and
because every value type can have different memory requirements, a new class for every value type is
instantiated.

 Naming Guidelines
 If generics are used in the program, it helps when generic types can be distinguished from non-generic
types. Here are naming guidelines for generic types:

❑ Generic type names should be prefixed with the letter T.

❑ If the generic type can be replaced by any class because there ’ s no special requirement, and only
one generic type is used, the character T is good as a generic type name:

public class List < T > { }

public class LinkedList < T > { }

❑ If there ’ s a special requirement for a generic type (for example, it must implement an interface or
derive from a base class), or if two or more generic types are used, descriptive names should be
used for the type names:

public delegate void EventHandler < TEventArgs > (object sender, TEventArgs e);

public delegate TOutput Converter < TInput, TOutput > (TInput from);

public class SortedList < TKey, TValue > { }

 Creating Generic Classes
 First start with a normal, non-generic simplified linked list class that can contain objects of any kind, and
later convert this class to a generic class.

 With a linked list, one element references the next one. So, you must create a class that wraps the object
inside the linked list and references the next object. The class LinkedListNode contains an object named
 value that is initialized with the constructor, and can be read with the Value property. In addition to
that, the LinkedListNode class contains references to the next and previous elements in the list that can
be accessed from properties.

 public class LinkedListNode
 {
 private object value;
 public LinkedListNode(object value)
 {
 this.value = value;
 }

 public object Value

c09.indd 226c09.indd 226 2/19/08 5:05:38 PM2/19/08 5:05:38 PM

Chapter 9: Generics

227

 {
 get { return value; }
 }

 private LinkedListNode next;
 public LinkedListNode Next
 {
 get { return next; }
 internal set { next = value; }
 }

 private LinkedListNode prev;
 public LinkedListNode Prev
 {
 get { return prev; }
 internal set { prev = value; }
 }
 }

 The LinkedList class includes first and last fields of type LinkedListNode that mark the
beginning and end of the list. The method AddLast() adds a new element to the end of the list. First,
an object of type LinkedListNode is created. If the list is empty, the first and last fields are set to the
new element; otherwise, the new element is added as the last element to the list. By implementing the
 GetEnumerator() method, it is possible to iterate through the list with the foreach statement.
The GetEnumerator() method makes use of the yield statement for creating an enumerator type.

 The yield statement is explained in Chapter 5 , “ Arrays. ”

 public class LinkedList : IEnumerable
 {
 private LinkedListNode first;
 public LinkedListNode First
 {
 get { return first; }
 }

 private LinkedListNode last;
 public LinkedListNode Last
 {
 get { return last; }
 }

 public LinkedListNode AddLast(object node)
 {
 LinkedListNode newNode = new LinkedListNode(node);
 if (first == null)
 {
 first = newNode;
 last = first;
 }
 else

(continued)

c09.indd 227c09.indd 227 2/19/08 5:05:38 PM2/19/08 5:05:38 PM

Part I: The C# Language

228

 {
 last.Next = newNode;
 last = newNode;
 }
 return newNode;
 }

 public IEnumerator GetEnumerator()
 {
 LinkedListNode current = first;
 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }
 }

 Now you can use the LinkedList class with any type. The following code segment instantiates a new
 LinkedList object and adds two integer types and one string type. As the integer types are converted to
an object, boxing occurs as was discussed earlier. With the foreach statement unboxing happens. In the
 foreach statement the elements from the list are cast to an integer, so with the third element in the list a
runtime exception occurs as casting to an int fails.

 LinkedList list1 = new LinkedList();
 list1.AddLast(2);
 list1.AddLast(4);
 list1.AddLast(“6”);

 foreach (int i in list1)
 {
 Console.WriteLine(i);
 }

 Now let ’ s make a generic version of the linked list. A generic class is defined similarly to a normal class
with the generic type declaration. The generic type can then be used within the class as a field member,
or with parameter types of methods. The class LinkedListNode is declared with a generic type T . The
field value is now type T instead of object ; the constructor and property Value are changed as well to
accept and return an object of type T . A generic type can also be returned and set, so the properties Next
and Prev are now of type LinkedListNode < T > :

 public class LinkedListNode < T >
 {
 private T value;
 public LinkedListNode(T value)
 {
 this.value = value;
 }

 public T Value
 {
 get { return value; }
 }

 private LinkedListNode < T > next;

(continued)

c09.indd 228c09.indd 228 2/19/08 5:05:39 PM2/19/08 5:05:39 PM

Chapter 9: Generics

229

 public LinkedListNode < T > Next
 {
 get { return next; }
 internal set { next = value; }
 }

 private LinkedListNode < T > prev;
 public LinkedListNode < T > Prev
 {
 get { return prev; }
 internal set { prev = value; }
 }
 }

 In the following code the class LinkedList is changed to a generic class as well. LinkedList < T >
contains LinkedListNode < T > elements. The type T from the LinkedList defines the type T of the
containing fields first and last . The method AddLast() now accepts a parameter of type T and
instantiates an object of LinkedListNode < T > .

 Beside the interface IEnumerable , a generic version is also available: IEnumerable < T > .
 IEnumerable < T > derives from IEnumerable and adds the GetEnumerator() method that
returns IEnumerator < T > . LinkedList < T > implements the generic interface IEnumerable < T > .

 Enumerations and the interfaces IEnumerable and IEnumerator are discussed in Chapter 5 ,
 “ Arrays. ”

 public class LinkedList < T > : IEnumerable < T >
 {
 private LinkedListNode < T > first;
 public LinkedListNode < T > First
 {
 get { return first; }
 }

 private LinkedListNode < T > last;
 public LinkedListNode < T > Last
 {
 get { return last; }
 }

 public LinkedListNode < T > AddLast(T node)
 {
 LinkedListNode < T > newNode = new LinkedListNode < T > (node);
 if (first == null)
 {
 first = newNode;
 last = first;
 }
 else
 {
 last.Next = newNode;
 last = newNode;
 }

(continued)

c09.indd 229c09.indd 229 2/19/08 5:05:39 PM2/19/08 5:05:39 PM

Part I: The C# Language

230

 return newNode;
 }

 public IEnumerator < T > GetEnumerator()
 {
 LinkedListNode < T > current = first;

 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 }

 Using the generic LinkedList < T > , you can instantiate it with an int type, and there ’ s no boxing. Also,
you get a compiler error if you don ’ t pass an int with the method AddLast() . Using the generic
 IEnumerable < T > , the foreach statement is also type - safe, and you get a compiler error if that variable
in the foreach statement is not an int .

 LinkedList < int > list2 = new LinkedList < int > ();
 list2.AddLast(1);
 list2.AddLast(3);
 list2.AddLast(5);

 foreach (int i in list2)
 {
 Console.WriteLine(i);
 }

 Similarly, you can use the generic LinkedList < T > with a string type and pass strings to the
 AddLast() method:

 LinkedList < string > list3 = new LinkedList < string > ();
 list3.AddLast(“2”);
 list3.AddLast(“four”);
 list3.AddLast(“foo”);

 foreach (string s in list3)
 {
 Console.WriteLine(s);
 }

 Every class that deals with the object type is a possible candidate for a generic
implementation. Also, if classes make use of hierarchies, generics can be very helpful
in making casting unnecessary.

(continued)

c09.indd 230c09.indd 230 2/19/08 5:05:39 PM2/19/08 5:05:39 PM

Chapter 9: Generics

231

 Generic Classes ’ Features
 When creating generic classes, you might need some more C# keywords. For example, it is not possible
to assign null to a generic type. In this case, the keyword default can be used. If the generic type does
not require the features of the Object class, but you need to invoke some specific methods in the generic
class, you can define constraints.

 This section discusses the following topics:

❑ Default Values

❑ Constraints

❑ Inheritance

❑ Static members

 Let ’ s start this example with a generic document manager. The document manager is used to read
and write documents from a queue. Start by creating a new Console project named DocumentManager and
add the class DocumentManager < T > . The method AddDocument() adds a document to the queue. The
read - only property IsDocumentAvailable returns true if the queue is not empty.

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.Generics
{
 public class DocumentManager < T >
 {
 private readonly Queue < T > documentQueue = new Queue < T > ();

 public void AddDocument(T doc)
 {
 lock (this)
 {
 documentQueue.Enqueue(doc);
 }
 }

 public bool IsDocumentAvailable
 {
 get { return documentQueue.Count > 0; }
 }
 }
}

 Default Values
 Now you add a GetDocument() method to the DocumentManager < T > class. Inside this method the
type T should be assigned to null . However, it is not possible to assign null to generic types. The reason
is that a generic type can also be instantiated as a value type, and null is allowed only with reference
types. To circumvent this problem, you can use the default keyword. With the default keyword, null
is assigned to reference types and 0 is assigned to value types.

c09.indd 231c09.indd 231 2/19/08 5:05:40 PM2/19/08 5:05:40 PM

Part I: The C# Language

232

 public T GetDocument()
 {
 T doc = default(T);
 lock (this)
 {
 doc = documentQueue.Dequeue();
 }
 return doc;
 }

 The default keyword has multiple meanings depending on the context where it is used. The switch
statement uses a default for defining the default case, and with generics the default is used to initialize
generic types either to null or 0 depending on if it is a reference or value type.

 Constraints
 If the generic class needs to invoke some methods from the generic type, you have to add constraints.
With the DocumentManager < T > , all the titles of the documents should be displayed in the
 DisplayAllDocuments() method.

 The Document class implements the interface IDocument with the properties Title and Content :

 public interface IDocument
 {
 string Title { get; set; }
 string Content { get; set; }
 }

 public class Document : IDocument
 {
 public Document()
 {
 }

 public Document(string title, string content)
 {
 this.Title = title;
 this.Content = content;
 }

 public string Title { get; set; }
 public string Content { get; set; }
 }

 For displaying the documents with the DocumentManager < T > class, you can cast the type T to the
interface IDocument to display the title:

 public void DisplayAllDocuments()
 {
 foreach (T doc in documentQueue)
 {
 Console.WriteLine((IDocument)doc).Title);
 }
 }

 The problem is that doing a cast results in a runtime exception if the type T does not implement the
interface IDocument . Instead, it would be better to define a constraint with the DocumentManager
< TDocument > class that the type TDocument must implement the interface IDocument . To clarify the

c09.indd 232c09.indd 232 2/19/08 5:05:40 PM2/19/08 5:05:40 PM

Chapter 9: Generics

233

requirement in the name of the generic type, T is changed to TDocument . The where clause defines
the requirement to implement the interface IDocument :

 public class DocumentManager < TDocument >
 where TDocument : IDocument
 {

 This way you can write the foreach statement in such a way that the type T contains the property
 Title . You get support from Visual Studio IntelliSense and from the compiler:

 public void DisplayAllDocuments()
 {
 foreach (TDocument doc in documentQueue)
 {
 Console.WriteLine(doc.Title);
 }
 }

 In the Main() method the DocumentManager < T > class is instantiated with the type Document that
implements the required interface IDocument . Then new documents are added and displayed, and one
of the documents is retrieved:

 static void Main()
 {
 DocumentManager < Document > dm = new DocumentManager < Document > ();
 dm.AddDocument(new Document(“Title A”, “Sample A”));
 dm.AddDocument(new Document(“Title B”, “Sample B”));

 dm.DisplayAllDocuments();

 if (dm.IsDocumentAvailable)
 {
 Document d = dm.GetDocument();
 Console.WriteLine(d.Content);
 }
 }

 The DocumentManager now works with any class that implements the interface IDocument .

 In the sample application, you ’ ve seen an interface constraint. Generics support several constraint types:

Constraint Description

where T : struct With a struct constraint, type T must be a value type.

where T : class The class constraint indicates that type T must be a reference type.

where T : IFoo where T : IFoo specifies that type T is required to implement interface
IFoo.

where T : Foo where T : Foo specifies that type T is required to derive from base
class Foo.

where T : new() where T : new() is a constructor constraint and specifies that type T
must have a default constructor.

where T1 : T2 With constraints it is also possible to specify that type T1 derives from a
generic type T2. This constraint is known as naked type constraint.

c09.indd 233c09.indd 233 2/19/08 5:05:40 PM2/19/08 5:05:40 PM

Part I: The C# Language

234

 With CLR 2.0 only constructor constraints for the default constructor can be defined. It is not possible
to define a constructor constraint for other constructors.

 With a generic type, you can also combine multiple constraints. The constraint where T : IFoo,
new() with the MyClass < T > declaration specifies that type T implements the interface IFoo and has a
default constructor:

public class MyClass < T >
 where T : IFoo, new()
{
 //...

 One important restriction of the where clause with C# is that it ’ s not possible to
define operators that must be implemented by the generic type. Operators cannot be
defined in interfaces. With the where clause, it is only possible to define base
classes, interfaces, and the default constructor.

 Inheritance
 The LinkedList < T > class created earlier implements the interface IEnumerable < T > :

public class LinkedList < T > : IEnumerable < T >
{
 //...

 A generic type can implement a generic interface. The same is possible by deriving from a class. A
generic class can be derived from a generic base class:

public class Base < T >
{
}

public class Derived < T > : Base < T >
{
}

 The requirement is that the generic types of the interface must be repeated, or the type of the base class
must be specified, as in this case:

public class Base < T >
{
}

public class Derived < T > : Base < string >
{
}

 This way, the derived class can be a generic or non - generic class. For example, you can define an abstract
generic base class that is implemented with a concrete type in the derived class. This allows you to do
specialization for specific types:

 public abstract class Calc < T >
 {
 public abstract T Add(T x, T y);

c09.indd 234c09.indd 234 2/19/08 5:05:41 PM2/19/08 5:05:41 PM

Chapter 9: Generics

235

 public abstract T Sub(T x, T y);
 }

 public class SimpleCalc : Calc < int >
 {
 public override int Add(int x, int y)
 {
 return x + y;
 }

 public override int Sub(int x, int y)
 {
 return x - y;
 }
 }

 Static Members
 Static members of generic classes require special attention. Static members of a generic class are only
shared with one instantiation of the class. Let ’ s have a look at one example. The class StaticDemo < T >
contains the static field x :

public class StaticDemo < T >
{
 public static int x;
}

 Because of using the class StaticDemo < T > both with a string type and an int type, two sets of static
fields exist:

StaticDemo < string > .x = 4;
StaticDemo < int > .x = 5;
Console.WriteLine(StaticDemo < string > .x); // writes 4

 Generic Interfaces
 Using generics, you can define interfaces that define methods with generic parameters. In the linked list
sample, you ’ ve already implemented the interface IEnumerable < T > , which defines a
 GetEnumerator() method to return IEnumerator < T > . For many non - generic interfaces of .NET 1.0,
new generic versions have been defined since .NET 2.0, for example IComparable < T > :

public interface IComparable < T >
{
 int CompareTo(T other);
}

 In Chapter 5 , “Arrays,” the non - generic interface IComparable that requires an object with the
 CompareTo() method is implemented with the Person class to sort persons by LastName :

 public class Person : IComparable
 {
 public int CompareTo(object obj)
 {
 Person other = obj as Person;
 return this.lastname.CompareTo(other.LastName);
 }
//...

c09.indd 235c09.indd 235 2/19/08 5:05:41 PM2/19/08 5:05:41 PM

Part I: The C# Language

236

 When implementing the generic version, it is no longer necessary to cast the object to a Person :

 public class Person : IComparable < Person >
 {
 public int CompareTo(Person other)
 {
 return this.LastName.CompareTo(other.LastName);
 }
 //...

 Generic Methods
 In addition to defining generic classes, it is also possible to define generic methods. With a generic
method, the generic type is defined with the method declaration.

 The method Swap < T > defines T as a generic type that is used for two arguments and a variable temp :

void Swap < T > (ref T x, ref T y)
{
 T temp;
 temp = x;
 x = y;
 y = temp;
}

 A generic method can be invoked by assigning the generic type with the method call:

int i = 4;
int j = 5;
Swap < int > (ref i, ref j);

 However, because the C# compiler can get the type of the parameters by calling the Swap method, it is
not required to assign the generic type with the method call. The generic method can be invoked as
simply as non - generic methods:

int i = 4;
int j = 5;
Swap(ref i, ref j);

 Here ’ s an example where a generic method is used to accumulate all elements of a collection. To show
the features of generic methods, the following Account class that contains a name and a balance is
used:

 public class Account
 {
 private string name;
 public string Name
 {
 get
 {
 return name;
 }
 }

 private decimal balance;
 public decimal Balance

c09.indd 236c09.indd 236 2/19/08 5:05:41 PM2/19/08 5:05:41 PM

Chapter 9: Generics

237

 {
 get
 {
 return balance;
 }
 }

 public Account(string name, Decimal balance)
 {
 this.name = name;
 this.balance = balance;
 }
 }

 All the accounts where the balance should be accumulated are added to an accounts list of type
 List < Account > :

 List < Account > accounts = new List < Account > ();
 accounts.Add(new Account(“Christian”, 1500));
 accounts.Add(new Account(“Sharon”, 2200));
 accounts.Add(new Account(“Katie”, 1800));

 A traditional way to accumulate all Account objects is by looping through all Account objects with a
 foreach statement, as shown here. Because the foreach statement is using the IEnumerable interface
to iterate the elements of a collection, the argument of the AccumulateSimple() method is of type
 IEnumerable . This way, the AccumulateSimple() method can be used with all collection classes that
implement the interface IEnumerable < Account > . In the implementation of this method, the property
 Balance of the Account object is directly accessed:

 public static class Algorithm
 {
 public static decimal AccumulateSimple(IEnumerable < Account > e)
 {
 decimal sum = 0;
 foreach (Account a in e)
 {
 sum += a.Balance;
 }
 return sum;
 }
 }

 The AccumulateSimple() method is invoked this way:

 decimal amount = Algorithm.AccumulateSimple(accounts);

 The problem with the first implementation is that it works only with Account objects. This can be
avoided by using a generic method.

 The second version of the Accumulate() method accepts any type that implements the interface
 IAccount . As you ’ ve seen earlier with generic classes, generic types can be restricted with the where
clause. The same clause that is used with generic classes can be used with generic methods. The
parameter of the Accumulate() method is changed to IEnumerable < T > . IEnumerable < T > is a generic
version of the interface IEnumerable that is implemented by the generic collection classes:

c09.indd 237c09.indd 237 2/19/08 5:05:42 PM2/19/08 5:05:42 PM

Part I: The C# Language

238

 public static decimal Accumulate < TAccount > (IEnumerable < TAccount > coll)
 where TAccount : IAccount
 {
 decimal sum = 0;

 foreach (TAccount a in coll)
 {
 sum += a.Balance;
 }
 return sum;
 }

 The Account class is now re-factored to implement the interface IAccount :

 public class Account : IAccount
 {
 //...

 The IAccount interface defines the read - only properties Balance and Name :

 public interface IAccount
 {
 decimal Balance { get; }
 string Name { get; }
 }

 The new Accumulate() method can be invoked by defining the Account type as generic type
parameter:

 decimal amount = Algorithm.Accumulate < Account > (accounts);

 Because the generic type parameter can be automatically inferred by the compiler from the parameter
type of the method, it is valid to invoke the Accumulate() method this way:

 decimal amount = Algorithm.Accumulate(accounts);

 The requirement for the generic types to implement the interface IAccount may be too restrictive. This
requirement can be changed by using generic delegates. In the next section, the Accumulate() method
will be changed to be independent of any interface.

 Generic Delegates
 As discussed in Chapter 7 , “Delegates and Events,” delegates are type - safe references to methods. With
generic delegates, the parameters of the delegate can be defined later.

 The .NET Framework defines a generic EventHandler delegate with the second parameter of type
 TEventArgs , so it is no longer necessary to define a new delegate with every new parameter type:

public sealed delegate void EventHandler < TEventArgs > (object sender,
 TEventArgs e)
 where TEventArgs : EventArgs

 Implementing Methods Called by Delegates
 The method Accumulate() is changed to have two generic types. TInput is the type of the objects that
are accumulated, and TSummary is the returned type. The first parameter of Accumulate is the interface

c09.indd 238c09.indd 238 2/19/08 5:05:42 PM2/19/08 5:05:42 PM

Chapter 9: Generics

239

 IEnumerable < T > , as it was before. The second parameter requires the Action delegate to reference a
method that is invoked to accumulate all balances.

 With the implementation, the method referenced by the Action delegate is now invoked for every
element, and then the sum of the calculation is returned:

 public delegate TSummary Action < TInput, TSummary > (TInput t, TSummary u);

 public static TSummary Accumulate < TInput, TSummary > (
 IEnumerable < TInput > coll,
 Action < TInput, TSummary > action)
 {
 TSummary sum = default(TSummary);

 foreach (TInput input in coll)
 {
 sum = action(input, sum);
 }
 return sum;
 }

 The method Accumulate() can be invoked using an anonymous method that specifies that the balance
of the account should be added to the second parameter that is of type Action :

 decimal amount = Algorithm.Accumulate < Account, decimal > (
 accounts,
 delegate(Account a, decimal d)
 { return a.Balance + d; });

 Instead of using anonymous methods, you can use a Lambda expression to pass it to the second
parameter:

 decimal amount = Algorithm.Accumulate < Account, decimal > (
 accounts, (a, d) = > a.Balance + d;);

 Anonymous methods and Lambda expressions are explained in Chapter 7 , “Delegates and Events.”

 If the addition of Account balances is needed more than once, it can be useful to move the functionality
into a separate method, AccountAdder() :

 static decimal AccountAdder(Account a, decimal d)
 {
 return a.Balance + d;
 }

 And use the address of the AccountAdder method with the Accumulate method:

 decimal amount = Algorithm.Accumulate < Account, decimal > (
 accounts, AccountAdder);

 The method referenced by the Action delegate can implement any logic; for example, a multiplication
could be done instead of a summation.

 The Accumulate() method is made more flexible with the AccumulateIf() method. With
 AccumulateIf() , an additional parameter of type Predicate < T > is used. The delegate Predicate < T >
references the method that will be invoked to check whether the account should be part of the

c09.indd 239c09.indd 239 2/19/08 5:05:42 PM2/19/08 5:05:42 PM

Part I: The C# Language

240

accumulation. In the foreach statement, the action method will be invoked only if the predicate match
returns true :

 public static TSummary AccumulateIf < TInput, TSummary > (
 IEnumerable < TInput > coll,
 Action < TInput, TSummary > action,
 Predicate < TInput > match)
 {
 TSummary sum = default(TSummary);

 foreach (TInput a in coll)
 {
 if (match(a))
 {
 sum = action(a, sum);
 }
 }
 return sum;
 }

 Calling the method AccumulateIf() can have an implementation for the accumulation and an
implementation for the predicate. Here, only the accounts with a balance higher than 2,000 are
accumulated as defined by the second Lambda expression a = > a.Balance > 2000 :

 decimal amount = Algorithm.AccumulateIf < Account, decimal > (
 accounts, (a, d) = > a.Balance + d, a = > a.Balance > 2000);

 Using Generic Delegates with the Array Class
 Chapter 5 , “Arrays,” demonstrated different sort techniques with the Array class by using the
 IComparable and IComparer interfaces. Starting with .NET 2.0, some methods of the Array class use
generic delegate types as parameters. The following table shows these methods, the generic type, and
the functionality.

Method Generic Parameter Type Description

Sort() int
Comparison<T>
 (T x, T y)

The Sort() method defines several overloads.
One overload requires a parameter of type
Comparison<T>. Sort() is using the method ref-
erenced by the delegate for ordering all elements
in the collection.

ForEach() void Action<T>
 (T obj)

The method ForEach() invokes the method ref-
erenced by the Action<T> delegate with every
item in the collection.

FindAll()
Find()
FindLast()
FindIndex()
FindLastIndex()

bool Predicate<T>
 (T match)

The FindXXX() methods accept the
Predicate<T> delegate as parameter. The
method referenced by the delegate is invoked
multiple times, and the elements of the collection
are passed one after the other. The Find()
method stops a search until the predicate returns
true the first time and returns this

c09.indd 240c09.indd 240 2/19/08 5:05:43 PM2/19/08 5:05:43 PM

Chapter 9: Generics

241

 Let ’ s get into how these methods can be used.

 The Sort() method accepts this delegate as parameter:

public delegate int Comparison < T > (T x, T y);

 This way, it is possible to sort the array by using a Lambda expression passing two Person objects. With
an array of Person objects, parameter T is of type Person :

 Person[] persons = {
 new Person(“Emerson”, “Fittipaldi”),
 new Person(“Niki”, “Lauda”),
 new Person(“Ayrton”, “Senna”),
 new Person(“Michael”, “Schumacher”)
 };

 Array.Sort(persons, (p1, p2) = > p1.FirstName.CompareTo(p2.FirstName);

 The Array.ForEach() method accepts an Action < T > delegate as parameter to invoke the action for
every element of the array:

public delegate void Action < T > (T obj);

 This way, you can write every person to the console by passing the address of the method Console.
WriteLine . One overload of the WriteLine() method accepts the Object class as parameter type.
Because Person derives from Object , this fits with a Person array:

Array.ForEach(persons, Console.WriteLine);

Method Generic Parameter Type Description

element. FindIndex() returns the index of the
first element found. FindLast() and
FindLastIndex() invoke the predicate in the
reversed order of the elements in the collection,
and thus either return the last item or the last
index. FindAll() returns a new list with all
items where the predicate was true.

ConvertAll() TOutput Converter
<TInput, TOutput>
(TInput input)

The ConvertAll() method invokes the
Converter<TInput, TOutput> delegate for
every element in the collection and returns a list
of converted elements.

TrueForAll() bool Predicate<T>
(T match)

The method TrueForAll() invokes the predi-
cate delegate for every element. If the predicate
returns true for every element, TrueForAll()
returns true as well. If the predicate returns false
just for one of the elements, TrueForAll()
returns false.

c09.indd 241c09.indd 241 2/19/08 5:05:43 PM2/19/08 5:05:43 PM

Part I: The C# Language

242

 The result of the ForEach() statement writes every person of the collection referenced by the persons
variable to the console:

Emerson Fittipaldi
Niki Lauda
Ayrton Senna
Michael Schumacher

 If more control is needed, you can pass a Lambda expression that fits the parameter defined by the
delegate:

Array.ForEach(persons, p = > Console.WriteLine(“{0}”, p.LastName);

 Here, the result is the last name written to the console:

Fittipaldi
Lauda
Senna
Schumacher

 The Array.FindAll() method requires the Predicate < T > delegate:

public delegate bool Predicate < T > (T match);

 The Array.FindAll() method invokes the predicate for every element in the array and returns a new
array where the predicate returns true for the element. In the example, true is returned for all Person
objects where the LastName starts with the string “ S “ :

Person[] sPersons = Array.FindAll(persons, p = > p.LastName.StartsWith(“S”);

 Iterating through the returned collection sPersons to write it to the console gives this result:

Ayrton Senna
Michael Schumacher

 The Array.ConvertAll() method used the generic delegate Converter with two generic types. The
first generic type TInput is the input parameter, the second generic type TOutput is the return type:

public delegate TOutput Converter < TInput, TOutput > (TInput input);

 The ConvertAll() method is very useful if an array of one type should be converted to an array of
another type. Following is a Racer class that is unrelated to the Person class. The Person class contains
the FirstName and LastName properties, while the Racer class defines for the name of the racer just
one property Name :

 public class Racer
 {
 public Racer(string name)
 {
 this.Name = name;
 }

 public string Name { get; set; }
 public string Team { get; set; }
 }

 Using Array.ConvertAll() you can easily convert the person array persons to a Racer array. The
delegate is invoked for every Person element. In the anonymous method implementation for every

c09.indd 242c09.indd 242 2/19/08 5:05:43 PM2/19/08 5:05:43 PM

Chapter 9: Generics

243

person, a new Racer object is created, and the FirstName and LastName are passed concatenated to the
constructor, which accepts a string. The result is an array of Racer objects:

Racer[] racers =
 Array.ConvertAll < Person, Racer > (
 persons,
 p = > new Racer(String.Format(“{0} {1}”, p.FirstName, p.LastName));

 Other Generic Framework Types
 In addition to the System.Collections.Generic namespace, the .NET Framework has other uses for
generic types. The structs and delegates discussed here are all in the System namespace and serve
different purposes.

 This section discusses the following:

❑ The struct Nullable < T >

❑ The delegate EventHandler < TEventArgs >

❑ The struct ArraySegment < T >

 Nullable < T >
 A number in a database and a number in a programming language have an important difference in their
characteristics, as a number in the database can be null . A number in C# cannot be null . Int32 is a
struct, and because structs are implemented as value types, they cannot be null .

 The problem doesn ’ t exist only with databases but also with mapping XML data to .NET types.

 This difference often causes headaches and lot of additional work to map the data. One solution is to
map numbers from databases and XML files to reference types, because reference types can have a null
value. However, this also means additional overhead during runtime.

 With the structure Nullable < T > this can be easily resolved. In the example, Nullable < T > is
instantiated with Nullable < int > . The variable x can now be used like an int , assigning values and
using operators to do some calculation. This behavior is made possible by casting operators of the
 Nullable < T > type. However, x can also be null . The Nullable < T > properties HasValue and Value
can check if there is a value, and the value can be accessed:

Nullable < int > x;
x = 4;
x += 3;
if (x.HasValue)
{
 int y = x.Value;
}
x = null;

 Because nullable types are used very often, C# has a special syntax for defining variables of this type.
Instead of using the syntax with the generic structure, the ? operator can be used. In the following
example, the variables x1 and x2 both are instances of a nullable int type:

Nullable < int > x1;
int? x2;

c09.indd 243c09.indd 243 2/19/08 5:05:44 PM2/19/08 5:05:44 PM

Part I: The C# Language

244

 A nullable type can be compared with null and numbers as shown. Here, the value of x is compared
with null , and if it is not null , it is compared with a value smaller than 0 :

int? x = GetNullableType();if (x == null)
{
 Console.WriteLine(“x is null”);
}
else if (x < 0)
{
 Console.WriteLine(“x is smaller than 0”);
}

 Nullable types can also be used with arithmetic operators. The variable x3 is the sum of the variables x1
and x2 . If any of the nullable types has a null value, the result is null :

int? x1 = GetNullableType();
int? x2 = GetNullableType();
int? x3 = x1 + x2;

 The method GetNullableType() that is called here is just a placeholder for any method that returns a
nullable int . For testing you can implement it as simple to return null or to return any integer value.

 Non - nullable types can be converted to nullable types. With the conversion from a non - nullable type to a
nullable type, an implicit conversion is possible where casting is not required. This conversion always
succeeds:

int y1 = 4;
int? x1 = y1;

 The other way around, the conversion from a nullable type to a non - nullable type, can fail. If the nullable
type has a null value and the null value is assigned to a non - nullable type, an exception of type
 InvalidOperationException is thrown. That ’ s the reason the cast operator is required to do an
explicit conversion:

int? x1 = GetNullableType();
int y1 = (int)x1;

 Instead of doing an explicit cast, it is also possible to convert a nullable type to a non - nullable type with
the coalescing operator. The coalescing operator has the syntax ?? to define a default value for the
conversion in case the nullable type has a value of null . Here, y1 gets the value 0 if x1 is null :

int? x1 = GetNullableType();
int y1 = x1 ?? 0;

 EventHandler < TEventArgs >
 With Windows Forms and Web applications, delegates for many different event handlers are defined.
Some of the event handlers are listed here:

public sealed delegate void EventHandler(object sender, EventArgs e);
public sealed delegate void PaintEventHandler(object sender,
 PaintEventArgs e);
public sealed delegate void MouseEventHandler(object sender,
 MouseEventArgs e);

 These delegates have in common that the first argument is always the sender, who was the origin of the
event, and the second argument is of a type to contain information specific to the event.

 With the new EventHandler < TEventArgs > , it is not necessary to define a new delegate for every event
handler. As you can see, the first parameter is defined the same way as before, but the second parameter

c09.indd 244c09.indd 244 2/19/08 5:05:44 PM2/19/08 5:05:44 PM

Chapter 9: Generics

245

is a generic type TEventArgs . The where clause specifies that the type for TEventArgs must be derived
from the base class EventArgs :

public sealed delegate void EventHandler < TEventArgs > (object sender,
 TEventArgs e)
 where TEventArgs : EventArgs

 ArraySegment < T >
 The struct ArraySegment < T > represents a segment of an array. If parts of an array are needed, a
segment can be used. With the struct ArraySegment < T > , the information about the segment (the offset
and count) is contained within this structure.

 In the example, the variable arr is defined as an int array with eight elements. The variable segment of
type ArraySegment < int > is used to represent a segment of the integer array. The segment is initialized
with the constructor, where the array is passed together with an offset and an item count. Here, the offset
is set to 2 , so you start with the third element, and the count is set to 3 , so 6 is the last element of the
segment.

 The array behind the array segment can be accessed with the Array property. ArraySegment < T > also
has the properties Offset and Count that indicate the initialized values to define the segment. The for
loop is used to iterate through the array segment. The first expression of the for loop is initialized to the
offset where the iteration should begin. With the second expression, the count of the element numbers
in the segment is used to check if the iteration should stop. Within the for loop, the elements contained
by the segment are accessed with the Array property:

int[] arr = {1, 2, 3, 4, 5, 6, 7, 8};
ArraySegment < int > segment = new ArraySegment < int > (arr, 2, 3);

for (int i = segment.Offset; i < segment.Offset + segment.Count; i++)
{
 Console.WriteLine(segment.Array[i]);
}

 With the example so far, you might question the usefulness of the ArraySegment < T > structure.
However, the ArraySegment < T > can also be passed as an argument to methods. This way, just a single
argument is needed instead of three that define the offset and count in addition to the array.

 The method WorkWithSegment() gets an ArraySegment < string > as a parameter. In the
implementation of this method, the properties Offset , Count , and Array are used as before:

void WorkWithSegment(ArraySegment < string > segment)
{
 for (int i = segment.Offset; i < segment.Offset + segment.Count; i++)
 {
 Console.WriteLine(segment.Array[i]);
 }
}

 It ’ s important to note that array segments don ’ t copy the elements of the originating
array. Instead, the originating array can be accessed through ArraySegment < T > . If
elements of the array segment are changed, the changes can be seen in the original
array.

c09.indd 245c09.indd 245 2/19/08 5:05:44 PM2/19/08 5:05:44 PM

Part I: The C# Language

246

 Summary
 This chapter introduced a very important feature of the CLR 2.0: generics. With generic classes you can
create type - independent classes, and generic methods allow type - independent methods. Interfaces,
structs, and delegates can be created in a generic way as well. Generics make new programming styles
possible. You ’ ve seen how algorithms, particularly actions and predicates, can be implemented to be
used with different classes — and all type - safe. Generic delegates make it possible to decouple
algorithms from - collections.

 Other .NET Framework types include Nullable < T > , EventHandler < TEventArgs > , and
 ArraySegment < T > .

 The next chapter makes use of generics showing collection classes.

c09.indd 246c09.indd 246 2/19/08 5:05:45 PM2/19/08 5:05:45 PM

 Collections

 In Chapter 5 , “ Arrays, ” you read information about arrays and the interfaces implemented by the
 Array class. The size of arrays is fixed. If the number of elements is dynamic, you should use a
collection class.

 List < T > and ArrayList are collection classes that can be compared to arrays. But there are also
other kinds of collections: queues, stacks, linked lists, and dictionaries.

 This chapter shows you how to work with groups of objects. It takes a close look at these topics:

 Collection interfaces and types

 Lists

 Queues

 Stacks

 Linked lists

 Sorted lists

 Dictionaries

 Lookups

 HashSets

 Bit arrays

 Performance

 Collection Interfaces and Types
 Collection classes can be grouped into collections that store elements of type Object and generic
collection classes. Previous to CLR 2.0, generics didn ’ t exist. Now the generic collection classes
usually are the preferred type of collection. Generic collection classes are type - safe, and there is no
boxing if value types are used. You need object - based collection classes only if you want to add
objects of different types where the types are not based on each other, for example, adding int and

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 247c10.indd 247 2/19/08 5:10:12 PM2/19/08 5:10:12 PM

Part I: The C# Language

248

 string objects to one collection. Another group of collection classes is collections specialized for a specific
type; for example, the StringCollection class is specialized for the string type.

 You can read all about generics in Chapter 9 , “ Generics. ”

 Object - type collections are located in the namespace System.Collections ; generic collection classes
are located in the namespace System.Collections.Generic . Collection classes that are specialized for
a specific type are located in the namespace System.Collections.Specialized .

 Of course, there are also other ways to group collection classes. Collections can be grouped into lists,
collections, and dictionaries based on the interfaces that are implemented by the collection class. Interfaces
and their functionalities are described in the following table. .NET 2.0 added new generic interfaces for
collection classes, for example, IEnumerable < T > and IList < T > . Whereas the non - generic versions of
these interfaces define an Object as a parameter of the methods, the generic versions of these interfaces
use the generic type T .

 You can read detailed information about the interfaces IEnumerable , ICollection , and IList in
Chapter 5 , “ Arrays. ”

 The following table describes interfaces implemented by collections and lists, and their methods
and properties.

 Interface Methods and Properties Description

 IEnumerable,
IEnumerable < T >

 GetEnumerator() The interface IEnumerable is required if a
 foreach statement is used with the collection.
This interface defines the method
 GetEnumerator() , which returns an enumer-
ator that implements IEnumerator . The
generic interface IEnumerable < T > inherits
from the non - generic interface IEnumerable ,
and defines a GetEnumerator method to
return Enumerator < T > . Because of the inheri-
tance with these two interfaces, with every
method that requires a parameter of type
 IEnumerable , you can also pass
 IEnumerable < T > objects.

 ICollection Count , IsSynchronized ,
 SyncRoot , CopyTo()

 The interface ICollection is implemented by
collection classes. With collections implement-
ing this interface, you can get the number of
elements and copy the collection to an array.

The interface ICollection extends the func-
tionality from the interface IEnumerable .

 ICollection < T > Count, IsReadOnly,
Add(), Clear(),
Contains(), CopyTo(),
Remove()

 ICollection < T > is the generic version of
the ICollection interface. The generic
version of this interface allows adding and
removing elements as well as getting the
element number.

c10.indd 248c10.indd 248 2/19/08 5:10:13 PM2/19/08 5:10:13 PM

Chapter 10: Collections

249

 Interface Methods and Properties Description

 IList IsFixedSize ,
 IsReadOnly , Item , Add() ,
 Clear() , Contains() ,
 IndexOf() , Insert() ,
 Remove() , RemoveAt()

 The interface IList derives from the interface
 ICollection . IList allows you to access a
collection using an indexer. It is also possible
to insert or remove elements at any position of
the collection.

 IList < T > Item, IndexOf(),
Insert(), RemoveAt()

 Similar to IList , the interface IList < T >
inherits from ICollection < T > .

In Chapter 5 , “ Arrays, ” you saw that the
 Array class implements this interface, but
methods to add or remove elements throw a
 NotSupportedException . Collections that
have a fixed size (for example, the Array
class) and are read - only can throw a
 NotSupportedException with some of the
methods defined in this interface.

Comparing the non - generic and the generic
version of the IList interfaces, the new
 generic interface just defines the methods and
properties important for collections that offer
an index. The other methods have been re-
factored to the ICollection < T > interface.

 IDictionary IsFixedSize ,
 IsReadOnly , Item , Keys ,
 Values , Add() , Clear() ,
 Contains() ,
 GetEnumerator() ,
 Remove()

 The interface IDictionary is implemented
by non - generic collections whose elements
have a key and a value.

 IDictionary < TKey,
TValue >

 Item , Keys , Values,
Add() , ContainsKey() ,
 Remove() ,
 TryGetValue()

 IDictionary < TKey, TValue > is imple-
mented by generic collection classes that have
a key and a value. This interface is simpler
compared to IDictionary .

 ILookup < TKey,
TElement >

 Count,Item,Contains() ILookup < TKey, TElement > is a new interface
with .NET 3.5 that is used by collections that
have multiple values for a key. The indexer
returns an enumeration for a specified key.

 IComparer < T > Compare() The interface IComparer < T > is implemented
by a comparer and used to sort elements
inside a collection with the Compare()
method.

 IEquality
Comparer < T >

 Equals(),
GetHashCode()

 IEqualityComparer < T > is implemented by a
comparer that can be used for keys in a dic-
tionary. With this interface the objects can be
compared for equality.

c10.indd 249c10.indd 249 2/19/08 5:10:14 PM2/19/08 5:10:14 PM

Part I: The C# Language

250

 The non - generic interface ICollection defines properties used to synchronize different threads ac-
cessing the same collection. These properties are no longer available with the new generic interfaces. The
reason for this change was that these properties led to a false safety regarding synchronization, because
the collection usually is not the only thing that must be synchronized. You can read information about
synchronization with collections in Chapter 19 , “ Threading and Synchronization. ”

 The following table lists the collection classes and the collection interfaces that are implemented by
these classes.

Collection Class Collection Interfaces

ArrayList IList, ICollection, IEnumerable

Queue ICollection, IEnumerable

Stack ICollection, IEnumerable

BitArray ICollection, IEnumerable

Hashtable IDictionary, ICollection, IEnumerable

SortedList IDictionary, ICollection, IEnumerable

List<T> IList<T>, ICollection<T>, IEnumerable<T>, IList,
ICollection, IEnumerable

Queue<T> IEnumerable<T>, ICollection, IEnumerable

Stack<T> IEnumerable<T>, ICollection, IEnumerable

LinkedList<T> ICollection<T>, IEnumerable<T>, ICollection, IEnumerable

HashSet<T> ICollection<T>, IEnumerable<T>, IEnumerable

Dictionary<TKey,
TValue>

IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey,
TValue>>, IEnumerable<KeyValuePair<TKey, TValue>>,
IDictionary, ICollection, IEnumerable

SortedDictionary<TKey,
TValue>

IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey,
TValue>>, IEnumerable<KeyValuePair<TKey, TValue>>,
IDictionary, ICollection, IEnumerable

SortedList<TKey,
TValue>

IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey,
TValue>>, IEnumerable<KeyValuePair<TKey, TValue>>,
IDictionary, ICollection, IEnumerable

Lookup<TKey, TElement> ILookup<TKey, TElement>,IEnumerable<IGrouping<TKey,
TElement>>,IEnumerable

 Lists
 For dynamic lists, the .NET Framework offers the classes ArrayList and List < T > . The class List < T >
in the namespace System.Collections.Generic is very similar in its usage to the ArrayList class
from the namespace System.Collections . This class implements the IList , ICollection , and

c10.indd 250c10.indd 250 2/19/08 5:10:14 PM2/19/08 5:10:14 PM

Chapter 10: Collections

251

 IEnumerable interfaces. Because Chapter 9 , “ Generics, ” already discussed the methods of these
interfaces, this section looks at how to use the List < T > class.

 The following examples use the members of the class Racer as elements to be added to the collection to
represent a Formula - 1 racer. This class has four fields: firstName , lastName , country , and the number
of wins . The fields can be accessed with properties. With the constructor of the class, the name of the
racer and the number of wins can be passed to set the members. The method ToString() is overridden
to return the name of the racer. The class Racer also implements the generic interface IComparer < T > for
sorting racer elements.

 [Serializable]
 public class Racer : IComparable < Racer > , IFormattable
 {
 public Racer()
 : this(String.Empty, String.Empty,
 String.Empty) {}

 public Racer(string firstName, string lastName,
 string country)
 : this(firstName, lastName, country, 0) {}

 public Racer(string firstName, string lastName,
 string country, int wins)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.Country = country;
 this.Wins = wins;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Country { get; set; }
 public int Wins { get; set; }

 public override string ToString()
 {
 return String.Format(“{0} {1}”,
 FirstName, LastName);
 }

 public string ToString(string format,
 IFormatProvider formatProvider)
 {
 switch (format.ToUpper())
 {
 case null:
 case “N”: // name
 return ToString();
 case “F”: // first name
 return FirstName;
 case “L”: // last name
 return LastName;
 case “W”: // Wins

(continued)

c10.indd 251c10.indd 251 2/19/08 5:10:15 PM2/19/08 5:10:15 PM

Part I: The C# Language

252

 return String.Format(“{0}, Wins: {1}”,
 ToString(), Wins);
 case “C”: // Country
 return String.Format(
 “{0}, Country: {1}”,
 ToString(), Country);
 case “A”: // All
 return String.Format(
 “{0}, {1} Wins: {2}”,
 ToString(), Country, Wins);
 default:
 throw new FormatException(String.Format(
 formatProvider,
 “Format {0} is not supported”,
 format));
 }
 }

 public string ToString(string format)
 {
 return ToString(format, null);
 }

 public int CompareTo(Racer other)
 {
 int compare = this.LastName.CompareTo(
 other.LastName);
 if (compare == 0)
 return this.FirstName.CompareTo(
 other.FirstName);
 return compare;
 }
 }

 Creating Lists
 You can create list objects by invoking the default constructor. With the generic class List < T > , you must
specify the type for the values of the list with the declaration. The code shows how to declare a List < T >
with int and a list with Racer elements. ArrayList is a non - generic list that accepts any Object type
for its elements.

 Using the default constructor creates an empty list. As soon as elements are added to the list, the capacity
of the list is extended to allow four elements. If the fifth element is added, the list is resized to allow
eight elements. If eight elements are not enough, the list is resized again to contain 16 elements. With
every resize the capacity of the list is doubled.

 ArrayList objectList = new ArrayList();

 List < int > intList = new List < int > ();
 List < Racer > racers = new List < Racer > ();

 If the capacity of the list changes, the complete collection is reallocated to a new memory block. With the
implementation of List < T > , an array of type T is used. With reallocation, a new array is created, and
 Array.Copy() copies the elements from the old to the new array. To save time, if you know the number

(continued)

c10.indd 252c10.indd 252 2/19/08 5:10:15 PM2/19/08 5:10:15 PM

Chapter 10: Collections

253

of elements in advance, that should be in the list; you can define the capacity with the constructor. Here a
collection with a capacity of 10 elements is created. If the capacity is not large enough for the elements
added, the capacity is resized to 20 and 40 elements — doubled again.

 ArrayList objectList = new ArrayList(10);
 List < int > intList = new List < int > (10);

 You can get and set the capacity of a collection by using the Capacity property:

 objectList.Capacity = 20;
 intList.Capacity = 20;

 The capacity is not the same as the number of elements in the collection. The number of elements in the
collection can be read with the Count property. Of course, the capacity is always larger or equal to the
number of items. As long as no element was added to the list, the count is 0.

 Console.WriteLine(intList.Count);

 If you are finished adding elements to the list and don ’ t want to add any more elements, you can get rid
of the unneeded capacity by invoking the TrimExcess() method. However, because the relocation takes
time, TrimExcess() does nothing if the item count is more than 90 percent of capacity.

 intList.TrimExcess();

 Because with new applications usually you can use the generic List < T > class instead of the
non - generic ArrayList class, and also because the methods of ArrayList are very similar,
the reminder of this section focuses just on List < T > .

 Collection Initializers
 C# 3.0 allows you to assign values to collections using collection initializers. The syntax of collection
initializers is similar to array initializers, which were explained in Chapter 5 . With a collection initializer,
values are assigned to the collection within curly brackets at the initialization of the collection:

 List < int > intList = new List < int > () {1, 2};
 List < string > stringList =
 new List < string > () {“one”, “two”};

 Collection initializers are a feature of the C# 3.0 programming language and are not reflected within the
IL code of the compiled assembly. The compiler converts the collection initializer to invoking the Add()
method for every item from the initializer list.

 Adding Elements
 You can add elements to the list with the Add() method as shown. The generic instantiated type defines
the parameter type of the Add() method.

 List < int > intList = new List < int > ();
 intList.Add(1);
 intList.Add(2);

 List < string > stringList = new List < string > ();
 stringList.Add(“one”);
 stringList.Add(“two”);

 The variable racers is defined as type List < Racer > . With the new operator, a new object of the same
type is created. Because the class List < T > was instantiated with the concrete class Racer , now only
 Racer objects can be added with the Add() method. In the following sample code, five Formula - 1 racers
are created and added to the collection. The first three are added using the collection initializer, and the
last two are added by invoking the Add() method explicitly.

c10.indd 253c10.indd 253 2/19/08 5:10:16 PM2/19/08 5:10:16 PM

Part I: The C# Language

254

 Racer graham = new Racer(“Graham”, “Hill”,
 “UK”, 14);
 Racer emerson = new Racer(“Emerson”,
 “Fittipaldi”, “Brazil”, 14);
 Racer mario = new Racer(“Mario”, “Andretti”,
 “USA”, 12);

 List < Racer > racers = new List < Racer > (20)
 {graham, emerson, mario};

 racers.Add(new Racer(“Michael”, “Schumacher”,
 “Germany”, 91));
 racers.Add(new Racer(“Mika”, “Hakkinen”,
 “Finland”, 20));

 With the AddRange() method of the List < T > class, you can add multiple elements to the collection at
once. The method AddRange() accepts an object of type IEnumerable < T > , so you can also pass an array
as shown:

 racers.AddRange(new Racer[] {
 new Racer(“Niki”, “Lauda”, “Austria”,
 25),
 new Racer(“Alain”, “Prost”, “France”,
 51)});

 The collection initializer can be used only during declaration of the collection. The AddRange()
method can be invoked after the collection is initialized.

 If you know some elements of the collection when instantiating the list, you can also pass any object that
implements IEnumerable < T > to the constructor of the class. This is very similar to the AddRange()
method.

 List < Racer > racers =
 new List < Racer > (new Racer[] {
 new Racer(“Jochen”, “Rindt”, “Austria”,
 6),
 new Racer(“Ayrton”, “Senna”, “Brazil”,
 41) });

 Inserting Elements
 You can insert elements at a specified position with the Insert() method:

 racers.Insert(3, new Racer(“Phil”, “Hill”,
 “USA”, 3));

 The method InsertRange() offers the capability to insert a number of elements, similarly to the
 AddRange() method shown earlier.

 If the index set is larger than the number of elements in the collection, an exception of type
 ArgumentOutOfRangeException is thrown.

 Accessing Elements
 All classes that implement the IList and IList < T > interface offer an indexer, so you can access the
elements by using an indexer and passing the item number. The first item can be accessed with an index
value 0. By specifying racers[3] , you will access the fourth element of the list:

 Racer r1 = racers[3];

c10.indd 254c10.indd 254 2/19/08 5:10:16 PM2/19/08 5:10:16 PM

Chapter 10: Collections

255

 Getting the number of elements with the Count property, you can do a for loop to iterate through every
item in the collection, and use the indexer to access every item:

 for (int i = 0; i < racers.Count; i++)
 {
 Console.WriteLine(racers[i]);
 }

 Indexed access to collection classes is available with ArrayList ,
StringCollection , and List < T > .

 Because List < T > implements the interface IEnumerable , you can iterate through the items in the
collection using the foreach statement as well:

 foreach (Racer r in racers)
 {
 Console.WriteLine(r);
 }

 How the foreach statement is resolved by the compiler to make use of the IEnumerable and
IEnumerator interfaces is explained in Chapter 5 , “ Arrays. ”

 Instead of using the foreach statement, the List < T > class also offers a ForEach() method that is
declared with an Action < T > parameter:

public void ForEach(Action < T > action);

 The implementation of ForEach() is shown next. ForEach() iterates through every item of the
collection and invokes the method that is passed as parameter for every item.

public class List < T > : IList < T >
{
 private T[] items;

 //...

 public void ForEach(Action < T > action)
 {
 if (action == null) throw new ArgumentNullException(“action”);

 foreach (T item in items)
 {
 action(item);
 }
 }

 //...
}

 For passing a method with ForEach , Action < T > is declared as a delegate that defines a method with
 void return type and parameter T :

public delegate void Action < T > (T obj);

 With a list of Racer items, the handler for the ForEach() method must be declared with a Racer object
as parameter and a void return type:

public void ActionHandler(Racer obj);

c10.indd 255c10.indd 255 2/19/08 5:10:16 PM2/19/08 5:10:16 PM

Part I: The C# Language

256

 Because one overload of the Console.WriteLine() method accepts Object as parameter, you can pass
the address of this method to the ForEach() method, and every racer of the collection is written to the
console:

 racers.ForEach(Console.WriteLine);

 You can also write an anonymous method that accepts a Racer object as parameter. Here, the format A
is used with the ToString() method of the IFormattable interface to display all information of
the racer:

 racers.ForEach(
 delegate(Racer r)
 {
 Console.WriteLine(“{0:A}”, r);
 });

 With C# 3.0 you can also use Lambda expressions with methods accepting a delegate parameter. The
same iteration that was implemented using an anonymous method is defined with a Lambda expression:

 racers.ForEach(
 r = > Console.WriteLine(“{0:A}”, r));

 Anonymous methods and Lambda expressions are explained in Chapter 7 , “ Delegates and Events. ”

 Removing Elements
 You can remove elements by index or pass the item that should be removed. Here, the fourth element is
removed by passing 3 to RemoveAt() :

 racers.RemoveAt(3);

 You can also directly pass a Racer object to the Remove() method to remove this element. Removing by
index is faster, because here the collection must be searched for the item to remove. The Remove()
method first searches in the collection to get the index of the item with the IndexOf() method, and then
uses the index to remove the item. IndexOf() first checks if the item type implements the interface
 IEquatable . If it does, the Equals() method of this interface is invoked to find the item in
the collection that is the same as the one passed to the method. If this interface is not implemented, the
 Equals() method of the Object class is used to compare the items. The default implementation of
the Equals() method in the Object class does a bitwise compare with value types, but compares only
references with reference types.

 Chapter 6 , “ Operators and Casts, ” explains how you can override the Equals() method.

 Here, the racer referenced by the variable graham is removed from the collection. The variable graham
was created earlier when the collection was filled. Because the interface IEquatable and the Object.
Equals() method are not overridden with the Racer class, you cannot create a new object with the
same content as the item that should be removed and pass it to the Remove() method.

 if (!racers.Remove(graham))
 {
 Console.WriteLine(
 “object not found in collection”);
 }

 The method RemoveRange() removes a number of items from the collection. The first parameter
specifies the index where the removal of items should begin; the second parameter specifies the number
of items to be removed.

 int index = 3;
 int count = 5;
 racers.RemoveRange(index, count);

c10.indd 256c10.indd 256 2/19/08 5:10:17 PM2/19/08 5:10:17 PM

Chapter 10: Collections

257

 To remove all items with some specific characteristics from the collection, you can use the RemoveAll()
method. This method uses the Predicate < T > parameter when searching for elements , which is
discussed next. For removing all elements from the collection, use the Clear() method defined with the
 ICollection < T > interface.

 Searching
 There are different ways to search for elements in the collection. You can get the index to the found item,
or the item itself. You can use methods such as IndexOf() , LastIndexOf() , FindIndex() ,
 FindLastIndex() , Find() , and FindLast() . And for just checking if an item exists, the List < T > class
offers the Exists() method.

 The method IndexOf() requires an object as parameter and returns the index of the item if it is found
inside the collection. If the item is not found, – 1 is returned. Remember that IndexOf() is using the
 IEquatable interface for comparing the elements.

 int index1 = racers.IndexOf(mario);

 With the IndexOf() method, you can also specify that the complete collection should not be searched,
but rather specify an index where the search should start and the number of elements that should be
iterated for the comparison.

 Instead of searching a specific item with the IndexOf() method, you can search for an item that has
some specific characteristics that you can define with the FindIndex() method. FindIndex() requires
a parameter of type Predicate :

public int FindIndex(Predicate < T > match);

 The Predicate < T > type is a delegate that returns a Boolean value and requires type T as parameter.
This delegate can be used similarly to the Action delegate shown earlier with the ForEach() method.
If the predicate returns true , there ’ s a match and the element is found. If it returns false , the element is
not found and the search continues.

public delegate bool Predicate < T > (T obj);

 With the List < T > class that is using Racer objects for type T , you can pass the address of a method that
returns a bool and defines a parameter of type Racer to the FindIndex() method. Finding the first
racer of a specific country, you can create the FindCountry class as shown. The Find() method has the
signature and return type defined by the Predicate < T > delegate. The Find() method uses the variable
 country to search for a country that you can pass with the constructor of the class.

 public class FindCountry
 {
 public FindCountry(string country)
 {
 this.country = country;
 }
 private string country;

 public bool FindCountryPredicate(Racer racer)
 {
 if (racer == null)
 throw new ArgumentNullException(“racer ”);
 return r.Country == country;
 }
 }

c10.indd 257c10.indd 257 2/19/08 5:10:17 PM2/19/08 5:10:17 PM

Part I: The C# Language

258

 With the FindIndex() method, you can create a new instance of the FindCountry() class, pass a
country string to the constructor, and pass the address of the Find method. After FindIndex()
completes successfully, index2 contains the index of the first item where the Country property of the
racer is set to Finland .

 int index2 = racers.FindIndex(
 new FindCountry(“Finland”).FindCountryPredicate);

 Instead of creating a class with a handler method, you can use a Lambda expression here as well. The
result is exactly the same as before. Now the Lambda expression defines the implementation to search
for an item where the Country property is set to Finland .

 int index3 = racers.FindIndex(
 r = > r.Country == “Finland”);

 Similarly to the IndexOf() method, with the FindIndex() method, you can also specify the index
where the search should start and the count of items that should be iterated through. To do a search for
an index beginning from the last element in the collection, you can use the FindLastIndex() method.

 The method FindIndex() returns the index of the found item. Instead of getting the index, you can also
get directly to the item in the collection. The Find() method requires a parameter of type
 Predicate < T > , much like the FindIndex() method. The Find() method here is searching for the first
racer in the list that has the FirstName property set to Niki . Of course, you can also do a FindLast()
to find the last item that fulfills the predicate.

 Racer r = racers.Find(
 r = > r.FirstName == “Niki”);

 To get not only one, but all items that fulfill the requirements of a predicate, you can use the FindAll()
method. The FindAll() method uses the same Predicate < T > delegate as the Find() and
 FindIndex() methods. The FindAll() method does not stop when the first item is found but instead
iterates through every item in the collection and returns all items where the predicate returns true .

 With the FindAll() method invoked here, all racer items are returned where the property Wins is set to
more than 20. All racers that won more than 20 races are referenced from the bigWinners list.

 List < Racer > bigWinners = racers.FindAll(
 r = > r.Wins > 20);

 Iterating through the variable bigWinners with a foreach statement gives the following result:

 foreach (Racer r in bigWinners)
 {
 Console.WriteLine(“{0:A}”, r);
 }

Michael Schumacher, Germany Wins: 91
Niki Lauda, Austria Wins: 25
Alain Prost, France Wins: 51

 The result is not sorted, but this is done next.

 Sorting
 The List < T > class allows sorting its elements by using the Sort() method. Sort() uses the quick sort
algorithm where all elements are compared until the complete list is sorted.

c10.indd 258c10.indd 258 2/19/08 5:10:17 PM2/19/08 5:10:17 PM

Chapter 10: Collections

259

 You can use several overloads of the Sort() method. The arguments that can be passed are a generic
delegate Comparison < T > , the generic interface IComparer < T > , and a range together with the
generic interface IComparer < T > :

public void List < T > .Sort();
public void List < T > .Sort(Comparison < T >);
public void List < T > .Sort(IComparer < T >);
public void List < T > .Sort(Int32, Int32, IComparer < T >);

 Using the Sort() method without arguments is possible only if the elements in the collection implement
the interface IComparable .

 The class Racer implements the interface IComparable < T > to sort racers by the last name:

 racers.Sort();
 racers.ForEach(Console.WriteLine);

 If you need to do a sort other than the default supported by the item types, you need to use other
techniques, for example passing an object that implements the IComparer < T > interface.

 The class RacerComparer implements the interface IComparer < T > for Racer types. This class allows
you to sort either by the first name, last name, country, or number of wins. The kind of sort that should
be done is defined with the inner enumeration type CompareType . The CompareType is set with the
constructor of the class RacerComparer . The interface IComparer < Racer > defines the method Compare
that is required for sorting. In the implementation of this method, the CompareTo() method of the
 string and int types is used.

 public class RacerComparer : IComparer < Racer >
 {
 public enum CompareType
 {
 FirstName,
 LastName,
 Country,
 Wins
 }

 private CompareType compareType;
 public RacerComparer(CompareType compareType)
 {
 this.compareType = compareType;
 }

 public int Compare(Racer x, Racer y)
 {
 if (x == null)
 throw new ArgumentNullException(“x”);
 if (y == null)
 throw new ArgumentNullException(“y”);

 int result;
 switch (compareType)
 {
 case CompareType.FirstName:
 return
 x.FirstName.CompareTo(y.FirstName);

(continued)

c10.indd 259c10.indd 259 2/19/08 5:10:18 PM2/19/08 5:10:18 PM

Part I: The C# Language

260

 case CompareType.LastName:
 return x.LastName.CompareTo(y.LastName);
 case CompareType.Country:
 if ((result =
 x.Country.CompareTo(y.Country) == 0)
 return x.LastName.CompareTo(
 y.LastName);
 else
 return res;
 case CompareType.Wins:
 return x.Wins.CompareTo(y.Wins);
 default:
 throw new ArgumentException(
 “Invalid Compare Type”);
 }
 }
 }

 An instance of the RacerComparer class can now be used with the Sort() method. Passing the
enumeration RacerComparer.CompareType.Country sorts the collection by the property Country :

 racers.Sort(new RacerComparer(
 RacerComparer.CompareType.Country));
 racers.ForEach(Console.WriteLine);

 Another way to do the sort is by using the overloaded Sort() method, which requires a
 Comparison < T > delegate:

public void List < T > .Sort(Comparison < T >);

 Comparison < T > is a delegate to a method that has two parameters of type T and a return type int . If the
parameter values are equal, the method must return 0 . If the first parameter is less than the second, a
value less than zero must be returned; otherwise, a value greater than zero is returned.

public delegate int Comparison < T > (T x, T y);

 Now you can pass a Lambda expression to the Sort() method to do a sort by the number of wins. The
two parameters are of type Racer , and in the implementation the Wins properties are compared by
using the int method CompareTo() . In the implementation, r2 and r1 are used in the reverse order, so
the number of wins is sorted in descending order. After the method has been invoked, the complete racer
list is sorted based on the number of wins of the racer.

 racers.Sort(
 (r1, r2) = > r2.Wins.CompareTo(r1.Wins));

 You can also reverse the order of a complete collection by invoking the Reverse() method.

 Type Conversion
 With the List < T > method ConvertAll() , all types of a collection can be converted to a different type.
The ConvertAll() method uses a Converter delegate that is defined like this:

public sealed delegate TOutput Converter < TInput, TOutput > (TInput from);

 The generic types TInput and TOutput are used with the conversion. TInput is the argument of the
delegate method, and TOutput is the return type.

(continued)

c10.indd 260c10.indd 260 2/19/08 5:10:18 PM2/19/08 5:10:18 PM

Chapter 10: Collections

261

 In this example, all Racer types should be converted to Person types. Whereas the Racer type contains
a firstName , lastName , country , and the number of wins , the Person type contains just a name . For
the conversion, the country of the racer and race wins can be ignored, but the name must be converted:

 [Serializable]
 public class Person
 {
 private string name;

 public Person(string name)
 {
 this.name = name;
 }

 public override string ToString()
 {
 return name;
 }
 }

 The conversion happens by invoking the racers.ConvertAll < Person > () method. The argument of
this method is defined as a Lambda expression with an argument of type Racer and a Person type that
is returned. In the implementation of the Lambda expression, a new Person object is created and
returned. For the Person object, the FirstName and LastName are passed to the constructor:

 List < Person > persons =
 racers.ConvertAll < Person > (
 r = > new Person(r.FirstName + “ “ +
 r.LastName));

 The result of the conversion is a list containing the converted Person objects: persons of type
 List < Person > .

 Read - Only Collections
 After collections are created they are read/write. Of course, they must be read/write; otherwise,
you couldn ’ t fill them with any values. However, after the collection is filled, you can create a read -
 only collection. The List < T > collection has the method AsReadOnly() that returns an object of type
 ReadOnlyCollection < T > . The class ReadOnlyCollection < T > implements the same interfaces as
 List < T > , but all methods and properties that change the collection throw a NotSupportedException .

 Queues
 A queue is a collection where elements are processed first in, first out (FIFO). The item that is put first in
the queue is read first. Examples of queues are standing in the queue at the airport, a human resources
queue to process employee applicants, print jobs waiting to be processed in a print queue, and a thread
waiting for the CPU in a round - robin fashion. Often, there are queues where the elements processed
differ in their priority. For example, in the queue at the airport, business passengers are processed before
economy passengers. Here, multiple queues can be used, one queue for every priority. At the airport this
can easily be found out, because there are separate check - in queues for business and economy
passengers. The same is true for print queues and threads. You can have an array of a list of queues
where one item in the array stands for a priority. Within every array item there ’ s a queue, where
processing happens with the FIFO principle.

c10.indd 261c10.indd 261 2/19/08 5:10:19 PM2/19/08 5:10:19 PM

Part I: The C# Language

262

 Later in this chapter, a different implementation with a linked list is used to define a list of priorities.

 With .NET you have the non - generic class Queue in the System.Collections namespace and the
generic class Queue < T > in the System.Collections.Generic namespace. Both classes are very similar
in their functionality with the exception that the generic class is strongly typed, defining type T , and the
non - generic class is based on the object type.

 Internally, the Queue < T > class is using an array of type T similar to the List < T > type. What ’ s also
similar is that the interfaces ICollection and IEnumerable are implemented. The Queue
class implements the interfaces ICollection , IEnumerable , and ICloneable . The Queue < T > class
implements the interfaces IEnumerable < T > and ICollection . The generic class Queue < T > does
not implement the generic interface ICollection < T > because this interface defines methods to add
and remove items to the collection with Add() and Remove() methods.

 The big difference of the queue is that the interface IList is not implemented. You cannot access the
queue using an indexer. The queue just allows you to add an item to the queue, where the item is put
at the end of the queue (with the Enqueue() method), and to get items from the head of the queue (with
the Dequeue() method).

 Figure 10 - 1 shows the items of the queue. The Enqueue() method adds items to one end of the queue;
the items are read and removed at the other end of the queue with the Dequeue() method. Reading
items with the Dequeue() method also removes the items from the queue. Invoking the Dequeue()
method once more removes the next item from the queue.

Enqueue Dequeue

 Figure 10 - 1

 Methods of the Queue and Queue < T > classes are described in the following table.

Queue and Queue
<T> Members Description

Enqueue() The Enqueue() method adds an item to the end of the queue.

Dequeue() The Dequeue() method reads and removes an item from the head of the
queue. If there are no more items in the queue when the Dequeue() method
is invoked, an exception of type InvalidOperationException is thrown.

Peek() The Peek() method reads an item from the head of the queue but does not
remove the item.

Count The property Count returns the number of items in the queue.

TrimExcess() TrimExcess() resizes the capacity of the queue. The Dequeue() method
removes items from the queue, but it doesn’t resize the capacity of the
queue. To get rid of the empty items at the beginning of the queue, use the
TrimExcess() method.

c10.indd 262c10.indd 262 2/19/08 5:10:19 PM2/19/08 5:10:19 PM

Chapter 10: Collections

263

 When creating queues, you can use constructors similar to those used with the List < T > type. The
default constructor creates an empty queue, but you can also use a constructor to specify the capacity. As
items are added to the queue, the capacity is increased to hold 4, 8, 16, and 32 items if the capacity is not
defined. Similarly to the List < T > class, the capacity is always doubled as required. The default
constructor of the non - generic Queue class is different, because it creates an initial array of 32 empty
items. With an overload of the constructor you can also pass any other collection that implements the
 IEnumerable < T > interface that is copied to the queue.

 The sample application that demonstrates the use of the Queue < T > class is a document management
application. One thread is used to add documents to the queue, and another thread reads documents
from the queue and processes them.

 The items stored in the queue are of type Document . The Document class defines a title and content:

 public class Document
 {
 private string title;
 public string Title
 {
 get
 {
 return title;
 }
 }

 private string content;
 public string Content
 {
 get
 {
 return content;
 }
 }

 public Document(string title, string content)
 {
 this.title = title;
 this.content = content;
 }
 }

Queue and Queue
<T> Members Description

Contains() The Contains() method checks whether an item is in the queue and
returns true if it is.

CopyTo() With the CopyTo() method, you can copy the items from the queue to an
existing array.

ToArray() The method ToArray() returns a new array containing the elements of the
queue.

c10.indd 263c10.indd 263 2/19/08 5:10:19 PM2/19/08 5:10:19 PM

Part I: The C# Language

264

 The DocumentManager class is a thin layer around the Queue < T > class. The class DocumentManager
defines how to handle documents: adding documents to the queue with the AddDocument() method,
and getting documents from the queue with the GetDocument() method.

 Inside the AddDocument() method, the document is added to the end of the queue by using the
 Enqueue() method. The first document from the queue is read with the Dequeue() method inside
 GetDocument() . Because multiple threads can access the DocumentManager concurrently, access to the
queue is locked with the lock statement.

 Threading and the lock statement are discussed in Chapter 19 , “ Threading and Synchronization. ”

 IsDocumentAvailable is a read - only Boolean property that returns true if there are documents in the
queue, and false if not:

 public class DocumentManager
 {
 private readonly Queue < Document > documentQueue = new Queue < Document > ();

 public void AddDocument(Document doc)
 {
 lock (this)
 {
 documentQueue.Enqueue(doc);
 }
 }

 public Document GetDocument()
 {
 Document doc = null;
 lock (this)
 {
 doc = documentQueue.Dequeue();
 }
 return doc;
 }

 public bool IsDocumentAvailable
 {
 get
 {
 return documentQueue.Count > 0;
 }
 }
 }

 The class ProcessDocuments processes documents from the queue in a separate thread. The only
method that can be accessed from the outside is Start() . In the Start() method, a new thread is
instantiated. A ProcessDocuments object is created for starting the thread, and the Run() method is
defined as the start method of the thread. ThreadStart is a delegate that references the method to be
started by the thread. After creating the Thread object, the thread is started by calling the method
 Thread.Start() .

 With the Run() method of the ProcessDocuments class, an endless loop is defined. Within this loop,
the property IsDocumentAvailable is used to see if there is a document in the queue. If there is a
document in the queue, the document is taken from the DocumentManager and processed. Processing
here is writing information only to the console. In a real application, the document could be written to a
file, written to the database, or sent across the network.

c10.indd 264c10.indd 264 2/19/08 5:10:20 PM2/19/08 5:10:20 PM

Chapter 10: Collections

265

 public class ProcessDocuments
 {
 public static void Start(DocumentManager dm)
 {
 new Thread(new ProcessDocuments(dm).Run).Start();
 }

 protected ProcessDocuments(DocumentManager dm)
 {
 documentManager = dm;
 }

 private DocumentManager documentManager;

 protected void Run()
 {
 while (true)
 {
 if (documentManager.IsDocumentAvailable)
 {
 Document doc =
 documentManager.GetDocument();
 Console.WriteLine(
 “Processing document {0}”,
 doc.Title);
 }
 Thread.Sleep(new Random().Next(20));
 }
 }
 }

 In the Main() method of the application, a DocumentManager object is instantiated, and the document
processing thread is started. Then 1,000 documents are created and added to the DocumentManager .

 class Program
 {
 static void Main()
 {
 DocumentManager dm = new DocumentManager();

 ProcessDocuments.Start(dm);

 // Create documents and add them to the
 // DocumentManager
 for (int i = 0; i < 1000; i++)
 {
 Document doc = new Document(“Doc “ +
 i.ToString(), “content”);
 dm.AddDocument(doc);
 Console.WriteLine(“Added document {0}”,
 doc.Title);
 Thread.Sleep(new Random().Next(20));
 }
 }
 }

c10.indd 265c10.indd 265 2/19/08 5:10:20 PM2/19/08 5:10:20 PM

Part I: The C# Language

266

 When you start the application, the documents are added to and removed from the queue, and you get
output similar to the following:

Added document Doc 279
Processing document Doc 236
Added document Doc 280
Processing document Doc 237
Added document Doc 281
Processing document Doc 238
Processing document Doc 239
Processing document Doc 240
Processing document Doc 241
Added document Doc 282
Processing document Doc 242
Added document Doc 283
Processing document Doc 243

 A real - life scenario doing the task described with the sample application can be an application that
processes documents received with a Web service.

 Stacks
 A stack is another container that is very similar to the queue. You just use different methods to access the
stack. The item that is added last to the stack is read first. The stack is a last in, first out (LIFO) container.

 Figure 10 - 2 shows the representation of a stack where the Push() method adds an item to the stack, and
the Pop() method gets the item that was added last.

Push Pop

 Figure 10 - 2

 Similar to the queue classes, the non - generic Stack class implements the interfaces ICollection ,
 IEnumerable , and ICloneable ; the generic Stack < T > class implements the interfaces
 IEnumerable < T > , ICollection , and IEnumerable .

 Members of the Stack and Stack < T > class are listed in the following table.

c10.indd 266c10.indd 266 2/19/08 5:10:20 PM2/19/08 5:10:20 PM

Chapter 10: Collections

267

Stack and Stack<T>
Members Description

Push() The Push() method adds an item on top of the stack.

Pop() The Pop() method removes and returns an item from the top of the stack. If the
stack is empty, an exception of type InvalidOperationException is thrown.

Peek() The Peek() method returns an item from the top of the stack but does not
remove the item.

Count The property Count returns the number of items in the stack.

Contains() The Contains() method checks whether an item is in the stack and returns
true if it is.

CopyTo() With the CopyTo() method, you can copy the items from the stack to an
 existing array.

ToArray() The method ToArray() returns a new array containing the elements of the stack.

 In this example, three items are added to the stack with the Push() method. With the foreach method,
all items are iterated using the IEnumerable interface. The enumerator of the stack does not remove the
items; it just returns item by item.

 Stack < char > alphabet = new Stack < char > ();
 alphabet.Push(‘A’);
 alphabet.Push(‘B’);
 alphabet.Push(‘C’);

 foreach (char item in alphabet)
 {
 Console.Write(item);
 }
 Console.WriteLine();

 Because the items are read in the order from the last added to the first, the following result is produced:

CBA

 Reading the items with the enumerator does not change the state of the items. With the Pop() method,
every item that is read is also removed from the stack. This way you can iterate the collection using a
 while loop and verify the Count property if items are still existing:

 Stack < char > alphabet = new Stack < char > ();
 alphabet.Push(‘A’);
 alphabet.Push(‘B’);
 alphabet.Push(‘C’);

 Console.Write(“First iteration: “);
 foreach (char item in alphabet)
 {
 Console.Write(item);
 }

(continued)

c10.indd 267c10.indd 267 2/19/08 5:10:21 PM2/19/08 5:10:21 PM

Part I: The C# Language

268

 Console.WriteLine();

 Console.Write(“Second iteration: “);
 while (alphabet.Count > 0)
 {
 Console.Write(alphabet.Pop());
 }
 Console.WriteLine();

 The result gives CBA twice, once for each iteration. After the second iteration, the stack is empty because
the second iteration used the Pop() method:

First iteration: CBA
Second iteration: CBA

 Linked Lists
 A collection class that has no similar version with a non - generic collection is LinkedList < T > .
 LinkedList < T > is a doubly linked list, where one element references the next and the previous one, as
shown in Figure 10 - 3 .

(continued)

 The advantage of a linked list is that if items are inserted in the middle of a list, the linked list is very
fast. When an item is inserted, only the Next reference of the previous item and the Previous reference
of the next item must be changed to reference the inserted item. With the List < T > and ArrayList
classes, when an element is inserted all following elements must be moved.

 Of course, there ’ s also a disadvantage with linked lists. Items of linked lists can be accessed only
one after the other. It takes a long time to find an item that ’ s somewhere in the middle or at the end of
the list.

 A linked list cannot just store the items inside the list; together with every item, the linked list must have
information about the next and previous items. That ’ s why the LinkedList < T > contains items of type
 LinkedListNode < T > . With the class LinkedListNode < T > , you can get to the next and previous items
in the list. The following table describes the properties of LinkedListNode < T > .

Value

Next

Previous

Value

Next

Previous

Value

Next

Previous

Value

Next

Previous

 Figure 10 - 3

c10.indd 268c10.indd 268 2/19/08 5:10:21 PM2/19/08 5:10:21 PM

Chapter 10: Collections

269

LinkedListNode<T> Properties Description

List The property List returns the LinkedList<T> that is associated
with the node.

Next The property Next returns the node that follows the current node.
The return type is again of type LinkedListNode<T>.

Previous The property Previous returns the node before the current node.

Value The property Value returns the item that is associated with the
node. Value is of type T.

 The class LinkedList < T > implements the interfaces ICollection < T > , IEnumerable < T > ,
 ICollection , IEnumerable , ISerializable , and IDeserializationCallback . Members of this
class are explained in the following table.

LinkedList<T> Members Description

Count The property Count returns the number of items in the list.

First The property First returns the first node in the list. The type returned
is LinkedListNode<T>. Using this returned node, you can iterate
through the other nodes of the collection.

Last The property Last returns the last node in the list. Again, the type is
LinkedListNode<T>. From here you can iterate through the list back-
wards.

AddAfter()
AddBefore()
AddFirst()
AddLast()

With the AddXXX methods you can add items to the linked list. Use the
corresponding Add method to add the item to a specific position inside
the list. AddAfter() requires a LinkedListNode<T> object where you
can specify the node after which the new item should be added.
AddBefore() positions the new item before the node defined with the
first parameter. AddFirst() and AddLast() just add the new item to
the beginning or the end of the list.
All these methods are overloaded to accept an object to add of either
type LinkedListNode<T> or of type T. If you pass a T object, a new
LinkedListNode<T> object is created.

Remove()
RemoveFirst()
RemoveLast()

The Remove(), RemoveFirst(), and RemoveLast() methods
remove nodes from the list. RemoveFirst() removes the first item,
and RemoveLast() removes the last item. The Remove() method
requires an object that is searched and removes the first occurrence of
this item in the list.

Clear() The Clear() method removes all nodes from the list.

c10.indd 269c10.indd 269 2/19/08 5:10:22 PM2/19/08 5:10:22 PM

Part I: The C# Language

270

 The sample application uses a linked list, LinkedList < T > , together with a list, List < T > . The linked list
contains documents as in the previous example, but the documents have an additional priority
associated with them. The documents will be sorted inside the linked list depending on the priority. If
multiple documents have the same priority, the elements are sorted according to the time the document
was inserted.

 Figure 10 - 4 describes the collections of the sample application. LinkedList < Document > is the
linked list containing all the Document objects. The figure shows the title and the priority of
the documents. The title indicates when the document was added to the list: The first document
added has the title One, the second document has the title Two, and so on. You can see that the
documents One and Four have the same priority, 8, but because One was added before Four, it is
earlier in the list.

 When new documents are added to the linked list, they should be added after the last document that has
the same priority. A LinkedList < Document > collection contains elements of type LinkedListNode
< Document > . The class LinkedListNode < T > adds Next and Previous properties to walk from one
node to the next. For referencing such elements, the List < T > is defined as List < LinkedListNode
< Document > > . For fast access to the last document of every priority, the collection List < LinkedListNode >
contains up to 10 elements, each referencing the last document of every priority. In the upcoming discussion,
the reference to the last document of every priority is called the priority node .

 From the previous example, the Document class is extended to contain the priority. The priority is set
with the constructor of the class:

 public class Document
 {
 private string title;
 public string Title
 {
 get
 {
 return title;
 }
 }

 private string content;
 public string Content
 {
 get
 {
 return content;
 }
 }

LinkedList<T> Members Description

Contains() The method Contains() searches for an item and returns true if the
item is found, and false otherwise.

Find() The Find() method searches the list from the beginning to find
the item passed. The Find() method then returns a
LinkedListNode<T>.

FindLast() The FindLast() method is similar to Find(), but the search starts from
the end of the list.

c10.indd 270c10.indd 270 2/19/08 5:10:22 PM2/19/08 5:10:22 PM

Chapter 10: Collections

271

List<Documents>

Six

9

9

8

7

6

5

4

3

2

1

0

One

8

Four

8

Three

4

Two

3

Five

1

Seven

1

Eight

1

List<ListNode<Documents>>

 Figure 10 - 4

 private byte priority;
 public byte Priority
 {
 get
 {
 return priority;
 }
 }

 public Document(string title, string content,
 byte priority)

(continued)

c10.indd 271c10.indd 271 2/19/08 5:10:22 PM2/19/08 5:10:22 PM

Part I: The C# Language

272

 {
 this.title = title;
 this.content = content;
 this.priority = priority;
 }
 }

 The heart of the solution is the PriorityDocumentManager class. This class is very easy to use. With the
public interface of this class, new Document elements can be added to the linked list, the first document
can be retrieved, and for testing purposes it also has a method to display all elements of the collection as
they are linked in the list.

 The class PriorityDocumentManager contains two collections. The collection of type
 LinkedList < Document > contains all documents. The collection of type List < LinkedListNode
< Document > > contains references of up to 10 elements that are entry points for adding new documents
with a specific priority. Both collection variables are initialized with the constructor of the class
 PriorityDocumentManager . The list collection is also initialized with null :

 public class PriorityDocumentManager
 {

 private readonly LinkedList < Document > documentList;

 // priorities 0..9

 private readonly List < LinkedListNode < Document > > priorityNodes;

 public PriorityDocumentManager()
 {
 documentList = new LinkedList < Document > ();

 priorityNodes =
 new List < LinkedListNode < Document > > (10);
 for (int i = 0; i < 10; i++)
 {
 priorityNodes.Add(
 new LinkedListNode < Document > (null));
 }
 }

 Part of the public interface of the class is the method AddDocument() . AddDocument() does nothing
more than call the private method AddDocumentToPriorityNode() . The reason for having the
implementation inside a different method is that AddDocumentToPriorityNode() may be called
recursively, as you will see soon.

 public void AddDocument(Document d)
 {
 if (d == null)
 throw new ArgumentNullException(“d”);
 AddDocumentToPriorityNode(d, d.Priority);
 }

 The first action that is done in the implementation of AddDocumentToPriorityNode() is a check to see
if the priority fits in the allowed priority range. Here, the allowed range is between 0 and 9. If a wrong
value is passed, an exception of type ArgumentException is thrown.

(continued)

c10.indd 272c10.indd 272 2/19/08 5:10:23 PM2/19/08 5:10:23 PM

Chapter 10: Collections

273

 Next, you check if there ’ s already a priority node with the same priority as the priority that was passed.
If there ’ s no such priority node in the list collection, AddDocumentToPriorityNode() is invoked
recursively with the priority value decremented to check for a priority node with the next lower priority.

 If there ’ s no priority node with the same priority or any priority with a lower value, the document can be
safely added to the end of the linked list by calling the method AddLast() . Also, the linked list node is
referenced by the priority node that ’ s responsible for the priority of the document.

 If there ’ s an existing priority node, you can get the position inside the linked list where the document
should be inserted. Here, you must differentiate whether a priority node already exists with the correct
priority, or if there ’ s just a priority node that references a document with a lower priority. In the first
case, you can just insert the new document after the position that ’ s referenced by the priority node.
Because the priority node always must reference the last document with a specific priority, the reference
of the priority node must be set. It gets more complex if just a priority node referencing a document with
a lower priority exists. Here, the document must be inserted before all documents with the same priority
as the priority node. To get the first document of the same priority, a while loop iterates through all
linked list nodes, using the Previous property, until a linked list node is reached that has a different
priority. This way, you know the position where the document must be inserted, and the priority node
can be set.

 private void AddDocumentToPriorityNode(
 Document doc, int priority)
 {
 if (priority > 9 || priority < 0)
 throw new ArgumentException(
 “Priority must be between 0 and 9”);

 if (priorityNodes[priority].Value == null)
 {
 priority--;
 if (priority > = 0)
 {
 // check for the next lower priority
 AddDocumentToPriorityNode(doc,
 priority);
 }
 else // now no priority node exists with
 // the same priority or lower
 // add the new document to the end
 {
 documentList.AddLast(doc);
 priorityNodes[doc.Priority] =
 documentList.Last;
 }
 return;
 }
 else // a priority node exists
 {
 LinkedListNode < Document > prioNode =
 priorityNodes[priority];
 if (priority == doc.Priority)
 // priority node with the same
 // priority exists

(continued)

c10.indd 273c10.indd 273 2/19/08 5:10:23 PM2/19/08 5:10:23 PM

Part I: The C# Language

274

 {
 documentList.AddAfter(prioNode, doc);

 // set the priority node to the last
 // document with the same priority
 priorityNodes[doc.Priority] =
 prioNode.Next;
 }
 else // only priority node with a lower
 // priority exists
 {
 // get the first node of the lower
 // priority
 LinkedListNode < Document >
 firstPrioNode = prioNode;

 while (firstPrioNode.Previous != null & &
 firstPrioNode.Previous.Value.Priority
 == prioNode.Value.Priority)
 {
 firstPrioNode =
 prioNode.Previous;
 }

 documentList.AddBefore(firstPrioNode,
 doc);

 // set the priority node to the
 // new value
 priorityNodes[doc.Priority] =
 firstPrioNode.Previous;
 }
 }
 }

 Now only simple methods are left for discussion. DisplayAllNodes() just does a foreach loop to
display the priority and the title of every document to the console.

 The method GetDocument() returns the first document (the document with the highest priority) from
the linked list and removes it from the list:

 public void DisplayAllNodes()
 {
 foreach (Document doc in documentList)
 {
 Console.WriteLine(
 “priority: {0}, title {1}”,
 doc.Priority, doc.Title);
 }
 }

 // returns the document with the highest priority
 // (that’s first in the linked list)
 public Document GetDocument()

(continued)

c10.indd 274c10.indd 274 2/19/08 5:10:23 PM2/19/08 5:10:23 PM

Chapter 10: Collections

275

 {
 Document doc = documentList.First.Value;
 documentList.RemoveFirst();
 return doc;
 }
 }

 In the Main() method, the PriorityDocumentManager is used to demonstrate its functionality. Eight
new documents with different priorities are added to the linked list, and then the complete list is
displayed:

 static void Main()
 {
 PriorityDocumentManager pdm =
 new PriorityDocumentManager();
 pdm.AddDocument(new Document(“one”, “Sample”,
 8));
 pdm.AddDocument(new Document(“two”, “Sample”,
 3));
 pdm.AddDocument(new Document(“three”,
 “Sample”, 4));
 pdm.AddDocument(new Document(“four”, “Sample”,
 8));
 pdm.AddDocument(new Document(“five”, “Sample”,
 1));
 pdm.AddDocument(new Document(“six”, “Sample”,
 9));
 pdm.AddDocument(new Document(“seven”,
 “Sample”, 1));
 pdm.AddDocument(new Document(“eight”,
 “Sample”, 1));

 pdm.DisplayAllNodes();
 }

 With the processed result, you can see that the documents are sorted first by the priority and second by
when the document was added:

priority: 9, title six
priority: 8, title one
priority: 8, title four
priority: 4, title three
priority: 3, title two
priority: 1, title five
priority: 1, title seven
priority: 1, title eight

 Sor ted Lists
 If you need a sorted list, you can use SortedList < TKey, TValue > . This class sorts the elements based
on a key.

 The example creates a sorted list where both the key and the value are of type string . The default
constructor creates an empty list, and then two books are added with the Add() method. With
overloaded constructors, you can define the capacity of the list and also pass an object that implements
the interface IComparer < TKey > , which is used to sort the elements in the list.

c10.indd 275c10.indd 275 2/19/08 5:10:24 PM2/19/08 5:10:24 PM

Part I: The C# Language

276

 The first parameter of the Add() method is the key (the book title); the second parameter is the value (the
ISBN number). Instead of using the Add() method, you can use the indexer to add elements to the list. The
indexer requires the key as index parameter. If a key already exists, the Add() method throws an exception of
type ArgumentException . If the same key is used with the indexer, the new value replaces the old value.

 SortedList < string, string > books =
 new SortedList < string, string > ();
 books.Add(“.NET 2.0 Wrox Box”,
 “978-0-470-04840-5”);
 books.Add(
 “Professional C# 2005 with .NET 3.0”,
 “978-0-470-12472-7”);

 books[“Beginning Visual C# 2005”] =
 “978-0-7645-4382-1”;
 books[“Professional C# 2008”] =
 “978-0-470-19137-6”;

 You can iterate through the list by using a foreach statement. Elements that are returned by the
enumerator are of type KeyValuePair < TKey, TValue > , which contains both the key and the value.
The key can be accessed with the Key property, and the value can be accessed with the Value property.

 foreach (KeyValuePair < string, string > book in
 books)
 {
 Console.WriteLine(“{0}, {1}”, book.Key,
 book.Value);
 }

 The iteration displays book titles and ISBN numbers ordered by the key:

.NET 2.0 Wrox Box, 978-0-470-04840-5
Beginning Visual C# 2005, 978-0-7645-4382-1
Professional C# 2005 with .NET 3.0, 978-0-470-12472-7
Professional C# 2008, 978-0-470-19137-6

 You can also access the values and keys by using the Values and Keys properties. The Values property
returns IList < TValue > and the Keys property returns IList < TKey > , so you can use these properties
with a foreach :

 foreach (string isbn in books.Values)
 {
 Console.WriteLine(isbn);
 }

 foreach (string title in books.Keys)
 {
 Console.WriteLine(title);
 }

 The first loop displays the values, and next the keys:

978-0-470-04840-5
978-0-7645-4382-1
978-0-470-12472-7
978-0-470-19137-6
.NET 2.0 Wrox Box
Beginning Visual C# 2005
Professional C# 2005 with .NET 3.0
Professional C# 2008

c10.indd 276c10.indd 276 2/19/08 5:10:24 PM2/19/08 5:10:24 PM

Chapter 10: Collections

277

 Properties of the SortedList < TKey, TValue > class are described in the following table.

SortedList<TKey, TValue>
Properties Description

Capacity With the property Capacity you can get and set the number of
elements the list can contain. The capacity behaves as List<T>:
the default constructor creates an empty list; adding the first item
allocates a capacity of four items, and then the capacity is doubled as
needed.

Comparer The property Comparer returns the comparer that is associated with
the list. You can pass the comparer in the constructor. The default
comparer compares the key items by invoking the method
CompareTo of the IComparable<TKey> interface. Either the key type
implements this interface or you have to create a custom comparer.

Count The property Count returns the number of elements in the list.

Item With the indexer you can access the elements in the list. The parame-
ter type of the indexer is defined by the key type.

Keys The property Keys returns IList<TKey> containing all keys.

Values The property Values returns IList<TValue> containing all values.

 Methods of the SortedList < T > type are similar to the other collections you ’ ve learned about in this
chapter. The difference is that SortedList < T > requires a key and a value.

SortedList<TKey, TValue>
Methods Description

Add() The Add() method adds an element with key and value to the list.

Remove()
RemoveAt()

The Remove() method requires the key of the element to be removed
from the list. With RemoveAt(), you can remove an element at a
specified index.

Clear() The method Clear() removes all elements from the list.

ContainsKey()
ContainsValue()

The ContainsKey() and ContainsValue() methods check if the list
contains a specified key or value, and return true or false.

IndexOfKey()
IndexOfValue()

The IndexOfKey() and IndexOfValue() methods check if the list
contains a specified key or value and return the integer-based index.

TrimExcess() The method TrimExcess() resizes the collection and changes the
capacity to the required item count.

TryGetValue() With the method TryGetValue(), you can try to get the value for a
specified key. If the key does not exist, this method returns false. If
the key exists, true is returned, and the value is returned as out
parameter.

c10.indd 277c10.indd 277 2/19/08 5:10:24 PM2/19/08 5:10:24 PM

Part I: The C# Language

278

 The .NET Framework offers several dictionary classes. The main class you can use is
 Dictionary < TKey, TValue > . This class offers nearly the same properties and methods as
 SortedList < TKey, TValue > discussed earlier; that ’ s why they are not repeated here.

 Key Type
 A type that is used as a key in the dictionary must override the method GetHashCode() of the Object
class. Whenever a dictionary class needs to work out where an item should be located, it calls the
 GetHashCode() method. The int that is returned by GetHashCode() is used by the dictionary to
calculate an index of where to place the element. We don ’ t go into this part of the algorithm. What you
should know is that it involves prime numbers, so the capacity of a dictionary is a prime number.

 In addition to the generic SortedList < TKey, TValue > , a corresponding non - generic list named
 SortedList is available.

 Dictionaries
 Dictionaries represent a sophisticated data structure that allows you to access an element based on a
key. Dictionaries are also known as hash tables or maps. The main feature of dictionaries is fast lookup
based on keys. You can also add and remove items freely, a bit like a List < T > , but without the
performance overhead of having to shift subsequent items in memory.

 Figure 10 - 5 shows a simplified representation of a dictionary. Here employee - id s such as B4711 are the
keys added to the dictionary. The key is transformed into a hash. With the hash a number is created to
associate an index with the values. The index then contains a link to the value. The figure is simplified
because it is possible that a single index entry can be associated with multiple values, and the index can
be stored as a tree.

61

Tony Stewart

Index ValuesKeys

B12836

B4711

B12836

N34434

0

1

2

31

32

60

Jimmie JohnsonB4711

Matt KensethN34434

. . .

. . .

 Figure 10 - 5

c10.indd 278c10.indd 278 2/19/08 5:10:25 PM2/19/08 5:10:25 PM

Chapter 10: Collections

279

 The implementation of GetHashCode() must satisfy these requirements:

 The same object should always return the same value.

 Different objects can return the same value.

 It should execute as quickly as possible; it must be inexpensive to compute.

 It must not throw exceptions.

 It should use at least one instance field.

 The hash code value should be evenly distributed across the entire range of numbers that an
 int can store.

 At best, the hash code should not change during the lifetime of the object.

 A good performance of the dictionary is based on a good implementation of the
method GetHashCode() .

 What ’ s the reason for having hash code values evenly distributed across the range of integers? If two
keys return hashes that give the same index, the dictionary class needs to start looking for the nearest
available free location to store the second item — and will have to do some searching in order to retrieve
this item later on. This is obviously going to hurt performance, and clearly, if lots of your keys are
tending to give the same indexes for where they should be stored, this kind of clash becomes more likely.
However, because of the way that Microsoft ’ s part of the algorithm works, this risk is minimized when
the calculated hash values are evenly distributed between int.MinValue and int.MaxValue .

 Besides having an implementation of GetHashCode() , the key type also must implement the
 IEquality.Equals() method or override the Equals() method from the Object class. Because
different key objects may return the same hash code, the method Equals() is used by the dictionary
comparing keys. The dictionary examines if two keys A and B are equal; it invokes A.Equals(B) . This
means that you must ensure that the following is always true:

 If A.Equals(B) is true, then A.GetHashCode() and B.GetHashCode() must always return the same
hash code.

 This probably seems a fairly subtle point, but it is crucial. If you contrived some way of overriding these
methods so that the preceding statement was not always true, a dictionary that uses instances of this
class as its keys would simply not work properly. Instead, you ’ d find funny things happening. For
example, you might place an object in the dictionary and then discover that you could never retrieve it,
or you might try to retrieve an entry and have the wrong entry returned.

 For this reason, the C# compiler will display a compilation warning if you supply an override for
 Equals() but don ’ t supply an override for GetHashCode() .

 For System.Object this condition is true, because Equals() simply compares references, and
 GetHashCode() actually returns a hash that is based solely on the address of the object. This means that
hash tables based on a key that doesn ’ t override these methods will work correctly. However, the
problem with this way of doing things is that keys are regarded as equal only if they are the same object.
That means that when you place an object in the dictionary, you then have to hang onto the reference to
the key. You can ’ t simply instantiate another key object later with the same value. If you don ’ t override
 Equals() and GetHashCode() , the type is not very convenient to use in a dictionary.

 Incidentally, System.String implements the interface IEquatable and overloads GetHashCode()
appropriately. Equals() provides value comparison, and GetHashCode() returns a hash based on the
value of the string. Strings can be used conveniently as keys in dictionaries.

❑

❑

❑

❑

❑

❑

❑

c10.indd 279c10.indd 279 2/19/08 5:10:25 PM2/19/08 5:10:25 PM

Part I: The C# Language

280

 Number types such as Int32 also implement the interface IEquatable and overload GetHashCode() .
However, the hash code returned by these types simply maps to the value. If the number you would like
to use as a key is not itself distributed around the possible values of an integer, using integers as keys
doesn ’ t fulfill the rule of evenly distributing key values to get the best performance. Int32 is not meant
to be used in a dictionary.

 If you need to use a key type that does not implement IEquatable and override GetHashCode
according to the key values you store in the dictionary, you can create a comparer implementing the
interface IEqualityComparer < T > . IEqualityComparer < T > defines the methods GetHashCode() and
 Equals() with an argument of the object passed, so you can offer an implementation different from the
object type itself. An overload of the Dictionary < TKey, TValue > constructor allows passing an object
implementing IEqualityComparer < T > . If such an object is assigned to the dictionary, this class is used
to generate the hash codes and compare the keys.

 Dictionary Example
 The dictionary example is a program that sets up a dictionary of employees. The dictionary is indexed by
 EmployeeId objects, and each item stored in the dictionary is an Employee object that stores details of
an employee.

 The struct EmployeeId is implemented to define a key to be used in a dictionary. The members of the
class are a prefix character and a number for the employee. Both of these variables are read - only and can
be initialized only in the constructor. A key within the dictionary shouldn ’ t change, and this way that is
guaranteed. The fields are filled within the constructor. The ToString() method is overloaded to get a
string representation of the employee ID. As required for a key type, EmployeeId implements the
interface IEquatable and overloads the method GetHashCode() .

 [Serializable]
 public struct EmployeeId : IEquatable < EmployeeId >
 {
 private readonly char prefix;
 private readonly int number;

 public EmployeeId(string id)
 {
 if (id == null)
 throw new ArgumentNullException(“id”);

 prefix = (id.ToUpper())[0];
 int numLength = id.Length - 1;
 number = int.Parse(id.Substring(
 1, numLength > 6 ? 6 : numLength));
 }

 public override string ToString()
 {
 return prefix.ToString() +
 string.Format(“{0,6:000000}”, number);
 }

 public override int GetHashCode()
 {
 return (number ^ number < < 16) * 0x15051505;
 }

 public bool Equals(EmployeeId other)

c10.indd 280c10.indd 280 2/19/08 5:10:25 PM2/19/08 5:10:25 PM

Chapter 10: Collections

281

 {
 return (prefix == other.prefix & &
 number == other.number);
 }
 }

 The Equals() method that is defined by the IEquatable < T > interface compares the values of two
 EmployeeId objects and returns true if the both values are the same. Instead of implementing the
 Equals() method from the IEquatable < T > interface, you can also override the Equals() method
from the Object class:

 public bool Equals(EmployeeId other)
 {
 if (other == null) return false;
 return (prefix == other.prefix & &
 number == other.number);
 }

 With the number variable, a value from 1 to around 190,000 is expected for the employees. This doesn ’ t
fill the range of an integer. The algorithm used by GetHashCode() shifts the number 16 bits to the left,
then does an XOR with the original number, and finally multiplies the result by the hex value 15051505.
The hash code is fairly distributed across the range of an integer.

 public override int GetHashCode()
 {
 return (number ^ number < < 16) * 0x15051505;
 }

 On the Internet, you can find a lot more complex algorithms that have a better distribution across the
integer range. You can also use the GetHashCode() method of a string to return a hash.

 The Employee class is a simple entity class containing the name, salary, and ID of the employee. The
constructor initializes all values, and the method ToString() returns a string representation of an
instance. The implementation of ToString() uses a format string to create the string representation for
performance reasons.

 [Serializable]
 public class Employee
 {
 private string name;
 private decimal salary;
 private readonly EmployeeId id;

 public Employee(EmployeeId id, string name,
 decimal salary)
 {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public override string ToString()
 {
 return String.Format(“{0}: {1, -20} {2:C}”,
 id.ToString(), name, salary);
 }
 }

c10.indd 281c10.indd 281 2/19/08 5:10:26 PM2/19/08 5:10:26 PM

Part I: The C# Language

282

 In the Main() method of the sample application, a new Dictionary < TKey, TValue > instance is
created, where the key is of type EmployeeId and the value is of type Employee . The constructor
allocates a capacity of 31 elements. Remember, the capacity is based on prime numbers. However, when
you assign a value that is not a prime number, you don ’ t need to worry. The Dictionary < TKey,
TValue > class itself takes the next prime number that follows the integer passed to the constructor to
allocate the capacity. The employee objects and IDs are created and added to the dictionary with the
 Add() method. Instead of using the Add() method, you can also use the indexer to add keys and values
to the dictionary, as shown with the employees Carl and Matt:

 static void Main()
 {
 Dictionary < EmployeeId, Employee > employees =
 new Dictionary < EmployeeId,
 Employee > (31);

 EmployeeId idJeff = new EmployeeId(“C7102”);
 Employee jeff = new Employee(idJeff,
 “Jeff Gordon”, 5164580.00m);
 employees.Add(idJeff, jeff);
 Console.WriteLine(jeff);

 EmployeeId idTony = new EmployeeId(“C7105”);
 Employee tony = new Employee(idTony,
 “Tony Stewart”, 4814200.00m);
 employees.Add(idTony, tony);
 Console.WriteLine(tony);

 EmployeeId idDenny = new EmployeeId(“C8011”);
 Employee denny = new Employee(idDenny,
 “Denny Hamlin”, 3718710.00m);
 employees.Add(idDenny, denny);
 Console.WriteLine(denny);

 EmployeeId idCarl = new EmployeeId(“F7908”);
 Employee carl = new Employee(idCarl,
 “Carl Edwards”, 3285710.00m);
 employees[idCarl] = carl;
 Console.WriteLine(carl);

 EmployeeId idMatt = new EmployeeId(“F7203”);
 Employee matt = new Employee(idMatt,
 “Matt Kenseth”, 4520330.00m);
 employees[idMatt] = matt;
 Console.WriteLine(matt);

 After the entries are added to the dictionary, inside a while loop employees are read from the dictionary.
The user is asked to enter an employee number to store in the variable userInput . The user can exit the
application by entering X. If the key is in the dictionary, it is examined with the TryGetValue() method
of the Dictionary < TKey, TValue > class. TryGetValue() returns true if the key is found and false
otherwise. If the value is found, the value associated with the key is stored in
the employee variable. This value is written to the console.

 You can also use an indexer of the Dictionary < TKey, TValue > class instead of TryGetValue()
to access a value stored in the dictionary. However, if the key is not found, the indexer throws an excep-
tion of type KeyNotFoundException .

c10.indd 282c10.indd 282 2/19/08 5:10:26 PM2/19/08 5:10:26 PM

Chapter 10: Collections

283

 while (true)
 {
 Console.Write(
 “Enter employee id (X to exit) > “);
 string userInput = Console.ReadLine();
 userInput = userInput.ToUpper();
 if (userInput == “X”) break;

 EmployeeId id = new EmployeeId(userInput);

 Employee employee;
 if (!employees.TryGetValue(id,
 out employee))
 {
 Console.WriteLine(“Employee with id “ +
 “{0} does not exist”, id);
 }
 else
 {
 Console.WriteLine(employee);
 }
 }
 }

 Running the application produces the following output:

Enter employee ID (format:A999999, X to exit) > C7102
C007102: Jeff Gordon $5,164,580.00
Enter employee ID (format:A999999, X to exit) > F7908
F007908: Carl Edwards $3,285,710.00
Enter employee ID (format:A999999, X to exit) > X

 Lookup
 Dictionary < TKey, TValue > supports only one value per key. The new class Lookup < TKey,
TElement > that is part of .NET 3.5 resembles a Dictionary < TKey, TValue > but maps keys to a
collection of values. This class is implemented in the assembly System.Core and defined with the
namespace System.Linq .

 Properties and methods of Lookup < TKey, TElement > are described in the following table.

 Lookup < TKey, TElement >
Properties and Methods Description

 Count The property Count returns the number of elements in the collection.

 Item With the indexer you can access specific elements based on the key.
Because multiple values can exist with the same key, this property
returns an enumeration of all values.

 Contains() The method Contains() returns a Boolean result depending on
whether there ’ s an element passed with the key parameter.

 ApplyResultSelector() ApplyResultSelector() returns a collection by transforming every
item based on the transformation function that is passed to this method.

c10.indd 283c10.indd 283 2/19/08 5:10:26 PM2/19/08 5:10:26 PM

Part I: The C# Language

284

 Lookup < TKey, TElement > cannot be created like a normal dictionary. Instead, you have to invoke the
method ToLookup() that returns a Lookup < TKey, TElement > object. The method ToLookup() is an
extension method that is available with every class implementing IEnumerable < T > . In the following
example, a list of Racer objects is filled. Because List < T > implements IEnumerable < T > , the ToLookup()
method can be invoked on the racers list. This method requires a delegate of type Func < TSource, TKey >
that defines the selector of the key. Here the racers are selected based on the country by using the Lambda
expression r = > r.Country . The foreach loop accesses only the racers from Australia by using the indexer.

 You can read more about extension methods in Chapter 11 , “ Language Integrated Query. ” Lambda
expressions are explained in Chapter 7 , “ Delegates and Events. ”

 List < Racer > racers = new List < Racer > ();
 racers.Add(new Racer(“Jacques”, “Villeneuve”,
 “Canada”, 11));
 racers.Add(new Racer(“Alan”, “Jones”,
 “Australia”, 12));
 racers.Add(new Racer(“Jackie”, “Stewart”,
 “United Kingdom”, 27));
 racers.Add(new Racer(“James”, “Hunt”,
 “United Kingdom”, 10));
 racers.Add(new Racer(“Jack”, “Brabham”,
 “Australia”, 14));

 Lookup < string, Racer > lookupRacers =
 (Lookup < string, Racer >)
 racers.ToLookup(r = > r.Country);

 foreach (Racer r in lookupRacers[“Australia”])
 {
 Console.WriteLine(r);
 }

 The output shows the racers from Australia:

Alan Jones
Jack Brabham

 Other Dictionary Classes
 Dictionary < TKey, TValue > is the major dictionary class from the framework. There are some more
classes, and of course there are also some non - generic dictionary classes.

 Dictionaries that are based on the Object type and are available since .NET 1.0 are described in the
following table.

 Non - generic dictionary Description

 Hashtable Hashtable is the most-used dictionary implementation of .NET
1.0. Keys and values are based on the Object type.

 ListDictionary ListDictionary is located in the namespace System.
Collections.Specialized and is faster than the Hashtable if
10 or fewer items are used. ListDictionary is implemented as a
linked list.

c10.indd 284c10.indd 284 2/19/08 5:10:27 PM2/19/08 5:10:27 PM

Chapter 10: Collections

285

 Non - generic dictionary Description

 HybridDictionary HybridDictionary uses a ListDictionary if the collection is
small and switches to a Hashtable as the collection grows. If you
don ’ t know the number of items in advance, you can use the
 HybridDictionary .

 NameObjectCollectionBase NameObjectCollectionBase is an abstract base class to associate
keys of type string to values of type object. This can be used as a
base class for custom string/object collections. This class uses a
 Hashtable internally.

 NameValueCollection NameValueCollection derives from NameObjectCollection .
Here, both the key and value are of type string. This class has
another feature where multiple values can use the same key.

 Since .NET 2.0, generic dictionaries are preferred over object - based dictionaries:

 Generic Dictionary Description

 Dictionary < TKey, TValue > Dictionary < TKey, TValue > is the general - purpose dictionary for
mapping keys to values.

 SortedDictionary < TKey,
TValue >

 SortedDictionary < TKey, TValue > is a binary search tree where the
items are sorted based on the key. The key type must implement
the interface IComparable < TKey > . If the key type is not sortable, you
can also create a comparer implementing IComparer < TKey > and
assign the comparer as a constructor argument of the sorted dictionary.

 SortedDictionary < TKey, TValue > and SortedList < TKey, TValue > have similar functionality. But
because SortedList < TKey, TValue > is implemented as a list that is based on an array and
 SortedDictionary < TKey, TValue > is implemented as a dictionary, the classes have different
characteristics:

 SortedList < TKey, TValue > uses less memory than SortedDictionary < TKey, TValue > .

 SortedDictionary < TKey, TValue > has faster insertion and removal of elements.

 When populating the collection with already sorted data, SortedList < TKey, TValue > is
faster, if capacity changes are not needed.

 SortedList consumes less memory than SortedDictionary . SortedDictionary is
faster for inserts and the removal of unsorted data.

❑

❑

❑

c10.indd 285c10.indd 285 2/19/08 5:10:27 PM2/19/08 5:10:27 PM

Part I: The C# Language

286

 HashSet
 .NET 3.5 includes a new collection class in the System.Collections.Generic namespace:
 HashSet < T > . This collection class contains an unordered list of distinct items. Such a collection is known
by the term set . Because set is a reserved word, the class has a different name: HashSet < T > . The name
was easily decided because this collection is based on hash values; inserting elements is fast. There ’ s no
need to rearrange the collection as is necessary with the List < T > class.

 The HashSet < T > class offers methods to create a union, an intersection of sets. The following table
describes the methods that change the values of the set.

 HashSet < T > Modification
Methods Description

 Add() The Add() method adds elements to the collection if the element is
not already in the collection. With the Boolean return value, the infor-
mation is returned if the element was added.

 Clear() The method Clear() removes all elements from the collection.

 Remove() The Remove() method removes the element specified.

 RemoveWhere() The RemoveWhere() method requires a Predicate < T > delegate as
argument. This method removes all elements where the predicate
condition matches.

 CopyTo() The method CopyTo() copies the elements of the set to an array.

 ExceptWith() The ExceptWith() method receives a collection as argument and
removes all the elements from this collection from the set.

 IntersectWith() IntersectWith() changes the set to include only elements that are
part of both the collection that is passed and the set.

 UnionWith() The UnionWith() method adds all elements from the collection
passed with the argument to the set.

 The next table lists the methods that just return information about the set without changing the elements.

 HashSet < T > Verification
Methods Description

 Contains() The method Contains() returns true if the passed element is
within the collection.

 IsSubsetOf() The method IsSubsetOf() returns true if the collection that is
passed with the argument is a subset of the set.

 IsSupersetOf() The method IsSupersetOf() returns true if the collection that is
passed with the argument is a superset of the set.

c10.indd 286c10.indd 286 2/19/08 5:10:28 PM2/19/08 5:10:28 PM

Chapter 10: Collections

287

 HashSet < T > Verification
Methods Description

 Overlaps() If there ’ s at least one element in common with the collection that is
passed with the argument and the set, true is returned.

 SetEquals() The SetEquals() method returns true if both the collection passed
with the argument and the set contain the same elements.

 With the sample code, three new sets of type string are created and filled with Formula - 1 cars. The
 HashSet < T > class implements the ICollection < T > interface. However, the Add() method is
implemented explicitly and a different Add() method is offered by the class as you can see here.
The Add() method differs by the return type; a Boolean value is returned to give the information if the
element was added. If the element was already in the set, it is not added, and false is returned.

 HashSet < string > companyTeams =
 new HashSet < string > ()
 { “Ferrari”, “McLaren”, “Toyota”, “BMW”,
 “Renault”, “Honda” };
 HashSet < string > traditionalTeams =
 new HashSet < string > ()
 { “Ferrari”, “McLaren” };
 HashSet < string > privateTeams =
 new HashSet < string > ()
 { “Red Bull”, “Toro Rosso”, “Spyker”,
 “Super Aguri” };

 if (privateTeams.Add(“Williams”))
 Console.WriteLine(“Williams added”);
 if (!companyTeams.Add(“McLaren”))
 Console.WriteLine(
 “McLaren was already in this set”);

 The result of these two Add() methods is written to the console:

Williams added
McLaren was already in this set

 The methods IsSubsetOf() and IsSupersetOf() compare a set with a collection that implements the
 IEnumerable < T > interface and returns a Boolean result. Here, IsSubsetOf() verifies if every element
in traditionalTeams is contained in companyTeams , which is the case; IsSupersetOf() verifies if
 traditionalTeams does not have any additional element compared to companyTeams .

 if (traditionalTeams.IsSubsetOf(companyTeams))
 {
 Console.WriteLine(“traditionalTeams is “ +
 “subset of companyTeams”);
 }

 if (companyTeams.IsSupersetOf(traditionalTeams))
 {
 Console.WriteLine(
 “companyTeams is a superset of “ +
 “traditionalTeams”);
 }

c10.indd 287c10.indd 287 2/19/08 5:10:28 PM2/19/08 5:10:28 PM

Part I: The C# Language

288

 The output of this verification is shown here:

traditionalTeams is a subset of companyTeams
companyTeams is a superset of traditionalTeams

 Williams is a traditional team as well, and that ’ s why this team is added to the traditionalTeams
collection:

 traditionalTeams.Add(“Williams”);
 if (privateTeams.Overlaps(traditionalTeams))
 {
 Console.WriteLine(“At least one team is “ +
 “the same with the traditional “ +
 “and private teams”);
 }

 Because there ’ s an overlap, this is the result:

At least one team is the same with the traditional and private teams.

 The variable allTeams is filled with a union of companyTeams , privateTeams , and
 traditionalTeams by calling the UnionWith() method:

 HashSet < string > allTeams =
 new HashSet < string > (companyTeams);
 allTeams.UnionWith(privateTeams);
 allTeams.UnionWith(traditionalTeams);

 Console.WriteLine();
 Console.WriteLine(“all teams”);
 foreach (var team in allTeams)
 {
 Console.WriteLine(team);
 }

 Here all teams are returned, but every team is listed just once because the set contains only unique
values:

Ferrari
McLaren
Toyota
BMW
Renault
Honda
Red Bull
Toro Rosso
Spyker
Super Aguri
Williams

 The method ExceptWith() removes all private teams from the allTeams set:

 allTeams.ExceptWith(privateTeams);
 Console.WriteLine();
 Console.WriteLine(“no private team left”);
 foreach (var team in allTeams)
 {
 Console.WriteLine(team);
 }

c10.indd 288c10.indd 288 2/19/08 5:10:28 PM2/19/08 5:10:28 PM

Chapter 10: Collections

289

 The remaining elements in the collection do not contain any private team:

Ferrari
McLaren
Toyota
BMW
Renault
Honda

 Bit Arrays
 If you need to deal with a number of bits, you can use the class BitArray and the struct
BitVector32 . BitArray is located in the namespace System.Collections ; BitVector32 is in the
namespace System.Collections.Specialized . The most important difference between these two
types is that BitArray is resizable, which is useful if you don ’ t know the number of bits needed in
advance, and it can contain a large number of bits. BitVector32 is stack - based and therefore faster.
 BitVector32 contains only 32 bits, which are stored in an integer.

 BitArray
 The class BitArray is a reference type that contains an array of int s, where for every 32 bits a new
integer is used. Members of this class are explained in the following table.

 BitArray Members Description

 Count
Length

 The get accessor of both Count and Length return the number of bits in the
array. With the Length property, you can also define a new size and resize
the collection.

 Item You can use an indexer to read and write bits in the array. The indexer is of
type bool .

 Get()
Set()

 Instead of using the indexer, you can also use the Get() and Set() methods
to access the bits in the array.

 SetAll() The method SetAll() sets the values of all bits according to the parameter
passed to the method.

 Not() The method Not() generates the inverse of all bits of the array.

 And()
Or()
Xor()

 With the methods And() , Or() , and Xor(), you can combine two BitArray
objects. The And() method does a binary AND, where the result bits are set
only if the bits from both input arrays are set. The Or() method does a binary
OR, where the result bits are set if one or both of the input arrays are set. The
 Xor() method is an exclusive OR, where the result is set if only one of the
input bits is set.

 In Chapter 6 , “ Operators and Casts, ” you can read about the C# operators for working with bits.

c10.indd 289c10.indd 289 2/19/08 5:10:29 PM2/19/08 5:10:29 PM

Part I: The C# Language

290

 The helper method DisplayBits() iterates through a BitArray and displays 1 or 0 to the console,
depending on whether or not the bit is set:

 static void DisplayBits(BitArray bits)
 {
 foreach (bool bit in bits)
 {
 Console.Write(bit ? 1 : 0);
 }
 }

 The example to demonstrate the BitArray class creates a bit array with 8 bits, indexed from 0 to 7. The
 SetAll() method sets all 8 bits to true . Then the Set() method changes bit 1 to false . Instead of
the Set method, you can also use an indexer, as shown with index 5 and 7 :

 BitArray bits1 = new BitArray(8);
 bits1.SetAll(true);
 bits1.Set(1, false);
 bits1[5] = false;
 bits1[7] = false;
 Console.Write(“initialized: “);
 DisplayBits(bits1);
 Console.WriteLine();

 This is the displayed result of the initialized bits:

initialized: 10111010

 The Not() method generates the inverse of the bits of the BitArray :

 Console.Write(“ not “);
 DisplayBits(bits1);
 bits1.Not();
 Console.Write(“ = “);
 DisplayBits(bits1);
 Console.WriteLine();

 The result of Not() is all bits inversed. If the bit was true , it is false , and if it was false , it is true :

not 10111010 = 01000101

 Here, a new BitArray is created. With the constructor, the variable bits1 is used to initialize the array,
so the new array has the same values. Then the values for bits 0, 1, and 4 are set to different values.
Before the Or() method is used, the bit arrays bits1 and bits2 are displayed. The Or() method
changes the values of bits1 .

 BitArray bits2 = new BitArray(bits1);
 bits2[0] = true;
 bits2[1] = false;
 bits2[4] = true;
 DisplayBits(bits1);
 Console.Write(“ or “);
 DisplayBits(bits2);
 Console.Write(“ = “);
 bits1.Or(bits2);
 DisplayBits(bits1);
 Console.WriteLine();

c10.indd 290c10.indd 290 2/19/08 5:10:29 PM2/19/08 5:10:29 PM

Chapter 10: Collections

291

 With the Or() method, the set bits are taken from both input arrays. In the result, the bit is set if it was
set with either the first or the second array:

01000101 or 10001101 = 11001101

 Next, the And() method is used to operate on bits2 and bits1 :

 DisplayBits(bits2);
 Console.Write(“ and “);
 DisplayBits(bits1);
 Console.Write(“ = “);
 bits2.And(bits1);
 DisplayBits(bits2);
 Console.WriteLine();

 The result of the And() method only sets the bits where the bit was set in both input arrays:

10001101 and 11001101 = 10001101

 Finally the Xor() method is used for an exclusive OR:

 DisplayBits(bits1);
 Console.Write(“ xor “);
 DisplayBits(bits2);
 bits1.Xor(bits2);
 Console.Write(“ = “);
 DisplayBits(bits1);
 Console.WriteLine();

 With the Xor() method, the resultant bits are set only if the bit was set either in the first or the second
input, but not both:

11001101 xor 10001101 = 01000000

 BitVector32
 If you know the number of bits you need in advance, you can use the BitVector32 structure instead of
 BitArray . BitVector32 is more efficient, because it is a value type and stores the bits on the stack
inside an integer. With a single integer you have a place for 32 bits. If you need more bits, you can use
multiple BitVector32 values or the BitArray . The BitArray can grow as needed; this is not an option
with BitVector32 .

 The next table shows the members of BitVector that are very different from BitArray .

 BitVector Members Description

 Data The property Data returns the data behind the BitVector32 as integer.

 Item The values for the BitVector32 can be set using an indexer. The indexer is
overloaded — you can get and set the values using a mask or a section of
type BitVector32.Section .

 CreateMask() CreateMask() is a static method that you can use to create a mask for
accessing specific bits in the BitVector32 .

 CreateSection() CreateSection() is a static method that you can use to create several sec-
tions within the 32 bits.

c10.indd 291c10.indd 291 2/19/08 5:10:29 PM2/19/08 5:10:29 PM

Part I: The C# Language

292

 The sample code creates a BitVector32 with the default constructor, where all 32 bits are initialized to
 false . Then masks are created to access the bits inside the bit vector. The first call to CreateMask()
creates a mask to access the first bit. After CreateMask() is invoked, bit1 has a value of 1. Invoking
 CreateMask() once more and passing the first mask as a parameter to CreateMask() returns a mask to
access the second bit, which is 2. bit3 then has a value of 4 to access bit number 3. bit4 has a value of 8
to access bit number 4.

 Then the masks are used with the indexer to access the bits inside the bit vector and set fields
accordingly:

 BitVector32 bits1 = new BitVector32();
 int bit1 = BitVector32.CreateMask();
 int bit2 = BitVector32.CreateMask(bit1);
 int bit3 = BitVector32.CreateMask(bit2);
 int bit4 = BitVector32.CreateMask(bit3);
 int bit5 = BitVector32.CreateMask(bit4);

 bits1[bit1] = true;
 bits1[bit2] = false;
 bits1[bit3] = true;
 bits1[bit4] = true;
 bits1[bit5] = true;
 Console.WriteLine(bits1);

 The BitVector32 has an overridden ToString() method that not only displays the name of the class
but also 1 or 0 if the bits are set or not, respectively:

BitVector32{00000000000000000000000000011101}

 Instead of creating a mask with the CreateMask() method, you can define the mask yourself; you can
also set multiple bits at once. The hexadecimal value abcdef is the same as the binary value 1010 1011
1100 1101 1110 1111 . All the bits defined with this value are set:

 bits1[0xabcdef] = true;
 Console.WriteLine(bits1);

 With the output shown you can verify the bits that are set:

BitVector32{00000000101010111100110111101111}

 Separating the 32 bits to different sections can be extremely useful. For example, an IPv4 address is
defined as a 4 - byte number that is stored inside an integer. You can split the integer by defining four
sections. With a multicast IP message, several 32 - bit values are used. One of these 32 - bit values is
separated in these sections: 16 bits for the number of sources, 8 bits for a querier ’ s query interval code, 3
bits for a querier ’ s robustness variable, a 1 - bit suppress flag, and 4 bits that are reserved. You can also
define your own bit meanings to save memory.

 The example simulates receiving the value 0x79abcdef and passes this value to the constructor of
 BitVector32 , so that the bits are set accordingly:

 int received = 0x79abcdef;

 BitVector32 bits2 = new BitVector32(received);
 Console.WriteLine(bits2);

 The bits are shown on the console as initialized:

BitVector32{01111001101010111100110111101111}

c10.indd 292c10.indd 292 2/19/08 5:10:30 PM2/19/08 5:10:30 PM

Chapter 10: Collections

293

 Then six sections are created. The first section requires 12 bits, as defined by the hexadecimal value
 0xfff (12 bits are set); section B requires 8 bits; section C, 4 bits; section D and E, 3 bits; and section F, 2
bits. The first call to CreateSection() just receives 0xfff to allocate the first 12 bits. With the second
call to CreateSection() , the first section is passed as an argument, so that the next section continues
where the first section ended. CreateSection() returns a value of type BitVector32.Section that
contains the offset and the mask for the section.

 // sections: FF EEE DDD CCCC BBBBBBBB
 // AAAAAAAAAAAA
 BitVector32.Section sectionA =
 BitVector32.CreateSection(0xfff);
 BitVector32.Section sectionB =
 BitVector32.CreateSection(0xff,
 sectionA);
 BitVector32.Section sectionC =
 BitVector32.CreateSection(0xf,
 sectionB);
 BitVector32.Section sectionD =
 BitVector32.CreateSection(0x7,
 sectionC);
 BitVector32.Section sectionE =
 BitVector32.CreateSection(0x7,
 sectionD);
 BitVector32.Section sectionF =
 BitVector32.CreateSection(0x3,
 sectionE);

 Passing a BitVector32.Section to the indexer of the BitVector32 returns an int just mapped to the
section of the bit vector. Here, a helper method, IntToBinaryString() , retrieves a string representation
of the int number:

 Console.WriteLine(“Section A: “ +
 IntToBinaryString(bits2[sectionA],
 true));
 Console.WriteLine(“Section B: “ +
 IntToBinaryString(bits2[sectionB],
 true));
 Console.WriteLine(“Section C: “ +
 IntToBinaryString(bits2[sectionC],
 true));
 Console.WriteLine(“Section D: “ +
 IntToBinaryString(bits2[sectionD],
 true));
 Console.WriteLine(“Section E: “ +
 IntToBinaryString(bits2[sectionE],
 true));
 Console.WriteLine(“Section F: “ +
 IntToBinaryString(bits2[sectionF],
 true));

 The method IntToBinaryString() receives the bits in an integer and returns a string representation
containing 0 and 1. With the implementation, 32 bits of the integer are iterated through. In the iteration,
if the bit is set, 1 is appended to the StringBuilder ; otherwise, 0 is appended. Within the loop, a bit
shift happens to check if the next bit is set.

c10.indd 293c10.indd 293 2/19/08 5:10:30 PM2/19/08 5:10:30 PM

Part I: The C# Language

294

 static string IntToBinaryString(int bits,
 bool removeTrailingZero)
 {
 StringBuilder sb = new StringBuilder(32);

 for (int i = 0; i < 32; i++)
 {
 if ((bits & 0x80000000) != 0)
 {
 sb.Append(“1”);
 }
 else
 {
 sb.Append(“0”);
 }
 bits = bits < < 1;
 }
 string s = sb.ToString();
 if (removeTrailingZero)
 {
 return s.TrimStart(‘0’);
 }
 else
 {
 return s;
 }
 }

 The result displays the bit representation of sections A to F, which you can now verify with the value that
was passed into the bit vector:

Section A: 110111101111
Section B: 10111100
Section C: 1010
Section D: 1
Section E: 111
Section F: 1

 Performance
 Many collection classes offer the same functionality as others; for example, SortedList offers nearly the
same features as SortedDictionary . However, often there ’ s a big difference in performance. Whereas
one collection consumes less memory, the other collection class is faster with retrieval of elements. In the
MSDN documentation, you often find performance hints with methods of the collection giving you
information about the time the operation represents in big - O notation:

O(1)
O(log n)
O(n)

 O(1) means that the time this operation needs is constant no matter how many items are in the collection.
For example, the ArrayList has an Add() method with O(1) behavior. No matter how many elements
are in the list, it always takes the same time when adding a new element to the end of the list. The Count
property gives the number of items, so it is easy to find the end of the list.

c10.indd 294c10.indd 294 2/19/08 5:10:30 PM2/19/08 5:10:30 PM

Chapter 10: Collections

295

 O(n) means that for every element in the collection the same amount of additional time is needed. The
 Add() method of ArrayList can be an O(n) operation if a reallocation of the collection is required.
Changing the capacity causes the copying of the list, and the time for the copy increases linearly with
every element.

 O(log n) means that the time needed for the operation increases with every element in the collection. But
the increase of time for every element is not linear but logarithmic. SortedDictionary < TKey, TValue >
has O(log n) behavior for inserting operations inside the collection; SortedList < TKey, TValue > has
O(n) behavior for the same functionality. Here, SortedDictionary < TKey, TValue > is a lot faster
because it is more efficient to insert elements into a tree structure than into a list.

 The following table lists collection classes and their performance for different actions such as adding,
inserting, and removing items. Using this table you can select the best collection class for the purpose of
your use. The left column lists the collection class. The Add column gives timing information about
adding items to the collection. The List < T > and the HashSet < T > classes define Add methods to add
items to the collection. With other collection classes, there ’ s a different method to add elements to the
collection; for example, the Stack < T > class defines a Push() method, and the Queue < T > class defines an
 Enqueue() method. You can find this information in the table as well.

 If there are multiple big - O values in a cell the reason is that if a collection needs to be resized, resizing
takes a while. For example, with the List < T > class, adding items needs O(1). If the capacity of the
collection is not large enough and the collection needs to be resized, the resize requires O(n) time.
The larger the collection is, the longer the resize operation takes. It ’ s best to avoid resizes by setting the
capacity of the collection to a value that can hold all elements.

 If the cell content is na , this means that this operation is not applicable with this collection type.

Collection Add Insert Remove Item Sort Find

List<T> O(1) or O(n)
if the collec-
tion must be
resized

O(n) O(n) O(1) O (n log
n), worst
case
O(n ^ 2)

O(n)

Stack<T> Push(),
O(1) or O(n)
if the stack
must be
resized

na Pop(), O(1) na na na

Queue<T> Enqueue(),
O(1) or O(n)
if the queue
must be
resized

na Dequeue(),
O(1)

na na na

HashSet<T> O(1) or O(n)
if the set
must be
resized

Add()
O(1) or
O(n)

O(1) na na na

LinkedList<T> AddLast()
O(1)

Add
After()
O(1)

O(1) na na O(n)

c10.indd 295c10.indd 295 2/19/08 5:10:31 PM2/19/08 5:10:31 PM

Part I: The C# Language

296

 Summary
 This chapter took a look at working with different kinds of collections. Arrays are fixed in size, but you
can use lists for dynamically growing collections. For accessing elements on a first-in, first-out basis,
there ’ s a queue, and there ’ s a stack for last-in, first-out operations. Linked lists allow for fast inserting
and removing of elements but are slow for searching. With keys and value, you can use dictionaries,
which are fast for searching and inserting elements. A set (which has the name HashSet < T >) is for
unique items that are not ordered.

 In this chapter, you ’ ve seen a lot of interfaces and their use for accessing and sorting collections. You ’ ve
also seen some specialized collections, such as BitArray and BitVector32 , which are optimized for
working with a collection of bits.

 Chapter 11 gives you details about Language Integrated Query (LINQ), the major new language
extensions of C# 3.0.

Collection Add Insert Remove Item Sort Find

Dictionary
<TKey, TValue>

O(1) or O(n) na O(1) O(1) na na

SortedDictionary
<TKey, TValue>

O(log n) na O(log n) O(log n) na na

SortedList
<TKey, TValue>

O(n) for
unsorted
data, O(log
n) for end of
list O(n) if
resize is
needed

na O(n) O(log n)
to read,
write
O(log n)
if the key
is in the
list, O(n)
if the key
is not in
the list

na na

c10.indd 296c10.indd 296 2/19/08 5:10:31 PM2/19/08 5:10:31 PM

 Language Integrated Query

 LINQ (Language Integrated Query) is the most important new feature of C# 3.0 and
.NET 3.5. LINQ integrates query syntax inside the C# programming language and makes
it possible to access different data sources with the same syntax. LINQ makes this possible
by offering an abstraction layer.

 This chapter gives you the core foundation of LINQ and the language extensions for C# 3.0 that
make the new features possible. The topics of this chapter are:

❑ Traditional queries across objects using List < T >

❑ Extension methods

❑ Lambda expressions

❑ LINQ query

❑ Standard query operators

❑ Expression trees

❑ LINQ providers

 This chapter gives you the core foundation of LINQ. For using LINQ across the database you
should read Chapter 27 , “ LINQ to SQL. ” To query XML data read Chapter 29 , “ LINQ to XML, ”
after reading this chapter.

 LINQ Overview
 Before getting into the features of LINQ, this section uses an example to show how queries across
objects were done before LINQ was available. As you read on, the query will evolve to show
how the LINQ query is reached. By going through the steps you will know what ’ s behind the
LINQ query.

 The example in this chapter is based on Formula - 1 world champions. Queries are done across a
list of Racer objects. The first query gets all Formula - 1 champions from Brazil in the order of
races won.

c11.indd 297c11.indd 297 2/19/08 5:10:42 PM2/19/08 5:10:42 PM

Part I: The C# Language

298

 Query using List < T >
 The first variant of a filter and sort is to search data in a list of type List < T > . Before the search can
start, the object type and the list must be prepared.

 For the object, the type Racer is defined. Racer defines several properties and an overloaded
 ToString() method to display a racer in a string format. This class implements the interface
 IFormattable to support different variants of format strings, and the interface IComparable < Racer > ,
which can be used to sort a list of racers based on the LastName . For doing more advanced queries, the
class Racer contains not only single value properties such as FirstName , LastName , Wins , Country ,
and Starts , but also multivalue properties such as Cars and Years . The Years property lists all the
years of the championship title. Some racers have won more than one title. The Cars property is used to
list all the cars that have been used by the driver during the title years.

using System;
using System.Text;

namespace Wrox.ProCSharp.LINQ
{
 [Serializable]
 public class Racer : IComparable < Racer > , IFormattable
 {
 public string FirstName {get; set;}
 public string LastName {get; set;}
 public int Wins {get; set;}
 public string Country {get; set;}
 public int Starts {get; set;}
 public string[] Cars { get; set; }
 public int[] Years { get; set; }

 public override string ToString()
 {
 return String.Format(“{0} {1}”,
 FirstName, LastName);
 }

 public int CompareTo(Racer other)
 {
 return this.LastName.CompareTo(
 other.LastName);
 }

 public string ToString(string format)
 {
 return ToString(format, null);
 }

 public string ToString(string format,
 IFormatProvider formatProvider)
 {
 switch (format)
 {
 case null:
 case “N”:
 return ToString();

c11.indd 298c11.indd 298 2/19/08 5:10:43 PM2/19/08 5:10:43 PM

Chapter 11: Language Integrated Query

299

 case “F”:
 return FirstName;
 case “L”:
 return LastName;
 case “C”:
 return Country;
 case “S”:
 return Starts.ToString();
 case “W”:
 return Wins.ToString();
 case “A”:
 return String.Format(“{0} {1}, {2};” +
 “ starts: {3}, wins: {4}”,
 FirstName, LastName, Country,
 Starts, Wins);
 default:
 throw new FormatException(String.Format(
 “Format {0} not supported”, format));
 }
 }
 }
}

 The class Formula1 returns a list of racers in the method GetChampions() . The list is filled with all
Formula - 1 champions from the years 1950 to 2007:

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.LINQ
{
 public static class Formula1
 {
 public static IList < Racer > GetChampions()
 {
 List < Racer > racers = new List < Racer > (40);
 racers.Add(new Racer() { FirstName = “Nino”,
 LastName = “Farina”, Country = “Italy”,
 Starts = 33, Wins = 5,
 Years = new int[] { 1950 },
 Cars = new string[] { “Alfa Romeo” } });
 racers.Add(new Racer() {
 FirstName = “Alberto”,
 LastName = “Ascari”, Country = “Italy”,
 Starts = 32, Wins = 10,
 Years = new int[] { 1952, 1953 },
 Cars = new string[] { “Ferrari” } });
 racers.Add(new Racer() {
 FirstName = “Juan Manuel”,
 LastName = “Fangio”,
 Country = “Argentina”, Starts = 51,
 Wins = 24, Years = new int[]
 { 1951, 1954, 1955, 1956, 1957 },
 Cars = new string[] { “Alfa Romeo”,

(continued)

c11.indd 299c11.indd 299 2/19/08 5:10:43 PM2/19/08 5:10:43 PM

Part I: The C# Language

300

 “Maserati”, “Mercedes”,
 “Ferrari” } });
 racers.Add(new Racer() { FirstName = “Mike”,
 LastName = “Hawthorn”, Country = “UK”,
 Starts = 45, Wins = 3,
 Years = new int[] { 1958 },
 Cars = new string[] { “Ferrari” } });
 racers.Add(new Racer() { FirstName = “Phil”,
 LastName = “Hill”, Country = “USA”,
 Starts = 48, Wins = 3,
 Years = new int[] { 1961 },
 Cars = new string[] { “Ferrari” } });
 racers.Add(new Racer() { FirstName = “John”,
 LastName = “Surtees”, Country = “UK”,
 Starts = 111, Wins = 6,
 Years = new int[] { 1964 },
 Cars = new string[] { “Ferrari” } });
 racers.Add(new Racer() { FirstName = “Jim”,
 LastName = “Clark”, Country = “UK”,
 Starts = 72, Wins = 25,
 Years = new int[] { 1963, 1965 },
 Cars = new string[] { “Lotus” } });
 racers.Add(new Racer() { FirstName = “Jack”,
 LastName = “Brabham”,
 Country = “Australia”, Starts = 125,
 Wins = 14,
 Years = new int[] { 1959, 1960, 1966 },
 Cars = new string[] { “Cooper”,
 “Brabham” } });
 racers.Add(new Racer() { FirstName = “Denny”,
 LastName = “Hulme”,
 Country = “New Zealand”, Starts = 112,
 Wins = 8,
 Years = new int[] { 1967 },
 Cars = new string[] { “Brabham” } });
 racers.Add(new Racer() { FirstName = “Graham”,
 LastName = “Hill”, Country = “UK”,
 Starts = 176, Wins = 14,
 Years = new int[] { 1962, 1968 },
 Cars = new string[] { “BRM”, “Lotus” }
 });
 racers.Add(new Racer() { FirstName = “Jochen”,
 LastName = “Rindt”, Country = “Austria”,
 Starts = 60, Wins = 6,
 Years = new int[] { 1970 },
 Cars = new string[] { “Lotus” } });
 racers.Add(new Racer() { FirstName = “Jackie”,
 LastName = “Stewart”, Country = “UK”,
 Starts = 99, Wins = 27,
 Years = new int[] { 1969, 1971, 1973 },
 Cars = new string[] { “Matra”,
 “Tyrrell” } });

(continued)

c11.indd 300c11.indd 300 2/19/08 5:10:44 PM2/19/08 5:10:44 PM

Chapter 11: Language Integrated Query

301

 racers.Add(new Racer() {
 FirstName = “Emerson”,
 LastName = “Fittipaldi”,
 Country = “Brazil”, Starts = 143,
 Wins = 14, Years = new int[] { 1972,
 1974 },
 Cars = new string[] { “Lotus”,
 “McLaren” } });
 racers.Add(new Racer() { FirstName = “James”,
 LastName = “Hunt”, Country = “UK”,
 Starts = 91, Wins = 10,
 Years = new int[] { 1976 },
 Cars = new string[] { “McLaren” } });
 racers.Add(new Racer() { FirstName = “Mario”,
 LastName = “Andretti”, Country = “USA”,
 Starts = 128, Wins = 12,
 Years = new int[] { 1978 },
 Cars = new string[] { “Lotus” } });
 racers.Add(new Racer() { FirstName = “Jody”,
 LastName = “Scheckter”,
 Country = “South Africa”, Starts = 112,
 Wins = 10,
 Years = new int[] { 1979 },
 Cars = new string[] { “Ferrari” } });
 racers.Add(new Racer() { FirstName = “Alan”,
 LastName = “Jones”,
 Country = “Australia”, Starts = 115,
 Wins = 12,
 Years = new int[] { 1980 },
 Cars = new string[] { “Williams” } });
 racers.Add(new Racer() { FirstName = “Keke”,
 LastName = “Rosberg”,
 Country = “Finland”, Starts = 114,
 Wins = 5,
 Years = new int[] { 1982 },
 Cars = new string[] { “Williams” } });
 racers.Add(new Racer() { FirstName = “Niki”,
 LastName = “Lauda”, Country = “Austria”,
 Starts = 173, Wins = 25,
 Years = new int[] { 1975, 1977, 1984 },
 Cars = new string[] { “Ferrari”,
 “McLaren” } });
 racers.Add(new Racer() { FirstName = “Nelson”,
 LastName = “Piquet”, Country = “Brazil”,
 Starts = 204, Wins = 23,
 Years = new int[] { 1981, 1983, 1987 },
 Cars = new string[] { “Brabham”,
 “Williams” } });
 racers.Add(new Racer() { FirstName = “Ayrton”,
 LastName = “Senna”, Country = “Brazil”,
 Starts = 161, Wins = 41,
 Years = new int[] { 1988, 1990, 1991 },
 Cars = new string[] { “McLaren” } });
 racers.Add(new Racer() { FirstName = “Nigel”,
 LastName = “Mansell”, Country = “UK”,

(continued)

c11.indd 301c11.indd 301 2/19/08 5:10:44 PM2/19/08 5:10:44 PM

Part I: The C# Language

302

 Starts = 187, Wins = 31,
 Years = new int[] { 1992 },
 Cars = new string[] { “Williams” } });
 racers.Add(new Racer() { FirstName = “Alain”,
 LastName = “Prost”, Country = “France”,
 Starts = 197, Wins = 51,
 Years = new int[] { 1985, 1986, 1989,
 1993 },
 Cars = new string[] { “McLaren”,
 “Williams” } });
 racers.Add(new Racer() { FirstName = “Damon”,
 LastName = “Hill”, Country = “UK”,
 Starts = 114, Wins = 22,
 Years = new int[] { 1996 },
 Cars = new string[] { “Williams” } });
 racers.Add(new Racer() {
 FirstName = “Jacques”,
 LastName = “Villeneuve”,
 Country = “Canada”, Starts = 165,
 Wins = 11, Years = new int[] { 1997 },
 Cars = new string[] { “Williams” } });
 racers.Add(new Racer() { FirstName = “Mika”,
 LastName = “Hakkinen”,
 Country = “Finland”, Starts = 160,
 Wins = 20, Years = new int[] { 1998,
 1999 },
 Cars = new string[] { “McLaren” } });
 racers.Add(new Racer() {
 FirstName = “Michael”,
 LastName = “Schumacher”,
 Country = “Germany”, Starts = 250,
 Wins = 91,
 Years = new int[] { 1994, 1995, 2000,
 2001, 2002, 2003, 2004 },
 Cars = new string[] { “Benetton”,
 “Ferrari” } });
 racers.Add(new Racer() {
 FirstName = “Fernando”,
 LastName = “Alonso”, Country = “Spain”,
 Starts = 105, Wins = 19,
 Years = new int[] { 2005, 2006 },
 Cars = new string[] { “Renault” } });
 racers.Add(new Racer() { FirstName = “Kimi”,
 LastName = “R ä ikk ö nen”,
 Country = “Finland”, Starts = 122,
 Wins = 15, Years = new int[] { 2007 },
 Cars = new string[] { “Ferrari” } });
 return racers;
 }
 }
}

(continued)

c11.indd 302c11.indd 302 2/19/08 5:10:44 PM2/19/08 5:10:44 PM

Chapter 11: Language Integrated Query

303

 For later queries where queries are done across multiple lists, the GetConstructorChampions()
method that follows returns the list of all constructor championships. Constructor championships have
been around since 1958.

 public static IList < Team >
 GetContructorChampions()
 {
 List < Team > teams = new List < Team > (20);
 teams.Add(new Team() { Name = “Vanwall”,
 Years = new int[] { 1958 } });
 teams.Add(new Team() { Name = “Cooper”,
 Years = new int[] { 1959, 1960 } });
 teams.Add(new Team() { Name = “Ferrari”,
 Years = new int[] { 1961, 1964, 1975,
 1976, 1977, 1979, 1982, 1983, 1999,
 2000, 2001, 2002, 2003, 2004, 2007 } });
 teams.Add(new Team() { Name = “BRM”,
 Years = new int[] { 1962 } });
 teams.Add(new Team() { Name = “Lotus”,
 Years = new int[] { 1963, 1965, 1968,
 1970, 1972, 1973, 1978 } });
 teams.Add(new Team() { Name = “Brabham”,
 Years = new int[] { 1966, 1967 } });
 teams.Add(new Team() { Name = “Matra”,
 Years = new int[] { 1969 } });
 teams.Add(new Team() { Name = “Tyrrell”,
 Years = new int[] { 1971 } });
 teams.Add(new Team() { Name = “McLaren”,
 Years = new int[] { 1974, 1984, 1985,
 1988, 1989, 1990, 1991, 1998 } });
 teams.Add(new Team() { Name = “Williams”,
 Years = new int[] { 1980, 1981, 1986,
 1987, 1992, 1993, 1994, 1996, 1997 } });
 teams.Add(new Team() { Name = “Benetton”,
 Years = new int[] { 1995 } });
 teams.Add(new Team() { Name = “Renault”,
 Years = new int[] { 2005, 2006 } });
 return teams;
 }

 Now let ’ s get into the heart of the object query. First, you need to get the list of objects with the static
method GetChampions() . The list is filled into the generic class List < T > . The FindAll() method of
this class accepts a Predicate < T > delegate that can be implemented as an anonymous method. Only
the racers whose Country property is set to Brazil should be returned. Next, the resulting list is sorted
with the Sort() method. The sort should not be done by the LastName property as is the default sort
implementation of the Racer class, but you can pass a delegate of type Comparison < T > . It is again
implemented as an anonymous method to compare the number of wins. Using the r2 object and
comparing it with r1 does a descending sort as is required. The foreach statement finally iterates
through all Racer objects in the resulting sorted collection.

c11.indd 303c11.indd 303 2/19/08 5:10:44 PM2/19/08 5:10:44 PM

Part I: The C# Language

304

 private static void TraditionalQuery()
 {

 List < Racer > racers =
 new List < Racer > (Formula1.GetChampions());
 List < Racer > brazilRacers = racers.FindAll(
 delegate(Racer r)
 {
 return r.Country == “Brazil”;
 });
 brazilRacers.Sort(
 delegate(Racer r1, Racer r2)
 {
 return r2.Wins.CompareTo(r1.Wins);
 });

 foreach (Racer r in brazilRacers)
 {
 Console.WriteLine(“{0:A}”, r);
 }
 }

 The list displayed shows all champions from Brazil, sorted by the number of wins:

Ayrton Senna, Brazil; starts: 161, wins: 41
Nelson Piquet, Brazil; starts: 204, wins: 23
Emerson Fittipaldi, Brazil; starts: 143, wins: 14

 Sorting and filtering object lists is discussed in Chapter 10 , “ Collections. ”

 In the previous sample, methods from the List < T > class, FindAll() and Sort() have been used. It
would be great to get the functionality of these methods with any collection and not just List < T > . This
is where extension methods come into play. Extension methods are new to C# 3.0. This is the first change
of the previous sample that will lead toward LINQ.

 Extension Methods
 Extension methods make it possible to write a method to a class that doesn ’ t offer the method at first.
You can also add a method to any class that implements a specific interface, so multiple classes can make
use of the same implementation.

 For example, wouldn ’ t you like to have a Foo() method with the String class? The String class is
sealed, so it is not possible to inherit from this class. You can do an extension method, as shown:

public static class StringExtension
{
 public static void Foo(this string s)
 {
 Console.WriteLine(“Foo invoked for {0}”, s);
 }
}

 An extension method is declared in a static class. An extension method is defined as a static method
where the first parameter defines the type it extends. The Foo() method extends the string class, as is
defined with the first parameter. For differentiating extension methods from normal static methods, the
extension method also requires the this keyword with the first parameter.

 Indeed, it is now possible to use the Foo() method with the string type:

string s = “Hello”;
s.Foo();

c11.indd 304c11.indd 304 2/19/08 5:10:45 PM2/19/08 5:10:45 PM

Chapter 11: Language Integrated Query

305

 The result shows Foo invoked for Hello in the console, because Hello is the string passed to the
 Foo() method.

 This might appear to be breaking object - oriented rules because a new method is defined for a type
without changing the type. However, this is not the case. The extension method cannot access private
members of the type it extends. Calling an extension method is just a new syntax of invoking a static
method. With the string you can get the same result by calling the method Foo() this way:

string s = “Hello”;
StringExtension.Foo(s);

 To invoke the static method, write the class name followed by the method name. Extension methods are
a different way to invoke static methods. You don ’ t have to supply the name of the class where the
static method is defined. Instead, the static method is taken because of the parameter type. You just
have to import the namespace that contains the class to get the Foo() extension method in the scope of
the String class.

 One of the classes that define LINQ extension methods is Enumerable in the namespace System.Linq .
You just have to import the namespace to open the scope of the extension methods of this class. A sample
implementation of the Where() extension method is shown here. The first parameter of the Where()
method that includes the this keyword is of type IEnumerable < T > . This way the Where() method can
be used with every type that implements IEnumerable < T > . To mention just a few examples, arrays and
 List < T > implement IEnumerable < T > . The second parameter is a Func < T, bool > delegate that
references a method that returns a Boolean value and requires a parameter of type T . This predicate is
invoked within the implementation to examine if the item from the IEnumerable < T > source should go
into the destination collection. If the method is referenced by the delegate, the yield return statement
returns the item from the source to the destination.

public static IEnumerable < TSource > Where < TSource > (
 this IEnumerable < TSource > source,
 Func < TSource, bool > predicate)
{
 foreach (TSource item in source)
 if (predicate(item))
 yield return item;
}

 Because Where() is implemented as a generic method, it works with any type that is contained in a
collection. Any collection implementing IEnumerable < T > is supported.

 The extension methods here are defined in the namespace System.Linq in the assembly
System.Core .

 Now it ’ s possible to use the extension methods Where() , OrderByDescending() , and Select() from
the class Enumerable . Because each of these methods returns IEnumerable < TSource > , it is possible to
invoke one method after the other by using the previous result. With the arguments of the extension
methods, anonymous methods that define the implementation for the delegate parameters are used.

 private static void ExtensionMethods()
 {
 List < Racer > champions =
 new List < Racer > (
 Formula1.GetChampions());
 IEnumerable < Racer > brazilChampions =
 champions.Where(
 delegate(Racer r)

(continued)

c11.indd 305c11.indd 305 2/19/08 5:10:45 PM2/19/08 5:10:45 PM

Part I: The C# Language

306

 {
 return r.Country == “Brazil”;
 }).OrderByDescending(
 delegate(Racer r)
 {
 return r.Wins;
 }).Select(
 delegate(Racer r)
 {
 return r;
 });

 foreach (Racer r in brazilChampions)
 {
 Console.WriteLine(“{0:A}”, r);
 }
 }

 Lambda Expressions
 C# 3.0 has a new syntax for anonymous methods — Lambda expressions. Instead of passing anonymous
methods to the Where() , OrderByDescending() , and Select() methods, the same can be done using
Lambda expressions.

 Here the previous example is changed to make use of Lambda expressions. Now the syntax is shorter
and also easier to understand due to the removal of the return statement, the parameter types, and the
curly brackets.

 Lambda expressions are covered in detail in Chapter 7 , “ Delegates and Events. ” Because of the
importance of Lambda expressions with LINQ, here ’ s a reminder about the syntax. For more details you
should read Chapter 7 .

 By comparing Lambda expressions to anonymous delegates you can find many similarities. To the left of
the Lambda operator = > are parameters. It ’ s ok not to add the parameter types because they are resolved
by the compiler. The right side of the Lambda operator defines the implementation. With anonymous
methods, curly brackets and the return statement are required. With Lambda expressions the syntax
elements are not required because they are done by the compiler in any case. If you have more than one
statement on the right side of the Lambda operator, curly brackets and the return statement are possible.

 private static void LambdaExpressions()
 {

 IEnumerable < Racer > brazilChampions =
 Formula1.GetChampions().
 Where(r = > r.Country == “Brazil”).
 OrderByDescending(r = > r.Wins).
 Select(r = > r);

 foreach (Racer r in brazilChampions)
 {
 Console.WriteLine(“{0:A}”, r);
 }
 }

(continued)

c11.indd 306c11.indd 306 2/19/08 5:10:46 PM2/19/08 5:10:46 PM

Chapter 11: Language Integrated Query

307

 Return statements and curly brackets are optional when using Lambda expressions without parameter
types. You can still use these language constructs with Lambda expressions. This is explained in
 Chapter 7 , “ Delegates and Events, ” where Lambda expressions are introduced.

 LINQ Query
 The last change that needs to be done is to define the query using the new LINQ query notation. The
statement from r in Formula1.GetChampions() where r.Country == “ Brazil ” orderby r
.Wins descending select r; is a LINQ query. The clauses from , where , orderby , descending , and
 select are predefined keywords in this query. The compiler maps these clauses to extension methods.
The syntax used here is using the extension methods Where() , OrderByDescending() , and Select() .
Lambda expressions are passed to the parameters.

 where r.Country == “ Brazil ” is converted to Where(r = > r.Country == “ Brazil ”)
. orderby r.Wins descending is converted to OrderByDescending(r = > r.Wins) .

 private static void LinqQuery()
 {

 var query = from r in Formula1.GetChampions()
 where r.Country == “Brazil”
 orderby r.Wins descending
 select r;

 foreach (Racer r in query)
 {
 Console.WriteLine(“{0:A}”, r);
 }
 }

 The LINQ query is a simplified query notation inside the C# language. The compiler compiles the query
expression to invoke extension methods. The query expression is just a nice syntax from C#, but changes
to the underlying IL code are not needed.

 The query expression must begin with a from clause and end with a select or group clause. In
between you can optionally use where , orderby , join , let , and additional from clauses.

 It is important to note that the variable query just has the LINQ query assigned to it. The query is not
done by this assignment. The query is done as soon as the query is accessed using the foreach loop.
This is discussed in more detail later.

 With the samples so far you ’ ve seen new C# 3.0 language features and how they relate to the LINQ
query. Now is the time to dig deeper into the features of LINQ.

 Deferred Query Execution
 When the query expression is defined during runtime, the query does not run. The query runs when the
items are iterated.

 Let ’ s have a look once more at the extension method Where() . This extension method makes use of the
 yield return statement to return the elements where the predicate is true. Because the yield return
statement is used, the compiler creates an enumerator and returns the items as soon as they are
accessed from the enumeration.

c11.indd 307c11.indd 307 2/19/08 5:10:46 PM2/19/08 5:10:46 PM

Part I: The C# Language

308

public static IEnumerable < T > Where < T > (this IEnumerable < T > source,
Func < T, bool > predicate)
{
 foreach (T item in source)
 if (predicate(item))
 yield return item;
}

 This has a very interesting and important effect. With the following example a collection of String
elements is created and filled with the name arr . Next, a query is defined to get all names from the
collection where the item starts with the letter J . The collection should also be sorted. The iteration does
not happen when the query is defined. Instead, the iteration happens with the foreach statement,
where all items are iterated. Only one element of the collection fulfills the requirements of the where
expression by starting with the letter J: Juan . After the iteration is done and Juan is written to the
console, four new names are added to the collection. Then the iteration is done once more.

 List < string > names = new List < string >
 { “Nino”, “Alberto”, “Juan”, “Mike”,
 “Phil” };

 var namesWithJ = from n in names
 where n.StartsWith(“J”)
 orderby n
 select n;

 Console.WriteLine(“First iteration”);
 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();

 names.Add(“John”);
 names.Add(“Jim”);
 names.Add(“Jack”);
 names.Add(“Denny”);

 Console.WriteLine(“Second iteration”);
 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }

 Because the iteration does not happen when the query is defined, but it does happen with every
 foreach , changes can be seen, as the output from the application demonstrates:

First iteration
Juan

Second iteration
Jack
Jim
John
Juan

c11.indd 308c11.indd 308 2/19/08 5:10:46 PM2/19/08 5:10:46 PM

Chapter 11: Language Integrated Query

309

 Of course, you also must be aware that the extension methods are invoked every time the query is used
within an iteration. Most of the time this is very practical, because you can detect changes in the source
data. However, there are situations where this is impractical. You can change this behavior by invoking
the extension methods ToArray() , ToEnumerable() , ToList() , and the like. In the example, you can
see that ToList iterates through the collection immediately and returns a collection implementing
 IList < string > . The returned list is then iterated through twice; in between iterations, the data source
gets new names.

 List < string > names = new List < string >
 { “Nino”, “Alberto”, “Juan”, “Mike”,
 “Phil” };

 IList < string > namesWithJ = (from n in names
 where n.StartsWith(“J”)
 orderby n
 select n).ToList();

 Console.WriteLine(“First iteration”);

 foreach (string name in namesWithJ)

 {
 Console.WriteLine(name);
 }
 Console.WriteLine();

 names.Add(“John”);
 names.Add(“Jim”);
 names.Add(“Jack”);
 names.Add(“Denny”);

 Console.WriteLine(“Second iteration”);

 foreach (string name in namesWithJ)

 {
 Console.WriteLine(name);
 }

 In the result, you can see that in between the iterations the output stays the same although the collection
values changed:

First iteration
Juan

Second iteration
Juan

 Standard Query Operators
 Where , OrderByDescending , and Select are only few of the query operators defined by LINQ. The
LINQ query defines a declarative syntax for the most common operators. There are many more standard
query operators available.

 The following table lists the standard query operators defined by LINQ.

c11.indd 309c11.indd 309 2/19/08 5:10:46 PM2/19/08 5:10:46 PM

Part I: The C# Language

310

 Standard Query Operators Description

 Where OfType < TResult > Filtering operators define a restriction to the elements returned.
With the Where query operator you can use a predicate, for exam-
ple, defined by a Lambda expression that returns a bool.
 OfType < TResult > filters the elements based on the type and
returns only the elements of the type TResult .

 Select SelectMany Projection operators are used to transform an object into a new
object of a different type. Select and SelectMany define a pro-
jection to select values of the result based on a selector function.

 OrderBy ThenBy
OrderByDescending
ThenByDescending Reverse

 Sorting operators change the order of elements returned. OrderBy
sorts values in ascending order; OrderByDescending sorts val-
ues in descending order. ThenBy and ThenByDescending opera-
tors are used for a secondary sort if the first sort gives similar
results. Reverse reverses the elements in the collection.

 Join GroupJoin Join operators are used to combine collections that might not be
directly related to each other. With the Join operator a join of two
collections based on key selector functions can be done. This is simi-
lar to the JOIN you know from SQL. The GroupJoin operator joins
two collections and groups the results.

 GroupBy Grouping operators put the data into groups. The GroupBy opera-
tor groups elements with a common key.

 Any All Contains Quantifier operators return a Boolean value if elements of the
sequence satisfy a specific condition. Any , All , and Contains are
quantifier operators. Any determines if any element in the collec-
tion satisfies a predicate function; All determines if all elements
in the collection satisfy a predicate. Contains checks whether a
specific element is in the collection. These operators return a
Boolean value.

 Take Skip TakeWhile
SkipWhile

 Partitioning operators return a subset of the collection. Take , Skip ,
 TakeWhile , and SkipWhile are partitioning operators. With these,
you get a partial result. With Take , you have to specify the number
of elements to take from the collection; Skip ignores the specified
number of elements and takes the rest. TakeWhile takes the ele-
ments as long as a condition is true.

 Distinct Union Intersect
Except

 Set operators return a collection set. Distinct removes dupli-
cates from a collection. With the exception of Distinct , the other
set operators require two collections. Union returns unique ele-
ments that appear in either of the two collections. Intersect
returns elements that appear in both collections. Except returns
elements that appear in just one collection.

c11.indd 310c11.indd 310 2/19/08 5:10:47 PM2/19/08 5:10:47 PM

Chapter 11: Language Integrated Query

311

 Standard Query Operators Description

 First FirstOrDefault Last
LastOrDefault ElementAt
ElementAtOrDefault Single
SingleOrDefault

 Element operators return just one element. First returns the first
element that satisfies a condition. FirstOrDefault is similar to
 First , but it returns a default value of the type if the element is
not found. Last returns the last element that satisfies a condition.
With ElementAt , you specify the position of the element to
return. Single returns only the one element that satisfies a condi-
tion. If more than one element satisfies the condition, an excep-
tion is thrown.

 Count Sum Min Max Average
Aggregate

 Aggregate operators compute a single value from a collection.
With aggregate operators, you can get the sum of all values, the
number of all elements, the element with the lowest or highest
value, an average number, and so on.

 ToArray AsEnumerable
ToList ToDictionary
Cast < TResult >

 Conversion operators convert the collection to an array:
 IEnumerable , IList , IDictionary , and so on.

 Empty Range Repeat Generation operators return a new sequence. The collection is
empty using the Empty operator, Range returns a sequence of
numbers, and Repeat returns a collection with one repeated value.

 Following are examples of using these operators.

 Filtering
 Have a look at some examples for a query.

 With the where clause, you can combine multiple expressions; for example, get only the racers from
Brazil and Austria who won more than 15 races. The result type of the expression passed to the where
clause just needs to be of type bool:

 var racers = from r in Formula1.GetChampions()
 where r.Wins > 15 & &
 (r.Country == “Brazil” ||
 r.Country == “Austria”)
 select r;

 foreach (var r in racers)
 {
 Console.WriteLine(“{0:A}”, r);
 }

 Starting the program with this LINQ query returns Niki Lauda, Nelson Piquet, and Ayrton Senna
as shown:

Niki Lauda, Austria, Starts: 173, Wins: 25
Nelson Piquet, Brazil, Starts: 204, Wins: 23
Ayrton Senna, Brazil, Starts: 161, Wins: 41

c11.indd 311c11.indd 311 2/19/08 5:10:47 PM2/19/08 5:10:47 PM

Part I: The C# Language

312

 Not all queries can be done with the LINQ query. Not all extension methods are mapped to LINQ query
clauses. Advanced queries require using extension methods. To better understand complex queries with
extension methods it ’ s good to see how simple queries are mapped. Using the extension methods
 Where() and Select() produces a query very similar to the LINQ query done before:

 var racers = Formula1.GetChampions().
 Where(r = > r.Wins > 15 & &
 (r.Country == “Brazil” ||
 r.Country == “Austria”)).
 Select(r = > r);

 Filtering with Index
 One example where you can ’ t use the LINQ query is an overload of the Where() method. With an
overload of the Where() method you can a pass a second parameter that is the index. The index is a
counter for every result returned from the filter. You can use the index within the expression to do some
calculation based on the index. Here the index is used within the code that is called by the Where()
extension method to return only racers whose last name starts with A if the index is even:

 var racers = Formula1.GetChampions().
 Where((r, index) = >
 r.LastName.StartsWith(“A”) & &
 index % 2 != 0);

 foreach (var r in racers)
 {
 Console.WriteLine(“{0:A}”, r);
 }

 All the racers with last names beginning with the letter A are Alberto Ascari, Mario Andretti, and
Fernando Alonso. Because Mario Andretti is positioned within an index that is odd, he is not in
the result:

Alberto Ascari, Italy; starts: 32, wins: 10
Fernando Alsonso, Spain; starts: 105, wins: 19

 Type Filtering
 For filtering based on a type you can use the OfType() extension method. Here the array data contains
both string and int objects. Using the extension method OfType() , passing the string class to the
generic parameter returns only the strings from the collection:

 object[] data = { “one”, 2, 3, “four”, “five”,
 6 };

 var query = data.OfType < string > ();

 foreach (var s in query)
 {
 Console.WriteLine(s);
 }

 Running this code, the strings one, four, and five are displayed:

one
four
five

c11.indd 312c11.indd 312 2/19/08 5:10:48 PM2/19/08 5:10:48 PM

Chapter 11: Language Integrated Query

313

 Compound from
 If you need to do a filter based on a member of the object that itself is a sequence, you can use a
compound from . The Racer class defines a property Cars where Cars is a string array. For a filter of all
racers who were champions with a Ferrari, you can use the LINQ query as shown. The first from clause
accesses the Racer objects returned from Formula1.GetChampions() . The second from clause accesses
the Cars property of the Racer class to return all cars of type string . Next the cars are used with the
 where clause to filter only the racers who were champions with a Ferrari.

 var ferrariDrivers = from r in
 Formula1.GetChampions()
 from c in r.Cars
 where c == “Ferrari”
 orderby r.LastName
 select r.FirstName + “ “
 + r.LastName;

 If you are curious about the result of this query, all Formula - 1 champions driving a Ferrari are:

Alberto Ascari
Juan Manuel Fangio
Mike Hawthorn
Phil Hill
Niki Lauda
Jody Scheckter
Michael Schumacher
John Surtees

 The C# compiler converts a compound from clause with a LINQ query to the SelectMany() extension
method. SelectMany() can be used to iterate a sequence of a sequence. The overload of the
 SelectMany method that is used with the example is shown here:

public static IEnumerable < TResult > SelectMany < TSource, TCollection, TResult > (
 this IEnumerable < TSource > source,
 Func < TSource,
 IEnumerable < TCollection > > collectionSelector,
 Func < TSource, TCollection, TResult >
 resultSelector);

 The first parameter is the implicit parameter that receives the sequence of Racer objects from the
 GetChampions() method. The second parameter is the collectionSelector delegate where the inner
sequence is defined. With the Lambda expression r = > r.Cars the collection of cars should be
returned. The third parameter is a delegate that is now invoked for every car and receives the Racer and
 Car objects. The Lambda expression creates an anonymous type with a Racer and a Car property. As a
result of this SelectMany() method the hierarchy of racers and cars is flattened and a collection of new
objects of an anonymous type for every car is returned.

 This new collection is passed to the Where() method so that only the racers driving a Ferrari are filtered.
Finally, the OrderBy() and Select() methods are invoked.

 var ferrariDrivers = Formula1.GetChampions().
 SelectMany(
 r = > r.Cars,
 (r, c) = > new { Racer = r, Car = c }).
 Where(r = > r.Car == “Ferrari”).
 OrderBy(r = > r.Racer.LastName).
 Select(r = > r.Racer.FirstName + “ “ +
 r.Racer.LastName);

c11.indd 313c11.indd 313 2/19/08 5:10:48 PM2/19/08 5:10:48 PM

Part I: The C# Language

314

 Resolving the generic SelectMany() method to the types that are used here, the types are resolved as
follows. In this case the source is of type Racer , the filtered collection is a string array, and of course
the name of the anonymous type that is returned is not known and shown here as TResult :

public static IEnumerable < TResult > SelectMany < Racer, string, TResult > (
 this IEnumerable < Racer > source,
 Func < Racer, IEnumerable < string > > collectionSelector,
 Func < Racer, string, TResult > resultSelector);

 Because the query was just converted from a LINQ query to extension methods, the result is the same
as before.

 Sorting
 For sorting a sequence, the orderby clause was used already. Let ’ s review the example from before
with the orderby descending clause. Here the racers are sorted based on the number of wins as
specified by the key selector in a descending order:

 var racers = from r in Formula1.GetChampions()
 where r.Country == “Brazil”
 orderby r.Wins descending
 select r;

 The orderby clause is resolved to the OrderBy() method, and the orderby descending clause is
resolved to the OrderBy Descending() method:

 var racers = Formula1.GetChampions().
 Where(r = > r.Country == “Brazil”).
 OrderByDescending(r = > r.Wins).
 Select(r = > r);

 The OrderBy() and OrderByDescending() methods return IOrderedEnumerable < TSource > . This
interface derives from the interface IEnumerable < TSource > but contains an additional method
CreateOrderedEnumerable < TSource > () . This method is used for further ordering of the sequence.
If two items are the same based on the key selector, ordering can continue with the ThenBy() and
 ThenByDescending() methods. These methods require an IOrderedEnumerable < TSource > to work
on, but return this interface as well. So, you can add any number of ThenBy() and
 ThenByDescending() to sort the collection.

 Using the LINQ query you just have to add all the different keys (with commas) for sorting to the
 orderby clause. Here the sort of all racers is done first based on the country, next on the last name, and
finally on the first name. The Take() extension method that is added to the result of the LINQ query is
used to take just the first 10 results.

 var racers = (from r in
 Formula1.GetChampions()
 orderby r.Country, r.LastName,
 r.FirstName
 select r).Take(10);

 The sorted result is shown here:

Argentina: Fangio, Juan Manuel
Australia: Brabham, Jack
Australia: Jones, Alan
Austria: Lauda, Niki
Austria: Rindt, Jochen
Brazil: Fittipaldi, Emerson

c11.indd 314c11.indd 314 2/19/08 5:10:48 PM2/19/08 5:10:48 PM

Chapter 11: Language Integrated Query

315

Brazil: Piquet, Nelson
Brazil: Senna, Ayrton
Canada: Villeneuve, Jacques
Finland: Hakkinen, Mika

 Doing the same with extension methods makes use of the OrderBy() and ThenBy() methods:

 var racers = Formula1.GetChampions().
 OrderBy(r = > r.Country).
 ThenBy(r = > r.LastName).
 ThenBy(r = > r.FirstName).
 Take(10);

 Grouping
 To group query results based on a key value, the group clause can be used. Now the Formula - 1
champions should be grouped by the country, and the number of champions within a country should be
listed. The clause group r by r.Country into g groups all the racers based on the Country
property and defines a new identifier g that can be used later to access the group result information.
The result from the group clause is ordered based on the extension method Count() that is applied
on the group result, and if the count is the same the ordering is done based on the key, which is the
country because this was the key used for grouping. The where clause filters the results based on groups
that have at least two items, and the select clause creates an anonymous type with Country and Count
properties.

 var countries = from r in
 Formula1.GetChampions()
 group r by r.Country into g
 orderby g.Count() descending, g.Key
 where g.Count() > = 2
 select new { Country = g.Key,
 Count = g.Count() };

 foreach (var item in countries)
 {
 Console.WriteLine(“{0, -10} {1}”,
 item.Country, item.Count);
 }

 The result displays the collection of objects with the Country and Count property:

UK 9
Brazil 3
Australia 2
Austria 2
Finland 2
Italy 2
USA 2

 Doing the same with extension methods, the groupby clause is resolved to the GroupBy() method.
What ’ s interesting with the declaration of the GroupBy() method is that it returns an enumeration of
objects implementing the IGrouping interface. The IGrouping interface defines the Key property, so
you can access the key of the group after defining the call to this method:

public static IEnumerable < IGrouping < TKey, TSource > > GroupBy < TSource, TKey > (
 this IEnumerable < TSource > source,
 Func < TSource, TKey > keySelector);

c11.indd 315c11.indd 315 2/19/08 5:10:49 PM2/19/08 5:10:49 PM

Part I: The C# Language

316

 The group r by r.Country into g clause is resolved to GroupBy(r = > r.Country) and
returns the group sequence. The group sequence is first ordered by the OrderByDecending() method,
then by the ThenBy() method. Next the Where() and Select() methods that you already know are
invoked.

 var countries = Formula1.GetChampions().
 GroupBy(r = > r.Country).
 OrderByDescending(g = > g.Count()).
 ThenBy(g = > g.Key).
 Where(g = > g.Count() > = 2).
 Select(g = > new { Country = g.Key,
 Count = g.Count() });

 Grouping with Nested Objects
 If the grouped objects should contain nested sequences, you can do that by changing the anonymous
type created by the select clause. With this example the returned countries should contain not only
the properties for the name of the country and the number of racers, but also a sequence of the names
of the racers. This sequence is assigned by using an inner from / in clause assigned to the Racers
property. The inner from clause is using the group g to get all racers from the group, order them by the
last name, and create a new string based on the first and last name.

 var countries = from r in
 Formula1.GetChampions()
 group r by r.Country into g
 orderby g.Count() descending, g.Key
 where g.Count() > = 2

 select new
 {
 Country = g.Key,
 Count = g.Count(),
 Racers = from r1 in g
 orderby r1.LastName
 select r1.FirstName + “ “
 + r1.LastName
 };

 foreach (var item in countries)
 {
 Console.WriteLine(“{0, -10} {1}”,
 item.Country, item.Count);
 foreach (var name in item.Racers)
 {
 Console.Write(“{0}; “, name);
 }
 Console.WriteLine();
 }

 The output now lists all champions from the specified countries:

UK 9
Jim Clark; Lewis Hamilton; Mike Hawthorn; Graham Hill; Damon Hill; James Hunt;
Nigel Mansell; Jackie Stewart; John Surtees;
Brazil 3
Emerson Fittipaldi; Nelson Piquet; Ayrton Senna;
Australia 2

c11.indd 316c11.indd 316 2/19/08 5:10:49 PM2/19/08 5:10:49 PM

Chapter 11: Language Integrated Query

317

Jack Brabham; Alan Jones;
Austria 2
Niki Lauda; Jochen Rindt;
Finland 2
Mika Hakkinen; Keke Rosberg;
Italy 2
Alberto Ascari; Nino Farina;
USA 2
Mario Andretti; Phil Hill;

 Join
 You can use the join clause to combine two sources based on specific criteria. But first, let ’ s get two lists
that should be joined. With Formula - 1 there ’ s a drivers and a constructors championship. The drivers are
returned from the method GetChampions() , and the constructors are returned from the method
 GetConstructorChampions() . Now it would be interesting to get a list by the year where every year
lists the driver and the constructor champion.

 For doing this, first two queries for the racers and the teams are defined:

 var racers = from r in Formula1.GetChampions()
 from y in r.Years
 where y > 2003
 select new
 {
 Year = y,
 Name = r.FirstName + “ “ +
 r.LastName
 };

 var teams = from t in
 Formula1.GetContructorChampions()
 from y in t.Years
 where y > 2003
 select new { Year = y,
 Name = t.Name };

 Using these two queries, a join is done based on the year of the driver champion and the year of the team
champion with the clause join t in teams on r.Year equals t.Year . The select clause defines
a new anonymous type containing Year , Racer , and Team properties.

 var racersAndTeams =
 from r in racers
 join t in teams on r.Year equals t.Year
 select new
 {
 Year = r.Year,
 Racer = r.Name,
 Team = t.Name
 };

 Console.WriteLine(“Year Champion “ +
 “Constructor Title”);
 foreach (var item in racersAndTeams)
 {
 Console.WriteLine(“{0}: {1,-20} {2}”,
 item.Year, item.Racer, item.Team);
 }

c11.indd 317c11.indd 317 2/19/08 5:10:49 PM2/19/08 5:10:49 PM

Part I: The C# Language

318

 Of course you can also combine this to one LINQ query, but that ’ s a matter of taste:

 int year = 2003;

 var racersAndTeams =
 from r in
 from r1 in Formula1.GetChampions()
 from yr in r1.Years
 where yr > year
 select new
 {
 Year = yr,
 Name = r1.FirstName + “ “ +
 r1.LastName
 }
 join t in
 from t1 in
 Formula1.GetContructorChampions()
 from yt in t1.Years
 where yt > year
 select new { Year = yt,
 Name = t1.Name }
 on r.Year equals t.Year
 select new
 {
 Year = r.Year,
 Racer = r.Name,
 Team = t.Name
 };

 The output displays data from the anonymous type:

Year Champion Constructor Title
2004 Michael Schumacher Ferrari
2005 Fernando Alonso Renault
2006 Fernando Alonso Renault
2007 Kimi R ä ikk ö nen Ferrari

 Set Operations
 The extension methods Distinct() , Union() , Intersect() , and Except() are set operations. Let ’ s
create a sequence of Formula - 1 champions driving a Ferrari and another sequence of Formula - 1
champions driving a McLaren, and then let ’ s find out if any driver has been a champion driving both of
these cars. Of course, that ’ s where the Intersect() extension method can help.

 First get all champions driving a Ferrari. This is just using a simple LINQ query with a compound from
to access the property Cars that ’ s returning a sequence of string objects.

 var ferrariDrivers = from r in
 Formula1.GetChampions()
 from c in r.Cars
 where c == “Ferrari”
 orderby r.LastName
 select r;

c11.indd 318c11.indd 318 2/19/08 5:10:50 PM2/19/08 5:10:50 PM

Chapter 11: Language Integrated Query

319

 Now the same query with a different parameter of the where clause would be needed to get all McLaren
racers. It ’ s not a good idea to write the same query another time. You have one option to create a method
where you can pass the parameter car :

 private static IEnumerable < Racer >
 GetRacersByCar(string car)
 {

 return from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;

 }

 However, because the method wouldn ’ t be needed in other places, defining a variable of a delegate type
to hold the LINQ query is a good approach. The variable racersByCar needs to be of a delegate type
that requires a string parameter and returns IEnumerable < Racer > , similar to the method that was
implemented before. For doing this several generic Func < > delegates are defined, so you do not need to
declare your own delegate. A Lambda expression is assigned to the variable racersByCar . The left side
of the Lambda expression defines a car variable of the type that is the first generic parameter of the
 Func delegate (a string). The right side defines the LINQ query that uses the parameter with the
 where clause.

 Func < string, IEnumerable < Racer > > racersByCar =
 Car = > from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;

 Now you can use the Intersect() extension method to get all racers that won the championship with a
Ferrari and a McLaren:

 Console.WriteLine(“World champion with “ +
 “Ferrari and McLaren”);

 foreach (var racer in racersByCar(“Ferrari”).
 Intersect(racersByCar(“McLaren”)))

 {
 Console.WriteLine(racer);
 }

 The result is just one racer, Niki Lauda:

World champion with Ferrari and McLaren
Niki Lauda

 Partitioning
 Partitioning operations such as the extension methods Take() and Skip() can be used for easily
paging, for example, to display 5 by 5 racers.

c11.indd 319c11.indd 319 2/19/08 5:10:50 PM2/19/08 5:10:50 PM

Part I: The C# Language

320

 With the LINQ query shown here, the extension methods Skip() and Take() are added to the end of
the query. The Skip() method first ignores a number of items calculated based on the page size and the
actual page number; the Take() method then takes a number of items based on the page size:

 int pageSize = 5;

 int numberPages = (int)Math.Ceiling(
 Formula1.GetChampions().Count() /
 (double)pageSize);

 for (int page = 0; page < numberPages; page++)
 {
 Console.WriteLine(“Page {0}”, page);

 var racers =
 (from r in Formula1.GetChampions()
 orderby r.LastName
 select r.FirstName + “ “ + r.LastName).
 Skip(page * pageSize).Take(pageSize);

 foreach (var name in racers)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();
 }

 Here is the output of the first three pages:

Page 0
Fernando Alonso
Mario Andretti
Alberto Ascari
Jack Brabham
Jim Clark

Page 1
Juan Manuel Fangio
Nino Farina
Emerson Fittipaldi
Mika Hakkinen
Mike Hawthorn

Page 2
Phil Hill
Graham Hill
Damon Hill
Denny Hulme
James Hunt

 Paging can be extremely useful with Windows or Web applications showing the user only a part of
the data.

c11.indd 320c11.indd 320 2/19/08 5:10:50 PM2/19/08 5:10:50 PM

Chapter 11: Language Integrated Query

321

 An important behavior of this paging mechanism that you will notice: because the query is done with
every page, changing the underlying data affects the results. New objects are shown as paging contin-
ues. Depending on your scenario this can be advantageous to your application. If this behavior is not
what you need you can do the paging not over the original data source, but by using a cache that maps
to the original data.

 With the TakeWhile() and SkipWhile() extension methods you can also pass a predicate to take or
skip items based on the result of the predicate.

 Aggregate Operators
 The aggregate operators such as Count() , Sum() , Min() , Max() , Average() , and Aggregate() do not
return a sequence but a single value instead.

 The Count() extension method returns the number of items in the collection. Here the Count() method
is applied to the Years property of a Racer to filter the racers and return only the ones who won more
than three championships:

 var query = from r in Formula1.GetChampions()
 where r.Years.Count() > 3
 orderby r.Years.Count() descending
 select new
 {
 Name = r.FirstName + “ “ +
 r.LastName,
 TimesChampion = r.Years.Count()
 };

 foreach (var r in query)
 {
 Console.WriteLine(“{0} {1}”, r.Name,
 r.TimesChampion);
 }

 The result is shown here:

Michael Schumacher 7
Juan Manuel Fangio 5
Alain Prost 4

 The Sum() method summarizes all numbers of a sequence and returns the result. Here, Sum() is used to
calculate the sum of all race wins for a country. First the racers are grouped based on the country, then
with the new anonymous type created the Wins property is assigned to the sum of all wins from a
single country:

 var countries =
 (from c in
 from r in Formula1.GetChampions()
 group r by r.Country into c
 select new
 {
 Country = c.Key,
 Wins = (from r1 in c
 select r1.Wins).Sum()
 }
 orderby c.Wins descending, c.Country
 select c).Take(5);

(continued)

c11.indd 321c11.indd 321 2/19/08 5:10:50 PM2/19/08 5:10:50 PM

Part I: The C# Language

322

 foreach (var country in countries)
 {
 Console.WriteLine(“{0} {1}”,
 country.Country, country.Wins);
 }

 The most successful countries based on the race wins by the Formula - 1 champions are:

UK 138
Germany 91
Brazil 78
France 51
Finland 40

 The methods Min() , Max() , Average() , and Aggregate() are used in the same way as Count() and
 Sum() . Min() returns the minimum number of the values in the collection, and Max() returns the
maximum number. Average() calculates the average number. With the Aggregate() method you can
pass a Lambda expression that should do an aggregation with all the values.

 Conversion
 In this chapter you ’ ve already seen that the query execution is deferred until the items are accessed.
Using the query within an iteration, the query is executed. With conversion operator the query is
executed immediately and you get the result in an array, a list, or a dictionary.

 In this example the ToList() extension method is invoked to immediately execute the query and get
the result into a List < T > :

 List < Racer > racers =
 (from r in Formula1.GetChampions()
 where r.Starts > 150
 orderby r.Starts descending
 select r).ToList();

 foreach (var racer in racers)
 {
 Console.WriteLine(“{0} {0:S}”, racer);
 }

 It ’ s not that simple to just get the returned objects to the list. For example, for a fast access from a car to a
racer within a collection class, you can use the new class Lookup < TKey, TElement > .

 The Dictionary < TKey, TValue > supports only a single value for a key. With the class
 Lookup < TKey TElement > from the namespace System.Linq you can have multiple values for a
single key. These classes are covered in detail in Chapter 10 , “ Collections. ”

 Using the compound from query, the sequence of racers and cars is flattened, and an anonymous type
with the properties Car and Racer gets created. With the lookup that is returned, the key should be of
type string referencing the car, and the value should be of type Racer . To make this selection, you can
pass a key and an element selector to one overload of the ToLookup() method. The key selector
references the Car property, and the element selector references the Racer property.

(continued)

c11.indd 322c11.indd 322 2/19/08 5:10:51 PM2/19/08 5:10:51 PM

Chapter 11: Language Integrated Query

323

 ILookup < string, Racer > racers =
 (from r in Formula1.GetChampions()
 from c in r.Cars
 select new
 {
 Car = c,
 Racer = r
 }).ToLookup(cr = > cr.Car, cr = > cr.Racer);

 if (racers.Contains(“Williams”))
 {
 foreach (var williamsRacer in
 racers[“Williams”])
 {
 Console.WriteLine(williamsRacer);
 }
 }

 The result of all “ Williams ” champions that are accessed using the indexer of the Lookup class is
shown here:

Alan Jones
Keke Rosberg
Nigel Mansell
Alain Prost
Damon Hill
Jacques Villeneuve

 In case you need to use a LINQ query over an untyped collection, for example the ArrayList , you can
use the Cast() method. With the following sample an ArrayList collection that is based on the Object
type is filled with Racer objects. To make it possible to define a strongly typed query, you can use the
 Cast() method:

 System.Collections.ArrayList list =
 new System.Collections.ArrayList(
 Formula1.GetChampions() as
 System.Collections.ICollection);

 var query = from r in list.Cast < Racer > ()
 where r.Country == “USA”
 orderby r.Wins descending
 select r;

 foreach (var racer in query)
 {
 Console.WriteLine(“{0:A}”, racer);
 }

 Generation Operators
 The generation operators Range() , Empty() , and Repeat() are not extension methods but normal
static methods that return sequences. With LINQ to objects, these methods are available with the
 Enumerable class.

c11.indd 323c11.indd 323 2/19/08 5:10:51 PM2/19/08 5:10:51 PM

Part I: The C# Language

324

 Have you ever needed a range of numbers filled? Nothing is easier than with the Range() method. This
method receives the start value with the first parameter and the number of items with the second
parameter:

 var values = Enumerable.Range(1, 20);

 foreach (var item in values)
 {
 Console.Write(“{0} “, item);
 }
 Console.WriteLine();

 Of course the result now looks like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 The Range() method does not return a collection filled with the values as defined. This method does a
deferred query execution similar to the other methods. The method returns a RangeEnumerator
that just does a yield return with the values incremented.

 You can combine the result with other extension methods to get a different result, for example using the
 Select() extension method:

 var values = Enumerable.Range(1, 20).
 Select(n = > n * 3);

 The Empty() method returns an iterator that does not return values. This can be used for parameters
that require a collection where you can pass an empty collection.

 The Repeat() method returns an iterator that returns the same value a specific number of times.

 Expression Trees
 With LINQ to objects, the extension methods require a delegate type as parameter; this way, a Lambda
expression can be assigned to the parameter. Lambda expressions can also be assigned to parameters of
type Expression < T > . The type Expression < T > specifies that an expression tree made from the
Lambda expression is stored in the assembly. This way the expression can be analyzed during runtime
and optimized for doing the query to the data source.

 Let ’ s turn to a query expression that was used previously:

var brazilRacers = from r in racers
 where r.Country == “Brazil”
 orderby r.Wins
 select r;

 This query expression is using the extension methods Where , OrderBy , and Select . The Enumerable
class defines the Where() extension method with the delegate type Func < T, bool > as parameter
predicate:

public static IEnumerable < TSource > Where < TSource > (
 this IEnumerable < TSource > source,
 Func < TSource, bool > predicate);

 This way, the Lambda expression is assigned to the predicate. Here, the Lambda expression is similar to
an anonymous method, as was explained earlier:

Func < Racer, bool > predicate = r = > r.Country == “Brazil”;

c11.indd 324c11.indd 324 2/19/08 5:10:51 PM2/19/08 5:10:51 PM

Chapter 11: Language Integrated Query

325

 The Enumerable class is not the only class to define the Where() extension method. The Where()
extension method is also defined by the class Queryable < T > . This class has a different definition of the
 Where() extension method:

public static IQueryable < TSource > Where < TSource > (
 this IQueryable < TSource > source,
 Expression < Func < TSource, bool > > predicate);

 Here, the Lambda expression is assigned to the type Expression < T > , which behaves differently:

Expression < Func < Racer, bool > > predicate =
 r = > r.Country == “Brazil”;

 Instead of using delegates, the compiler emits an expression tree to the assembly. The expression tree can
be read during runtime. Expression trees are built from classes that are derived from the abstract base
class Expression . The Expression class is not the same as Expression < T > . Some of the expression
classes that inherit from Expression are BinaryExpression , ConstantExpression ,
 InvocationExpression , LambdaExpression , NewExpression , NewArrayExpression ,
 TernaryExpression , UnaryExpression , and so on. The compiler creates an expression tree resulting
from the Lambda expression.

 For example, the Lambda expression r.Country == “ Brazil ” makes use of ParameterExpression ,
 MemberExpression , ConstantExpression , and MethodCallExpression to create a tree and store the
tree in the assembly. This tree is then used during runtime to create an optimized query to the
underlying data source.

 The method DisplayTree() is implemented to display an expression tree graphically on the console.
Here an Expression object can be passed, and depending on the expression type some information
about the expression is written to the console. Depending on the type of the expression, DisplayTree()
is called recursively.

 With this method not all expression types are dealt with; only the types that are used with the next
 sample expression.

 private static void DisplayTree(int indent,
 string message, Expression expression)
 {
 string output = String.Format(“{0} {1}” +
 “! NodeType: {2}; Expr: {3} “,
 “”.PadLeft(indent, ‘ > ’), message,
 expression.NodeType, expression);

 indent++;
 switch (expression.NodeType)
 {
 case ExpressionType.Lambda:
 Console.WriteLine(output);
 LambdaExpression lambdaExpr =
 (LambdaExpression)expression;
 foreach (var parameter in
 lambdaExpr.Parameters)
 {
 DisplayTree(indent, “Parameter”,
 parameter);
 }
 DisplayTree(indent, “Body”,
 lambdaExpr.Body);
 break;

(continued)

c11.indd 325c11.indd 325 2/19/08 5:10:52 PM2/19/08 5:10:52 PM

Part I: The C# Language

326

 case ExpressionType.Constant:
 ConstantExpression constExpr =
 (ConstantExpression)expression;
 Console.WriteLine(“{0} Const Value: “ +
 “{1}”, output, constExpr.Value);
 break;
 case ExpressionType.Parameter:
 ParameterExpression paramExpr =
 (ParameterExpression)expression;
 Console.WriteLine(“{0} Param Type: {1}”,
 output, paramExpr.Type.Name);
 break;
 case ExpressionType.Equal:
 case ExpressionType.AndAlso:
 case ExpressionType.GreaterThan:
 BinaryExpression binExpr =
 (BinaryExpression)expression;
 if (binExpr.Method != null)
 {
 Console.WriteLine(“{0} Method: {1}”,
 output, binExpr.Method.Name);
 }
 else
 {
 Console.WriteLine(output);
 }
 DisplayTree(indent, “Left”,
 binExpr.Left);
 DisplayTree(indent, “Right”,
 binExpr.Right);
 break;
 case ExpressionType.MemberAccess:
 MemberExpression memberExpr =
 (MemberExpression)expression;
 Console.WriteLine(“{0} Member Name: “ +
 “{1}, Type: {2}”, output,
 memberExpr.Member.Name,
 memberExpr.Type.Name);
 DisplayTree(indent, “Member Expr”,
 memberExpr.Expression);
 break;
 default:
 Console.WriteLine();
 Console.WriteLine(“....{0} {1}”,
 expression.NodeType,
 expression.Type.Name);
 break;
 }
 }

 The expression that is used for showing the tree is already well known. It ’ s a Lambda expression with a
 Racer parameter, and the body of the expression takes racers from Brazil only if they have won more
than six races:

(continued)

c11.indd 326c11.indd 326 2/19/08 5:10:52 PM2/19/08 5:10:52 PM

Chapter 11: Language Integrated Query

327

 Expression < Func < Racer, bool > > expression =
 r = > r.Country == “Brazil” & & r.Wins > 6;

 DisplayTree(0, “Lambda”, expression);

 Let ’ s look at the tree result. As you can see from the output, the Lambda expression consists of a
 Parameter and an AndAlso node type. The AndAlso node type has an Equal node type to the left and a
 GreaterThan node type to the right. The Equal node type to the left of the AndAlso node type has a
 MemberAccess node type to the left and a Constant node type to the right, and so on.

Lambda! NodeType: Lambda; Expr: r = > ((r.Country = “Brazil”) & & (r.Wins > 6))
 > Parameter! NodeType: Parameter; Expr: r Param Type: Racer
 > Body! NodeType: AndAlso; Expr: ((r.Country = “Brazil”) & & (r.Wins > 6))
 > > Left! NodeType: Equal; Expr: (r.Country = “Brazil”) Method: op_Equality
 > > > Left! NodeType: MemberAccess; Expr: r.Country Member Name: Country, Type:
String
 > > > > Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
 > > > Right! NodeType: Constant; Expr: “Brazil” Const Value: Brazil
 > > Right! NodeType: GreaterThan; Expr: (r.Wins > 6)
 > > > Left! NodeType: MemberAccess; Expr: r.Wins Member Name: Wins, Type: Int32
 > > > > Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
 > > > Right! NodeType: Constant; Expr: 6 Const Value: 6

 One example where the Expression < T > type is used is with LINQ to SQL. LINQ to SQL defines
extension methods with Expression < T > parameters. This way the LINQ provider accessing the
database can create a runtime - optimized query by reading the expressions to get the data from
the database.

 LINQ Providers
 .NET 3.5 includes several LINQ providers. A LINQ provider implements the standard query operators
for a specific data source. LINQ providers might implement more extension methods that are defined by
LINQ, but the standard operators at least must be implemented. LINQ to XML implements more
methods that are particularly useful with XML, for example the methods Elements() , Descendants ,
and Ancestors are defined by the class Extensions in the System.Xml.Linq namespace.

 The implementation of the LINQ provider is selected based on the namespace and on the type of the first
parameter. The namespace of the class that implements the extension methods must be opened,
otherwise the extension class is not in scope. The parameter of the Where() method that is defined by
LINQ to objects and the Where() method that is defined by LINQ to SQL is different.

 The Where() method of LINQ to objects is defined with the Enumerable class:

public static IEnumerable < TSource > Where < TSource > (
 this IEnumerable < TSource > source,
 Func < TSource, bool > predicate);

 Inside the System.Linq namespace there ’ s another class that implements the operator Where . This
implementation is used by LINQ to SQL. You can find the implementation in the class Queryable :

public static IQueryable < TSource > Where < TSource > (
 this IQueryable < TSource > source,
 Expression < Func < TSource, bool > > predicate);

c11.indd 327c11.indd 327 2/19/08 5:10:52 PM2/19/08 5:10:52 PM

Part I: The C# Language

328

 Both of these classes are implemented in the System.Core assembly in the System.Linq namespace.
How is it defined and what method is used? The Lambda expression is the same no matter whether it is
passed with a Func < TSource, bool > parameter or with an Expression < Func < TSource, bool > >
parameter. Just the compiler behaves differently. The selection is done based on the source parameter.
The method that matches best based on its parameters is chosen by the compiler. The GetTable()
method of the DataContext class that is defined by LINQ to SQL returns IQueryable < TSource > , and
thus LINQ to SQL uses the Where() method of the Queryable class.

 The LINQ to SQL provider is a provider that makes use of expression trees and implements the
interfaces IQueryable and IQueryProvider .

 Summary
 In this chapter, you ’ ve probably seen the most important enhancements of the 3.0 version of C#. C# is
continuously extended. With C# 2.0 the major new feature was generics, which provide the foundation
for generic type - safe collection classes, as well as generic interfaces and delegates. The major feature of
C# 3.0 is LINQ. You can use a syntax that is integrated with the language to query any data source, as
long there ’ s a provider for the data source.

 You have now seen the LINQ query and the language constructs that the query is based on, such as
extension methods and Lambda expressions. You ’ ve seen the various LINQ query operators not just
for filtering and ordering of data sources, but also for partitioning, grouping, doing conversions, joins,
and so on.

 LINQ is a very in - depth topic, and you should see Chapters 27 , 29 , and Appendix A for more
information. Other third - party providers are available for download; for example, LINQ to MySQL,
LINQ to Amazon, LINQ to Flickr, and LINQ to SharePoint. No matter what data source you have,
with LINQ you can use the same query syntax.

 Another important concept not to be forgotten is the expression tree. Expression trees allow building the
query to the data source at runtime because the tree is stored in the assembly. You can read about the
great advantages of it in Chapter 27 , “ LINQ to SQL. ”

c11.indd 328c11.indd 328 2/19/08 5:10:53 PM2/19/08 5:10:53 PM

 Memory Management
and Pointers

 This chapter presents various aspects of memory management and memory access. Although the
runtime takes much of the responsibility for memory management away from the programmer, it
is useful to understand how memory management works and important to know how to work
with unmanaged resources efficiently.

 A good understanding of memory management and knowledge of the pointer capabilities
provided by C# will better enable you to integrate C# code with legacy code and perform efficient
memory manipulation in performance - critical systems.

 Specifically, this chapter discusses:

❑ How the runtime allocates space on the stack and the heap

❑ How garbage collection works

❑ How to use destructors and the System.IDisposable interface to ensure unmanaged
resources are released correctly

❑ The syntax for using pointers in C#

❑ How to use pointers to implement high - performance stack - based arrays

 Memory Management Under the Hood
 One of the advantages of C# programming is that the programmer does not need to worry about
detailed memory management; in particular, the garbage collector deals with the problem of
memory cleanup on your behalf. The result is that you get something that approximates the
efficiency of languages like C++ without the complexity of having to handle memory management
yourself as you do in C++. However, although you do not have to manage memory manually, it
still pays to understand what is going on behind the scenes. This section looks at what happens in
the computer ’ s memory when you allocate variables.

c12.indd 329c12.indd 329 2/19/08 5:11:30 PM2/19/08 5:11:30 PM

330

Part I: The C# Language

 The precise details of much of the content of this section are undocumented. You should interpret this
section as a simplified guide to the general processes rather than as a statement of exact implementation.

 Value Data Types
 Windows uses a system known as virtual addressing , in which the mapping from the memory address
seen by your program to the actual location in hardware memory is entirely managed by Windows. The
result of this is that each process on a 32 - bit processor sees 4GB of available memory, regardless of how
much hardware memory you actually have in your computer (on 64 - bit processors this number will be
greater). This 4GB of memory contains everything that is part of the program, including the executable
code, any DLLs loaded by the code, and the contents of all variables used when the program runs. This
4GB of memory is known as the virtual address space or virtual memory . For convenience, in this chapter,
we call it simply memory .

 Each memory location in the available 4GB is numbered starting from zero. To access a value stored at a
particular location in memory, you need to supply the number that represents that memory location. In
any compiled high - level language, including C#, Visual Basic, C++, and Java, the compiler converts
human - readable variable names into memory addresses that the processor understands.

 Somewhere inside a processor ’ s virtual memory is an area known as the stack . The stack stores value
data types that are not members of objects. In addition, when you call a method, the stack is used to hold
a copy of any parameters passed to the method. To understand how the stack works, you need to
understand the importance of variable scope in C#. It is always the case that if a variable a goes into
scope before variable b , then b will go out of scope first. Look at this code:

{
 int a;
 // do something
 {
 int b;
 // do something else
 }
}

 First, a gets declared. Then, inside the inner code block, b gets declared. Then the inner code block
terminates and b goes out of scope, then a goes out of scope. So, the lifetime of b is entirely contained
within the lifetime of a . The idea that you always deallocate variables in the reverse order to how you
allocate them is crucial to the way the stack works.

 You do not know exactly where in the address space the stack is — you don ’ t need to know for C#
development. A stack pointer (a variable maintained by the operating system) identifies the next free
location on the stack. When your program first starts running, the stack pointer will point to just past the
end of the block of memory that is reserved for the stack. The stack actually fills downward, from high
memory addresses to low addresses. As data is put on the stack, the stack pointer is adjusted accordingly,
so it always points to just past the next free location. This is illustrated in Figure 12 - 1 , which shows a
stack pointer with a value of 800000 (0xC3500 in hex); the next free location is the address 799999 .

Stack Pointer

Location

USED

FREE

800000

799999

799998

799997

Figure 12-1

c12.indd 330c12.indd 330 2/19/08 5:11:31 PM2/19/08 5:11:31 PM

331

Chapter 12: Memory Management and Pointers

 The following code instructs the compiler that you need space in memory to store an integer and a
double, and these memory locations are referred to as nRacingCars and engineSize . The line that
declares each variable indicates the point at which you will start requiring access to this variable. The
closing curly brace of the block in which the variables are declared identifies the point at which both
variables go out of scope.

{
 int nRacingCars = 10;
 double engineSize = 3000.0;
 // do calculations;
}

 Assuming that you use the stack shown in Figure 12 - 1 , when the variable nRacingCars comes into
scope and is assigned the value 10 , the value 10 is placed in locations 799996 through 799999 , the
4 bytes just below the location pointed to by the stack pointer. (Four bytes because that ’ s how much
memory is needed to store an int .) To accommodate this, 4 is subtracted from the value of the stack
pointer, so it now points to the location 799996 , just after the new first free location (799995).

 The next line of code declares the variable engineSize (a double) and initializes it to the value 3000.0 .
A double occupies 8 bytes, so the value 3000.0 will be placed in locations 799988 through 799995
on the stack, and the stack pointer is decremented by 8, so that once again, it points to the location just
after the next free location on the stack.

 When engineSize goes out of scope, the computer knows that it is no longer needed. Because of the
way variable lifetimes are always nested, you can guarantee that, whatever has happened while
 engineSize was in scope, the stack pointer is now pointing to the location where engineSize is stored.
To remove engineSize from the stack, the stack pointer is incremented by 8, so that it now points to the
location immediately after the end of engineSize . At this point in the code, you are at the closing curly
brace, so nRacingCars also goes out of scope. The stack pointer is incremented by 4. When another
variable comes into scope after engineSize and nRacingCars have been removed from the stack, it
will overwrite the memory descending from location 799999 , where nRacingCars used to be stored.

 If the compiler hits a line like int i , j , then the order of variables coming into scope looks
indeterminate. Both variables are declared at the same time and go out of scope at the same time. In this
situation, it does not matter in what order the two variables are removed from memory. The compiler
internally always ensures that the one that was put in memory first is removed last, thus preserving the
rule about no crossover of variable lifetimes.

 Reference Data Types
 Although the stack gives very high performance, it is not flexible enough to be used for all variables. The
requirement that the lifetimes of variables must be nested is too restrictive for many purposes. Often,
you will want to use a method to allocate memory to store some data and be able to keep that data
available long after that method has exited. This possibility exists whenever storage space is requested
with the new operator — as is the case for all reference types. That is where the managed heap comes in.

 If you have done any C++ coding that required low - level memory management, you will be familiar
with the heap. The managed heap is not quite the same as the heap C++ uses; the managed heap works
under the control of the garbage collector and provides significant benefits when compared to traditional
heaps.

 The managed heap (or heap for short) is just another area of memory from the processor ’ s available
4GB. The following code demonstrates how the heap works and how memory is allocated for reference
data types:

c12.indd 331c12.indd 331 2/19/08 5:11:32 PM2/19/08 5:11:32 PM

332

Part I: The C# Language

void DoWork()
{
 Customer arabel;
 arabel = new Customer();
 Customer otherCustomer2 = new EnhancedCustomer();
}

 This code assumes the existence of two classes, Customer and EnhancedCustomer . The
 EnhancedCustomer class extends the Customer class.

 First, you declare a Customer reference called arabel . The space for this will be allocated on the stack,
but remember that this is only a reference, not an actual Customer object. The arabel reference takes up
4 bytes, enough space to hold the address at which a Customer object will be stored. (You need 4 bytes
to represent a memory address as an integer value between 0 and 4GB.)

 The next line,

arabel = new Customer();

does several things. First, it allocates memory on the heap to store a Customer object (a real object, not
just an address). Then it sets the value of the variable arabel to the address of the memory it has
allocated to the new Customer object. (It also calls the appropriate Customer() constructor to initialize
the fields in the class instance, but we won ’ t worry about that here.)

 The Customer instance is not placed on the stack — it is placed on the heap. In this example, you don ’ t
know precisely how many bytes a Customer object occupies, but assume for the sake of argument that it
is 32. These 32 bytes contain the instance fields of Customer as well as some information that .NET uses
to identify and manage its class instances.

 To find a storage location on the heap for the new Customer object, the .NET runtime will look
through the heap and grab the first adjacent, unused block of 32 bytes. Again for the sake of argument,
assume that this happens to be at address 200000 , and that the arabel reference occupied locations
 799996 through 799999 on the stack. This means that before instantiating the arabel object, the
memory contents will look similar to Figure 12 - 2 .

Figure 12-2

Stack Pointer

STACK

USED

799996-799999

arabel

FREE

HEAP

FREE

200000

199999

USED

 After allocating the new Customer object, the contents of memory will look like Figure 12 - 3 . Note that
unlike the stack, memory in the heap is allocated upward, so the free space can be found above the
used space.

c12.indd 332c12.indd 332 2/19/08 5:11:32 PM2/19/08 5:11:32 PM

333

Chapter 12: Memory Management and Pointers

Stack Pointer

STACK

USED

799996-799999

arabel

FREE

HEAP

FREE

200032

200000-200031

arabel instance

199999

USED

Figure 12-3

 The next line of code both declares a Customer reference and instantiates a Customer object. In this
instance, space on the stack for the otherCustomer2 reference is allocated and space for the mrJones
object is allocated on the heap in a single line of code:

 Customer otherCustomer2 = new EnhancedCustomer();

 This line allocates 4 bytes on the stack to hold the otherCustomer2 reference, stored at locations 799992
through 799995 . The otherCustomer2 object is allocated space on the heap starting at location 200032 .

 It is clear from the example that the process of setting up a reference variable is more complex than that
for setting up a value variable, and there is a performance overhead. In fact, the process is somewhat
oversimplified here, because the .NET runtime needs to maintain information about the state of the
heap, and this information needs to be updated whenever new data is added to the heap. Despite this
overhead, you now have a mechanism for allocating variables that is not constrained by the limitations
of the stack. By assigning the value of one reference variable to another of the same type, you have two
variables that reference the same object in memory. When a reference variable goes out of scope, it is
removed from the stack as described in the previous section, but the data for a referenced object is still
sitting on the heap. The data will remain on the heap until either the program terminates or the garbage
collector removes it, which will happen only when it is no longer referenced by any variables.

 That is the power of reference data types, and you will see this feature used extensively in C# code. It
means that you have a high degree of control over the lifetime of your data, because it is guaranteed to
exist in the heap as long as you are maintaining some reference to it.

 Garbage Collection
 The previous discussion and diagrams show the managed heap working very much like the stack, to the
extent that successive objects are placed next to each other in memory. This means that you can work out
where to place the next object by using a heap pointer that indicates the next free memory location and
that is adjusted as you add more objects to the heap. However, things are complicated because the lives
of the heap - based objects are not coupled to the scope of the individual stack - based variables that
reference them.

 When the garbage collector runs, it will remove all those objects from the heap that are no longer
referenced. Immediately after it has done this, the heap will have objects scattered on it, mixed up with
memory that has just been freed (see Figure 12 - 4).

c12.indd 333c12.indd 333 2/19/08 5:11:33 PM2/19/08 5:11:33 PM

334

Part I: The C# Language

 If the managed heap stayed like this, allocating space for new objects would be an awkward process, with
the runtime having to search through the heap for a block of memory big enough to store each new object.
However, the garbage collector does not leave the heap in this state. As soon as the garbage collector has
freed up all the objects it can, it compacts the heap by moving all remaining objects to form one continuous
block of memory. This means that the heap can continue working just like the stack as far as locating
where to store new objects. Of course, when the objects are moved about, all the references to those objects
need to be updated with the correct new addresses, but the garbage collector handles that too.

 This action of compacting by the garbage collector is where the managed heap really works differently
from old unmanaged heaps. With the managed heap, it is just a question of reading the value of the heap
pointer, rather than iterating through a linked list of addresses to find somewhere to put the new data.
For this reason, instantiating an object under .NET is much faster. Interestingly, accessing objects tends to
be faster too, because the objects are compacted toward the same area of memory on the heap, resulting
in less page swapping. Microsoft believes that these performance gains more than compensate for the
performance penalty that you get whenever the garbage collector needs to do some work to compact the
heap and change all those references to objects it has moved.

 Generally, the garbage collector runs when the .NET runtime determines that garbage collection is
required. You can force the garbage collector to run at a certain point in your code by calling System
.GC.Collect() . The System.GC class is a .NET class that represents the garbage collector, and the
 Collect() method initiates a garbage collection. The GC class is intended for rare situations in which
you know that it ’ s a good time to call the garbage collector; for example, if you have just de - referenced a
large number of objects in your code. However, the logic of the garbage collector does not guarantee that
all unreferenced objects will be removed from the heap in a single garbage collection pass.

 Freeing Unmanaged Resources
 The presence of the garbage collector means that you will usually not worry about objects that you no
longer need; you will simply allow all references to those objects to go out of scope and allow the
garbage collector to free memory as required. However, the garbage collector does not know how to free
unmanaged resources (such as file handles, network connections, and database connections). When
managed classes encapsulate direct or indirect references to unmanaged resources, you need to make
special provision to ensure that the unmanaged resources are released when an instance of the class is
garbage collected.

In use

Free

In use

In use

Free

Figure 12-4

c12.indd 334c12.indd 334 2/19/08 5:11:33 PM2/19/08 5:11:33 PM

335

Chapter 12: Memory Management and Pointers

 When defining a class, you can use two mechanisms to automate the freeing of unmanaged resources.
These mechanisms are often implemented together because each provides a slightly different approach
to the solution of the problem. The mechanisms are:

❑ Declaring a destructor (or finalizer) as a member of your class

❑ Implementing the System.IDisposable interface in your class

 The following sections discuss each of these mechanisms in turn, and then look at how to implement
them together for best effect.

 Destructors
 You have seen that constructors allow you to specify actions that must take place whenever an instance
of a class is created. Conversely, destructors are called before an object is destroyed by the garbage
collector. Given this behavior, a destructor would initially seem like a great place to put code to free
unmanaged resources and perform a general cleanup. Unfortunately, things are not so straightforward.

 Although we talk about destructors in C#, in the underlying .NET architecture these are known as
finalizers. When you define a destructor in C#, what is emitted into the assembly by the compiler is
actually a method called Finalize() . That is something that doesn ’ t affect any of your source code,
but you ’ ll need to be aware of the fact if you need to examine the contents of an assembly.

 The syntax for a destructor will be familiar to C++ developers. It looks like a method, with the same
name as the containing class, but prefixed with a tilde (~). It has no return type, and takes no parameters
and no access modifiers. Here is an example:

class MyClass
{
 ~MyClass()
 {
 // destructor implementation
 }
}

 When the C# compiler compiles a destructor, it implicitly translates the destructor code to the equivalent
of a Finalize() method, which ensures that the Finalize() method of the parent class is executed.
The following example shows the C# code equivalent to the Intermediate Language (IL) that the
compiler would generate for the ~MyClass destructor:

protected override void Finalize()
{
 try
 {
 // destructor implementation
 }
 finally
 {
 base.Finalize();
 }
}

 As shown, the code implemented in the ~MyClass destructor is wrapped in a try block contained in the
 Finalize() method. A call to the parent ’ s Finalize() method is ensured by placing the call in a
 finally block. We discuss try and finally blocks in Chapter 14 , “ Errors and Exceptions. ”

 Experienced C++ developers make extensive use of destructors, sometimes not only to clean up
resources but also to provide debugging information or perform other tasks. C# destructors are used far

c12.indd 335c12.indd 335 2/19/08 5:11:34 PM2/19/08 5:11:34 PM

336

Part I: The C# Language

less than their C++ equivalents. The problem with C# destructors as compared to their C++ counterparts
is that they are nondeterministic. When a C++ object is destroyed, its destructor runs immediately.
However, because of the way the garbage collector works when using C#, there is no way to know when
an object ’ s destructor will actually execute. Hence, you cannot place any code in the destructor that relies
on being run at a certain time, and you should not rely on the destructor being called for different class
instances in any particular order. When your object is holding scarce and critical resources that need to
be freed as soon as possible, you do not want to wait for garbage collection.

 Another problem with C# destructors is that the implementation of a destructor delays the final removal
of an object from memory. Objects that do not have a destructor are removed from memory in one
pass of the garbage collector, but objects that have destructors require two passes to be destroyed:
The first pass calls the destructor without removing the object, and the second pass actually deletes the
object. In addition, the runtime uses a single thread to execute the Finalize() methods of all objects.
If you use destructors frequently, and use them to execute lengthy cleanup tasks, the impact on
performance can be noticeable.

 The IDisposable Interface
 In C#, the recommended alternative to using a destructor is using the System.IDisposable interface.
The IDisposable interface defines a pattern (with language - level support) that provides a deterministic
mechanism for freeing unmanaged resources and avoids the garbage collector – related problems inherent
with destructors. The IDisposable interface declares a single method named Dispose() , which takes
no parameters and returns void . Here is an implementation for MyClass :

class MyClass : IDisposable
{
 public void Dispose()
 {
 // implementation
 }
}

 The implementation of Dispose() should explicitly free all unmanaged resources used directly by an
object and call Dispose() on any encapsulated objects that also implement the IDisposable interface.
In this way, the Dispose() method provides precise control over when unmanaged resources are freed.

 Suppose that you have a class named ResourceGobbler , which relies on the use of some external
resource and implements IDisposable . If you want to instantiate an instance of this class, use it, and
then dispose of it, you could do it like this:

ResourceGobbler theInstance = new ResourceGobbler();

// do your processing

theInstance.Dispose();

 Unfortunately, this code fails to free the resources consumed by theInstance if an exception occurs
during processing, so you should write the code as follows using a try block (which is discussed fully in
Chapter 14):

ResourceGobbler theInstance = null;

try
{
 theInstance = new ResourceGobbler();

c12.indd 336c12.indd 336 2/19/08 5:11:34 PM2/19/08 5:11:34 PM

337

Chapter 12: Memory Management and Pointers

 // do your processing
}
finally
{
 if (theInstance != null)
 {
 theInstance.Dispose();
 }
}

 This version ensures that Dispose() is always called on theInstance and that any resources
consumed by it are always freed, even if an exception occurs during processing. However, it would
make for confusing code if you always had to repeat such a construct. C# offers a syntax that you can use
to guarantee that Dispose() will automatically be called against an object that implements
 IDisposable when its reference goes out of scope. The syntax to do this involves the using keyword —
 though now in a very different context, which has nothing to do with namespaces. The following code
generates IL code equivalent to the try block just shown:

using (ResourceGobbler theInstance = new ResourceGobbler())
{
 // do your processing
}

 The using statement, followed in brackets by a reference variable declaration and instantiation, will
cause that variable to be scoped to the accompanying statement block. In addition, when that variable
goes out of scope, its Dispose() method will be called automatically, even if an exception occurs.
However, if you are already using try blocks to catch other exceptions, it is cleaner and avoids
additional code indentation if you avoid the using statement and simply call Dispose() in the
 Finally clause of the existing try block.

 For some classes, the notion of a Close() method is more logical than Dispose() ; for example, when
dealing with files or database connections. In these cases, it is common to implement the IDisposable
interface and then implement a separate Close() method that simply calls Dispose() . This approach
provides clarity in the use of your classes but also supports the using statement provided by C#.

 Implementing IDisposable and a Destructor
 The previous sections discussed two alternatives for freeing unmanaged resources used by the classes
you create:

❑ The execution of a destructor is enforced by the runtime but is nondeterministic and places an
unacceptable overhead on the runtime because of the way garbage collection works.

❑ The IDisposable interface provides a mechanism that allows users of a class to control when
resources are freed but requires discipline to ensure that Dispose() is called.

 In general, the best approach is to implement both mechanisms in order to gain the benefits of both
while overcoming their limitations. You implement IDisposable on the assumption that most
programmers will call Dispose() correctly, but implement a destructor as a safety mechanism in case
 Dispose() is not called. Here is an example of a dual implementation:

using System;

public class ResourceHolder : IDisposable

(continued)

c12.indd 337c12.indd 337 2/19/08 5:11:34 PM2/19/08 5:11:34 PM

338

Part I: The C# Language

{

 private bool isDisposed = false;

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!isDisposed)
 {
 if (disposing)
 {
 // Cleanup managed objects by calling their
 // Dispose() methods.
 }
 // Cleanup unmanaged objects
 }
 isDisposed = true;
 }

 ~ResourceHolder()
 {
 Dispose (false);
 }

 public void SomeMethod()
 {
 // Ensure object not already disposed before execution of any method
 if(isDisposed)
 {
 throw new ObjectDisposedException(“ResourceHolder”);
 }

 // method implementation …
 }
}

 You can see from this code that there is a second protected overload of Dispose() , which takes one
 bool parameter — and this is the method that does all cleaning up. Dispose(bool) is called by both
the destructor and by IDisposable.Dispose() . The point of this approach is to ensure that all cleanup
code is in one place.

 The parameter passed to Dispose(bool) indicates whether Dispose(bool) has been invoked by the
destructor or by IDisposable.Dispose() — Dispose(bool) should not be invoked from anywhere
else in your code. The idea is this:

❑ If a consumer calls IDisposable.Dispose() , that consumer is indicating that all managed and
unmanaged resources associated with that object should be cleaned up.

❑ If a destructor has been invoked, all resources still need to be cleaned up. However, in this case,
you know that the destructor must have been called by the garbage collector and you should not
attempt to access other managed objects because you can no longer be certain of their state. In

(continued)

c12.indd 338c12.indd 338 2/19/08 5:11:35 PM2/19/08 5:11:35 PM

339

Chapter 12: Memory Management and Pointers

this situation, the best you can do is clean up the known unmanaged resources and hope that
any referenced managed objects also have destructors that will perform their own cleaning up.

 The isDisposed member variable indicates whether the object has already been disposed of and allows
you to ensure that you do not try to dispose of member variables more than once. It also allows you to
test whether an object has been disposed of before executing any instance methods, as shown in
 SomeMethod() . This simplistic approach is not thread - safe and depends on the caller ensuring that only
one thread is calling the method concurrently. Requiring a consumer to enforce synchronization is a
reasonable assumption and one that is used repeatedly throughout the .NET class libraries (in the
 Collection classes, for example). Threading and synchronization are discussed in Chapter 19 ,
 “ Threading and Synchronization. ”

 Finally, IDisposable.Dispose() contains a call to the method System.GC.SuppressFinalize() . GC
is the class that represents the garbage collector, and the SuppressFinalize() method tells the garbage
collector that a class no longer needs to have its destructor called. Because your implementation of
 Dispose() has already done all the cleanup required, there ’ s nothing left for the destructor to do.
Calling SuppressFinalize() means that the garbage collector will treat that object as if it doesn ’ t have
a destructor at all.

 Unsafe Code
 As you have just seen, C# is very good at hiding much of the basic memory management from the
developer, thanks to the garbage collector and the use of references. However, sometimes you will want
direct access to memory. For example, you might want to access a function in an external (non - .NET)
DLL that requires a pointer to be passed as a parameter (as many Windows API functions do), or
possibly for performance reasons. This section examines C# ’ s facilities that provide direct access to the
contents of memory.

 Accessing Memory Directly with Pointers
 Although we are introducing pointers as if they were a new topic, in reality pointers are not new at all.
You have been using references freely in your code, and a reference is simply a type - safe pointer. You
have already seen how variables that represent objects and arrays actually store the memory address of
where the corresponding data (the referent) is stored. A pointer is simply a variable that stores the
address of something else in the same way as a reference. The difference is that C# does not allow you
direct access to the address contained in a reference variable. With a reference, the variable is treated
syntactically as if it stores the actual contents of the referent.

 C# references are designed to make the language simpler to use and to prevent you from inadvertently
doing something that corrupts the contents of memory. With a pointer, however, the actual memory
address is available to you. This gives you a lot of power to perform new kinds of operations. For
example, you can add 4 bytes to the address, so that you can examine or even modify whatever data
happens to be stored 4 bytes further on in memory.

 The two main reasons for using pointers are:

❑ Backward compatibility — Despite all of the facilities provided by the .NET runtime, it is still
possible to call native Windows API functions, and for some operations this may be the only
way to accomplish your task. These API functions are generally written in C and often require
pointers as parameters. However, in many cases it is possible to write the DllImport declaration
in a way that avoids use of pointers; for example, by using the System.IntPtr class.

❑ Performance — On those occasions where speed is of the utmost importance, pointers can pro-
vide a route to optimized performance. If you know what you are doing, you can ensure that

c12.indd 339c12.indd 339 2/19/08 5:11:35 PM2/19/08 5:11:35 PM

340

Part I: The C# Language

data is accessed or manipulated in the most efficient way. However, be aware that, more often
than not, there are other areas of your code where you can make the necessary performance im-
provements without resorting to using pointers. Try using a code profiler to look for the bottle-
necks in your code — one comes with Visual Studio 2008.

 Low - level memory access comes at a price. The syntax for using pointers is more complex than that for
reference types, and pointers are unquestionably more difficult to use correctly. You need good
programming skills and an excellent ability to think carefully and logically about what your code is
doing in order to use pointers successfully. If you are not careful, it is very easy to introduce subtle,
difficult - to - find bugs into your program when using pointers. For example, it is easy to overwrite other
variables, cause stack overflows, access areas of memory that don ’ t store any variables, or even overwrite
information about your code that is needed by the .NET runtime, thereby crashing your program.

 In addition, if you use pointers your code must be granted a high level of trust by the runtime ’ s code
access security mechanism or it will not be allowed to execute. Under the default code access security
policy, this is only possible if your code is running on the local machine. If your code must be run from a
remote location, such as the Internet, users must grant your code additional permissions for it to work.
Unless the users trust you and your code, they are unlikely to grant these permissions. Code access
security is discussed more in Chapter 20 , “ Security. ”

 Despite these issues, pointers remain a very powerful and flexible tool in the writing of efficient code.

 We strongly advise against using pointers unnecessarily because your code will not only be harder to
write and debug, but it will also fail the memory type - safety checks imposed by the CLR, which is dis-
cussed in Chapter 1 , “ .NET Architecture. ”

 Writing Unsafe Code with the unsafe Keyword
 As a result of the risks associated with pointers, C# allows the use of pointers only in blocks of code that
you have specifically marked for this purpose. The keyword to do this is unsafe . You can mark an
individual method as being unsafe like this:

unsafe int GetSomeNumber()
{
 // code that can use pointers
}

 Any method can be marked as unsafe , regardless of what other modifiers have been applied to it (for
example, static methods or virtual methods). In the case of methods, the unsafe modifier applies to
the method ’ s parameters, allowing you to use pointers as parameters. You can also mark an entire class
or struct as unsafe , which means that all of its members are assumed unsafe:

unsafe class MyClass
{
 // any method in this class can now use pointers
}

 Similarly, you can mark a member as unsafe :

class MyClass
{
 unsafe int* pX; // declaration of a pointer field in a class
}

 Or you can mark a block of code within a method as unsafe :

void MyMethod()
{
 // code that doesn’t use pointers
 unsafe

c12.indd 340c12.indd 340 2/19/08 5:11:35 PM2/19/08 5:11:35 PM

341

Chapter 12: Memory Management and Pointers

 {
 // unsafe code that uses pointers here
 }
 // more ‘safe’ code that doesn’t use pointers
}

 Note, however, that you cannot mark a local variable by itself as unsafe :

int MyMethod()
{
 unsafe int *pX; // WRONG
}

 If you want to use an unsafe local variable, you will need to declare and use it inside a method or block
that is unsafe. There is one more step before you can use pointers. The C# compiler rejects unsafe code
unless you tell it that your code includes unsafe blocks. The flag to do this is unsafe . Hence, to compile
a file named MySource.cs that contains unsafe blocks (assuming no other compiler options), the
command is:

csc /unsafe MySource.cs

or:

csc -unsafe MySource.cs

 If you are using Visual Studio 2005 or 2008, you will also find the option to compile unsafe code in the
Build tab of the project properties window.

 Pointer Syntax
 Once you have marked a block of code as unsafe , you can declare a pointer using this syntax:

int* pWidth, pHeight;
double* pResult;
byte*[] pFlags;

 This code declares four variables: pWidth and pHeight are pointers to integers, pResult is a pointer to
a double , and pFlags is an array of pointers to bytes. It is common practice to use the prefix p in front
of names of pointer variables to indicate that they are pointers. When used in a variable declaration, the
symbol * indicates that you are declaring a pointer (that is, something that stores the address of a
variable of the specified type).

 C++ developers should be aware of the syntax difference between C++ and C#. The C# statement int*
pX, pY; corresponds to the C++ statement int *pX, *pY; . In C#, the * symbol is associated with
the type rather than the variable name.

 Once you have declared variables of pointer types, you can use them in the same way as normal
variables, but first you need to learn two more operators:

❑ & means take the address of , and converts a value data type to a pointer, for example int to *int .
This operator is known as the address operator .

❑ * means get the contents of this address , and converts a pointer to a value data type (for example,
 *float to float). This operator is known as the indirection operator (or sometimes as the derefer-
ence operator).

 You will see from these definitions that & and * have opposite effects.

 You might be wondering how it is possible to use the symbols & and * in this manner because these sym-
bols also refer to the operators of bitwise AND (&) and multiplication (*). Actually, it is always possible
for both you and the compiler to know what is meant in each case because with the new pointer

c12.indd 341c12.indd 341 2/19/08 5:11:36 PM2/19/08 5:11:36 PM

342

Part I: The C# Language

 meanings, these symbols always appear as unary operators — they act on only one variable and appear
in front of that variable in your code. By contrast, bitwise AND and multiplication are binary operators —
 they require two operands.

 The following code shows examples of how to use these operators:

int x = 10;
int* pX, pY;
pX = & x;
pY = pX;
*pY = 20;

 You start by declaring an integer, x , with the value 10 followed by two pointers to integers, pX and
 pY . You then set pX to point to x (that is, you set the contents of pX to be the address of x). Then you
assign the value of pX to pY , so that pY also points to x . Finally, in the statement *pY = 20 , you assign
the value 20 as the contents of the location pointed to by pY — in effect changing x to 20 because pY
happens to point to x . Note that there is no particular connection between the variables pY and x . It is
just that at the present time, pY happens to point to the memory location at which x is held.

 To get a better understanding of what is going on, consider that the integer x is stored at memory
locations 0x12F8C4 through 0x12F8C7 (1243332 to 1243335 in decimal) on the stack (there are
four locations because an int occupies 4 bytes). Because the stack allocates memory downward, this
means that the variables pX will be stored at locations 0x12F8C0 to 0x12F8C3 , and pY will end up at
locations 0x12F8BC to 0x12F8BF . Note that pX and pY also occupy 4 bytes each. That is not because an
 int occupies 4 bytes. It is because on a 32 - bit processor you need 4 bytes to store an address. With these
addresses, after executing the previous code, the stack will look like Figure 12 - 5 .

x=20 (=0x14)

pX=0x12F8C4

pY=012F8C4

0x12F8C4-0x12F8C7

0x12F8C0-0x12F8C3

0x12F8BC-0x12F8BF

Figure 12-5

 Although this process is illustrated with integers, which will be stored consecutively on the stack on a
32 - bit processor, this does not happen for all data types. The reason is that 32 - bit processors work best
when retrieving data from memory in 4 - byte chunks. Memory on such machines tends to be divided into
4 - byte blocks, and each block is sometimes known under Windows as a DWORD because this was the
name of a 32 - bit unsigned int in pre - .NET days. It is most efficient to grab DWORDs from memory —
 storing data across DWORD boundaries normally results in a hardware performance hit. For this rea-
son, the .NET runtime normally pads out data types so that the memory they occupy is a multiple of 4.
For example, a short occupies 2 bytes, but if a short is placed on the stack, the stack pointer will still be
decremented by 4, not 2, so that the next variable to go on the stack will still start at a DWORD
boundary.

c12.indd 342c12.indd 342 2/19/08 5:11:36 PM2/19/08 5:11:36 PM

343

Chapter 12: Memory Management and Pointers

 You can declare a pointer to any value type (that is, any of the predefined types uint , int , byte , and so
on, or to a struct). However, it is not possible to declare a pointer to a class or an array; this is because
doing so could cause problems for the garbage collector. In order to work properly, the garbage collector
needs to know exactly what class instances have been created on the heap, and where they are, but if
your code started manipulating classes using pointers, you could very easily corrupt the information on
the heap concerning classes that the .NET runtime maintains for the garbage collector. In this context,
any data type that the garbage collector can access is known as a managed type . Pointers can only be
declared as unmanaged types because the garbage collector cannot deal with them.

 Casting Pointers to Integer Types
 Because a pointer really stores an integer that represents an address, you won ’ t be surprised to know
that the address in any pointer can be converted to or from any integer type. Pointer - to - integer - type
conversions must be explicit. Implicit conversions are not available for such conversions. For example, it
is perfectly legitimate to write the following:

int x = 10;
int* pX, pY;
pX = & x;
pY = pX;
*pY = 20;
uint y = (uint)pX;
int* pD = (int*)y;

 The address held in the pointer pX is cast to a uint and stored in the variable y . You have then cast y
back to an int* and stored it in the new variable pD . Hence, now pD also points to the value of x .

 The primary reason for casting a pointer value to an integer type is to display it. The Console.Write()
and Console.WriteLine() methods do not have any overloads that can take pointers, but will
accept and display pointer values that have been cast to integer types:

Console.WriteLine(“Address is “ + pX); // wrong -- will give a
 // compilation error
Console.WriteLine(“Address is “ + (uint)pX); // OK

 You can cast a pointer to any of the integer types. However, because an address occupies 4 bytes on
32 - bit systems, casting a pointer to anything other than a uint , long , or ulong is almost certain to lead
to overflow errors. (An int causes problems because its range is from roughly – 2 billion to 2 billion,
whereas an address runs from zero to about 4 billion.) When C# is released for 64 - bit processors, an
address will occupy 8 bytes. Hence, on such systems, casting a pointer to anything other than ulong is
likely to lead to overflow errors. It is also important to be aware that the checked keyword does not
apply to conversions involving pointers. For such conversions, exceptions will not be raised when
overflows occur, even in a checked context. The .NET runtime assumes that if you are using pointers
you know what you are doing and are not worried about possible overflows.

 Casting Between Pointer Types
 You can also explicitly convert between pointers pointing to different types. For example:

byte aByte = 8;
byte* pByte= & aByte;
double* pDouble = (double*)pByte;

 This is perfectly legal code, though again, if you try something like this, be careful. In this example, if
you look at the double value pointed to by pDouble , you will actually be looking up some memory that
contains a byte (aByte), combined with some other memory, and treating it as if this area of memory
contained a double , which will not give you a meaningful value. However, you might want to convert

c12.indd 343c12.indd 343 2/19/08 5:11:37 PM2/19/08 5:11:37 PM

344

Part I: The C# Language

between types in order to implement the equivalent of a C union, or you might want to cast pointers
from other types into pointers to sbyte in order to examine individual bytes of memory.

 void Pointers
 If you want to maintain a pointer, but do not want to specify what type of data it points to, you can
declare it as a pointer to a void :

int* pointerToInt;
void* pointerToVoid;
pointerToVoid = (void*)pointerToInt;

 The main use of this is if you need to call an API function that requires void* parameters. Within the C#
language, there isn ’ t a great deal that you can do using void pointers. In particular, the compiler will
flag an error if you attempt to dereference a void pointer using the * operator.

 Pointer Arithmetic
 It is possible to add or subtract integers to and from pointers. However, the compiler is quite clever
about how it arranges for this to be done. For example, suppose that you have a pointer to an int and
you try to add 1 to its value. The compiler will assume that you actually mean you want to look at the
memory location following the int , and hence it will increase the value by 4 bytes — the size of an int .
If it is a pointer to a double , adding 1 will actually increase the value of the pointer by 8 bytes, the size
of a double . Only if the pointer points to a byte or sbyte (1 byte each) will adding 1 to the value of the
pointer actually change its value by 1.

 You can use the operators + , - , += , - = , ++ , and - - with pointers, with the variable on the right - hand side
of these operators being a long or ulong .

 It is not permitted to carry out arithmetic operations on void pointers.

 For example, assume these definitions:

uint u = 3;
byte b = 8;
double d = 10.0;
uint* pUint= & u; // size of a uint is 4
byte* pByte = & b; // size of a byte is 1
double* pDouble = & d; // size of a double is 8

 Next, assume the addresses to which these pointers point are:

❑ pUint : 1243332

❑ pByte : 1243328

❑ pDouble : 1243320

 Then execute this code:

++pUint; // adds (1*4) = 4 bytes to pUint
pByte -= 3; // subtracts (3*1) = 3 bytes from pByte
double* pDouble2 = pDouble + 4; // pDouble2 = pDouble + 32 bytes (4*8 bytes)

 The pointers now contain:

❑ pUint : 1243336

❑ pByte : 1243325

❑ pDouble2 : 1243352

c12.indd 344c12.indd 344 2/19/08 5:11:37 PM2/19/08 5:11:37 PM

345

Chapter 12: Memory Management and Pointers

The general rule is that adding a number X to a pointer to type T with value P gives
the result P + X*(sizeof(T)).

 You need to be aware of the previous rule. If successive values of a given type are stored in successive
memory locations, pointer addition works very well to allow you to move pointers between memory
locations. If you are dealing with types such as byte or char , though, whose sizes are not multiples of
4, successive values will not, by default, be stored in successive memory locations.

 You can also subtract one pointer from another pointer, if both pointers point to the same data type. In
this case, the result is a long whose value is given by the difference between the pointer values divided
by the size of the type that they represent:

double* pD1 = (double*)1243324; // note that it is perfectly valid to
 // initialize a pointer like this.
double* pD2 = (double*)1243300;
long L = pD1-pD2; // gives the result 3 (=24/sizeof(double))

 The sizeof Operator
 This section has been referring to the sizes of various data types. If you need to use the size of a type in
your code, you can use the sizeof operator, which takes the name of a data type as a parameter and
returns the number of bytes occupied by that type. For example:

int x = sizeof(double);

 This will set x to the value 8 .

 The advantage of using sizeof is that you don ’ t have to hard - code data type sizes in your code, making
your code more portable. For the predefined data types, sizeof returns the following values:

sizeof(sbyte) = 1; sizeof(byte) = 1;
sizeof(short) = 2; sizeof(ushort) = 2;
sizeof(int) = 4; sizeof(uint) = 4;
sizeof(long) = 8; sizeof(ulong) = 8;
sizeof(char) = 2; sizeof(float) = 4;
sizeof(double) = 8; sizeof(bool) = 1;

 You can also use sizeof for structs that you define yourself, although in that case, the result depends on
what fields are in the struct. You cannot use sizeof for classes, and it can only be used in an unsafe
code block.

 Pointers to Structs: The Pointer Member Access Operator
 Pointers to structs work in exactly the same way as pointers to the predefined value types. There is,
however, one condition — the struct must not contain any reference types. This is due to the restriction
mentioned earlier that pointers cannot point to any reference types. To avoid this, the compiler will flag
an error if you create a pointer to any struct that contains any reference types.

 Suppose that you had a struct defined like this:

struct MyStruct
{
 public long X;
 public float F;
}

 You could define a pointer to it like this:

MyStruct* pStruct;

c12.indd 345c12.indd 345 2/19/08 5:11:37 PM2/19/08 5:11:37 PM

346

Part I: The C# Language

 Then you could initialize it like this:

MyStruct Struct = new MyStruct();
pStruct = & Struct;

 It is also possible to access member values of a struct through the pointer:

(*pStruct).X = 4;
(*pStruct).F = 3.4f;

 However, this syntax is a bit complex. For this reason, C# defines another operator that allows you to
access members of structs through pointers using a simpler syntax. It is known as the pointer member
access operator , and the symbol is a dash followed by a greater - than sign, so it looks like an arrow: - > .

 C++ developers will recognize the pointer member access operator because C++ uses the same symbol
for the same purpose.

 Using the pointer member access operator, the previous code can be rewritten:

pStruct- > X = 4;
pStruct- > F = 3.4f;

 You can also directly set up pointers of the appropriate type to point to fields within a struct:

long* pL = & (Struct.X);
float* pF = & (Struct.F);

or

long* pL = & (pStruct- > X);
float* pF = & (pStruct- > F);

 Pointers to Class Members
 As indicated earlier, it is not possible to create pointers to classes. That is because the garbage collector
does not maintain any information about pointers, only about references, so creating pointers to classes
could cause garbage collection to not work properly.

 However, most classes do contain value type members, and you might want to create pointers to them.
This is possible but requires a special syntax. For example, suppose that you rewrite the struct from the
previous example as a class:

class MyClass
{
 public long X;
 public float F;
}

 Then you might want to create pointers to its fields, X and F , in the same way as you did earlier.
Unfortunately, doing so will produce a compilation error:

MyClass myObject = new MyClass();
long* pL = & (myObject.X); // wrong -- compilation error
float* pF = & (myObject.F); // wrong -- compilation error

 Although X and F are unmanaged types, they are embedded in an object, which sits on the heap. During
garbage collection, the garbage collector might move MyObject to a new location, which would leave pL
and pF pointing to the wrong memory addresses. Because of this, the compiler will not let you assign
addresses of members of managed types to pointers in this manner.

 The solution is to use the fixed keyword, which tells the garbage collector that there may be pointers
referencing members of certain objects, so those objects must not be moved. The syntax for using fixed
looks like this if you just want to declare one pointer:

c12.indd 346c12.indd 346 2/19/08 5:11:38 PM2/19/08 5:11:38 PM

347

Chapter 12: Memory Management and Pointers

MyClass myObject = new MyClass();
fixed (long* pObject = & (myObject.X))
{
 // do something
}

 You define and initialize the pointer variable in the brackets following the keyword fixed . This pointer
variable (pObject in the example) is scoped to the fixed block identified by the curly braces. As a
result, the garbage collector knows not to move the myObject object while the code inside the fixed
block is executing.

 If you want to declare more than one pointer, you can place multiple fixed statements before the same
code block:

MyClass myObject = new MyClass();
fixed (long* pX = & (myObject.X))
fixed (float* pF = & (myObject.F))
{
 // do something
}

 You can nest entire fixed blocks if you want to fix several pointers for different periods:

MyClass myObject = new MyClass();
fixed (long* pX = & (myObject.X))
{
 // do something with pX
 fixed (float* pF = & (myObject.F))
 {
 // do something else with pF
 }
}

 You can also initialize several variables within the same fixed block, if they are of the same type:

MyClass myObject = new MyClass();
MyClass myObject2 = new MyClass();
fixed (long* pX = & (myObject.X), pX2 = & (myObject2.X))
{
 // etc.
}

 In all these cases, it is immaterial whether the various pointers you are declaring point to fields in the
same or different objects or to static fields not associated with any class instance.

 Pointer Example: PointerPlayaround
 This section presents an example that uses pointers. The following code is an example named
 PointerPlayaround . It does some simple pointer manipulation and displays the results, allowing you
to see what is happening in memory and where variables are stored:

using System;

namespace Wrox.ProCSharp.Memory
{
 class MainEntryPoint
 {
 static unsafe void Main()

(continued)

c12.indd 347c12.indd 347 2/19/08 5:11:38 PM2/19/08 5:11:38 PM

348

Part I: The C# Language

 {
 int x=10;
 short y = -1;
 byte y2 = 4;
 double z = 1.5;
 int* pX = & x;
 short* pY = & y;
 double* pZ = & z;

 Console.WriteLine(
 “Address of x is 0x{0:X}, size is {1}, value is {2}”,
 (uint) & x, sizeof(int), x);
 Console.WriteLine(
 “Address of y is 0x{0:X}, size is {1}, value is {2}”,
 (uint) & y, sizeof(short), y);
 Console.WriteLine(
 “Address of y2 is 0x{0:X}, size is {1}, value is {2}”,
 (uint) & y2, sizeof(byte), y2);
 Console.WriteLine(
 “Address of z is 0x{0:X}, size is {1}, value is {2}”,
 (uint) & z, sizeof(double), z);
 Console.WriteLine(
 “Address of pX= & x is 0x{0:X}, size is {1}, value is 0x{2:X}”,
 (uint) & pX, sizeof(int*), (uint)pX);
 Console.WriteLine(
 “Address of pY= & y is 0x{0:X}, size is {1}, value is 0x{2:X}”,
 (uint) & pY, sizeof(short*), (uint)pY);
 Console.WriteLine(
 “Address of pZ= & z is 0x{0:X}, size is {1}, value is 0x{2:X}”,
 (uint) & pZ, sizeof(double*), (uint)pZ);

 *pX = 20;
 Console.WriteLine(“After setting *pX, x = {0}”, x);
 Console.WriteLine(“*pX = {0}”, *pX);

 pZ = (double*)pX;
 Console.WriteLine(“x treated as a double = {0}”, *pZ);

 Console.ReadLine();
 }
 }
}

 This code declares four value variables:

❑ An int x

❑ A short y

❑ A byte y2

❑ A double z

 It also declares pointers to three of these values: pX , pY , and pZ .

 Next, you display the values of these variables as well as their sizes and addresses. Note that in taking
the address of pX , pY , and pZ , you are effectively looking at a pointer to a pointer — an address of an

(continued)

c12.indd 348c12.indd 348 2/19/08 5:11:38 PM2/19/08 5:11:38 PM

349

Chapter 12: Memory Management and Pointers

address of a value. Notice that, in accordance with the usual practice when displaying addresses, you
have used the {0:X} format specifier in the Console.WriteLine() commands to ensure that memory
addresses are displayed in hexadecimal format.

 Finally, you use the pointer pX to change the value of x to 20 and do some pointer casting to see what
happens if you try to treat the content of x as if it were a double .

 Compiling and running this code results in the following output. This screen output demonstrates the
effects of attempting to compile both with and without the /unsafe flag:

csc PointerPlayaround.cs
Microsoft (R) Visual C# 2008 Compiler version 3.05.20706.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayaround.cs(7,26): error CS0227: Unsafe code may only appear if
 compiling with /unsafe

csc /unsafe PointerPlayaround.cs
Microsoft (R) Visual C# 2008 Compiler version 3.05.20706.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayaround
Address of x is 0x12F4B0, size is 4, value is 10
Address of y is 0x12F4AC, size is 2, value is -1
Address of y2 is 0x12F4A8, size is 1, value is 4
Address of z is 0x12F4A0, size is 8, value is 1.5
Address of pX= & x is 0x12F49C, size is 4, value is 0x12F4B0
Address of pY= & y is 0x12F498, size is 4, value is 0x12F4AC
Address of pZ= & z is 0x12F494, size is 4, value is 0x12F4A0
After setting *pX, x = 20
*pX = 20
x treated as a double = 2.86965129997082E-308

 Checking through these results confirms the description of how the stack operates that was given in the
 “ Memory Management under the Hood ” section earlier in this chapter. It allocates successive variables
moving downward in memory. Notice how it also confirms that blocks of memory on the stack are
always allocated in multiples of 4 bytes. For example, y is a short (of size 2), and has the (decimal)
address 1242284 , indicating that the memory locations reserved for it are locations 1242284 through
 1242287 . If the .NET runtime had been strictly packing up variables next to each other, Y would have
occupied just two locations, 1242284 and 1242285 .

 The next example illustrates pointer arithmetic, as well as pointers to structs and class members. This
example is named PointerPlayaround2 . To start, you define a struct named CurrencyStruct , which
represents a currency value as dollars and cents. You also define an equivalent class named
 CurrencyClass :

internal struct CurrencyStruct
{
 public long Dollars;
 public byte Cents;

 public override string ToString()
 {
 return “$” + Dollars + “.” + Cents;

(continued)

c12.indd 349c12.indd 349 2/19/08 5:11:39 PM2/19/08 5:11:39 PM

350

Part I: The C# Language

 }
}

internal class CurrencyClass
{
 public long Dollars;
 public byte Cents;

 public override string ToString()
 {
 return “$” + Dollars + “.” + Cents;
 }
}

 Now that you have your struct and class defined, you can apply some pointers to them. Following is the
code for the new example. Because the code is fairly long, we will go through it in detail. You start by
displaying the size of CurrencyStruct , creating a couple of CurrencyStruct instances and creating
some CurrencyStruct pointers. You use the pAmount pointer to initialize the members of the amount1
CurrencyStruct and then display the addresses of your variables:

public static unsafe void Main()
{
 Console.WriteLine(
 “Size of CurrencyStruct struct is “ + sizeof(CurrencyStruct));
 CurrencyStruct amount1, amount2;
 CurrencyStruct* pAmount = & amount1;
 long* pDollars = & (pAmount- > Dollars);
 byte* pCents = & (pAmount- > Cents);

 Console.WriteLine(“Address of amount1 is 0x{0:X}”, (uint) & amount1);
 Console.WriteLine(“Address of amount2 is 0x{0:X}”, (uint) & amount2);
 Console.WriteLine(“Address of pAmount is 0x{0:X}”, (uint) & pAmount);
 Console.WriteLine(“Address of pDollars is 0x{0:X}”, (uint) & pDollars);
 Console.WriteLine(“Address of pCents is 0x{0:X}”, (uint) & pCents);
 pAmount- > Dollars = 20;
 *pCents = 50;
 Console.WriteLine(“amount1 contains “ + amount1);

 Now you do some pointer manipulation that relies on your knowledge of how the stack works. Due to
the order in which the variables were declared, you know that amount2 will be stored at an address
immediately below amount1 . The sizeof(CurrencyStruct) operator returns 16 (as demonstrated in
the screen output coming up), so CurrencyStruct occupies a multiple of 4 bytes. Therefore, after you
decrement your currency pointer, it will point to amount2 :

 --pAmount; // this should get it to point to amount2
 Console.WriteLine(“amount2 has address 0x{0:X} and contains {1}”,
 (uint)pAmount, *pAmount);

 Notice that when you call Console.WriteLine() you display the contents of amount2 , but you haven ’ t
yet initialized it. What gets displayed will be random garbage — whatever happened to be stored at that
location in memory before execution of the example. There is an important point here: Normally, the C#
compiler would prevent you from using an uninitialized variable, but when you start using pointers, it is
very easy to circumvent many of the usual compilation checks. In this case, you have done so because
the compiler has no way of knowing that you are actually displaying the contents of amount2 . Only you
know that, because your knowledge of the stack means that you can tell what the effect of decrementing

(continued)

c12.indd 350c12.indd 350 2/19/08 5:11:39 PM2/19/08 5:11:39 PM

351

Chapter 12: Memory Management and Pointers

 pAmount will be. Once you start doing pointer arithmetic, you will find that you can access all sorts of
variables and memory locations that the compiler would usually stop you from accessing, hence the
description of pointer arithmetic as unsafe.

 Next, you do some pointer arithmetic on your pCents pointer. pCents currently points to amount1
.Cents , but the aim here is to get it to point to amount2.Cents , again using pointer operations instead
of directly telling the compiler that ’ s what you want to do. To do this, you need to decrement the address
 pCents contains by sizeof(Currency) :

 // do some clever casting to get pCents to point to cents
 // inside amount2
 CurrencyStruct* pTempCurrency = (CurrencyStruct*)pCents;
 pCents = (byte*) (--pTempCurrency);
 Console.WriteLine(“Address of pCents is now 0x{0:X}”, (uint) & pCents);

 Finally, you use the fixed keyword to create some pointers that point to the fields in a class instance and
use these pointers to set the value of this instance. Notice that this is also the first time that you have
been able to look at the address of an item stored on the heap rather than the stack:

 Console.WriteLine(“\nNow with classes”);
 // now try it out with classes
 CurrencyClass amount3 = new CurrencyClass();

 fixed(long* pDollars2 = & (amount3.Dollars))
 fixed(byte* pCents2 = & (amount3.Cents))
 {
 Console.WriteLine(
 “amount3.Dollars has address 0x{0:X}”, (uint)pDollars2);
 Console.WriteLine(
 “amount3.Cents has address 0x{0:X}”, (uint) pCents2);
 *pDollars2 = -100;
 Console.WriteLine(“amount3 contains “ + amount3);
 }

 Compiling and running this code gives output similar to this:

csc /unsafe PointerPlayaround2.cs
Microsoft (R) Visual C# 2008 Compiler version 3.05.20706.1
for Microsoft (R) .NET Framework version 3.5
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayaround2
Size of CurrencyStruct struct is 16
Address of amount1 is 0x12F4A4
Address of amount2 is 0x12F494
Address of pAmount is 0x12F490
Address of pDollars is 0x12F48C
Address of pCents is 0x12F488
amount1 contains $20.50
amount2 has address 0x12F494 and contains $0.0
Address of pCents is now 0x12F488

Now with classes
amount3.Dollars has address 0xA64414
amount3.Cents has address 0xA6441C
amount3 contains $-100.0

c12.indd 351c12.indd 351 2/19/08 5:11:39 PM2/19/08 5:11:39 PM

352

Part I: The C# Language

 Notice in this output the uninitialized value of amount2 that is displayed, and notice that the size of the
 CurrencyStruct struct is 16 — somewhat larger than you would expect given the sizes of its fields (a
 long and a byte should total 9 bytes).

 Using Pointers to Optimize Performance
 Until now, all of the examples have been designed to demonstrate the various things that you can do
with pointers. We have played around with memory in a way that is probably interesting only to people
who like to know what ’ s happening under the hood but that doesn ’ t really help you to write better code.
Here you ’ re going to apply your understanding of pointers and see an example of how judicious use of
pointers has a significant performance benefit.

 Creating Stack - Based Arrays
 This section explores one of the main areas in which pointers can be useful: creating high - performance,
low - overhead arrays on the stack. As discussed in Chapter 2 , “ C# Basics, ” C# includes rich support for
handling arrays. Although C# makes it very easy to use both 1 - dimensional and rectangular or jagged
multidimensional arrays, it suffers from the disadvantage that these arrays are actually objects; they are
instances of System.Array . This means that the arrays are stored on the heap with all of the overhead
that this involves. There may be occasions when you need to create a short - lived high - performance array
and don ’ t want the overhead of reference objects. You can do this using pointers, although as you see in
this section, this is easy for only 1 - dimensional arrays.

 To create a high - performance array, you need to use a new keyword: stackalloc . The stackalloc
command instructs the .NET runtime to allocate an amount of memory on the stack. When you call
 stackalloc , you need to supply it with two pieces of information:

❑ The type of data you want to store

❑ The number of these data items you need to store

 For example, to allocate enough memory to store 10 decimal data items, you can write:

decimal* pDecimals = stackalloc decimal[10];

 This command simply allocates the stack memory; it does not attempt to initialize the memory to any
default value. This is fine for the purpose of this example because you are creating a high - performance
array, and initializing values unnecessarily would hurt performance.

 Similarly, to store 20 double data items, you write:

double* pDoubles = stackalloc double[20];

 Although this line of code specifies the number of variables to store as a constant, this can equally be a
quantity evaluated at runtime. So, you can write the previous example like this:

int size;
size = 20; // or some other value calculated at run-time
double* pDoubles = stackalloc double[size];

 You will see from these code snippets that the syntax of stackalloc is slightly unusual. It is followed
immediately by the name of the data type you want to store (and this must be a value type) and then by
the number of items you need space for in square brackets. The number of bytes allocated will be this
number multiplied by sizeof(data type) . The use of square brackets in the preceding code sample
suggests an array, which is not too surprising. If you have allocated space for 20 doubles, then what you
have is an array of 20 doubles. The simplest type of array that you can have is a block of memory that
stores one element after another (see Figure 12 - 6).

c12.indd 352c12.indd 352 2/19/08 5:11:40 PM2/19/08 5:11:40 PM

353

Chapter 12: Memory Management and Pointers

 This diagram also shows the pointer returned by stackalloc , which is always a pointer to the allocated
data type that points to the top of the newly allocated memory block. To use the memory block, you
simply dereference the returned pointer. For example, to allocate space for 20 doubles and then set the
first element (element 0 of the array) to the value 3.0 , write this:

double* pDoubles = stackalloc double [20];
*pDoubles = 3.0;

 To access the next element of the array, you use pointer arithmetic. As described earlier, if you add 1 to a
pointer, its value will be increased by the size of whatever data type it points to. In this case, this will be
just enough to take you to the next free memory location in the block that you have allocated. So, you
can set the second element of the array (element number 1) to the value 8.4 like this:

double* pDoubles = stackalloc double [20];
*pDoubles = 3.0;
*(pDoubles+1) = 8.4;

 By the same reasoning, you can access the element with index X of the array with the expression
 *(pDoubles+X) .

 Effectively, you have a means by which you can access elements of your array, but for general - purpose
use, this syntax is too complex. Fortunately, C# defines an alternative syntax using square brackets. C#
gives a very precise meaning to square brackets when they are applied to pointers; if the variable p is
any pointer type and X is an integer, then the expression p[X] is always interpreted by the compiler as
meaning *(p+X) . This is true for all pointers, not only those initialized using stackalloc . With this
shorthand notation, you now have a very convenient syntax for accessing your array. In fact, it means
that you have exactly the same syntax for accessing 1 - dimensional stack - based arrays as you do for
accessing heap - based arrays that are represented by the System.Array class:

double* pDoubles = stackalloc double [20];
pDoubles[0] = 3.0; // pDoubles[0] is the same as *pDoubles
pDoubles[1] = 8.4; // pDoubles[1] is the same as *(pDoubles+1)

 This idea of applying array syntax to pointers is not new. It has been a fundamental part of both the C
and the C++ languages ever since those languages were invented. Indeed, C++ developers will recognize
the stack - based arrays they can obtain using stackalloc as being essentially identical to classic stack -
 based C and C++ arrays. It is this syntax and the way it links pointers and arrays that was one of the
reasons why the C language became popular in the 1970s, and the main reason why the use of pointers
became such a popular programming technique in C and C++.

Pointer
returned by
stackalloc

Element 0 of array

Element 1 of array

Element 2 of array

etc.

Successive
memory

allocations
on the track

Figure 12-6

c12.indd 353c12.indd 353 2/19/08 5:11:40 PM2/19/08 5:11:40 PM

354

Part I: The C# Language

 Although your high - performance array can be accessed in the same way as a normal C# array, a word of
caution is in order. The following code in C# raises an exception:

double[] myDoubleArray = new double [20];
myDoubleArray[50] = 3.0;

 The exception occurs because you are trying to access an array using an index that is out of bounds; the
index is 50 , whereas the maximum allowed value is 19 . However, if you declare the equivalent array
using stackalloc , there is no object wrapped around the array that can perform bounds checking.
Hence, the following code will not raise an exception:

double* pDoubles = stackalloc double [20];
pDoubles[50] = 3.0;

 In this code, you allocate enough memory to hold 20 doubles. Then you set sizeof(double) memory
locations starting at the location given by the start of this memory + 50*sizeof(double) to hold the
double value 3.0 . Unfortunately, that memory location is way outside the area of memory that you have
allocated for the doubles. There is no knowing what data might be stored at that address. At best, you
may have used some currently unused memory, but it is equally possible that you may have just
overwritten some locations in the stack that were being used to store other variables or even the return
address from the method currently being executed. Once again, you see that the high performance to be
gained from pointers comes at a cost; you need to be certain you know what you are doing, or you will
get some very strange runtime bugs.

 QuickArray Example
 Our discussion of pointers ends with a stackalloc example called QuickArray . In this example, the
program simply asks users how many elements they want to be allocated for an array. The code then
uses stackalloc to allocate an array of long s that size. The elements of this array are populated with
the squares of the integers starting with 0 and the results displayed on the console:

using System;

namespace QuickArray
{
 internal class Program
 {
 private static unsafe void Main()
 {
 Console.Write(“How big an array do you want? \n > “);
 string userInput = Console.ReadLine();
 uint size = uint.Parse(userInput);

 long* pArray = stackalloc long[(int) size];
 for (int i = 0; i < size; i++)
 {
 pArray[i] = i*i;
 }

 for (int i = 0; i < size; i++)
 {
 Console.WriteLine(“Element {0} = {1}”, i, *(pArray + i));
 }

 Console.ReadLine();
 }
 }
}

c12.indd 354c12.indd 354 2/19/08 5:11:40 PM2/19/08 5:11:40 PM

355

Chapter 12: Memory Management and Pointers

 Here is the output for the QuickArray example:

QuickArray
How big an array do you want?
 > 15
Element 0 = 0
Element 1 = 1
Element 2 = 4
Element 3 = 9
Element 4 = 16
Element 5 = 25
Element 6 = 36
Element 7 = 49
Element 8 = 64
Element 9 = 81
Element 10 = 100
Element 11 = 121
Element 12 = 144
Element 13 = 169
Element 14 = 196

 Summary
 Remember, to become a truly proficient C# programmer, you must have a solid understanding of how
memory allocation and garbage collection work. This chapter described how the CLR manages and
allocates memory on the heap and the stack. It also illustrated how to write classes that free unmanaged
resources correctly, and how to use pointers in C#. These are both advanced topics that are poorly
understood and often implemented incorrectly by novice programmers.

 This chapter should be treated as a companion to what you learn from Chapter 14 on error handling and
in Chapter 19 when dealing with threading. The next chapter of this book looks at reflection in C#.

c12.indd 355c12.indd 355 2/19/08 5:11:41 PM2/19/08 5:11:41 PM

c12.indd 356c12.indd 356 2/19/08 5:11:41 PM2/19/08 5:11:41 PM

 Reflection

 Reflection is a generic term that describes the ability to inspect and manipulate program elements at
runtime. For example, reflection allows you to:

❑ Enumerate the members of a type

❑ Instantiate a new object

❑ Execute the members of an object

❑ Find out information about a type

❑ Find out information about an assembly

❑ Inspect the custom attributes applied to a type

❑ Create and compile a new assembly

 This list represents a great deal of functionality and encompasses some of the most powerful and
complex capabilities provided by the .NET Framework class library. Although this chapter does
not have the space to cover all the capabilities of reflection, it focuses on those elements that you
are likely to use most frequently.

 This chapter is about:

❑ Custom attributes, a mechanism that allows you to associate custom metadata with
program elements. This metadata is created at compile time and embedded in an
assembly.

❑ Inspecting the metadata at runtime using some of the capabilities of reflection.

❑ Some of the fundamental classes that enable reflection, including the System.Type and
 System.Reflection.Assembly classes, which provide the access points for much of
what you can do with reflection.

 To demonstrate custom attributes and reflection, you develop an example based on a company
that regularly ships upgrades of its software and wants to have details of these upgrades
documented automatically. In the example, you define custom attributes that indicate the date
when program elements were last modified, and what changes were made. You then use reflection
to develop an application that looks for these attributes in an assembly, and can automatically
display all the details about what upgrades have been made to the software since a given date.

c13.indd 357c13.indd 357 2/19/08 5:12:20 PM2/19/08 5:12:20 PM

358

Part I: The C# Language

 Another example in this chapter considers an application that reads from or writes to a database and
uses custom attributes as a way of marking which classes and properties correspond to which database
tables and columns. By reading these attributes from the assembly at runtime, the program is able to
automatically retrieve or write data to the appropriate location in the database, without requiring
specific logic for each table or column.

 Custom Attributes
 From this book, you have seen how you can define attributes on various items within your program.
These attributes have been defined by Microsoft as part of the .NET Framework class library, and many
of them receive special support from the C# compiler. This means that for those particular attributes, the
compiler could customize the compilation process in specific ways; for example, laying out a struct in
memory according to the details in the StructLayout attributes.

 The .NET Framework also allows you to define your own attributes. Clearly, these attributes will not
have any effect on the compilation process, because the compiler has no intrinsic awareness of them.
However, these attributes will be emitted as metadata in the compiled assembly when they are applied
to program elements.

 By itself, this metadata might be useful for documentation purposes, but what makes attributes really
powerful is that by using reflection, your code can read this metadata and use it to make decisions at
runtime. This means that the custom attributes that you define can directly affect how your code runs.
For example, custom attributes can be used to enable declarative code access security checks for custom
permission classes, to associate information with program elements that can then be used by testing
tools, or when developing extensible frameworks that allow the loading of plugins or modules.

 Writing Custom Attributes
 To understand how to write your own custom attributes, it is useful to know what the compiler does
when it encounters an element in your code that has a custom attribute applied to it. To take the
database example, suppose that you have a C# property declaration that looks like this:

[FieldName(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{
 get {
 // etc.

 When the C# compiler recognizes that this property has an attribute applied to it (FieldName), it will
start by appending the string Attribute to this name, forming the combined name
 FieldNameAttribute . The compiler will then search all the namespaces in its search path (those
namespaces that have been mentioned in a using statement) for a class with the specified name. Note
that if you mark an item with an attribute whose name already ends in the string Attribute , the
compiler will not add the string to the name a second time; it will leave the attribute name unchanged.
Therefore, the preceding code is equivalent to this:

[FieldNameAttribute(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{
 get {
 // etc.

c13.indd 358c13.indd 358 2/19/08 5:12:22 PM2/19/08 5:12:22 PM

359

Chapter 13: Refl ection

 The compiler expects to find a class with this name, and it expects this class to be derived directly or
indirectly from System.Attribute . The compiler also expects that this class contains information that
governs the use of the attribute. In particular, the attribute class needs to specify the following:

❑ The types of program elements to which the attribute can be applied (classes, structs, properties,
methods, and so on)

❑ Whether it is legal for the attribute to be applied more than once to the same program element

❑ Whether the attribute, when applied to a class or interface, is inherited by derived classes and
interfaces

❑ The mandatory and optional parameters the attribute takes

 If the compiler cannot find a corresponding attribute class, or it finds one but the way that you have
used that attribute does not match the information in the attribute class, the compiler will raise a
compilation error. For example, if the attribute class indicates that the attribute can be applied only to
classes, but you have applied it to a struct definition, a compilation error will occur.

 To continue with the example, assume that you have defined the FieldName attribute like this:

[AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false,
 Inherited=false)]
public class FieldNameAttribute : Attribute
{
 private string name;
 public FieldNameAttribute(string name)
 {
 this.name = name;
 }
}

 The following sections discuss each element of this definition.

 AttributeUsage Attribute
 The first thing to note is that the attribute class itself is marked with an attribute — the System.
AttributeUsage attribute. This is an attribute defined by Microsoft for which the C# compiler provides
special support. (You could argue that AttributeUsage isn ’ t an attribute at all; it is more like a meta -
 attribute, because it applies only to other attributes, not simply to any class.) The primary purpose of
 AttributeUsage is to identify the types of program elements to which your custom attribute can be
applied. This information is given by the first parameter of the AttributeUsage attribute — this
parameter is mandatory, and is of an enumerated type, AttributeTargets . In the previous example,
you have indicated that the FieldName attribute can be applied only to properties, which is fine, because
that is exactly what you have applied it to in the earlier code fragment. The members of the
 AttributeTargets enumeration are:

❑ All

❑ Assembly

❑ Class

❑ Constructor

❑ Delegate

c13.indd 359c13.indd 359 2/19/08 5:12:22 PM2/19/08 5:12:22 PM

360

Part I: The C# Language

❑ Enum

❑ Event

❑ Field

❑ GenericParameter (from .NET 2.0 on only)

❑ Interface

❑ Method

❑ Module

❑ Parameter

❑ Property

❑ ReturnValue

❑ Struct

 This list identifies all of the program elements to which you can apply attributes. Note that when
applying the attribute to a program element, you place the attribute in square brackets immediately
before the element. However, two values in the preceding list do not correspond to any program
element: Assembly and Module . An attribute can be applied to an assembly or module as a whole
instead of to an element in your code; in this case the attribute can be placed anywhere in your source
code, but needs to be prefixed with the Assembly or Module keyword:

[assembly:SomeAssemblyAttribute(Parameters)]
[module:SomeAssemblyAttribute(Parameters)]

 When indicating the valid target elements of a custom attribute, you can combine these values using the
bitwise OR operator. For example, if you wanted to indicate that your FieldName attribute can be
applied to both properties and fields, you would write:

 [AttributeUsage(AttributeTargets.Property | AttributeTargets.Field,
 AllowMultiple=false,
 Inherited=false)]
 public class FieldNameAttribute : Attribute

 You can also use AttributeTargets.All to indicate that your attribute can be applied to all types of
program elements. The AttributeUsage attribute also contains two other parameters, AllowMultiple
and Inherited . These are specified using the syntax of < ParameterName > = < ParameterValue > ,
instead of simply giving the values for these parameters. These parameters are optional — you can omit
them if you want.

 The AllowMultiple parameter indicates whether an attribute can be applied more than once to the
same item. The fact that it is set to false here indicates that the compiler should raise an error if it sees
something like this:

[FieldName(“SocialSecurityNumber”)]
[FieldName(“NationalInsuranceNumber”)]
public string SocialSecurityNumber
{

 // etc.

 If the Inherited parameter is set to true , an attribute applied to a class or interface will also
automatically be applied to all derived classes or interfaces. If the attribute is applied to a method or
property, it will automatically apply to any overrides of that method or property, and so on.

c13.indd 360c13.indd 360 2/19/08 5:12:23 PM2/19/08 5:12:23 PM

361

Chapter 13: Refl ection

 Specifying Attribute Parameters
 This section examines how you can specify the parameters that your custom attribute takes. The way it
works is that when the compiler encounters a statement such as the following,

[FieldName(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{

 // etc.

the compiler examines the parameters passed into the attribute — which is a string — and looks for
a constructor for the attribute that takes exactly those parameters. If the compiler finds an appropriate
constructor, the compiler will emit the specified metadata to the assembly. If the compiler does not find
an appropriate constructor, a compilation error occurs. As discussed later in this chapter, reflection
involves reading metadata (attributes) from assemblies and instantiating the attribute classes they
represent. Because of this, the compiler must ensure that an appropriate constructor exists that will allow
the runtime instantiation of the specified attribute.

 In the example, you have supplied just one constructor for FieldNameAttribute , and this constructor
takes one string parameter. Therefore, when applying the FieldName attribute to a property, you must
supply one string as a parameter, as was done in the preceding sample code.

 If you want to allow a choice of what types of parameters should be supplied with an attribute, you can
provide different constructor overloads, although normal practice is to supply just one constructor and
use properties to define any other optional parameters, as explained next.

 Specifying Optional Attribute Parameters
 As demonstrated with reference to the AttributeUsage attribute, an alternative syntax exists by which
optional parameters can be added to an attribute. This syntax involves specifying the names and values
of the optional parameters. It works through public properties or fields in the attribute class. For
example, suppose that you modified the definition of the SocialSecurityNumber property as follows:

[FieldName(“SocialSecurityNumber”, Comment=”This is the primary key field”)]
public string SocialSecurityNumber
{

 // etc.

 In this case, the compiler recognizes the < ParameterName > = < ParameterValue > syntax of the second
parameter and does not attempt to match this parameter to a FieldNameAttribute constructor.
Instead, it looks for a public property or field (although public fields are not considered good
programming practice, so normally you will work with properties) of that name that it can use to set the
value of this parameter. If you want the previous code to work, you have to add some code to
 FieldNameAttribute :

 [AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false,
 Inherited=false)]
 public class FieldNameAttribute : Attribute
 {
 private string comment;
 public string Comment

(continued)

c13.indd 361c13.indd 361 2/19/08 5:12:23 PM2/19/08 5:12:23 PM

362

Part I: The C# Language

 {
 get
 {
 return comment;
 }
 set
 {
 comment = value;
 }
 }

 // etc
 }

 Custom Attribute Example: WhatsNewAttributes
 In this section, you start developing the example mentioned at the beginning of the chapter.
 WhatsNewAttributes provides for an attribute that indicates when a program element was last
modified. This is a more ambitious code sample than many of the others in that it consists of three
separate assemblies:

❑ The WhatsNewAttributes assembly, which contains the definitions of the attributes

❑ The VectorClass assembly, which contains the code to which the attributes have been applied

❑ The LookUpWhatsNew assembly, which contains the project that displays details of items that
have changed

 Of these, only LookUpWhatsNew is a console application of the type that you have used up until now.
The remaining two assemblies are libraries — they each contain class definitions but no program entry
point. For the VectorClass assembly, this means that the entry point and test harness class have been
removed from the VectorAsCollection sample, leaving only the Vector class. These classes are
represented later in this chapter.

 Managing three related assemblies by compiling at the command line is tricky. Although the commands
for compiling all these source files are provided separately, you might prefer to edit the code sample
(which you can download from the Wrox Web site at www.wrox.com) as a combined Visual Studio
solution, as discussed in Chapter 15 , “ Visual Studio 2008. ” The download includes the required Visual
Studio 2008 solution files.

 The WhatsNewAttributes Library Assembly
 This section starts with the core WhatsNewAttributes assembly. The source code is contained in
the file WhatsNewAttributes.cs , which is located in the WhatsNewAttributes project of the
 WhatsNewAttributes solution in the example code for this chapter. The syntax for doing this is quite
simple. At the command line, you supply the flag target:library to the compiler. To compile
 WhatsNewAttributes , type the following:

csc /target:library WhatsNewAttributes.cs

 The WhatsNewAttributes.cs file defines two attribute classes, LastModifiedAttribute and
 SupportsWhatsNewAttribute . The attribute, LastModifiedAttribute , is the attribute that you can
use to mark when an item was last modified. It takes two mandatory parameters (parameters that are
passed to the constructor): the date of the modification and a string containing a description of the
changes. There is also one optional parameter named issues (for which a public property exists),
which can be used to describe any outstanding issues for the item.

(continued)

c13.indd 362c13.indd 362 2/19/08 5:12:24 PM2/19/08 5:12:24 PM

363

Chapter 13: Refl ection

 In practice, you would probably want this attribute to apply to anything. To keep the code simple, its
usage is limited here to classes and methods. You will allow it to be applied more than once to the same
item (AllowMultiple=true) because an item might be modified more than once, and each modification
will have to be marked with a separate attribute instance.

 SupportsWhatsNew is a smaller class representing an attribute that doesn ’ t take any parameters. The
idea of this attribute is that it is an assembly attribute that is used to mark an assembly for which you are
maintaining documentation via the LastModifiedAttribute . This way, the program that will examine
this assembly later on knows that the assembly it is reading is one on which you are actually using your
automated documentation process. Here is the complete source code for this part of the example:

using System;

namespace Wrox.ProCSharp.WhatsNewAttributes
{
 [AttributeUsage(
 AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple=true, Inherited=false)]
 public class LastModifiedAttribute : Attribute
 {
 private readonly DateTime dateModified;
 private readonly string changes;
 private string issues;

 public LastModifiedAttribute(string dateModified, string changes)
 {
 this.dateModified = DateTime.Parse(dateModified);
 this.changes = changes;
 }

 public DateTime DateModified
 {
 get { return dateModified; }
 }

 public string Changes
 {
 get { return changes; }
 }

 public string Issues
 {
 get { return issues; }
 set { issues = value; }
 } }

 [AttributeUsage(AttributeTargets.Assembly)]
 public class SupportsWhatsNewAttribute : Attribute
 {
 }
}

 This code should be clear with reference to previous descriptions. Notice, however, that we have not
bothered to supply set accessors to the Changes and DateModified properties. There is no need for
these accessors because you are requiring these parameters to be set in the constructor as mandatory
parameters. You need the get accessors so that you can read the values of these attributes.

c13.indd 363c13.indd 363 2/19/08 5:12:24 PM2/19/08 5:12:24 PM

364

Part I: The C# Language

 The VectorClass Assembly
 Next, you need to use these attributes. To this end, you use a modified version of the earlier
 VectorAsCollection sample. Note that you need to reference the WhatsNewAttributes library that
you have just created. You also need to indicate the corresponding namespace with a using statement so
that the compiler can recognize the attributes:

using System;
using System.Collections;
using System.Text;
using Wrox.ProCSharp.WhatsNewAttributes;

[assembly: SupportsWhatsNew]

 In this code, you have also added the line that will mark the assembly itself with the SupportsWhatsNew
attribute.

 Now for the code for the Vector class. You are not making any major changes to this class; you only add
a couple of LastModified attributes to mark out the work that you have done on this class in this
chapter. Then Vector is defined as a class instead of a struct to simplify the code (of the next iteration of
the sample) that displays the attributes. (In the VectorAsCollection sample, Vector is a struct, but its
enumerator is a class. This means that the next iteration of the sample would have had to pick out both
classes and structs when looking at the assembly, which would have made the example less
straightforward.)

namespace Wrox.ProCSharp.VectorClass
{
 [LastModified(“14 Feb 2008”, “IEnumerable interface implemented “ +
 “So Vector can now be treated as a collection”)]
 [LastModified(“10 Feb 2008”, “IFormattable interface implemented “ +
 “So Vector now responds to format specifiers N and VE”)]
 class Vector : IFormattable, IEnumerable
 {
 public double x, y, z;

 public Vector(double x, double y, double z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 [LastModified(“10 Feb 2008”,
 “Method added in order to provide formatting support”)]
 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (format == null)
 {
 return ToString();
 }

 You also mark the contained VectorEnumerator class as new :

 [LastModified(“14 Feb 2008”,
 “Class created as part of collection support for Vector”)]
 private class VectorEnumerator : IEnumerator
 {

c13.indd 364c13.indd 364 2/19/08 5:12:24 PM2/19/08 5:12:24 PM

365

Chapter 13: Refl ection

 To compile this code from the command line, type the following:

csc /target:library /reference:WhatsNewAttributes.dll VectorClass.cs

 That ’ s as far as you can get with this example for now. You are unable to run anything yet because all
you have are two libraries. You will develop the final part of the example, in which you look up and
display these attributes, as soon as you have had a look at how reflection works.

 Reflection
 In this section, we take a closer look at the System.Type class, which lets you access information
concerning the definition of any data type. We then discuss the System.Reflection.Assembly class,
which you can use to access information about an assembly or to load that assembly into your program.
Finally, you will combine the code in this section with the code in the previous section to complete the
 WhatsNewAttributes sample.

 The System.Type Class
 So far you have used the Type class only to hold the reference to a type as follows:

Type t = typeof(double);

 Although previously referred to as a class, Type is an abstract base class. Whenever you instantiate a
 Type object, you are actually instantiating a class derived from Type . Type has one derived class
corresponding to each actual data type, though in general the derived classes simply provide different
overloads of the various Type methods and properties that return the correct data for the corresponding
data type. They do not generally add new methods or properties. In general, there are three common
ways to obtain a Type reference that refers to any given type:

 1. You can use the C# typeof operator as in the preceding code. This operator takes the name of
the type (not in quotation marks, however) as a parameter.

 2. You can use the GetType() method, which all classes inherit from System.Object :

double d = 10;
Type t = d.GetType();

 GetType() is called against a variable, rather than taking the name of a type. Note, however,
that the Type object returned is still associated with only that data type. It does not contain any
information that relates to that instance of the type. The GetType() method can be useful if you
have a reference to an object but are not sure what class that object is actually an instance of.

 3. You can call the static method of the Type class, GetType() :

Type t = Type.GetType(“System.Double”);

 Type is really the gateway to much of the reflection functionality. It implements a huge number of
methods and properties — far too many to provide a comprehensive list here. However, the following
subsections should give you some idea of the kinds of things you can do with the Type class. Note that
the available properties are all read - only; you use Type to find out about the data type — you cannot use
it to make any modifications to the type!

 Type Properties
 You can split the properties implemented by Type into three categories:

❑ A number of properties retrieve the strings containing various names associated with the class,
as shown in the following table:

c13.indd 365c13.indd 365 2/19/08 5:12:25 PM2/19/08 5:12:25 PM

366

Part I: The C# Language

❑ It is also possible to retrieve references to further type objects that represent related classes, as
shown in the following table:

Property Returns

Name The name of the data type

FullName The fully qualified name of the data type (including the namespace name)

Namespace The name of the namespace in which the data type is defined

Property Returns Type Reference Corresponding To

BaseType Immediate base type of this type

UnderlyingSystemType The type that this type maps to in the .NET runtime (recall that certain
.NET base types actually map to specific predefined types recognized
by IL)

❑ A number of Boolean properties indicate whether this type is, for example, a class, an enum , and
so on. These properties include IsAbstract , IsArray , IsClass , IsEnum , IsInterface ,
 IsPointer , IsPrimitive (one of the predefined primitive data types), IsPublic , IsSealed ,
and IsValueType .

 For example, using a primitive data type:

Type intType = typeof(int);
Console.WriteLine(intType.IsAbstract); // writes false
Console.WriteLine(intType.IsClass); // writes false
Console.WriteLine(intType.IsEnum); // writes false
Console.WriteLine(intType.IsPrimitive); // writes true
Console.WriteLine(intType.IsValueType); // writes true

 Or using the Vector class:

Type vecType = typeof(Vector);
Console.WriteLine(vecType.IsAbstract); // writes false
Console.WriteLine(vecType.IsClass); // writes true
Console.WriteLine(vecType.IsEnum); // writes false
Console.WriteLine(vecType.IsPrimitive); // writes false
Console.WriteLine(vecType.IsValueType); // writes false

 You can also retrieve a reference to the assembly that the type is defined in. This is returned as a
reference to an instance of the System.Reflection.Assembly class, which is examined shortly:

Type t = typeof (Vector);
Assembly containingAssembly = new Assembly(t);

 Methods
 Most of the methods of System.Type are used to obtain details of the members of the corresponding
data type — the constructors, properties, methods, events, and so on. Quite a large number of methods
exist, but they all follow the same pattern. For example, two methods retrieve details of the methods of

c13.indd 366c13.indd 366 2/19/08 5:12:25 PM2/19/08 5:12:25 PM

367

Chapter 13: Refl ection

the data type: GetMethod() and GetMethods() . GetMethod() returns a reference to a System.
Reflection.MethodInfo object, which contains details of a method. GetMethods() returns an array
of such references. The difference is that GetMethods() returns details of all the methods, whereas
 GetMethod() returns details of just one method with a specified parameter list. Both methods have
overloads that take an extra parameter, a BindingFlags enumerated value that indicates which
members should be returned — for example, whether to return public members, instance members,
static members, and so on.

 For example, the simplest overload of GetMethods() takes no parameters and returns details of all the
public methods of the data type:

Type t = typeof(double);
MethodInfo[] methods = t.GetMethods();
foreach (MethodInfo nextMethod in methods)
{
 // etc.
 }

 The member methods of Type that follow the same pattern are shown in the following table.

Type of Object Returned
Methods (The Method with the Plural Name
Returns an Array)

ConstructorInfo GetConstructor(), GetConstructors()

EventInfo GetEvent(), GetEvents()

FieldInfo GetField(), GetFields()

InterfaceInfo GetInterface(), GetInterfaces()

MemberInfo GetMember(), GetMembers()

MethodInfo GetMethod(), GetMethods()

PropertyInfo GetProperty(), GetProperties()

 The GetMember() and GetMembers() methods return details of any or all members of the data type,
regardless of whether these members are constructors, properties, methods, and so on. Finally, note that
it is possible to invoke members either by calling the InvokeMember() method of Type or by calling the
 Invoke() method of the MethodInfo , PropertyInfo , and the other classes.

 The TypeView Example
 This section demonstrates some of the features of the Type class with a short example, TypeView , which
you can use to list the members of a data type. The example demonstrates how to use TypeView for a
 double ; however, you can swap this type with any other data type just by changing one line of the code
in the sample. TypeView displays far more information than can be displayed in a console window, so
we ’ re going to take a break from our normal practice and display the output in a message box. Running
 TypeView for a double produces the results shown in Figure 13 - 1 .

c13.indd 367c13.indd 367 2/19/08 5:12:26 PM2/19/08 5:12:26 PM

368

Part I: The C# Language

 The message box displays the name, full name, and namespace of the data type as well as the name of the
underlying type and the base type. Next, it simply iterates through all the public instance members of
the data type, displaying for each member the declaring type, the type of member (method, field, and so
on), and the name of the member. The declaring type is the name of the class that actually declares the
type member (for example, System.Double if it is defined or overridden in System.Double , or the
name of the relevant base type if the member is simply inherited from some base class).

 TypeView does not display signatures of methods because you are retrieving details of all public
instance members through MemberInfo objects, and information about parameters is not available
through a MemberInfo object. In order to retrieve that information, you would need references to
 MethodInfo and other more specific objects, which means that you would need to obtain details of each
type of member separately.

 TypeView does display details of all public instance members, but for doubles, the only ones defined are
fields and methods. For this example, you will compile TypeView as a console application — there is no
problem with displaying a message box from a console application. However, the fact that you are using
a message box means that you need to reference the base class assembly System.Windows.Forms.dll ,
which contains the classes in the System.Windows.Forms namespace in which the MessageBox class
that you will need is defined. The code for TypeView is as follows. To begin, you need to add a few
 using statements:

using System;
using System.Text;

 Figure 13 - 1

c13.indd 368c13.indd 368 2/19/08 5:12:26 PM2/19/08 5:12:26 PM

369

Chapter 13: Refl ection

using System.Windows.Forms;
using System.Reflection;

 You need System.Text because you will be using a StringBuilder object to build up the text to be
displayed in the message box, and System.Windows.Forms for the message box itself. The entire code
is in one class, MainClass , which has a couple of static methods and one static field, a
 StringBuilder instance called OutputText , which will be used to build up the text to be displayed in
the message box. The main method and class declaration look like this:

 class MainClass
 {
 static StringBuilder OutputText = new StringBuilder();

 static void Main()
 {
 // modify this line to retrieve details of any
 // other data type
 Type t = typeof(double);

 AnalyzeType(t);
 MessageBox.Show(OutputText.ToString(), “Analysis of type “
 + t.Name);
 Console.ReadLine();
 }

 The Main() method implementation starts by declaring a Type object to represent your chosen data type.
You then call a method, AnalyzeType() , which extracts the information from the Type object and uses it
to build up the output text. Finally, you show the output in a message box. Using the MessageBox class is
fairly intuitive. You just call its static Show() method, passing it two strings, which will, respectively,
be the text in the box and the caption. AnalyzeType() is where the bulk of the work is done:

 static void AnalyzeType(Type t)
 {
 AddToOutput(“Type Name: “ + t.Name);
 AddToOutput(“Full Name: “ + t.FullName);
 AddToOutput(“Namespace: “ + t.Namespace);

 Type tBase = t.BaseType;

 if (tBase != null)
 {
 AddToOutput(“Base Type:” + tBase.Name);
 }

 Type tUnderlyingSystem = t.UnderlyingSystemType;

 if (tUnderlyingSystem != null)
 {
 AddToOutput(“UnderlyingSystem Type:” + tUnderlyingSystem.Name);
 }

 AddToOutput(“\nPUBLIC MEMBERS:”);
 MemberInfo [] Members = t.GetMembers();

 foreach (MemberInfo NextMember in Members)

(continued)

c13.indd 369c13.indd 369 2/19/08 5:12:27 PM2/19/08 5:12:27 PM

370

Part I: The C# Language

 {
 AddToOutput(NextMember.DeclaringType + “ “ +
 NextMember.MemberType + “ “ + NextMember.Name);
 }
 }

 You implement the AnalyzeType() method by calling various properties of the Type object to get the
information you need concerning the type names, then call the GetMembers() method to get an array of
 MemberInfo objects that you can use to display the details of each member. Note that you use a helper
method, AddToOutput() , to build up the text to be displayed in the message box:

 static void AddToOutput(string Text)
 {
 OutputText.Append(“\n” + Text);
 }

 Compile the TypeView assembly using this command:

csc /reference:System.Windows.Forms.dll TypeView.cs

 The Assembly Class
 The Assembly class is defined in the System.Reflection namespace and provides access to the
metadata for a given assembly. It also contains methods to allow you to load and even execute an
assembly — assuming that the assembly is an executable. Like the Type class, Assembly contains a large
number of methods and properties — too many to cover here. Instead, this section is confined to
covering those methods and properties that you need to get started and that you will use to complete the
 WhatsNewAttributes example.

 Before you can do anything with an Assembly instance, you need to load the corresponding assembly
into the running process. You can do this with either the static members Assembly.Load() or
 Assembly.LoadFrom() . The difference between these methods is that Load() takes the name of the
assembly, and the runtime searches in a variety of locations in an attempt to locate the assembly. These
locations include the local directory and the global assembly cache. LoadFrom() takes the full path
name of an assembly and does not attempt to find the assembly in any other location:

 Assembly assembly1 = Assembly.Load(“SomeAssembly”);
 Assembly assembly2 = Assembly.LoadFrom
 (@”C:\My Projects\Software\SomeOtherAssembly”);

 A number of other overloads of both methods exist, which supply additional security information. Once
you have loaded an assembly, you can use various properties on it to find out, for example, its full name:

 string name = assembly1.FullName;

 Finding Out About Types Defined in an Assembly
 One nice feature of the Assembly class is that it allows you to obtain details of all the types that are
defined in the corresponding assembly. You simply call the Assembly.GetTypes() method, which
returns an array of System.Type references containing details of all the types. You can then manipulate
these Type references as explained in the previous section.

Type[] types = theAssembly.GetTypes();

foreach(Type definedType in types)
{
 DoSomethingWith(definedType);
}

(continued)

c13.indd 370c13.indd 370 2/19/08 5:12:27 PM2/19/08 5:12:27 PM

371

Chapter 13: Refl ection

 Finding Out About Custom Attributes
 The methods you use to find out which custom attributes are defined on an assembly or type depend on
what type of object the attribute is attached to. If you want to find out what custom attributes are
attached to an assembly as a whole, you need to call a static method of the Attribute class,
 GetCustomAttributes() , passing in a reference to the assembly:

Attribute[] definedAttributes =
 Attribute.GetCustomAttributes(assembly1);
 // assembly1 is an Assembly object

 This is actually quite significant. You may have wondered why, when you defined custom attributes,
you had to go to all the trouble of actually writing classes for them, and why Microsoft hadn ’ t come up
with some simpler syntax. Well, the answer is here. The custom attributes do genuinely exist as objects,
and when an assembly is loaded you can read in these attribute objects, examine their properties, and
call their methods.

 GetCustomAttributes() , which is used to get assembly attributes, has a few overloads. If you call it
without specifying any parameters other than an assembly reference, it will simply return all the custom
attributes defined for that assembly. You can also call GetCustomAttributes() specifying a second
parameter, which is a Type object that indicates the attribute class in which you are interested. In this
case, GetCustomAttributes() returns an array consisting of all the attributes present that are of the
specified type.

 Note that all attributes are retrieved as plain Attribute references. If you want to call any of the
methods or properties you defined for your custom attributes, you will need to cast these references
explicitly to the relevant custom attribute classes. You can obtain details of custom attributes that are
attached to a given data type by calling another overload of Assembly.GetCustomAttributes() , this
time passing a Type reference that describes the type for which you want to retrieve any attached
attributes. If you want to obtain attributes that are attached to methods, constructors, fields, and so on,
however, you will need to call a GetCustomAttributes() method that is a member of one of the
classes MethodInfo , ConstructorInfo , FieldInfo , and so on.

 If you expect only a single attribute of a given type, you can call the GetCustomAttribute() method
instead, which returns a single Attribute object. You will use GetCustomAttribute() in the
 WhatsNewAttributes example to find out whether the SupportsWhatsNew attribute is present in the
assembly. To do this, you call GetCustomAttribute() , passing in a reference to the
 WhatsNewAttributes assembly, and the type of the SupportsWhatsNewAttribute attribute. If this
attribute is present, you get an Attribute instance. If no instances of it are defined in the assembly, you
get null . And if two or more instances are found, GetCustomAttribute() throws a System.
Reflection.AmbiguousMatchException .

 Attribute supportsAttribute =
 Attribute.GetCustomAttributes(assembly1,
 typeof(SupportsWhatsNewAttribute));

 Completing the WhatsNewAttributes Example
 You now have enough information to complete the WhatsNewAttributes example by writing the
source code for the final assembly in the sample, the LookUpWhatsNew assembly. This part of the
application is a console application. However, it needs to reference the other assemblies of
 WhatsNewAttributes and VectorClass . Although this is going to be a command - line application, you
will follow the previous TypeView sample in actually displaying your results in a message box because
there is a lot of text output — too much to show in a console window screenshot.

c13.indd 371c13.indd 371 2/19/08 5:12:28 PM2/19/08 5:12:28 PM

372

Part I: The C# Language

 The file is called LookUpWhatsNew.cs , and the command to compile it is:

csc /reference:WhatsNewAttributes.dll /reference:VectorClass.dll LookUpWhatsNew.cs

 In the source code of this file, you first indicate the namespaces you want to infer. System.Text is there
because you need to use a StringBuilder object again:

using System;
using System.Reflection;
using System.Windows.Forms;
using System.Text;
using Wrox.ProCSharp.VectorClass;
using Wrox.ProCSharp.WhatsNewAttributes;

namespace Wrox.ProCSharp.LookUpWhatsNew
{

 The class that contains the main program entry point as well as the other methods is WhatsNewChecker .
All the methods you define are in this class, which also has two static fields: outputText , which
contains the text as you build it up in preparation for writing it to the message box, and backDateTo ,
which stores the date you have selected. All modifications made since this date will be displayed.
Normally, you would display a dialog box inviting the user to pick this date, but we don ’ t want to get
sidetracked into that kind of code. For this reason, backDateTo is hard - coded to a value of 1 Feb 2008.
You can easily change this date if you want when you download the code:

 class WhatsNewChecker
 {
 static StringBuilder outputText = new StringBuilder(1000);
 static readonly DateTime backDateTo = new DateTime(2008, 2, 1);

 static void Main()
 {
 Assembly theAssembly = Assembly.Load(“VectorClass”);
 Attribute supportsAttribute =
 Attribute.GetCustomAttribute(
 theAssembly, typeof(SupportsWhatsNewAttribute));
 string Name = theAssembly.FullName;

 AddToMessage(“Assembly: “ + Name);

 if (supportsAttribute == null)
 {
 AddToMessage(
 “This assembly does not support WhatsNew attributes”);
 return;
 }
 else
 {
 AddToMessage(“Defined Types:”);
 }

 Type[] types = theAssembly.GetTypes();

 foreach(Type definedType in types)
 DisplayTypeInfo(theAssembly, definedType);

c13.indd 372c13.indd 372 2/19/08 5:12:28 PM2/19/08 5:12:28 PM

373

Chapter 13: Refl ection

 MessageBox.Show(outputText.ToString(),
 “What\’s New since “ + backDateTo.ToLongDateString());
 Console.ReadLine();
 }

 The Main() method first loads the VectorClass assembly, and verifies that it is marked with the
 SupportsWhatsNew attribute. You know VectorClass has the SupportsWhatsNew attribute applied to
it because you have only recently compiled it, but this is a check that would be worth making if users
were given a choice of what assembly they wanted to check.

 Assuming that all is well, you use the Assembly.GetTypes() method to get an array of all the types
defined in this assembly, and then loop through them. For each one, you call a method,
 DisplayTypeInfo() , which will add the relevant text, including details of any instances of
 LastModifiedAttribute , to the outputText field. Finally, you show the message box with the
complete text. The DisplayTypeInfo() method looks like this:

 static void DisplayTypeInfo(Assembly theAssembly, Type type)
 {
 // make sure we only pick out classes
 if (!(type.IsClass))
 {
 return;
 }

 AddToMessage(“\nclass “ + type.Name);

 Attribute [] attribs = Attribute.GetCustomAttributes(type);

 if (attribs.Length == 0)
 {
 AddToMessage(“No changes to this class\n”);
 }
 else
 {
 foreach (Attribute attrib in attribs)
 {
 WriteAttributeInfo(attrib);
 }
 }

 MethodInfo [] methods = type.GetMethods();
 AddToMessage(“CHANGES TO METHODS OF THIS CLASS:”);

 foreach (MethodInfo nextMethod in methods)
 {
 object [] attribs2 =
 nextMethod.GetCustomAttributes(
 typeof(LastModifiedAttribute), false);

 if (attribs2 != null)
 {
 AddToMessage(
 nextMethod.ReturnType + “ “ + nextMethod.Name + “()”);
 foreach (Attribute nextAttrib in attribs2)

(continued)

c13.indd 373c13.indd 373 2/19/08 5:12:29 PM2/19/08 5:12:29 PM

374

Part I: The C# Language

 {
 WriteAttributeInfo(nextAttrib);
 }
 }
 }
 }

 Notice that the first thing you do in this method is check whether the Type reference you have been
passed actually represents a class. Because, in order to keep things simple, you have specified that the
 LastModified attribute can be applied only to classes or member methods, you would be wasting your
time doing any processing if the item is not a class (it could be a class, delegate, or enum).

 Next, you use the Attribute.GetCustomAttributes() method to find out if this class does have any
 LastModifiedAttribute instances attached to it. If it does, you add their details to the output text,
using a helper method, WriteAttributeInfo() .

 Finally, you use the Type.GetMethods() method to iterate through all the member methods of this data
type, and then do the same with each method as you did for the class — check if it has any
 LastModifiedAttribute instances attached to it and, if so, display them using
 WriteAttributeInfo() .

 The next bit of code shows the WriteAttributeInfo() method, which is responsible for working out
what text to display for a given LastModifiedAttribute instance. Note that this method is passed an
 Attribute reference, so it needs to cast this to a LastModifiedAttribute reference first. After it has
done that, it uses the properties that you originally defined for this attribute to retrieve its parameters.
It checks that the date of the attribute is sufficiently recent before actually adding it to the text for
display:

 static void WriteAttributeInfo(Attribute attrib)
 {

 LastModifiedAttribute lastModifiedAttrib =
 attrib as LastModifiedAttribute;

 if (lastModifiedAttrib == null)
 {
 return;
 }

 // check that date is in range
 DateTime modifiedDate = lastModifiedAttrib.DateModified;

 if (modifiedDate < backDateTo)
 {
 return;
 }

 AddToMessage(“ MODIFIED: “ +
 modifiedDate.ToLongDateString() + “:”);
 AddToMessage(“ “ + lastModifiedAttrib.Changes);

 if (lastModifiedAttrib.Issues != null)
 {
 AddToMessage(“ Outstanding issues:” +

(continued)

c13.indd 374c13.indd 374 2/19/08 5:12:29 PM2/19/08 5:12:29 PM

375

Chapter 13: Refl ection

 lastModifiedAttrib.Issues);
 }
 }

 Finally, here is the helper AddToMessage() method:

 static void AddToMessage(string message)
 {
 outputText.Append(“\n” + message);
 }
 }
}

 Running this code produces the results shown in Figure 13 - 2 .

 Figure 13 - 2

 Notice that when you list the types defined in the VectorClass assembly, you actually pick up two
classes: Vector and the embedded VectorEnumerator class. Also notice that because the backDateTo
date of 1 Feb is hard - coded in this example, you actually pick up the attributes that are dated 14 Feb
(when you added the collection support) but not those dated 14 Jan (when you added the
 IFormattable interface).

c13.indd 375c13.indd 375 2/19/08 5:12:29 PM2/19/08 5:12:29 PM

376

Part I: The C# Language

 Summary
 This chapter did not attempt to cover the entire topic of reflection. Reflection is an extensive subject
worthy of a book of its own. Instead, it illustrated the Type and Assembly classes, which are the primary
entry points through which you can access the extensive capabilities provided by reflection.

 In addition, this chapter demonstrated a specific aspect of reflection that you are likely to use more often
than any other — the inspection of custom attributes. You learned how to define and apply your own
custom attributes, and how to retrieve information about custom attributes at runtime.

 Chapter 14 explores exceptions and structured exception handling.

c13.indd 376c13.indd 376 2/19/08 5:12:30 PM2/19/08 5:12:30 PM

 Errors and Exceptions

 Errors happen, and they are not always caused by the person who coded the application.
Sometimes your application will generate an error because of an action that was initiated by the
end user of your application or it might be simply due to the environmental context in which your
code is running. In any case, you should anticipate errors occurring in your applications and code
accordingly.

 The .NET Framework has enhanced the ways in which you deal with errors. C# ’ s mechanism for
handling error conditions allows you to provide custom handling for each type of error condition
as well as to separate code that identifies errors from the code that handles them.

 The main topics covered in this chapter include:

❑ Looking at the exception classes

❑ Using try – catch – finally to capture exceptions

❑ Creating user - defined exceptions

 By the end of the chapter, you will have a good grasp on advanced exception handling in your
C# applications.

 No matter how good your coding is, your programs should have the ability to handle any possible
errors that may occur. For example, in the middle of some complex processing your code may
discover that it doesn ’ t have permission to read a file, or, while it is sending network requests, the
network may go down. In such exceptional situations, it is not enough for a method to simply
return an appropriate error code — there might be 15 or 20 nested method calls, so what you really
want the program to do is jump back up through all those 15 or 20 calls in order to exit the task
completely and take the appropriate counteractions. The C# language has very good facilities to
handle this kind of situation, through the mechanism known as exception handling .

 Error - handling facilities in Visual Basic 6 are very restricted and essentially limited to the On Error
GoTo statement. If you are coming from a Visual Basic 6 background, you will find that C# exceptions
open a completely new world of error handling in your programs. Java and C++ developers, however,
will be familiar with the principle of exceptions because these languages handle errors in a similar way
to C#. Developers using C++ are sometimes wary of exceptions because of possible C++ performance
implications, but this is not the case in C#. Using exceptions in C# code in general does not adversely
affect performance. Visual Basic developers will find that working with exceptions in C# is very simi-
lar to using exceptions in Visual Basic (except for the syntax differences).

c14.indd 377c14.indd 377 2/19/08 5:12:43 PM2/19/08 5:12:43 PM

378

Part I: The C# Language

 Exception Classes
 In C#, an exception is an object created (or thrown) when a particular exceptional error condition occurs.
This object contains information that should help track down the problem. Although you can create your
own exception classes (and you will be doing so later), .NET provides you with many predefined
exception classes.

 This section provides a quick survey of some of the exceptions available in the .NET base class library.
Microsoft has provided a large number of exception classes in .NET — too many to provide a
comprehensive list here. This class hierarchy diagram in Figure 14 - 1 shows a few of these classes to give
you a sense of the general pattern.

 All the classes in Figure 14 - 1 are part of the System namespace, except for IOException and the classes
derived from IOException , which are part of the namespace System.IO . The System.IO namespace
deals with reading and writing data to files. In general, there is no specific namespace for exceptions.
Exception classes should be placed in whatever namespace is appropriate to the classes that can generate
them — hence IO - related exceptions are in the System.IO namespace. You will find exception classes in
quite a few of the base class namespaces.

 The generic exception class, System.Exception , is derived from System.Object , as you would expect
for a .NET class. In general, you should not throw generic System.Exception objects in your code,
because they provide no specifics about the error condition.

 Two important classes in the hierarchy are derived from System.Exception :

❑ System.SystemException — This class is for exceptions that are usually thrown by the .NET
runtime or that are considered to be of a generic nature and might be thrown by almost any
application. For example, StackOverflowException will be thrown by the .NET runtime if it
detects the stack is full. However, you might choose to throw ArgumentException or its
subclasses in your own code, if you detect that a method has been called with inappropriate
arguments. Subclasses of System.SystemException include classes that represent both fatal
and nonfatal errors.

❑ System.ApplicationException — This class is important, because it is the intended base for
any class of exception defined by third parties. If you define any exceptions covering error con-
ditions unique to your application, you should derive these directly or indirectly from System.
ApplicationException .

 Figure 14 - 1

c14.indd 378c14.indd 378 2/19/08 5:12:44 PM2/19/08 5:12:44 PM

379

Chapter 14: Errors and Exceptions

 Other exception classes that might come in handy include the following:

❑ StackOverflowException — This exception is thrown when the area of memory allocated to
the stack is full. A stack overflow can occur if a method continuously calls itself recursively. This
is generally a fatal error, because it prevents your application from doing anything apart from
terminating (in which case it is unlikely that even the finally block will execute). Trying to
handle errors like this yourself is usually pointless; instead, you should get the application
to gracefully exit.

❑ EndOfStreamException — The usual cause of an EndOfStreamException is an attempt to
read past the end of a file. A stream represents a flow of data between data sources. Streams are
covered in detail in Chapter 41 , “ Accessing the Internet. ”

❑ OverflowException — An OverflowException is what happens if you attempt to cast an int
containing a value of - 40 to a uint in a checked context.

 The other exception classes shown in Figure 14 - 1 are not discussed here.

 The class hierarchy for exceptions is somewhat unusual in that most of these classes do not add any
functionality to their respective base classes. However, in the case of exception handling, the common
reason for adding inherited classes is to indicate more specific error conditions. There is often no need to
override methods or add any new ones (although it is not uncommon to add extra properties that carry
extra information about the error condition). For example, you might have a base ArgumentException
class intended for method calls where inappropriate values are passed in, and an
 ArgumentNullException class derived from it, which is intended to handle a null argument if passed.

 Catching Exceptions
 Given that the .NET Framework includes a selection of predefined base class exception objects, how
do you use them in your code to trap error conditions? To deal with possible error conditions in C# code,
you will normally divide the relevant part of your program into blocks of three different types:

❑ try blocks encapsulate the code that forms part of the normal operation of your program and
that might encounter some serious error conditions.

❑ catch blocks encapsulate the code that deals with the various error conditions that your code
might have encountered by working through any of the code in the accompanying try block.
This place could also be used for logging errors.

❑ finally blocks encapsulate the code that cleans up any resources or takes any other action
that you will normally want done at the end of a try or catch block. It is important to under-
stand that the finally block is executed whether or not an exception is thrown. Because the
aim is that the finally block contains cleanup code that should always be executed, the com-
piler will flag an error if you place a return statement inside a finally block. For an example
of using the finally block, you might close any connections that were opened in the try block.
It is also important to understand that the finally block is completely optional.
If you do not have a requirement for any cleanup code (such as disposing or closing any open
objects), then there is no need for this block.

 So how do these blocks fit together to trap error conditions? Here is how:

 1. The execution flow first enters the try block.

 2. If no errors occur in the try block, execution proceeds normally through the block, and when
the end of the try block is reached, the flow of execution jumps to the finally block if one is
present (Step 5). However, if an error does occur within the try block, execution jumps to a
 catch block (Step 3).

c14.indd 379c14.indd 379 2/19/08 5:12:46 PM2/19/08 5:12:46 PM

380

Part I: The C# Language

 3. The error condition is handled in the catch block.

 4. At the end of the catch block, execution automatically transfers to the finally block if one is
present.

 5. The finally block is executed (if present).

 The C# syntax used to bring all of this about looks roughly like this:

try
{
 // code for normal execution
}
catch
{
 // error handling
}
finally
{
 // clean up
}

 Actually, a few variations on this theme exist:

❑ You can omit the finally block because it is optional.

❑ You can also supply as many catch blocks as you want to handle specific types of errors.
However, the idea is not to get too carried away and have a huge number of catch blocks,
because this can hurt the performance of your application.

❑ You can omit the catch blocks altogether, in which case the syntax serves not to identify
 exceptions, but as a way of guaranteeing that code in the finally block will be executed
when execution leaves the try block. This is useful if the try block contains several exit
points.

 So far so good, but the question that has yet to be answered is this: If the code is running in the try
block, how does it know when to switch to the catch block if an error has occurred? If an error is
detected, the code does something known as throwing an exception . In other words, it instantiates an
exception object class and throws it:

throw new OverflowException();

 Here, you have instantiated an exception object of the OverflowException class. As soon as the
computer encounters a throw statement inside a try block, it immediately looks for the catch block
associated with that try block. If there is more than one catch block associated with the try block, it
identifies the correct catch block by checking which exception class the catch block is associated with.
For example, when the OverflowException object is thrown, execution jumps to the following catch
block:

catch (OverflowException ex)
{
 // exception handling here
}

 In other words, the computer looks for the catch block that indicates a matching exception class
instance of the same class (or of a base class).

 With this extra information, you can expand the try block just demonstrated. Assume, for the sake of
argument, that there are two possible serious errors that can occur in the try block: an overflow and an

c14.indd 380c14.indd 380 2/19/08 5:12:47 PM2/19/08 5:12:47 PM

381

Chapter 14: Errors and Exceptions

array out of bounds. Assume that your code contains two Boolean variables, Overflow and OutOfBounds ,
which indicate whether these conditions exist. You have already seen that a predefined exception class
exists to indicate overflow (OverflowException); similarly, an IndexOutOfRangeException class exists
to handle an array that is out of bounds.

 Now your try block looks like this:

try
{
 // code for normal execution

 if (Overflow == true)
 {
 throw new OverflowException();
 }

 // more processing

 if (OutOfBounds == true)
 {
 throw new IndexOutOfRangeException();
 }

 // otherwise continue normal execution
}
catch (OverflowException ex)
{
 // error handling for the overflow error condition
}
catch (IndexOutOfRangeException ex)
{
 // error handling for the index out of range error condition
}
finally
{
 // clean up
}

 So far, this might not look that much different from what you could have done with the Visual Basic 6 On
Error GoTo statement (with the exception perhaps that the different parts in the code are separated).
C#, however, provides a far more powerful and flexible mechanism for error handling.

 This is because you can have throw statements that are nested in several method calls inside the try
block, but the same try block continues to apply even as execution flow enters these other methods. If
the computer encounters a throw statement, it immediately goes back up through all the method calls
on the stack, looking for the end of the containing try block and the start of the appropriate catch
block. During this process, all the local variables in the intermediate method calls will correctly go out of
scope. This makes the try...catch architecture well suited to the situation described at the beginning
of this section, where the error occurs inside a method call that is nested inside 15 or 20 method calls,
and processing has to stop immediately.

 As you can probably gather from this discussion, try blocks can play a very significant part in
controlling the flow of execution of your code. However, it is important to understand that exceptions
are intended for exceptional conditions, hence their name. You wouldn ’ t want to use them as a way of
controlling when to exit a do...while loop.

c14.indd 381c14.indd 381 2/19/08 5:12:47 PM2/19/08 5:12:47 PM

382

Part I: The C# Language

 Implementing Multiple Catch Blocks
 The easiest way to see how try...catch...finally blocks work in practice is with a couple of
examples. The first example is called SimpleExceptions . It repeatedly asks the user to type in a
number and then displays it. However, for the sake of this example, imagine that the number has to be
between 0 and 5; otherwise, the program won ’ t be able to process the number properly. Therefore, you
will throw an exception if the user types in anything outside of this range.

 The program then continues to ask for more numbers for processing until the user simply presses the
Enter key without entering anything.

 You should note that this code does not provide a good example of when to use exception handling. As
already indicated, the idea of exceptions is that they are provided for exceptional circumstances. Users
are always typing in silly things, so this situation doesn ’ t really count. Normally, your program will
handle incorrect user input by performing an instant check and asking the user to retype the input if
there is a problem. However, generating exceptional situations is difficult in a small example that you
can read through in a few minutes! So, we will tolerate this bad practice for now in order to demonstrate
how exceptions work. The examples that follow present more realistic situations.

 The code for SimpleExceptions looks like this:

using System;

namespace Wrox.ProCSharp.AdvancedCSharp
{
 public class MainEntryPoint
 {
 public static void Main()
 {
 while (true)
 {
 try
 {
 string userInput;

 Console.Write(“Input a number between 0 and 5 “ +
 “(or just hit return to exit) > “);
 userInput = Console.ReadLine();

 if (userInput == “”)
 {
 break;
 }

 int index = Convert.ToInt32(userInput);

 if (index < 0 || index > 5)
 {
 throw new IndexOutOfRangeException(
 “You typed in “ + userInput);
 }

 Console.WriteLine(“Your number was “ + index);
 }

c14.indd 382c14.indd 382 2/19/08 5:12:47 PM2/19/08 5:12:47 PM

383

Chapter 14: Errors and Exceptions

 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine(“Exception: “ +
 “Number should be between 0 and 5. {0}”, ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 “An exception was thrown. Message was: {0}”, ex.Message);
 }
 catch
 {
 Console.WriteLine(“Some other exception has occurred”);
 }
 finally
 {
 Console.WriteLine(“Thank you”);
 }
 }
 }
 }
}

 The core of this code is a while loop, which continually uses Console.ReadLine() to ask for user
input. ReadLine() returns a string, so your first task is to convert it to an int using the System
.Convert.ToInt32() method. The System.Convert class contains various useful methods to perform
data conversions and provides an alternative to the int.Parse() method. In general, System.Convert
contains methods to perform various type conversions. Recall that the C# compiler resolves int to
instances of the System.Int32 base class.

 It is also worth pointing out that the parameter passed to the catch block is scoped to that catch
block — which is why you are able to use the same parameter name, ex , in successive catch blocks in
the preceding code.

 In the preceding example, you also check for an empty string, because this is your condition for exiting
the while loop. Notice how the break statement actually breaks right out of the enclosing try block as
well as the while loop because this is valid behavior. Of course, once execution breaks out of the try
block, the Console.WriteLine() statement in the finally block is executed. Although you just
display a greeting here, more commonly, you will be doing tasks like closing file handles and calling the
 Dispose() method of various objects in order to perform any cleaning up. Once the computer leaves
the finally block, it simply carries on executing unto the next statement that it would have executed
had the finally block not been present. In the case of this example, though, you iterate back to the start
of the while loop, and enter the try block once again (unless the finally block was entered as a
result of executing the break statement in the while loop, in which case you simply exit the while loop).

 Next, you check for your exception condition:

if (index < 0 || index > 5)
{
 throw new IndexOutOfRangeException(“You typed in “ + userInput);
}

 When throwing an exception, you need to choose what type of exception to throw. Although the class
 System.Exception is available, it is intended only as a base class. It is considered bad programming
practice to throw an instance of this class as an exception, because it conveys no information about the
nature of the error condition. Instead, the .NET Framework contains many other exception classes that
are derived from System.Exception . Each of these matches a particular type of exception condition,

c14.indd 383c14.indd 383 2/19/08 5:12:48 PM2/19/08 5:12:48 PM

384

Part I: The C# Language

and you are free to define your own ones as well. The idea is that you give as much information as
possible about the particular exception condition by throwing an instance of a class that matches the
particular error condition. In the preceding example, System.IndexOutOfRangeException is the best
choice for the circumstances. IndexOutOfRangeException has several constructor overloads. The one
chosen in the example takes a string, which describes the error. Alternatively, you might choose to derive
your own custom Exception object that describes the error condition in the context of your application.

 Suppose that the user then types a number that is not between 0 and 5. This will be picked up by the if
statement and an IndexOutOfRangeException object will be instantiated and thrown. At this point, the
computer will immediately exit the try block and hunt for a catch block that handles
 IndexOutOfRangeException . The first catch block it encounters is this:

catch (IndexOutOfRangeException ex)
{
 Console.WriteLine(
 “Exception: Number should be between 0 and 5. {0}”, ex.Message);
}

 Because this catch block takes a parameter of the appropriate class, the catch block will be passed the
exception instance and executed. In this case, you display an error message and the Exception.
Message property (which corresponds to the string you passed to the IndexOutOfRangeException ’ s
constructor). After executing this catch block, control then switches to the finally block, just as if no
exception had occurred.

 Notice that in the example, you have also provided another catch block:

catch (Exception ex)
{
 Console.WriteLine(“An exception was thrown. Message was: {0}”, ex.Message);
}

 This catch block would also be capable of handling an IndexOutOfRangeException if it weren ’ t for
the fact that such exceptions will already have been caught by the previous catch block. A reference to a
base class can also refer to any instances of classes derived from it, and all exceptions are derived from
 System.Exception . So why isn ’ t this catch block executed? The answer is that the computer executes
only the first suitable catch block it finds from the list of available catch blocks. So why is this second
 catch block even here? Well, it is not only your code that is covered by the try block. Inside the block,
you actually make three separate calls to methods in the System namespace (Console.ReadLine() ,
 Console.Write() , and Convert.ToInt32()), and any of these methods might throw an exception.

 If you type in something that is not a number — say a or hello — the Convert.ToInt32() method
will throw an exception of the class System.FormatException to indicate that the string passed into
 ToInt32() is not in a format that can be converted to an int . When this happens, the computer will
trace back through the method calls, looking for a handler that can handle this exception. Your first
 catch block (the one that takes an IndexOutOfRangeException) will not do. The computer then looks
at the second catch block. This one will do because FormatException is derived from Exception , so a
 FormatException instance can be passed in as a parameter here.

 The structure of the example is actually fairly typical of a situation with multiple catch blocks. You start
off with catch blocks that are designed to trap very specific error conditions. Then, you finish with more
general blocks that will cover any errors for which you have not written specific error handlers. Indeed,
the order of the catch blocks is important. If you had written the previous two blocks in the opposite
order, the code would not have compiled, because the second catch block is unreachable (the
 Exception catch block would catch all exceptions). Therefore, the uppermost catch blocks should be
the most granular options available and ending with the most general options.

c14.indd 384c14.indd 384 2/19/08 5:12:48 PM2/19/08 5:12:48 PM

385

Chapter 14: Errors and Exceptions

 However, in the previous example, you have a third catch block listed in the code:

catch
{
 Console.WriteLine(“Some other exception has occurred”);
}

 This is the most general catch block of all — it does not take any parameter. The reason this catch block
is here is to catch exceptions thrown by other code that is not written in C# or is not even managed code at
all. You see, it is a requirement of the C# language that only instances of classes derived from System.
Exception can be thrown as exceptions, but other languages might not have this restriction — C++, for
example, allows any variable whatsoever to be thrown as an exception. If your code calls into libraries or
assemblies that have been written in other languages, it might find that an exception has been thrown that
is not derived from System.Exception , although in many cases, the .NET PInvoke mechanism will trap
these exceptions and convert them into .NET Exception objects. However, there is not that much that
this catch block can do, because you have no idea what class the exception might represent.

 For this particular example, there is no point in adding this catch - all catch handler. Doing this is
useful if you are calling into some other libraries that are not .NET - aware and that might throw excep-
tions. However, it is included in the example to illustrate the principle.

 Now that you have analyzed the code for the example, you can run it. The following output illustrates
what happens with different inputs and demonstrates both the IndexOutOfRangeException and the
 FormatException being thrown:

SimpleExceptions
Input a number between 0 and 5 (or just hit return to exit) > 4
Your number was 4
Thank you
Input a number between 0 and 5 (or just hit return to exit) > 0
Your number was 0
Thank you
Input a number between 0 and 5 (or just hit return to exit) > 10
Exception: Number should be between 0 and 5. You typed in 10
Thank you
Input a number between 0 and 5 (or just hit return to exit) > hello
An exception was thrown. Message was: Input string was not in a correct format.
Thank you
Input a number between 0 and 5 (or just hit return to exit) >
Thank you

 Catching Exceptions from Other Code
 The previous example demonstrated the handling of two exceptions. One of them,
 IndexOutOfRangeException , was thrown by your own code. The other, FormatException , was
thrown from inside one of the base classes. It is very common for code in a library to throw an exception
if it detects that some problem has occurred, or if one of the methods has been called inappropriately by
being passed the wrong parameters. However, library code rarely attempts to catch exceptions; this is
regarded as the responsibility of the client code.

 Often, you will find that exceptions are thrown from the base class libraries while you are debugging.
The process of debugging to some extent involves determining why exceptions have been thrown and
removing the causes. Your aim should be to ensure that by the time the code is actually shipped,
exceptions do occur only in very exceptional circumstances, and if at all possible, are handled in some
appropriate way in your code.

c14.indd 385c14.indd 385 2/19/08 5:12:49 PM2/19/08 5:12:49 PM

386

Part I: The C# Language

 System.Exception Properties
 The example has illustrated the use of only the Message property of the exception object. However, a
number of other properties are available in System.Exception , as shown in the following table.

Property Description

Data This provides you with the ability to add key/value statements to the excep-
tion that can be used to supply extra information about the exception.

HelpLink This is a link to a help file that provides more information about the exception.

InnerException If this exception was thrown inside a catch block, then InnerException
contains the exception object that sent the code into that catch block.

Message This is text that describes the error condition.

Source This is the name of the application or object that caused the exception.

StackTrace This provides details of the method calls on the stack (to help track down the
method that threw the exception).

TargetSite This is a .NET reflection object that describes the method that threw the
exception.

 Of these properties, StackTrace and TargetSite are supplied automatically by the .NET runtime if a
stack trace is available. Source will always be filled in by the .NET runtime as the name of the assembly
in which the exception was raised (though you might want to modify the property in your code to give
more specific information), whereas Data , Message , HelpLink , and InnerException must be filled in
by the code that threw the exception, by setting these properties immediately before throwing the
exception. For example, the code to throw an exception might look something like this:

if (ErrorCondition == true)
{
 Exception myException = new ClassMyException(“Help!!!!”);
 myException.Source = “My Application Name”;
 myException.HelpLink = “MyHelpFile.txt”;
 myException.Data[“ErrorDate”] = DateTime.Now;
 myException.Data.Add(“AdditionalInfo”, “Contact Bill from the Blue Team”);
 throw myException;
}

 Here, ClassMyException is the name of the particular exception class you are throwing. Note that it is
common practice for the names of all exception classes to end with Exception . Also note that the Data
property is assigned in two possible ways.

 What Happens If an Exception Isn ’ t Handled?
 Sometimes an exception might be thrown, but there might not be a catch block in your code that is able
to handle that kind of exception. The SimpleExceptions example can serve to illustrate this. Suppose,
for example, that you omitted the FormatException and catch - all catch blocks, and supplied only the
block that traps an IndexOutOfRangeException . In that circumstance, what would happen if a
 FormatException were thrown?

c14.indd 386c14.indd 386 2/19/08 5:12:49 PM2/19/08 5:12:49 PM

387

Chapter 14: Errors and Exceptions

 The answer is that the .NET runtime would catch it. Later in this section, you learn how you can nest
 try blocks, and in fact, there is already a nested try block behind the scenes in the example. The .NET
runtime has effectively placed the entire program inside another huge try block — it does this for every
.NET program. This try block has a catch handler that can catch any type of exception. If an exception
occurs that your code does not handle, the execution flow will simply pass right out of your program
and be trapped by this catch block in the .NET runtime. However, the results of this probably will not
be what you want. What happens is that the execution of your code will be terminated promptly; the
user will see a dialog box that complains that your code has not handled the exception, and that
provides any details about the exception the .NET runtime was able to retrieve. At least the exception
will have been caught though! This is what actually happened earlier in Chapter 2 , “ C# Basics, ” in the
 Vector example when the program threw an exception.

 In general, if you are writing an executable, try to catch as many exceptions as you reasonably can and
handle them in a sensible way. If you are writing a library, it is normally best not to handle exceptions
(unless a particular exception represents something wrong in your code that you can handle), but
instead, assume that the calling code will handle any errors it encounters. However, you may
nevertheless want to catch any Microsoft - defined exceptions, so that you can throw your own exception
objects that give more specific information to the client code.

 Nested try Blocks
 One nice feature of exceptions is that you can nest try blocks inside each other, like this:

try
{
 // Point A
 try
 {
 // Point B
 }
 catch
 {
 // Point C
 }
 finally
 {
 // clean up
 }
 // Point D
}
catch
{
 // error handling
}
finally
{
 // clean up
}

 Although each try block is accompanied by only one catch block in this example, you could string
several catch blocks together, too. This section takes a closer look at how nested try blocks work.

 If an exception is thrown inside the outer try block but outside the inner try block (points A and D), the
situation is no different from any of the scenarios you have seen before: either the exception is caught by

c14.indd 387c14.indd 387 2/19/08 5:12:49 PM2/19/08 5:12:49 PM

388

Part I: The C# Language

the outer catch block and the outer finally block is executed, or the finally block is executed
and the .NET runtime handles the exception.

 If an exception is thrown in the inner try block (point B), and there is a suitable inner catch block to
handle the exception, then, again, you are in familiar territory: the exception is handled there, and the
inner finally block is executed before execution resumes inside the outer try block (at point D).

 Now suppose that an exception occurs in the inner try block, but there isn ’ t a suitable inner catch block
to handle it. This time, the inner finally block is executed as usual, but then the .NET runtime will
have no choice but to leave the entire inner try block in order to search for a suitable exception handler.
The next obvious place to look is in the outer catch block. If the system finds one here, then that handler
will be executed and then the outer finally block will be executed after. If there is no suitable handler
here, the search for one will go on. In this case, it means the outer finally block will be executed, and
then, because there are no more catch blocks, control will be transferred to the .NET runtime. Note that
at no point is the code beyond point D in the outer try block executed.

 An even more interesting thing happens if an exception is thrown at point C. If the program is at point C,
it must be already processing an exception that was thrown at point B. It is quite legitimate to throw
another exception from inside a catch block. In this case, the exception is treated as if it had been
thrown by the outer try block, so flow of execution will immediately leave the inner catch block, and
execute the inner finally block, before the system searches the outer catch block for a handler.
Similarly, if an exception is thrown in the inner finally block, control will immediately be transferred
to the best appropriate handler, with the search starting at the outer catch block.

 It is perfectly legitimate to throw exceptions from catch and finally blocks.

 Although the situation has been shown with just two try blocks, the same principles hold no matter
how many try blocks you nest inside each other. At each stage, the .NET runtime will smoothly transfer
control up through the try blocks, looking for an appropriate handler. At each stage, as control leaves a
 catch block, any cleanup code in the corresponding finally block (if present) will be executed, but no
code outside any finally block will be run until the correct catch handler has been found and run.

 The nesting of try blocks can also occur between methods themselves. For example, if method A calls
method B from within a try block, then method B itself has a try block within it as well.

 You have now seen how having nested try blocks can work. The obvious next question is why
would you want to do that? There are two reasons:

❑ To modify the type of exception thrown

❑ To enable different types of exception to be handled in different places in your code

 Modifying the Type of Exception
 Modifying the type of the exception can be useful when the original exception thrown does not
adequately describe the problem. What typically happens is that something — possibly the .NET
runtime — throws a fairly low - level exception that says something like an overflow occurred
(OverflowException) or an argument passed to a method was incorrect (a class derived from
 ArgumentException). However, because of the context in which the exception occurred, you will know
that this reveals some other underlying problem (for example, an overflow can only have happened
at that point in your code because a file you have just read contained incorrect data). In that case, the
most appropriate thing that your handler for the first exception can do is throw another exception that
more accurately describes the problem, so that another catch block further along can deal with it more

c14.indd 388c14.indd 388 2/19/08 5:12:50 PM2/19/08 5:12:50 PM

389

Chapter 14: Errors and Exceptions

appropriately. In this case, it can also forward the original exception through a property implemented by
 System.Exception called InnerException . InnerException simply contains a reference to any other
related exception that was thrown — in case the ultimate handler routine will need this extra
information.

 Of course, the situation also exists where an exception occurs inside a catch block. For example, you
might normally read in some configuration file that contains detailed instructions for handling the error,
and it might turn out that this file is not there.

 Handling Different Exceptions in Different Places
 The second reason for having nested try blocks is so that different types of exceptions can be handled at
different locations in your code. A good example of this is if you have a loop where various exception
conditions can occur. Some of these might be serious enough that you need to abandon the entire loop,
whereas others might be less serious and simply require that you abandon that iteration and move on to
the next iteration around the loop. You could achieve this by having one try block inside the loop,
which handles the less serious error conditions, and an outer try block outside the loop, which handles
the more serious error conditions. You will see how this works in the next exceptions example.

 User - Defined Exception Classes
 You are now ready to look at a second example that illustrates exceptions. This example, called
 SolicitColdCall , contains two nested try blocks and also illustrates the practice of defining your own
custom exception classes and throwing another exception from inside a try block.

 This example assumes that a sales company wants to have additional customers on its sales list. The
company ’ s sales team is going to phone a list of people to invite them to become customers, a practice
known in sales jargon as cold calling . To this end, you have a text file available that contains the names
of the people to be cold called. The file should be in a well - defined format in which the first line contains
the number of people in the file and each subsequent line contains the name of the next person. In other
words, a correctly formatted file of names might look like this:

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

 This version of cold calling is designed to display the name of the person on the screen (perhaps for the
salesperson to read). That is why only names and not phone numbers of the individuals are contained in
the file.

 For this example, your program will ask the user for the name of the file and will then simply read it in
and display the names of people. That sounds like a simple task, but even so, a couple of things can go
wrong and require you to abandon the entire procedure:

❑ The user might type the name of a file that does not exist. This will be caught as a
 FileNotFound exception.

❑ The file might not be in the correct format. There are two possible problems here. First, the first
line of the file might not be an integer. Second, there might not be as many names in the file as
the first line of the file indicates. In both cases, you want to trap this oddity as a custom excep-
tion that has been written specially for this purpose, ColdCallFileFormatException .

c14.indd 389c14.indd 389 2/19/08 5:12:50 PM2/19/08 5:12:50 PM

390

Part I: The C# Language

 There is something else that can go wrong that, while not causing you to abandon the entire process, will
mean that you need to abandon that person and move on to the next person in the file (and therefore
will need to be trapped by an inner try block). Some people are spies working for rival sales companies,
and obviously, you would not want to let these people know what you are up to by accidentally phoning
one of them. Your research has indicated that you can identify who the spies are because their names
begin with B. Such people should have been screened out when the data file was first prepared,
but just in case any have slipped through, you will need to check each name in the file and throw a
 SalesSpyFoundException if you detect a sales spy. This, of course, is another custom exception object.

 Finally, you will implement this example by coding a class, ColdCallFileReader , which maintains the
connection to the cold - call file and retrieves data from it. You will code this class in a very safe way,
which means that its methods will all throw exceptions if they are called inappropriately; for example, if
a method that will read a file is called before the file has even been opened. For this purpose, you will
write another exception class, UnexpectedException .

 Catching the User - Defined Exceptions
 Let ’ s start with the Main() method of the SolicitColdCall sample, which catches your user - defined
exceptions. Note that you will need to call up file - handling classes in the System.IO namespace as well
as the System namespace.

using System;
using System.IO;

namespace Wrox.ProCSharp.AdvancedCSharp
{
 class MainEntryPoint
 {
 static void Main()
 {
 string fileName;
 Console.Write(“Please type in the name of the file “ +
 “containing the names of the people to be cold called > “);
 fileName = Console.ReadLine();
 ColdCallFileReader peopleToRing = new ColdCallFileReader();

 try
 {
 peopleToRing.Open(fileName);
 for (int i=0 ; i < peopleToRing.NPeopleToRing; i++)
 {
 peopleToRing.ProcessNextPerson();
 }
 Console.WriteLine(“All callers processed correctly”);
 }
 catch(FileNotFoundException)
 {
 Console.WriteLine(“The file {0} does not exist”, fileName);
 }
 catch(ColdCallFileFormatException ex)
 {
 Console.WriteLine(
 “The file {0} appears to have been corrupted”, fileName);
 Console.WriteLine(“Details of problem are: {0}”, ex.Message);
 if (ex.InnerException != null)

c14.indd 390c14.indd 390 2/19/08 5:12:51 PM2/19/08 5:12:51 PM

391

Chapter 14: Errors and Exceptions

 {
 Console.WriteLine(
 “Inner exception was: {0}”, ex.InnerException.Message);
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine(“Exception occurred:\n” + ex.Message);
 }
 finally
 {
 peopleToRing.Dispose();
 }
 Console.ReadLine();
 }
 }

 This code is a little more than just a loop to process people from the file. You start by asking the user
for the name of the file. Then you instantiate an object of a class called ColdCallFileReader , which
is defined shortly. The ColdCallFileReader class is the class that handles the file reading. Notice
that you do this outside the initial try block — that ’ s because the variables that you instantiate here
need to be available in the subsequent catch and finally blocks, and if you declared them inside the
 try block they would go out of scope at the closing curly brace of the try block, which would not be a
good thing.

 In the try block, you open the file (using the ColdCallFileReader.Open() method) and loop over all
the people in it. The ColdCallFileReader.ProcessNextPerson() method reads in and displays the
name of the next person in the file, and the ColdCallFileReader.NPeopleToRing property tells you
how many people should be in the file (obtained by reading the first line of the file). There are three
 catch blocks: one for FileNotFoundException , one for ColdCallFileFormatException , and one to
trap any other .NET exceptions.

 In the case of a FileNotFoundException , you display a message to that effect. Notice that in this catch
block, the exception instance is not actually used at all. This catch block is used to illustrate the user -
 friendliness of the application. Exception objects generally contain technical information that is useful for
developers, but not the sort of stuff you want to show to your end users. So in this case, you create a
simpler message of your own.

 For the ColdCallFileFormatException handler, you have done the opposite, and illustrated how to
give fuller technical information, including details of the inner exception, if one is present.

 Finally, if you catch any other generic exceptions, you display a user - friendly message, instead of letting
any such exceptions fall through to the .NET runtime. Note that you have chosen not to handle any other
exceptions not derived from System.Exception , because you are not calling directly into non - .NET code.

 The finally block is there to clean up resources. In this case, this means closing any open
file — performed by the ColdCallFileReader.Dispose() method.

 Throwing the User - Defined Exceptions
 Now take a look at the definition of the class that handles the file reading and (potentially) throws your
user - defined exceptions: ColdCallFileReader . Because this class maintains an external file connection,
you will need to make sure that it is disposed of correctly in accordance with the principles laid down
for the disposing of objects in Chapter 4 , “ Inheritance. ” Therefore, you derive this class from
 IDisposable .

c14.indd 391c14.indd 391 2/19/08 5:12:51 PM2/19/08 5:12:51 PM

392

Part I: The C# Language

 First, you declare some variables:

 class ColdCallFileReader : IDisposable
 {
 FileStream fs;
 StreamReader sr;
 uint nPeopleToRing;
 bool isDisposed = false;
 bool isOpen = false;

 FileStream and StreamReader , both in the System.IO namespace, are the base classes that you will
use to read the file. FileStream allows you to connect to the file in the first place, whereas
 StreamReader is specially geared up to reading text files and implements a method, ReadLine() ,
which reads a line of text from a file. You look at StreamReader more closely in Chapter 25 ,
 “ Manipulating Files and the Registry, ” which discusses file handling in depth.

 The isDisposed field indicates whether the Dispose() method has been called. ColdCallFileReader
is implemented so that once Dispose() has been called, it is not permitted to reopen connections and
reuse the object. isOpen is also used for error checking — in this case, checking whether the
 StreamReader actually connects to an open file.

 The process of opening the file and reading in that first line — the one that tells you how many people
are in the file — is handled by the Open() method:

 public void Open(string fileName)
 {
 if (isDisposed)
 throw new ObjectDisposedException(“peopleToRing”);

 fs = new FileStream(fileName, FileMode.Open);
 sr = new StreamReader(fs);

 try
 {
 string firstLine = sr.ReadLine();
 nPeopleToRing = uint.Parse(firstLine);
 isOpen = true;
 }
 catch (FormatException ex)
 {
 throw new ColdCallFileFormatException(
 “First line isn\’t an integer”, ex);
 }
 }

 The first thing you do in this method (as with all other ColdCallFileReader methods) is check
whether the client code has inappropriately called it after the object has been disposed of, and if so,
throw a predefined ObjectDisposedException object. The Open() method checks the isDisposed
field to see whether Dispose() has already been called. Because calling Dispose() implies that the
caller has now finished with this object, you regard it as an error to attempt to open a new file connection
if Dispose() has been called.

 Next, the method contains the first of two inner try blocks. The purpose of this one is to catch any errors
resulting from the first line of the file not containing an integer. If that problem arises, the .NET runtime
will throw a FormatException , which you trap and convert to a more meaningful exception that indicates
there is actually a problem with the format of the cold - call file. Note that System.FormatException

c14.indd 392c14.indd 392 2/19/08 5:12:51 PM2/19/08 5:12:51 PM

393

Chapter 14: Errors and Exceptions

is there to indicate format problems with basic data types, not with files, and so is not a particularly useful
exception to pass back to the calling routine in this case. The new exception thrown will be trapped by the
outermost try block. Because no cleanup is needed here, there is no need for a finally block.

 If everything is fine, you set the isOpen field to true to indicate that there is now a valid file connection
from which data can be read.

 The ProcessNextPerson() method also contains an inner try block:

 public void ProcessNextPerson()
 {
 if (isDisposed)
 {
 throw new ObjectDisposedException(“peopleToRing”);
 }

 if (!isOpen)
 {
 throw new UnexpectedException(
 “Attempted to access cold-call file that is not open”);
 }

 try
 {
 string name;
 name = sr.ReadLine();
 if (name == null)
 throw new ColdCallFileFormatException(“Not enough names”);
 if (name[0] == ‘B’)
 {
 throw new SalesSpyFoundException(name);
 }
 Console.WriteLine(name);
 }
 catch(SalesSpyFoundException ex)
 {
 Console.WriteLine(ex.Message);
 }

 finally
 {
 }
 }

 Two possible problems exist with the file here (assuming that there actually is an open file connection;
the ProcessNextPerson() method checks this first). First, you might read in the next name and
discover that it is a sales spy. If that condition occurs, the exception is trapped by the first of the catch
blocks in this method. Because that exception has been caught here, inside the loop, it means that
execution can subsequently continue in the Main() method of the program, and the subsequent names
in the file will continue to be processed.

 A problem might also occur if you try to read the next name and discover that you have already reached
the end of the file. The way that the StreamReader object ’ s ReadLine() method works is if it has gone
past the end of the file, it doesn ’ t throw an exception, but simply returns null . Therefore, if you find a
null string, you know that the format of the file was incorrect because the number in the first line of the

c14.indd 393c14.indd 393 2/19/08 5:12:52 PM2/19/08 5:12:52 PM

394

Part I: The C# Language

file indicated a larger number of names than were actually present in the file. If that happens, you throw
a ColdCallFileFormatException , which will be caught by the outer exception handler (which will
cause execution to terminate).

 Once again, you don ’ t need a finally block here because there is no cleanup to do; however, this time
an empty finally block is included, just to show that you can do so, if you want.

 The example is nearly finished. You have just two more members of ColdCallFileReader to look at:
the NPeopleToRing property, which returns the number of people supposed to be in the file, and
the Dispose() method, which closes an open file. Notice that the Dispose() method just returns if it has
already been called — this is the recommended way of implementing it. It also checks that there actually
is a file stream to close before closing it. This example is shown here to illustrate defensive coding
techniques, so that ’ s what you are doing!

 public uint NPeopleToRing
 {
 get
 {
 if (isDisposed)
 {
 throw new ObjectDisposedException(“peopleToRing”);
 }

 if (!isOpen)
 {
 throw new UnexpectedException(
 “Attempted to access cold-call file that is not open”);
 }

 return nPeopleToRing;
 }
 }

 public void Dispose()
 {
 if (isDisposed)
 {
 return;
 }

 isDisposed = true;
 isOpen = false;

 if (fs != null)
 {
 fs.Close();
 fs = null;
 }
 }

 Defining the User - Defined Exception Classes
 Finally, you need to define your own three exception classes. Defining your own exception is quite easy
because there are rarely any extra methods to add. It is just a case of implementing a constructor to
ensure that the base class constructor is called correctly. Here is the full implementation of
 SalesSpyFoundException :

c14.indd 394c14.indd 394 2/19/08 5:12:52 PM2/19/08 5:12:52 PM

395

Chapter 14: Errors and Exceptions

 class SalesSpyFoundException : ApplicationException
 {
 public SalesSpyFoundException(string spyName)
 : base(“Sales spy found, with name “ + spyName)
 {
 }

 public SalesSpyFoundException(
 string spyName, Exception innerException)
 : base(
 “Sales spy found with name “ + spyName, innerException)
 {
 }
 }

 Notice that it is derived from ApplicationException , as you would expect for a custom exception.
In fact, in practice, you would probably have put in an intermediate class, something like
 ColdCallFileException , derived from ApplicationException , and derived both of your exception
classes from this class. This would ensure that the handling code has that extra - fine degree of control
over which exception handler handles which exception. However, to keep the example simple, you will
not do that.

 You have done one bit of processing in SalesSpyFoundException . You have assumed that the message
passed into its constructor is just the name of the spy found, so you turn this string into a more
meaningful error message. You have also provided two constructors, one that simply takes a message,
and one that also takes an inner exception as a parameter. When defining your own exception classes, it
is best to include, at a minimum, at least these two constructors (although you will not actually be using
the second SalesSpyFoundException constructor in this example).

 Now for the ColdCallFileFormatException . This follows the same principles as the previous
exception, except that you don ’ t do any processing on the message:

 class ColdCallFileFormatException : ApplicationException
 {
 public ColdCallFileFormatException(string message)
 : base(message)
 {
 }

 public ColdCallFileFormatException(
 string message, Exception innerException)
 : base(message, innerException)
 {
 }
 }

 And finally, UnexpectedException , which looks much the same as ColdCallFileFormatException :

 class UnexpectedException : ApplicationException
 {
 public UnexpectedException(string message)
 : base(message)

(continued)

c14.indd 395c14.indd 395 2/19/08 5:12:52 PM2/19/08 5:12:52 PM

396

Part I: The C# Language

 {
 }

 public UnexpectedException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
 }

 Now you are ready to test the program. First, try the people.txt file whose contents are defined here.

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

 This has four names (which match the number given in the first line of the file), including one spy. Then
try the following people2.txt file, which has an obvious formatting error:

49
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

 Finally, try the example but specify the name of a file that does not exist, say, people3.txt . Running the
program three times for the three file names gives these results:

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
called > people.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
All callers processed correctly

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
called > people2.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
The file people2.txt appears to have been corrupted.
Details of the problem are: Not enough names

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
called > people3.txt
The file people3.txt does not exist.

 In the end, this application shows you a number of different ways in which you can handle the errors
and exceptions that you might find in your own applications.

(continued)

c14.indd 396c14.indd 396 2/19/08 5:12:53 PM2/19/08 5:12:53 PM

397

Chapter 14: Errors and Exceptions

 Summary
 This chapter examined the rich mechanism C# has for dealing with error conditions through exceptions.
You are not limited to the generic error codes that could be output from your code; instead, you have the
ability to go in and uniquely handle the most granular of error conditions. Sometimes these error
conditions are provided to you through the .NET Framework itself, but at other times, you might want
to go in and code your own error conditions as illustrated in this chapter. In either case, you have many
ways of protecting the workflow of your applications from unnecessary and dangerous faults.

 The next chapter allows you to take a lot of what you learned so far in this book and works at
implementing these lessons within the .NET developers IDE — Visual Studio 2008.

c14.indd 397c14.indd 397 2/19/08 5:12:53 PM2/19/08 5:12:53 PM

c14.indd 398c14.indd 398 2/19/08 5:12:53 PM2/19/08 5:12:53 PM

Part II

Visual Studio

Chapter 15: Visual Studio 2008

Chapter 16: Deployment

c15.indd 399c15.indd 399 2/19/08 5:13:23 PM2/19/08 5:13:23 PM

c15.indd 400c15.indd 400 2/19/08 5:13:24 PM2/19/08 5:13:24 PM

 Visual Studio 2008

 At this point, you should be familiar with the C# language and almost ready to move on to the
applied sections of the book, which cover how to use C# to program a variety of applications.
Before doing that, however, you need to examine how you can use Visual Studio and some of the
features provided by the .NET environment to get the best from your programs.

 This chapter explains what programming in the .NET environment means in practice. It covers
Visual Studio, the main development environment in which you will write, compile, debug, and
optimize your C# programs, and provides guidelines for writing good applications. Visual Studio
is the main IDE used for everything from writing Web Forms and Windows Forms to XML Web
services, and more. For more details on Windows Forms and how to write user interface code, see
Chapter 31 , “ Windows Forms. ” This chapter takes a strong look at the following:

 Using Visual Studio 2008

 Refactoring with Visual Studio

 Visual Studio 2008 ’ s multi - targeting capabilities

 Working with the new technologies WPF, WCF, WF, and more.

 This chapter also explores what it takes to build applications that are targeted at the .NET
Framework 3.0 or 3.5. The types of applications provided ever since the .NET Framework 3.0 class
library include the Windows Presentation Foundation (WPF), the Windows Communication
Foundation (WCF), and the Windows Workflow Foundation (WF). Working with Visual Studio
2008 will provide you the ability to work with these new application types directly.

 Working with Visual Studio 2008
 Visual Studio 2008 is a fully integrated development environment. It is designed to make the
process of writing your code, debugging it, and compiling it to an assembly to be shipped as
easy as possible. What this means is that Visual Studio gives you a very sophisticated
multiple - document - interface application in which you can do just about everything related to
developing your code. It offers these features:

❑

❑

❑

❑

c15.indd 401c15.indd 401 2/19/08 5:13:24 PM2/19/08 5:13:24 PM

Part II: Visual Studio

402

 Text editor — Using this editor, you can write your C# (as well as Visual Basic 2008 and
Visual C++) code. This text editor is quite sophisticated. For example, as you type, it
automatically lays out your code by indenting lines, matching start and end brackets of code
blocks, and color - coding keywords. It also performs some syntax checks as you type, and it
underlines code that causes compilation errors, also known as design - time debugging. In
addition, it features IntelliSense, which automatically displays the names of classes, fields, or
methods as you begin to type them. As you start typing parameters to methods, it will also
show you the parameter lists for the available overloads. Figure 15 - 1 shows the IntelliSense
feature in action with one of the .NET base classes, ListBox .

❑

Figure 15-1

 By pressing Ctrl+Space, you can bring back the IntelliSense list box if you need it
and if for any reason it is not visible.

 Design view editor — This editor enables you to place user - interface and data - access controls in
your project; Visual Studio automatically adds the necessary C# code to your source files to
instantiate these controls in your project. (This is possible because all .NET controls are instances
of particular base classes.)

 Supporting windows — These windows allow you to view and modify aspects of your project,
such as the classes in your source code, as well as the available properties (and their startup
values) for Windows Forms and Web Forms classes. You can also use these windows to specify
compilation options, such as which assemblies your code needs to reference.

❑

❑

c15.indd 402c15.indd 402 2/19/08 5:13:25 PM2/19/08 5:13:25 PM

403

Chapter 15: Visual Studio 2008

 The ability to compile from within the environment — Instead of needing to run the C# compiler
from the command line, you can simply select a menu option to compile the project, and Visual
Studio will call the compiler for you and pass all the relevant command - line parameters to the
compiler, detailing such things as which assemblies to reference and what type of assembly you
want to be emitted (executable or library .dll , for example). If you want, it can also run the
compiled executable for you so that you can see whether it runs satisfactorily. You can even
choose between different build configurations (for example, a release or debug build).

 Integrated debugger — It is in the nature of programming that your code will not run correctly
the first time you try it. Or the second time. Or the third time. Visual Studio seamlessly links up
to a debugger for you, allowing you to set breakpoints and watches on variables from within the
environment.

 Integrated MSDN help — Visual Studio enables you to access the MSDN documentation from
within the IDE. For example, if you are not sure of the meaning of a keyword while using the text
editor, simply select the keyword and press the F1 key, and Visual Studio will access MSDN to
show you related topics. Similarly, if you are not sure what a certain compilation error means,
you can bring up the documentation for that error by selecting the error message and pressing F1.

 Access to other programs — Visual Studio can also access a number of other utilities that allow
you to examine and modify aspects of your computer or network, without your having to leave
the developer environment. Among the tools available, you can check running services and
database connections, look directly into your SQL Server tables, and even browse the Web using
an Internet Explorer window.

 If you have developed previously using C++ or Visual Basic, you will already be familiar with the
relevant Visual Studio 6 version of the IDE, and many of the features in the preceding list will not be new
to you. What is new in Visual Studio is that it combines all the features that were previously available
across all Visual Studio 6 development environments. This means that whatever language you used in
Visual Studio 6, you will find some new features in Visual Studio. For example, in the older Visual Basic
environment, you could not compile separate debug and release builds. If you are coming to C# from a
background of C++, though, then much of the support for data access and the ability to drop controls
into your application with a click of the mouse, which has long been part of the Visual Basic developer ’ s
experience, will be new to you. In the C++ development environment, drag - and - drop support is limited
to the most common user - interface controls.

 C++ developers will miss two Visual Studio 6 features in Visual Studio 2008: edit - and - continue
debugging and an integrated profiler. Visual Studio 2008 also does not include a full profiler
application. Instead, you will find a number of .NET classes that assist with profiling in the System
.Diagnostics namespace. The perfmon profiling tool is available from the command line (just type
perfmon) and has a number of new .NET - related performance monitors.

 Whatever your background, you will find that the overall look of the Visual Studio 2008 developer
environment has changed since the days of Visual Studio 6 to accommodate the new features, the single
cross - language IDE, and the integration with .NET. There are new menu and toolbar options, and many
of the existing ones from Visual Studio 6 have been renamed. Therefore, you will need to spend some
time familiarizing yourself with the layout and commands available in Visual Studio 2008.

 The differences between Visual Studio 2005 and Visual Studio 2008 are a few nice additions that
facilitate working in Visual Studio 2008. The biggest changes in Visual Studio 2008 include the
ability to target specific versions of the .NET Framework (including the .NET Framework versions 2.0,
3.0, or 3.5), JavaScript IntelliSense support, and new abilities to work with CSS. You will also find
new built - in features that allow you to build ASP.NET AJAX applications as well as applications using
some of the newest technical capabilities coming out of Microsoft, including the Windows
Communication Foundation, Windows Workflow Foundation, and the Windows Presentation
Foundation.

❑

❑

❑

❑

c15.indd 403c15.indd 403 2/19/08 5:13:25 PM2/19/08 5:13:25 PM

Part II: Visual Studio

404

 One of the biggest items to notice with your installation of Visual Studio 2008 is that this new IDE works
with the .NET Framework 3.5. In fact, when you install Visual Studio 2008, you will also be installing the
.NET Framework 3.0 and 3.5 if they aren ’ t already installed. Like Visual Studio 2005, this new IDE,
Visual Studio 2008, is not built to work with version 1.0 or 1.1 of the .NET Framework, which means that
if you still want to develop 1.0 or 1.1 applications, you will want to keep Visual Studio 2002 or 2003,
respectively, installed on your machine. Installing Visual Studio 2008 installs a complete and new copy of
Visual Studio and does not upgrade the previous Visual Studio 2002, 2003, or 2005 IDEs. The three copies
of Visual Studio will then run side by side on your machine if required.

 Note that if you attempt to open your Visual Studio 2002, 2003, or 2005 projects using Visual Studio 2008,
the IDE will warn you that your solution will be upgraded to Visual Studio 2008 if you continue by
popping up the Visual Studio Conversion Wizard (see Figure 15 - 2).

Figure 15-2

 The upgrade wizard has been dramatically improved from Visual Studio 2003 to this newer one
provided by Visual Studio 2008. This wizard can make backup copies of the solutions that are being
backed up (see Figure 15 - 3), and it can also back up solutions that are contained within source control.

 It is also possible to have Visual Studio generate a conversion report for you in the conversion process ’ s
final step. The report will then be viewable directly in the document window of Visual Studio. This
report is illustrated (done with a simple conversion) in Figure 15 - 4 .

 Because this is a professional - level book, it does not look in detail at every feature or menu option
available in Visual Studio 2008. Surely, you will be able to find your way around the IDE. The real aim of
this Visual Studio coverage is to ensure that you are sufficiently familiar with the concepts involved
when building and debugging a C# application that you can make the most of working with Visual
Studio 2008. Figure 15 - 5 shows what your screen might look like when working in Visual Studio 2008.
(Note that because the appearance of Visual Studio is highly customizable, the windows might not be in
the same locations, or different windows might be visible when you launch this development
environment.)

c15.indd 404c15.indd 404 2/19/08 5:13:26 PM2/19/08 5:13:26 PM

405

Chapter 15: Visual Studio 2008

Figure 15-3

Figure 15-4

c15.indd 405c15.indd 405 2/19/08 5:13:26 PM2/19/08 5:13:26 PM

Part II: Visual Studio

406

 The following sections walk you through the process of creating, coding, and debugging a project,
showing what Visual Studio can do to help you at each stage.

 Creating a Project
 Once you have installed Visual Studio 2008, you will want to start your first project. With Visual Studio,
you rarely start with a blank file and then add C# code, in the way that you have been doing in the
previous chapters in this book. (Of course, the option of asking for an empty application project is there
if you really do want to start writing your code from scratch or if you are going to create a solution that
will contain a number of projects.) Instead, the idea is that you tell Visual Studio roughly what type of
project you want to create, and it will generate the files and C# code that provide a framework for that
type of project. You then work by adding your code to this outline. For example, if you want to build a
Windows GUI - interface - based application (or, in .NET terminology, a Windows Form), Visual Studio
will start you off with a file containing C# source code that creates a basic form. This form is capable of
talking to Windows and receiving events. It can be maximized, minimized, or resized; all you need to do
is add the controls and functionality you want. If your application is intended to be a command - line
utility (a console application), Visual Studio will give you a basic namespace, class, and a Main()
method to start you off.

 Last, but hardly least, when you create your project, Visual Studio also sets up the compilation options
that you are likely to supply to the C# compiler — whether it is to compile to a command - line
application, a library, or a Windows application. It will also tell the compiler which base class libraries

Figure 15-5

c15.indd 406c15.indd 406 2/19/08 5:13:27 PM2/19/08 5:13:27 PM

407

Chapter 15: Visual Studio 2008

you will need to reference (a Windows GUI application will need to reference many of the Windows
.Forms - related libraries; a console application probably will not). You can, of course, modify all these
settings as you are editing, if you need to.

 The first time you start Visual Studio, you will be presented with a blank IDE (see Figure 15 - 6). The Start
Page is an HTML page that contains various links to useful Web sites and enables you to open existing
projects or start a new project altogether.

Figure 15-6

 Figure 15 - 6 shows the type of Start Page you get after you have used Visual Studio 2008; it includes a list
of the most recently edited projects. You can just click one of these projects to open it again.

 Selecting a Project Type
 You can create a new project by selecting File New Project from the Visual Studio menu. From
there you will get the New Project dialog box (see Figure 15 - 7) — and your first inkling of the variety of
different projects you can create.

 Using this dialog box, you effectively select the initial framework files and code you want Visual Studio
to generate for you, the type of compilation options you want, and the compiler you want to compile
your code with — either the Visual C#, Visual Basic 2008, or Visual C++ compiler. You can immediately
see the language integration that Microsoft has promised for .NET at work here! This particular example
uses a C# console application.

c15.indd 407c15.indd 407 2/19/08 5:13:27 PM2/19/08 5:13:27 PM

Part II: Visual Studio

408

 We do not have space to cover all the various options for different types of projects here. On the C++ side,
all the old C++ project types are there — MFC application, ATL project, and so on. On the Visual Basic
2008 side, the options have changed somewhat. For example, you can create a Visual Basic 2008 command -
 line application (Console Application), a .NET component (Class Library), a .NET control (Windows
Control Library), and more. However, you cannot create an old - style COM - based control (the .NET control
is intended to replace such ActiveX controls).

 The following table lists all the options that are available to you under Visual C# Projects. Note that some
other, more specialized C# template projects are available under the Other Projects option.

Figure 15-7

If you choose . . . You get the C# code and compilation options to generate . . .

Windows Forms
Application

A basic empty form that responds to events.

Class Library A .NET class that can be called up by other code.

WPF Application A basic empty form that responds to events. Though the project type is
similar to the Windows Forms Application project type (Windows
Forms), this Windows Application project type allows you to build an
XAML-based smart client solution.

WPF Browser Application Quite similar to the Windows Application for WPF, this variant allows
you to build an XAML-based application that is targeted at the
browser.

ASP.NET Web Application An ASP.NET-based Web site: ASP.NET pages and C# classes that gen-
erate the HTML response sent to browsers from those pages.

ASP.NET Web Service
Application

A C# class that acts as a fully operational Web service.

ASP.NET AJAX Server
Control

Allows you to build a custom server control for use within ASP.NET
applications.

c15.indd 408c15.indd 408 2/19/08 5:13:27 PM2/19/08 5:13:27 PM

409

Chapter 15: Visual Studio 2008

If you choose . . . You get the C# code and compilation options to generate . . .

Web Control Library A control that can be called up by ASP.NET pages, to generate the
HTML code that gives the appearance of a control when displayed on
a browser.

WPF Custom Control
Library

A custom control that can be used in a Windows Presentation
Foundation application.

WPF User Control
Library

A user control library built using the Windows Presentation
Foundation.

Windows Forms Control
Library

A project for creating controls to use in Windows Forms applications.

Console Application An application that runs at the command-line prompt, or in a console
window.

WCF Service Application A project type for Windows Communication Foundation services.

Windows Service A service that runs in the background on a Windows operating system.

Reports Application A project for creating an application with a Windows user interface
and a Report.

Crystal Reports Windows
Application

A project for creating a C# application with a Windows user interface
and a sample Crystal Report.

SQL Server Project A project for creating classes to use in SQL Server.

Smart Device A project type that allows you to target a specific type of mobile device.

Sequential Workflow
Service Library

A project that provides a sequential workflow exposed as a WCF service.

State Machine Workflow
Service Library

A project that provides a state machine workflow exposed as a WCF
service.

Syndication Service
Library

A project that provides a syndication service exposed as a WCF service

WCF Service Library A project that provides for creating a WCF service class library (.dll)
that has endpoints controlled via XML configuration files.

Empty Workflow Project A project that provides an empty project for creating a workflow.

Sequential Workflow
Console Application

A project that provides for creating a sequential workflow console
application.

Sequential Workflow
Library

A project for creating a sequential workflow library.

SharePoint 2007 Sequential
Workflow

A project that provides for creating a SharePoint sequential workflow.

SharePoint 2007 State
Machine Workflow

A project that provides for creating a SharePoint state machine workflow.

State Machine Workflow
Console Application

A project that provides for creating a state machine workflow console
application.

c15.indd 409c15.indd 409 2/19/08 5:13:28 PM2/19/08 5:13:28 PM

Part II: Visual Studio

410

 As mentioned, this is not a full list of the .NET Framework 3.5 projects, but it is a good start. The big
additions to this project table are the new projects that are aimed at the Windows Presentation Foundation
(WPF), the Windows Communication Foundation (WCF), and the Windows Workflow Foundation (WF).
You will find chapters covering these new capabilities later in this book. Be sure to look at Chapter 34 ,
 “ Windows Presentation Foundation, ” Chapter 42 , “ Windows Communication Foundation, ” and
Chapter 43 , “ Windows Workflow Foundation. ”

 The Newly Created Console Project
 When you click OK after selecting the Console Application option, Visual Studio gives you a couple of
files, including a source code file, Program.cs , which contains the initial framework code. Figure 15 - 8
shows what code Visual Studio has written for you.

If you choose . . . You get the C# code and compilation options to generate . . .

State Machine Workflow
Library

A project that provides for creating a state machine workflow library.

Workflow Activity Library A project that provides for creating a library of activities that can later
be reused as building blocks in workflows.

Office A series of projects that are aimed at building applications or
add-ins targeted at the Microsoft Office applications (Word, Excel,
PowerPoint, InfoPath, Outlook, and SharePoint).

Figure 15-8

c15.indd 410c15.indd 410 2/19/08 5:13:28 PM2/19/08 5:13:28 PM

411

Chapter 15: Visual Studio 2008

 As you can see, you have a C# program that does not do anything yet but contains the basic items
required in any C# executable program: a namespace and a class that contains the Main() method,
which is the program ’ s entry point. (Strictly speaking, the namespace is not necessary, but it would be
very bad programming practice not to declare one.) This code is all ready to compile and run, which you
can do immediately by pressing the F5 key or by selecting the Debug menu and choosing Start. However,
before you do that, add the following line of code — to make your application actually do something!

static void Main(string[] args)
 {
 Console.WriteLine(“Hello from all the authors of Professional C#”);
 }

 If you compile and run the project, you will see a console window that stays onscreen barely long
enough to read the message. The reason this happens is that Visual Studio, remembering the settings you
specified when you created the project, arranged for it to be compiled and run as a console application.
Windows then realizes that it has to run a console application but does not have a console window to
run it from. Therefore, Windows creates a console window and runs the program. As soon as the
program exits, Windows recognizes that it does not need the console window anymore and promptly
removes it. That is all very logical but does not help you very much if you actually want to look at the
output from your project!

 A good way to prevent this problem is to insert the following line just before the Main() method returns
in your code:

 static void Main(string[] args)
 {
 Console.WriteLine(“Hello from all the folks at Wrox Press”);
 Console.ReadLine();
 }

 That way, your code will run, display its output, and come across the Console.ReadLine() statement,
at which point it will wait for you to press the Return (or Enter) key before the program exits. This
means that the console window will hang around until you press Return.

 Note that all this is only an issue for console applications that you test - run from Visual Studio — if you
are writing a Windows application, the window displayed by the application will automatically remain
onscreen until you exit it. Similarly, if you run a console application from the command - line prompt, you
will not have any problems with the window disappearing.

 Other Files Created
 The Program.cs source code file is not the only file that Visual Studio has created for you. Looking
in the folder in which you asked Visual Studio to create your project, you will see not just the C# file, but
a complete directory structure that looks like what is shown in Figure 15 - 9 .

 The two folders, bin and obj , store compiled and intermediate files. Subfolders of obj hold various
temporary or intermediate files; subfolders of bin hold the compiled assemblies.

 Traditionally, Visual Basic developers would simply write the code and then run it. Before shipping,
the code would then need to be compiled into an executable; Visual Basic tended to hide the process of
compilation when debugging. In C#, it is more explicit: to run the code, you have to compile (or build) it
first, which means that an assembly must be created somewhere.

 You will also find a Properties folder that holds the AssemblyInfo.cs file. The remaining files in the
project ’ s main folder, ConsoleApplication1 , are there for Visual Studio ’ s benefit. They contain
information about the project (for example, the files it contains) so that Visual Studio knows how to have
the project compiled and how to read it in the next time you open the project.

c15.indd 411c15.indd 411 2/19/08 5:13:29 PM2/19/08 5:13:29 PM

Part II: Visual Studio

412

 Solutions and Projects
 One important distinction you must understand is that between a project and a solution:

 A project is a set of all the source code files and resources that will compile into a single assembly
(or in some cases, a single module). For example, a project might be a class library or a Windows
GUI application.

 A solution is the set of all the projects that make up a particular software package (application).

 To understand this distinction, look at what happens when you ship a project — the project consists of
more than one assembly. For example, you might have a user interface, custom controls, and other
components that ship as libraries of the parts of the application. You might even have a different user
interface for administrators. Each of these parts of the application might be contained in a separate
assembly, and hence, they are regarded by Visual Studio as a separate project. However, it is quite likely
that you will be coding these projects in parallel and in conjunction with each other. Thus, it is quite
useful to be able to edit them all as one single unit in Visual Studio. Visual Studio allows this by
regarding all the projects as forming one solution and by treating the solution as the unit that it reads in
and allows you to work on.

 Up until now, we have been loosely talking about creating a console project. In fact, in the example you
are working on, Visual Studio has actually created a solution for you — though this particular solution
contains just one project. You can see the situation in a window in Visual Studio known as the Solution
Explorer (see Figure 15 - 10), which contains a tree structure that defines your solution.

❑

❑

Figure 15-9

c15.indd 412c15.indd 412 2/19/08 5:13:29 PM2/19/08 5:13:29 PM

413

Chapter 15: Visual Studio 2008

Figure 15-10

 Figure 15 - 10 shows that the project contains your source file, Program.cs , as well as another C# source
file, AssemblyInfo.cs (found in the Properties folder), which allows you to provide information that
describes the assembly as well as the ability to specify versioning information. (You look at this file in
detail in Chapter 17 , “ Assemblies. ”) The Solution Explorer also indicates the assemblies that your project
references according to namespace. You can see this by expanding the References folder in the Solution
Explorer.

 If you have not changed any of the default settings in Visual Studio, you will probably find the Solution
Explorer in the top - right corner of your screen. If you cannot see it, just go to the View menu and select
Solution Explorer.

 The solution is described by a file with the extension .sln — in this example, it is
 ConsoleApplication1.sln . The project is described by various other files in the project ’ s main folder.
If you attempt to edit these files using Notepad, you will find that they are mostly plain - text files, and, in
accordance with the principle that .NET and .NET tools rely on open standards wherever possible, they
are mostly in XML format.

 C++ developers will recognize that a Visual Studio solution corresponds to an old Visual C++ project
workspace (stored in a .dsw file), and a Visual Studio project corresponds to an old C++ project
(.dsp file). By contrast, Visual Basic developers will recognize that a solution corresponds to an old
Visual Basic project group (.vbg file), and the .NET project corresponds to an old Visual Basic project
(.vbp file). Visual Studio differs from the old Visual Basic IDE in that it always creates a solution for
you automatically. In Visual Studio 6, Visual Basic developers would get a project; however, they would
need to request a project group from the IDE separately.

 Adding Another Project to the Solution
 As you work through the following sections, you will see how Visual Studio works with Windows
applications as well as with console applications. To that end, you create a Windows project called
 BasicForm that you will add to your current solution, ConsoleApplication1 .

c15.indd 413c15.indd 413 2/19/08 5:13:29 PM2/19/08 5:13:29 PM

Part II: Visual Studio

414

 This means that you will end up with a solution containing a Windows application and a console
application. That is not a very common scenario — you are more likely to have one application and a
number of libraries — but it allows you to see more code! You might, however, create a solution like this
if, for example, you are writing a utility that you want to run either as a Windows application or as a
command - line utility.

 You can create the new project in two ways. You can select New Project from the File menu (as you have
done already) or you can select Add New Project from the File menu. If you select New Project from
the File menu, this will bring up the familiar New Project dialog box; this time, however, you will notice
that Visual Studio wants to create the new project in the preexisting ConsoleApplication1 project
location (see Figure 15 - 11).

 If you select this option, a new project is added so that the ConsoleApplication1 solution now
contains a console application and a Windows application.

 In accordance with the language - independence of Visual Studio, the new project does not need to be a
C# project. It is perfectly acceptable to put a C# project, a Visual Basic 2008 project, and a C++ project
in the same solution. However, we will stick with C# here because this is a C# book!

 Of course, this means that ConsoleApplication1 is not really an appropriate name for the solution
anymore! To change the name, you can right - click the name of the solution and select Rename from the
context menu. Call the new solution DemoSolution . The Solution Explorer window now looks like
Figure 15 - 12 .

 You can see from this that Visual Studio has made your newly added Windows project automatically
reference some of the extra base classes that are important for Windows Forms functionality.

 You will notice if you look in Windows Explorer that the name of the solution file has changed to
 DemoSolution.sln . In general, if you want to rename any files, the Solution Explorer window is the
best place to do so, because Visual Studio will then automatically update any references to that file in the
other project files. If you rename files using just Windows Explorer, you might break the solution
because Visual Studio will not be able to locate all the files it needs to read in. You will then need to
manually edit the project and solution files to update the file references.

Figure 15-11

c15.indd 414c15.indd 414 2/19/08 5:13:30 PM2/19/08 5:13:30 PM

415

Chapter 15: Visual Studio 2008

Figure 15-12

 Setting the Startup Project
 Bear in mind that if you have multiple projects in a solution only one of them can be run at a time!
When you compile the solution, all the projects in it will be compiled. However, you must specify which
one you want Visual Studio to start running when you press F5 or select Start. If you have one executable
and several libraries that it calls, this will clearly be the executable. In this case, where you have two
independent executables in the project, you would simply need to debug each in turn.

 You can tell Visual Studio which project to run by right - clicking that project in the Solution Explorer
window and selecting Set as Startup Project from the context menu. You can tell which one is the current
startup project — it is the one that appears in bold in the Solution Explorer window
(WindowsFormsApplication1 in Figure 15 - 12).

 Windows Application Code
 A Windows application contains a lot more code right from the start than a console application when Visual
Studio first creates it. That is because creating a window is an intrinsically more complex process. Chapter
 31 , “ Windows Forms, ” discusses the code for a Windows application in detail. For now, look at the code in
the Form1 class in the WindowsApplication1 project to see for yourself how much is auto - generated.

c15.indd 415c15.indd 415 2/19/08 5:13:30 PM2/19/08 5:13:30 PM

Part II: Visual Studio

416

 Reading in Visual Studio 6 Projects
 If you are coding in C#, you will not need to read in any old Visual Studio 6 projects because C# does not
exist in Visual Studio 6. However, language interoperability is a key part of the .NET Framework, so you
might want your C# code to work alongside code written in Visual Basic or in C++. In that situation,
you might need to edit projects that were created with Visual Studio 6.

 Visual Studio has no problems reading in and upgrading Visual Studio 6 projects and workspaces. The
situation is different for pre - Visual Studio C++ and Visual Basic projects:

 In Visual C++, no change to the source code is needed. All your old Visual C++ code still works
fine with the new C++ compiler. Obviously, it is not managed code, but it will still compile to
code that runs outside the .NET runtime; if you want your code to integrate with the .NET
Framework, you will need to edit it. If you get Visual Studio to read in an old Visual C++
project, it will simply add a new solution file and updated project files. It will leave the old .dsw
and .dsp files unchanged so that the project can still be edited by Visual Studio 6, if necessary.

 In Visual Basic, things are a bit more complicated. As mentioned in Chapter 1 , “ .NET
Architecture, ” although Visual Basic 2008 has been designed very much around Visual Basic 6.0
and shares much of the same syntax, it is in many ways a new language. In Visual Basic 6.0, the
source code largely consisted of the event handlers for the controls. In Visual Basic 2008, the
code that actually instantiates the main window and many of its controls is not part of Visual
Basic but is instead hidden behind the scenes as part of the configuration of your project. In
contrast, Visual Basic 2008 works in the same way as C#, by putting the entire program out in
the open as source code, so all the code that displays in the main window and all the controls on
it need to be in the source file. Also, like C#, Visual Basic 2008 requires everything to be object
oriented and part of a class, whereas VB did not even recognize the concept of classes in the
.NET sense. If you try to read a Visual Basic project with Visual Studio, it will need to upgrade
the entire source code to Visual Basic 2008 before it can handle it — and this involves making a
lot of changes to the Visual Basic code. Visual Studio can largely make these changes
automatically and will then create a new Visual Basic 2008 solution for you. You will find that
the source code it gives you looks very different from the corresponding Visual Basic code, and
you will still need to check carefully through the generated code to make sure that the project
still works correctly. You might even find areas in the code where Visual Studio has left
comments to the effect that it cannot figure out exactly what you wanted the code to do, and you
might need to edit the code manually.

 Exploring and Coding a Project
 This section looks at the features that Visual Studio provides to help you add code to your project.

 The Folding Editor
 One really exciting feature of Visual Studio is its use of a folding editor as its default code editor (see
Figure 15 - 13).

 Figure 15 - 13 shows the code for the console application that you generated earlier. Notice those little
minus signs on the left - hand side of the window. These signs mark the points where the editor assumes
that a new block of code (or documentation comment) begins. You can click these icons to close up the
view of the corresponding block of code just as you would close a node in a tree control (see Figure 15 - 14).

❑

❑

c15.indd 416c15.indd 416 2/19/08 5:13:31 PM2/19/08 5:13:31 PM

417

Chapter 15: Visual Studio 2008

Figure 15-13

Figure 15-14

 This means that while you are editing you can focus on just the areas of code you want to look at, and you
can hide the bits of code you are not interested in working with at that moment. If you do not like the way
the editor has chosen to block off your code, you can indicate your own blocks of collapsing code with the
C# preprocessor directives, #region and #endregion , which were examined earlier in the book. For
example, to collapse the code inside the Main() method, you would add the code shown in Figure 15 - 15 .

 The code editor will automatically detect the #region block and place a new minus sign by the #region
directive, as shown in Figure 15 - 15 , allowing you to close the region. Enclosing this code in a region
means that you can get the editor to close the block of code (see Figure 15 - 16), marking the area with the
comment you specified in the #region directive. The compiler, however, ignores the directives and
compiles the Main() method as normal.

c15.indd 417c15.indd 417 2/19/08 5:13:31 PM2/19/08 5:13:31 PM

Part II: Visual Studio

418

Figure 15-15

Figure 15-16

 In addition to the folding editor feature, Visual Studio ’ s code editor brings across all the familiar
functionality from Visual Studio 6. In particular, it features IntelliSense, which not only saves you typing,
but also ensures that you use the correct parameters. C++ developers will notice that the Visual Studio
IntelliSense feature is a bit more robust than the Visual Studio 6 version and also works more quickly.
You will also notice that IntelliSense has been improved in Visual Studio 2008. It is now smarter in that it
remembers your preferred choices and starts with one of these choices instead of starting directly at the
beginning of the sometimes rather lengthy lists that IntelliSense can now provide.

 The code editor also performs some syntax checking on your code and underlines most syntax errors
with a short wavy line, even before you compile the code. Hovering the mouse pointer over the
underlined text brings up a small box telling you what the error is. Visual Basic developers have been
familiar with this feature, known as design - time debugging , for years; now C# and C++ developers can
benefit from it as well.

c15.indd 418c15.indd 418 2/19/08 5:13:32 PM2/19/08 5:13:32 PM

419

Chapter 15: Visual Studio 2008

 Other Windows
 In addition to the code editor, Visual Studio provides a number of other windows that allow you to view
your project from different points of view.

 The rest of this section describes several other windows. If one of these windows is not visible on your
screen, you can select it from the View menu. To show the design view and code editor, right - click the
file name in the Solution Explorer and select View Designer or View Code from the context menu, or
select the item from the toolbar at the top of the Solution Explorer. The design view and code editor share
the same tabbed window.

The Design View Window
 If you are designing a user interface application, such as a Windows application, Windows control
library, or an ASP.NET application, you will use the Design View window. This window presents a
visual overview of what your form will look like. You normally use the Design View window in
conjunction with a window known as the toolbox. The toolbox contains a large number of .NET
components that you can drag onto your program (see Figure 15 - 17).

Figure 15-17

c15.indd 419c15.indd 419 2/19/08 5:13:32 PM2/19/08 5:13:32 PM

Part II: Visual Studio

420

 The principle of the toolbox was applied in all development environments in Visual Studio 6, but with
.NET, the number of components available from the toolbox has vastly increased. The categories of
components available through the toolbox depend, to some extent, on the type of project you are editing —
 for example, you will get a far wider range when you are editing the WindowsFormsApplication1 project
in the DemoSolution solution than you will when you are editing the ConsoleApplication1 project. The
most important ranges of items available include the following:

 Data — Classes that allow you to connect to data sources and manage the data they contain.
Here, you will find components for working with Microsoft SQL Server, Oracle, and any OleDb
data source.

 Windows Forms Controls (labeled as Common Controls) — Classes that represent visual
controls such as text boxes, list boxes, or tree views for working with thick - client applications.

 Web Forms Controls (labeled as Standard) — Classes that basically do the same thing as
Windows controls, but that work in the context of Web browsers, and that work by sending
HTML output to simulate the controls to the browser. (You will see this only when working with
ASP.NET applications.)

 Components — Miscellaneous .NET classes that perform various useful tasks on your machine,
such as connecting to directory services or to the event log.

 You can also add your own custom categories to the toolbox by right - clicking any category and selecting
Add Tab from the context menu. You can also place other tools in the toolbox by selecting Choose Items
from the same context menu — this is particularly useful for adding your favorite COM components and
ActiveX controls, which are not present in the toolbox by default. If you add a COM control, you can still
click to place it in your project just as you would with a .NET control. Visual Studio automatically adds
all the required COM interoperability code to allow your project to call up the control. In this case, what
is actually added to your project is a .NET control that Visual Studio creates behind the scenes and that
acts as a wrapper for your COM control.

 C++ developers will recognize the toolbox as Visual Studio ’ s (much - enhanced) version of the resource
editor. Visual Basic developers might not be that impressed at first; after all, Visual Studio 6 also has a
toolbox. However, the toolbox in Visual Studio has a dramatically different effect on your source code
than its precursor.

 To see how the toolbox works, place a text box in your basic form project. You simply click the TextBox
control contained within the toolbox and then click again to place it in the form in the design view (or if
you prefer, you can simply drag and drop the control directly onto the design surface). Now the design
view looks like Figure 15 - 18 , showing roughly what WindowsFormsApplication1 will look like if you
compile and run it.

 If you look at the code view of your form, you see that Visual Studio 2008 does not add the code that
instantiates a TextBox object to go on the form directly here as it did in the early versions of the IDE.
Instead, you will need to expand the plus sign next to Form1.cs in the Visual Studio Solution Explorer.
Here, you will find a file that is dedicated to the design of the form and the controls that are placed on the
form — Form1.Designer.cs . In this class file, you will find a new member variable in the Form1 class:

 partial class Form1
 {
 private System.Windows.Forms.TextBox textBox1;

 There is also some code to initialize it in the method, InitializeComponent() , which is called from
the Form1 constructor:

/// < summary >
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// < /summary >

❑

❑

❑

❑

c15.indd 420c15.indd 420 2/19/08 5:13:32 PM2/19/08 5:13:32 PM

421

Chapter 15: Visual Studio 2008

private void InitializeComponent()
{
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.SuspendLayout();
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(0, 0);
 this.textBox1.Name = “textBox1”;
 this.textBox1.Size = new System.Drawing.Size(100, 20);
 this.textBox1.TabIndex = 0;
 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(284, 264);
 this.Controls.Add(this.textBox1);
 this.Name = “Form1”;
 this.Text = “Form1”;
 this.ResumeLayout(false);
 this.PerformLayout();

}

Figure 15-18

c15.indd 421c15.indd 421 2/19/08 5:13:33 PM2/19/08 5:13:33 PM

Part II: Visual Studio

422

 In one sense, there is no difference between the code editor and the design view; they simply present
different views of the same code. What actually happened when you clicked to add the TextBox to the
design view is that the editor placed the preceding extra code in your C# source file for you. The design
view simply reflects this change because Visual Studio is able to read your source code and determine
from it what controls should be around when the application starts up. This is a fundamental shift from
the old Visual Basic way of looking at things, in which everything was based around the visual design.
Now, your C# source code is what fundamentally controls your application, and the design view is just a
different way of viewing the source code. Incidentally, if you do write any Visual Basic 2008 code with
Visual Studio, you will find the same principles at work.

 If you had wanted to, you could have worked the other way around. If you manually added the same
code to your C# source files, Visual Studio would have automatically detected from the code that your
application contained a TextBox control, and would have shown it in the design view at the designated
position. It is best to add these controls visually, and let Visual Studio handle the initial code generation —
 it is a lot quicker and less error - prone to click the mouse button a couple of times than to type a few lines
of code!

 Another reason for adding these controls visually is that, to recognize that they are there, Visual Studio
does need the relevant code to conform to certain criteria — and code that you write by hand might not
do so. In particular, you will notice that the InitializeComponent() method that contains the code to
initialize the TextBox is commented to warn you against modifying it. That is because this is the method
that Visual Studio looks at to determine what controls are around when your application starts up. If you
create and define a control somewhere else in your code, Visual Studio will not be aware of it, and you
will not be able to edit it in the design view or in certain other useful windows.

 In fact, despite the warnings, you can modify the code in InitializeComponent() , provided that you
are careful. There is generally no harm in changing the values of some of the properties, for example, so
that a control displays different text or so that it is a different size. In practice, the developer studio is
pretty robust when it comes to working around any other code you place in this method. Just be aware
that if you make too many changes to InitializeComponent() , you do run the risk that Visual Studio
will not recognize some of your controls. We should stress that this will not affect your application in
any way whatsoever when it is compiled, but it might disable some of the editing features of Visual
Studio for those controls. Hence, if you want to add any other substantial initialization, it is probably
better to do so in the Form1 constructor or in some other method.

The Properties Window
 This is another window that has its origins in the old Visual Basic IDE. You know from the first part of
the book that .NET classes can implement properties. In fact, as you will discover when building
Windows Forms (see Chapter 31 , “ Windows Forms ”), the .NET base classes that represent forms and
controls have a lot of properties that define their action or appearance — properties such as Width ,
 Height , Enabled (whether the user can type input to the control), and Text (the text displayed by the
control) — and Visual Studio knows about many of these properties. The Properties window, shown in
Figure 15 - 19 , displays and allows you to edit the initial values of most of these properties for the controls
that Visual Studio has been able to detect by reading your source code.

 The Properties window can also show events. You can view events for what you are
focused on in the IDE or selected in the drop - down list box directly in the Properties
window by clicking the icon that looks like a lightning bolt at the top of the window.

c15.indd 422c15.indd 422 2/19/08 5:13:33 PM2/19/08 5:13:33 PM

423

Chapter 15: Visual Studio 2008

Figure 15-19

 At the top of the Properties window is a list box that allows you to select which control you want to
view. In the example in this chapter, you have selected Form1 , the main form class for your
 WindowsFormsApplication1 project, and have edited the text to “ Basic Form — Hello! ” If you now
check the source code, you can see that what you have actually done is edit the source code — using a
friendlier user interface:

this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(284, 264);
this.Controls.Add(this.textBox1);
this.Name = “Form1”;
this.Text = “Basic Form - Hello”;
this.ResumeLayout(false);
this.PerformLayout();

 Not all the properties shown in the Properties window are explicitly mentioned in your source code. For
those that are not, Visual Studio will display the default values that were set when the form was created
and that are set when the form is actually initialized. Obviously, if you change a value for one of these
properties in the Properties window, a statement explicitly setting that property will magically appear in
your source code — and vice versa. It is interesting to note that if a property is changed from its original
value, this property will then appear in bold type within the list box of the Properties window.
Sometimes double - clicking the property in the Properties window returns the value to its original value.

 The Properties window provides a convenient way to get a broad overview of the appearance and
properties of a particular control or window.

c15.indd 423c15.indd 423 2/19/08 5:13:33 PM2/19/08 5:13:33 PM

Part II: Visual Studio

424

 It is interesting to note that the Properties window is implemented as a System.Windows.Forms
.PropertyGrid instance, which will internally use the reflection technology described in Chapter 13 ,
 “ Reflection, ” to identify the properties and property values to display.

The Class View Window
 Unlike the Properties window, the Class View window, shown in Figure 15 - 20 , owes its origins to the
C++ (and J++) developer environments. This window will be new to Visual Basic developers because
Visual Basic 6 did not even support the concept of the class, other than in the sense of a COM
component. The class view is not actually treated by Visual Studio as a window in its own right — rather
it is an additional tab to the Solution Explorer window. By default, the class view will not even appear in
the Visual Studio Solution Explorer. To invoke the class view, select View Class View. The class view
(see Figure 15 - 20) shows the hierarchy of the namespaces and classes in your code. It gives you a tree
view that you can expand to see what namespaces contain what classes and what classes contain what
members.

 A nice feature of the class view is that if you right - click the name of any item for which you have access
to the source code, then the context menu features the Go To Definition option, which takes you to the
definition of the item in the code editor. Alternatively, you can do this by double - clicking the item in
class view (or, indeed, by right - clicking the item you want in the source code editor and choosing the
same option from the resulting context menu). The context menu also gives you the option to add a field,
method, property, or indexer to a class. This means that you specify the details of the relevant member in
a dialog box, and the code is added for you. This might not be that useful for fields or methods, which
can be quickly added to your code; however, you might find this feature helpful for properties and
indexers, where it can save you quite a bit of typing.

Figure 15-20

c15.indd 424c15.indd 424 2/19/08 5:13:34 PM2/19/08 5:13:34 PM

425

Chapter 15: Visual Studio 2008

The Object Browser Window
 One important aspect of programming in the .NET environment is being able to find out what methods
and other code items are available in the base classes and any other libraries that you are referencing
from your assembly. This feature is available through a window called the Object Browser. You can
access this window by selecting Object Browser from the View menu in Visual Studio 2008.

 The Object Browser window is quite similar to the Class View window in that it displays a tree view that
gives the class structure of your application, allowing you to inspect the members of each class. The user
interface is slightly different in that it displays class members in a separate pane rather than in the tree
view itself. The real difference is that it lets you look at not just the namespaces and classes in your
project but also the ones in all the assemblies referenced by the project. Figure 15 - 21 shows the Object
Browser viewing the SystemException class from the .NET base classes.

 One note of caution with the Object Browser is that it groups classes by the assembly in which they are
located first and by namespace second. Unfortunately, because namespaces for the base classes are often
spread across several assemblies, this means you might have trouble locating a particular class unless
you know what assembly it is in.

 The Object Browser is there to view .NET objects. If for any reason you want to investigate installed
COM objects, you will find that the OLEView tool previously used in the C++ IDE is still available — it
is located in the folder C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin along with several
other similar utilities.

Figure 15-21

c15.indd 425c15.indd 425 2/19/08 5:13:34 PM2/19/08 5:13:34 PM

Part II: Visual Studio

426

 Visual Basic developers should not confuse the .NET Object Browser with the Object Browser of the Visual
Basic 6 IDE. The .NET Object Browser is there to view .NET classes, whereas the tool of that name in
Visual Basic 6 is used to view COM components. If you want the functionality of the old Object Browser,
you should now use the OLEView tool.

The Server Explorer Window
 You can use the Server Explorer window, shown in Figure 15 - 22 , to find out about aspects of the
computers in your network while coding.

Figure 15-22

 As you can see from the screenshot, among the things you can access through the Server Explorer are
database connections, information about services, event logs, and more.

 The Server Explorer is linked to the Properties window so that if you open the Services node, for example,
and click a particular service, the properties of that service will be displayed in the Properties window.

 Pin Buttons
 While exploring Visual Studio, you might have noticed that many of the windows have some interesting
functionality more reminiscent of toolbars. In particular, apart from the code editor, they can all be
docked. Another feature of them is that when they are docked, they have an extra icon that looks like a
pin next to the minimize button in the top - right corner of each window. This icon really does act like
a pin — it can be used to pin the windows open. When they are pinned (the pin is displayed vertically),
they behave just like the regular windows that you are used to. When they are unpinned, however (the
pin is displayed horizontally), they remain open only as long as they have the focus. As soon as they lose
the focus (because you clicked or moved your mouse somewhere else), they smoothly retreat into the
main border around the entire Visual Studio application. (You can also feel the speed of your computer
by how quickly or slowly they open and close.)

 Pinning and unpinning windows provides another way of making the best use of the limited space on
your screen. It has not really been seen a great deal in Windows before, though a few third - party
applications, such as PaintShop Pro, have used similar concepts. Pinned windows have, however, been
around on many Unix - based systems for quite a while.

c15.indd 426c15.indd 426 2/19/08 5:13:35 PM2/19/08 5:13:35 PM

427

Chapter 15: Visual Studio 2008

 Building a Project
 This section examines the options that Visual Studio gives you for building your project.

 Building, Compiling, and Making
 Before examining the various build options, it is important to clarify some terminology. You will often
see three different terms used in connection with the process of getting from your source code to some
sort of executable code: compiling, building, and making. The origin of these various terms comes from
the fact that until recently, the process of getting from source code to executable code involved more than
one step (and this is still the case in C++). This was due in large part to the number of source files in a
program. In C++, for example, each source file needs to be compiled individually. This leads to what are
known as object files, each containing something like executable code, but where each object file relates
to only one source file. To generate an executable, these object files need to be linked together, a process
that is officially known as linking. The combined process was usually referred to — at least on the
Windows platform — as building your code. However, in C# terms the compiler is more sophisticated
and is able to read in and treat all your source files as one block. Hence, there is not really a separate
linking stage, so in the context of C# the terms compile and build are used interchangeably.

 In addition to this, the term make basically means the same as build , though it is not really used in the
context of C#. The term originated on old mainframe systems on which, when a project was composed of
many source files, a separate file would be written that contained instructions to the compiler on how to
build a project — which files to include and what libraries to link to and so on. This file was generally
known as a make file and is still quite standard on Unix systems. Make files are not normally needed on
Windows, though you can still write them (or get Visual Studio to generate them) if you need to.

 Debug and Release Builds
 The idea of having separate builds is very familiar to C++ developers and less so to those with a Visual
Basic background. The point here is that when you are debugging, you typically want your executable to
behave differently from when you are ready to ship the software. When you are ready to ship your
software, you want the size of the executable to be as small as possible and the executable itself to be as
fast as possible. Unfortunately, these requirements are not really compatible with your needs when you
are debugging code, as explained in the following sections.

Optimization
 High performance is achieved partly by the compiler doing many optimizations on the code. This means
that the compiler actively looks at your source code as it is compiling to identify places where it can
modify the precise details of what you are doing in a way that does not change the overall effect but that
makes things more efficient. For example, if the compiler encountered the following source code:

double InchesToCm(double Ins)
{
 return Ins*2.54;
}

// later on in the code

Y = InchesToCm(X);

it might replace it with this:

Y = X * 2.54;

c15.indd 427c15.indd 427 2/19/08 5:13:35 PM2/19/08 5:13:35 PM

Part II: Visual Studio

428

 Or it might replace this code:

{
 string Message = “Hi”;
 Console.WriteLine(Message);
}

with this:

Console.WriteLine(“Hi”);

 By doing so, it bypasses having to declare an unnecessary object reference in the process.

 It is not possible to exactly pin down what optimizations the C# compiler does — nor whether the two
previous examples actually would occur with any particular example — because those kinds of details
are not documented. (Chances are that for managed languages such as C#, the previous optimizations
would occur at JIT compilation time, not when the C# compiler compiles source code to assembly.) For
obvious commercial reasons, companies that write compilers are usually quite reluctant to give too
many details about the tricks that their compilers use. We should stress that optimizations do not affect
your source code — they affect only the contents of the executable code. However, the previous
examples should give you a good idea of what to expect from optimizations.

 The problem is that although optimizations like the previous ones help a great deal in making your code
run faster, they are not that helpful for debugging. Suppose with the first example that you want to set a
breakpoint inside the InchesToCm() method to see what ’ s going on in there. How can you possibly do
that if the executable code does not actually have an InchesToCm() method because the compiler has
removed it? Moreover, how can you set a watch on the Message variable when that does not exist in the
compiled code either?

 Debugger Symbols
 When you are debugging, you often have to look at values of variables, and you will specify them by
their source code names. The trouble is that executable code generally does not contain those names —
 the compiler replaces the names with memory addresses. .NET has modified this situation somewhat,
to the extent that certain items in assemblies are stored with their names, but this is only true of a small
minority of items — such as public classes and methods — and those names will still be removed when
the assembly is JIT - compiled. Asking the debugger to tell you what the value is in the variable called
 HeightInInches is not going to get you very far if, when the debugger examines the executable code, it
sees only addresses and no reference to the name HeightInInches anywhere. Therefore, to debug
properly, you need to have extra debugging information made available in the executable. This
information includes, among other things, names of variables and line information that allows the
debugger to match up which executable machine assembly language instructions correspond to those of
your original source code instructions. You will not, however, want that information in a release build,
both for commercial reasons (debugging information makes it a lot easier for other people to disassemble
your code) and because it increases the size of the executable.

Extra Source Code Debugging Commands
 A related issue is that quite often while you are debugging there will be extra lines in your code to
display crucial debugging - related information. Obviously, you want the relevant commands removed
entirely from the executable before you ship the software. You could do this manually, but wouldn ’ t it be
so much easier if you could simply mark those statements in some way so that the compiler ignores
them when it is compiling your code to be shipped? You ’ ve already seen in the first part of the book how
this can be done in C# by defining a suitable processor symbol, and possibly using this in conjunction
with the Conditional attribute, giving you what is known as conditional compilation .

c15.indd 428c15.indd 428 2/19/08 5:13:35 PM2/19/08 5:13:35 PM

429

Chapter 15: Visual Studio 2008

 What all these factors add up to is that you need to compile almost all commercial software in a slightly
different way when debugging than in the final product that is shipped. Visual Studio is able to consider
this because, as you have already seen, it stores details of all the options that it is supposed to pass to the
compiler when it has your code compiled. All that Visual Studio has to do to support different types of
builds is to store more than one set of such details. The different sets of build information are referred to
as configurations. When you create a project, Visual Studio automatically gives you two configurations,
called Debug and Release:

 The Debug configuration commonly specifies that no optimizations are to take place, extra
debugging information is to be present in the executable, and the compiler is to assume that the
debug preprocessor symbol Debug is present unless it is explicitly #undefined in the source code.

 The Release configuration specifies that the compiler should optimize, that there should be no
extra debugging information in the executable, and that the compiler should not assume that
any particular preprocessor symbol is present.

 You can define your own configurations as well. You might want to do this, for example, if you want to
set up professional - level builds and enterprise - level builds so that you can ship two versions of the
software. In the past, because of issues concerning the Unicode character encodings being supported on
Windows NT but not on Windows 95, it was common for C++ projects to feature a Unicode
configuration and an MBCS (multi - byte character set) configuration.

 Selecting a Configuration
 One obvious question is that, because Visual Studio stores details of more than one configuration, how
does it determine which one to use when arranging for a project to be built? The answer is that there is
always an active configuration, which is the configuration that will be used when you ask Visual Studio
to build a project. (Note that configurations are set for each project rather than for each solution.)

 By default, when you create a project, the Debug configuration is the active configuration. You can change
which configuration is the active one by clicking the Build menu option and selecting the Configuration
Manager item. It is also available through a drop - down menu in the main Visual Studio toolbar.

 Editing Configurations
 In addition to choosing the active configuration, you can also examine and edit the configurations. To do
this, you select the relevant project in the Solution Explorer and then select the Properties from the
Project menu. This brings up a very sophisticated dialog box. (Alternatively, you can access the same
dialog box by right - clicking the name of the project in the Solution Explorer and then selecting Properties
from the context menu.)

 This dialog contains a tree view, which allows you to select many different general areas to examine or edit.
We do not have space to show all of these areas, but we will show a couple of the most important ones.

 Figure 15 - 23 shows a tabbed view of the available properties for a particular application. This screenshot
shows the general application settings for the ConsoleApplication1 project that you created earlier in
the chapter.

 Among the points to note are that you can select the name of the assembly as well as the type of
assembly to be generated. The options here are Console Application, Windows Application, and Class
Library. You can, of course, change the assembly type if you want. (Though arguably, if you want, you
might wonder why you did not pick the correct project type at the time that you asked Visual Studio to
generate the project for you in the first place!)

❑

❑

c15.indd 429c15.indd 429 2/19/08 5:13:36 PM2/19/08 5:13:36 PM

Part II: Visual Studio

430

 Figure 15 - 24 shows the build configuration properties. You will notice that a list box near the top of
the dialog box allows you to specify which configuration you want to look at. You can see — in the case
of the Debug configuration — that the compiler assumes that the DEBUG and TRACE preprocessor
symbols have been defined. In addition, the code is not optimized and extra debugging information is
generated.

 In general, it is not that often that you will need to adjust the configuration settings. However, if you
ever do need to use them, you now know the difference between the available configuration properties.

 Debugging
 After the long discussion about building and build configurations, you might be surprised to learn that
this chapter is not going to spend a great deal of time discussing debugging itself. The reason for that is
that the principles and the process of debugging — setting breakpoints and examining the values of
variables — is not really significantly different in Visual Studio from any of the various Visual Studio 6
IDEs. Instead, this section briefly reviews the features offered by Visual Studio, focusing on those areas
that might be new to some developers. It also discusses how to deal with exceptions, because these can
cause problems during debugging.

 In C#, as in pre - .NET languages, the main technique involved in debugging is simply setting breakpoints
and using them to examine what is going on in your code at a certain point in its execution.

Figure 15-23

c15.indd 430c15.indd 430 2/19/08 5:13:36 PM2/19/08 5:13:36 PM

431

Chapter 15: Visual Studio 2008

Figure 15-24

 Breakpoints
 You can set breakpoints from Visual Studio on any line of your code that is actually executed. The
simplest way is to click the line in the code editor, within the shaded area toward the far left of the
document window (or press the F9 key when the appropriate line is selected). This sets up a breakpoint
on that particular line, which causes execution to break and control to be transferred to the debugger as
soon as that line is reached in the execution process. As in previous versions of Visual Studio, a
breakpoint is indicated by a large circle to the left of the line in the code editor. Visual Studio also
highlights the line by displaying the text and background in a different color. Clicking the circle again
removes the breakpoint.

 If breaking every time at a particular line is not adequate for your particular problem, you can also set
conditional breakpoints. To do this, select Debug Windows Breakpoints. This brings up a dialog box
asking you for details of the breakpoint you want to set. Among the options available, you can:

 Specify that execution should break only after the breakpoint has been passed a certain number
of times.

 Specify that the breakpoint should come into effect only every so many times that the line is
reached, for example, every twentieth time that a line is executed. (This is useful when
debugging large loops.)

❑

❑

c15.indd 431c15.indd 431 2/19/08 5:13:36 PM2/19/08 5:13:36 PM

Part II: Visual Studio

432

 Set the breakpoints relative to a variable rather than to an instruction. In this case, the value of
the variable will be monitored and the breakpoints will be triggered whenever the value of this
variable changes. You might find, however, that using this option slows down your code
considerably. Checking whether the value of a variable has changed after every instruction adds
a lot of processor time.

 Watches
 After a breakpoint has been hit, you will usually want to investigate the values of variables. The simplest
way to do this is to hover the mouse cursor over the name of the variable in the code editor. This causes
a little box that shows the value of that variable to pop up, which can also be expanded to greater detail.
This is shown in Figure 15 - 25 .

 However, you might also prefer to use the Autos window to examine the contents of variables. The
Autos window (shown in Figure 15 - 26) is a tabbed window that appears only when the program is
running under the debugger. If you do not see it, try selecting Debug Windows Autos.

 Variables that are classes or structs are shown with a + icon next to them, which you can click to expand
the variable and see the values of its fields.

 The three tabs to this window are each designed to monitor different variables:

 Autos monitors the last few variables that have been accessed as the program was executing.

 Locals monitors variables that are accessible in the method currently being executed.

 Watch monitors any variables that you have explicitly specified by typing their names into
the Watch window.

❑

❑

❑

❑

Figure 15-25

c15.indd 432c15.indd 432 2/19/08 5:13:37 PM2/19/08 5:13:37 PM

433

Chapter 15: Visual Studio 2008

Figure 15-26

 Exceptions
 Exceptions are great when you ship your application and for making sure that error conditions are
handled in an appropriate way within your application. Used well, they can ensure that your application
copes with difficulties well and that the user is never presented with a technical dialog box.
Unfortunately, exceptions are not so great when you are trying to debug your application. The problem
is twofold:

 If an exception occurs when you are debugging, you often do not want it to be handled
automatically — especially if automatically handling it means retiring gracefully and terminating
execution! Rather, you want the debugger to help you find why the exception has occurred. Of
course, the trouble is that if you have written good, robust, defensive code, your program will
automatically handle almost anything — including the bugs that you want to detect!

 If an exception occurs that you have not written a handler for, the .NET runtime will still go off
looking for a handler. However, by the time it discovers that there is not one, it will have
terminated your program. There will not be a call stack left, and you will not be able to look at
the values of any of your variables because they will all have gone out of scope.

 Of course, you can set breakpoints in your catch blocks, but that often does not help very much because
when the catch block is reached, flow of execution will, by definition, have exited the corresponding
 try block. That means that the variables you probably wanted to examine the values of to figure out
what has gone wrong will have gone out of scope. You will not even be able to look at the stack trace to
find what method was being executed when the throw statement occurred — because control will have

❑

❑

c15.indd 433c15.indd 433 2/19/08 5:13:37 PM2/19/08 5:13:37 PM

Part II: Visual Studio

434

left that method. Setting the breakpoints at the throw statement will of course solve this, except that if
you are coding defensively, there will be many throw statements in your code. How can you tell which
one is the one that threw the exception?

 In fact, Visual Studio provides a very neat answer to all of this. If you look into the main Debug menu,
you will find a menu item called Exceptions. This item opens the Exceptions dialog box (see Figure 15 - 27),
which allows you to specify what happens when an exception is thrown. You can choose to continue
execution or to stop and start debugging — in which case execution stops and the debugger steps in at
the throw statement itself.

Figure 15-27

 What makes this a really powerful tool is that you can customize the behavior according to which class
of exception is thrown. For example, in Figure 15 - 27 , we have told Visual Studio to break into the
debugger whenever it encounters any exception thrown by a .NET base class, but not to break into the
debugger if the exception is an AppDomainUnloadedException .

 Visual Studio knows about all the exception classes available in the .NET base classes, and about quite a
few exceptions that can be thrown outside the .NET environment. Visual Studio is not automatically
aware of your own custom exception classes that you write, but you can manually add your exception
classes to the list and thereby specify which of your exceptions should cause execution to stop
immediately. To do this, just click the Add button (which is enabled when you have selected a top - level
node from the tree) and type in the name of your exception class.

 Refactoring
 Many developers develop their applications first for functionality and then, once the functionality is in
place, they rework their applications to make them more manageable and more readable. This is called
 refactoring . Refactoring is the process of reworking code for readability, performance, providing type safety,
and lining applications up to better adhere to standard OO (object - oriented) programming practices.

 For this reason, the C# environment of Visual Studio 2008 now includes a set of refactoring tools. You can
find these tools under the Refactoring option in the Visual Studio menu. To show this in action, create a
new class called Car in Visual Studio:

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleApplication1

c15.indd 434c15.indd 434 2/19/08 5:13:38 PM2/19/08 5:13:38 PM

435

Chapter 15: Visual Studio 2008

{
 public class Car
 {
 public string _color;
 public string _doors;

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
 }
}

 Now, suppose that in the idea of refactoring, you want to change the code a bit so that the color and the
 door variables are encapsulated into public .NET properties. The refactoring capabilities of Visual Studio
2008 allow you to simply right - click either of these properties in the document window and select
Refactor Encapsulate Field. This will pull up the Encapsulate Field dialog shown in Figure 15 - 28 .

Figure 15-28

 From this dialog, you can provide the name of the property and click the OK button. This will turn the
selected public field into a private field, while also encapsulating the field into a public .NET property.
After clicking OK, the code will have been reworked to the following (after redoing both fields):

namespace ConsoleApplication1
{
 public class Car
 {
 private string _color;

 public string Color

(continued)

c15.indd 435c15.indd 435 2/19/08 5:13:38 PM2/19/08 5:13:38 PM

Part II: Visual Studio

436

 {
 get { return _color; }
 set { _color = value; }
 }
 private string _doors;

 public string Doors
 {
 get { return _doors; }
 set { _doors = value; }
 }

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
 }
}

 As you can see, these wizards make it quite simple to refactor your code not just on one page but for an
entire application. Also included are abilities to do the following:

 Rename method names, local variables, fields, and more

 Extract methods from a selection of code

 Extract interfaces based on a set of existing type members

 Promote local variables to parameters

 Rename or reorder parameters

 You will find the new refactoring abilities provided by Visual Studio 2008 a great way to get you the
cleaner, more readable, better - structured code that you are looking for.

 Multi - Targeting
 Visual Studio 2008 is the first version of the IDE that allows you to target the version of the .NET
Framework that you want to work with. When you open the New Project dialog and get ready to create
a new project, you will notice that there is a drop - down list in the upper right - hand corner of the dialog
that allows you to pick the version of the framework that you are interested in using. This dialog is
presented in Figure 15 - 29 .

 From this figure, you can see that the drop - down list provides you the ability to target the .NET
Framework 2.0, 3.0, or 3.5. This is possible only because the 3.0 and 3.5 versions of the framework are
extensions of the .NET Framework 2.0. When you use the upgrade dialog to upgrade a Visual Studio
2005 solution to Visual Studio 2008, it is important that you are only upgrading the solution to use Visual
Studio 2008 and that you are not upgrading your project to the .NET Framework 3.5. Your project will
stay on the framework version you were using, but now, you will be able use the new Visual Studio 2008
to work on your project.

❑

❑

❑

❑

❑

(continued)

c15.indd 436c15.indd 436 2/19/08 5:13:39 PM2/19/08 5:13:39 PM

437

Chapter 15: Visual Studio 2008

Figure 15-29

 If you want to change the version of the framework the solution is using, right - click the solution and
select the properties of the solution. If you are working with an ASP.NET project, you will get a dialog as
shown in Figure 15 - 30 .

Figure 15-30

 From this dialog, the Build tab will provide you the ability to change the version of the framework that
the application is using. If you are working with a Windows Forms application ’ s property pages, you
will find the ability to target another version of the framework on the Application tab (the first tab). This
is presented in Figure 15 - 31 .

c15.indd 437c15.indd 437 2/19/08 5:13:39 PM2/19/08 5:13:39 PM

Part II: Visual Studio

438

 WPF, WCF, WF, and More
 By default, Visual Studio 2005 did not allow you to build applications targeted at the .NET Framework
3.0, which was out during the VS2005 lifetime. The default install of Visual Studio 2005 was targeted
only at the .NET Framework 2.0. To start working with the new technologies targeted at the .NET
Framework 3.0, you had to do a few extra installs.

 The .NET Framework 3.0 provided you with access to a class library for building application types such as
applications that make use of the Windows Presentation Foundation (WPF), the Windows Communication
Foundation (WCF), the Windows Workflow Foundation (WF), and Windows CardSpace.

 The targeted framework capabilities of Visual Studio 2008 allow you to build these types of applications
using either the .NET Framework 3.0 or 3.5.

 Building WPF Applications in Visual Studio
 One good example of some of the big changes that the .NET Framework 3.5 brings to Visual Studio is the
WPF Application project type (found in the Windows category). Selecting this project type will create a
 Window1.xaml and Window1.xaml.cs file for you to work from. Everything that is created by default
with this project type in the Solution Explorer is presented in Figure 15 - 32 (shown here with the new and
searchable Properties dialog).

Figure 15-31

c15.indd 438c15.indd 438 2/19/08 5:13:40 PM2/19/08 5:13:40 PM

439

Chapter 15: Visual Studio 2008

Figure 15-32

 Right away, the biggest change you will notice in Visual Studio 2008 is contained within the document
window. The default view of the document window after creating this project is presented in
Figure 15 - 33 .

 The document window has two views — a design view and an XAML view. Making changes in the
design view will make the appropriate changes in the XAML view, and vice versa. As with traditional
Windows Forms applications, WPF applications also include the ability to use controls that are contained
within Visual Studio ’ s toolbox. This new toolbox of controls is presented in Figure 15 - 34 .

 Building WF Applications in Visual Studio
 Another dramatically different application style (when it comes to building the application from within
Visual Studio) is the Windows Workflow application type. For an example of this, select the Sequential
Workflow Console Application project type from the Workflow section of the New Project dialog.
This will create a console application as illustrated here with a view of the Solution Explorer
(see Figure 15 - 35).

c15.indd 439c15.indd 439 2/19/08 5:13:40 PM2/19/08 5:13:40 PM

Part II: Visual Studio

440

Figure 15-33

Figure 15-34

Figure 15-35

c15.indd 440c15.indd 440 2/19/08 5:13:40 PM2/19/08 5:13:40 PM

441

Chapter 15: Visual Studio 2008

 One big change you see when building applications that make use of the Windows Workflow
Foundation is that there is a heavy dependency on the design view. Looking closely at the workflow (see
Figure 15 - 36), you can see that it is made up of multiple sequential steps and even includes actions based
on conditions (such as an if - else statement).

Figure 15-36

 Summary
 This chapter explored one of the most important programming tools in the .NET environment — Visual
Studio 2008. The bulk of the chapter examined how this tool facilitates writing code in C# (and C++ and
Visual Basic 2008).

 Visual Studio 2008 is one of the easiest development environments to work with in the programming
world. You will find that Visual Studio makes Rapid Application Development (RAD) easy to achieve,
but at the same time, you can dig deep into the mechanics of how your applications are created. This
chapter focused on using Visual Studio for everything from refactoring to multi - targeting to reading in
Visual Studio 6 projects and to debugging. It also covered many of the windows available to Visual
Studio.

 This chapter also looked at the new projects available to you through the .NET Framework 3.5. These
new project types focused on the Windows Presentation Foundation, the Windows Communication
Foundation, and the Windows Workflow Foundation.

 Chapter 16 presents the deployment situation in detail.

c15.indd 441c15.indd 441 2/19/08 5:13:43 PM2/19/08 5:13:43 PM

c15.indd 442c15.indd 442 2/19/08 5:13:44 PM2/19/08 5:13:44 PM

 Deployment

 The development process does not end when the source code is compiled and testing is complete.
At that stage, the job of getting the application into the user ’ s hands begins. Whether it ’ s an
ASP.NET application, a smart client application, or an application built using the Compact
Framework, the software must be deployed to a target environment. The .NET Framework has
made deployment much easier than it was in the past. The pains of registering COM components
and writing new hives to the registry are all gone.

 This chapter looks at the options that are available for application deployment, both from an
ASP.NET perspective and from the smart client perspective. The following topics are discussed:

❑ Deployment requirements

❑ Simple deployment scenarios

❑ Windows Installer – based projects

❑ ClickOnce

 Designing for Deployment
 Often, deployment is an afterthought in the development process that can lead to nasty, if not
costly, surprises. To avoid grief in deployment scenarios, the deployment process should be
planned out during the initial design stage. Any special deployment considerations — such as
server capacity, desktop security, or where assemblies will be loaded from — should be built into
the design from the start, resulting in a much smoother deployment process.

 Another issue that must be addressed early in the development process is the environment in
which to test the deployment. Whereas unit testing of application code and of deployment options
can be done on the developer ’ s system, the deployment must be tested in an environment that
resembles the target system. This is important to eliminate the dependencies that don ’ t exist on a
targeted computer. An example of this might be a third - party library that has been installed on the
developer ’ s computer early in the project. The target computer might not have this library on it.
It can be easy to forget to include it in the deployment package. Testing on the developer ’ s system
would not uncover the error because the library already exists. Documenting dependencies can
help in eliminating this potential problem.

c16.indd 443c16.indd 443 2/19/08 5:13:56 PM2/19/08 5:13:56 PM

Part II: Visual Studio

444

 Deployment processes can be very complex for a large application. Planning for the deployment can
save time and effort when the deployment process is implemented.

 Deployment Options
 This section provides an overview of the deployment options that are available to .NET developers.
Most of these options are discussed in greater detail later in this chapter.

 Xcopy
 The xcopy utility enables you to copy an assembly or group of assemblies to an application folder, cutting
down on your development time. Because assemblies are self - discovering (that is, the metadata that
describes the assembly is included in the assembly), there is no need to register anything in the registry.
Each assembly keeps track of what other assemblies it requires to execute. By default, the assembly looks
in the current application folder for the dependencies. The process of moving (or probing) assemblies to
other folders is discussed later in this chapter.

 Copy Web Tool
 If you are developing a Web project, using the Copy Web tool option on the Web site menu will copy the
components needed to run the application to the server.

 Publishing Web Sites
 When a Web site is published, the entire site is compiled and then copied to a specified location. As a
result of precompiling, all source code is removed from the final output and all compile errors can be
found and dealt with.

 Deployment Projects
 Visual Studio 2008 has the capability to create setup programs for an application. There are four options
based on Microsoft Windows Installer technology: creating merge modules, creating a setup for client
applications, creating a setup for Web applications, and creating a setup for Smart Device (Compact
Framework) based applications. The ability to create cab files is also available. Deployment projects offer
a great deal of flexibility and customization for the setup process. One of these deployment options will
be useful for larger applications.

 ClickOnce
 ClickOnce is a way to build self - updating Windows - based applications. ClickOnce allows an application
to be published to a Web site, file share, or even a CD. As updates and new builds are made to
the application they can be published to the same location or site by the development team. As the
application is used by the end user, it will check the location and see if an update is available. If there is,
an update is attempted.

 Deployment Requirements
 It is instructive to look at the runtime requirements of a .NET - based application. The CLR does have
certain requirements on the target platform before any managed application can execute.

c16.indd 444c16.indd 444 2/19/08 5:13:56 PM2/19/08 5:13:56 PM

Chapter 16: Deployment

445

 The first requirement that must be met is the operating system. Currently, the following operating
systems can run .NET - based applications:

❑ Windows 98

❑ Windows 98 Second Edition (SE)

❑ Windows Millennium Edition (ME)

❑ Windows NT 4.0 (Service Pack 6a)

❑ Windows 2000

❑ Windows XP Home

❑ Windows XP Professional

❑ Windows XP Professional TabletPC Edition

❑ Windows Vista

 The following server platforms are supported:

❑ Windows 2000 Server and Advanced Server

❑ Windows 2003 Server Family

 Other requirements are Windows Internet Explorer version 5.01 or later, MDAC version 2.6 or later
(if the application is designed to access data), and Internet Information Services (IIS) for ASP.NET
applications.

 You also must consider hardware requirements when deploying .NET applications. The minimum
requirements for hardware are as follows:

❑ Client — Pentium 90 MHz and 32 MB RAM

❑ Server — Pentium 133 MHz and 128 MB RAM

 For best performance, increase the amount of RAM — the more RAM the better your .NET application
runs. This is especially true for server applications.

 If you want to run .NET 3.0 applications that make use of Windows Presentation Foundation (WPF),
Windows Communication Foundation (WCF), or Windows Workflow Foundation (WF) the requirements
are a little more strict. .NET 3.0 requires at least Windows XP SP2. The previous list is trimmed to the
following:

❑ Windows XP Home (SP2)

❑ Windows XP Professional (SP2)

❑ Windows XP Professional TabletPC Edition (SP2)

❑ Windows Vista (not including IA64 platform)

 The following server platforms are supported:

❑ Windows 2003 Server Family (SP1)

❑ Windows Server 2008 IA64 Edition

 The minimum hardware requirements also change. They become Pentium 400 MHz and 96 MB RAM for
both client and server.

c16.indd 445c16.indd 445 2/19/08 5:13:57 PM2/19/08 5:13:57 PM

Part II: Visual Studio

446

 Deploying the . NET Runtime
 When an application is developed using .NET, there is a dependency on the .NET runtime. This may
seem rather obvious, but sometimes the obvious can be overlooked. If the application does not use any
.NET 3.0 features, then dotnetfx.exe (netfx64.exe for 64 bit OS) will be the only runtime
installation required. If .NET 3.0 features are used, then dotnetfx3.exe will need to be used as well. If
.NET 3.5 features are used, then netfx35_x86.exe will also have to be used.

 In the following discussions on creating deployment packages, the inclusion of the runtime is optional.
The installer can check to see if the proper runtime is installed, and if it isn ’ t, the installer can then
install the runtime from local media or even go to a specified download site and download and install
the runtime.

 Simple Deployment
 If deployment is part of an application ’ s original design considerations, deployment can be as simple as
copying a set of files to the target computer. For a Web application, it can be a simple menu choice in
Visual Studio 2008. This section discusses these simple deployment scenarios.

 To see how the various deployment options are set up, you must have an application to deploy. The
sample download at www.wrox.com contains three projects: SampleClientApp , SampleWebApp , and
 AppSupport . SampleClientApp is a smart client application. SampleWebApp is a simple Web app.
 AppSupport is a class library that contains one simple class that returns a string with the current date
and time. SampleClientApp and SampleWebApp use AppSupport to fill a label with the output of
 AppSupport . To use the examples, first load and build AppSupport . Then, in each of the other
applications, set a reference to the newly built AppSupport.dll .

 Here is the code for the AppSupport assembly:

using System;

namespace AppSupport
 {
 /// < summary >
 /// Simple assembly to return date and time string.
 /// < /summary >
 public class Support
 {
 private Support()
 {
 }

 public static string GetDateTimeInfo()
 {
 DateTime dt = DateTime.Now;
 return string.Concat(dt.ToLongDateString(), “ “, dt.ToLongTimeString());
 }
 }
}

 This simple assembly suffices to demonstrate the deployment options available to you.

c16.indd 446c16.indd 446 2/19/08 5:13:57 PM2/19/08 5:13:57 PM

Chapter 16: Deployment

447

 Xcopy
 Xcopy deployment is a term used for the process of copying a set of files to a folder on the target
machine and then executing the application on the client. The term comes from the DOS command
 xcopy.exe . Regardless of the number of assemblies, if the files are copied into the same folder, the
application will execute — rendering the task of editing the configuration settings or registry obsolete.

 To see how an xcopy deployment works, execute the following steps:

 1. Open the SampleClientApp solution (SampleClientApp.sln) that is part of the sample
download file.

 2. Change the target to Release and do a full compile.

 3. Next, use either My Computer or File Explorer to navigate to the project folder \ SampleClientApp\
bin\Release and double - click SampleClientApp.exe to run the application.

 4. Now, click the button to open another dialog. This verifies that the application functions
properly. Of course, this folder is where Visual Studio placed the output, so you would expect
the application to work.

 5. Create a new folder and call it ClientAppTest . Copy the two files from the release folder to this
new folder and then delete the release folder. Again, double - click the SampleClientApp.exe
file to verify that it ’ s working.

 That ’ s all there is to it; xcopy deployment provides the ability to deploy a fully functional application
simply by copying the assemblies to the target machine. Just because the example that is used here is
simple does not mean that this process cannot work for more complex applications. There really is no
limit to the size or number of assemblies that can be deployed using this method. The reason that you
might not want to use xcopy deployment is the ability to place assemblies in the global assembly cache
(GAC) or the ability to add icons to the Start Menu. Also, if your application still relies on a COM library
of some type, you will not be able to register the COM components easily.

 Xcopy and Web Applications
 Xcopy deployment can also work with Web applications with the exception of the folder structure. You
must establish the virtual directory of your Web application and configure the proper user rights. This
process is generally accomplished with the IIS administration tool. After the virtual directory is set up,
the Web application files can be copied to the virtual directory. Copying a Web application ’ s files can be a
bit tricky. A couple of configuration files, as well as the images that the pages might be using, need to be
accounted for.

 Copy Web Tool
 A better way would be to use the Copy Web tool. The Copy Web tool is accessed from the Website Copy
Web Site menu choice in Visual Studio 2008. It is basically an FTP client for transferring files to and from a
remote location. The remote location can be any FTP or Web site including local Web sites, IIS Web sites,
and Remote (FrontPage) Web sites. Another feature of the Copy Web tool is that it will synchronize files
on the remote server with the source site. The source site will always be the site that is currently open in
Visual Studio 2008. If the current project has multiple developers this tool can be used to keep changes
in sync with the local development site. Changes can be synced back with a common server for testing.

 Publishing a Web Site
 Another deployment option for Web projects is to publish the Web site. Publishing a Web site will
precompile the entire site and place the compiled version into a specified location. The location can be a
file share, FTP location, or any other location that can be accessed via HTTP. The compilation process

c16.indd 447c16.indd 447 2/19/08 5:13:57 PM2/19/08 5:13:57 PM

Part II: Visual Studio

448

strips all source code from the assemblies and creates the DLLs for deployment. This also includes the
markup contained in the .ASPX source files. Instead of containing the normal markup, the .ASPX files
contain a pointer to an assembly. Each .ASPX file relates to an assembly. This process works regardless of
the model: code behind or single file.

 The advantages of publishing a Web site are speed and security. Speed is enhanced because all of the
assemblies are already compiled. Otherwise, the first time a page is accessed there is a delay while the page
and dependent code is compiled and cached. The security is enhanced because the source code is not
deployed. Also, because everything is precompiled before deployment all compilation errors will be found.

 You publish a Web site from the Website Publish Web Site menu choice. You need to supply the
location to publish to. Again, this can be a file share, FTP location, Web site, or local disk path. After the
compilation is finished, the files are placed in the specified location. From there, they can be copied to a
staging server, test server, or the production server.

 Installer Projects
 Xcopy deployment can be easy to use, but there are times when the lack of functionality becomes an
issue. To overcome this shortcoming, Visual Studio 2008 has six installer project types. Four of these
options are based on the Windows Installer technology. The following table lists the project types.

Project Type Description

Setup Project Used for the installation of client applications, middle-tier applica-
tions, and applications that run as a Windows Service.

Web Setup Project Used for the installation of Web-based applications.

Merge Module Project Creates .msm merge modules that can be used with other Windows
Installer–based setup applications.

Cab Project Creates .cab files for distribution through older deployment
technologies.

Setup Wizard Aids in the creation of a deployment project.

Smart Device CAB Project CAB project for Pocket PC, Smartphone, and other CE-based
applications.

 Setup and Web Setup Projects are very similar. The key difference is that with Web Setup the project is
deployed to a virtual directory on a Web server, whereas with Setup Project it is deployed to a folder
structure. Both project types are based on Windows Installer and have all of the features of a Windows
Installer – based setup program. Merge Module Project is generally used when you have created a
component or library of functionality that is included in a number of deployment projects. By creating a
merge module, you can set any configuration items specific to the component and without having to
worry about them in the creation of the main deployment project. The Cab Project type simply creates
cab files for the application. .cab files are used by older installation technologies as well as some Web -
 based installation processes. The Setup Wizard project type steps through the process of creating a
deployment project, asking specific questions along the way. The following sections discuss how to
create each of these deployment projects, what settings and properties can be changed, and what
customization you can add.

c16.indd 448c16.indd 448 2/19/08 5:13:58 PM2/19/08 5:13:58 PM

Chapter 16: Deployment

449

 What Is Windows Installer?
 Windows Installer is a service that manages the installation, update, repair, and removal of applications
on most Windows operating systems. It is part of Windows ME, Windows 2000, Windows XP, and
Windows Vista and is available for Windows 95, Windows 98, and Windows NT 4.0. The current version
of Windows Installer is 3.0.

 Windows Installer tracks the installation of applications in a database. When an application has to be
uninstalled, you can easily track and remove the registry settings that were added, the files that
were copied to the hard drive, and the desktop and Start Menu icons that were added. If a particular
file is still referenced by another application, the installer will leave it on the hard drive so that the other
application doesn ’ t break. The database also makes it possible to perform repairs. If a registry setting or a
DLL associated with an application becomes corrupt or is accidentally deleted, you can repair the
installation. During a repair, the installer reads the database from the last install and replicates
that installation.

 The deployment projects in Visual Studio 2008 give you the ability to create a Windows Installation
package. The deployment projects give you access to most of what you will need to do in order to install
a given application. However, if you need even more control, check out the Windows Installer SDK,
which is part of the Platform SDK — it contains documentation on creating custom installation packages
for your application. The following sections deal with creating these installation packages using the
Visual Studio 2008 deployment projects.

 Creating Installers
 Creating installation packages for client applications or for Web applications is not that difficult. One
of the first tasks is to identify all of the external resources your application requires, including
configuration files, COM components, third - party libraries, and controls and images. Including a list of
dependencies in the project documentation was discussed earlier. This is where having that
documentation can prove to be very useful. Visual Studio 2008 can do a reasonable job of interrogating
an assembly and retrieving the dependencies for it, but you still have to audit the findings to make sure
that nothing is missing.

 Another concern might be when in the overall process the install package is created. If you have an
automated build process set up, you can include the building of the installation package upon a
successful build of the project. Automating the process greatly reduces the chance for errors in what can
be a time - consuming and complicated process for large projects. What you can do is to include the
deployment project with the project solution. The Solution Property Pages dialog box has a setting for
Configuration Properties. You can use this setting to select the projects that will be included for your
various build configurations. If you select the Build check box under Release builds but not for the
Debug builds, the installation package will be created only when you are creating a release build. This is
the process used in the following examples. Figure 16 - 1 shows the Solution Property Pages dialog box
of the SampleClientApp solution. Notice that the Debug configuration is displayed and that the Build
check box is unchecked for the setup project.

 Simple Client Application
 In the following example, you create an installer for the SimpleClientApp solution (which is included in
the sample download, together with the completed installer projects).

 For the SimpleClientApp you create two deployment projects. One is done as a separate solution; the
other is done in the same solution. This enables you to see the pros and cons of choosing each option.

 The first example shows you how to create the deployment project in a separate solution. Before you get
started on creating the deployment project, make sure that you have a release build of the application

c16.indd 449c16.indd 449 2/19/08 5:13:58 PM2/19/08 5:13:58 PM

Part II: Visual Studio

450

that will be deployed. Next, create a new project in Visual Studio 2008. In the New Project dialog box,
select Setup and Deployment Projects on the left. On the right, select Setup Project and assign it a name
of your choice (for example, SampleClientStandaloneSetup).

 In the Solution Explorer window, click the project and then the Properties window. You will see a list
of properties. These properties will be displayed during the setup of your application. Some of
these properties are also displayed in the Add/Remove Programs Control Panel applet. Because most
of these properties are visible to users during the installation process (or when they are looking at your
installation in Add or Remove Programs), setting them correctly will add a professional touch to
your application. The list of properties is important, especially if your application will be deployed
commercially. The following table describes the properties and the values that you should enter.

Project Property Description

AddRemoveProgramsIcon The icon that appears in the Add/Remove dialog box.

Author The author of the application. Generally this property setting is the
same as the manufacturer. It is displayed on the Summary page of the
Properties dialog of the msi package, as well as the Contact field of
the SupportInfo page on the Add/Remove dialog box.

Description A freeform text field that describes the application or component that
is being installed. This information is displayed on the Summary page
of the Properties dialog of the msi package, as well as the Comment
field of the SupportInfo page on the Add/Remove dialog box.

DetectNewerInstalled
Version

A Boolean value that, when set to true, will check to see if a newer
version of the application is already installed. If so, the installation
process will stop.

InstallAllUsers Boolean value that, when set to true, will install that application for
all users of the computer. If set to false, only the current user will
have access.

Figure 16-1

c16.indd 450c16.indd 450 2/19/08 5:13:58 PM2/19/08 5:13:58 PM

Chapter 16: Deployment

451

Project Property Description

Keywords Keywords that can be used to search for the .msi file on the target
computer. This information is displayed on the Summary page of the
Properties dialog of the msi package.

Localization The locale used for string resources and registry settings. This affects
the user interface of the installer.

Manufacturer Name of the company that manufactured the application or compo-
nent. Typically, this is the same information as specified in the Author
property. This information is displayed on the Summary page of the
Properties dialog box of the msi package as well as the Publisher field
of the SupportInfo page in the Add/Remove dialog box. It is used as
part of the default installation path of the application.

ManufacturerURL The URL for a Web site that relates to the application or component
being installed.

PostBuildEvent A command that is executed after the build ends.

PreBuildEvent A command that is executed before the build begins.

ProductCode A string GUID that is unique to this application or component.
Windows Installer uses this property to identify the application for
subsequent upgrades or installs.

ProductName A name that describes the application. Used as the description of an
application in the Add/Remove dialog box as well as part of the default
install path: C:\Program Files\Manufacturer\ProductName.

RemovePrevious-
Versions

Boolean value that, if set to true, will check for a previous version of
the application. If yes, the uninstall function of the previous version is
called before installation continues. This property uses ProductCode
and UpgradeCode to determine if uninstall should occur.
UpgradeCode should be the same; ProductCode should be different.

RunPostBuildEvent When the PostBuildEvent should be run. Options are On successful
build or Always.

SearchPath A string that represents the search path for dependent assemblies,
files, or merge modules. Used when the installer package is built on
the development machine.

Subject Additional information regarding the application. This information is
displayed on the Summary page of the Properties dialog box of the
msi package.

SupportPhone A phone number for support of the application or component. This
information is displayed in the Support Information field of the
SupportInfo page on the Add/Remove dialog box.

SupportURL A URL for support of the application or component. This information
is displayed in the Support Information field of the SupportInfo page
in the Add/Remove dialog box.

TargetPlatform Supports the 32- or 64-bit versions of Windows.

c16.indd 451c16.indd 451 2/19/08 5:13:59 PM2/19/08 5:13:59 PM

Part II: Visual Studio

452

Project Property Description

Title The title of the installer. This is displayed on the Summary page of the
Properties dialog box of the msi package.

UpgradeCode A string GUID that represents a shared identifier of different versions
of the same application. The UpgradeCode should not change for dif-
ferent versions or different language versions of the application. Used
by DetectNewerInstalledVersion and RemovePreviousVersion.

Version The version number of the installer, .cab file, or merge module. Note
that this is not the version of the application being installed.

 After you have set the properties, you can start to add assemblies. In this example, the only assembly
you have to add is the main executable (SampleClientApp.exe). To do this, you can either right - click
the project in the Solution Explorer or select Add from the Project menu. You have four options:

❑ Project Output — You explore this option in the next example.

❑ File — This is used for adding a readme text file or any other file that is not part of the build
process.

❑ Merge Module — A merge module that was created separately.

❑ Assembly — Use this option to select an assembly that is part of the installation.

 Choose Assembly for this example. You will be presented with the Component Selector dialog box,
which resembles the dialog box you use for adding references to a project. Browse to the \bin\release
folder of your application. Select SampleClientApp.exe and click OK in the Component Selector
dialog box. You can now see SampleClientApp.exe listed in the Solution Explorer of the deployment
project. In the Detected Dependencies section, you can see that Visual Studio interrogated
 SampleClientApp.exe to find the assemblies on which it depends; in this case AppSupport.dll is
included automatically. You would continue this process until all of the assemblies in your application
are accounted for in the Solution Explorer of the deployment project.

 Next, you have to determine where the assemblies will be deployed. By default, the File System editor is
displayed in Visual Studio 2008. The File System editor is split into two panes: the left pane shows the
hierarchical structure of the file system on the target machine; the right pane provides a detail view of
the selected folder. The folder names might not be what you expect to see, but keep in mind that these
are for the target machine. For example, the folder labeled User ’ s Programs Menu maps to the
 C:\Documents and Settings\User Name\Start Menu\Programs folder on the target client.

 You can add other folders at this point, either special folders or a custom folder. To add a special folder
make sure that File System on Target Machine is highlighted in the left pane, and select Action menu
on the main menu. The Add Special Folder menu choice provides a list of folders that can be added.
For example, if you want to add a folder under the Application folder, you can select the Application
Folder folder in the left pane of the editor and then select the Action menu. This time, there will be an
Add menu that enables you to create the new folder. Rename the new folder and it will be created for
you on the target machine.

 One of the special folders that you might want to add is a folder for the GAC. AppSupport.dll can be
installed to the GAC if it is used by several different applications. In order to add an assembly to the GAC,
it does have to have a strong name. The process for adding the assembly to the GAC is to add the
GAC from the Special Folder menu as described previously and then drag the assembly that you want
in the GAC from the current folder to the Global Assembly Cache folder. If you try to do this with an
assembly that is not strongly named, the deployment project will not compile.

c16.indd 452c16.indd 452 2/19/08 5:13:59 PM2/19/08 5:13:59 PM

Chapter 16: Deployment

453

 If you select Application Folder, you will see on the right pane that the assemblies that you added are
automatically added to the Application folder. You can move the assemblies to other folders, but keep in
mind that the assemblies have to be able to find each other. (For more details on probing, see Chapter 17 ,
 “ Assemblies. ”)

 If you want to add a shortcut to the application on the user ’ s desktop or to the Start Menu, drag the
items to the appropriate folders. To create a desktop shortcut, go to the Application folder. On the right
side of the editor select the application. Go to the Action menu, and select the Create Shortcut item to
create a shortcut to the application. After the shortcut is created, drag it to the User ’ s Desktop folder.
Now when the application is installed, the shortcut will appear on the desktop. Typically, it is up to the
user to decide if he or she wants a desktop shortcut to your application. The process of asking the user
for input and taking conditional steps is explored later in this chapter. The same process can be followed
to create an item in the Start Menu. Also, if you look at the properties for the shortcut that you just
created, you will see that you can configure the basic shortcut properties such as Arguments and what
icon to use. The application icon is the default icon.

 Before you build the deployment project you might have to check some project properties. If you select
Project menu, then SampleClientStandaloneSetup Properties, you will see the project Property Pages dia-
log box. These are properties that are specific to a current configuration. After selecting the configuration
in the Configuration drop - down, you can change the properties listed in the following table.

Property Description

Output file name The name of the .msi or .msm file that is generated when the project is compiled.

Package files This property enables you to specify how the files are packaged. Your options are:
As loose uncompressed files — All of the deployment files are stored in the same
directory as the .msi file.
In setup file — Files are packaged in the .msi file (default setting).
In cabinet file(s) — Files are in one or more .cab files in the same directory. When
this is selected the CAB file size option becomes available.

Prerequisites URL Allows you to specify where prerequisites such as the .NET Framework or
Windows Installer 2.0 can be found. Clicking the Settings button will display a
dialog that has the following technologies available to include in the setup:
Windows Installer 2.0
.NET Framework
Microsoft Visual J#
.NET Redistributable Package 2.0
SQL Server 2008 Express Edition
Microsoft Data Access Components 2.8
There is also an option to have the prerequisites downloaded from a predefined
URL or to have them loaded from the same location as the setup.

Compression This specifies the compression style for the files included. Your options are:
Optimized for speed — Larger files but faster installation time (default setting).
Optimized for size — Smaller files but slower installation time.
None — No compression applied.

CAB size This is enabled when the Package file setting is set to In cabinet files. Unlimited
creates one single cabinet file; custom allows you to set the maximum size for
each .cab file.

c16.indd 453c16.indd 453 2/19/08 5:14:00 PM2/19/08 5:14:00 PM

Part II: Visual Studio

454

 After you have set the project properties, you should be able to build the deployment project and create
the setup for the SampleClientApp application. After you build the project, you can test the installation
by right - clicking the project name in the Solution Explorer. This enables you to access an Install and
Uninstall choice in the context menu. If you have done everything correctly, you should be able to install
and uninstall SampleClientApp successfully.

 Same Solution Project
 The previous example works well for creating a deployment package, but it does have a couple of
downsides. For example, what happens when a new assembly is added to the original application? The
deployment project will not automatically recognize any changes; you will have to add the new
assemblies and verify that any new dependencies are covered. In smaller applications (like the example),
this isn ’ t that big of a deal. However, when you ’ re dealing with an application that contains dozens or
maybe hundreds of assemblies, this can become quite tedious to maintain. Visual Studio 2008 has a
simple way of resolving this potential headache. Include the deployment project in your application ’ s
solution. You can then capture the output of the main project as your deployment assemblies. You can
look at the SimpleClientApp as an example.

 Open the SimpleClientApp solution in Visual Studio 2008. Add a new project using Solution Explorer.
Select Deployment and Setup Projects and then select Setup Project, following the steps outlined in the pre-
vious section. You can name this project SimpleAppSolutionSetup . In the previous example, you added
the assemblies by selecting Add Assemblies from the Project menu. This time, select Add Project
Output from the Project menu. This opens the Add Project Output Group dialog box (see Figure 16 - 2).

Property Description

Authenticode
signature

When this is checked, the deployment project output is signed using
Authenticode; the default setting is unchecked.

Certificate file The certificate used for signing.

Private key file The private key that contains the digital encryption key for
the signed files.

Timestamp
server URL

URL for timestamp server. This is also used for Authenticode signing.

Figure 16-2

c16.indd 454c16.indd 454 2/19/08 5:14:00 PM2/19/08 5:14:00 PM

Chapter 16: Deployment

455

 The top part of the dialog box has a drop - down list box that shows all projects in the current solution.
Select the main startup project. Then select the items you want to include in your project from the list
below. Your options are Documentation, Primary Output, Localized Resources, Debug Symbols, Content
Files, and Source Files. First, select Primary Output. This includes the output and all dependencies when
the application is built. Another drop - down list box lists the valid configurations: Debug and Release,
plus any custom configurations you might have added. This also determines what outputs are picked
up. For deployment, you will most likely want to use the Release configuration.

 After you make these selections, a new item is added to your deployment project in Solution Explorer.
The name of the item is Primary output from SampleClientApp (Release .NET) . You will also see the
file AppSupport.dll listed under the dependencies. As before, no need to search for the dependent
assemblies.

 At this point, all of the various project properties discussed in the previous section still apply. You can
change the Name, Manufacturer, .cab file size, and other properties. After setting the properties, do a
release build of the solution and test the installation. Everything should work as expected.

 To see the advantage of adding the deployment package to the applications solution, add a new project
to the solution. In the example it is called AppSupportII . In it is a simple test method that returns the
string Hello World. Set a reference in SampleTestApp to the newly added project, and do another
release build of the solution. You should see that the deployment project picked up the new assembly
without you having to do anything. If you go back and open up the standalone deployment project from
the previous example, unless you specifically add the assembly, it will not be picked up.

 Simple Web Application
 Creating an installation package for a Web application is not that different than creating a client install
package. The download examples include a SimpleWebApp that also utilizes the AppSupport.dll
assembly. You can create the deployment project the same way that the client deployment projects are
created, either standalone or in the same solution. In this example, the deployment project is built in the
same solution.

 Start the SimpleWebApp solution and add a new deployment and setup project. This time, be sure to
choose Web Setup Project in the Templates window. If you look at the properties view for the project,
you will see that all of the same properties exist for Web applications that existed for client applications.
The only addition is RestartWWWService . This is a Boolean value that will restart IIS during the install.
If you ’ re using ASP.NET components and not replacing any ATL or ISAPI DLLs, you shouldn ’ t have to
do this.

 If you look at the File System editor, you will notice that there is only one folder. The Web Application
folder will be your virtual directory. By default, the name of the directory is the name of the deployment
project, and it is located below the Web root directory. The following table explains the properties that
can be set from the installer. The properties discussed in the previous section are not included.

Property Description

AllowDirectoryBrowsing A Boolean value that, if true, allows an HTML listing of the files
and subfolders of the virtual directory. Maps to the Directory
browsing property of IIS.

AllowReadAccess A Boolean value that, if true, allows users to read or download
files. Maps to the Read property of IIS.

AllowScriptSourceAccess A Boolean value that, if true, allows users to access source code,
including scripts. Maps to Script source access in IIS.

c16.indd 455c16.indd 455 2/19/08 5:14:01 PM2/19/08 5:14:01 PM

Part II: Visual Studio

456

Property Description

AllowWriteAccess A Boolean value that, if true, allows users to change content in
write-enabled files. Maps to the Write property of IIS.

ApplicationProtection Determines the protection level of applications that are run on the
server. The valid values are:
Low — Applications run in the same process as Web services.
Medium — Applications run in same process but not the same as
Web services.
High — Application runs in its own process.
Maps to the Application Protection property in IIS. Has no effect if
the IsApplication property is false.

AppMappings A list of application names and document or data files that are
associated with the applications. Maps to the Application
Mappings property of IIS.

Condition A Windows Installer condition that must be met in order for the
item to be installed.

DefaultDocument The default or startup document when the user first browses to
the site.

ExecutePermissions The level of permissions that a user has to execute applications.
The valid values are:
None — Only static content can be accessed.
ScriptsOnly — Only scripts can be accessed. Includes ASP.
ScriptsAndExecutables — Any files can be accessed.
Maps to Execute Permissions in IIS.

Index Boolean value that, if true, would allow indexing of the content
for Microsoft Indexing Service. Maps to the Index this resource
property of IIS.

IsApplication Boolean value that, if true, instructs IIS to create the application
root for the folder.

LogVisits Boolean value that, if true, logs visits to the Web site in a log file.
Maps to the Log visits property of IIS.

Property The named property that can be accessed at installation time.

VirtualDirectory The virtual directory for the application. This is relative to the Web
server.

 You might notice that most of these properties are properties of IIS and can be set in the IIS administrator
tool. So, the logical assumption is that in order to set these properties in the installer, the installer will
need to run with administrator privileges. The settings made here can compromise security, so the
changes should be well documented.

 Other than these properties, the process of creating the deployment package is very similar to the
previous client example. The main difference between the two projects is the ability to modify IIS from
the installation process. As you can see, you have a great deal of control over the IIS environment.

c16.indd 456c16.indd 456 2/19/08 5:14:01 PM2/19/08 5:14:01 PM

Chapter 16: Deployment

457

 Client from Web Server
 Another installation scenario is either running the install program from a Web site or actually running
the application from a Web site. Both of these are attractive options if you must deploy an application to
a large number of users. By deploying from a Web site, you eliminate the need for a distribution medium
such as CD - ROM, DVD, or even floppy disks. By running the application from a Web site or even a
network share, you eliminate the need to distribute a setup program at all.

 Running an installer from a Web site is fairly simple. You use the Web Bootstrapper project compile
option. You will be asked to provide the URL of the setup folder. This is the folder in which the setup
program is going to look for the .msi and other files necessary for the setup to work. After you set this
option and compile the deployment package you can copy it to the Web site that you specify in the Setup
folder URL property. At this point, when the user navigates to the folder, she will be able to either run
the setup or download it and then run it. In both instances, the user must be able to connect to the same
site to finish the installation.

 No - Touch Deployment
 You can also run the application from a Web site or network share. This process becomes a little more
involved and is a prime reason that you should design the application with deployment in mind. This is
sometimes referred to as no - touch deployment (NTD).

 To make this process work, the application code must be written in a way to support it. A couple of ways
exist to architect the application to take advantage of NTD. One way is to write the majority of the
application code into DLL assemblies. The DLLs will live on a Web server or file share on the network.
Then you create a smaller application .exe that will be deployed to the client PC ’ s. This stub program
will start the application by calling into one of the DLL assemblies, using the LoadFrom method. The
only thing that the stub program will see is the main entry point in the DLL. Once the DLL assembly has
been loaded, the application will continue loading other assemblies from the same URL or network
share. Remember that an assembly first looks for dependent assemblies in the application directory
(that is, the URL that was used to start the application). Here is the code used in the stub application on
the user ’ s client. This example calls the AppSupportII DLL assembly and puts the output of the
 TestMethod call in label1 :

Assembly testAssembly =

Assembly.LoadFrom(“http://localhost/AppSupport/AppSupportII.dll”);
Type type = testAssembly.GetType(“AppSupportII.TestClass”);
object testObject = Activator.CreateInstance(type);
label1.Text = (string)type.GetMethod(“TestMethod”).Invoke(testObject,null);

 This process uses reflection to first load the assembly from the Web server. In this example, the Web site is
a folder on the local machine (localhost). Next, the type of the class is retrieved (here: TestClass). Now
that you have type information the object can be created using the Activator.CreateInstance method.
The last step is to get a MethodInfo object (the output of GetMethod) and call the Invoke method. In a
more complex application this is the main entry point of the application. From this point on, the stub is
not needed anymore.

 Alternatively, you can also deploy the entire application to a Web site. For this method, create a simple
Web page that contains a link to the application ’ s setup executable or perhaps a shortcut on the user ’ s
desktop that has the Web site link. When the link is clicked, the application will be downloaded to the
user ’ s assembly download cache, which is located in the global assembly cache. The application will run
from the download cache. Each time a new assembly is requested, it will go to the download cache first
to see if it exists; if not, it will go to the URL that the main application came from.

 The advantage to deploying the application in this way is that when an update is made available for the
application, it has to be deployed in only one place. You place the new assemblies in the Web folder and

c16.indd 457c16.indd 457 2/19/08 5:14:01 PM2/19/08 5:14:01 PM

Part II: Visual Studio

458

when the user starts the application, the runtime will actually look at the assemblies in the URL and the
assemblies in the download cache to compare versions. If a new version is found at the URL, it is then
downloaded to replace the current one in the download cache. This way, the user always has access to
the most current version of the application. The downside is that security is difficult to set up. The
assemblies have to have a wide set of permissions in order to operate. This has the effect of making the
application very insecure.

 For more control over the update process and over security, ClickOnce is probably a better choice.

 ClickOnce
 ClickOnce is a deployment technology that allows applications to be self - updating. Applications are
published to a file share, Web site, or media such as a CD. Once published, ClickOnce apps can be
automatically updated with minimal user input.

 ClickOnce also solves the security permission problem. Normally, to install an application the user
would need Administrative rights. With ClickOnce a user can install and run an application with only
the absolute minimum permissions required to run the application.

 ClickOnce Operation
 ClickOnce applications have two XML - based manifest files associated with them. One is the application
manifest, and the other is the deployment manifest. These two files describe everything that is required
to know to deploy an application.

 The application manifest contains information about the application such as permissions required,
assemblies to include, and other dependencies. The deployment manifest is about the deployment of
the app. Items such as the location of the application manifest are contained in the deployment manifest.
The complete schemas for the manifests are in the .NET SDK documentation.

 ClickOnce has some limitations. Assemblies cannot be added to the GAC, for example. The following
table compares ClickOnce and Windows Installer.

ClickOnce Windows Installer

Application installation location ClickOnce application cache Program Files folder

Install for multiple users No Yes

Install Shared files No Yes

Install drivers No Yes

Install to the GAC No Yes

Add application to Startup group No Yes

Add application to the favorites
menu

No Yes

Register file types No Yes

Access registry No. The HKLM can be accessed
with Full Trust permissions.

Yes

Binary patching of files Yes No

Install assemblies on demand Yes No

c16.indd 458c16.indd 458 2/19/08 5:14:02 PM2/19/08 5:14:02 PM

Chapter 16: Deployment

459

 Some situations certainly exist where using Windows Installer is clearly a better choice; however,
ClickOnce can be used for a large number of applications.

 Publishing an Application
 Everything that ClickOnce needs to know is contained in the two manifest files. The process of
publishing an application for ClickOnce deployment is simply generating the manifests and placing the
files in the proper location. The manifest files can be generated in Visual Studio 2008. There is also a
command - line tool (mage.exe) and a version with a GUI (mageUI.exe).

 You can create the manifest files in Visual Studio 2008 in two ways. At the bottom of the Publish tab
on the Project Properties dialog are two buttons. One is the Publish Wizard and the other is Publish Now.
The Publish Wizard asks several questions about the deployment of the application and then generates the
manifest files and copies all of the needed files to the deployment location. The Publish Now button uses
the values that have been set in the Publish tab to create the manifest files and copies the files to the
deployment location.

 In order to use the command - line tool, mage.exe , the values for the various ClickOnce properties must
be passed in. Manifest files can be both created and updated using mage.exe . Typing mage.exe - help at
the command prompt will give the syntax for passing in the values required.

 The GUI version of mage.exe (mageUI.exe) is similar in appearance to the Publish tab in Visual Studio
2008. An application and deployment manifest file can be created and updated using the GUI tool.

 ClickOnce applications appear in the Add/Remove Control Panel applet just like any other installed
application. One big difference is that the user is presented with the choice of either uninstalling
the application or rolling back to the previous version. ClickOnce keeps the previous version in the
ClickOnce application cache.

 ClickOnce Settings
 Several properties are available for both manifest files. The most important property is where the
application should be deployed from. The dependencies for the application must be specified.
The Publish tab has an Application Files button that shows a dialog for entering all of the assemblies
required by the application. The Prerequisite button displays a list of common prerequisites that can be
installed along with the application. You have the choice of installing the prerequisites from the same
location that the application is being published to or optionally having the prerequisites installed from
the vendor ’ s Web site.

 The Update button displays a dialog that has the information about how the application should be
updated. As new versions of an application are made available, ClickOnce can be used to update
the application. Options include to check for updates every time the application starts or to check in the
background. If the background option is selected, a specified period of time between checks can be
entered. Options for allowing the user to be able to decline or accept the update are available. This can
be used to force an update in the background so that the user is never aware that the update is occurring.
The next time the application is run, the new version will be used instead of the older version. A separate
location for the update files can be used as well. This way the original installation package can be located
in one location and installed for new users, and all of the updates can be staged in another location.

 The application can be set up so that it will run in either online or offline mode. In offline mode the
application can be run from the Start Menu and acts as if it were installed using the Windows Installer.
Online mode means that the application will run only if the installation folder is available.

c16.indd 459c16.indd 459 2/19/08 5:14:02 PM2/19/08 5:14:02 PM

Part II: Visual Studio

460

 Application Cache
 Applications distributed with ClickOnce are not installed in the Program Files folder. Instead, they are
placed in an application cache that resides in the Local Settings folder under the current user ’ s
Documents and Settings folder. Controlling this aspect of the deployment means that multiple versions
of an application can reside on the client PC at the same time. If the application is set to run online, every
version that the user has accessed is retained. For applications that are set to run locally, the current and
previous versions are retained.

 Because of this, it is a very simple process to roll back a ClickOnce application to its previous version. If
the user goes to the Add/Remove Programs Control Panel applet, the dialog presented will contain the
choice of removing the ClickOnce application or rolling back to the previous version. An Administrator
can change the manifest file to point to the previous version. If the administrator does this, the next time
the user runs that application, a check will be made for an update. Instead of finding new assemblies to
deploy, the application will restore the previous version without any interaction from the user.

 Security
 Applications deployed over the Internet or intranet have a lower security or trust setting than applications
that have been installed to the local drive have. For example, by default if an application is launched or
deployed from the Internet it is in the Internet Security Zone. This means that it cannot access the file
system, among other things. If the application is installed from a file share, it will run in the Intranet Zone.

 If the application requires a higher level of trust than the default, the user will be prompted to grant the
permissions required for the application to run. These permissions are set in the trustInfo element of the
application manifest. Only the permissions asked for in this setting will be granted. So, if an application
asks for file access permissions, Full Trust will not be granted, only the specific permissions requested.

 Another option is to use Trusted Application Deployment. Trusted Application Deployment is a way to
grant permissions on an enterprise - wide basis without having to prompt the user. A trust license issuer
is identified to each client machine. This is done with public key cryptography. Typically, an organization
will have only one issuer. It is important to keep the private key for the issuer in a safe, secure location.

 A trust license is requested from the issuer. The level of trust that is being requested is part of the trust
license configuration. A public key used to sign the application must also be supplied to the license
issuer. The license created contains the public key used to sign the application and the public key of the
license issuer. This trust license is then embedded in the deployment manifest. The last step is to sign
the deployment manifest with your own key pair. The application is now ready to deploy.

 When the client opens the deployment manifest the Trust Manager will determine if the ClickOnce
application has been given a higher trust. The issuer license is looked at first. If it is valid, the public key
in the license is compared to the public key that was used to sign the application. If these match, the
application is granted the requested permissions.

 Advanced Options
 The installation processes discussed so far are very powerful and can do quite a bit. But there is much
more that you can control in the installation process. For example, you can use the various editors in
Visual Studio 2008 to build conditional installations or add registry keys and custom dialog boxes. The
 SampleClientSetupSolution example has all of these advanced options enabled.

 File System Editor
 The File System editor enables you to specify where in the target the various files and assemblies that
make up the application will be deployed. By default, a standard set of deployment folders is displayed.

c16.indd 460c16.indd 460 2/19/08 5:14:02 PM2/19/08 5:14:02 PM

Chapter 16: Deployment

461

You can add any number of custom and special folders with the editor. This is also where you would
add desktop and Start Menu shortcuts to the application. Any file that must be part of the deployment
must be referenced in the File System editor.

 Registry Editor
 The Registry editor allows you to add keys and data to the registry. When the editor is first displayed, a
standard set of main keys is displayed:

❑ HKEY_CLASSES_ROOT

❑ HKEY_CURRENT_USER

❑ HKEY_LOCAL_MACHINE

❑ HKEY_USERS

 HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE contain additional entries in the Software/
[Manufacturer] key where Manufacturer is the information you entered in the Manufacturer property
of the deployment project.

 To add additional keys and values, highlight one of the main keys on the left side of the editor. Select
Action from the main menu and then select New. Select the key or the value type that you want to add.
Repeat this step until you have all of the registry settings that you want. If you select the Registry on
Target Machine item on the left pane and then select the Action menu, you will see an Import option,
which enables you to import an already defined *.reg file.

 To create a default value for a key you must first enter a value for the key, then select the value name in
the right or value pane. Select Rename from the File menu and delete the name. Press Enter, and the
value name is replaced with (Default).

 You can also set some properties for the subkeys and values in the editor. The only one that hasn ’ t been
discussed already is the DeleteAtUninstall property. A well - designed application should remove all
keys that have been added by the application at uninstall time. The default setting is not to delete the keys.

 One thing to keep in mind is that the preferred method for maintaining application settings is to use
XML - based configuration files. These files offer a great deal more flexibility and are much easier to
restore and back up than registry entries.

 File Types Editor
 The File Types editor is used to establish associations between files and applications. For example, when
you double - click a file with the .doc extension, the file is opened in Word. You can create these same
associations for your application.

 To add an association, execute the following steps:

 1. Select File Types on Target Machine from the Action menu.

 2. Then select Add File Type. In the properties window, you can now set the name of the
association.

 3. In the Extension property, add the file extension that should be associated with the application.
Do not enter the periods; you can separate multiple extensions with a semicolon, like this:
 ex1;ex2 .

 4. In the Command property, select the ellipse button.

 5. Now, select the file (typically an executable) that you want to associate with the specified file
types. Keep in mind that any one extension should be associated with only one application.

c16.indd 461c16.indd 461 2/19/08 5:14:03 PM2/19/08 5:14:03 PM

Part II: Visual Studio

462

 By default, the editor shows & Open as the Document Action. You can add others. The order in which the
actions appear in the editor is the order in which they will appear in the context menu when the user
right - clicks the file type. Keep in mind that the first item is always the default action. You can set the
 Arguments property for the actions. This is the command - line argument used to start the application.

 User Interface Editor
 Sometimes you might want to ask the user for more information during the installation process. The
User Interface editor is used to specify properties for a set of predefined dialog boxes. The editor is
separated into two sections, Install and Admin. One is for the standard installation and the other is used
for an administrator ’ s installation. Each section is broken up into three subsections: Start, Progress, and
End. These subsections represent the three basic stages of the installation process (see Figure 16 - 3).

Figure 16-3

Dialog Box Description

Checkboxes Contains up to four check boxes. Each check box has a Label, Value, and
Visible property.

Confirm Installation Gives the user the ability to confirm the various settings before installation
takes place.

Customer Information Has edit fields for the collection name, organization name, and serial num-
ber. Organization name and serial number are optional.

Finished Displayed at the end of the setup process.

 The following table lists the types of dialog boxes that you can add to the project.

c16.indd 462c16.indd 462 2/19/08 5:14:03 PM2/19/08 5:14:03 PM

Chapter 16: Deployment

463

Dialog Box Description

Installation Address For Web applications, displays a dialog box so that users can choose an
alternate installation URL.

Installation Folder For client applications, displays a dialog box so that users can select an
alternate installation folder.

License Agreement Displays the license agreement that is located in a file specified by the
LicenseFile property.

Progress Displays a progress indicator during the installation process that shows the
current installation status.

RadioButtons Contains up to four radio buttons. Each radio button has a Label and
Value property.

Read Me Shows the readme information contained in the file specified by the ReadMe
property.

Register User Executes an application that will guide the user through the registration
process. This application must be supplied in the setup project.

Splash Displays a bitmap image.

TextBoxes Contains up to four text box fields. Each text box has a Label, Value, and
Visible property.

Welcome Contains two properties: the WelcomeText property and the
CopyrightWarning. Both are string properties.

 Each of these dialog boxes also contains a property for setting the banner bitmap, and most have a
property for banner text. You can also change the order in which the dialog boxes appear by dragging
them up or down in the editor window.

 Now that you can capture some of this information, the question is, how do you make use of it? This is
where the Condition property that appears on most of the objects in the project comes in. The
 Condition property must evaluate to true for the installation step to proceed. For example, say the
installation comes with three optional installation components. In this case, you would add a dialog box
with three check boxes. The dialog should be somewhere after the Welcome and before the Confirm
Installation dialog box. Change the Label property of each check box to describe the action. The first
action could be “ Install Component A, ” the second could be “ Install Component B, ” and so on. In the File
System editor select the file that represents Component A. Assuming that the name of the check box on
the dialog box is CHECKBOXA1, the Condition property of the file would be CHECKBOXA1=Checked —
 that is, if CHECKBOXA1 is checked, install the file; otherwise, don ’ t install it.

 Custom Actions Editor
 The Custom Actions editor allows you to define custom steps that will take place during certain phases
of the installation. Custom actions are created beforehand and consist of a DLL, EXE, script, or Installer
class. The action would contain special steps to perform that can ’ t be defined in the standard

c16.indd 463c16.indd 463 2/19/08 5:14:03 PM2/19/08 5:14:03 PM

Part II: Visual Studio

464

deployment project. The actions will be performed at four specific points in the deployment. When the
editor is first started, you will see the four points in the project (see Figure 16 - 4):

❑ Install — Actions will be executed at the end of the installation phase.

❑ Commit — Actions will be executed after the installation has finished and no errors have been
recorded.

❑ Rollback — Actions occur after the rollback phase has completed.

❑ Uninstall — Actions occur after uninstall has completed.

Figure 16-4

 To add an action, you first select the phase of the installation in which you want the action to occur.
Select the Add Custom Action menu option from the Action menu to open the file system dialog box.
This means that the component that contains the action must be part of the deployment project. Because
it will be executing on the target machine it has to be deployed; therefore, it should be listed in the File
System editor.

 After you have added the action, you can select one or more of the properties listed in the following table.

c16.indd 464c16.indd 464 2/19/08 5:14:04 PM2/19/08 5:14:04 PM

Chapter 16: Deployment

465

Arguments Command-Line Arguments

Condition A Windows Installer condition that must be evaluated and result in true
for the action to execute.

CustomDataAction Custom data that will be available to the action.

EntryPoint The entry point for the custom DLL that contains the action. If the action is
contained in an executable, this property does not apply.

InstallerClass A Boolean value that, if true, specifies that the action is a .NET
ProjectInstaller class.

Name Name of the action. Defaults to the file name of the action.

SourcePath The path to action on the development machine.

 Because the action is code that you develop outside of the deployment project, you have the freedom to
add just about anything that adds a professional touch to your application. The thing to remember is that
such an action happens after the phase it is associated with is complete. If you select the Install phase,
the action will not execute until after the install phase has completed. If you want to make
determinations before the process, you will want to create a launch condition.

 Launch Conditions Editor
 The Launch Conditions editor allows you to specify that certain conditions must be met before
installation can continue. Launch conditions are organized into types of conditions. The basic launch
conditions are File Search, Registry Search, and Windows Installer Search. When the editor is first started
you see two groups (see Figure 16 - 5): Search Target Machine and Launch Conditions. Typically, a search
is conducted, and, based on the success or failure of that search, a condition is executed. This happens by
setting the Property property of the search. The Property property can be accessed by the installation
process. It can be checked in the Condition property of other actions, for example. You can also add a
launch condition in the editor. In this condition, you set the Condition property to the value of the
 Property property in the search. In the condition, you can specify a URL that will download the file,
registry key, or installer component that was being searched for. Notice in Figure 16 - 5 that a .NET
Framework condition is added by default.

 File Search will search for a file or type of file. You can set many different file - related properties that
determine how files are searched, including file name, folder location, various date values, version
information, and size. You can also set the number of subfolders that are searched.

 Registry Search allows you to search for keys and values. It also allows you to set the root key for searching.

 Windows Installer Search looks for the specified Installer component. The search is conducted by GUID.

 The Launch Conditions editor provides two prepackaged launch conditions: the .NET Framework
Launch Condition, which allows you to search for a specific version of the runtime, and a search for a
specific version of MDAC, which uses the registry search to find the relevant MDAC registry entries.

c16.indd 465c16.indd 465 2/19/08 5:14:04 PM2/19/08 5:14:04 PM

Part II: Visual Studio

466

 Summary
 Deploying software has become difficult for developers of desktop software. As Web sites have grown
more complex, the deployment of server - based software has become more difficult. This chapter looked
at the options and capabilities that Visual Studio 2008 and version 3.5 of the .NET Framework provide to
help make deployment easier and less error - prone.

 After reading this chapter, you should be able to create a deployment package that resolves almost any
deployment issue that you might have. Client applications can be deployed locally or via the Internet or
an intranet. The extensive features of deployment projects and the ways that deployment projects can be
configured were covered. You can also use no - touch deployment and ClickOnce to deploy applications.
The security features of ClickOnce will make this a secure and efficient way of deploying client
applications. Using deployment projects to install Web applications can make the process of configuring
IIS much easier as well. Publishing a Web site provides the added benefit of precompiling the
application.

Figure 16-5

c16.indd 466c16.indd 466 2/19/08 5:14:05 PM2/19/08 5:14:05 PM

Part III

Base Class Libraries

Chapter 17: Assemblies

Chapter 18: Tracing and Events

Chapter 19: Threading and Synchronization

Chapter 20: Security

Chapter 21: Localization

Chapter 22: Transactions

Chapter 23: Windows Services

Chapter 24: Interoperability

c17.indd 467c17.indd 467 2/19/08 5:14:25 PM2/19/08 5:14:25 PM

c17.indd 468c17.indd 468 2/19/08 5:14:26 PM2/19/08 5:14:26 PM

 Assemblies

 An assembly is the .NET term for a deployment and configuration unit. This chapter discusses
exactly what assemblies are, how they can be applied, and why they are such a useful feature.
In particular, this chapter covers the following topics:

 Overview

 Creating assemblies

 Application domains

 Shared assemblies

 Versioning

 The chapter begins with an overview of assemblies.

 What Are Assemblies?
 Assemblies are the deployment units of .NET applications. .NET applications consist of one or
more assemblies. .NET executables with the usual extension EXE or DLL are known by the term
 assembly . What ’ s the difference between an assembly and a native DLL or EXE? Though they
both have the same file extension, .NET assemblies include metadata that describe all the types
that are defined in the assembly with information about its members — methods, properties,
events, and fields.

 The metadata of .NET assemblies also give information about the files that belong to the assembly,
version information, and the exact information about assemblies that are used. .NET assemblies
are the answer to the DLL hell we ’ ve seen previously with native DLLs.

 Assemblies are self - describing installation units, consisting of one or more files. One assembly
could be a single DLL or EXE that includes metadata, or it can be made of different files, for
example, resource files, modules, and an EXE.

 Assemblies can be private or shared. With simple .NET applications, using just private assemblies
is the best way to work. No special management, registration, versioning, and so on is needed with
private assemblies. The only application that could have version problems with private assemblies

❑

❑

❑

❑

❑

c17.indd 469c17.indd 469 2/19/08 5:14:26 PM2/19/08 5:14:26 PM

Part III: Base Class Libraries

470

is your own application. Other applications are not influenced because they have their own copies of the
assemblies. The private components you use within your application are installed at the same time as
the application itself. Private assemblies are located in the same directory as the application or
subdirectories thereof. This way you shouldn ’ t have any versioning problems with the application.
No other application will ever overwrite your private assemblies. Of course, it is still a good idea to use
version numbers for private assemblies too. This helps a lot with code changes, but it ’ s not a
requirement of .NET.

 With shared assemblies, several applications can use the same assembly and have a dependency on it.
Shared assemblies reduce the need for disk and memory space. With shared assemblies, many rules
must be fulfilled — a shared assembly must have a version number, a unique name, and usually it ’ s
installed in the global assembly cache (GAC).

 Features of Assemblies
 The features of assemblies can be summarized as follows:

 Assemblies are self - describing. It ’ s no longer necessary to pay attention to registry keys for
apartments, to get the type library from some other place, and so on. Assemblies include
metadata that describes the assembly. The metadata includes the types exported from the
assembly and a manifest; the next section describes the function of a manifest.

 Version dependencies are recorded inside an assembly manifest. Storing the version of any
referenced assemblies in the manifest makes it possible to easily find deployment faults because
of wrong versions available. The version of the referenced assembly that will be used can be
configured by the developer and the system administrator. Later in this chapter, you learn which
version policies are available and how they work.

 Assemblies can be loaded side by side . With Windows 2000 you already have a side - by - side
feature where different versions of the same DLL can be used on a system. .NET extends this
functionality of Windows 2000, allowing different versions of the same assembly to be used
inside a single process! How is this useful? If assembly A references version 1 of the shared
assembly Shared , and assembly B uses version 2 of the shared assembly Shared , and you are
using both assembly A and B , you need both versions of the shared assembly Shared in your
application — and with .NET both versions are loaded and used.

 Application isolation is ensured using application domains . With application domains a number
of applications can run independently inside a single process. Faults in one application cannot
directly affect other applications inside the same process.

 Installation can be as easy as copying the files that belong to an assembly. An xcopy can be
enough. This feature is named ClickOnce deployment . However, there are cases in which
ClickOnce deployment cannot be applied, and a normal Windows installation is required.
Deployment of applications is discussed in Chapter 16 , “ Deployment. ”

 Assembly Structure
 An assembly consists of assembly metadata describing the complete assembly, type metadata describing
the exported types and methods, MSIL code, and resources. All these parts can be inside of one file or
spread across several files.

 In the first example (see Figure 17 - 1), the assembly metadata, type metadata, MSIL code, and resources
are all in one file — Component.dll . The assembly consists of a single file.

 The second example shows a single assembly spread across three files (see Figure 17 - 2). Component.dll
has assembly metadata, type metadata, and MSIL code, but no resources. The assembly uses a picture

❑

❑

❑

❑

❑

c17.indd 470c17.indd 470 2/19/08 5:14:26 PM2/19/08 5:14:26 PM

Chapter 17: Assemblies

471

from picture.jpeg that is not embedded inside Component.dll , but is referenced from within the
assembly metadata. The assembly metadata also references a module called util.netmodule , which
itself includes only type metadata and MSIL code for a class. A module has no assembly metadata, thus
the module itself has no version information; it also cannot be installed separately. All three files in this
example make up a single assembly; the assembly is the installation unit. It would also be possible to put
the manifest in a different file.

Component.dll

Assembly
Metadata

Type Metadata

IL Code

Resources

 Figure 17 - 1

Component.dll

Assembly
Metadata

Type Metadata

IL Code

Utl.netmodule

Type Metadata

IL Code

Picture.jpeg

Resource

 Figure 17 - 2

c17.indd 471c17.indd 471 2/19/08 5:14:26 PM2/19/08 5:14:26 PM

Part III: Base Class Libraries

472

 Assembly Manifests
 An important part of an assembly is a manifest , which is part of the metadata. It describes the assembly
with all the information that ’ s needed to reference it and lists all its dependencies. The parts of the
manifest are as follows:

 Identity — Name, version, culture, and public key.

 A list of files — Files belonging to this assembly. A single assembly must have at least one file
but may contain a number of files.

 A list of referenced assemblies — All assemblies used from the assembly are documented inside
the manifest. This reference information includes the version number and the public key, which
is used to uniquely identify assemblies. The public key is discussed later in this chapter.

 A set of permission requests — These are the permissions needed to run this assembly. You can
find more information about permissions in Chapter 20 , “ Security. ”

 Exported types — These are included if they are defined within a module and the module is
referenced from the assembly; otherwise, they are not part of the manifest. A module is a unit of
reuse. The type description is stored as metadata inside the assembly. You can get the structures
and classes with the properties and methods from the metadata. This replaces the type library
that was used with COM to describe the types. For the use of COM clients it ’ s easy to generate a
type library out of the manifest. The reflection mechanism uses the information about the
exported types for late binding to classes. See Chapter 13 , “ Reflection, ” for more information
about reflection.

 Namespaces, Assemblies, and Components
 You might be a little bit confused by the meanings of namespaces, types, assemblies, and components.
How does a namespace fit into the assembly concept? The namespace is completely independent of an
assembly. You can have different namespaces in a single assembly, but the same namespace can be
spread across assemblies. The namespace is just an extension of the type name — it belongs to the name
of the type.

 For example, the assemblies mscorlib and system contain the namespace System.Threading among
many other namespaces. Although the assemblies contain the same namespaces, you will not find the
same class names.

 Private and Shared Assemblies
 Assemblies can be shared or private. A private assembly is found either in the same directory as the
application, or within one of its subdirectories. With a private assembly, it ’ s not necessary to think about
naming conflicts with other classes or versioning problems. The assemblies that are referenced during
the build process are copied to the application directory. Private assemblies are the usual way to build
assemblies, especially when applications and components are built within the same company.

 Although it is still possible to have naming conflicts with private assemblies (multiple private
assemblies may be part of the application and they could have conflicts, or a name in a private assembly
might conflict with a name in a shared assembly used by the application), naming conflicts are greatly
reduced. If you find you ’ ll be using multiple private assemblies or working with shared assemblies in
other applications, it ’ s a good idea to utilize well - named namespaces and types to minimize naming
conflicts.

❑

❑

❑

❑

❑

c17.indd 472c17.indd 472 2/19/08 5:14:27 PM2/19/08 5:14:27 PM

Chapter 17: Assemblies

473

 When using shared assemblies , you have to be aware of some rules. The assembly must be unique and
therefore must also have a unique name called a strong name . Part of the strong name is a mandatory
version number. Shared assemblies will mostly be used when a vendor, different from that of the
application, builds the component, or when a large application is split into subprojects. Also, some
technologies such as .NET Enterprise Services require shared assemblies in specific scenarios.

 Satellite Assemblies
 A satellite assembly is an assembly that only contains resources. This is extremely useful for localization.
Because an assembly has a culture associated, the resource manager looks for satellite assemblies
containing the resources of a specific culture.

 You can read more about satellite assemblies in Chapter 21 , “ Localization. ”

 Viewing Assemblies
 Assemblies can be viewed using the command - line utility ildasm , the MSIL disassembler. You can open
an assembly by starting ildasm from the command line with the assembly as an argument or by
selecting the File Open menu.

 Figure 17 - 3 shows ildasm opening the example that you build a little later in the chapter, SharedDemo
.dll . ildasm shows the manifest and the SharedDemo type in the Wrox.ProCSharp.Assemblies
.Sharing namespace. When you open the manifest, you can see the version number and the assembly
attributes, as well as the referenced assemblies and their versions. You can see the MSIL code by opening
the methods of the class.

 Figure 17 - 3

 In addition to using ildasm , the .NET Reflector is another great tool to use to ana-
lyze assemblies. The .NET Reflector allows type and member search, and call and
callee graphs, and decompiles IL code to C#, C++, or Visual Basic. You can download
this tool from www.aisto.com/roeder/dotnet .

c17.indd 473c17.indd 473 2/19/08 5:14:27 PM2/19/08 5:14:27 PM

Part III: Base Class Libraries

474

 Creating Assemblies
 Now that you know what assemblies are, it is time to build some. Of course, you have already built
assemblies in previous chapters, because a .NET executable counts as an assembly. This section looks at
special options for assemblies.

 Creating Modules and Assemblies
 All C# project types in Visual Studio create an assembly. Whether you choose a DLL or EXE project type,
an assembly is always created. With the command - line C# compiler csc , it ’ s also possible to create
modules. A module is a DLL without assembly attributes (so it ’ s not an assembly, but it can be added to
assemblies at a later time). The command

csc /target:module hello.cs

creates a module hello.netmodule . You can view this module using ildasm .

 A module also has a manifest, but there is no .assembly entry inside the manifest (except for the
external assemblies that are referenced) because a module has no assembly attributes. It ’ s not possible to
configure versions or permissions with modules; that can be done only at the assembly scope. You can
find references to assemblies in the manifest of the module. With the /addmodule option of csc , it ’ s
possible to add modules to existing assemblies.

 To compare modules to assemblies, create a simple class A and compile it by using the following
command:

csc /target:module A.cs

 The compiler generates the file A.netmodule , which doesn ’ t include assembly information (as you can
see using ildasm to look at the manifest information). The manifest of the module shows the referenced
assembly mscorlib and the .module entry in Figure 17 - 4 .

 Figure 17 - 4

 Next, create an assembly B, which includes the module A.netmodule . It ’ s not necessary to have a source
file to generate this assembly. The command to build the assembly is:

csc /target:library /addmodule:A.netmodule /out:B.dll

c17.indd 474c17.indd 474 2/19/08 5:14:28 PM2/19/08 5:14:28 PM

Chapter 17: Assemblies

475

 Looking at the assembly using ildasm , you can find only a manifest. In the manifest, the assembly
 mscorlib is referenced. Next, you see the assembly section with a hash algorithm and the version.
The number of the algorithm defines the type of the algorithm that was used to create the hash code of
the assembly. When creating an assembly programmatically it is possible to select the algorithm. Part
of the manifest is a list of all modules belonging to the assembly. In Figure 17 - 5 you see .module A
.netmodule , which belongs to the assembly. Classes exported from modules are part of the assembly
manifest; classes exported from the assembly itself are not.

 What ’ s the purpose of modules? Modules can be used for faster startup of assemblies because not all
types are inside a single file. The modules are loaded only when needed. Another reason to use modules
is if you want to create an assembly with more than one programming language. One module could be
written using Visual Basic, another module could be written using C#, and these two modules could
be included in a single assembly.

 Figure 17 - 5

 Assembly Attributes
 When creating a Visual Studio project, the source file AssemblyInfo.cs is generated automatically. You
can find this file below Properties in Solution Explorer. You can use the normal Source Code editor to
configure the assembly attributes in this file. This is the file generated from the project template:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
//
// General Information about an assembly is controlled through the
// following set of attributes. Change these attribute values to modify
// the information associated with an assembly.
//
[assembly: AssemblyTitle(“DomainTest”)]
[assembly: AssemblyDescription(“”)]
[assembly: AssemblyConfiguration(“”)]

(continued)

c17.indd 475c17.indd 475 2/19/08 5:14:28 PM2/19/08 5:14:28 PM

Part III: Base Class Libraries

476

[assembly: AssemblyCompany(“”)]
[assembly: AssemblyProduct(“DomainTest”)]
[assembly: AssemblyCopyright(“Copyright @ Wrox Press 2007”)]
[assembly: AssemblyTrademark(“”)]
[assembly: AssemblyCulture(“”)]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is exposed
// to COM
[assembly: Guid(“ae0acc2c-0daf-4bb0-84a3-f9f6ac48bfe9”)]

//
// Version information for an assembly consists of the following four
// values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

 This file is used for configuration of the assembly manifest. The compiler reads the assembly attributes
to inject the specific information into the manifest.

 The assembly: prefix with the attribute marks an assembly - level attribute. Assembly - level attributes
are, in contrast to the other attributes, not attached to a specific language element. The arguments that
can be used for the assembly attribute are classes of the namespaces System.Reflection , System
.Runtime.CompilerServices , and System.Runtime.InteropServices .

 You can read more about attributes and how to create and use custom attributes in Chapter 13 ,
 “ Reflection. ”

 The following table contains a list of assembly attributes defined within the System.Reflection
namespace.

 Assembly Attribute Description

 AssemblyCompany Specifies the company name.

 AssemblyConfiguration Specifies build information such as retail or debugging
information.

 AssemblyCopyright and
 AssemblyTrademark

 Hold the copyright and trademark information.

 AssemblyDefaultAlias Can be used if the assembly name is not easily readable (such
as a GUID when the assembly name is created dynamically).
With this attribute an alias name can be specified.

(continued)

c17.indd 476c17.indd 476 2/19/08 5:14:28 PM2/19/08 5:14:28 PM

Chapter 17: Assemblies

477

 Assembly Attribute Description

 AssemblyDescription Describes the assembly or the product. Looking at the
properties of the executable file this value shows up as
Comments.

 AssemblyProduct Specifies the name of the product where the assembly
belongs.

 AssemblyTitle Used to give the assembly a friendly name. The friendly
name can include spaces. With the file properties you can see
this value as Description.

 AssemblyCulture Defines the culture of the assembly. This attribute is
 important for satellite assemblies.

 AssemblyInformationalVersion This attribute isn ’ t used for version checking when assem-
blies are referenced; it is for information only. It is very useful
to specify the version of an application that uses multiple
assemblies. Opening the properties of the executable you can
see this value as the Product Version.

 AssemblyVersion This attribute gives the version number of the assembly.
Versioning is discussed later in this chapter.

 AssemblyFileVersion This attribute defines the version of the file. The value shows
up with the Windows file properties dialog, but it doesn ’ t
have any influence on the .NET behavior.

 Here ’ s an example of how these attributes might be configured:

[assembly: AssemblyTitle(“Professional C#”)]
[assembly: AssemblyDescription(“Sample Application”)]
[assembly: AssemblyConfiguration(“Retail version”)]
[assembly: AssemblyCompany(“Wrox Press”)]
[assembly: AssemblyProduct(“Wrox Professional Series”)]
[assembly: AssemblyCopyright(“Copyright (C) Wrox Press 2008”)]
[assembly: AssemblyTrademark(“Wrox is a registered trademark of “ +
 “John Wiley & Sons, Inc.”)]
[assembly: AssemblyCulture(“”)]

[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

 With Visual Studio 2008 you can configure these attributes with the project properties, Application
settings, and Assembly Information, as you can see in Figure 17 - 6 .

c17.indd 477c17.indd 477 2/19/08 5:14:29 PM2/19/08 5:14:29 PM

Part III: Base Class Libraries

478

 Dynamic Loading and Creating Assemblies
 During development time you add a reference to an assembly so it gets included with the assembly
references and the types of the assembly are available to the compiler. During runtime the referenced
assembly gets loaded as soon as a type of the assembly is instantiated or a method of the type is used.
Instead of using this automatic behavior, you can also load assemblies programmatically. To load
assemblies programmatically you can use the class Assembly with the static method Load() . This
method is overloaded where you can pass the name of the assembly using AssemblyName , the name of
the assembly, or a byte array.

 It is also possible to create an assembly on the fly as shown with the next example. This sample
demonstrates how C# code can be entered in a text box, a new assembly is dynamically created by
starting the C# compiler, and the compiled code is invoked.

 To compile C# code dynamically you can use the class CSharpCodeProvider from the namespace
 Microsoft.CSharp . Using this class, you can compile code and generate assemblies from a DOM tree,
from a file, and from source code.

 The UI of the application is done using WPF. You can see the UI in Figure 17 - 7 . The window is made up
of a TextBox to enter C# code, a Button , and a TextBlock WPF control that spans all columns of the
last row to display the result as shown in Figure 17 - 7 .

 Figure 17 - 6

 Figure 17 - 7

c17.indd 478c17.indd 478 2/19/08 5:14:29 PM2/19/08 5:14:29 PM

Chapter 17: Assemblies

479

 To dynamically compile and run C# code, the class CodeDriver defines the method CompileAndRun() .
This method compiles the code from the text box and starts the generated method.

using System;
using System.CodeDom.Compiler;
using System.IO;
using System.Reflection;
using System.Text;
using Microsoft.CSharp;

namespace Wrox.ProCSharp.Assemblies
{

 public class CodeDriver
 {
 private string prefix =
 “using System;” +
 “public static class Driver” +
 “{“ +
 “ public static void Run()” +
 “ {“;

 private string postfix =
 “ }” +
 “}”;

 public string CompileAndRun(string input, out bool hasError)
 {
 hasError = false;
 string returnData = null;

 CompilerResults results = null;
 using (CSharpCodeProvider provider = new CSharpCodeProvider())
 {
 CompilerParameters options = new CompilerParameters();
 options.GenerateInMemory = true;

 StringBuilder sb = new StringBuilder();
 sb.Append(prefix);
 sb.Append(input);
 sb.Append(postfix);

 results = provider.CompileAssemblyFromSource(
 options, sb.ToString());
 }

 if (results.Errors.HasErrors)
 {
 hasError = true;
 StringBuilder errorMessage = new StringBuilder();
 foreach (CompilerError error in results.Errors)

(continued)

c17.indd 479c17.indd 479 2/19/08 5:14:29 PM2/19/08 5:14:29 PM

Part III: Base Class Libraries

480

 {
 errorMessage.AppendFormat(“{0} {1}”, error.Line,
 error.ErrorText);
 }
 returnData = errorMessage.ToString();
 }
 else
 {
 TextWriter temp = Console.Out;
 StringWriter writer = new StringWriter();
 Console.SetOut(writer);
 Type driverType = results.CompiledAssembly.GetType(“Driver”);

 driverType.InvokeMember(“Run”, BindingFlags.InvokeMethod |
 BindingFlags.Static | BindingFlags.Public,
 null, null, null);
 Console.SetOut(temp);

 returnData = writer.ToString();
 }

 return returnData;
 }
 }
}

 The method CompileAndRun() requires a string input parameter where one or multiple lines of C#
code can be passed. Because every method that is called must be included in a method and a class,
the variables prefix and postfix define the structure of the dynamically created class Driver and the
method Run() that surround the code from the parameter. Using a StringBuilder , the prefix ,
 postfix , and the code from the input variable are merged to create a complete class that can be
compiled. Using this resultant string, the code is compiled with the CSharpCodeProvider class. The
method CompileAssemblyFromSource() dynamically creates an assembly. Because this assembly is
just needed in memory, the compiler parameter option GenerateInMemory is set.

 If the source code that was passed contains some errors, these will show up in the Errors collection of
 CompilerResults . The errors are returned with the return data, and the variable hasError is set to true .

 If the source code compiled successfully, the Run() method of the new Driver class is invoked.
The invocation of this method is done using reflection. From the newly compiled assembly that can
be accessed using CompilerResults.CompiledType , the new class Driver is referenced by the
 driverType variable. Then the InvokeMember() method of the Type class is used to invoke
the method Run() . Because this method is defined as a public static method, the BindingFlags must
be set accordingly. To see a result of the program that is written to the console, the console is redirected
to a StringWriter to finally return the complete output of the program with the returnData variable.

 Running the code with the InvokeMember() method makes use of .NET reflection. Reflection is
 discussed in Chapter 13 .

 The Click event of the WPF button is connected to the Compile_Click() method where the
 CodeDriver class is instantiated, and the CompileAndRun() method is invoked. The input is taken
from the TextBox named textCode , and the result is written to the TextBlock textOutput .

(continued)

c17.indd 480c17.indd 480 2/19/08 5:14:30 PM2/19/08 5:14:30 PM

Chapter 17: Assemblies

481

 private void Compile_Click(object sender, RoutedEventArgs e)
 {
 CodeDriver driver = new CodeDriver ();
 bool isError;
 textOutput.Text = driver.CompileAndRun(textCode.Text, out isError);
 if (isError)
 {
 textOutput.Background = Brushes.Red;
 }
 }

 Now you can start the application, enter C# code in the TextBox as shown in Figure 17 - 8 , and compile
and run the code.

 Figure 17 - 8

 The program as written so far has the disadvantage that every time you click the Compile and Run
button, a new assembly is created and loaded, and the program always needs more and more memory.
You cannot unload an assembly from the application. To unload assemblies, application domains are
needed.

 Application Domains
 Before .NET, processes were used as isolation boundaries, with every process having its private virtual
memory; an application running in one process could not write to the memory of another application
and thereby crash the other application. The process was used as an isolation and security boundary
between applications. With the .NET architecture you have a new boundary for applications: application
domains . With managed IL code, the runtime can ensure that access to the memory of another application
inside a single process can ’ t happen. Multiple applications can run in a single process within multiple
application domains (see Figure 17 - 9).

 An assembly is loaded into an application domain. In Figure 17 - 9 you can see process 4711 with two
application domains. In application domain A, the objects one and two are instantiated, one in assembly
One, and two in assembly Two. The second application domain in process 4711 has an instance one.
To minimize memory consumption, the code of assemblies is only loaded once into an application
domain. Instance and static members are not shared between application domains. It ’ s not possible to
directly access objects within another application domain; a proxy is needed instead. So in Figure 17 - 9 ,

c17.indd 481c17.indd 481 2/19/08 5:14:30 PM2/19/08 5:14:30 PM

Part III: Base Class Libraries

482

the object one in application domain B cannot directly access the objects one or two in application
domain A without a proxy.

 The AppDomain class is used to create and terminate application domains, load and unload assemblies
and types, and enumerate assemblies and threads in a domain. In this section, you program a small
example to see application domains in action.

 First, create a C# console application called AssemblyA . In the Main() method add a Console
.WriteLine() so that you can see when this method is called. In addition, add the class Demo with a
constructor with two int values as arguments, which will be used to create instances with the
 AppDomain class. The AssemblyA.exe assembly will be loaded from the second application that
will be created:

using System;

namespace Wrox.ProCSharp.Assemblies.AppDomains
{
 public class Demo
 {
 public Demo(int val1, int val2)
 {
 Console.WriteLine(“Constructor with the values {0}, {1}” +
 “ in domain {2} called”, val1, val2,
 AppDomain.CurrentDomain.FriendlyName);
 }
 }

 class Program
 {
 static void Main()
 {
 Console.WriteLine(“Main in domain {0} called”,
 AppDomain.CurrentDomain.FriendlyName);
 }
 }
}

Process 4711

AppDomain A

one

two

AppDomain B

one

Process 4712

AppDomain C

two

 Figure 17 - 9

c17.indd 482c17.indd 482 2/19/08 5:14:30 PM2/19/08 5:14:30 PM

Chapter 17: Assemblies

483

 Running the application produces this output:

Main in domain AssemblyA.exe called.
Press any key to continue ...

 The second project you create is again a C# console application: DomainTest . First, display the name
of the current domain using the property FriendlyName of the AppDomain class. With the
 CreateDomain() method, a new application domain with the friendly name New AppDomain is created.
Then load the assembly AssemblyA into the new domain and call the Main() method by calling
 ExecuteAssembly() :

using System;

namespace Wrox.ProCSharp.Assemblies.AppDomains
{
 class Program
 {
 static void Main()
 {
 AppDomain currentDomain = AppDomain.CurrentDomain;
 Console.WriteLine(currentDomain.FriendlyName);
 AppDomain secondDomain =
 AppDomain.CreateDomain(“New AppDomain”);
 secondDomain.ExecuteAssembly(“AssemblyA.exe”);
 }
 }
}

 Before starting the program DomainTest.exe , reference the assembly AssemblyA.exe with the
 DomainTest project. Referencing the assembly with Visual Studio 2008 copies the assembly to
the project directory, so that the assembly can be found. If the assembly cannot be found, a System
.IO.FileNotFoundException exception is thrown.

 When DomainTest.exe is run, you get the following console output. DomainTest.exe is the friendly
name of the first application domain. The second line is the output of the newly loaded assembly in the
 New AppDomain . With a process viewer, you will not see the process AssemblyA.exe executing because
there ’ s no new process created. AssemblyA is loaded into the process DomainTest.exe .

DomainTest.exe
Main in domain New AppDomain called
Press any key to continue ...

 Instead of calling the Main() method in the newly loaded assembly, you can also create a new instance.
In the following example, replace the ExecuteAssembly() method with a CreateInstance() . The
first argument is the name of the assembly, AssemblyA . The second argument defines the type that
should be instantiated: Wrox.ProCSharp.Assemblies.AppDomains.Demo . The third argument, true ,
means that case is ignored. System.Reflection.BindingFlags.CreateInstance is a binding flag
enumeration value to specify that the constructor should be called:

 AppDomain secondDomain =
 AppDomain.CreateDomain(“New AppDomain”);
 // secondDomain.ExecuteAssembly(“AssemblyA.exe”);
 secondDomain.CreateInstance(“AssemblyA”,
 “Wrox.ProCSharp.Assemblies.AppDomains.Demo”, true,
 System.Reflection.BindingFlags.CreateInstance,
 null, new object[] {7, 3}, null, null, null);

c17.indd 483c17.indd 483 2/19/08 5:14:31 PM2/19/08 5:14:31 PM

Part III: Base Class Libraries

484

 The results of a successful run of the application are as follows:

DomainTest.exe
Constructor with the values 7, 3 in domain New AppDomain called
Press any key to continue ...

 Now you have seen how to create and call application domains. In runtime hosts, application domains
are created automatically. ASP.NET creates an application domain for each Web application that runs on a
Web server. Internet Explorer creates application domains in which managed controls will run. For
applications, it can be useful to create application domains if you want to unload an assembly. You can
unload assemblies only by terminating an application domain.

 Application domains are an extremely useful construct if assemblies are loaded
dynamically, and the requirement exists to unload assemblies after use. Within the
primary application domain it is not possible to get rid of loaded assemblies.
However, it is possible to end application domains where all assemblies loaded just
within the application domain are cleaned from the memory.

 With this knowledge about application domains it is now possible to change the WPF program created
earlier. The new class CodeDriverInAppDomain creates a new application domain using AppDomain
.CreateDomain . Inside this new application domain the class CodeDriver is instantiated using
 CreateInstanceAndUnwrap() . Using the CodeDriver instance, the CompileAndRun() method is
invoked before the new app - domain is unloaded again.

using System;
using System.Runtime.Remoting;

namespace Wrox.ProCSharp.Assemblies
{
 public class CodeDriverInAppDomain
 {
 public string CompileAndRun(string code, out bool hasError)
 {
 AppDomain codeDomain = AppDomain.CreateDomain(“CodeDriver”);

 CodeDriver codeDriver = (CodeDriver)
 codeDomain.CreateInstanceAndUnwrap(“DynamicCompileWPF”,
 “Wrox.ProCSharp.Assemblies.CodeDriver”);

 string result = codeDriver.CompileAndRun(code, out hasError);

 AppDomain.Unload(codeDomain);

 return result;
 }
 }
}

 The class CodeDriver itself now is used both in the main app - domain and in the new app - domain,
that ’ s why it is not possible to get rid of the code that this class is using. If you would like to do that you
can define an interface that is implemented by the CodeDriver and just use the interface in the main
app - domain. However, here this is not an issue because there ’ s only the need to get rid of the dynami-
cally created assembly with the Driver class.

c17.indd 484c17.indd 484 2/19/08 5:14:31 PM2/19/08 5:14:31 PM

Chapter 17: Assemblies

485

 To access the class CodeDriver from a different app - domain, the class CodeDriver must derive from
the base class MarshalByRefObject . Only classes that derive from this base type can be accessed across
another app - domain. In the main app - domain a proxy is instantiated to invoke the methods of this class
across an inter - appdomain channel.

using System;
using System.CodeDom.Compiler;
using System.IO;
using System.Reflection;
using System.Text;
using Microsoft.CSharp;

namespace Wrox.ProCSharp.Assemblies
{

 public class CodeDriver : MarshalByRefObject
 {

 The Compile_Click() event handler can now be changed to use the CodeDriverInAppDomain class
instead of the CodeDriver class:

 private void Compile_Click(object sender, RoutedEventArgs e)
 {
 CodeDriverInAppDomain driver = new CodeDriverInAppDomain();
 bool isError;
 textOutput.Text = driver.CompileAndRun(textCode.Text, out isError);
 if (isError)
 {
 textOutput.Background = Brushes.Red;
 }
 }

 Now you can click the Compile and Run button of the application any number of times, and the
generated assembly is always unloaded.

 You can see the loaded assemblies in an app - domain with the GetAssemblies() method of the
 AppDomain class.

 Shared Assemblies
 Assemblies can be isolated for use by a single application — not sharing an assembly is the default.
When using shared assemblies there are specific requirements that must be followed.

 This section explores the following:

 Strong names as a requirement for shared assemblies

 Global assembly cache

 Creating shared assemblies

 Installing shared assemblies in the GAC

 Delayed signing of shared assemblies

❑

❑

❑

❑

❑

c17.indd 485c17.indd 485 2/19/08 5:14:31 PM2/19/08 5:14:31 PM

Part III: Base Class Libraries

486

 Strong Names
 The goal of a shared assembly name is that it must be globally unique, and it must be possible to
protect the name. At no time can any other person create an assembly using the same name.

 COM solved the first problem by using a globally unique identifier (GUID). The second problem,
however, still existed because anyone could steal the GUID and create a different object with the same
identifier. Both problems are solved with strong names of .NET assemblies.

 A strong name is made of these items:

 The name of the assembly itself.

 A version number . This allows it to use different versions of the same assembly at the same time.
Different versions can also work side by side and can be loaded concurrently inside the same
process.

 A public key guarantees that the strong name is unique. It also guarantees that a referenced
assembly cannot be replaced from a different source.

 A culture . Cultures are discussed in Chapter 21 , “ Localization. ”

 A shared assembly must have a strong name to uniquely identify the assembly.

 A strong name is a simple text name accompanied by a version number, a public key, and a culture. You
wouldn ’ t create a new public key with every assembly, but you ’ d have one in your company, so the key
uniquely identifies your company ’ s assemblies.

 However, this key cannot be used as a trust key. Assemblies can carry Authenticode signatures to build up a
trust. The key for the Authenticode signature can be a different one from the key used for the strong name.

 For development purposes, a different public key can be used and later be exchanged easily with the real
key. This feature is discussed later in the section “ Delayed Signing of Assemblies. ”

 To uniquely identify the assemblies in your companies, a useful namespace hierarchy should be used to
name your classes. Here is a simple example showing how to organize namespaces: Wrox Press can
use the major namespace Wrox for its classes and namespaces. In the hierarchy below the namespace,
the namespaces must be organized so that all classes are unique. Every chapter of this book uses a different
namespace of the form Wrox.ProCSharp. < Chapter > ; this chapter uses Wrox.ProCSharp.Assemblies .
So, if there is a class Hello in two different chapters, there ’ s no conflict because of different namespaces.
Utility classes that are used across different books can go into the namespace Wrox.Utilities .

 A company name commonly used as the first part of the namespace is not necessarily unique, so
something more must be used to build a strong name. For this the public key is used. Because of the
public/private key principle in strong names, no one without access to your private key can
destructively create an assembly that could be unintentionally called by the client.

 Integrity Using Strong Names
 A public/private key pair must be used to create a shared component. The compiler writes the public
key to the manifest, creates a hash of all files that belong to the assembly, and signs the hash with the
private key, which is not stored within the assembly. It is then guaranteed that no one can change your
assembly. The signature can be verified with the public key.

❑

❑

❑

❑

c17.indd 486c17.indd 486 2/19/08 5:14:32 PM2/19/08 5:14:32 PM

Chapter 17: Assemblies

487

 During development, the client assembly must reference the shared assembly. The compiler writes the
public key of the referenced assembly to the manifest of the client assembly. To reduce storage, it is not
the public key that is written to the manifest of the client assembly, but a public key token. The public
key token consists of the last 8 bytes of a hash of the public key and is unique.

 At runtime, during loading of the shared assembly (or at install time if the client is installed using the
native image generator), the hash of the shared component assembly can be verified by using the public
key stored inside the client assembly. Only the owner of the private key can change the shared
component assembly. There is no way a component Math that was created by vendor A and referenced
from a client can be replaced by a component from a hacker. Only the owner of the private key can
replace the shared component with a new version. Integrity is guaranteed insofar as the shared assembly
comes from the expected publisher.

 Figure 17 - 10 shows a shared component with a public key referenced by a client assembly that has a
public key token of the shared assembly inside the manifest.

Client Assembly

Manifest

Reference
PK:3 B BA 32

Shared Component

signature

Manifest

PK:3 B BA 32

 Figure 17 - 10

 Global Assembly Cache
 The global assembly cache (GAC) is, as the name implies, a cache for globally available assemblies. Most
shared assemblies are installed inside this cache; otherwise a shared directory (also on a server) can be used.

 The GAC can be displayed using shfusion.dll , which is a Windows shell extension to view and
manipulate the contents of the cache. A Windows shell extension is a COM DLL that integrates with
Windows Explorer. You just have to start Explorer and go to the < windir > /assembly directory.

 With the Assembly Cache Viewer (see Figure 17 - 11), you can see the global assembly name, type,
version, culture, and the public key token. Under Type you can see if the assembly was installed using
the native image generator. When you select an assembly using the context menu, it ’ s possible to delete
an assembly and to view its properties (see Figure 17 - 12).

 You can see the real files and directories behind the assembly cache by checking the directory from the
command line. Inside the < windir > \assembly directory, you can find multiple GACxxx directories and a
 NativeImages_ < runtime version > directory. The GACxxx directories contain shared assemblies.
GAC_MSIL contains the assemblies with pure .NET code; GAC_32 contains the assemblies that are specific
to a 32 - bit platform. On a 64 - bit system, you can also find the directory GAC_64 with assemblies
specific for 64 bit. The directory GAC is for .NET 1.0 and 1.1. In the directory NativeImages_ < runtime
version > , you can find the assemblies compiled to native code. If you go deeper in the directory structure,
you will find directory names that are similar to the assembly names, and below that a version directory
and the assemblies themselves. This allows the installation of different versions of the same assembly.

c17.indd 487c17.indd 487 2/19/08 5:14:32 PM2/19/08 5:14:32 PM

Part III: Base Class Libraries

488

 Figure 17 - 11

 Figure 17 - 12

 The assembly viewer can be used to view and delete assemblies with Windows Explorer. gacutil.exe
is a utility to install, uninstall, and list assemblies using the command line.

 The following list explains some of the gacutil options:

 gacutil /l lists all assemblies from the assembly cache.

 gacutil /i mydll installs the shared assembly mydll into the assembly cache.

 gacutil /u mydll uninstalls the assembly mydll .

❑

❑

❑

c17.indd 488c17.indd 488 2/19/08 5:14:32 PM2/19/08 5:14:32 PM

Chapter 17: Assemblies

489

 For production you should use an installer program to install shared assemblies to the GAC.
Deployment is covered in Chapter 16 , “ Deployment. ”

 Creating a Shared Assembly
 In the next example, you create a shared assembly and a client that uses it.

 Creating shared assemblies is not much different from creating private assemblies. Create a simple
Visual C# class library project with the name SharedDemo . Change the namespace to Wrox.ProCSharp
.Assemblies.Sharing and the class name to SharedDemo . Enter the following code. In the constructor
of the class, all lines of a file are read into a collection. The name of the file is passed as an argument to
the constructor. The method GetQuoteOfTheDay() just returns a random string of the collection.

using System;
using System.Collections.Generic;
using System.IO;

namespace Wrox.ProCSharp.Assemblies.Sharing
{
 public class SharedDemo
 {
 private List < string > quotes;
 private Random random;

 public SharedDemo(string filename)
 {
 quotes = new List < string > ();
 Stream stream = File.OpenRead(filename);
 StreamReader streamReader = new StreamReader(stream);
 string quote;
 while ((quote = streamReader.ReadLine()) != null)
 {
 quotes.Add(quote);
 }
 streamReader.Close();
 stream.Close();
 random = new Random();
 }

 public string GetQuoteOfTheDay()
 {
 int index = random.Next(1, quotes.Count);
 return quotes[index];
 }
 }
}

 Create a Strong Name
 A strong name is needed to share this assembly. You can create such a name with the strong name
tool (sn):

sn -k mykey.snk

 The strong name utility generates and writes a public/private key pair, and writes this pair to a file;
here the file is mykey.snk .

c17.indd 489c17.indd 489 2/19/08 5:14:33 PM2/19/08 5:14:33 PM

Part III: Base Class Libraries

490

 With Visual Studio 2008, you can sign the assembly with the project properties by selecting the Signing
tab, as shown in Figure 17 - 13 . You can also create keys with this tool. However, you should not create a
key file for every project. Just a few keys for the complete company can be used instead. It is useful to
create different keys depending on security requirements (see Chapter 20 , “ Security ”).

 Setting the signing option with Visual Studio adds the /keyfile option to the compiler setting. Visual
Studio also allows you to create a keyfile that is secured with a password. Such a file has the file
extension .pfx (see Figure 17 - 13).

 After rebuilding, the public key can be found inside the manifest. You can verify this using ildasm , as
shown in Figure 17 - 14 .

 Figure 17 - 13

 Figure 17 - 14

c17.indd 490c17.indd 490 2/19/08 5:14:33 PM2/19/08 5:14:33 PM

Chapter 17: Assemblies

491

 Install the Shared Assembly
 With a public key in the assembly, you can now install it in the global assembly cache using the global
assembly cache tool gacutil with the /i option:

gacutil /i SharedDemo.dll

 By configuring a post - build event command line with Visual Studio (see Figure 17 - 15), the assembly can
be installed in the GAC with each successful build.

 Figure 17 - 15

 If you ’ re using Windows Vista to install an assembly to the GAC from Visual Studio, Visual Studio
must be started with elevated rights. Installing assemblies to the GAC requires admin privileges.

 Then you can use the Global Assembly Cache Viewer to check the version of the shared assembly and
see if it is successfully installed.

 Using the Shared Assembly
 To use the shared assembly, create a C# console application called Client . Change the name of the
namespace to Wrox.ProCSharp.Assemblies.Sharing . The shared assembly can be referenced in the
same way as a private assembly: by using the Project Add Reference menu.

 With shared assemblies the reference property Copy Local can be set to false .
This way the assembly is not copied to the directory of the output files but will be
loaded from the GAC instead.

 Here ’ s the code for the Client application:

using System;
namespace Wrox.ProCSharp.Assemblies.Sharing
{
 class Program
 {
 static void Main()
 {
 SharedDemo quotes =
 new SharedDemo(@”C:\ProCSharp\Assemblies\Quotes.txt”);
 for (int i=0; i < 3; i++)

(continued)

c17.indd 491c17.indd 491 2/19/08 5:14:33 PM2/19/08 5:14:33 PM

Part III: Base Class Libraries

492

 {
 Console.WriteLine(quotes.GetQuoteOfTheDay());
 Console.WriteLine();
 }
 }
 }
}

 Looking at the manifest in the client assembly using ildasm (see Figure 17 - 16), you can see the reference
to the shared assembly SharedDemo : .assembly extern SharedDemo . Part of this referenced
information is the version number, discussed next, and the token of the public key.

 Figure 17 - 16

(continued)

 The token of the public key can also be seen within the shared assembly using the strong name utility:
sn – T shows the token of the public key in the assembly, and sn – Tp shows the token and the public
key. Pay attention to the use of the uppercase T!

 The result of your program with a sample quotes file is shown here:

“We don’t like their sound. And guitar music is on the way out.” - Decca Recording,
Co., in rejecting the Beatles, 1962

“The ordinary ‘horseless carriage’ is at present a luxury for the wealthy; and
although its price will probably fall in the future, it will never come into as
common use as the bicycle.” — The Literary Digest, 1889

“Landing and moving around the moon offer so many serious problems for human beings
that it may take science another 200 years to lick them”, Lord Kelvin (1824-1907)

Press any key to continue ...

 Delayed Signing of Assemblies
 The private key of a company should be safely stored. Most companies don ’ t give all developers access
to the private key; only a few security people have it. That ’ s why the signature of an assembly can be
added at a later date, such as before distribution. When the assembly attribute AssemblyDelaySign is

c17.indd 492c17.indd 492 2/19/08 5:14:34 PM2/19/08 5:14:34 PM

Chapter 17: Assemblies

493

set to true , no signature is stored in the assembly, but enough free space is reserved so that it can be
added later. Without using a key, you cannot test the assembly and install it in the GAC; however, you
can use a temporary key for testing purposes, and replace this key with the real company key later.

 The following steps are required to delay signing of assemblies:

 1. Create a public/private key pair with the strong name utility sn . The generated file mykey.snk
includes both the public and private key.

sn -k mykey.snk

 2. Extract the public key to make it available to developers. The option – p extracts the public key
of the keyfile. The file mykeypub.snk only holds the public key.

sn -p mykey.snk mykeypub.snk

 All developers in the company can use this keyfile mykeypub.snk and compile the assembly with the /
delaysign+ option. This way the signature is not added to the assembly, but it can be added afterward.
In Visual Studio 2008, the delay sign option can be set with a check box in the Signing settings.

 3. Turn off the verification of the signature, because the assembly doesn ’ t have a signature:

sn -Vr SharedDemo.dll

 4. Before distribution the assembly can be re - signed with the sn utility. Use the – R option to re - sign
previously signed or delayed signed assemblies. Resigning of the assembly can be done by the
person doing the deployment package for the application and having access to the private key
that is used for distribution.

sn -R MyAssembly.dll mykey.snk

 The signature verification should be turned off only during the development
process. Never distribute an assembly without verification, because it would be
possible for this assembly to be replaced by a malicious one.

 Re - signing of assemblies can be automated by defining the tasks in an MSBuild file. This is discussed in
Chapter 15 , “ Visual Studio 2008. ”

 References
 Properties lists a reference count. This reference count is responsible for the fact that a cached assembly
cannot be deleted if it is still needed by an application. For example, if a shared assembly is installed by a
Microsoft installer package (.msi file), it can only be deleted by uninstalling the application, but not by
deleting it from the GAC. Trying to delete the assembly from the GAC results in the error message
 “ Assembly < name > could not be uninstalled because it is required by other
applications. ”

 A reference to the assembly can be set using the gacutil utility with the option /r . The option /r
requires a reference type, a reference ID, and a description. The type of the reference can be one of three
options: UNINSTALL_KEY , FILEPATH , or OPAQUE . UNINSTALL_KEY is used by MSI where a registry key is
defined that is also needed with the uninstallation. A directory can be specified with FILEPATH . A useful
directory would be the root directory of the application. The OPAQUE reference type allows you to set any
type of reference.

 The command line

c17.indd 493c17.indd 493 2/19/08 5:14:34 PM2/19/08 5:14:34 PM

Part III: Base Class Libraries

494

gacutil /i shareddemo.dll /r FILEPATH c:\ProCSharp\Assemblies\Client “Shared Demo”

installs the assembly shareddemo in the GAC with a reference to the directory of the client application.
Another installation of the same assembly can happen with a different path, or an OPAQUE ID like in this
command line:

gacutil /i shareddemo.dll /r OPAQUE 4711 “Opaque installation”

 Now, the assembly is in the GAC only once, but it has two references. To delete the assembly from the
GAC, both references must be removed:

gacutil /u shareddemo /r OPAQUE 4711 “Opaque installation”
gacutil /u shareddemo /r FILEPATH c:\ProCSharp\Assemblies\Client “Shared Demo”

 To remove a shared assembly, the option /u requires the assembly name without
the file extension DLL. On the contrary, the option /i to install a shared assembly
requires the complete file name including the file extension.

 Chapter 16 , “ Deployment, ” deals with deployment of assemblies, where the reference count is being
dealt with in an MSI package.

 Native Image Generator
 With the native image generator, Ngen.exe , you can compile the IL code to native code at installation
time. This way the program can start faster because the compilation during runtime is no longer
necessary. Comparing precompiled assemblies to assemblies where the JIT compiler needs to run is not
different from a performance view after the IL code is compiled. The only improvement you get with the
native image generator is that the application starts faster because there ’ s no need to run JIT. Reducing
the startup time of the application might be enough reason for using the native image generator. In case
you create a native image from the executable, you should also create native images from all the DLLs
that are loaded by the executable. Otherwise the JIT compiler still needs to run.

 The ngen utility installs the native image in the native image cache. The physical directory of the native
image cache is < windows > \assembly\NativeImages < RuntimeVersion > .

 With ngen install myassembly , you can compile the MSIL code to native code and install it into the
native image cache. This should be done from an installation program if you would like to put the
assembly in the native image cache.

 With ngen you can also display all assemblies from the native image cache with the option display . If
you add an assembly name to the display option you get the information about all installed versions of
this assembly and the assemblies that are dependent on the native assembly:

C:\ > ngen display System.Windows.Forms
Microsoft (R) CLR Native Image Generator - Version 2.0.50727.3178
Copyright (C) Microsoft Corporation. All rights reserved.

NGEN Roots:

System.Windows.Forms, Version=2.0.0.0, Culture=Neutral,
PublicKeyToken=b77a5c561934e089, processorArchitecture=msil

NGEN Roots that depend on “System.Windows.Forms”:

ComSvcConfig, Version=3.0.0.0, Culture=Neutral,

c17.indd 494c17.indd 494 2/19/08 5:14:34 PM2/19/08 5:14:34 PM

Chapter 17: Assemblies

495

PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=msil
ehepg, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
ehepgdat, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
ehExtCOM, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
ehexthost, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
ehRecObj, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
ehshell, Version=6.0.6000.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil
EventViewer, Version=6.0.0.0, Culture=Neutral,
PublicKeyToken=31bf3856ad364e35, processorArchitecture=msil

 If the security of the system changes, it ’ s not sure if the native image has the security requirements it
needs for running the application. This is why the native images become invalid with a system
configuration change. With the command ngen update all native images are rebuilt to include the
new configurations.

 Installing CLR 2.0 runtime also installs the Native Image Service (or the Window Service CLR
Optimization Service), with the name Microsoft .NET Framework NGEN v2.0.50727_X86. This service
can be used to defer compilation of native images and regenerates native images that have been
invalidated.

 The command ngen install myassembly /queue can be used by an installation program to defer
compilation of myassembly to a native image using the Native Image Service. ngen update /queue
regenerates all native images that have been invalidated. With the ngen queue options pause ,
 continue , and status you can control the service and get status information.

 You might ask why the native images cannot be created on the developer system, and you just distribute
the native image to the production system. The reason is that the native image generator takes care of the
CPU that is installed with the target system and compiles the code optimized for the CPU type. During
installation of the application, the CPU is known.

 Configuring .NET Applications
 COM components used the registry to configure components. Configuration of .NET applications is
done by using configuration files. With registry configurations, an xcopy deployment is not possible.
Configuration files can simply be copied. The configuration files use XML syntax to specify startup and
runtime settings for applications.

 This section explores the following:

 What you can configure using the XML base configuration files

 How you can redirect a strong named referenced assembly to a different version

 How you can specify the directory of assemblies to find private assemblies in subdirectories and
shared assemblies in common directories or on a server

❑

❑

❑

c17.indd 495c17.indd 495 2/19/08 5:14:35 PM2/19/08 5:14:35 PM

Part III: Base Class Libraries

496

 Configuration Categories
 The configuration can be grouped into these categories:

 Startup settings enable you to specify the version of the required runtime. It ’ s possible that
different versions of the runtime could be installed on the same system. The version of the
runtime can be specified with the < startup > element.

 Runtime settings enable you to specify how garbage collection is performed by the runtime,
and how the binding to assemblies works. You can also specify the version policy and the code
base with these settings. You take a more detailed look into the runtime settings later in this
chapter.

 WCF settings are used to configure applications using WCF. You deal with these configurations
in Chapter 42 , “ Windows Communication Foundation. ”

 Security settings are introduced in Chapter 20 , “ Security, ” and configuration for cryptography
and permissions is done there.

 These settings can be provided in three types of configuration files:

 Application configuration files include specific settings for an application, such as binding
information to assemblies, configuration for remote objects, and so on. Such a configuration file
is placed into the same directory as the executable; it has the same name as the executable with a
 .config extension appended. ASP.NET configuration files are named web.config .

 Machine configuration files are used for system - wide configurations. You can also specify assembly
binding and remoting configurations here. During a binding process, the machine configuration file
is consulted before the application configuration file. The application configuration can override
settings from the machine configuration. The application configuration file should be the preferred
place for application - specific settings so that the machine configuration file stays smaller and more
manageable. A machine configuration file is located in %runtime_install_path%\config\
Machine.config .

 Publisher policy files can be used by a component creator to specify that a shared assembly is
compatible with older versions. If a new assembly version just fixes a bug of a shared
component, it is not necessary to put application configuration files in every application
directory that uses this component; the publisher can mark it as compatible by adding a
publisher policy file instead. In case the component doesn ’ t work with all applications, it is
possible to override the publisher policy setting in an application configuration file. In contrast
to the other configuration files, publisher policy files are stored in the GAC.

 How are these configuration files used? How a client finds an assembly (also called binding) depends on
whether the assembly is private or shared. Private assemblies must be in the directory of the application
or in a subdirectory thereof. A process called probing is used to find such an assembly. If the assembly
doesn ’ t have a strong name, the version number is not used with probing.

 Shared assemblies can be installed in the GAC or placed in a directory, on a network share, or on a Web
site. You specify such a directory with the configuration of the codeBase shortly. The public key, version,
and culture are all important aspects when binding to a shared assembly. The reference of the required
assembly is recorded in the manifest of the client assembly, including the name, the version, and the
public key token. All configuration files are checked to apply the correct version policy. The GAC and
code bases specified in the configuration files are checked, followed by the application directories,
and probing rules are then applied.

❑

❑

❑

❑

❑

❑

❑

c17.indd 496c17.indd 496 2/19/08 5:14:35 PM2/19/08 5:14:35 PM

Chapter 17: Assemblies

497

 Configuring Directories for Assembly Searches
 You ’ ve already seen how to install a shared assembly to the GAC. Instead of installing a shared assembly
to the GAC, you can configure a specific shared directory by using configuration files. This feature can
be used if you want to make the shared components available on a server. Another possible scenario
arises if you want to share an assembly between your applications, but you don ’ t want to make it
publicly available in the GAC, so you put it into a shared directory instead.

 There are two ways to find the correct directory for an assembly: the codeBase element in an XML
configuration file, or through probing. The codeBase configuration is available only for shared
assemblies, and probing is done for private assemblies.

 < codeBase >
 The < codeBase > can also be configured using the .NET Configuration utility. Code bases can be
configured by selecting the properties of the configured application, SimpleShared , inside the Configured
Assemblies in the Applications tree. Similarly to the Binding Policy, you can configure lists of versions
with the Codebases tab. Figure 17 - 17 shows that the version 1.1 should be loaded from the Web server
 http://www.christiannagel.com/WroxUtils .

 Figure 17 - 17

 The .NET Configuration utility creates this application configuration file:

 < ?xml version=”1.0”? >
 < configuration >
 < runtime >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >
 < dependentAssembly xmlns=”” >
 < assemblyIdentity name=”SimpleShared”
 publicKeyToken=”7d886a6f7b9f0292” / >
 < codeBase version=”1.1”
 href=”http://www.christiannagel.com/WroxUtils” / >

(continued)

c17.indd 497c17.indd 497 2/19/08 5:14:36 PM2/19/08 5:14:36 PM

Part III: Base Class Libraries

498

 < /dependentAssembly >
 < /assemblyBinding >
 < /runtime >
 < /configuration >

 The < codeBase > element has the attributes version and href . With version , the original referenced
version of the assembly must be specified. With href , you can define the directory from where the
assembly should be loaded. In the example, a path using the HTTP protocol is used. A directory on a
local system or a share is specified using href= “ file:C:/WroxUtils ” .

 Using that assembly loaded from the network causes a System.Security.Permissions exception
to occur. You must configure the required permissions for assemblies loaded from the network. In
Chapter 20 , “ Security, ” you learn how to configure security for assemblies.

 < probing >
 When the < codeBase > is not configured and the assembly is not stored in the GAC, the runtime tries to
find an assembly through probing. The .NET runtime tries to find assemblies with either a .dll or an
 .exe file extension in the application directory, or in one of its subdirectories, that has the same name as
the assembly searched for. If the assembly is not found here, the search continues. You can configure
search directories with the < probing > element in the < runtime > section of application configuration
files. This XML configuration can also be done easily by selecting the properties of the application with
the .NET Framework Configuration tool. You can configure the directories where the probing should
occur by using the search path in the .NET Framework configuration (see Figure 17 - 18).

 Figure 17 - 18

(continued)

 The XML file produced has these entries:

 < ?xml version=”1.0”? >
 < configuration >
 < runtime >
 < gcConcurrent enabled=”true” / >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >

c17.indd 498c17.indd 498 2/19/08 5:14:36 PM2/19/08 5:14:36 PM

Chapter 17: Assemblies

499

 < probing privatePath=”bin;utils;” xmlns=”” / >
 < /assemblyBinding >
 < /runtime >
 < /configuration >

 The < probing > element has just a single required attribute: privatePath . This application
configuration file tells the runtime that assemblies should be searched for in the base directory of
the application, followed by the bin and the util directory. Both directories are subdirectories of the
application base directory. It ’ s not possible to reference a private assembly outside the application base
directory or a subdirectory thereof. An assembly outside of the application base directory must have a
shared name and can be referenced using the < codeBase > element, as you saw earlier.

 Versioning
 For private assemblies, versioning is not important because the referenced assemblies are copied with
the client. The client uses the assembly it has in its private directories.

 This is, however, different for shared assemblies. This section looks at the traditional problems that can occur
with sharing. With shared components, more than one client application can use the same component. The
new version can break existing clients when updating a shared component with a newer version. You can ’ t
stop shipping new versions because new features are requested and introduced with new versions of existing
components. You can try to program carefully to be backward compatible, but that ’ s not always possible.

 A solution to this dilemma could be an architecture that allows installation of different versions of shared
components, with clients using the version that they referenced during the build process. This solves a
lot of problems but not all of them. What happens if you detect a bug in a component that ’ s referenced
from the client? You would like to update this component and make sure that the client uses the new
version instead of the version that was referenced during the build process.

 Therefore, depending on the type in the fix of the new version, you sometimes want to use a newer
version, and you also want to use the older referenced version as well. The .NET architecture enables
both scenarios.

 In .NET, the original referenced assembly is used by default. You can redirect the reference to a different
version using configuration files. Versioning plays a key role in the binding architecture — how the
client gets the right assembly where the components live.

 Version Numbers
 Assemblies have a four - part version number, for example, 1.1.400.3300 . The parts are
 < Major > . < Minor > . < Build > . < Revision > .

 How these numbers are used depends on your application configuration.

 A good policy is to change the major or minor number on changes incompatible
with the previous version, but just the build or revision number with compatible
changes. This way, it can be assumed that redirecting an assembly to a new version
where just the build and revision changed is safe.

 With Visual Studio 2008, you can define the version number of the assembly with the assembly
information in the project settings. The project settings write the assembly attribute
 [AssemblyVersion] to the file AssemblyInfo.cs :

[assembly: AssemblyVersion(“1.0.0.0”)]

c17.indd 499c17.indd 499 2/19/08 5:14:36 PM2/19/08 5:14:36 PM

Part III: Base Class Libraries

500

 Instead of defining all four version numbers you can also place an asterisk in the third or fourth place:

[assembly: AssemblyVersion(“1.0.*”)]

 With this setting, the first two numbers specify the major and minor version, and the asterisk (*) means
that the build and revision numbers are auto - generated. The build number is the number of days since
January 1, 2000, and the revision is the number of seconds since midnight divided by two. Though the
automatic versioning might help during development time, before shipping it is a good practice to
define a specific version number.

 This version is stored in the .assembly section of the manifest.

 Referencing the assembly in the client application stores the version of the referenced assembly in the
manifest of the client application.

 Getting the Version Programmatically
 To make it possible to check the version of the assembly that is used from the client application, add the
method GetAssemblyFullName() to the SharedDemo class created earlier to return the strong name of
the assembly. For easy use of the Assembly class, you have to import the System.Reflection
namespace:

public string GetAssemblyFullName()
{
 return Assembly.GetExecutingAssembly().FullName;
}

 The FullName property of the Assembly class holds the name of the class, the version, the locality,
and the public key token, as you see in the following output, when calling GetAssemblyFullName() in
your client application.

 In the client application, just add a call to GetAssemblyFullName() in the Main() method after
creating the shared component:

static void Main()
{
 SharedDemo quotes = new
 SharedDemo(@”C:\ProCSharp\Assemblies\Quotes.txt”);
 Console.WriteLine(quotes.GetAssemblyFullName());

 Be sure to register the new version of the shared assembly SharedDemo again in the GAC using
 gacutil . If the referenced version cannot be found, you will get a System.IO.FileLoadException ,
because the binding to the correct assembly failed.

 With a successful run, you can see the full name of the referenced assembly:

SharedDemo, Version=1.0.0.0, Culture=neutral, PublicKeyToken=7d886a6f7b9f0292
Press any key to continue ...

 This client program can now be used to test different configurations of this shared component.

 Application Configuration Files
 With a configuration file, you can specify that the binding should happen to a different version of a
shared assembly. Assume that you create a new version of the shared assembly SharedDemo with
major and minor versions 1.1. Maybe you don ’ t want to rebuild the client but just want the new version
of the assembly to be used with the existing client instead. This is useful in cases where either a bug is
fixed with the shared assembly or you just want to get rid of the old version because the new version is
compatible.

c17.indd 500c17.indd 500 2/19/08 5:14:37 PM2/19/08 5:14:37 PM

Chapter 17: Assemblies

501

 Figure 17 - 19 shows the Global Assembly Cache Viewer, where the versions 1.0.0.0 and 1.0.3300.0 are
installed for the SharedDemo assembly.

 Figure 17 - 19

 Figure 17 - 20 shows the manifest of the client application where the client references version 1.0.0.0 of the
assembly SharedDemo .

 Figure 17 - 20

 Now an application configuration file is needed. It is not necessary to work directly with XML; the .NET
Framework Configuration tool can create application and machine configuration files. Figure 17 - 21
shows the .NET Framework Configuration tool, which is an MMC Snap - in. You can start this tool from
Administrative Tools in the Control Panel.

 This tool is shipped with Framework SDK and not with the .NET runtime, so don ’ t expect this tool to be
available to system administrators.

c17.indd 501c17.indd 501 2/19/08 5:14:37 PM2/19/08 5:14:37 PM

Part III: Base Class Libraries

502

 Select Configured Assemblies in the tree view and the menu Action Add . . . to configure the
dependency of the assembly SharedDemo from the dependency list. Select the Binding Policy tab to
define the version that should be used as shown in Figure 17 - 23 .

 Figure 17 - 21

 When you select Applications on the left side, and then select Action Add, you can choose a .NET
application to configure. If the Client.exe application does not show up with the list, click the Other . . .
button and browse to the executable. Select the application Client.exe to create an application
configuration file for this application. After adding the client application to the .NET Configuration
utility, the assembly dependencies can be listed, as shown in Figure 17 - 22 .

 Figure 17 - 22

c17.indd 502c17.indd 502 2/19/08 5:14:37 PM2/19/08 5:14:37 PM

Chapter 17: Assemblies

503

 Figure 17 - 23

 For the requested version, specify the version referenced in the manifest of the client assembly.
 newVersion specifies the new version of the shared assembly. In Figure 17 - 23 , it is specified that the
version 1.0.3300.0 should be used instead of any version in the range of 1.0.0.0 to 1.0.3300.0.

 Now you can find the application configuration file Client.exe.config in the directory of the
 Client.exe application that includes this XML code:

 < ?xml version=”1.0”? >
 < configuration >
 < runtime >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >
 < dependentAssembly >
 < assemblyIdentity name=”SharedDemo”
 publicKeyToken=”7d886a6f7b9f0292” / >
 < publisherPolicy apply=”yes” / >
 < bindingRedirect oldVersion=”1.0.0.0-1.0.3300.0”
 newVersion=”1.0.3300.0” / >
 < /dependentAssembly >
 < /assemblyBinding >
 < /runtime >
 < /configuration >

 Runtime settings can be configured with the < runtime > element. The subelement of < runtime > is
 < assemblyBinding > , which in turn has a subelement < dependentAssembly > . < dependentAssembly >
has a required subelement < assemblyIdentity > . You specify the name of the referenced assembly with
 < assemblyIdentity > . name is the only mandatory attribute for < assemblyIdentity > . The optional
attributes are publicKeyToken and culture . The other subelement of < dependentAssembly > that ’ s
needed for version redirection is < bindingRedirect > . The old and the new versions of the dependent
assembly are specified with this element.

 When you start the client with this configuration file, you will get the new version of the referenced
shared assembly.

c17.indd 503c17.indd 503 2/19/08 5:14:38 PM2/19/08 5:14:38 PM

Part III: Base Class Libraries

504

 Publisher Policy Files
 Using assemblies shared from the GAC allows you to use publisher policies to override versioning
issues. Assume that you have an assembly used by some applications. What can be done if a critical bug
is found in the shared assembly? You have seen that it is not necessary to rebuild all the applications that
use this shared assembly, because you can use configuration files to redirect to the new version of this
shared assembly. Maybe you don ’ t know all the applications that use this shared assembly, but you want
to get the bug fix to all of them. In that case, you can create publisher policy files to redirect all
applications to the new version of the shared assembly.

 Publisher policy files apply only to shared assemblies installed in the GAC.

 To set up publisher policies, you have to do the following:

 Create a publisher policy file

 Create a publisher policy assembly

 Add the publisher policy assembly to the GAC

 Create a Publisher Policy File
 A publisher policy file is an XML file that redirects an existing version or version range to a new version.
The syntax used here is the same as for application configuration files, so you can use the same file you
created earlier to redirect the old versions 1.0.0.0 through 1.0.3300.0 to the new version 1.0.3300.0.

 Rename the previously created file to mypolicy.config to use it as a publisher policy file and remove
the element < publisherPolicy > :

 < ?xml version=”1.0”? >
 < configuration >
 < runtime >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >
 < dependentAssembly >
 < assemblyIdentity name=”SharedDemo”
 publicKeyToken=”7d886a6f7b9f0292” / >
 < bindingRedirect oldVersion=”1.0.0.0-1.0.3300.0”
 newVersion=”1.0.3300.0” / >
 < /dependentAssembly >
 < /assemblyBinding >
 < /runtime >
 < /configuration >

 Create a Publisher Policy Assembly
 To associate the publisher policy file with the shared assembly, it is necessary to create a publisher policy
assembly, and to put it into the GAC. The tool that can be used to create such files is the assembly linker
 al . The option /linkresource adds the publisher policy file to the generated assembly. The name of
the generated assembly must start with policy, followed by the major and minor version number of the
assembly that should be redirected, and the file name of the shared assembly. In this case the publisher
policy assembly must be named policy.1.0.SharedDemo.dll to redirect the assemblies SharedDemo
with the major version 1 and minor version 0. The key that must be added to this publisher key with the
option /keyfile is the same key that was used to sign the shared assembly SharedDemo to guarantee
that the version redirection is from the same publisher.

❑

❑

❑

c17.indd 504c17.indd 504 2/19/08 5:14:38 PM2/19/08 5:14:38 PM

Chapter 17: Assemblies

505

al /linkresource:mypolicy.config /out:policy.1.0.SharedDemo.dll
/keyfile:..\..\mykey.snk

 Add the Publisher Policy Assembly to the GAC
 The publisher policy assembly can now be added to the GAC with the utility gacutil :

gacutil -i policy.1.0.SharedDemo.dll

 Now remove the application configuration file that was placed in the directory of the client application
and start the client application. Although the client assembly references 1.0.0.0, you use the new version
1.0.3300.0 of the shared assembly because of the publisher policy.

 Overriding Publisher Policies
 With a publisher policy, the publisher of the shared assembly guarantees that a new version of the
assembly is compatible with the old version. As you know, from changes of traditional DLLs, such
guarantees don ’ t always hold. Maybe all except one application is working with the new shared
assembly. To fix the one application that has a problem with the new release, the publisher policy can be
overridden by using an application configuration file.

 With the .NET Framework Configuration tool you can override the publisher policy by deselecting the
Enable Publisher Policy check box, as shown in Figure 17 - 24 .

 Figure 17 - 24

 Disabling the publisher policy with the .NET Framework Configuration results in a configuration file
with the XML element < publisherPolicy > and the attribute apply= “ no ” .

 < ?xml version=”1.0”? >
 < configuration >
 < runtime >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >
 < dependentAssembly >
 < assemblyIdentity name=”SharedDemo”
 publicKeyToken=”7d886a6f7b9f0292” / >

(continued)

c17.indd 505c17.indd 505 2/19/08 5:14:38 PM2/19/08 5:14:38 PM

Part III: Base Class Libraries

506

 < publisherPolicy apply=”no” / >
 < /dependentAssembly >
 < /assemblyBinding >
 < /runtime >
 < /configuration >

 By disabling the publisher policy, you can configure different version redirection in the application
configuration file.

 Runtime Version
 Installing and using multiple versions is not only possible with assemblies but also with the .NET
runtime (CLR). The versions 1.0, 1.1, and 2.0 (and later versions) of the CLR can be installed on the same
operating system side by side. Visual Studio 2008 targets applications running on CLR 2.0 with .NET 2.0,
3.0, and 3.5. With CLR 2.0 the assembly file format changed, so it is not possible to run CLR 2.0
applications with CLR 1.1.

 If the application is built with CLR 1.1, it is possible to target systems that have only the CLR 1.0 runtime
installed. The same can be expected about future minor releases in that they can target CLR 2.0 runtime
versions.

 An application that was built using CLR 1.0 may run without changes on CLR 1.1. If an operating system
has both versions of the runtime installed, the application will use the version with which it was built.
However, if only version 1.1 is installed with the operating system, and the application was built with
version 1.0, it tries to run with the newer version. There ’ s a good chance the application runs without
problems. The registry key HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework\policy
lists the ranges of the versions that will be used for a specific runtime.

 If an application was built using .NET 1.1, it may run without changes on .NET 1.0, in case no classes or
methods are used that are available only with .NET 1.1. Here an application configuration file is needed
to make this possible.

 In an application configuration file, it ’ s not only possible to redirect versions of referenced assemblies;
you can also define the required version of the runtime. Different .NET runtime versions can be installed
on a single machine. You can specify the version that ’ s required for the application in an application
configuration file. The element < supportedVersion > marks the runtime versions that are supported by
the application:

 < ?xml version=”1.0”? >
 < configuration >
 < startup >
 < supportedRuntime version=”v1.1.4322” / >
 < supportedRuntime version=”v1.0.3512” / >
 < /startup >
 < /configuration >

 There is one major point in case you still have .NET 1.0 applications that should run on .NET 1.1 runtime
versions. The element < supportedVersion > was new with .NET 1.1. .NET 1.0 used the element
 < requiredRuntime > to specify the needed runtime. So for .NET 1.0 applications, both configurations
must be done as shown here:

 < ?xml version=”1.0”? >
 < configuration >
 < startup >

(continued)

c17.indd 506c17.indd 506 2/19/08 5:14:39 PM2/19/08 5:14:39 PM

Chapter 17: Assemblies

507

 < supportedRuntime version=”v1.1.4322”/ >
 < supportedRuntime version=”v1.0.3705”/ >
 < requiredRuntime version=”v1.0.3512” safeMode=”true” / >
 < /startup >
 < /configuration >

 < requiredRuntime > does not overrule the configuration for < supportedRuntime > as it may look
like, because < requiredRuntime > is used only with .NET 1.0, whereas < supportedRuntime > is
used by .NET 1.1 and later versions.

 You cannot configure a supported runtime for a library. The library always uses
the runtime selected by the application process.

 Summary
 Assemblies are the new installation unit for the .NET platform. Microsoft learned from problems with
previous architectures and did a complete redesign to avoid the old problems. This chapter discussed the
features of assemblies: they are self - describing, and no type library and registry information is needed.
Version dependencies are exactly recorded so that with assemblies, the DLL hell with old DLLs no longer
exists. Because of these features, both development and deployment and administration have become a
lot easier.

 You learned the differences between private and shared assemblies and saw how shared assemblies can
be created. With private assemblies, you don ’ t have to pay attention to uniqueness and versioning issues
because these assemblies are copied and only used by a single application. Sharing assemblies requires
you to use a key for uniqueness and to define the version. You looked at the GAC, which can be used as
an intelligent store for shared assemblies.

 You can have faster application startups by using the native image generator. With this the JIT compiler
does not need to run because the native code is created during installation time.

 You looked at overriding versioning issues to use a version of an assembly different from the one that
was used during development; this is done through publisher policies and application configuration
files. Finally, you learned how probing works with private assemblies.

 The chapter also discussed loading assemblies dynamically and creating assemblies during runtime.
If you want to get more information on this, you should read Chapter 36 about the Add - In model of
.NET 3.5.

c17.indd 507c17.indd 507 2/19/08 5:14:39 PM2/19/08 5:14:39 PM

c17.indd 508c17.indd 508 2/19/08 5:14:39 PM2/19/08 5:14:39 PM

 Tracing and Events

 Chapter 14 covered errors and exception handling. Besides handling exceptional code, it might
be really interesting to get some live information about your running application to find the
reason for some issues that application might have during production, or to monitor resources
needed to early adapt to higher user loads. This is where the namespace System.Diagnostics
comes into play.

 The application doesn ’ t throw exceptions, but sometimes it doesn ’ t behave as expected. The
application might be running well on most systems but might have a problem on a few. On the live
system, you change the log behavior by changing a configuration value and get detailed live
information about what ’ s going on in the application. This can be done with tracing .

 If there are problems with applications, the system administrator needs to be informed. With the
Event Viewer, the system administrator both interactively monitors problems with applications
and gets informed about specific events that happen by adding subscriptions. The event - logging
mechanism allows you to write information about the application.

 To analyze resources needed from applications, monitor applications with specified time intervals,
and plan for a different application distribution or extending of system resources, the system
administrator uses the performance monitor. You can write live data of your application using
 performance counts .

 This chapter explains these three facilities and demonstrates how you can use them from your
applications:

❑ Tracing

❑ Event logging

❑ Performance monitoring

 Tracing
 With tracing you can see messages from the running application. To get some information about a
running application, you can start the application in the debugger. During debugging, you can
walk through the application step by step and set breakpoints at specific lines and when you reach

c18.indd 509c18.indd 509 2/19/08 5:14:49 PM2/19/08 5:14:49 PM

Part III: Base Class Libraries

510

specific conditions. The problem with debugging is that a released program can behave differently. For
example, while the program is stopping at a breakpoint, other threads of the application are suspended
as well. Also, with a release build, the compiler - generated output is optimized and thus different effects
can occur. There is a need to have information from a release build as well. Trace messages are written
both with debug and release code.

 A scenario showing how tracing helps is described here. After an application is deployed, it runs on
one system without problems, while on another system intermediate problems occur. Turning on
verbose tracing on the system with the problems gives you detailed information about what ’ s
happening inside the application. The system that is running without problems has tracing configured
just for error messages redirected to the Windows event log system. Critical errors are seen by the
system administrator. The overhead of tracing is very small, because you configure a trace level only
when needed.

 The tracing architecture has four major parts:

❑ The source is the originator of the trace information. You use the source to send trace messages.

❑ The switch defines the level of information to log. For example, you can request just error
information or detailed verbose information.

❑ Trace listeners define where the trace messages should be written.

❑ Listeners can have filters attached. The filter defines what trace messages should be written by
the listener. This way, you can have different listeners for the same source that write different
levels of information.

 Figure 18 - 1 shows the major classes for tracing and how they are connected in a Visual Studio class
diagram. The TraceSource uses a switch to define what information to log. The TraceSource has a
 TraceListenerCollection associated where trace messages are forwarded to. The collection consists
of TraceListener objects, and every listener has a TraceFilter connected.

Figure 18-1

c18.indd 510c18.indd 510 2/19/08 5:14:50 PM2/19/08 5:14:50 PM

Chapter 18: Tracing and Events

511

 Trace Sources
 You can write trace messages with the TraceSource class. Tracing requires the Trace flag of the
compiler settings. With a Visual Studio project, the Trace flag is set by default with debug and release
builds, but you can change it through the Build properties of the project.

 The TraceSource class is more difficult to use compared to the Trace class writing trace messages,
but it provides more options.

 To write trace messages, you need to create a new TraceSource instance. In the constructor, the name of
the trace source is defined. The method TraceInformation() writes an information message to the
trace output. Instead of just writing informational messages, the TraceEvent() method requires an
enumeration value of type TraceEventType to define the type of the trace message. TraceEventType
.Error specifies the message as an error message. You can define it with a trace switch to see only error
messages. The second argument of the TraceEvent() method requires an identifier. The ID can be used
within the application itself. For example, you can use id 1 for entering a method and id 2 for exiting a
method. The method TraceEvent() is overloaded, so the TraceEventType and the ID are the only
required parameters. Using the third parameter of an overloaded method, you can pass the message
written to the trace. TraceEvent() also supports passing a format string with any number of
parameters in the same way as Console.WriteLine() . TraceInformation() does nothing more than
invoke TraceEvent() with an identifier of 0. TraceInformation() is just a simplified version of
 TraceEvent() . With the TraceData() method, you can pass any object, for example an exception
instance, instead of a message. To make sure that data is written by the listeners and does not stay in
memory, you need to do a Flush() . If the source is no longer needed, you can invoke the Close()
method that closes all listeners associated with the trace source. Close() does a Flush() as well.

 TraceSource source1 = new TraceSource(“Wrox.ProCSharp.Tracing”);
 source1.TraceInformation(“Info message”);
 source1.TraceEvent(TraceEventType.Error, 3, “Error message”);
 source1.TraceData(TraceEventType.Information, 2,
 new int[] { 1, 2, 3 });
 source1.Flush();
 source1.Close();

 You can use different trace sources within your application. It makes sense to define
different sources for different libraries, so that you can turn on different trace levels
for different parts of your application. To use a trace source you need to know its
name. A commonly used name for the trace source is the same name as the
namespace.

 The TraceEventType enumeration that is passed as an argument to the TraceEvent() method
defines the following levels to specify the severity of the problem: Verbose , Information , Warning ,
 Error , and Critical . Critical defines a fatal error or application crash; Error defines a recoverable
error. Trace messages at the Verbose level give you detailed debugging information. TraceEventType
also defines action levels Start , Stop , Suspend , and Resume . These levels define timely events inside a
logical operation.

 The code, as it is written now, does not display any trace message because the switch associated with the
trace source is turned off.

c18.indd 511c18.indd 511 2/19/08 5:14:50 PM2/19/08 5:14:50 PM

Part III: Base Class Libraries

512

 Trace Switches
 To enable or disable trace messages, you can configure a trace switch. Trace switches are classes that are
derived from the abstract base class Switch . Derived classes are BooleanSwitch , TraceSwitch , and
 SourceSwitch . The class BooleanSwitch can be turned on and off, and the other two classes provide a
range level that is defined by the TraceLevel enumeration. To configure trace switches, you must know
the values associated with the TraceLevel enumeration. TraceLevel defines the values Off , Error ,
 Warning , Info , and Verbose .

 You can associate a trace switch programmatically by setting the Switch property of the TraceSource .
Here the switch associated is of type SourceSwitch , has the name MySwitch , and has the level
 Verbose :

 TraceSource source1 = new TraceSource(“Wrox.ProCSharp.Tracing”);
 source1.Switch = new SourceSwitch(“MySwitch”, “Verbose”);

 Setting the level to Verbose means that all trace messages should be written. If you set the value to
 Error , only error messages should show up. Setting the value to Information means that error,
warning, and info messages are shown. Writing the trace messages once more, you can see the messages
while running the debugger in the Output window.

 Usually, you would want to change the switch level not by recompiling the application, but instead by
changing the configuration. The trace source can be configured in the application configuration file.
Tracing is configured within the < system.diagnostics > element. The trace source is defined with the
 < source > element as a child element of < sources > . The name of the source in the configuration file
must exactly match the name of the source in the program code. Here, the trace source has a switch of
type System.Diagnostics.SourceSwitch associated with the name MySourceSwitch . The switch
itself is defined within the < switches > section, and the level of the switch is set to verbose .

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.diagnostics >
 < sources >
 < source name=”Wrox.ProCSharp.Tracing” switchName=”MySourceSwitch”
 switchType=”System.Diagnostics.SourceSwitch” / >
 < /sources >
 < switches >
 < add name=”MySourceSwitch” value=”Verbose”/ >
 < /switches >
 < /system.diagnostics >
 < /configuration >

 Now, you can change the trace level just by changing the configuration file without the need to
recompile the code. After the configuration file is changed, you must restart the application.

 Currently, trace messages are written to just the Output window of Visual Studio while you are running
it in a debug session. Adding trace listeners changes this.

 Trace Listeners
 By default, trace information is written to the Output window of the Visual Studio debugger. Just by
changing the application configuration, you can redirect the trace output to different locations.

 Where tracing should be written to is defined by trace listeners. A trace listener is derived from the
abstract base class TraceListener .

 Trace listeners defined by the .NET Framework are described in the following table.

c18.indd 512c18.indd 512 2/19/08 5:14:51 PM2/19/08 5:14:51 PM

Chapter 18: Tracing and Events

513

 Trace Listener Description

 DefaultTraceListener A default trace listener is automatically added to the listeners
collection of the Trace class. Default output goes to the attached
debugger. In Visual Studio, this is shown in the Output window
during a debugging session.

 EventLogTraceListener The EventLogTraceListener writes trace information to the
event log. With the constructor of the
 EventLogTraceListener , you can specify an event log source
or an object of type EventLog . Event logging is described later
in this chapter.

 TextWriterTraceListener With the TextWriterTraceListener trace, output can be writ-
ten to a file, a TextWriter , or a Stream . See Chapter 25 ,
 “ Manipulating Files and the Registry, ” for file manipulation
information.

Text WriterTraceListener is the base class of
 ConsoleTraceListener , DelimitedListTraceListener ,
and XmlWriterTraceListener .

 ConsoleTraceListener ConsoleTraceListener writes trace messages to the console.

 DelimitedListTraceListener DelimitedListTraceListener writes trace messages to a
delimited file. With trace output options, you can define a lot of
separate tracing information such as process ID, time, and the
like, which can be read more easily with a delimited file.

 XmlWriterTraceListener Instead of using a delimited file, you can redirect the trace infor-
mation to an XML file with the XmlWriterTraceListener .

 IisTraceListener The IisTraceListener was added in .NET 3.0.

 WebPageTraceListener ASP.NET has another tracing option to get ASP.NET trace infor-
mation about Web pages in a dynamically created output file
 trace . axd . If you configure the WebPageTraceListener , then
 System.Diagnostics trace information goes into trace.axd
as well.

 .NET Framework delivers many listeners to which trace information can be written. In case the listeners
don ’ t fulfill your requirements, you can create a custom listener by deriving a class from the base class
 TraceListener . With a custom listener, you can, for example, write trace information to a Web service,
write messages to your mobile phone . . . I guess it ’ s not that interesting to receive hundreds of messages
to your phone in your spare time. And with verbose tracing this can become really expensive.

 You can configure a trace listener programmatically by creating a listener object and assigning it to the
 Listeners property of the TraceSource class. However, usually it is more interesting to just change a
configuration to define a different listener.

 You can configure listeners as child elements of the < source > element. With the listener, you define the
type of the listener class and use initializeData to specify where the output of the listener should
go. The configuration here defines the XmlWriterTraceListener to write to the file demotrace.xml
and the DelimitedListTraceListener to write to the file demotrace.txt :

c18.indd 513c18.indd 513 2/19/08 5:14:51 PM2/19/08 5:14:51 PM

Part III: Base Class Libraries

514

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.diagnostics >
 < sources >
 < source name=”Wrox.ProCSharp.Tracing” switchName=”MySourceSwitch”
 switchType=”System.Diagnostics.SourceSwitch” >
 < listeners >
 < add name=”xmlListener”
 type=”System.Diagnostics.XmlWriterTraceListener”
 traceOutputOptions=”None”
 initializeData=”c:/logs/demotrace.xml” / >

 < add name=”delimitedListener” delimiter=”:”
 type=”System.Diagnostics.DelimitedListTraceListener”
 traceOutputOptions=”DateTime, ProcessId”
 initializeData=”c:/logs/demotrace.txt” / >
 < /listeners >
 < /source >
 < /sources >
 < switches >
 < add name=”MySourceSwitch” value=”Verbose”/ >
 < /switches >
 < /system.diagnostics >
 < /configuration >

 You might get a warning from the XML schema regarding the delimiter attribute declaration. You
can ignore it.

 With the listener, you can also specify what additional information should be written to the trace
log. This information is defined with the traceOutputOptions XML attribute and is defined
by the TraceOptions enumeration. The enumeration defines Callstack , DateTime ,
 LogicalOperationStack , ProcessId , ThreadId , and None . The information needed can
be added with comma separation to the traceOutputOptions XML attribute, as shown with the
delimited trace listener.

 The delimited file output from the DelimitedListTraceListener , including the process ID and date/
time, is shown here:

“Wrox.ProCSharp.Tracing”:Information:0:”Info message”::4188:””::
“2007-01-23T12:38:31.3750000Z”::
“Wrox.ProCSharp.Tracing”:Error:3:”Error message”::4188:””::
“2007-01-23T12:38:31.3810000Z”::

 The XML output from the XmlWriterTraceListener always contains the name of the computer, the
process ID, the thread ID, the message, the time created, the source, and the activity ID. Other fields,
such as the call stack, logical operation stack, and timestamp, depend on the trace output options.

 You can use the XmlDocument and XPathNavigator classes to analyze the content from the XML
file. These classes are covered in Chapter 28 , “ Manipulating XML. ”

 If a listener should be used by multiple trace sources, you can add the listener configuration to the
element < sharedListeners > , which is independent of the trace source. The name of the listener that is
configured with a shared listener must be referenced from the listeners of the trace source:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.diagnostics >
 < sources >
 < source name=”Wrox.ProCSharp.Tracing” switchName=”MySourceSwitch”

c18.indd 514c18.indd 514 2/19/08 5:14:52 PM2/19/08 5:14:52 PM

Chapter 18: Tracing and Events

515

 switchType=”System.Diagnostics.SourceSwitch” >
 < listeners >
 < add name=”xmlListener”
 type=”System.Diagnostics.XmlWriterTraceListener”
 traceOutputOptions=”None”
 initializeData=”c:/logs/demotrace.xml” / >
 < add name=”delimitedListener” / >
 < /listeners >
 < /source >
 < /sources >
 < sharedListeners >
 < add name=”delimitedListener” delimiter=”:”
 type=”System.Diagnostics.DelimitedListTraceListener”
 traceOutputOptions=”DateTime, ProcessId”
 initializeData=”c:/logs/demotrace.txt” / >
 < /sharedListeners >
 < switches >
 < add name=”MySourceSwitch” value=”Verbose”/ >
 < /switches >
 < /system.diagnostics >
 < /configuration >

 Filters
 Every listener has a Filter property that defines whether the listener should write the trace message.
For example, multiple listeners can be used with the same trace source. One of the listeners writes
verbose messages to a log file, and another listener writes error messages to the event log. Before a
listener writes a trace message, it invokes the ShouldTrace() method of the associated filter object to
decide if the trace message should be written.

 A filter is a class that is derived from the abstract base class TraceFilter . .NET 3.0 offers two filter
implementations: SourceFilter and EventTypeFilter . With the source filter, you can specify that trace
messages are to be written only from specific sources. The event type filter is an extension to the switch
functionality. With a switch, it is possible to define, according to the trace severity level, if the event source
should forward the trace message to the listeners. If the trace message is forwarded, the listener now can
use the filter to decide if the message should be written.

 The changed configuration now defines that the delimited listener should write trace messages
only if the severity level is of type warning or higher, because of the defined EventTypeFilter .
The XML listener specifies a SourceFilter and accepts trace messages only from the source
Wrox.ProCSharp.Tracing . In case you have a large number of sources defined to write trace
messages to the same listener, you can change the configuration for the listener to concentrate on
trace messages from a specific source.

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.diagnostics >
 < sources >
 < source name=”Wrox.ProCSharp.Tracing” switchName=”MySourceSwitch”
 switchType=”System.Diagnostics.SourceSwitch” >
 < listeners >
 < add name=”xmlListener” / >
 < add name=”delimitedListener” / >
 < /listeners >
 < /source >

(continued)

c18.indd 515c18.indd 515 2/19/08 5:14:52 PM2/19/08 5:14:52 PM

Part III: Base Class Libraries

516

 < /sources >
 < sharedListeners >
 < add name=”delimitedListener” delimiter=”:”
 type=”System.Diagnostics.DelimitedListTraceListener”
 traceOutputOptions=”DateTime, ProcessId”
 initializeData=”c:/logs/demotrace.txt” >
 < filter type=”System.Diagnostics.EventTypeFilter”
 initializeData=”Warning” / >
 < /add >
 < add name=”xmlListener”
 type=”System.Diagnostics.XmlWriterTraceListener”
 traceOutputOptions=”None”
 initializeData=”c:/logs/demotrace.xml” >
 < filter type=”System.Diagnostics.SourceFilter”
 initializeData=”Wrox.ProCSharp.Tracing” / >
 < /add >
 < /sharedListeners >
 < switches >
 < add name=”MySourceSwitch” value=”Verbose”/ >
 < /switches >
 < /system.diagnostics >
 < /configuration >

 The tracing architecture can be extended. Just as you can write a custom listener derived from the base
class TraceListener , you can also create a custom filter derived from TraceFilter . With that
capability, you can create a filter that specifies to write trace messages, for example, depending on the
time, depending on an exception that occurred lately, or depending on the weather.

 Asserts
 Another feature that belongs to tracing are asserts. Asserts are critical problems within the program path.
With asserts, a message is displayed with the error, and you can abort or continue the application.
Asserts are very helpful when you write a library that is used by another developer.

 With the Foo() method, Trace.Assert() examines parameter o to see if it is not null. If the condition
is false , the error message as shown in Figure 18 - 2 is issued. If the condition is true , the program

(continued)

Figure 18-2

c18.indd 516c18.indd 516 2/19/08 5:14:53 PM2/19/08 5:14:53 PM

Chapter 18: Tracing and Events

517

continues. The Bar() method includes a Trace.Assert() example where it is verified that the
parameter is larger than 10 and smaller than 20. If the condition is false , an error message is
shown again.

 static void Foo(object o)
 {
 Trace.Assert(o != null, “Expecting an object”);
 Console.WriteLine(o);
 }

 static void Bar(int x)
 {
 Trace.Assert(x > 10 & & x < 20, “x should be between 10 and 20”);
 Console.WriteLine(x);
 }

 static void Main()
 {
 Foo(null);
 Bar(3);
 }

 You can create an application configuration file with the < assert > element to disable assert messages:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.diagnostics >
 < assert assertuienabled=”false”/ >
 < /system.diagnostics >
 < /configuration >

 Event Logging
 The system administrator uses the Event Viewer to get critical and warning information about the
system and applications. You should write error messages from your application to the event log so that
the information can be read with the Event Viewer.

 Trace messages can be written to the event log if you configure the EventLogTraceListener class. The
 EventLogTraceListener has an EventLog object associated with it to write the event log entry. You
can also use the EventLog class directly to write and read event logs.

 In this section, you explore the following:

❑ Event - logging architecture

❑ Classes for event logging from the System.Diagnostics namespace

❑ Adding event logging to services and to other application types

❑ Creating an event log listener with the EnableRaisingEvents property of the EventLog class

 Figure 18 - 3 shows an example of a log entry from a modem.

c18.indd 517c18.indd 517 2/19/08 5:14:53 PM2/19/08 5:14:53 PM

Part III: Base Class Libraries

518

 For custom event logging, you can use classes from the System.Diagnostics namespace.

 Event - Logging Architecture
 The event log information is stored in several log files. The most important ones are application, security,
and system. Looking at the registry configuration of the event log service, you will notice several entries
under HKEY _ LOCAL _ MACHINE\System\CurrentControlSet\Services\Eventlog with configurations
pointing to the specific files. The system log file is used from the system and device drivers. Applications
and services write to the application log. The security log is a read - only log for applications. The audit-
ing feature of the operating system uses the security log. Every application can also create a custom
category and log file to write event log entries there. For example, this is done by Windows OneCare and
Media Center.

 You can read these events by using the administrative tool Event Viewer. The Event Viewer can be
started directly from the Server Explorer of Visual Studio by right - clicking the Event Logs item and
selecting the Launch Event Viewer entry from the context menu. The Event Viewer is shown in
Figure 18 - 4 .

 In the event log, you can see this information:

❑ Type — The type can be Information, Warning, or Error. Information is an infrequent successful
operation; Warning is a problem that is not immediately significant; and Error is a major
problem. Additional types are FailureAudit and SuccessAudit, but these types are used only for
the security log.

❑ Date — Date and Time show the time when the event occurred.

Figure 18-3

c18.indd 518c18.indd 518 2/19/08 5:14:53 PM2/19/08 5:14:53 PM

Chapter 18: Tracing and Events

519

❑ Source — The Source is the name of the software that logs the event. The source for the applica-
tion log is configured in:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Eventlog\Application\
[ApplicationName]

 Below this key, the value EventMessageFile is configured to point to a resource DLL that
holds error messages.

❑ Category — A Category can be defined so that event logs can be filtered when using the Event
Viewer. Categories can be defined by an event source.

❑ Event identifier — The Event identifier specifies a particular event message.

 Event - Logging Classes
 The System.Diagnostics namespace has some classes for event logging, which are shown in the
following table.

 Class Description

 EventLog With the EventLog class, you can read and write entries in the event
log, and establish applications as event sources.

 EventLogEntry The EventLogEntry class represents a single entry in the event log.
With the EventLogEntryCollection , you can iterate through
 EventLogEntry items.

Figure 18-4

c18.indd 519c18.indd 519 2/19/08 5:14:53 PM2/19/08 5:14:53 PM

Part III: Base Class Libraries

520

 Class Description

 EventLogInstaller The EventLogInstaller class is the installer for an EventLog
 component. EventLogInstaller calls EventLog
.CreateEventSource() to create an event source.

 EventLogTraceListener With the help of the EventLogTraceListener , traces can be written
to the event log. This class implements the abstract class
 TraceListener .

 The heart of event logging is in the EventLog class. The members of this class are explained in the
following table.

 EventLog Members Description

 Entries With the Entries property, you can read event logs. Entries
returns an EventLogEntryCollection that contains
 EventLogEntry objects holding information about the events.
There is no need to invoke a Read() method. The collection is
filled as soon as you access this property.

 Log Specify the log for reading or writing event logs with the
 Log property.

 LogDisplayName LogDisplayName is a read - only property that returns the display
name of the log.

 MachineName With the MachineName , you can specify the system on which to
read or write log entries.

 Source The Source property specifies the source of the event entries
to write.

 CreateEventSource() The CreateEventSource() creates a new event source and a
new log file, if a new log file is specified with this method.

 DeleteEventSource() To get rid of an event source, you can invoke
 DeleteEventSource() .

 SourceExists() Before creating an event source, you can verify if the source
already exists by using this element.

 WriteEntry()WriteEvent() Write event log entries with either the WriteEntry() or
 WriteEvent() method. WriteEntry() is simpler, because you
just need to pass a string. WriteEvent() is more flexible,
because you can use message files that are independent of the
application and that support localization.

 Clear() The Clear() method removes all entries from an event log.

 Delete() The Delete() method deletes a complete event log.

c18.indd 520c18.indd 520 2/19/08 5:14:54 PM2/19/08 5:14:54 PM

Chapter 18: Tracing and Events

521

 Creating an Event Source
 Before writing events, you must create an event source. You can use either the CreateEventSource()
method of the EventLog class or the class EventLogInstaller . Because you need administrative
privileges when creating an event source, an installation program would be best for defining the
new source.

 Chapter 16 , “ Deployment, ” explains how to create installation programs.

 The following sample verifies that an event log source named EventLogDemoApp already exists. If it
doesn ’ t exist, an object of type EventSourceCreationData is instantiated that defines the source name
 EventLogDemoApp and the log name ProCSharpLog . Here, all events of this source are written to the
 ProCSharpLog event log. The default is the application log.

 if (!EventLog.SourceExists(“EventLogDemoApp”))
 {
 EventSourceCreationData eventSourceData =
 new EventSourceCreationData(“EventlogDemoApp”,
 “ProCSharpLog”);

 EventLog.CreateEventSource(eventSourceData);
 }

 The name of the event source is an identifier of the application that writes the events. For the system
administrator reading the log, the information helps in identifying the event log entries to map them to
application categories. Examples of names for event log sources are LoadPerf for the performance
monitor, MSSQLSERVER for Microsoft SQL Server, MsiInstaller for the Windows Installer, Winlogon ,
 Tcpip , Time - Service , and so on.

 Setting the name Application for the event log writes event log entries to the application log. You can
also create your own log by specifying a different application log name. Log files are located in the
directory < windows > \System32\WinEvt\Logs .

 With the EventSourceCreationData , you can also specify several more characteristics for the event
log, as shown in the following table.

 EventSourceCreationData Description

 Source The property Source gets or sets the name of the event source.

 LogName LogName defines the log where event log entries are written. The
default is the application log.

 MachineName With MachineName , you can define the system to read or write log
entries.

 CategoryResourceFile With the CategoryResourceFile property, you can define a
resource file for categories. Categories can be used for an easier filter-
ing of event log entries within a single source.

 CategoryCount The CategoryCount property defines the number of categories in the
category resource file.

c18.indd 521c18.indd 521 2/19/08 5:14:54 PM2/19/08 5:14:54 PM

Part III: Base Class Libraries

522

 EventSourceCreationData Description

 MessageResourceFile Instead of specifying that the message should be written to the event
log in the program that writes the events, messages can be defined in
a resource file that is assigned to the MessageResourceFile prop-
erty. Messages from the resource file are localizable.

 ParameterResourceFile Messages in a resource file can have parameters. The parameters can
be replaced by strings defined in a resource file that is assigned to the
 ParameterResourceFile property.

 Writing Event Logs
 For writing event log entries, you can use the WriteEntry() or WriteEvent() methods of the
 EventLog class.

 The EventLog class has both a static and an instance method WriteEntry() . The static method
 WriteEntry() requires a parameter of the source. The source can also be set with the constructor of
the EventLog class. Here in the constructor, the log name, the local machine, and the event source name
are defined. Next, three event log entries are written with the message as the first parameter of the
 WriteEntry() method. WriteEntry() is overloaded. The second parameter you can assign is an
enumeration of type EventLogEntryType . With EventLogEntryType , you can define the severity of
the event log entry. Possible values are Information , Warning , and Error , and for auditing
 SuccessAudit and FailureAudit . Depending on the type, different icons are shown in the Event
Viewer. With the third parameter, you can specify an application - specific event ID that can be used by
the application itself. In addition to that, you can also pass application - specific binary data and
a category.

 using (EventLog log = new EventLog(“ProCSharpLog”, “.”,
 “EventLogDemoApp”))
 {
 log.WriteEntry(“Message 1”);
 log.WriteEntry(“Message 2”, EventLogEntryType.Warning);
 log.WriteEntry(“Message 3”, EventLogEntryType.Information, 33);
 }

 Resource Files
 Instead of defining the messages for the event log in the C# code and passing it to the WriteEntry()
method, you can create a message resource file , define messages in the resource file, and pass message
identifiers to the WriteEvent() method. Resource files also support localization.

 Message resource files are native resource files that have nothing in common with .NET resource files.
.NET resource files are covered in Chapter 21 , “ Localization. ”

 A message file is a text file with the mc file extension. The syntax that this file uses to define messages is
very strict. The sample file EventLogMessages.mc contains four categories followed by event messages.
Every message has an ID that can be used by the application writing event entries. Parameters that can
be passed from the application are defined with % syntax in the message text.

c18.indd 522c18.indd 522 2/19/08 5:14:55 PM2/19/08 5:14:55 PM

Chapter 18: Tracing and Events

523

 For the exact syntax of message files, check the MSDN documentation for Message Text Files.

; // EventLogDemoMessages.mc
; // **

; // - Event categories -
; // Categories must be numbered consecutively starting at 1.
; // **

MessageId=0x1
Severity=Success
SymbolicName=INSTALL_CATEGORY
Language=English
Installation
.

MessageId=0x2
Severity=Success
SymbolicName=DATA_CATEGORY
Language=English
Database Query
.

MessageId=0x3
Severity=Success
SymbolicName=UPDATE_CATEGORY
Language=English
Data Update
.

MessageId=0x4
Severity=Success
SymbolicName=NETWORK_CATEGORY
Language=English
Network Communication
.

; // - Event messages -
; // *********************************

MessageId = 1000
Severity = Success
Facility = Application
SymbolicName = MSG_CONNECT_1000
Language=English
Connection successful.
.

MessageId = 1001
Severity = Error
Facility = Application
SymbolicName = MSG_CONNECT_FAILED_1001
Language=English
Could not connect to server %1.
.
 (continued)

c18.indd 523c18.indd 523 2/19/08 5:14:55 PM2/19/08 5:14:55 PM

Part III: Base Class Libraries

524

MessageId = 1002
Severity = Error
Facility = Application
SymbolicName = MSG_DB_UPDATE_1002
Language=English
Database update failed.
.

MessageId = 1003
Severity = Success
Facility = Application
SymbolicName = APP_UPDATE
Language=English
Application %%5002 updated.
.

; // - Event log display name -
; // **

MessageId = 5001
Severity = Success
Facility = Application
SymbolicName = EVENT_LOG_DISPLAY_NAME_MSGID
Language=English
Professional C# Sample Event Log
.

; // - Event message parameters -
; // Language independent insertion strings
; // **

MessageId = 5002
Severity = Success
Facility = Application
SymbolicName = EVENT_LOG_SERVICE_NAME_MSGID
Language=English
EventLogDemo.EXE
.

 Use the Messages Compiler, mc.exe , to create a binary message file. mc – s EventLogDemoMessages
.mc compiles the source file containing the messages to a messages file with the .bin extension and the
file Messages.rc , which contains a reference to the binary message file:

mc -s EventLogDemoMessages.mc

 Next, you must use the Resource Compiler, rc.exe . rc EventLogDemoMessages.rc creates the
resource file EventLogDemoMessages.RES :

rc EventLogDemoMessages.rc

 With the linker, you can bind the binary message file EventLogDemoMessages.RES to a native DLL:

link /DLL /SUBSYSTEM:WINDOWS /NOENTRY /MACHINE:x86 EventLogDemoMessages.RES

(continued)

c18.indd 524c18.indd 524 2/19/08 5:14:56 PM2/19/08 5:14:56 PM

Chapter 18: Tracing and Events

525

 Now, you can register an event source that defines the resource files as shown in the following code.
First, a check is done if the event source named EventLogDemoApp exists. If the event log must be
created because it does not exist, the next check verifies if the resource file is available. Some samples in
the MSDN documentation demonstrate writing the message file to the < windows > \system32 directory,
but you shouldn ’ t do that. Copy the message DLL to a program - specific directory that you can get with
the SpecialFolder enumeration value ProgramFiles . If you need to share the messages file among
multiple applications, you can put it into Environment.SpecialFolder.CommonProgramFiles . If the
file exists, a new object of type EventSourceCreationData is instantiated. In the constructor, the name
of the source and the name of the log are defined. You use the properties CategoryResourceFile ,
 MessageResourceFile , and ParameterResourceFile to define a reference to the resource file. After
the event source is created, you can find the information on the resource files in the registry with the
event source. The method CreateEventSource registers the new event source and log file. Finally, the
method RegisterDisplayName() from the EventLog class specifies the name of the log as it is
displayed in the Event Viewer. The ID 5001 is taken from the message file.

 If you want to delete a previously created event source, you can do so with EventLog.DeleteEventS
ource(sourceName); . To delete a log, you can invoke EventLog.Delete(logName); .

 string logName = “ProCSharpLog”;
 string sourceName = “EventLogDemoApp”;
 string resourceFile = Environment.GetFolderPath(
 Environment.SpecialFolder.ProgramFiles) +
 @”\procsharp\EventLogDemoMessages.dll”;

 if (!EventLog.SourceExists(sourceName))
 {
 if (!File.Exists(resourceFile))
 {
 Console.WriteLine(“Message resource file does not exist”);
 return;
 }

 EventSourceCreationData eventSource =
 new EventSourceCreationData(sourceName, logName);

 eventSource.CategoryResourceFile = resourceFile;
 eventSource.CategoryCount = 4;
 eventSource.MessageResourceFile = resourceFile;
 eventSource.ParameterResourceFile = resourceFile;

 EventLog.CreateEventSource(eventSource);
 }
 else
 {
 logName = EventLog.LogNameFromSourceName(sourceName, “.”);
 }

 EventLog evLog = new EventLog(logName, “.”, sourceName);
 evLog.RegisterDisplayName(resourceFile, 5001);

 Now, you can use the WriteEvent() method instead of WriteEntry() to write the event log entry.
 WriteEvent() requires an object of type EventInstance as parameter. With the EventInstance , you
can assign the message ID, the category, and the severity of type EventLogEntryType . In addition to the
 EventInstance parameter, WriteEvent() accepts parameters for messages that have parameters and
binary data as byte array.

c18.indd 525c18.indd 525 2/19/08 5:14:56 PM2/19/08 5:14:56 PM

Part III: Base Class Libraries

526

 EventLog log = new EventLog(logName, “.”, sourceName);
 EventInstance info1 = new EventInstance(1000, 4,
 EventLogEntryType.Information);

 log.WriteEvent(info1);
 EventInstance info2 = new EventInstance(1001, 4,
 EventLogEntryType.Error);
 log.WriteEvent(info2, “avalon”);

 EventInstance info3 = new EventInstance(1002, 3,
 EventLogEntryType.Error);
 byte[] addionalInfo = { 1, 2, 3 };
 log.WriteEvent(info3, addionalInfo);

 log.Dispose();

 For the message identifiers, it is useful to define a class with const values that provide a more meaning-
ful name for the identifiers in the application.

 You can read the event log entries with the Event Viewer.

 Event Log Listener
 Instead of using the Event Viewer to read event log entries, you can create a custom event log reader that
listens for events of specified types as needed. You can create a reader where important messages pop up
to the screen, or send SMS to a system administrator.

 Next, you write an application that receives an event when a service encounters a problem. Create a
simple Windows application that monitors the events of your Quote service. This Windows application
consists of a list box and an Exit button only, as shown in Figure 18 - 5 .

Figure 18-5

 Add an EventLog component to the design view by dragging and dropping it from the toolbox. Set the
 Log property to Application . You can set the Source property to a specific source to receive event log
entries from only this source, for example the source EventLogDemoApp for receiving the event logs
from the application created previously. If you leave the Source property empty, you will receive

c18.indd 526c18.indd 526 2/19/08 5:14:57 PM2/19/08 5:14:57 PM

Chapter 18: Tracing and Events

527

events from every source. You also need to change the property EnableRaisingEvents . The default
value is false ; setting it to true means that an event is generated each time this event occurs, and you
can add an event handler for the EntryWritten event of the EventLog class. Add a handler with the
name OnEntryWritten() to this event.

 The OnEntryWritten() handler receives an EntryWrittenEventArgs object as argument, from which
you can get the complete information about an event. With the Entry property, an EventLogEntry
object with information about the time, event source, type, category, and so on is returned:

 protected void OnEntryWritten (object sender,
 System.Diagnostics.EntryWrittenEventArgs e)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat(“{0} {1} {2}”,
 e.Entry.TimeGenerated.ToShortTimeString(),
 e.Entry.Source,
 e.Entry.Message);
 listBoxEvents.Items.Add(sb.ToString());
 }

 The running application displays event log information, as shown in Figure 18 - 6 .

 Performance Monitoring
 Performance monitoring can be used to get information about the normal behavior of
applications. Performance monitoring is a great tool that helps you understand the workload of
the system and observe changes and trends, particularly in applications running on the server.

 Microsoft Windows has many performance objects, such as System , Memory , Objects , Process ,
 Processor , Thread , Cache , and so on. Each of these objects has many counts to monitor. For example,
with the Process object, the user time, handle count, page faults, thread count, and so on can be
monitored for all processes or for specific process instances. Some applications, such as SQL Server, also
add application - specific objects.

 For the quote service sample application, it might be interesting to get information about the number of
client requests, the size of the data sent over the wire, and so on.

Figure 18-6

c18.indd 527c18.indd 527 2/19/08 5:14:57 PM2/19/08 5:14:57 PM

Part III: Base Class Libraries

528

 Performance - Monitoring Classes
 The System.Diagnostics namespace provides these classes for performance monitoring:

❑ PerformanceCounter can be used both to monitor counts and to write counts. New
performance categories can also be created with this class.

❑ PerformanceCounterCategory enables you to step through all existing categories as well as
create new ones. You can programmatically get all the counters in a category.

❑ PerformanceCounterInstaller is used for the installation of performance counters. Its use is
similar to that of the EventLogInstaller discussed previously.

 Performance Counter Builder
 The sample application is a simple Windows application with just one button so that you can see how
to write performance counts. In a similar way, you can add performance counters to a Windows
Service (see Chapter 23 , “ Windows Services ”), to a network application (see Chapter 41 , “ Accessing
the Internet ”), or to any other application from which you would like to receive live counts.

 Using Visual Studio, you can create a new performance counter category by selecting the performance
counters in the Server Explorer and by selecting the menu entry Create New Category on the context
menu. This launches the Performance Counter Builder (see Figure 18 - 7).

Figure 18-7

c18.indd 528c18.indd 528 2/19/08 5:14:59 PM2/19/08 5:14:59 PM

Chapter 18: Tracing and Events

529

 Set the name of the performance counter category to Wrox Performance Counters . The following
table shows all performance counters of the quote service.

 Name Description Type

 # of Button clicks Total # of button clicks NumberOfItems32

 # of Button clicks/sec # of button clicks in one second RateOfCountsPerSecond32

 # of Mouse move events Total # of mouse move events NumberOfItems32

 # of Mouse move events/sec # of mouse move events in one
second

 RateOfCountsPerSecond32

 The Performance Counter Builder writes the configuration to the performance database. This can also be
done dynamically by using the Create() method of the PerformanceCounterCategory class in the
 System.Diagnostics namespace. An installer for other systems can easily be added later using
Visual Studio.

 Adding PerformanceCounter Components
 Now you can add PerformanceCounter components from the toolbox. Instead of using the
components from the toolbox category Components, you can directly drag and drop the previously
created performance counters from the Server Explorer to the design view. This way, the instances
are configured automatically; the CategoryName property is set to “ Wrox Performance Counters ” for all
objects, and the CounterName property is set to one of the values available in the selected category.
Because with this application the performance counts will not be read but written, you must set the
 ReadOnly property to false . Also, set the MachineName property to . so that the application writes
performance counts locally.

 Here is a part of the code generated into InitalizeComponent() by adding the PerformanceCounter
components to the Designer and by setting the properties as indicated previously:

 private void InitializeComponent()
 {
 //...

 //
 // performanceCounterButtonClicks
 //
 this.performanceCounterButtonClicks.CategoryName =
 “Wrox Performance Counts”;
 this.performanceCounterButtonClicks.CounterName =
 “# of Button Clicks”;
 this.performanceCounterButtonClicks.ReadOnly = false;
 //
 // performanceCounterButtonClicksPerSec
 //
 this.performanceCounterButtonClicksPerSec.CategoryName =
 “Wrox Performance Counts”;
 this.performanceCounterButtonClicksPerSec.CounterName =
 “# of Button Clicks / sec”;

(continued)

c18.indd 529c18.indd 529 2/19/08 5:14:59 PM2/19/08 5:14:59 PM

Part III: Base Class Libraries

530

 this.performanceCounterButtonClicksPerSec.ReadOnly = false;
 //
 // performanceCounterMouseMoveEvents
 //
 this.performanceCounterMouseMoveEvents.CategoryName =
 “Wrox Performance Counts”;
 this.performanceCounterMouseMoveEvents.CounterName =
 “# of Mouse Move Events”;
 this.performanceCounterMouseMoveEvents.ReadOnly = false;
 //
 // performanceCounterMouseMoveEventsPerSec
 //
 this.performanceCounterMouseMoveEventsPerSec.CategoryName =
 “Wrox Performance Counts”;
 this.performanceCounterMouseMoveEventsPerSec.CounterName =
 “# of Mouse Move Events / sec”;
 this.performanceCounterMouseMoveEventsPerSec.ReadOnly = false;
 //...
 }

 For the calculation of the performance values, you need to add the fields clickCountPerSec and
 mouseMoveCountPerSec to the class Form1 :

 public partial class Form1 : Form
 {
 // Performance monitoring counter values
 private int clickCountPerSec = 0;
 private int mouseMoveCountPerSec = 0;

 Add an event handler to the Click event of the button and an event handler to the MouseMove event to
the form, and add the following code to the handlers:

 private void button1_Click(object sender, EventArgs e)
 {
 performanceCounterButtonClicks.Increment();
 clickCountPerSec++;
 }

 private void OnMouseMove(object sender, MouseEventArgs e)
 {
 performanceCounterMouseMoveEvents.Increment();
 mouseMoveCountPerSec++;
 }

 The Increment() method of the PerformanceCounter object increments the counter by one. If you
need to increment the counter by more than one, for example to add information about a byte count
sent or received, you can use the IncrementBy() method. For the performance counts that show
the value in seconds, just the two variables, clickCountPerSec and mouseMovePerSec , are
incremented.

 To show updated values every second, add a Timer component. Set the OnTimer() method to the
 Elapsed event of this component. The OnTimer() method is called once per second if you set
the Interval property to 1000. In the implementation of this method, set the performance counts by
using the RawValue property of the PerformanceCounter class:

(continued)

c18.indd 530c18.indd 530 2/19/08 5:15:00 PM2/19/08 5:15:00 PM

Chapter 18: Tracing and Events

531

 protected void OnTimer (object sender, System.Timers.ElapsedEventArgs e)
 {
 performanceCounterButtonClicksPerSec.RawValue = clickCountPerSec;
 clickCountPerSec = 0;

 performanceCounterMouseMoveEventsPerSec.RawValue =
 mouseMoveCountPerSec;
 mouseMoveCountPerSec = 0;
 }

 The timer must be started:

 public Form1()
 {
 InitializeComponent();

 this.timer1.Start();
 }

 perfmon.exe
 Now you can monitor the application. You can start the Performance tool by selecting Administrative
Tools Performance with Windows XP or Reliability and Performance Monitor with Windows Vista.
Select the Performance Monitor, and click the + button in the toolbar where you can add performance
counts. The Quote Service shows up as a performance object. All the counters that have been configured
show up in the counter list, as shown in Figure 18 - 8 .

Figure 18-8

c18.indd 531c18.indd 531 2/19/08 5:15:00 PM2/19/08 5:15:00 PM

Part III: Base Class Libraries

532

 Summary
 In this chapter, you have seen tracing and logging facilities that can help you find intermediate problems
in your applications. You should plan early, building these features into your applications. This will help
you avoid many troubleshooting problems later.

 With tracing, you can write debugging messages to an application that can also be used for the final
product delivered. In case there are problems, you can turn tracing on by changing configuration values,
and find the issues.

 Event logging provides information to the system administrator to help find some of the critical issues
with the application. Performance monitoring helps in analyzing the load from applications and in
planning in advance for resources that might be required in the future.

 In the next chapter you learn all about writing multithreaded applications.

Figure 18-9

 After you have added the counters to the performance monitor, you can see the actual values of the
service over time (see Figure 18 - 9). Using this performance tool, you can also create log files to analyze
the performance at a later time.

c18.indd 532c18.indd 532 2/19/08 5:15:00 PM2/19/08 5:15:00 PM

 Threading and
Synchronization

 There are several reasons for using threading. Suppose that you are making a network call from an
application that might take some time. You don ’ t want to stall the user interface and just let the
user wait until the response is returned from the server. The user could do some other actions in
the meantime or even cancel the request that was sent to the server. Using threads can help.

 For all activities that require a wait — for example, because of a file, database, or network access —
a new thread can be started to fulfill other tasks at the same time. Even if you have only
processing - intensive tasks to do, threading can help. Multiple threads of a single process can run
on different CPUs, or, nowadays, on different cores of a multiple - core CPU, at the same time.

 You must be aware of some issues when running multiple threads, however. Because they can run
during the same time, you can easily get into problems if the threads access the same data. You
must implement synchronization mechanisms.

 This chapter provides the foundation you will need when programming applications with
multiple threads, including:

 An overview of threading

 Lightweight threading using delegates

 Thread class

 Thread pools

 Threading issues

 Synchronization techniques

 Timers

 COM apartments

 Event - based asynchronous pattern

❑

❑

❑

❑

❑

❑

❑

❑

❑

c19.indd 533c19.indd 533 2/19/08 5:15:32 PM2/19/08 5:15:32 PM

Part III: Base Class Libraries

534

 Overview
 A thread is an independent stream of instructions in a program. All your C# programs up to this point
have one entry point — the Main() method. Execution starts with the first statement in the Main()
method and continues until that method returns.

 This program structure is all very well for programs, in which there is one identifiable sequence of tasks,
but often a program needs to do more than one thing at the same time. Threads are important both for
client - side and for server - side applications. While you type C# code in the Visual Studio editor, the
Dynamic Help window immediately shows the topics that fit to the code you type. A background thread
is searching through help. The same thing is done by the spell checker in Microsoft Word. One thread is
waiting for input from the user, while the other does some background research. A third thread can store
the written data in an interim file, while another one downloads some additional data from the Internet.

 In an application that is running on the server, one thread, the listener thread, waits for a request from a
client. As soon as the request comes in, the request is forwarded to a separate worker thread, which
continues the communication with the client. The listener thread immediately comes back to get the next
request from the next client.

 With the Windows Task Manager, you can turn on the column Threads from the menu View Select
Columns and see the processes and the number of threads for every process. Only cmd.exe is running
inside a single thread; all the other applications shown in Figure 19 - 1 use multiple threads. You can see
one instance of Internet Explorer running 51 threads.

Figure 19-1

 A process contains resources, such as Window handles, handles to the file system, or other kernel objects.
Every process has virtual memory allocated. A process contains at least one thread. The operating
system schedules threads. A thread has a priority, a program counter for the program location where it
is actually processing, and a stack to store its local variables. Every thread has its own stack, but the
memory for the program code and the heap are shared among all threads of a single process. This makes
communication among threads of one process fast — the same virtual memory is addressed by all
threads of a process. However, this also makes things difficult because multiple threads can change the
same memory location.

c19.indd 534c19.indd 534 2/19/08 5:15:33 PM2/19/08 5:15:33 PM

Chapter 19: Threading and Synchronization

535

 A process manages resources that include virtual memory and Window handles, and contains at least
one thread. A thread is required to run the program.

 With .NET, a managed thread is defined by the Thread class. A managed thread does not necessarily map
to one operating system thread. This can be the case, but it is the work of the .NET runtime host to
map managed threads to the physical threads of the operating system. Here, the runtime host of SQL
Server 2005 behaves very differently from the runtime host for Windows applications. You can get
information about the native thread with the ProcessThread class, but with managed applications,
it is usually just fine to use managed threads.

 Asynchronous Delegates
 A simple way to create a thread is by defining a delegate and invoking the delegate asynchronously. In
Chapter 7 , “ Delegates and Events, ” you saw delegates as type - safe references to methods. The Delegate
class also supports invoking the methods asynchronously. Behind the scenes, the Delegate class creates
a thread that fulfills the task.

 The delegate uses a thread pool for asynchronous tasks. Thread pools are discussed later.

 To demonstrate the asynchronous features of delegates, start with a method that takes a while to
complete. The method TakesAWhile() needs at least the number of milliseconds passed with the
second argument to finish because of the Thread.Sleep() method:

 static int TakesAWhile(int data, int ms)
 {
 Console.WriteLine(“TakesAWhile started”);
 Thread.Sleep(ms);
 Console.WriteLine(“TakesAWhile completed”);
 return ++data;
 }

 To invoke this method from a delegate, a delegate with the same parameter and return types must be
defined, as shown by the delegate TakesAWhileDelegate :

 public delegate int TakesAWhileDelegate(int data, int ms);

 Now you can use different techniques, invoking the delegate asynchronously and having the result
returned.

 Polling
 One technique is to poll and check if the delegate has already finished its work. The created delegate
class provides the method BeginInvoke() , where you can pass the input parameters defined with the
delegate type. BeginInvoke() always has two additional parameters of type AsyncCallback and
 object , which are discussed later. What ’ s important now is the return type of BeginInvoke() :
 IAsyncResult . With IAsyncResult , you can get information about the delegate, and also verify if
the delegate already finished its work, as is done with the IsCompleted property. The main thread
of the program continues the while loop as long as the delegate hasn ’ t completed its work.

 static void Main()
 {
 // synchronous method call
 // TakesAWhile(1, 3000);

 // asynchronous by using a delegate

(continued)

c19.indd 535c19.indd 535 2/19/08 5:15:33 PM2/19/08 5:15:33 PM

Part III: Base Class Libraries

536

 TakesAWhileDelegate d1 = TakesAWhile;

 IAsyncResult ar = d1.BeginInvoke(1, 3000, null, null);
 while (!ar.IsCompleted)
 {
 // doing something else in the main thread
 Console.Write(“.”);
 Thread.Sleep(50);
 }
 int result = d1.EndInvoke(ar);
 Console.WriteLine(“result: {0}”, result);
 }

 When you run the application, you can see the main thread and the thread of the delegate running
concurrently, and the main thread stops looping after the delegate thread completes:

.TakesAWhile started

...TakesAWhile completed
result: 2

 Instead of examining if the delegate is completed, you can also just invoke the EndInvoke() method of
the delegate type after you are finished with the work that can be done by the main thread.
 EndInvoke() itself waits until the delegate has completed its work.

If you don’t wait for the delegate to complete its work and end the main thread be-
fore the delegate is finished, the thread of the delegate will be stopped.

 Wait Handle
 Another way to wait for the result from the asynchronous delegate is by using the wait handle that is
associated with IAsyncResult . You can access the wait handle with the AsyncWaitHandle property.
This property returns an object of type WaitHandle , where you can wait for the delegate thread to finish
its work. The method WaitOne() accepts a timeout with the optional first parameter, where you can
define the maximum time you want to wait; here it is set to 50 milliseconds. If a timeout occurs,
 WaitOne() returns with a false and the while loop continues. If the wait is successful, the while loop
is exited with a break, and the result is received with the delegate EndInvoke() method.

 static void Main()
 {
 TakesAWhileDelegate d1 = TakesAWhile;

 IAsyncResult ar = d1.BeginInvoke(1, 3000, null, null);
 while (true)
 {
 Console.Write(“.”);
 if (ar.AsyncWaitHandle.WaitOne(50, false))
 {
 Console.WriteLine(“Can get the result now”);
 break;
 }
 }

(continued)

c19.indd 536c19.indd 536 2/19/08 5:15:34 PM2/19/08 5:15:34 PM

Chapter 19: Threading and Synchronization

537

 int result = d1.EndInvoke(ar);
 Console.WriteLine(“result: {0}”, result);
 }

 You can read more information about wait handles later in the synchronization section of this chapter.

 Asynchronous Callback
 The third version of waiting for the result from the delegate uses an asynchronous callback. With the
third parameter of BeginInvoke() , you can pass a method that fulfills the requirements of the
 AsyncCallback delegate. The AsyncCallback delegate defines a parameter of IAsnycResult and a
 void return type. Here, the address of the method TakesAWhileCompleted is assigned to the third
parameter that fulfills the requirements of the AsyncCallback delegate. With the last parameter, you
can pass any object for accessing it from the callback method. It is useful to pass the delegate instance
itself, so the callback method can use it to get the result of the asynchronous method.

 Now the method TakesAWhileCompleted() is invoked as soon as the delegate TakesAWhileDelegate
has completed its work. There is no need to wait for a result inside the main thread. However, you may
not end the main thread before the work of the delegate threads is finished unless you don ’ t have a
problem with delegate threads stopping when the main thread ends.

 static void Main()
 {
 TakesAWhileDelegate d1 = TakesAWhile;

 d1.BeginInvoke(1, 3000, TakesAWhileCompleted, d1);
 for (int i = 0; i < 100; i++)
 {
 Console.Write(“.”);
 Thread.Sleep(50);
 }
 }

 The method TakesAWhileCompleted() is defined with the parameter and return type specified by the
 AsyncCallback delegate. The last parameter passed with the BeginInvoke() method can be read
here using ar.AsyncState . With the TakesAWhileDelegate you can invoke the EndInvoke method to
get the result.

 static void TakesAWhileCompleted(IAsyncResult ar)
 {
 if (ar == null) throw new ArgumentNullException(“ar”);

 TakesAWhileDelegate d1 = ar.AsyncState as TakesAWhileDelegate;
 Trace.Assert(d1 != null, “Invalid object type”);

 int result = d1.EndInvoke(ar);
 Console.WriteLine(“result: {0}”, result);
 }

With a callback method, you need to pay attention to the fact that this method is
 invoked from the thread of the delegate and not from the main thread.

c19.indd 537c19.indd 537 2/19/08 5:15:34 PM2/19/08 5:15:34 PM

Part III: Base Class Libraries

538

 Instead of defining a separate method and passing it to the BeginInvoke() method, Lambda
expressions can be used. The parameter ar is of type IAsyncResult . With the implementation, there is
no need to assign a value to the last parameter of the BeginInvoke() method because the Lambda
expression can directly access variable d1 that is in the outer scope. However, the implementation block
of the Lambda expression is still invoked from the thread of the delegate, which might not be clear
immediately when defining the method this way.

 static void Main()
 {
 TakesAWhileDelegate d1 = TakesAWhile;

 d1.BeginInvoke(1, 3000,
 ar = >
 {
 int result = d1.EndInvoke(ar);
 Console.WriteLine(“result: {0}”, result);
 },
 null);
 for (int i = 0; i < 100; i++)
 {
 Console.Write(“.”);
 Thread.Sleep(50);
 }
 }

 You should use Lambda expressions only if the code within is not too big, and the implementation is not
required in different places. In such cases, defining a separate method is preferred. Lambda expressions
are explained in Chapter 7 , “ Delegates and Events. ”

 The programming model and all of these options with asynchronous delegates — polling, wait handles,
and asynchronous callbacks — are not only available with delegates. The same programming model —
 this is the asynchronous pattern — can be found in various places in the .NET Framework. For example,
you can send an HTTP Web request asynchronously with the BeginGetResponse() method of the
 HttpWebRequest class. You can send an asynchronous request to the database with the
 BeginExecuteReader() of the SqlCommand class. The parameters are similar to those of the
 BeginInvoke() class of the delegate, and you can use the same mechanisms to get the result.

 HttpWebRequest is covered in Chapter 41 , “ Accessing the Internet, ” and SqlCommand is discussed
in Chapter 26 , “ Data Access. ”

 Instead of using the delegate for creating threads, you can create threads with the Thread class, which is
covered in the next section.

 The Thread Class
 With the Thread class you can create and control threads. The code here is a very simple example of
creating and starting a new thread. The constructor of the Thread class accepts a delegate parameter
of type ThreadStart and ParameterizedThreadStart . The ThreadStart delegate defines a method
with a void return type and without arguments. After the Thread object is created, you can start the
thread with the Start() method:

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading

c19.indd 538c19.indd 538 2/19/08 5:15:34 PM2/19/08 5:15:34 PM

Chapter 19: Threading and Synchronization

539

{
 class Program
 {
 static void Main()
 {
 Thread t1 = new Thread(ThreadMain);
 t1.Start();
 Console.WriteLine(“This is the main thread.”);
 }

 static void ThreadMain()
 {
 Console.WriteLine(“Running in a thread.”);
 }
 }
}

 When you run the application, you get the output of the two threads:

This is the main thread.
Running in a thread.

 There is no guarantee as to what output comes first. Threads are scheduled by the operating system;
which thread comes first can be different each time.

 You have seen how a Lambda expression can be used with an asynchronous delegate. You can use it
with the Thread class as well by passing the implementation of the thread method to the argument of
the Thread constructor:

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 Thread t1 = new Thread(() = > Console.WriteLine(
 “running in a thread”));
 t1.Start();
 Console.WriteLine(“This is the main thread.”);
 }
 }
}

 If you don ’ t need a variable referencing the thread to control the thread object after it was created, you
can also write the code in a shorter way. Create a new Thread object with the constructor, pass a Lambda
expression to the constructor, and with the Thread object returned, invoke the Start() method directly:

using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program

(continued)

c19.indd 539c19.indd 539 2/19/08 5:15:35 PM2/19/08 5:15:35 PM

Part III: Base Class Libraries

540

 {
 static void Main()
 {
 new Thread(() = > Console.WriteLine(“running in a thread”)).Start();
 Console.WriteLine(“This is the main thread.”);
 }
 }
}

 There are some good reasons for having a variable to reference the Thread object. One example, for
better control of the threads, is that you can assign a name to the thread by setting the Name property
before starting the thread. To get the name of the current thread, you can use the static property
 Thread.CurrentThread to get to the Thread instance of the current thread and access the Name
property for read access. The thread also has a managed thread ID that you can read with the property
 ManagedThreadId .

 static void Main()
 {
 Thread t1 = new Thread(ThreadMain);
 t1.Name = “MyNewThread1”;
 t1.Start();
 Console.WriteLine(“This is the main thread.”);
 }

 static void ThreadMain()
 {
 Console.WriteLine(“Running in the thread {0}, id: {1}.”,
 Thread.CurrentThread.Name,
 Thread.CurrentThread.ManagedThreadId);
 }

 With the output of the application, now you can also see the thread name and ID:

This is the main thread.
Running in the thread MyNewThread1, id: 3.

Assigning a name to the thread helps a lot with debugging threads. During your
 debugging session with Visual Studio, you can turn on the Debug Location toolbar
that shows the name of the thread.

 Passing Data to Threads
 There are two ways to pass some data to a thread. You can either use the Thread constructor with the
 ParameterizedThreadStart delegate, or you can create a custom class and define the method of the
thread as an instance method so that you can initialize data of the instance before starting the thread.

 For passing data to a thread, any class or struct that holds the data is needed. Here, the struct Data
containing a string is defined, but you can pass any object you want:

 public struct Data
 {
 public string Message;
 }

(continued)

c19.indd 540c19.indd 540 2/19/08 5:15:35 PM2/19/08 5:15:35 PM

Chapter 19: Threading and Synchronization

541

 If the ParameterizedThreadStart delegate is used, the entry point of the thread must have a
parameter of type object and a void return type. The object can be cast to what it is, and here the message
is written to the console:

 static void ThreadMainWithParameters(object o)
 {
 Data d = (Data)o;
 Console.WriteLine(“Running in a thread, received {0}”, d.Message);
 }

 With the constructor of the Thread class, you can assign the new entry point
 ThreadMainWithParameters and invoke the Start() method passing the variable d :

 static void Main()
 {
 Data d = new Data();
 d.Message = “Info”;
 Thread t2 = new Thread(ThreadMainWithParameters);
 t2.Start(d);
 }

 Another way to pass data to the new thread is to define a class (see the class MyThread), where you
define the fields that are needed as well as the main method of the thread as an instance method of the
class:

 public class MyThread
 {
 private string data;

 public MyThread(string data)
 {
 this.data = data;
 }

 public void ThreadMain()
 {
 Console.WriteLine(“Running in a thread, data: {0}”, data);
 }
 }

 This way, you can create an object of MyThread , and pass the object and the method ThreadMain() to
the constructor of the Thread class. The thread can access the data.

 MyThread obj = new MyThread(“info”);
 Thread t3 = new Thread(obj.ThreadMain);
 t3.Start();

 Background Threads
 The process of the application keeps running as long as at least one foreground thread is running. If
more than one foreground thread is running and the Main() method ends, the process of the application
keeps active until all foreground threads finish their work.

 A thread you create with the Thread class, by default, is a foreground thread. Thread pool threads are
always background threads.

 When you create a thread with the Thread class, you can define whether it should be a foreground or
background thread by setting the property IsBackground . The Main() method sets the IsBackground

c19.indd 541c19.indd 541 2/19/08 5:15:35 PM2/19/08 5:15:35 PM

Part III: Base Class Libraries

542

property of the thread t1 to false (which is the default). After starting the new thread, the main thread
just writes to the console an end message. The new thread writes a start and an end message, and in
between it sleeps for 3 seconds. The 3 seconds provide a good chance for the main thread to finish before
the new thread completes its work.

 class Program
 {
 static void Main()
 {
 Thread t1 = new Thread(ThreadMain);
 t1.Name = “MyNewThread1”;
 t1.IsBackground = false;
 t1.Start();
 Console.WriteLine(“Main thread ending now...”);
 }

 static void ThreadMain()
 {
 Console.WriteLine(“Thread {0} started”, Thread.CurrentThread.Name);
 Thread.Sleep(3000);
 Console.WriteLine(“Thread {0} completed”, Thread.CurrentThread.Name);
 }
 }

 When you start the application, you will still see the completion message written to the console,
although the main thread completed its work earlier. The reason is that the new thread is a foreground
thread as well.

Main thread ending now...
Thread MyNewThread1 started
Thread MyNewThread1 completed

 If you change the IsBackground property to start the new thread to true , the result shown at the
console is different. You can have the same result as shown here — the start message of the new thread is
shown but never the end message. You might not see the start message either, if the thread was
prematurely ended before it had a chance to kick off.

Main thread ending now...
Thread MyNewThread1 started

 Background threads are very useful for background tasks. For example, when you close the Word
application, it doesn ’ t make sense for the spell checker to keep its process running. The spell checker
thread can be killed when the application is closed. However, the thread organizing the Outlook
message store should remain active until it is finished even if Outlook is closed.

 Thread Priority
 You have learned that the operating system schedules threads. You have had a chance to influence the
scheduling by assigning a priority to the thread.

 Before changing the priority, you must understand the thread scheduler. The operating system schedules
threads based on a priority, and the thread with the highest priority is scheduled to run in the CPU.
A thread stops running and gives up the CPU if it waits for a resource. There are several reasons why a
thread must wait; for example, in response to a sleep instruction, while waiting for disk I/O to complete,
while waiting for a network packet to arrive, and so on. If the thread does not give up the CPU on its
own, it is preempted by the thread scheduler. If a thread does have a time quantum , it can use the CPU

c19.indd 542c19.indd 542 2/19/08 5:15:35 PM2/19/08 5:15:35 PM

Chapter 19: Threading and Synchronization

543

continuously. If there are multiple threads running with the same priority waiting to get the CPU, the
thread scheduler uses a round - robin scheduling principle to give the CPU to one thread after the other. If
a thread is preempted, it goes last to the queue.

 The time quantum and round - robin principles are used only if multiple threads are running at the same
priority. The priority is dynamic. If a thread is CPU - intensive (requires the CPU continuously without
waiting for resources), the priority is lowered to the level of the base priority that is defined with the
thread. If a thread is waiting for a resource, the thread gets a priority boost and the priority is increased.
Because of the boost, there is a good chance that the thread gets the CPU the next time that the wait ends.

 With the Thread class, you can influence the base priority of the thread by setting the Priority
property. The Priority property requires a value that is defined by the ThreadPriority enumeration.
The levels defined are Highest , AboveNormal , Normal , BelowNormal , and Lowest .

 Be careful when giving a thread a higher priority, because this may decrease the chance for other threads
to run. You can change the priority for a short time if needed.

 Controlling Threads
 The thread is created by invoking the Start() method of a Thread object. However, after invoking the
 Start() method, the new thread is still not in the Running state, but in the Unstarted state instead.
The thread changes to the Running state as soon as the operating system thread scheduler selects the
thread to run. You can read the current state of a thread by reading the property Thread.ThreadState .

 With the Thread.Sleep() method, a thread goes into the WaitSleepJoin state and waits until it is
woken up again after the time span defined with the Sleep() method has elapsed.

 To stop another thread, you can invoke the method Thread.Abort() . When this method is called, an
exception of type ThreadAbortException is thrown in the thread that receives the abort. With a
handler to catch this exception, the thread can do some cleanup before it ends. The thread also has a
chance to continue running after receiving the ThreadAbortException as a result of invoking
 Thread.ResetAbort() . The state of the thread receiving the abort request changes from
 AbortRequested to the Aborted state if the thread does not reset the abort.

 If you need to wait for a thread to end, you can invoke the Thread.Join() method. Thread.Join()
blocks the current thread and sets it to the WaitSleepJoin state until the thread that is joined is
completed.

 .NET 1.0 also supported Thread.Suspend() and Thread.Resume() methods to pause and continue a
thread, respectively. However, you don ’ t know what the thread is doing when it gets the Suspend
request, and the thread might be in a synchronized section holding locks. This can easily result in
deadlocks. That ’ s why these methods are now obsolete. Instead, you can signal a thread, using
synchronization objects, so it can suspend itself. This way, the thread knows best when to go into a
waiting state.

 Thread Pools
 Creating threads takes time. When you have different short tasks to do, you can create a number of
threads in advance and send requests as they should be done. It would be nice if this number increased
as more threads were needed and decreased as needed to release resources.

 There is no need to create such a list on your own. The list is managed by the ThreadPool class.
This class increases and decreases the number of threads in the pool as they are needed, up to the
maximum number of threads. The maximum number of threads in a pool is configurable. With a dual -
 core CPU, the default number is set to 50 worker threads and 1,000 I/O threads. You can specify

c19.indd 543c19.indd 543 2/19/08 5:15:36 PM2/19/08 5:15:36 PM

Part III: Base Class Libraries

544

the minimum number of threads that should be started immediately when the pool is created and the
maximum number of threads that are available in the pool. If there are more jobs to process, and
the maximum number of threads in the pool has already been reached, the newest jobs are queued and
must wait for a thread to complete its work.

 The sample application first reads the maximum number of worker and I/O threads and writes this
information to the console. Then in a for loop, the method JobForAThread() is assigned to a thread
from the thread pool by invoking the method ThreadPool.QueueUserWorkItem() and passing a
delegate of type WaitCallback . The thread pool receives this request and selects one of the threads
from the pool to invoke the method. If the pool is not already running, the pool is created and the first
thread is started. If the pool is already running and one thread is free to do the task, the job is forwarded
to this thread.

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 int nWorkerThreads;
 int nCompletionPortThreads;
 ThreadPool.GetMaxThreads(out nWorkerThreads,
 out nCompletionPortThreads);
 Console.WriteLine(“Max worker threads: {0}, “ +
 “I/O completion threads: {1}”,
 nWorkerThreads, nCompletionPortThreads);

 for (int i = 0; i < 5; i++)
 {
 ThreadPool.QueueUserWorkItem(JobForAThread);
 }
 Thread.Sleep(3000);
 }

 static void JobForAThread(object state)
 {
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine(“loop {0}, running inside pooled thread {1}”,
 i, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(50);
 }
 }
 }
}

 When you run the application, you can see that 50 worker threads are possible with the current settings.
The five jobs are processed by just two pooled threads. Your experience may be different, and you can
also change the sleep time with the job and the number of jobs to process to get very different results.

c19.indd 544c19.indd 544 2/19/08 5:15:36 PM2/19/08 5:15:36 PM

Chapter 19: Threading and Synchronization

545

Max worker threads: 50, I/O completion threads: 1000
loop 0, running inside pooled thread 4
loop 0, running inside pooled thread 3
loop 1, running inside pooled thread 4
loop 1, running inside pooled thread 3
loop 2, running inside pooled thread 4
loop 2, running inside pooled thread 3
loop 0, running inside pooled thread 4
loop 0, running inside pooled thread 3
loop 1, running inside pooled thread 4
loop 1, running inside pooled thread 3
loop 2, running inside pooled thread 4
loop 2, running inside pooled thread 3
loop 0, running inside pooled thread 4
loop 1, running inside pooled thread 4
loop 2, running inside pooled thread 4

 Thread pools are very easy to use. However, there are some restrictions:

 All thread pool threads are background threads. If all foreground threads of a process are
finished, all background threads are stopped. You cannot change a pooled thread to a
foreground thread.

 You cannot set the priority or name of a pooled thread.

 For COM objects, all pooled threads are multithreaded apartment (MTA) threads. Many COM
objects require a single - threaded apartment (STA) thread.

 Use pooled threads only for a short task. If a thread should run all the time (for example, the
spell - checker thread of Word), create a thread with the Thread class.

 Threading Issues
 Programming with multiple threads is not easy. When starting multiple threads that access the same
data, you can get intermittent problems that are hard to find. To avoid getting into trouble, you must pay
attention to synchronization issues and the problems that can happen with multiple threads. We discuss
two in particular next: race conditions and deadlocks.

 Race Condition
 A race condition can occur if two or more threads access the same objects and access to the shared state is
not synchronized.

 To demonstrate a race condition, the class StateObject with an int field and the method ChangeState
are defined. In the implementation of ChangeState , the state variable is verified if it contains 5; if it
does, the value is incremented. Trace.Assert is the next statement that immediately verifies that state
now contains the value 6. After incrementing a variable by 1 that contains the value 5, you might expect
that the variable now has the value 6. But this is not necessarily the case. For example, if one thread has
just completed the if (state == 5) statement, it might be preempted, and the scheduler will run
another thread. The second thread now goes into the if body and, because the state still has the value 5,
the state is incremented by 1 to 6. The first thread is now scheduled again, and in the next statement the
state is incremented to 7. This is when the race condition occurs and the assert message is shown.

❑

❑

❑

❑

c19.indd 545c19.indd 545 2/19/08 5:15:36 PM2/19/08 5:15:36 PM

Part III: Base Class Libraries

546

 public class StateObject
 {
 private int state = 5;

 public void ChangeState(int loop)
 {
 if (state == 5)
 {
 state++;
 Trace.Assert(state == 6, “Race condition occurred after “ +
 loop + “ loops”);
 }
 state = 5;
 }
 }

 Let ’ s verify this by defining a thread method. The method RaceCondition() of the class
 SampleThread gets a StateObject as a parameter. Inside an endless while loop, the ChangeState()
method is invoked. The variable i is used just to show the loop number in the assert message:

 public class SampleThread
 {
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject, “o must be of type StateObject”);
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 state.ChangeState(i++);
 }
 }
 }

 In the Main() method of the program, a new StateObject is created that is shared between all the
threads. Thread objects are created by passing the address of RaceCondition with an object of type
 SampleThread in the constructor of the Thread class. The thread is then started with the Start()
method, passing the state object.

 static void Main()
 {
 StateObject state = new StateObject();
 for (int i = 0; i < 20; i++)
 {
 new Thread(new SampleThread().RaceCondition).Start(state);
 }
 }

 When you start the program, you will get race conditions. How long it takes until the first race condition
happens depends on your system and whether you build the program as a release or debug build. With
a release build, the problem will happen more often because the code is optimized. If you have multiple
CPUs in your system or dual - core CPUs where multiple threads can run concurrently, the problem will
also occur more often than with a single - core CPU. The problem will occur with a single - core CPU
because thread scheduling is preemptive, but not that often.

c19.indd 546c19.indd 546 2/19/08 5:15:37 PM2/19/08 5:15:37 PM

Chapter 19: Threading and Synchronization

547

 Figure 19 - 2 shows an assert of the program where the race condition occurred after 3,816 loops. You can
start the application multiple times, and you will always get different results.

Figure 19-2

 You can avoid the problem by locking the shared object. You can do this inside the thread by locking
variable state that is shared between the threads with the lock statement as shown. Only one thread can
be inside the lock block for the state object. Because this object is shared between all threads, a thread
must wait at the lock if another thread has the lock for state. As soon as the lock is accepted, the thread
owns the lock and gives it up with the end of the lock block. If every thread changing the object
referenced with the state variable is using a lock, the race condition no longer occurs.

 public class SampleThread
 {
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject, “o must be of type StateObject”);
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 lock (state) // no race condition with this lock
 {
 state.ChangeState(i++);
 }
 }
 }
 }

 Instead of doing the lock when using the shared object, you can make the shared object thread - safe.
Here, the ChangeState() method contains a lock statement. Because you cannot lock the state
variable itself (only reference types can be used for a lock), the variable sync of type object is defined
and used with the lock statement. If a lock is done using the same synchronization object every time the
value state is changed, race conditions no longer happen.

c19.indd 547c19.indd 547 2/19/08 5:15:37 PM2/19/08 5:15:37 PM

Part III: Base Class Libraries

548

 public class StateObject
 {
 private int state = 5;
 private object sync = new object();

 public void ChangeState(int loop)
 {
 lock (sync)
 {
 if (state == 5)
 {
 state++;
 Trace.Assert(state == 6, “Race condition occurred after “ +
 loop + “ loops”);
 }
 state = 5;
 }
 }
 }

 Deadlock
 Too much locking can get you in trouble as well. In a deadlock, at least two threads halt and wait for
each other to release a lock. As both threads wait for each other, a deadlock occurs and the threads wait
endlessly.

 To demonstrate deadlocks, two objects of type StateObject are instantiated and passed with the
constructor of the SampleThread class. Two threads are created: one thread running the method
 Deadlock1() and the other thread running the method Deadlock2() :

 StateObject state1 = new StateObject();
 StateObject state2 = new StateObject();
 new Thread(new SampleThread(state1, state2).Deadlock1).Start();
 new Thread(new SampleThread(state1, state2).Deadlock2).Start();

 The methods Deadlock1() and Deadlock2() now change the state of two objects s1 and s2 . That ’ s
why two locks are done. The method Deadlock1() first does a lock for s1 and next for s2 . The method
 Deadlock2() first does a lock for s2 and then for s1 . Now it may happen from time to time that the
lock for s1 in Deadlock1() is resolved. Next, a thread switch occurs, and Deadlock2() starts to run
and gets the lock for s2 . The second thread now waits for the lock of s1 . Because it needs to wait, the
thread scheduler schedules the first thread again, which now waits for s2 . Both threads now wait and
don ’ t release the lock as long as the lock block is not ended. This is a typical deadlock.

 public class SampleThread
 {
 public SampleThread(StateObject s1, StateObject s2)
 {
 this.s1 = s1;
 this.s2 = s2;
 }

 private StateObject s1;
 private StateObject s2;

c19.indd 548c19.indd 548 2/19/08 5:15:37 PM2/19/08 5:15:37 PM

Chapter 19: Threading and Synchronization

549

 public void Deadlock1()
 {
 int i = 0;
 while (true)
 {
 lock (s1)
 {
 lock (s2)
 {
 s1.ChangeState(i);
 s2.ChangeState(i++);
 Console.WriteLine(“still running, {0}”, i);
 }
 }
 }
 }

 public void Deadlock2()
 {
 int i = 0;
 while (true)
 {
 lock (s2)
 {
 lock (s1)
 {
 s1.ChangeState(i);
 s2.ChangeState(i++);
 Console.WriteLine(“still running, {0}”, i);
 }
 }
 }
 }
 }

 As a result, the program will run a number of loops and will soon be unresponsive. The message still
running is just written a few times to the console. Again, how soon the problem happens depends on
your system configuration. And the result will differ from time to time.

 The problem of deadlocks is not always as obvious as it is here. One thread locks s1 and then s2 ; the
other thread locks s2 and then s1 . You just need to change the order so that both threads do the lock in
the same order. However, the locks might be hidden deeply inside a method. You can prevent this
problem by designing a good lock order from the beginning in the architecture of the application, and
also by defining timeouts for the locks, which we show in the next section.

 Synchronization
 It is best to avoid synchronization issues by not sharing data between threads. Of course, this is not
always possible. If data sharing is necessary, you must use synchronization techniques so that only one
thread at a time accesses and changes shared state. Remember the synchronization issues with race
conditions and deadlocks. If you don ’ t pay attention to these issues, the reason for problems in
applications is hard to find because threading issues occur just from time to time.

c19.indd 549c19.indd 549 2/19/08 5:15:38 PM2/19/08 5:15:38 PM

Part III: Base Class Libraries

550

 This section discusses synchronization technologies that you can use with multiple threads:

 lock statement

 Interlocked class

 Monitor class

 Wait handles

 Mutex

 Semaphore

 Events

 ReaderWriterLockSlim

 lock , Interlocked , and Monitor can be used for synchronization within a process. The classes Mutex ,
 Event , Semaphore , and ReaderWriterLockSlim also offer synchronization between threads of
multiple processes.

 lock Statement and Thread Safety
 C# has its own keyword for the synchronization of multiple threads: the lock statement. The lock
statement is an easy way to hold for a lock and release it.

 Before adding lock statements, let ’ s go into another race condition. The class SharedState just
demonstrates using shared state between threads, and keeps an integer value:

 public class SharedState
 {
 public int State { get; set; }
 }

 The class Task contains the method DoTheTask() , which is the entry point for a new thread. With the
implementation, the State of SharedState is incremented 50,000 times. The variable sharedState is
initialized in the constructor of this class.

 public class Task
 {
 SharedState sharedState;
 public Task(SharedState sharedState)
 {
 this.sharedState = sharedState;
 }
 public void DoTheTask()
 {
 for (int i = 0; i < 50000; i++)
 {
 sharedState.State += 1;
 }
 }
 }

 In the Main() method, a SharedState object is created and passed to the constructor of 20 Thread
objects. All threads are started. After starting the threads, the Main() method does another loop to join
every one of the 20 threads to wait until all threads are completed. After the threads are completed, the
summarized value of the shared state is written to the console. Having 50,000 loops and 20 threads, a
value of 1,000,000 could be expected. Often, however, this is not the case.

❑

❑

❑

❑

❑

❑

❑

❑

c19.indd 550c19.indd 550 2/19/08 5:15:38 PM2/19/08 5:15:38 PM

Chapter 19: Threading and Synchronization

551

 class Program
 {
 static void Main()
 {
 int numThreads = 20;
 SharedState state = new SharedState();
 Thread[] threads = new Thread[numThreads];

 for (int i = 0; i < numThreads; i++)
 {
 threads[i] = new Thread(new Task(state).DoTheTask);
 threads[i].Start();
 }

 for (int i = 0; i < numThreads; i++)
 {
 threads[i].Join();
 }
 Console.WriteLine(“summarized {0}”, state.State);
 }
 }
}

 Results received from multiple runs of the application are as shown here:

summarized 939270
summarized 993799
summarized 998304
summarized 937630

 The behavior is different every time, but none of the results is correct. You get big differences between
debug and release builds, and on the types of CPUs you are using. If you change the loop count for
smaller values, you will get correct values many times — but not every time. The application is small
enough to see the problem easily; the reason for such a problem can be hard to find in a large
application.

 You must add synchronization to this program. This can be done with the lock keyword.

 The object defined with the lock statement means you wait to get the lock for the specified object. You
can pass only a reference type. Locking a value type would just lock a copy, and this wouldn ’ t make any
sense. Anyway, the C# compiler provides an error if value types are used with the lock statement. As
soon as the lock is granted — only one thread gets the lock — the block of the lock statement can run.
At the end of the lock statement block, the lock for the object is released, and another thread waiting for
the lock can be granted.

lock (obj)
{
 // synchronized region
}

 To lock static members, you can place the lock on the type object:

lock (typeof(StaticClass))
{
}

 You can make the instance members of a class thread - safe by using the lock keyword. This way, only
one thread at a time can access the methods DoThis() and DoThat() for the same instance.

c19.indd 551c19.indd 551 2/19/08 5:15:38 PM2/19/08 5:15:38 PM

Part III: Base Class Libraries

552

public class Demo
{
 public void DoThis()
 {
 lock (this)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }
 public void DoThat()
 {
 lock (this)
 {
 }
 }
}

 However, because the object of the instance can also be used for synchronized access from the outside,
and you can ’ t control this from the class itself, you can apply the SyncRoot pattern. With the SyncRoot
pattern, a private object named syncRoot is created, and this object is used with the lock statements:

public class Demo
{
 private object syncRoot = new object();

 public void DoThis()
 {
 lock (syncRoot)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }
 public void DoThat()
 {
 lock (syncRoot)
 {
 }
 }
}

 Using locks costs time and is not always needed. You can create two versions of a class: a synchronized
and a nonsynchronized version. This is demonstrated here by changing the class Demo . The class Demo
itself is not synchronized, as you can see in the implementation of the DoThis() and DoThat()
methods. The class also defines the IsSynchronized property, where the client can get information
about the synchronization option of the class. To make a synchronized variant of the class, the static
method Synchronized() can be used to pass a nonsynchronized object, and this method returns an
object of type SynchronizedDemo . SynchronizedDemo is implemented as an inner class that is derived
from the base class Demo and overrides the virtual members of the base class. The overridden members
make use of the SyncRoot pattern.

public class Demo
{
 private class SynchronizedDemo : Demo
 {
 private object syncRoot = new object();
 private Demo d;

c19.indd 552c19.indd 552 2/19/08 5:15:39 PM2/19/08 5:15:39 PM

Chapter 19: Threading and Synchronization

553

 public SynchronizedDemo(Demo d)
 {
 this.d = d;
 }

 public override bool IsSynchronized
 {
 get { return true; }
 }

 public override void DoThis()
 {
 lock (syncRoot)
 {
 d.DoThis();
 }
 }

 public override void DoThat()
 {
 lock (syncRoot)
 {
 d.DoThat();
 }
 }
 }

 public virtual bool IsSynchronized
 {
 get { return false; }
 }

 public static Demo Synchronized(Demo d)
 {
 if (!d.IsSynchronized)
 {
 return new SynchronizedDemo(d);
 }
 return d;
 }

 public virtual void DoThis()
 {
 }

 public virtual void DoThat()
 {
 }
}

 You must bear in mind that when using the SynchronizedDemo class, only methods are synchronized.
There is no synchronization for invoking two members of this class.

c19.indd 553c19.indd 553 2/19/08 5:15:39 PM2/19/08 5:15:39 PM

Part III: Base Class Libraries

554

The SyncRoot pattern might lead to a false sense of thread safety. The .NET 1.0
collection classes implement the SyncRoot pattern; the .NET 2.0 generic collection
classes don’t implement this pattern anymore.

 Let ’ s compare this with the example shown earlier. If you try to make the SharedState class thread -
 safe by locking access to the properties with the SyncRoot pattern, you still get the race condition
shown earlier.

 public class SharedState
 {
 private int state = 0;
 private object syncRoot = new object();

 public int State // there’s still a race condition,
 // don’t do this!
 {
 get { lock (syncRoot) {return state; }}
 set { lock (syncRoot) {state = value; }}
 }
 }

 The thread invoking the DoTheTask method is accessing the get accessor of the SharedState class
to get the current value of the state, and then the get accessor sets the new value for the state. In
between calling the get and the set accessor the object is not locked, and another thread can be the
interim value.

 public void DoTheTask()
 {
 for (int i = 0; i < 50000; i++)
 {
 sharedState.State += 1;
 }
 }

 So, it is better to leave the SharedState class as it was earlier without thread safety:

 public class SharedState
 {
 public int State { get; set; }
 }

and to add the lock statement where it belongs, inside the method DoTheTask() :

 public void DoTheTask()
 {
 for (int i = 0; i < 50000; i++)
 {
 lock (sharedState)
 {
 sharedState.State += 1;
 }
 }
 }

c19.indd 554c19.indd 554 2/19/08 5:15:39 PM2/19/08 5:15:39 PM

Chapter 19: Threading and Synchronization

555

 This way, the results of the application are always as expected:

summarized 1000000

Using the lock statement in one place does not mean that all other threads accessing
the object are waiting. You have to explicitly use synchronization with every thread
accessing the shared state.

 Of course, you can also change the design of the SharedState class and offer increment as an atomic
operation. This is a design question — what should be an atomic functionality of the class?

 public class SharedState
 {
 private int state = 0;
 private object syncRoot = new object();

 public int State
 {
 get { return state; }
 }

 public int IncrementState()
 {
 lock (syncRoot)
 {
 return ++state;
 }
 }
 }

 There is, however, a faster way to lock the increment of the state, as shown next.

 Interlocked
 The Interlocked class is used to make simple statements for variables atomic. i++ is not thread - safe.
 i++ consists of getting a value from the memory, incrementing the value by 1, and storing the value back
into memory. These operations can be interrupted by the thread scheduler. The Interlocked class
provides methods for incrementing, decrementing, and exchanging values in a thread - safe manner.

 The methods provided by the Interlocked class are described in the following table.

 Interlocked Member Description

 Increment() The Increment() method increments a variable and stores the result in
an atomic operation.

 Decrement() Decrement() decrements a variable and stores the result.

 Exchange() Exchange() sets a variable to the specified value and returns the original
value of the variable.

c19.indd 555c19.indd 555 2/19/08 5:15:39 PM2/19/08 5:15:39 PM

Part III: Base Class Libraries

556

 Interlocked Member Description

 CompareExchange() CompareExchange() compares two variables for equality, and if they are
the same, the specified value is set and the original value returned.

 Add() The Add() method adds two values and replaces the first variable with
the result.

 Read() The Read() method is used to read 64 - bit values from memory in an
atomic operation. On a 32 - bit system, reading 64 bits is not atomic; here,
values from two memory addresses are read.

On a 64 - bit system, the Read() method is not required because accessing
64 bit values is an atomic operation.

 Using the Interlocked class in contrast to other synchronization techniques is much faster. However,
you can use it only for simple synchronization issues.

 For example, instead of using the lock statement to lock access to the variable someState when setting
it to a new value, in case it is null, you can use the Interlocked class, which is faster:

 lock (this)
 {
 if (someState == null)
 {
 someState = newState;
 }
 }

 The faster version with the same functionality uses the Interlocked.CompareExchange() method:

 Interlocked.CompareExchange < SomeState > (ref someState, newState,
 null);

 And instead of doing an increment inside a lock statement:

 public int State
 {
 get
 {
 lock (this)
 {
 return ++state;
 }
 }
 }

 Interlocked.Increment() is faster:

 public int State
 {
 get
 {
 return Interlocked.Increment(ref state);
 }
 }

c19.indd 556c19.indd 556 2/19/08 5:15:40 PM2/19/08 5:15:40 PM

Chapter 19: Threading and Synchronization

557

 Monitor
 The C# compiler resolves the lock statement to use the Monitor class. The following lock statement

lock (obj)
{
 // synchronized region for obj
}

is resolved to invoking the Enter() method that waits until the thread gets the lock of the object. Only
one thread at a time may be the owner of the object lock. As soon as the lock is resolved, the thread can
enter the synchronized section. The Exit() method of the Monitor class releases the lock. The compiler
puts the Exit() method into a finally handler of a try block so that the lock is also released if an
exception is thrown.

 try / finally is covered in Chapter 14 , “ Errors and Exceptions. ”

Monitor.Enter(obj);
try
{
 // synchronized region for obj
}
finally
{
 Monitor.Exit(obj);
}

 The class Monitor has a big advantage compared to the lock statement of C#: you can add a timeout
value waiting to get the lock. So instead of endlessly waiting to get the lock, you can use the
 TryEnter() method, where you can pass a timeout value that defines the maximum amount of time
waiting to get the lock. If the lock for obj is acquired, TryEnter() returns true and performs
synchronized access to the state guarded by the object obj . If obj is locked for more than 500
milliseconds by another thread, TryEnter() returns false , and the thread does not wait any longer but
is used to do something else. Maybe at a later time, the thread can try to acquire the lock once more.

 if (Monitor.TryEnter(obj, 500))
 {
 try
 {
 // acquired the lock
 // synchronized region for obj
 }
 finally
 {
 Monitor.Exit(obj);
 }

 }
 else
 {
 // didn’t get the lock, do something else
 }

 Wait Handle
 WaitHandle is an abstract base class that you can use to wait for a signal to be set. There are different
things you can wait for, because WaitHandle is a base class and some classes are derived from it.

c19.indd 557c19.indd 557 2/19/08 5:15:40 PM2/19/08 5:15:40 PM

Part III: Base Class Libraries

558

 In the use of asynchronous delegates early in this chapter, the WaitHandle was already in use. The
method BeginInvoke() of the asynchronous delegate returns an object that implements the interface
 IAsyncResult . Using IAsyncResult , you can access a WaitHandle with the property
 AsyncWaitHandle . When you invoke the method WaitOne() , the thread waits until a signal is
received that is associated with the wait handle.

 static void Main()
 {
 TakesAWhileDelegate d1 = TakesAWhile;

 IAsyncResult ar = d1.BeginInvoke(1, 3000, null, null);
 while (true)
 {
 Console.Write(“.”);
 if (ar.AsyncWaitHandle.WaitOne(50, false))
 {
 Console.WriteLine(“Can get the result now”);
 break;
 }
 }
 int result = d1.EndInvoke(ar);
 Console.WriteLine(“result: {0}”, result);
 }

 The methods that are defined by the class WaitHandle to perform a wait are described in the
following table.

 WaitHandle Member Description

 WaitOne() WaitOne() is an instance method where you can wait for a signal to
occur. Optionally, you can specify a timeout value for the maximum
amount of time to wait.

 WaitAll() WaitAll() is a static method used to pass an array of WaitHandle
objects and wait until all of these handles are signaled.

 WaitAny() WaitAny() is a static method used to pass an array of WaitHandle
objects and to wait until one of these handles is signaled. This method
returns the index of the wait handle object that was signaled, so you
know with what functionality you can continue in the program. If the
timeout occurred before one handle was signaled, WaitAny() returns
 WaitTimeout .

 With the SafeWaitHandle property, you can also assign a native handle to an operating system resource
and wait for that handle. For example, you can assign a SafeFileHandle to wait for a file I/O operation
to complete, or a custom SafeTransactionHandle as shown in Chapter 22 , “ Transactions. ”

 The classes Mutex , Event , and Semaphore are derived from the base class WaitHandle , so you can use
all of these with waits.

c19.indd 558c19.indd 558 2/19/08 5:15:40 PM2/19/08 5:15:40 PM

Chapter 19: Threading and Synchronization

559

 Mutex
 Mutex (mutual exclusion) is one of the classes of the .NET Framework that offers synchronization across
multiple processes. It is very similar to the Monitor class in that there is just one owner. Just one thread
can get a lock of the mutex and access the synchronized code regions that are secured by the mutex.

 With the constructor of the Mutex class, you can define if the mutex should initially be owned by the
calling thread, define a name of the mutex, and get the information if the mutex already existed. In the
sample code, the third parameter is defined as an out parameter to receive a Boolean value if the mutex
was newly created. If the value returned is false , the mutex was already defined. The mutex might be
defined in a different process, because a mutex with a name is known for the operating system and is
shared between different processes. If there is not a name assigned to the mutex, the mutex is unnamed
and not shared between different processes.

 bool createdNew;
 Mutex mutex = new Mutex(false, “ProCSharpMutex”, out createdNew);

 To open an existing mutex, you can also use the method Mutex.OpenExisting() , which doesn ’ t require
the same .NET privileges as creating the mutex with the constructor.

 Because the Mutex class derives from the base class WaitHandle , you can do a WaitOne() to acquire the
mutex lock and be the owner of the mutex during that time. The mutex is released by invoking the
 ReleaseMutex() method.

 if (mutex.WaitOne())
 {
 try
 {
 // synchronized region
 }
 finally
 {
 mutex.ReleaseMutex();
 }
 }
 else
 {
 // some problem happened while waiting
 }

 Because a named mutex is known system - wide, you can use it to not allow an application to be started
twice. In the following Windows Forms application, the constructor of the Mutex object is invoked. Then
it is verified if the mutex with the name SingletonWinAppMutex exists already. If it does, the
application exits.

 static class Program
 {
 [STAThread]
 static void Main()
 {
 bool createdNew;
 Mutex mutex = new Mutex(false, “SingletonWinAppMutex”,
 out createdNew);
 if (!createdNew)
 {
 MessageBox.Show(“You can only start one instance “ +
 “of the application”);

(continued)

c19.indd 559c19.indd 559 2/19/08 5:15:41 PM2/19/08 5:15:41 PM

Part III: Base Class Libraries

560

 Application.Exit();
 return;
 }

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }

 Semaphore
 A semaphore is very similar to a mutex, but, in contrast, the semaphore can be used by multiple threads
at once. A semaphore is a counting mutex, meaning that with a semaphore you can define the number of
threads that are allowed to access the resource guarded by the semaphore simultaneously. This can be
used if you have several of the resources available and can allow only a specific number of threads
access to the resource. For example, say that you want to access physical I/O ports on the system and
there are three ports available. So, three threads can access the I/O ports simultaneously, but the fourth
thread needs to wait until the resource is released by one of the other threads.

 In the sample application, in the Main() method six threads are created and one semaphore with a count
of 4. In the constructor of the Semaphore class, you can define count for the number of locks that can be
acquired with the semaphore (the second parameter) and the number of locks that are free initially (the
first parameter). If the first parameter has a lower value than the second parameter, the difference
between the values defines the already allocated semaphore count. As with the mutex, you can also
assign a name to the semaphore to share it between different processes. Here, no name is defined with
the semaphore, so it is used only within this process. After the Semaphore object is created, six threads
are started, and they all get the same semaphore.

using System;
using System.Threading;
using System.Diagnostics;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 int threadCount = 6;
 int semaphoreCount = 4;
 Semaphore semaphore = new Semaphore(semaphoreCount, semaphoreCount);
 Thread[] threads = new Thread[threadCount];

 for (int i = 0; i < threadCount; i++)
 {
 threads[i] = new Thread(ThreadMain);
 threads[i].Start(semaphore);
 }

 for (int i = 0; i < threadCount; i++)

(continued)

c19.indd 560c19.indd 560 2/19/08 5:15:41 PM2/19/08 5:15:41 PM

Chapter 19: Threading and Synchronization

561

 {
 threads[i].Join();
 }
 Console.WriteLine(“All threads finished”);
 }

 In the thread ’ s main method, ThreadMain() , the thread does a WaitOne() to lock the semaphore.
Remember, the semaphore has a count of 4, so four threads can acquire the lock. Thread 5 must wait and,
here, the timeout of 600 milliseconds is defined for a maximum wait time. If the lock cannot be acquired
after the wait time, the thread writes a message to the console and repeats the wait in a loop. As soon as
the lock is made, the thread writes a message to the console, sleeps for some time, and releases the lock.
Again, with the release of the lock it is important that the resource be released in all cases. That ’ s why the
 Release() method of the Semaphore class is invoked in a finally handler.

 static void ThreadMain(object o)
 {
 Semaphore semaphore = o as Semaphore;
 Trace.Assert(semaphore != null, “o must be a Semaphore type”);
 bool isCompleted = false;
 while (!isCompleted)
 {
 if (semaphore.WaitOne(600, false))
 {
 try
 {
 Console.WriteLine(“Thread {0} locks the semaphore”,
 Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(2000);
 }
 finally
 {
 semaphore.Release();
 Console.WriteLine(“Thread {0} releases the semaphore”,
 Thread.CurrentThread.ManagedThreadId);
 isCompleted = true;
 }
 }
 else
 {
 Console.WriteLine(“Timeout for thread {0}; wait again”,
 Thread.CurrentThread.ManagedThreadId);
 }
 }
 }
 }
}

 When you run the application, you can indeed see that with four threads the lock is made immediately.
The threads with IDs 7 and 8 must wait. The wait continues in the loop until one of the other threads
releases the semaphore.

Thread 3 locks the semaphore
Thread 4 locks the semaphore
Thread 5 locks the semaphore
Thread 6 locks the semaphore

(continued)

c19.indd 561c19.indd 561 2/19/08 5:15:41 PM2/19/08 5:15:41 PM

Part III: Base Class Libraries

562

Timeout for thread 8; wait again
Timeout for thread 7; wait again
Timeout for thread 8; wait again
Timeout for thread 7; wait again
Timeout for thread 7; wait again
Timeout for thread 8; wait again
Thread 3 releases the semaphore
Thread 8 locks the semaphore
Thread 4 releases the semaphore
Thread 7 locks the semaphore
Thread 5 releases the semaphore
Thread 6 releases the semaphore
Thread 8 releases the semaphore
Thread 7 releases the semaphore
All threads finished

 Events
 Events are the next of the system - wide synchronization resources. For using system events from
managed code, the .NET Framework offers the classes ManualResetEvent and AutoResetEvent in
the namespace System.Threading .

 The event keyword from C# that was covered in Chapter 7 has nothing to do with the event classes
from the namespace System.Threading . The event keyword is based on delegates, whereas both
event classes are .NET wrappers to the system - wide native event resource for synchronization.

 You can use events to inform other threads that some data is here, something is completed, and so on.
An event can be signaled or not signaled. A thread can wait for the event to be in a signaled state with
the help of the WaitHandle class, which was already discussed.

 A ManualResetEvent is signaled by invoking the Set() method and turned back to a non - signaled
state with the Reset() method. If multiple threads are waiting for an event to be signaled, and
the Set() method is invoked, then all threads waiting are released. Also, if a thread just invokes the
 WaitOne() method, but the event is already signaled, the waiting thread can continue immediately.

 An AutoResetEvent is also signaled by invoking the Set() method. It is also possible to set it back to a
non - signaled state with the Reset() method. However, if a thread is waiting for an auto - reset event to
be signaled, the event is automatically changed into a non - signaled state when the wait state of the
first thread is finished. The event changes automatically back into a non - signaled state. This way, if
multiple threads are waiting for the event to be set, only one thread is released from its wait state. It is
not the thread that has been waiting the longest for the event to be signaled but the thread waiting with
the highest priority.

 To demonstrate events with the AutoResetEvent class, the class ThreadTask defines the method
 Calculation() , which is the entry point for a thread. With this method, the thread receives input data
for calculation (defined with the struct InputData) and writes the result to the variable result that can be
accessed from the Result property. As soon as the result is completed (after a random amount of time),
the event is signaled by invoking the Set() method of the AutoResetEvent .

 public struct InputData
 {
 public int X;
 public int Y;

 public InputData(int x, int y)

(continued)

c19.indd 562c19.indd 562 2/19/08 5:15:42 PM2/19/08 5:15:42 PM

Chapter 19: Threading and Synchronization

563

 {
 this.X = x;
 this.Y = y;
 }
 }

 public class ThreadTask
 {
 private AutoResetEvent autoEvent;

 public int Result { get; private set; }

 public ThreadTask(AutoResetEvent ev)
 {
 this.autoEvent = ev;
 }

 public void Calculation(object obj)
 {
 InputData data = (InputData)obj;
 Console.WriteLine(“Thread {0} starts calculation”,
 Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(new Random().Next(3000));
 Result = data.X + data.Y;

 // signal the event - completed!
 Console.WriteLine(“Thread {0} is ready”,
 Thread.CurrentThread.ManagedThreadId);
 autoEvent.Set();
 }
 }

 The Main() method of the program defines arrays of four AutoResetEvent objects and four
 ThreadTask objects. Every ThreadTask is initialized in the constructor with an AutoResetEvent
object, so that every thread gets its own event object to signal when it is completed. Now the
 ThreadPool class is used to have background threads running the calculation tasks by invoking the
method QueueUserWorkItem() .

 class Program
 {
 static void Main()
 {
 int taskCount = 4;

 AutoResetEvent[] autoEvents = new AutoResetEvent[taskCount];
 ThreadTask[] tasks = new ThreadTask[taskCount];

 for (int i = 0; i < taskCount; i++)
 {
 autoEvents[i] = new AutoResetEvent(false);
 tasks[i] = new ThreadTask(mevents[i]);

 ThreadPool.QueueUserWorkItem(tasks[i].Calculation,
 new InputData(i + 1, i + 3));
 }
 //...

c19.indd 563c19.indd 563 2/19/08 5:15:42 PM2/19/08 5:15:42 PM

Part III: Base Class Libraries

564

 The WaitHandle class is now used to wait for any one of the events in the array. WaitAny() waits until
any one of the events is signaled. WaitAny() returns an index value that provides information about the
event that was signaled. The returned value matches the index of the event array that is passed to
 WaitAny() . Using this index the information from the signaled event can be read.

 for (int i = 0; i < taskCount; i++)
 {
 int index = WaitHandle.WaitAny(autoEvents);
 if (index == WaitHandle.WaitTimeout)
 {
 Console.WriteLine(“Timeout!!”);
 }
 else
 {
 Console.WriteLine(“finished task for {0}, result: {1}”,
 index, tasks[index].Result);
 }
 }
 }
 }

 Starting the application, you can see the threads doing the calculation and setting the event to inform the
main thread that it can read the result. Depending on random times, whether the build is a debug or
release build, and your hardware, you might see different orders and also a different number of threads
from the pool doing the tasks. Here, thread 4 was reused from the pool for doing two tasks because it
was fast enough to finish the calculation first:

Thread 3 starts calculation
Thread 4 starts calculation
Thread 5 starts calculation
Thread 4 is ready
finished task for 1, result: 6
Thread 4 starts calculation
Thread 3 is ready
finished task for 0, result: 4
Thread 4 is ready
finished task for 3, result: 10
Thread 5 is ready
finished task for 2, result: 8

 ReaderWriterLockSlim
 For a locking mechanism to allow multiple readers, but just one writer, to a resource, the class
 ReaderWriterLockSlim can be used. This class offers a locking functionality in which multiple readers
can access the resource if no writer locked it, and only a single writer can lock the resource.

 ReaderWriterLockSlim is new with .NET 3.0. The .NET 1.0 class with similar functionality
is ReaderWriterLock . ReaderWriterLockSlim was redesigned to prevent deadlocks and to offer
better performance.

 The methods and properties of ReaderWriterLockSlim are explained in the following tables.

c19.indd 564c19.indd 564 2/19/08 5:15:42 PM2/19/08 5:15:42 PM

Chapter 19: Threading and Synchronization

565

 ReaderWriterLockSlim Methods Description

 TryEnterReadLock()
EnterReadLock()
ExitReadLock()

 With TryEnterReadLock() and EnterReadLock() a
read lock is done to access the resource. As long as there is no
write lock, the read lock is successful. Multiple reads are
allowed concurrently.
With TryEnterReadLock() a time - out value can be specified
for a maximum amount of time to wait for the lock to be
acquired.
ExitReadLock() releases the lock.

 TryEnterUpgradableReadLock()
EnterUpgradableReadLock()
ExitUpgradableReadLock()

 If the read lock needs to be changed to a write
lock after doing a read access to the resource, TryEnterUpgra
dableReadLock() and EnterUpgradableReadLock() can
be used. The thread having a read lock can acquire a write lock
without releasing the read lock.

 TryEnterWriteLock()
EnterWriteLock()
ExitWriteLock()

 TryEnterWriteLock() and EnterWriteLock() are used to
acquire a write lock to the resource. Only one thread acquiring
the lock gets the lock. Also, there may not be any thread hold-
ing a read lock. When waiting for a write lock, it is also neces-
sary that all read locks have been released.
If one thread holding a write lock tries to get a write lock once
again, the lock is acquired if the ReaderWriterLockSlim
was created with the RecursionPolicy set to
 LockRecursionPolicy.SupportsRecursion .

 Properties of the ReaderWriterLockSlim class give some status information about the current locks.

 ReaderWriterLockSlim Properties Description

 CurrentReadCount This returns the number of threads that acquired a read lock.

 IsReadLockHeld
IsUpgradableReadLockHeld
IsWriteLockHeld

 These properties return a Boolean value about the corre-
sponding lock type.

 WaitingReadCount
WaitingUpgradableReadCount
WaitingWriteCount

 These properties return the number of threads that wait for
the corresponding lock type.

 RecursionPolicy
RecursiveReadCount
RecursiveUpgradableReadCount
RecursiveWriteCount

 With recursion, it is possible that one thread can acquire a
lock again. The property RecursionPolicy is a read - only
property to return the LockRecursionPolicy . The recursion
policy can be configured with the ReaderWriterLockSlim
constructor to NoRecursion or SupportsRecursion .

c19.indd 565c19.indd 565 2/19/08 5:15:42 PM2/19/08 5:15:42 PM

Part III: Base Class Libraries

566

 The sample program creates a collection containing six items and a ReaderWriterLockSlim object. The
method ReaderMethod() acquired a read lock to read all items of the list and write it to the console.
The method WriterMethod() tries to acquire a write lock to change all values of the collection. In the
 Main() method six threads are started that invoke either the method ReaderMethod() or the method
 WriterMethod() .

using System;
using System.Collections.Generic;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 private static List < int > items = new List < int > ()
 { 0, 1, 2, 3, 4, 5};
 private static ReaderWriterLockSlim rwl = new
 ReaderWriterLockSlim(LockRecursionPolicy.SupportsRecursion);

 static void ReaderMethod(object reader)
 {
 try
 {
 rwl.EnterReadLock();

 for (int i = 0; i < items.Count; i++)
 {
 Console.WriteLine(“reader {0}, loop: {1}, item: {2}”,
 reader, i, items[i]);
 Thread.Sleep(40);
 }
 }
 finally
 {
 rwl.ExitReadLock();
 }
 }

 static void WriterMethod(object writer)
 {
 try
 {
 while (!rwl.TryEnterWriteLock(50))
 {
 Console.WriteLine(“Writer {0} waiting for the write lock”,
 writer);
 Console.WriteLine(“current reader count: {0}”,
 rwl.CurrentReadCount);
 }
 Console.WriteLine(“Writer {0} acquired the lock”, writer);
 for (int i = 0; i < items.Count; i++)
 {
 items[i]++;
 Thread.Sleep(50);
 }

c19.indd 566c19.indd 566 2/19/08 5:15:43 PM2/19/08 5:15:43 PM

Chapter 19: Threading and Synchronization

567

 Console.WriteLine(“Writer {0} finished”, writer);
 }
 finally
 {
 rwl.ExitWriteLock();
 }
 }

 static void Main()
 {
 new Thread(WriterMethod).Start(1);
 new Thread(ReaderMethod).Start(1);
 new Thread(ReaderMethod).Start(2);
 new Thread(WriterMethod).Start(2);
 new Thread(ReaderMethod).Start(3);
 new Thread(ReaderMethod).Start(4);
 }
 }
}

 With a run of the application here the first writer gets the lock first. The second writer and all readers
need to wait. Next, the readers can work concurrently while the second writer still waits for the resource.

Writer 1 acquired the lock
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 1 finished
reader 4, loop: 0, item: 1
reader 1, loop: 0, item: 1
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 0, item: 1
reader 3, loop: 0, item: 1
reader 4, loop: 1, item: 2
reader 1, loop: 1, item: 2
reader 3, loop: 1, item: 2
reader 2, loop: 1, item: 2
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 2, item: 3
reader 1, loop: 2, item: 3
reader 2, loop: 2, item: 3
reader 3, loop: 2, item: 3
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 3, item: 4
reader 1, loop: 3, item: 4
reader 2, loop: 3, item: 4

(continued)

c19.indd 567c19.indd 567 2/19/08 5:15:43 PM2/19/08 5:15:43 PM

Part III: Base Class Libraries

568

reader 3, loop: 3, item: 4
reader 4, loop: 4, item: 5
reader 1, loop: 4, item: 5
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 4, item: 5
reader 3, loop: 4, item: 5
reader 4, loop: 5, item: 6
reader 1, loop: 5, item: 6
reader 2, loop: 5, item: 6
reader 3, loop: 5, item: 6
Writer 2 waiting for the write lock
current reader count: 4
Writer 2 acquired the lock
Writer 2 finished

 Timers
 The .NET Framework offers several Timer classes that can be used to invoke a method after some time
interval. The following table lists the Timer classes and their namespaces, as well as their functionality.

 Namespace Description

 System.Threading The Timer class from the System.Threading namespace offers core
functionality. In the constructor, you can pass a delegate that should be
invoked at the time interval specified.

 System.Timers The Timer class from the System.Timers namespace is a component,
because it derives from the Component base class. This way, you can drag
and drop it from the Toolbox to the design surface of a server - application
such as a Windows Service.
This Timer class uses System.Threading.Timer but offers an event -
 based mechanism instead of a delegate.

 System.Windows.Forms With the Timer classes from the namespaces System.Threading and
 System.Timers , the callback or event methods are invoked from a
different thread than the calling thread. Windows Forms controls are
bound to the creator thread. Calling back into this thread is done by the
 Timer class from the System.Windows.Forms namespace.

 System.Web.UI The Timer from the System.Web.UI namespace is an Ajax extension
that can be used with Web pages.

 Using the System.Threading.Timer class, you can pass the method to be invoked as the first
parameter in the constructor. This method must fulfill the requirements of the TimerCallback delegate
that defines a void return type and an object parameter. With the second parameter, you can pass any
object that is then received with the object argument in the callback method. For example, you can pass
an Event object to signal the caller. The third parameter specifies the time span when the callback should
be invoked the first time. With the last parameter, you specify the repeating interval for the callback. If
the timer should fire only once, set parameter four to the value – 1.

(continued)

c19.indd 568c19.indd 568 2/19/08 5:15:43 PM2/19/08 5:15:43 PM

Chapter 19: Threading and Synchronization

569

 If the time interval should be changed after creating the Timer object, you can pass new values with the
 Change() method.

 private static void ThreadingTimer()
 {
 System.Threading.Timer t1 = new System.Threading.Timer(
 TimeAction, null, TimeSpan.FromSeconds(2),
 TimeSpan.FromSeconds(3));

 Thread.Sleep(15000);

 t1.Dispose();
 }

 static void TimeAction(object o)
 {
 Console.WriteLine(“System.Threading.Timer {0:T}”, DateTime.Now);
 }

 The constructor of the Timer class from the System.Timers namespace requires just a time
interval. The method that should be invoked after the interval is specified by the Elapsed event. This
event requires a delegate of type ElapsedEventHandler that requires object and ElapsedEventArgs
parameters as you can see with the TimeAction method. The AutoReset property specifies whether
the timer should be fired repeatedly. Setting this property to false , the event is fired only once.
Calling the Start method enables the timer to fire the events. Instead of calling the Start method you
can set the Enabled property to true . Behind the scenes Start() does nothing else. The Stop()
method sets the Enabled property to false to stop the timer.

 private static void TimersTimer()
 {
 System.Timers.Timer t1 = new System.Timers.Timer(1000);
 t1.AutoReset = true;
 t1.Elapsed += TimeAction;
 t1.Start();
 Thread.Sleep(10000);
 t1.Stop();

 t1.Dispose();
 }

 static void TimeAction(object sender, System.Timers.ElapsedEventArgs e)
 {
 Console.WriteLine(“System.Timers.Timer {0:T}”, e.SignalTime);
 }

 COM Apartments
 Threading has always been an important topic with COM objects. COM defines apartment models for
synchronization. With a single - threaded apartment (STA), the COM runtime does the synchronization.
A multithreaded apartment (MTA) means better performance but without synchronization by the
COM runtime.

 A COM component defines the apartment model it requires by setting a configuration value in the
registry. A COM component that is developed in a thread - safe manner supports the MTA. Multiple
threads can access this component at once, and the component must do synchronization on its own.

c19.indd 569c19.indd 569 2/19/08 5:15:44 PM2/19/08 5:15:44 PM

Part III: Base Class Libraries

570

A COM component that doesn ’ t deal with multiple threads requires an STA. Here, just one (and always
the same) thread accesses the component. Another thread can access the component only by using a
proxy that sends a Windows message to the thread that is connected to the COM object. STAs use
Windows messages for synchronization.

 Visual Basic 6 components supported only the STA model. A COM component that is configured with
the option both supports both STA and MTA.

 Whereas the COM component defines the requirements for the apartment, the thread that instantiates
the COM object defines the apartment it is running in. This apartment should be the same one that the
COM component requires.

 A .NET thread, by default, runs in a MTA. You have probably already seen the attribute [STAThread]
with the Main() method of a Windows application. This attribute specifies that the main thread joins an
STA. Windows Forms applications require an STA thread.

[STAThread]
static void Main()
{
 //...

 When creating a new thread, you can define the apartment model either by applying the attribute
 [STAThread] or [MTAThread] to the entry point method of the thread or by invoking the
 SetApartmentState() method of the Thread class before starting the thread:

 Thread t1 = new Thread(DoSomeWork);
 t1.SetApartmentState(ApartmentState.STA);
 t1.Start();

 You can get the apartment of the thread with the GetApartmentThread() method.

 In Chapter 24 , “ Interoperability, ” you can read about .NET interop with COM components and more
about COM apartment models.

 Event - Based Asynchronous Pattern
 Earlier in this chapter, you saw the asynchronous pattern based on the IAsyncResult interface. With an
asynchronous callback, the callback thread is different from the calling thread. Using Windows Forms or
WPF, this is a problem, because Windows Forms and WPF controls are bound to a single thread. With
every control, you can invoke methods only from the thread that created the control. This also means
that if you have a background thread, you cannot directly access the UI controls from this thread.

 The only methods with Windows Forms controls that you can invoke from a different thread than the
creator thread are Invoke() , BeginInvoke() , EndInvoke() , and the property InvokeRequired .
 BeginInvoke() and EndInvoke() are asynchronous variants of Invoke() . These methods switch to
the creator thread to invoke the method that is assigned to a delegate parameter that you can pass
to these methods. Using these methods is not that easy, which is why, since .NET 2.0, a new component
together with a new asynchronous pattern was invented: the event - based asynchronous pattern.

 With the event - based asynchronous pattern, the asynchronous component offers a method with the
suffix Async ; for example, the synchronous method DoATask() has the name DoATaskAsync() in the
asynchronous version. To get the result information, the component also needs to define an event that
has the suffix Completed , for example, DoATaskCompleted . While the action happening in the
 DoATaskAsync() method is running in a background thread, the event DoATaskCompleted is fired in
the same thread as the caller.

c19.indd 570c19.indd 570 2/19/08 5:15:44 PM2/19/08 5:15:44 PM

Chapter 19: Threading and Synchronization

571

 With the event - based asynchronous pattern, the asynchronous component optionally can support
cancellation and information about progress. For cancellation, the method should have the name
 CancelAsync() , and for progress information, an event with the suffix ProgressChanged , for example,
 DoATaskProgressChanged , is offered.

 If you haven ’ t written any Windows applications until now, you can skip this section of the chapter and
keep it for later. Just remember, using threads from Windows applications adds another complexity,
and you should come back here after reading the Windows Forms chapters (Chapters 31 to 33) or WPF
c hapters (Chapters 34 and 35). In any case, the Windows Forms application demonstrated here is very
simple from a Windows Forms viewpoint.

 BackgroundWorker
 The BackgroundWorker class is one implementation of the asynchronous event pattern. This class
implements methods, properties, and events, as described in the following table.

 Another class that implements the asynchronous event pattern is the component WebClient in the
 System.Net namespace. This class uses the WebRequest and WebResponse classes but offers an
easier - to - use interface. The WebRequest and WebResponse classes also offer asynchronous
 programming, but here it is based on the asynchronous pattern with the IAsyncResult interface.

 BackgroundWorker Members Description

 IsBusy The property IsBusy returns true while an asynchronous task
is active.

 CancellationPending The property CancellationPending returns true after the
 CancelAsync() method is invoked. If this property is set to
 true , the asynchronous task should stop its work.

 RunWorkerAsync()
DoWork

 The method RunWorkerAsync() fires the DoWork event to start
the asynchronous task in a separate thread.

 CancelAsync()
WorkerSupportsCancellation

 If cancellation is enabled (by setting the WorkerSupportsCanc
ellation property to true), the asynchronous task can be can-
celed with the CancelAsync() method.

 ReportProgress()
ProgressChanged
WorkerReportsProgress

 If the WorkerReportsProgress property is set to true , the
 BackgroundWorker can give interim feedback about the prog-
ress of the asynchronous task. The asynchronous task provides
feedback about the percentage of work completed, by invoking
the method ReportProgress() . This method then fires the
 ProgressChanged event.

 RunWorkerCompleted The RunWorkerCompleted event is fired as soon as the
asynchronous task is completed, regardless of whether it was
canceled.

 The sample application demonstrates the use of the BackgroundWorker control in a Windows Forms
application by doing a task that takes some time. Create a new Windows Forms application and add
three Label controls, three TextBox controls, two Button controls, one ProgressBar , and one
 BackgroundWorker to the form, as shown in Figure 19 - 3 .

c19.indd 571c19.indd 571 2/19/08 5:15:45 PM2/19/08 5:15:45 PM

Part III: Base Class Libraries

572

 Configure the properties of the controls as listed in the following table.

 Control Property and Events Value

 Label Text X:

 TextBox Name textbox

 Label Text Y:

 TextBox Name textBoxY

 Label Text Result:

 TextBox Name textBoxResult

 Button Name buttonCalculate

 Text Calculate

 Click OnCalculate

 Button Name buttonCancel

 Text Cancel

 Enabled False

 Click OnCancel

 ProgressBar Name progressBar

 BackgroundWorker Name backgroundWorker

 DoWork OnDoWork

 RunWorkerCompleted OnWorkCompleted

Figure 19-3

c19.indd 572c19.indd 572 2/19/08 5:15:45 PM2/19/08 5:15:45 PM

Chapter 19: Threading and Synchronization

573

 Add the struct CalcInput to the project. This struct will be used to contain the input data from the
 TextBox controls.

 public struct CalcInput
 {
 public CalcInput(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 public int x;
 public int y;
 }

 The method OnCalculate() is the event handler for the Click event from the Button control named
 buttonCalculate . In the implementation buttonCalculate is disabled, so the user cannot click
the button once more until the calculation is completed. To start the BackgroundWorker , invoke the
method RunWorkerAsync() . The BackgroundWorker uses a thread pool thread to do the calculation.
 RunWorkerAsync() requires the input parameters that are passed to the handler that is assigned to the
 DoWork event.

 private void OnCalculate(object sender, EventArgs e)
 {
 this.buttonCalculate.Enabled = false;
 this.textBoxResult.Text = String.Empty;
 this.buttonCancel.Enabled = true;
 this.progressBar.Value = 0;

 backgroundWorker.RunWorkerAsync(new CalcInput(
 int.Parse(this.textBoxX.Text), int.Parse(this.textBoxY.Text)));
 }

 The method OnDoWork() is connected to the DoWork event of the BackgroundWorker control. With the
 DoWorkEventArgs , the input parameters are received with the property Argument . The implementation
simulates functionality that takes some time with a sleep time of 5 seconds. After sleeping, the result of
the calculation is written to the Result property of DoEventArgs . If you add the calculation and sleep
to the OnCalculate() method instead, the Windows application is blocked from user input while this is
active. However, here, a separate thread is used and the user interface is still active.

 private void OnDoWork(object sender, DoWorkEventArgs e)
 {
 CalcInput input = (CalcInput)e.Argument;

 Thread.Sleep(5000);
 e.Result = input.x + input.y;
 }

 After OnDoWork is completed, the background worker fires the RunWorkerCompleted event. The
method OnWorkCompleted() is associated with this event. Here, the result is received from the Result
property of the RunWorkerCompletedEventArgs parameter, and this result is written to the result
 TextBox control. When firing the event, the BackgroundWorker control changes control to the creator
thread, so there is no need to use the Invoke methods of the Windows Forms controls, and you can
invoke properties and methods of Windows Forms controls directly.

c19.indd 573c19.indd 573 2/19/08 5:15:45 PM2/19/08 5:15:45 PM

Part III: Base Class Libraries

574

 private void OnWorkCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 this.textBoxResult.Text = e.Result.ToString();

 this.buttonCalculate.Enabled = true;
 this.buttonCancel.Enabled = false;
 this.progressBar.Value = 100;
 }

 Now you can test the application and see that the calculation runs independently of the UI thread, the UI
is still active, and the Form can be moved around. However, the cancel and progress bar functionality
still needs implementation.

 Enable Cancel
 To enable the cancel functionality to stop the thread ’ s progress while it is running, you must set the
 BackgroundWorker property WorkerSupportsCancellation to True . Next, you have to implement
the OnCancel handler that is connected to the Click event of the control buttonCancel . The
 BackGroundWorker control has the CancelAsync() method to cancel an asynchronous task that is
going on.

 private void OnCancel(object sender, EventArgs e)
 {
 backgroundWorker.CancelAsync();
 }

 The asynchronous task is not canceled automatically. In the OnDoWork() handler that does the
asynchronous task, you must change the implementation to examine the CancellationPending
property of the BackgroundWorker control. This property is set as soon as CancelAsync() is
invoked. If a cancellation is pending, set the Cancel property of DoWorkEventArgs to true and exit
the handler.

 private void OnDoWork(object sender, DoWorkEventArgs e)
 {
 CalcInput input = (CalcInput)e.Argument;

 for (int i = 0; i < 10; i++)
 {
 Thread.Sleep(500);

 if (backgroundWorker.CancellationPending)
 {
 e.Cancel = true;
 return;
 }
 }

 e.Result = input.x + input.y;
 }

 The completion handler OnWorkCompleted() is invoked if the asynchronous method has completed
successfully or if it was canceled. If it was canceled, you cannot access the Result property, because this
throws an InvalidOperationException with the information that the operation has been canceled.
So, you have to check the Cancelled property of RunWorkerCompletedEventArgs and behave
accordingly.

c19.indd 574c19.indd 574 2/19/08 5:15:46 PM2/19/08 5:15:46 PM

Chapter 19: Threading and Synchronization

575

 private void OnWorkCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Cancelled)
 {
 this.textBoxResult.Text = “Cancelled”;
 }
 else
 {
 this.textBoxResult.Text = e.Result.ToString();
 }
 this.buttonCalculate.Enabled = true;
 this.buttonCancel.Enabled = false;
 }

 Running the application once more, you can cancel the asynchronous progress from the user interface.

 Enable Progress
 To get progress information to the user interface, you must set the BackgroundWorker property
 WorkerReportsProgress to True .

 With the OnDoWork method, you can report the progress to the BackgroundWorker control with the
 ReportProgress() method:

 private void OnDoWork(object sender, DoWorkEventArgs e)
 {
 CalcInput input = (CalcInput)e.Argument;

 for (int i = 0; i < 10; i++)
 {
 Thread.Sleep(500);
 backgroundWorker.ReportProgress(i * 10);
 if (backgroundWorker.CancellationPending)
 {
 e.Cancel = true;
 return;
 }
 }

 e.Result = input.x + input.y;
 }

 The method ReportProgress() fires the ProgressChanged event of the BackgroundWorker control.
This event changes the control to the UI thread.

 Add the method OnProgressChanged() to the ProgressChanged event, and in the implementation set
a new value to the progress bar control that is received from the property ProgressPercentage of
 ProgressChangedEventArgs :

 private void OnProgressChanged(object sender,
 ProgressChangedEventArgs e)
 {
 this.progressBar.Value = e.ProgressPercentage;
 }

c19.indd 575c19.indd 575 2/19/08 5:15:46 PM2/19/08 5:15:46 PM

Part III: Base Class Libraries

576

 In the OnWorkCompleted() event handler, the progress bar finally is set to the 100% value:

 private void OnWorkCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Cancelled)
 {
 this.textBoxResult.Text = “Cancelled”;
 }
 else
 {
 this.textBoxResult.Text = e.Result.ToString();
 }
 this.buttonCalculate.Enabled = true;
 this.buttonCancel.Enabled = false;
 this.progressBar.Value = 100;
 }

 Figure 19 - 4 shows the running application while the calculation is just active.

Figure 19-4

 Creating an Event - Based Asynchronous Component
 To create a custom component that supports the event - based asynchronous pattern, more work needs to
be done. To demonstrate this with a simple scenario, the class AsyncComponent just returns a converted
input string after a time span, as you can see with the synchronous method LongTask() . To offer asyn-
chronous support, the public interface offers the asynchronous method LongTaskAsync() and the event
 LongTaskCompleted . This event is of type LongTaskCompletedEventHandler that defines the param-
eters object sender and LongTaskCompletedEventArgs e . LongTaskCompletedEventArgs is a
new type where the caller can read the result of the asynchronous operation.

 In addition, some helper methods such as DoLongTask and CompletionMethod are needed; these are
discussed next.

c19.indd 576c19.indd 576 2/19/08 5:15:46 PM2/19/08 5:15:46 PM

Chapter 19: Threading and Synchronization

577

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 public delegate void LongTaskCompletedEventHandler(object sender,
 LongTaskCompletedEventArgs e);

 public partial class AsyncComponent : Component
 {
 private Dictionary < object, AsyncOperation > userStateDictionary =
 new Dictionary < object, AsyncOperation > ();
 private SendOrPostCallback onCompletedDelegate;

 public AsyncComponent()
 {
 InitializeComponent();
 InitializeDelegates();
 }

 public AsyncComponent(IContainer container)
 {
 container.Add(this);

 InitializeComponent();
 InitializeDelegates();
 }

 private void InitializeDelegates()
 {
 onCompletedDelegate = LongTaskCompletion;
 }

 public string LongTask(string input)
 {
 Console.WriteLine(“LongTask started”);
 Thread.Sleep(5000);
 Console.WriteLine(“LongTask finished”);
 return input.ToUpper();
 }

 public void LongTaskAsync(string input, object taskId)
 {
 //...
 }

 public event LongTaskCompletedEventHandler LongTaskCompleted;

 private void LongTaskCompletion(object operationState)
 {
 //...
 }

(continued)

c19.indd 577c19.indd 577 2/19/08 5:15:47 PM2/19/08 5:15:47 PM

Part III: Base Class Libraries

578

 protected void OnLongTaskCompleted(LongTaskCompletedEventArgs e)
 {
 //...
 }

 private delegate void LongTaskWorkHandler(string input,
 AsyncOperation asyncOp);

 // running in a background thread
 private void DoLongTask(string input, AsyncOperation asyncOp)
 {
 //...
 }

 private void CompletionMethod(string output, Exception ex,
 bool cancelled, AsyncOperation asyncOp)
 {
 //...
 }
 }

 public class LongTaskCompletedEventArgs : AsyncCompletedEventArgs
 {
 //...
 }
}

 The method LongTaskAsync needs to start the synchronous operation asynchronously. If the component
allows starting the asynchronous task several times concurrently, the client needs to have an option to
map the different results to the tasks started. This is why the second parameter of LongTaskAsync
requires a taskId that can be used by the client to map the results. Of course, inside the component itself
the task ID needs to be remembered to map the results. .NET offers the class AsyncOperationManager
to create AsyncOperationObjects to help keep track of the state of operations. The class
 AsyncOperationManager has one method, CreateOperation , where a task identifier can be passed,
and an AsyncOperation object is returned. This operation is kept as an item in the dictionary
 userStateDictionary that was created earlier.

 Then, a delegate of type LongTaskWorkHandler is created, and the method DoLongTask is assigned to
that delegate instance. BeginInvoke() is the method of the delegate to start the method DoLongTask()
asynchronously using a thread from the thread pool.

 public void LongTaskAsync(string input, object taskId)
 {
 AsyncOperation asyncOp =
 AsyncOperationManager.CreateOperation(taskId);

 lock (userStateDictionary)
 {
 if (userStateDictionary.ContainsKey(taskId))
 throw new ArgumentException(“taskId must be unique”, “taskId”);

 userStateDictionary[taskId] = asyncOp;
 }

(continued)

c19.indd 578c19.indd 578 2/19/08 5:15:47 PM2/19/08 5:15:47 PM

Chapter 19: Threading and Synchronization

579

 LongTaskWorkHandler longTaskDelegate = DoLongTask;
 longTaskDelegate.BeginInvoke(input, asyncOp, null, null);
 }

 The delegate type LongTaskWorkHandler is just defined within the class AsyncComponent with a
private access modifier because it is not needed outside. The parameters needed with this delegate are
all input parameters from the caller plus the AsyncOperation parameter for getting the status and
mapping the result of the operation.

 private delegate void LongTaskWorkHandler(string input,
 AsyncOperation asyncOp);

 The method DoLongTask() is now called asynchronously by using the delegate. The synchronous
method LongTask() can now be invoked to get the output value.

 Because an exception that might happen inside the synchronous method should not just blow up the
background thread, any exception is caught and remembered with the variable e of type Exception .
Finally, the CompletionMethod() is invoked to inform the caller about the result.

 // running in a background thread
 private void DoLongTask(string input, AsyncOperation asyncOp)
 {
 Exception e = null;
 string output = null;
 try
 {
 output = LongTask(input);
 }
 catch (Exception ex)
 {
 e = ex;
 }

 this.CompletionMethod(output, e, false, asyncOp);
 }

 With the implementation of the CompletionMethod , the userStateDictionary is cleaned up as the
operation is removed. The PostOperationCompleted() method of the AsyncOperation object ends
the lifetime of the asynchronous operation and informs the caller using the onCompletedDelegate
method . This method ensures that the delegate is invoked on the thread as needed for the application
type. To get information to the caller, an object of type LongTaskCompletedEventArgs is created and
passed to the method PostOperationCompleted() .

 private void CompletionMethod(string output, Exception ex,
 bool cancelled, AsyncOperation asyncOp)
 {
 lock (userStateDictionary)
 {
 userStateDictionary.Remove(asyncOp.UserSuppliedState);
 }

 // results of the operation
 LongTaskCompletedEventArgs e = new LongTaskCompletedEventArgs(
 output, ex, cancelled, asyncOp.UserSuppliedState);

 asyncOp.PostOperationCompleted(onCompletedDelegate, e);
 }
 }

c19.indd 579c19.indd 579 2/19/08 5:15:47 PM2/19/08 5:15:47 PM

Part III: Base Class Libraries

580

 For passing information to the caller, the class LongTaskCompletedEventArgs derives from the base
class AsyncCompletedEventArgs and adds a property containing output information. In the
constructor, the base constructor is invoked to pass exception, cancellation, and user state information.

 public class LongTaskCompletedEventArgs : AsyncCompletedEventArgs
 {
 public LongTaskCompletedEventArgs(string output, Exception e,
 bool cancelled, object state)
 : base(e, cancelled, state)
 {
 this.output = output;
 }

 private string output;

 public string Output
 {
 get
 {
 RaiseExceptionIfNecessary();

 return output;
 }
 }
 }

 The method asyncOp.PostOperationCompleted() uses the onCompletedDelegate . This delegate
was initialized to reference the method LongTaskCompletion . LongTaskCompletion needs to fulfill
the parameter requirements of the SendOrPostCallbackDelegate . The implementation just casts the
parameter to LongTaskCompletedEventArgs , which was the type of the object that was passed to
the PostOperationCompleted method, and calls the method OnLongTaskCompleted .

 private void LongTaskCompletion(object operationState)
 {
 LongTaskCompletedEventArgs e =
 operationState as LongTaskCompletedEventArgs;

 OnLongTaskCompleted(e);
 }

 OnLongTaskCompleted then just fires the event LongTaskCompleted to return the
 LongTaskCompletedEventArgs to the caller.

 protected void OnLongTaskCompleted(LongTaskCompletedEventArgs e)
 {
 if (LongTaskCompleted != null)
 {
 LongTaskCompleted(this, e);
 }
 }

 After creating the component, it is really easy to use it. The event LongTaskCompleted is assigned to the
method Comp_LongTaskCompleted , and the method LongTaskAsync() is invoked. With a simple

c19.indd 580c19.indd 580 2/19/08 5:15:48 PM2/19/08 5:15:48 PM

Chapter 19: Threading and Synchronization

581

console application, you will see that the event handler Comp_LongTaskCompleted is called from a
thread different from the main thread. (This is different from Windows Forms applications, as you will
see next.)

 static void Main()
 {
 Console.WriteLine(“Main thread: {0}”,
 Thread.CurrentThread.ManagedThreadId);

 AsyncComponent comp = new AsyncComponent();
 comp.LongTaskCompleted += Comp_LongTaskCompleted;

 comp.LongTaskAsync(“input”, 33);

 Console.ReadLine();
 }

 static void Comp_LongTaskCompleted(object sender,
 LongTaskCompletedEventArgs e)
 {
 Console.WriteLine(“completed, result: {0}, thread: {1}”, e.Output,
 Thread.CurrentThread.ManagedThreadId);
 }

 With a Windows Forms application the SynchronizationContext is set to
 WindowsFormsSynchronizationContext — that ’ s why the event handler code is invoked
in the same thread:

 WindowsFormsSynchronizationContext syncContext =
 new WindowsFormsSynchronizationContext();
 SynchronizationContext.SetSynchronizationContext(syncContext);

 Summary
 This chapter explored how to code applications that use multiple threads using the System.Threading
namespace. Using multithreading in your applications takes careful planning. Too many threads can
cause resource issues, and not enough threads can cause your application to seem sluggish and to
perform poorly.

 You ’ ve seen various ways to create multiple threads such as using the delegate, timers, a ThreadPool ,
and the Thread class. Various synchronization techniques have been explored such as a simple lock
statement but also the Monitor , Semaphore , and Event classes. You ’ ve seen how to program the
asynchronous pattern with the IAsyncResult interface, and the event - based asynchronous pattern.

 The System.Threading namespace in the .NET Framework gives you multiple ways to manipulate
threads; however, this does not mean that the .NET Framework handles all the difficult tasks of
multithreading for you. You need to consider thread priority and synchronization issues. This chapter
discussed these issues and how to code for them in your C# applications. It also looked at the problems
associated with deadlocks and race conditions.

 Just remember that if you are going to use multithreading in your C# applications, careful planning
needs to be a major part of your efforts.

c19.indd 581c19.indd 581 2/19/08 5:15:48 PM2/19/08 5:15:48 PM

Part III: Base Class Libraries

582

 Some final guidelines regarding threading:

 Try to keep synchronization requirements to a minimum. Synchronization is complex and
blocks threads. You can avoid it if you try to avoid sharing state. Of course, this is not always
possible.

 Static members of a class should be thread - safe. Usually, this is the case with classes in the .NET
Framework.

 Instance state does not need to be thread - safe. For best performance, synchronization is better
used outside of the class where it is needed and not with every member of the class. Instance
members of .NET Framework classes usually are not thread - safe. In the MSDN library you can
find this information documented for every class of the Framework in the Thread Safety section.

 The next chapter gives information on another core .NET topic: security.

❑

❑

❑

c19.indd 582c19.indd 582 2/19/08 5:15:48 PM2/19/08 5:15:48 PM

 Security

 Security has several key aspects to consider. One is the user of the application. Is it really the user,
or someone posing as the user, who is accessing the application? How can this user be trusted? As
you will see in this chapter, the user first needs to be authenticated, and then authorization occurs
to verify if the user is allowed to use the requested resources.

 What about data that is stored or sent across the network? Is it possible that someone accesses this
data, for example, by using a network sniffer? Encryption of data is important here.

 Yet another aspect is the application itself. How can you trust the application? What is the origin or
evidence from the application? This is extremely important, for example, in a Web hosting scenario.
A Web hosting provider does not allow its customers to access all resources from the system.
Depending on the evidence of the assembly, different permissions for the application apply.

 This chapter explores the features available in .NET to help you manage security, including how
.NET protects you from malicious code, how to administer security policies, and how to access the
security subsystem programmatically. The topics of this chapter are:

 Authentication and authorization

 Cryptography

 Access control to resources

 Code access security

 Managing security policies

 Authentication and Authorization
 Authentication is the process of identifying the user, and authorization occurs afterward to verify
if the identified user is allowed to access a specific resource.

 Identity and Principal
 You can identify the user running the application by using an identity. The WindowsIdentity
class represents a Windows user. If you don ’ t identify the user with a Windows account, you can

❑

❑

❑

❑

❑

c20.indd 583c20.indd 583 2/19/08 5:16:53 PM2/19/08 5:16:53 PM

Part III: Base Class Libraries

584

use other classes that implement the interface IIdentity . With this interface you have access to the
name of the user, information about whether the user is authenticated, and the authentication type.

 A principal is an object that contains the identity of the user and the roles that the user belongs to. The
interface IPrincipal defines the property Identity that returns an IIdentity object and the method
 IsInRole in which you can verify if the user is a member of a specific role. A role is a collection of users
who have the same security permissions, and it is the unit of administration for users. Roles can be
Windows groups or just a collection of strings that you define.

 Principal classes available with .NET are WindowsPrincipal and GenericPrincipal . You can also
create a custom principal class that implements the interface IPrincipal .

 In the following example, you create a console application that provides access to the principal in an
application that, in turn, enables you to access the underlying Windows account. You need to import the
 System.Security.Principal and System.Threading namespaces. First of all, you must specify that
.NET automatically hooks up the principal with the underlying Windows account. This is because .NET
does not automatically populate the thread ’ s CurrentPrincipal property for security reasons. You can
do it like this:

using System;
using System.Security.Principal;
using System.Threading;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);

 It is possible to use WindowsIdentity.GetCurrent() to access the Windows account details; however,
that method is best used when you are going to look at the principal only once. If you want to access the
principal a number of times, it is more efficient to set the policy so that the current thread provides
access to the principal for you. If you use the SetPrincipalPolicy method, it is specified that the
principal in the current thread should hold a WindowsIdentity object. All identity classes, such as
 WindowsIdentity , implement the IIdentity interface. The interface contains three properties
(AuthenticationType , IsAuthenticated , and Name) for all derived identity classes to implement.

 Add code to access the principal ’ s properties from the Thread object:

 WindowsPrincipal principal =
 (WindowsPrincipal)Thread.CurrentPrincipal;
 WindowsIdentity identity = (WindowsIdentity)principal.Identity;
 Console.WriteLine(“IdentityType: “ + identity.ToString());
 Console.WriteLine(“Name: {0}”, identity.Name);
 Console.WriteLine(“’Users’?: {0} “,
 principal.IsInRole(“BUILTIN\\Users”));
 Console.WriteLine(“’Administrators’? {0}”,
 principal.IsInRole(WindowsBuiltInRole.Administrator));
 Console.WriteLine(“Authenticated: {0}”, identity.IsAuthenticated);
 Console.WriteLine(“AuthType: {0}”, identity.AuthenticationType);
 Console.WriteLine(“Anonymous? {0}”, identity.IsAnonymous);
 Console.WriteLine(“Token: {0}”, identity.Token);
 }
 }
}

c20.indd 584c20.indd 584 2/19/08 5:16:54 PM2/19/08 5:16:54 PM

Chapter 20: Security

585

 The output from this console application looks similar to the following lines; it will vary according to
your machine ’ s configuration and the roles associated with the account under which you are signed in:

IdentityType:System.Security.Principal.WindowsIdentity
Name: farabove\christian
‘Users’? True
‘Administrators’? True
Authenticated: True
AuthType: NTLM
Anonymous? False
Token: 368

 It is enormously beneficial to be able to easily access details about the current users and their roles. With
this information, you can make decisions about what actions should be permitted or denied. The ability
to make use of roles and Windows user groups provides the added benefit that administration can be
done by using standard user administration tools, and you can usually avoid altering the code when
user roles change. The following section looks at roles in more detail.

 Roles
 Role - based security is especially useful in situations in which access to resources is an issue. A primary
example is the finance industry, in which employees ’ roles define what information they can access and
what actions they can perform.

 Role - based security is also ideal for use in conjunction with Windows accounts, or a custom user
directory to manage access to Web - based resources. For example, a Web site could restrict access to its
content until a user registers with the site, and then additionally provide access to special content only, if
the user is a paying subscriber. In many ways, ASP.NET makes role - based security easier because much
of the code is based on the server.

 For example, to implement a Web service that requires authentication, you could use the account
subsystem of Windows and write the Web method in such a way that it ensures the user is a member of a
specific Windows user group before allowing access to the method ’ s functionality.

 Imagine a scenario with an intranet application that relies on Windows accounts. The system has a group
called Manager and one called Assistant ; users are assigned to these groups according to their role
within the organization. Say that the application contains a feature that displays information about
employees that should be accessed only by users in the Managers group. You can easily use code that
checks whether the current user is a member of the Managers group and whether he is permitted or
denied access.

 However, if you decide later to rearrange the account groups and to introduce a group called Personnel
that also has access to employee details, you will have a problem. You will need to go through all the
code and update it to include rules for this new group.

 A better solution would be to create a permission called something like ReadEmployeeDetails and
assign it to groups where necessary. If the code applies a check for the ReadEmployeeDetails
permission, updating the application to allow those in the Personnel group access to employee details
is simply a matter of creating the group, placing the users in it, and assigning the
 ReadEmployeeDetails permission.

 Declarative Role - Based Security
 Just as with code access security, you can implement role - based security requests (“ the user must be in
the Administrators group ”) using imperative requests by calling the IsInRole() method from the

c20.indd 585c20.indd 585 2/19/08 5:16:55 PM2/19/08 5:16:55 PM

Part III: Base Class Libraries

586

 IPrincipal class, or using attributes. You can state permission requirements declaratively at the class or
method level using the [PrincipalPermission] attribute:

using System;
using System.Security;
using System.Security.Principal;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);
 try
 {
 ShowMessage();
 }
 catch (SecurityException exception)
 {
 Console.WriteLine(“Security exception caught (“ +
 exception.Message + “)”);
 Console.WriteLine(“The current principal must be in the local”
 + “Users group”);
 }
 Console.ReadLine();
 }

 [PrincipalPermission(SecurityAction.Demand,
 Role = “BUILTIN\\Users”)]
 static void ShowMessage()
 {
 Console.WriteLine(“The current principal is logged in locally “);
 Console.WriteLine(“(member of the local Users group)”);
 }
 }
}

 The ShowMessage() method will throw an exception unless you execute the application in the context
of a user in the Windows local Users group. For a Web application, the account under which the
ASP.NET code is running must be in the group, although in a “ real - world ” example you would
certainly avoid adding this account to the administrators group!

 If you run the preceding code using an account in the local Users group, the output will look like this:

The current principal is logged in locally
(member of the local Users group)

 Client Application Services
 Visual Studio 2008 makes it easy to use authentication services that previously have been built for
ASP.NET Web applications. With this service, it is possible to use the same authentication mechanism
both with Windows and Web applications. This is a provider model that is primarily based on the
classes Membership and Roles in the namespace System.Web.Security . With the Membership

c20.indd 586c20.indd 586 2/19/08 5:16:55 PM2/19/08 5:16:55 PM

Chapter 20: Security

587

class you can validate, create, delete, find users, change the password, and other various things
related to users. With the Roles class you can add and delete roles, get the roles for a user, and
change roles from a user. Where the roles and users are stored depends on the provider. The
 ActiveDirectoryMembershipProvider accesses users and roles in the Active Directory;
the SqlMembershipProvider uses a SQL Server database. For client application services new
providers exist with .NET 3.5: ClientFormsAuthenticationMembershipProvider and
 ClientWindowsAuthenticationMembershipProvider .

 Next, you use client application services with Forms authentication. To do this, first you need to start an
application server, and then you can use this service from Windows Forms or WPF.

 Application Services
 For using client application services, you can create an ASP.NET Web service project that offers
application services.

 With the project a membership provider is needed. The sample code here defines the class
 SampleMembershipProvider that derives from the base class MembershipProvider . You must
override all abstract methods from the base class. For login, the only implementation needed is the
method ValidateUser . All other methods can throw a NotSupportedException as shown with
the property ApplicationName . The sample code here uses a Dictionary < string, string > that
contains usernames and passwords. Of course, you can change it to your own implementation, for
example, to read username and password from the database.

using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Web.Security;

namespace Wrox.ProCSharp.Security
{
 public class SampleMembershipProvider : MembershipProvider
 {
 private Dictionary < string, string > users = null;
 internal static string ManagerUserName = “Manager”.ToLowerInvariant();
 internal static string EmployeeUserName = “Employee”.ToLowerInvariant();

 public override void Initialize(string name, NameValueCollection config)
 {
 users = new Dictionary < string, string > ();
 users.Add(ManagerUserName, “secret@Pa$$w0rd”);
 users.Add(EmployeeUserName, “s0me@Secret”);

 base.Initialize(name, config);
 }

 public override string ApplicationName
 {
 get
 {
 throw new NotImplementedException();
 }

(continued)

c20.indd 587c20.indd 587 2/19/08 5:16:56 PM2/19/08 5:16:56 PM

Part III: Base Class Libraries

588

 set
 {
 throw new NotImplementedException();
 }
 }

 // override abstract Membership members
 // ...

 public override bool ValidateUser(string username, string password)
 {
 if (users.ContainsKey(username.ToLowerInvariant()))
 {
 return password.Equals(users[username.ToLowerInvariant()]);
 }
 return false;
 }
 }
}

 For using roles, you also need to implement a role provider. The class SampleRoleProvider derives
from the base class RoleProvider and implements the methods GetRolesForUser() and
 IsUserInRole() :

using System;
using System.Collections.Specialized;
using System.Web.Security;

namespace Wrox.ProCSharp.Security
{
 public class SampleRoleProvider : RoleProvider
 {
 internal static string ManagerRoleName =
 “Manager”.ToLowerInvariant();
 internal static string EmployeeRoleName =
 “Employee”.ToLowerInvariant();

 public override void Initialize(string name, NameValueCollection config)
 {
 base.Initialize(name, config);
 }

 public override void AddUsersToRoles(string[] usernames,
 string[] roleNames)
 {
 throw new NotImplementedException();
 }

 //... override abstract RoleProvider members

 public override string[] GetRolesForUser(string username)
 {
 if (string.Compare(username,
 SampleMembershipProvider.ManagerUserName, true) == 0)

(continued)

c20.indd 588c20.indd 588 2/19/08 5:16:56 PM2/19/08 5:16:56 PM

Chapter 20: Security

589

 {
 return new string[] { ManagerRoleName };
 }
 else if (string.Compare(username,
 SampleMembershipProvider.EmployeeUserName, true) == 0)
 {
 return new string[] { EmployeeRoleName };
 }
 else
 {
 return new string[0];
 }
 }

 public override bool IsUserInRole(string username, string roleName)
 {
 string[] roles = GetRolesForUser(username);
 foreach (string role in roles)
 {
 if (string.Compare(role, roleName, true) == 0)
 {
 return true;
 }
 }
 return false;
 }
 }
}

 Authentication services must be configured in the Web.config file. On the production system, it would
be useful from a security standpoint to configure SSL with the server hosting application services.

 < system.web.extensions >
 < scripting >
 < webServices >
 < authenticationService enabled=”true” requireSSL=”false”/ >
 < roleService enabled=”true”/ >
 < /webServices >
 < /scripting >
 < /system.web.extensions >

 Within the < system.web > section, the membership and roleManager elements must be configured to
reference the classes that implement the membership and role provider:

 < system.web >
 < membership defaultProvider=”SampleMembershipProvider” >
 < providers >
 < add name=”SampleMembershipProvider”
 type=”Wrox.ProCSharp.Security.SampleMembershipProvider”/ >
 < /providers >
 < /membership >
 < roleManager enabled=”true” defaultProvider=”SampleRoleProvider” >
 < providers >
 < add name=”SampleRoleProvider”
 type=”Wrox.ProCSharp.Security.SampleRoleProvider”/ >
 < /providers >
 < /roleManager >

c20.indd 589c20.indd 589 2/19/08 5:16:56 PM2/19/08 5:16:56 PM

Part III: Base Class Libraries

590

 For debugging, you can assign a port number and virtual path with the Web tab of project properties.
The sample application uses the port 55555 and the virtual path /AppServices . If you use different
values, you need to change the configuration of the client application accordingly.

 Now the application service can be used from a client application.

 Client Application
 With the client application WPF is used. Windows Forms can be used in the same way. Visual Studio
2008 has a new project setting named Services that allows using client application services. Here you can
set Forms authentication and the location of the authentication and roles service to the address defined
previously: http://localhost:55555/AppServices . All that ’ s done from this project configuration
is referencing the assemblies System.Web and System.Web.Extensions , and changing the
application configuration file to configure membership and role providers that use the classes
 ClientFormsAuthenticationMembershipProvider and ClientRoleProvider and the address
of the Web service that is used by these providers.

 < ?xml version=”1.0” encoding=”utf-8”? >
 < configuration >
 < system.web >
 < membership defaultProvider=”ClientAuthenticationMembershipProvider” >
 < providers >
 < add name=”ClientAuthenticationMembershipProvider”
 type=”System.Web.ClientServices.Providers.
 ClientFormsAuthenticationMembershipProvider,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” serviceUri=
“http://localhost:55555/AppServices/Authentication_JSON_AppService.axd” / >
 < /providers >
 < /membership >
 < roleManager defaultProvider=”ClientRoleProvider” enabled=”true” >
 < providers >
 < add name=”ClientRoleProvider”
 type=”System.Web.ClientServices.Providers.ClientRoleProvider,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” serviceUri=
 “http://localhost:55555/AppServices/Role_JSON_AppService.axd”
 cacheTimeout=”86400” / >
 < /providers >
 < /roleManager >
 < /system.web >
 < /configuration >

 The Windows application just uses Label , TextBox , PasswordBox , and Button controls as
shown in Figure 20 - 1 . The Label with the content User Validated shows up only when the logon is
successful.

c20.indd 590c20.indd 590 2/19/08 5:16:57 PM2/19/08 5:16:57 PM

Chapter 20: Security

591

 The handler of the Button.Click event invokes the ValidateUser() method of the Membership class.
Because of the configured provider ClientAuthenticationMembershipProvider , the provider in
turn invokes the Web service and calls the method ValidateUser() of the
 SampleMembershipProvider class to verify a successful logon. With success, the Label
 labelValidatedInfo is made visible; otherwise a message box pops up:

 private void buttonLogin_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 if (Membership.ValidateUser(textUsername.Text,
 textPassword.Password))
 {
 // user validated!
 labelValidatedInfo.Visibility = Visibility.Visible;
 }
 else
 {
 MessageBox.Show(“Username or password not valid”,
 “Client Authentication Services”, MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }
 catch (WebException ex)
 {
 MessageBox.Show(ex.Message, “Client Application Services”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

 Encryption
 Confidential data should be secured so that it cannot be read by unprivileged users. This is valid both for
data that is sent across the network, or data that is stored somewhere. You can encrypt such data with
symmetric or asymmetric encryption keys.

Figure 20-1

c20.indd 591c20.indd 591 2/19/08 5:16:57 PM2/19/08 5:16:57 PM

Part III: Base Class Libraries

592

 With a symmetric key, the same key can be used for encryption and decryption. With asymmetric
encryption, different keys are used for encryption and decryption: a public and a private key. Something
encrypted using a public key can be decrypted with the corresponding private key. This also works the
other way around: something encrypted using a private key can be decrypted by using the
corresponding public key but not the private key.

 Public and private keys are always created as a pair. The public key can be made available to everybody,
and it can even be put on a Web site, but the private key must be safely locked away. Following are some
examples where these public and private keys are used to explain encryption.

 If Alice sends a message to Bob (see Figure 20 - 2), and Alice wants to make sure that no one else but Bob
can read the message, she uses Bob ’ s public key. The message is encrypted using Bob ’ s public key. Bob
opens the message and can decrypt it using his secretly stored private key. This key exchange guarantees
that no one but Bob can read Alice ’ s message.

Alice Bob

Eve
Figure 20-2

 There is one problem left: Bob can ’ t be sure that the mail comes from Alice. Eve can use Bob ’ s public key
to encrypt messages sent to Bob and pretend to be Alice. We can extend this principle using public/
private keys. Let ’ s start again with Alice sending a message to Bob. Before Alice encrypts the message
using Bob ’ s public key, she adds her signature and encrypts the signature using her own private key.
Then she encrypts the mail using Bob ’ s public key. Therefore, it is guaranteed that no one else but Bob
can read the mail. When Bob decrypts the message, he detects an encrypted signature. The signature can
be decrypted using Alice ’ s public key. For Bob, it is not a problem to access Alice ’ s public key because
the key is public. After decrypting the signature, Bob can be sure that it was Alice who sent the message.

 The encryption and decryption algorithms using symmetric keys are a lot faster than using asymmetric
keys. The problem with symmetric keys is that the keys must be exchanged in a safe manner. With
network communication, one way to do this is by using asymmetric keys first for the key exchange, and
then symmetric keys for encryption of the data that is sent across the wire.

 With the .NET Framework, you find classes for encryption in the namespace System.Security
.Cryptography . Several symmetric and asymmetric algorithms are implemented. You can find different
algorithm classes for many different purposes. Some of the new classes with .NET 3.5 have a Cng prefix

c20.indd 592c20.indd 592 2/19/08 5:16:57 PM2/19/08 5:16:57 PM

Chapter 20: Security

593

or suffix. Cng is short for Cryptography Next Generation , which can be used with Windows Vista and
Windows Server 2008. This API makes it possible to write a program independent of the algorithm by
using a provider - based model. If you are targeting Windows Server 2003 as well, you need to pay
attention to what encryption classes to use.

 The following table lists encryption classes from the namespace System.Security.Cryptography and
their purposes. The classes without a Cng , Managed , or CryptoServiceProvider suffix are abstract
base classes, such as MD5 . The Managed suffix means this algorithm is implemented with managed code;
other classes might wrap native Windows API calls. The suffix CryptoServiceProvider is used with
classes that implement the abstract base class. The Cng suffix is used with classes that make use of the
new Cryptography CNG API that is available only with Windows Vista and Windows Server 2008.

 Category Classes Description

 Hash MD5 , MD5Cng
SHA1 , SHA1Managed ,
 SHA1Cng
SHA256 , SHA256Managed , SHA256Cng
SHA384 , SHA384Managed , SHA384Cng
SHA512 , SHA512Managed , SHA512Cng

 Hash algorithms have the purpose of creat-
ing a fixed - length hash value from binary
strings of arbitrary length. These algorithms
are used with digital signatures and for
data integrity. If the same binary string is
hashed again, the same hash result is
returned.

MD5 (Message Digest Algorithm 5) was
developed at RSA Laboratories and is faster
than SHA1. SHA1 is stronger against brute
force attacks. The SHA algorithms have
been designed by the National Security
Agency (NSA). MD5 uses a 128 - bit hash
size; SHA1 uses 160 bit. The other SHA
algorithms contain the hash size in the
name. SHA512 is the strongest of these
algorithms; with a hash size of 512 bits, it is
also the slowest.

 Symmetric DES , DESCryptoServiceProvider
TripleDES ,
 TripleDESCryptoServiceProvider
Aes , AesCryptoServiceProvider ,
 AesManaged
RC2 , RC2CryptoServiceProvider
Rijandel , RijandelManaged

 Symmetric key algorithms use the same key
for encryption and decryption of data. DES
(Data Encryption Standard) is now consid-
ered insecure because it uses just 56 bits for
the key size and can be broken in less than
24 hours. Triple - DES is the successor of DES
and has a key length of 168 bits, but the
effective security it provides is only 112 bit.
AES (Advanced Encryption Standard) has a
key size of 128, 192, or 256 bits. Rijandel is
very similar to AES; it just has more options
with the key size. AES is an encryption
standard adopted by the U.S. government.

c20.indd 593c20.indd 593 2/19/08 5:16:58 PM2/19/08 5:16:58 PM

Part III: Base Class Libraries

594

 Category Classes Description

 Asymmetric DSA, DSACryptoServiceProvider
ECDsa , ECDsaCng
ECDiffieHellman ,
 ECDiffieHellmanCng
RSA , RSACryptoServiceProvider

 Asymmetric algorithms use different keys
for encryption and decryption. RSA (Rivest,
Shamir, Adleman) was the first algorithm
used for signing as well as encryption. This
algorithm is widely used in e - commerce
protocols.

DSA (Digital Signature Algorithm) is a
United States Federal Government standard
for digital signatures.

ECDSA (Elliptic Curve DSA) and
ECDiffieHellman use algorithms based on
elliptic curve groups. These algorithms are
more secure with shorter key sizes. For
example, having a key size of 1024 bits for
DSA is similar in security with 160 bits for
ECDSA. As a result, ECDSA is much faster.

ECDiffieHellman is an algorithm used to
exchange private keys in a secure way over
a public channel.

 Let ’ s get into examples of how these algorithms can be used programmatically.

 Signature
 The first example demonstrates a signature using the ECDSA algorithm for signing. Alice creates a
signature that is encrypted with her private key and can be accessed using her public key. This way, it is
guaranteed that the signature is from Alice.

 First, take a look at the major steps in the Main() method: Alice ’ s keys are created, and the string Alice is
signed and finally verified if the signature is really from Alice by using the public key. The message that
is signed is converted to a byte array by using the Encoding class. To write the encrypted signature to
the console, the byte array that contains the signature is converted to a string with the method
 Convert.ToBase64String() .

 Never convert encrypted data to a string using the Encoding class. The Encoding class verifies and
converts invalid values that are not allowed with Unicode, and thus converting the string back to a byte
array yields a different result.

using System;
using System.Security.Cryptography;
using System.Text;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 internal static CngKey aliceKeySignature;

c20.indd 594c20.indd 594 2/19/08 5:16:58 PM2/19/08 5:16:58 PM

Chapter 20: Security

595

 internal static byte[] alicePubKeyBlob;

 static void Main()
 {
 CreateKeys();

 byte[] aliceData = Encoding.UTF8.GetBytes(“Alice”);
 byte[] aliceSignature = CreateSignature(aliceData,
 aliceKeySignature);
 Console.WriteLine(“Alice created signature: {0}”,
 Convert.ToBase64String(aliceSignature));

 if (VerifySignature(aliceData, aliceSignature, alicePubKeyBlob))
 {
 Console.WriteLine(“Alice signature verified successfully”);
 }
 }

 CreateKeys() is the method that creates a new key pair for Alice. This key pair is stored in a static field
so it can be accessed from the other methods. The Create() method of CngKey gets the algorithm as an
argument to define a key pair for the algorithm. With the Export() method, the public key of the key
pair is exported. This public key can be given to Bob for the verification of the signature. Alice keeps the
private key. Instead of creating a key pair with the CngKey class, you can open existing keys that are
stored in the key store. Usually Alice would have a certificate containing a key pair in her private store,
and the store could be accessed with CngKey.Open() .

 static void CreateKeys()
 {
 aliceKeySignature = CngKey.Create(CngAlgorithm.ECDsaP256);
 alicePubKeyBlob = aliceKeySignature.Export(
 CngKeyBlobFormat.GenericPublicBlob);
 }

 With the key pair, Alice can create the signature using the ECDsaCng class. The constructor of this class
receives the CngKey from Alice that contains both the public and private key. The private key is used,
signing the data with the SignData() method.

 static byte[] CreateSignature(byte[] data, CngKey key)
 {
 ECDsaCng signingAlg = new ECDsaCng(key);
 byte[] signature = signingAlg.SignData(data);
 signingAlg.Clear();

 return signature;
 }

 For verification if the signature was really from Alice, Bob checks the signature by using the public key
from Alice. The byte array containing the public key blob can be imported to a CngKey object with the
static Import() method. The ECDsaCng class is then used to verify the signature by invoking
 VerifyData() .

 static bool VerifySignature(byte[] data, byte[] signature,
 byte[] pubKey)
 {
 bool retValue = false;

(continued)

c20.indd 595c20.indd 595 2/19/08 5:16:59 PM2/19/08 5:16:59 PM

Part III: Base Class Libraries

596

 using (CngKey key = CngKey.Import(pubKey,
 CngKeyBlobFormat.GenericPublicBlob))
 {
 ECDsaCng signingAlg = new ECDsaCng(key);
 retValue = signingAlg.VerifyData(data, signature);
 signingAlg.Clear();
 }
 return retValue;
 }
 }
}

 Key Exchange and Secure Transfer
 Let ’ s get into a more complex example to exchange a symmetric key for a secure transfer by using the
Diffie Hellman algorithm. In the Main() method, you can see the main functionality. Alice creates an
encrypted message and sends the encrypted message to Bob. Before that, key pairs are created for Alice
and Bob. Bob gets access only to Alice ’ s public key, and Alice gets access only to Bob ’ s public key.

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static CngKey aliceKey;
 static CngKey bobKey;
 static byte[] alicePubKeyBlob;
 static byte[] bobPubKeyBlob;

 static void Main()
 {
 CreateKeys();
 byte[] encrytpedData = AliceSendsData(“secret message”);
 BobReceivesData(encrytpedData);

 }

 In the implementation of the CreateKeys() method, keys are created to be used with the EC Diffie
Hellman 256 algorithm.

 private static void CreateKeys()
 {
 aliceKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP256);
 bobKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP256);
 alicePubKeyBlob = aliceKey.Export(CngKeyBlobFormat.EccPublicBlob);
 bobPubKeyBlob = bobKey.Export(CngKeyBlobFormat.EccPublicBlob);
 }

(continued)

c20.indd 596c20.indd 596 2/19/08 5:16:59 PM2/19/08 5:16:59 PM

Chapter 20: Security

597

 In the method AliceSendsData() , the string that contains text characters is converted to a byte array
by using the Encoding class. An ECDiffieHellmanCng object is created and initialized with the key
pair from Alice. Alice creates a symmetric key by using her key pair and the public key from Bob calling
the method DeriveKeyMaterial() . The returned symmetric key is used with the symmetric algorithm
AES to encrypt the data. AesCryptoServiceProvider requires the key and an initialization vector (IV).
The IV is generated dynamically from the method GenerateIV() . The symmetric key is exchanged
with the help of the EC Diffie Hellman algorithm, but the IV must also be exchanged. From the security
standpoint, it is okay to transfer the IV unencrypted across the network — just the key exchange must be
secured. The IV is stored as first content in the memory stream followed by the encrypted data where the
 CryptoStream class uses the encryptor created by the AesCryptoServiceProvider class. Before
the encrypted data is accessed from the memory stream, the crypto stream must be closed. Otherwise,
end bits would be missing from the encrypted data.

 private static byte[] AliceSendsData(string message)
 {
 Console.WriteLine(“Alice sends message: {0}”, message);
 byte[] rawData = Encoding.UTF8.GetBytes(message);
 byte[] encryptedData = null;

 ECDiffieHellmanCng aliceAlgorithm = new ECDiffieHellmanCng(aliceKey);
 using (CngKey bobPubKey = CngKey.Import(bobPubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = aliceAlgorithm.DeriveKeyMaterial(bobPubKey);
 Console.WriteLine(“Alice creates this symmetric key with “ +
 “Bobs public key information: {0}”,
 Convert.ToBase64String(symmKey));

 AesCryptoServiceProvider aes = new AesCryptoServiceProvider();
 aes.Key = symmKey;
 aes.GenerateIV();
 using (ICryptoTransform encryptor = aes.CreateEncryptor())
 using (MemoryStream ms = new MemoryStream())
 {
 // create CryptoStream and encrypt data to send
 CryptoStream cs = new CryptoStream(ms, encryptor,
 CryptoStreamMode.Write);

 // write initialization vector not encrypted
 ms.Write(aes.IV, 0, aes.IV.Length);
 cs.Write(rawData, 0, rawData.Length);
 cs.Close();
 encryptedData = ms.ToArray();
 }
 aes.Clear();
 }
 Console.WriteLine(“Alice: message is encrypted: {0}”,
 Convert.ToBase64String(encryptedData)); ;
 Console.WriteLine();
 return encryptedData;
 }

c20.indd 597c20.indd 597 2/19/08 5:16:59 PM2/19/08 5:16:59 PM

Part III: Base Class Libraries

598

 Bob receives encrypted data in the argument of the method BobReceivesData() . First, the
unencrypted initialization vector must be read. The BlockSize property of the class
 AesCryptoServiceProvider returns the number of bits for a block. The number of bytes can be
calculated by doing a divide by 8, and the fastest way to do this is by doing a bit shift of 3 bits. Shifting
by 1 bit is a division by 2, 2 bits by 4, and 3 bits by 8. With the for loop, the first bytes of the raw bytes
that contain the IV unencrypted are written to the array iv . Next, an ECDiffieHellmanCng object is
instantiated with the key pair from Bob. Using the public key from Alice, the symmetric key is returned
from the method DeriveKeyMaterial() . Comparing the symmetric keys created from Alice and Bob
shows that the same key value gets created. Using this symmetric key and the initialization vector, the
message from Alice can be decrypted with the AesCryptoServiceProvider class.

 private static void BobReceivesData(byte[] encryptedData)
 {
 Console.WriteLine(“Bob receives encrypted data”);
 byte[] rawData = null;

 AesCryptoServiceProvider aes = new AesCryptoServiceProvider();

 int nBytes = aes.BlockSize > > 3;
 byte[] iv = new byte[nBytes];
 for (int i = 0; i < iv.Length; i++)
 iv[i] = encryptedData[i];

 ECDiffieHellmanCng bobAlgorithm = new ECDiffieHellmanCng(bobKey);

 using (CngKey alicePubKey = CngKey.Import(alicePubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = bobAlgorithm.DeriveKeyMaterial(alicePubKey);
 Console.WriteLine(“Bob creates this symmetric key with “ +
 “Alices public key information: {0}”,
 Convert.ToBase64String(symmKey));

 aes.Key = symmKey;
 aes.IV = iv;

 using (ICryptoTransform decryptor = aes.CreateDecryptor())
 using (MemoryStream ms = new MemoryStream())
 {
 CryptoStream cs = new CryptoStream(ms, decryptor,
 CryptoStreamMode.Write);
 cs.Write(encryptedData, nBytes, encryptedData.Length - nBytes);
 cs.Close();

 rawData = ms.ToArray();

 Console.WriteLine(“Bob decrypts message to: {0}”,
 Encoding.UTF8.GetString(rawData));
 }
 aes.Clear();
 }
 }

 When you run the application you can see similar output on the console. The message from Alice is
encrypted, and decrypted by Bob with the securely exchanged symmetric key.

c20.indd 598c20.indd 598 2/19/08 5:17:00 PM2/19/08 5:17:00 PM

Chapter 20: Security

599

Alice sends message: secret message
Alice creates this symmetric key with Bobs public key information:
5NWat8AemzFCYo1IIae9S3Vn4AXyai4aL8ATFo41vbw=
Alice: message is encrypted: 3C5U9CpYxnoFTk3Ew2V0T5Po0Jgryc5R7Te8ztau5N0=

Bob receives encrypted message
Bob creates this symmetric key with Alices public key information:
5NWat8AemzFCYo1IIae9S3Vn4AXyai4aL8ATFo41vbw=
Bob decrypts message to: secret message

 Access Control to Resources
 With the operating system, resources such as files and registry keys, as well as handles of a named pipe,
are secured by using an access control list. Figure 20 - 3 shows the structure of how this maps. The
resource has a security descriptor associated. The security descriptor contains information about the
owner of the resource and references two access control lists: a discretionary access - control list (DACL)
and a system access - control list (SACL). The DACL defines who has access or no access; the SACL
defines audit rules for security event logging. An ACL contains a list of access - control entries (ACE). The
ACE contains a type, a security identifier, and rights. With the DACL, the ACE can be of type access
allowed or access denied. Some of the rights that you can set and get with a file are create, read, write,
delete, modify, change permissions, and take ownership.

Resource

Security Descriptor

ACE ACE ACE ACEDACL

ACE ACE ACE ACESACL

Figure 20-3

 Classes to read and modify access control are in the namespace System.Security.AccessControl .

 The following program demonstrates reading the access control list from a file.

 The FileStream class defines the GetAccessControl() method that returns a FileSecurity object.
 FileSecurity is the .NET class that represents a security descriptor for files. FileSecurity derives
from the base classes ObjectSecurity , CommonObjectSecurity , NativeObjectSecurity , and
 FileSystemSecurity . Other classes that represent a security descriptor are CryptoKeySecurity ,
 EventWaitHandleSecurity , MutexSecurity , RegistrySecurity , SemaphoreSecurity ,
 PipeSecurity , and ActiveDirectorySecurity . All of these objects can be secured using an access
control list. In general, the corresponding .NET class defines the method GetAccessControl to return
the corresponding security class; for example, the Mutex.GetAccessControl() method returns a
 MutexSecurity , and the PipeStream.GetAccessControl() method returns a PipeSecurity .

 The FileSecurity class defines methods to read and change the DACL and SACL. The method
 GetAccessRules() returns the DACL in the form of the class AuthorizationRuleCollection . To
access the SACL, you can use the method GetAuditRules() .

c20.indd 599c20.indd 599 2/19/08 5:17:00 PM2/19/08 5:17:00 PM

Part III: Base Class Libraries

600

 With the method GetAccessRules() , you can define if inherited access rules, and not only access rules
directly defined with the object, should be used. The last parameter defines the type of the security
identifier that should be returned. This type must derive from the base class IdentityReference .
Possible types are NTAccount and SecurityIdentifier . Both of these classes represent users or
groups; the NTAccount class finds the security object by its name and the SecurityIdentifier class
finds the security object by a unique security identifier.

 The returned AuthorizationRuleCollection contains AuthorizationRule objects. The
 AuthorizationRule is the .NET representation of an ACE. With the sample here, a file is accessed, so
the AuthorizationRule can be cast to a FileSystemAccessRule . With ACEs of other resources,
different .NET representations exist, such as MutexAccessRule and PipeAccessRule . With the
 FileSystemAccessRule class, the properties AccessControlType , FileSystemRights , and
 IdentityReference return information about the ACE.

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main(string[] args)
 {
 string filename = null;
 if (args.Length == 0)
 return;

 filename = args[0];

 FileStream stream = File.Open(filename, FileMode.Open);
 FileSecurity securityDescriptor = stream.GetAccessControl();
 AuthorizationRuleCollection rules =
 securityDescriptor.GetAccessRules(true, true,
 typeof(NTAccount));

 foreach (AuthorizationRule rule in rules)
 {
 FileSystemAccessRule fileRule = rule as FileSystemAccessRule;
 Console.WriteLine(“Access type: {0}”, fileRule.AccessControlType);
 Console.WriteLine(“Rights: {0}”, fileRule.FileSystemRights);
 Console.WriteLine(“Identity: {0}”,
 fileRule.IdentityReference.Value);
 Console.WriteLine();
 }
 }
 }
}

c20.indd 600c20.indd 600 2/19/08 5:17:01 PM2/19/08 5:17:01 PM

Chapter 20: Security

601

 By running the application and passing a filename, you can see the access control list for the file. The
output shown here lists full control to Administrators and System, modification rights to authenticated
users, and read and execute rights to all users belonging to the group Users:

Access type: Allow
Rights: FullControl
Identity: BUILTIN\Administrators

Access type: Allow
Rights: FullControl
Identity: NT AUTHORITY\SYSTEM

Access type: Allow
Rights: Modify, Synchronize
Identity: NT AUTHORITY\Authenticated Users

Access type: Allow
Rights: ReadAndExecute, Synchronize
Identity: BUILTIN\Users

 Setting access rights is very similar to reading access rights. To set access rights, several resource classes
that can be secured offer the SetAccessControl() and ModifyAccessControl() methods. The
sample code here modifies the access control list of a file by invoking the SetAccessControl() method
from the File class. To this method a FileSecurity object is passed. The FileSecurity object is filled
with FileSystemAccessRule objects. The access rules listed here deny write access to the Sales group,
give read access to the Everyone group, and give full control to the Developers group.

 This program runs on your system only if the Windows groups Sales and Developers are defined. You
can change the program to use groups that are available in your environment.

 private static void WriteAcl(string filename)
 {
 NTAccount salesIdentity = new NTAccount(“Sales”);
 NTAccount developersIdentity = new NTAccount(“Developers”);
 NTAccount everyOneIdentity = new NTAccount(“Everyone”);

 FileSystemAccessRule salesAce = new FileSystemAccessRule(
 salesIdentity, FileSystemRights.Write, AccessControlType.Deny);
 FileSystemAccessRule everyoneAce = new FileSystemAccessRule(
 everyOneIdentity, FileSystemRights.Read,
 AccessControlType.Allow);
 FileSystemAccessRule developersAce = new FileSystemAccessRule(
 developersIdentity, FileSystemRights.FullControl,
 AccessControlType.Allow);

 FileSecurity securityDescriptor = new FileSecurity();
 securityDescriptor.SetAccessRule(everyoneAce);
 securityDescriptor.SetAccessRule(developersAce);
 securityDescriptor.SetAccessRule(salesAce);

 File.SetAccessControl(filename, securityDescriptor);
 }

 You can verify the access rules by opening the Properties and selecting a file in the Windows Explorer.
Selecting the Security tab lists the access control list.

c20.indd 601c20.indd 601 2/19/08 5:17:01 PM2/19/08 5:17:01 PM

Part III: Base Class Libraries

602

 Code Access Security
 What is the importance of code access security? With role - based security, you can define what the user
is allowed to do. Code access security defines what the code is allowed to do. It depends on the evidence
of the code — where is the code coming from? Depending on the origin of the code, different
permissions apply. Of course, role - based security still applies. The code cannot do more than the user is
allowed to do.

 Code access security is a feature of the runtime that manages code, according to your level of trust. If the
CLR trusts the code enough to allow it to run, it will begin executing the code. Depending on the
permissions given to the assembly, however, it might run within a restricted environment. If the code is
not trusted enough to run, or if it runs but then attempts to perform an action for which it does not have
the relevant permissions, a security exception (of type SecurityException or a subclass of it) is
thrown. The code access security system means that you can stop malicious code from running, but you
can also allow code to run within a protected environment where you are confident that it cannot do
any damage.

 There are different scenarios in which code access security becomes important. With ClickOnce
deployment, in many scenarios it is okay to use full trust, meaning the code is allowed to do anything
that the user is allowed to do. If the ClickOnce deployed application is installed within the company,
then maybe you trust your own application. An application certificate that is coming with the
application can also give enough information about a vendor that you trust, so you can deploy the
vendor ’ s application using ClickOnce with full rights to your own system. Of course, restricted rights
are also possible with ClickOnce. Scenarios in which code access security becomes more important than
with ClickOnce are in hosting environments and with add - ins. If you create an add - in host, you might
not want to give all your rights to the add - ins that are loaded from your application. You can restrict the
permissions for assemblies that are called. A Web site hosting company does not want Web applications
from different customers running on the server to have full rights to the system. They could break a
server that might run hundreds or thousands of Web applications. Restricting permissions for Web
applications is a good option.

 Chapter 16 , “ Deployment, ” explains ClickOnce in detail. Creating add - ins is discussed in Chapter 36 ,
 “ Add - Ins. ”

 Code access security is based on these concepts: permissions, permission sets, code groups, and policies.
Take a look at them now, because they form the foundations of the sections that follow:

 Permissions are the actions that you allow each code group to perform. For example,
permissions include “ read files from the file system, ” “ write to the Active Directory, ” and “ use
sockets to open network connections. ” Several predefined permissions exist, but you can also
create your own permissions.

 Permission sets are collections of permissions. With permission sets, it is not necessary to apply
every single permission to code; permissions are grouped to permission sets. Some examples of
permission sets are FullTrust, LocalIntranet, and Internet. You can create a permission set that
includes required permissions. An assembly that has FullTrust permissions has full access to all
resources. With LocalIntranet, the assembly is restricted, that is, it is not allowed to write to the
file system other than using the isolated storage.

 Code groups bring together code with similar characteristics. A code group defines the origin of
the code. Examples for existing code groups are Internet and Intranet. The group Internet
defines code that is sourced from the Internet, and the group Intranet defines code sourced from
the LAN. The information used to place assemblies into code groups is called evidence . Other
evidence is collected by the CLR, including the publisher of the code, the strong name, and
(where applicable) the URI from which it was downloaded. Code groups are arranged in a

❑

❑

❑

c20.indd 602c20.indd 602 2/19/08 5:17:01 PM2/19/08 5:17:01 PM

Chapter 20: Security

603

hierarchy, and assemblies are nearly always matched to several code groups. The code group at
the root of the hierarchy is called All Code and contains all other code groups. The hierarchy is
used for deciding which code groups an assembly belongs to; if an assembly does not provide
evidence that matches it to a group in the tree, no attempt is made to match it to code
groups below.

 Policies allow the system administrator to define different levels of permissions for the
complete company, machines, and users. Code groups are defined within all of these policies,
and the permissions are combined.

 Permissions
 .NET permissions are independent of operating system permissions. .NET permissions are just verified
by the CLR. An assembly demands a permission for a specific operation (for example, the File class
demands the FileIOPermission), and the CLR verifies if the assembly has the permission granted so
that it can continue.

 There is a very fine - grained list of permissions that you can apply to an assembly or request from code.
The following list shows a few of the code access permissions provided by the CLR; as you can see, you
have great control of what code is or is not permitted to do:

 DirectoryServicesPermission controls the ability to access Active Directory through the
 System.DirectoryServices classes.

 DnsPermission controls the ability to use the TCP/IP Domain Name System (DNS).

 EnvironmentPermission controls the ability to read and write environment variables.

 EventLogPermission controls the ability to read and write to the event log.

 FileDialogPermission controls the ability to access files that have been selected by the user in
the Open dialog box. This permission is commonly used when FileIOPermission is not
granted to allow limited access to files.

 FileIOPermission controls the ability to work with files (reading, writing, and appending to
files, as well as creating, altering, and accessing folders).

 IsolatedStorageFilePermission controls the ability to access private virtual file systems.

 IsolatedStoragePermission controls the ability to access isolated storage; storage that is
associated with an individual user and with some aspect of the code ’ s identity. Isolated storage
is discussed in Chapter 25 , “ Manipulating Files and the Registry. ”

 MessageQueuePermission controls the ability to use message queues through the Microsoft
Message Queue.

 PerformanceCounterPermission controls the ability to make use of performance counters.

 PrintingPermission controls the ability to print.

 ReflectionPermission controls the ability to discover information about a type at runtime by
using System.Reflection .

 RegistryPermission controls the ability to read, write, create, or delete registry keys and values.

 SecurityPermission controls the ability to execute, assert permissions, call into unmanaged
code, skip verification, and other rights.

 ServiceControllerPermission controls the ability to control Windows services.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 603c20.indd 603 2/19/08 5:17:02 PM2/19/08 5:17:02 PM

Part III: Base Class Libraries

604

 SocketPermission controls the ability to make or accept TCP/IP connections on a network
transport address.

 SQLClientPermission controls the ability to access SQL Server databases with the .NET data
provider for SQL Server.

 UIPermission controls the ability to access the user interface.

 WebPermission controls the ability to make or accept connections to or from the Web.

 With each of these permission classes, it is often possible to specify an even deeper level of granularity;
for example, the DirectoryServicesPermission allows you to differentiate between read and write
access, and also allows you to define which entries in the directory services are allowed or denied access.

 In terms of best practice, you should ensure that any attempts to use resources require permissions to be
enclosed within try/catch error - handling blocks, so that your application degrades gracefully, should
it be running under restricted permissions. The design of your application should specify how your
application should act under these circumstances. Do not assume that it will be running under the same
security policy under which it has been developed. For example, if your application cannot access the
local drive, should it exit or operate in an alternative fashion?

 Another set of permissions is assigned by the CLR on the basis of the identity of the code, which cannot
be granted. These permissions relate to the evidence the CLR has collated about the assembly and are
called identity permissions . Here are the names of the classes for the identity permissions:

 PublisherIdentityPermission refers to the software publisher ’ s digital signature.

 SiteIdentityPermission refers to the name of the Web site from which the code originated.

 StrongNameIdentityPermission refers to the assembly ’ s strong name.

 URLIdentityPermission refers to the URL from which the code came (including the protocol,
for example, https://).

 ZoneIdentityPermission refers to the zone from which the assembly originates.

 By assigning the permission to code groups, there is no need to deal with every single permission.
Instead, the permissions are applied in blocks, which is why .NET has the concept of permission sets.
These are lists of code access permissions grouped into a named set. The following list explains the
named permission sets you get out of the box:

 FullTrust means no permission restrictions.

 SkipVerification means that verification is not done.

 Execution grants the ability to run, but not to access any protected resources.

 Nothing grants no permissions and prevents the code from executing.

 LocalIntranet specifies the default policy for the local intranet, a subset of the full set of
permissions. For example, file IO is restricted to read access on the share where the assembly
originates.

 Internet specifies the default policy for code of unknown origin. This is the most restrictive
policy listed. For example, code executing in this permission set has no file IO capability, cannot
read or write event logs, and cannot read or write environment variables.

 Everything grants all the permissions that are listed under this set, except the permission to skip
code verification. The administrator can alter any of the permissions in this permission set. This
is useful when the default policy needs to be tighter.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 604c20.indd 604 2/19/08 5:17:02 PM2/19/08 5:17:02 PM

Chapter 20: Security

605

 Note that of these you can change the definitions of only the Everything permission set — the other sets
are fixed and cannot be changed. Of course, you can also create your own permission set.

 Identity permissions cannot be included in permission sets because the CLR is the only body able to
grant identity permissions to code. For example, if a piece of code is from a specific publisher, it would
make little sense for the administrator to assign the identity permissions associated with another
publisher. The CLR grants identity permissions where necessary, and if you want, you can use them.

 Demanding Permissions Programmatically
 An assembly can demand permissions declaratively or programmatically. To see how demanding
permissions works, create a Windows Forms application that contains just a button. When the button is
clicked, a file on the local file system is accessed. If the application does not have the relevant permission
to access the local drive (FileIOPermission), the button will be marked as disabled (dimmed).

 If you import the namespace System.Security.Permissions , you can change the constructor of the
class Form1 to check for permissions by creating a FileIOPermission object, calling its Demand()
method, and then acting on the result:

 public Form1()
 {
 InitializeComponent();

 try
 {
 FileIOPermission fileIOPermission = new
 FileIOPermission(FileIOPermissionAccess.AllAccess,@”c:\”);
 fileIOPermission.Demand();
 }
 catch (SecurityException)
 {
 button1.Enabled = false;
 }
 }

 FileIOPermission is contained within the System.Security.Permissions namespace, which is
home to the full set of permissions and also provides classes for declarative permission attributes and
enumerations for the parameters that are used to create permissions objects (for example, creating a
 FileIOPermission specifying whether read - only or full access is needed).

 If you run the application from the local drive where the default security policy allows access to local
storage, you will see a dialog box with a button that is enabled. However, if you copy the executable to a
network share and run it again, you are operating within the LocalIntranet permission set, which
blocks access to local storage, and the button will be disabled.

 Within the implementation of the click event handler, there is no need to check the required security
because the relevant class in the .NET Framework already demands the file permission, and the CLR
ensures that each caller up the stack has those permissions before proceeding. If you run the application
from the intranet, and it attempts to open a file on the local disk, you will see an exception unless the
security policy has been altered to grant access to the local drive.

 To catch exceptions thrown by the CLR when code attempts to act contrary to its granted
permissions, you can catch the exception of the type SecurityException , which provides
access to a number of useful pieces of information, including a human - readable stack
trace (SecurityException.StackTrace) and a reference to the method that threw the exception
(SecurityException.TargetSite). SecurityException even provides you with the
 SecurityException.PermissionType property, which returns the type of Permission object that

c20.indd 605c20.indd 605 2/19/08 5:17:03 PM2/19/08 5:17:03 PM

Part III: Base Class Libraries

606

caused the security exception to occur. If you have problems with security exceptions, this should be
one of your first parts to diagnose. Simply remove the try and catch blocks from the previous code to
see the security exception.

 Declarative Permissions
 You can deny, demand, and assert permissions by invoking permission classes programmatically.
However, you can also use attributes and specify permission requirements declaratively.

 The main benefit of using declarative security is that the settings are accessible through reflection. This
can be of enormous benefit to system administrators, who often will want to view the security
requirements of applications.

 For example, you can specify that a method must have permission to read from C:\ to execute:

using System;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 MyClass.Method();
 }
 }

 class MyClass
 {
 [FileIOPermission(SecurityAction.Demand, Read=”C:/”)]
 public static void Method()
 {
 // implementation goes here
 }
 }
}

 Be aware that if you use attributes to assert or demand permissions, you cannot catch any exceptions
that are raised if the action fails, because there is no imperative code around in which you can place
a try - catch - finally clause.

 Requesting Permissions
 As discussed in the previous section, demanding permissions (either by code or declaratively) is where
you state clearly what you need at runtime; however, you can configure an assembly so it makes a softer
request for permissions right at the start of execution. The assembly can specify the required permissions
before it begins executing.

 You can request permissions in three ways:

 Minimum permissions specify the permissions your code must run.

 Optional permissions specify the permissions your code can use but is able to run effectively
without.

 Refused permissions specify the permissions that you want to ensure are not granted to
your code.

❑

❑

❑

c20.indd 606c20.indd 606 2/19/08 5:17:03 PM2/19/08 5:17:03 PM

Chapter 20: Security

607

 Why would you want to request permissions when your assembly starts? There are several reasons:

 If your assembly needs certain permissions to run, it makes sense to state this at the start of
execution rather than during execution to ensure that the user does not experience a road block
after beginning to work in your program.

 You will be granted only the permissions you request and nothing more. Without explicitly
requesting permissions your assembly might be granted more permissions than it needs to
execute. This increases the risk of your assembly being used for malicious purposes by other
code.

 If you request only a minimum set of permissions, you are increasing the probability that your
assembly will run, because you cannot predict the security policies that are effective at the user ’ s
location.

 Requesting permissions is likely to be most useful if you are doing more complex deployment, and there
is a higher risk that your application will be installed on a machine that does not grant the required
permissions. It is usually preferable for the application to know right at the start if it will not be
granted permissions, rather than halfway through execution.

 With Visual Studio, you can get help to calculate the required permissions of an application by
selecting the Security tab with the properties (see Figure 20 - 4). Clicking the Calculate Permissions
button checks the code of the assembly and lists all required permissions.

❑

❑

❑

Figure 20-4

 Instead of using Visual Studio, you can use the command - line tool permcalc.exe to calculate the
required permissions of an assembly.

 The command line

permcalc.exe -show -stacks -cleancache DemandingPermissions.exe

c20.indd 607c20.indd 607 2/19/08 5:17:04 PM2/19/08 5:17:04 PM

Part III: Base Class Libraries

608

creates an XML file that contains all required permissions. With the option – show , the XML file is opened
immediately. The option – stacks adds the stack information to the XML file for you to see where the
permissions demand originated from.

 The required permissions can be added as attributes to the assembly. Following are three examples that
demonstrate using attributes to request permissions. If you are following this with the code download,
you can find these examples in the RequestingPermissions project. The first attribute requests that
the assembly have UIPermission granted, which will allow the application access to the user
interface. The request is for the minimum permissions, so if this permission is not granted, the
assembly will fail to start:

using System.Security.Permissions;
[assembly:UIPermission(SecurityAction.RequestMinimum, Unrestricted=true)]

 Next, there is a request that the assembly be refused access to the C:\ drive. This attribute ’ s setting
means that the entire assembly will be blocked from accessing this drive:

 [assembly:FileIOPermission(SecurityAction.RequestRefuse, Read=”C:/”)]

 Finally, here is an attribute that requests that the assembly be optionally granted the permission to access
unmanaged code:

 [assembly:SecurityPermission(SecurityAction.RequestOptional,
 Flags = SecurityPermissionFlag.UnmanagedCode)]

 In this scenario, you want to add this attribute to an application that accesses unmanaged code in at
least one place. In this case, it is specified that this permission is optional, which means that the
application can run without the permission to access unmanaged code. If the assembly is not granted
permission to access unmanaged code and attempts to do so, a SecurityException will be raised,
which the application should expect and handle accordingly. The following table shows the full list of
available SecurityAction enumeration values; some of these values are covered in more detail later in
this chapter.

 SecurityAction Enumeration Description

 Assert Allows code to access resources not available to the caller.

 Demand Requires all callers in the call stack to have the specified permission.

 DemandChoice Requires all callers in the stack to have one of the specified permis-
sions.

 Deny Denies a permission by forcing any subsequent demand for the per-
mission to fail.

 InheritanceDemand Requires derived classes to have the specified permission granted.

 LinkDemand Requires the immediate caller to have the specified permission.

 LinkDemandChoice Requires the immediate caller to have one of the specified permis-
sions.

 PermitOnly Similar to Deny ; subsequent demands for resources not explicitly
listed by PermitOnly are refused.

c20.indd 608c20.indd 608 2/19/08 5:17:04 PM2/19/08 5:17:04 PM

Chapter 20: Security

609

 SecurityAction Enumeration Description

 RequestMinimum Applied at assembly scope; this contains a permission required for
an assembly to operate correctly.

 RequestOptional Applied at assembly scope; this asks for permissions the assembly
can use, if available, to provide additional features and functional-
ity.

 RequestRefuse Applied at assembly scope when there is a permission you do not
want your assembly to have.

 When you consider the permission requirements of your application, you need to decide between
two options:

 Request all the permissions you need at the start of execution, and degrade gracefully or exit if
those permissions are not granted.

 Avoid requesting permissions at the start of execution, but be prepared to handle security
exceptions throughout your application.

 After an assembly has been configured using permission attributes in this way, you can use the
 permcalc.exe utility to show the required permissions by aiming at the assembly file that contains the
assembly manifest using the – assembly option of the permcalc.exe utility:

 > permcalc.exe -show -assembly RequestingPermissions.exe

 The output for an application using the three previously discussed attributes looks like this:

Microsoft (R) .NET Framework Permissions Calculator.
Copyright (C) Microsoft Corporation 2005. All rights reserved.

Analyzing...
|----------------------------------|
...

RequestingPermissions.exe
Minimal permission set:
 < PermissionSet class=”System.Security.PermissionSet”
version=”1” >
 < IPermission class=”System.Security.Permissions.UIPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089” version=”1”
Unrestricted=”true”/ >
 < /PermissionSet >

Optional permission set:
 < PermissionSet class=”System.Security.PermissionSet”
version=”1” >
 < IPermission class=”System.Security.Permissions.SecurityPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089” version=”1” Flag
s=”SecurityPermissionFlag.UnmanagedCode” / >
 < /PermissionSet >

❑

❑

(continued)

c20.indd 609c20.indd 609 2/19/08 5:17:05 PM2/19/08 5:17:05 PM

Part III: Base Class Libraries

610

Refused permission set:
 < PermissionSet class=”System.Security.PermissionSet”
version=”1” >
 < IPermission class=”System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089” version=”1”
Read=”C:”/ >
 < /PermissionSet >

Generating output...
Writing file: RequestingPermissions.exe.PermCalc.xml...

 In addition to requesting permissions, you can also request a complete permissions set; the advantage is
that you don ’ t have to deal with every single permission. However, you can only request permission
sets that cannot be altered. The Everything permission set can be altered through the security policy
while an assembly is running, so it cannot be requested.

 Here is an example of how to request a built - in permission set:

 [assembly:PermissionSet(SecurityAction.RequestMinimum,
 Name = “FullTrust”)]

 In this example, the assembly requests that as a minimum it needs the FullTrust built - in permission set
granted. If this set of permissions is not granted, the assembly will throw a security exception at runtime.

 Implicit Permissions
 When permissions are granted, there is often an implicit statement that you are also granted other
permissions. For example, if you assign the FileIOPermission for C:\ , there is an implicit assumption
that there is also access to its subdirectories.

 To check whether a granted permission implicitly brings another permission as a subset, you can do this:

 class Program
 {
 static void Main()
 {
 CodeAccessPermission permissionA =
 new FileIOPermission(FileIOPermissionAccess.AllAccess, @”C:\”);
 CodeAccessPermission permissionB =
 new FileIOPermission(FileIOPermissionAccess.Read, @”C:\temp”);
 if (permissionB.IsSubsetOf(permissionA))
 {
 Console.WriteLine(“PermissionB is a subset of PermissionA”);
 }
 }
 }

 The output looks like this:

PermissionB is a subset of PermissionA

 Denying Permissions
 Under certain circumstances, you might want to perform an action and be absolutely sure that the
method that is called is acting within a protected environment. An assembly shouldn ’ t be allowed to do
anything unexpected. For example, say that you want to make a call to an add - in component in a way

(continued)

c20.indd 610c20.indd 610 2/19/08 5:17:05 PM2/19/08 5:17:05 PM

Chapter 20: Security

611

that it will not access the local disk. Create an instance of the permission you want to ensure that the
method is not granted, and then call its Deny() method before making the call to the class:

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 CodeAccessPermission permission =
 new FileIOPermission(FileIOPermissionAccess.AllAccess,@”C:\”);
 permission.Deny();
 UntrustworthyClass.Method();
 CodeAccessPermission.RevertDeny();
 }
 }

 class UntrustworthyClass
 {
 public static void Method()
 {
 try
 {
 using (StreamReader reader = File.OpenText(@”C:\textfile.txt”))
 {
 }
 }
 catch
 {
 Console.WriteLine(“Failed to open file”);
 }
 }
 }
}

 If you build this code, the output will state Failed to open file , because the untrustworthy class does not
have access to the local disk.

 Note that the Deny() call is made on an instance of the permission object, whereas the RevertDeny()
call is made statically. The reason for this is that the RevertDeny() call reverts all deny requests within
the current stack frame; if you have made several calls to Deny() , you need to make only one follow - up
call to RevertDeny() .

 Asserting Permissions
 Imagine that an assembly has been installed with full trust on a user ’ s system. Within that assembly
there is a method that saves auditing information to a text file on the local disk. If, later, an application is
installed that wants to make use of the auditing feature, it will be necessary for the application to have
the relevant FileIOPermission permissions to save the data to disk.

c20.indd 611c20.indd 611 2/19/08 5:17:05 PM2/19/08 5:17:05 PM

Part III: Base Class Libraries

612

 This seems excessive, however, because all you really want to do is perform a highly restricted action
on the local disk. In these situations, it would be useful if assemblies with limiting permissions could
make calls to more trusted assemblies that can temporarily increase the scope of the permissions on the
stack, and perform operations on behalf of the caller. The caller, itself, doesn ’ t need to have the
permissions.

 Another example in which asserts become important is when you create assemblies that invoke native
code using platform invoke. The assembly invoking native methods requires full trust. But is it really
necessary that all callers of this assembly require full trust as well? Take a look at how this is done with
the .NET Framework assemblies. The File class invokes the native Windows API CreateFile() and
thus needs full trust. The File class itself asserts the permission it requires by itself so that the caller
does not require having this permission itself, but demands the FileIOPermission . (Platform invoke is
discussed in Chapter 24 , “ Interoperability. ”)

 Assemblies with a high enough level of trust can assert permissions that they require. If the assembly has
the permissions it needs to assert additional permissions, it removes the need for callers up the stack to
have such wide - ranging permissions.

 The code that follows contains a class called AuditClass that implements a method called Save() ,
which takes a string and saves audit data to C:\audit.txt . The AuditClass method asserts the
permissions it needs to add the audit lines to the file. For testing it, the Main() method for the
application explicitly denies the file permission that the Audit method needs:

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 CodeAccessPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Append,
 @”C:\audit.txt”);
 permission.Deny();
 AuditClass.Save(“some data to audit”);
 CodeAccessPermission.RevertDeny();
 }
 }
 class AuditClass
 {
 public static void Save(string value)
 {
 try
 {
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Append,
 @”C:\audit.txt”);
 permission.Assert();
 FileStream stream = new FileStream(@”C:\audit.txt”,
 FileMode.Append, FileAccess.Write);

 // code to write to audit file here...

c20.indd 612c20.indd 612 2/19/08 5:17:06 PM2/19/08 5:17:06 PM

Chapter 20: Security

613

 CodeAccessPermission.RevertAssert();
 Console.WriteLine(“Data written to audit file”);
 }
 catch
 {
 Console.WriteLine(“Failed to write data to audit file”);
 }
 }
 }
}

 When this code is executed, you will find that the call to the AuditClass method does not cause a security
exception, even though when it was called it did not have the required permissions to carry out the disk access.

 Like RevertDeny() , RevertAssert() is a static method, and it reverts all assertions within the
current frame.

 It is important to be very careful when using assertions. You are explicitly assigning permissions to a
method that has been called by code that might not have those permissions, and this could open a
security hole. For example, in the auditing example, even if the security policy dictated that an installed
application cannot write to the local disk, your assembly would be able to write to the disk when the
auditing assembly asserts FileIOPermissions for writing.

 However, to perform the assertion, the auditing assembly must have been installed with permission for
 FileIOAccess and SecurityPermission . The SecurityPermission allows an assembly to perform
an assert, and the assembly will need both the SecurityPermission and the permission being asserted
to complete successfully.

 Code Groups
 This section gets into management of assemblies and their permissions. Instead of managing every
assembly on its own, code groups are defined. Code groups have an entry requirement called membership
condition . For an assembly to be filed in a code group, it must match the group ’ s membership condition.
Membership conditions include “ the assembly is from the site www.microsoft.com ” or “ the publisher
of this software is Microsoft Corporation. ”

 Each code group has one, and only one, membership condition. Assemblies can be within multiple code
groups. The following list provides the types of code group membership conditions available in .NET:

 Zone — The region from which the code originated.

 Site — The Web site from which the code originated.

 Strong name — A unique, verifiable name for the code. Strong names are discussed in Chapter
 17 , “ Assemblies. ”

 Publisher — The publisher of the code.

 URL — The specific location from which the code originated.

 Hash value — The hash value for the assembly.

 Skip verification — This condition requests that it bypass code verification checks. Code
verification ensures that the code accesses types in a well - defined and acceptable way. The
runtime cannot enforce security on code that is not type - safe.

 Application directory — The location of the assembly within the application.

 All code — All code fulfills this condition.

 Custom — A user - specified condition.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 613c20.indd 613 2/19/08 5:17:06 PM2/19/08 5:17:06 PM

Part III: Base Class Libraries

614

 The first, and most commonly used, type of membership condition is the Zone condition. A zone is the
region of origin of a piece of code and refers to one of the following: MyComputer, Internet, Intranet,
Trusted, or Untrusted. These zones can be managed by using the Internet Options in Windows
Security Center.

 Code groups are arranged hierarchically with the All Code membership condition at the root (see
Figure 20 - 5). You can see that each code group has a single membership condition and specifies the
permissions that the code group has been granted. Note that if an assembly does not match the
membership condition in a code group, the CLR does not attempt to match code groups below it.

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: Internet

Permission:Internet

Membership Condition: Zone

Code Group: https://Intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

Figure 20-5

 caspol.exe — The Code Access Security Policy Tool
 This section spends a good deal of time looking at the command - line Code Access Security Policy tool.
To get a list of options for the tool, just type the following at the command prompt:

caspol.exe -?

 To send the output to a text file, use:

caspol.exe > output.txt

 Take a look at the code groups on a machine using caspol.exe . The output of the command lists the
hierarchical structure of the code groups on the machine, and next to each group there is a description of
the code group. Type this command:

caspol.exe -listdescription

 Alternatively, the - listdescription parameter has a shortcut: - ld . A part of the output is shown here:

Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

Security is ON

c20.indd 614c20.indd 614 2/19/08 5:17:07 PM2/19/08 5:17:07 PM

Chapter 20: Security

615

Execution checking is ON
Policy change prompt is ON

Level = Machine

Full Trust Assemblies:

1. All_Code: Code group grants no permissions and forms the root of the code
group tree.
 1.1. My_Computer_Zone: Code group grants full trust to all code originating
 on the local computer
 1.1.1. Microsoft_Strong_Name: Code group grants full trust to code
 signed with the Microsoft strong name.
 1.1.2. ECMA_Strong_Name: Code group grants full trust to code signed
 with the ECMA strong name.
 1.2. LocalIntranet_Zone: Code group grants the intranet permission set to
 code from the intranet zone. This permission set grants intranet code
 the right to use isolated storage, full UI access, some capability to
 do reflection, and limited access to environment variables.
 1.2.1. Intranet_Same_Site_Access: All intranet code gets the right to
 connect back to the site of its origin.
 1.2.2. Intranet_Same_Directory_Access: All intranet code gets the right
 to read from its install directory.
 1.3. Internet_Zone: Code group grants code from the Internet zone the
 Internet permission set. This permission set grants Internet code the
 right to use isolated storage and limited UI access.

 The .NET security subsystem ensures that code from each code group is allowed to do only certain
things. For example, code from the Internet zone will, by default, have much stricter limits than code
from the local drive. Code from the local drive is normally granted access to data stored on the local
drive, but assemblies from the Internet are not granted this permission by default.

 Using caspol and its equivalent in the Microsoft Management Console, you can specify what level of
trust you have for each code access group, as well as managing code groups and permissions in a more
granular fashion.

 Take another look at the code access groups, but this time in a slightly more compact view. Make sure
that you are logged in as a local administrator, go to a command prompt, and type this command:

caspol.exe -listgroups

 You will see something like this:

Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Code Groups:

(continued)

c20.indd 615c20.indd 615 2/19/08 5:17:07 PM2/19/08 5:17:07 PM

Part III: Base Class Libraries

616

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -
00240000048000009400000006020000002400005253413100040
0000100010007D1FA57C4AED9F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23
BE79AD9D5DCC1DD9AD236132102900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE
4E821C0A5EFE8F1645C4C0C93C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963
D261C8A12436518206DC093344D5AD293: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - ‘Read, PathDiscovery’
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web.
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.
Success

 You will notice that near the start of the output it says Security is ON . Later in the chapter you will
see that it can be turned off and then turned on again.

 The Execution Checking setting is on by default, which means that all assemblies must be
granted the permission to execute before they can run. If execution checking is turned off using caspol
(caspol.exe –execution on|off), assemblies that do not have the permission to run can execute,
although they might cause security exceptions if they attempt to act contrary to the security policy later
in their execution.

 The Policy Change Prompt option specifies whether you see an “Are you sure” warning message when
you attempt to alter the security policy.

 As code is broken down into these groups, you can manage security at a more granular level, and apply
full trust to a much smaller percentage of code. Note that each group has a label (for example, 1.2). These
labels are auto-generated by .NET, and can differ between machines. Generally, security is not managed
for each assembly, but for a code group instead.

 When a machine has several side-by-side installations of CLR, the copy of caspol.exe that you run will
alter the security policy only for the installation of .NET with which it is associated.

 Viewing an Assembly’s Code Groups
 Assemblies are matched to code groups according to the membership conditions they match. If you were
to go back to the code groups example and load an assembly from the https://intranet/ Web site, it
would match the code groups shown in Figure 20-6 . The assembly is a member of the root code group
(All Code); because it came from the local network, it is also a member of the Intranet code group.
However, because it was loaded from the specific site https://intranet , it is also granted FullTrust ,
which means that it can run unrestricted.

(continued)

c20.indd 616c20.indd 616 2/19/08 5:17:07 PM2/19/08 5:17:07 PM

Chapter 20: Security

617

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: Internet

Permission:Internet

Membership Condition: Zone

Code Group: https://Intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

Figure 20-6

 You can easily view the code groups that an assembly is a member of using this command:

 caspol.exe -resolvegroup assembly.dll

 Running this command on an assembly on the local drive produces the following output:

 Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

Level = Enterprise

Code Groups:

1. All code: FullTrust

Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust

Level = User

Code Groups:

1. All code: FullTrust

Success

 You will notice that code groups are listed on three levels — Enterprise , Machine , and User . For now,
stay focused on the machine level. In case you are curious about the relationship among the three, the
effective permission given to an assembly is the intersection of the permissions from the three levels. For
example, if you remove the FullTrust permission from the Internet zone at the enterprise-level policy, all

c20.indd 617c20.indd 617 2/19/08 5:17:08 PM2/19/08 5:17:08 PM

Part III: Base Class Libraries

618

permissions are revoked for code from the Internet zone, and the settings of the other two levels become
irrelevant.

 Now use this command once more with the same assembly to read the code groups. However, this time,
the assembly is accessed from a Web server using the HTTP protocol. You can see that the assembly is a
member of different groups that have much more restrictive permissions:

 caspol.exe -resolvegroup http://server/assembly.dll
Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

Level = Enterprise

Code Groups:

1. All code: FullTrust
Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - Internet: Internet
 1.1.1. All code: Same site Web.

Level = User

Code Groups:

1. All code: FullTrust

Success

 The assembly grants the Internet and the Same Site Web permissions. The intersection of the permissions
allows the code limited UI access. It also permits the code to establish connections to the site it
originated from.

 Code Access Permissions and Permissions Sets
 Imagine yourself administering security policy on a network of desktop machines in a large enterprise
scenario. In this environment, it is immensely useful for the CLR to collect evidence information on code
before the code is allowed to execute. Likewise, you, as the administrator, must have the opportunity to
control what code is allowed on the several hundred machines you manage once the CLR has identified
its origin. This is where permissions start to act.

 After an assembly has been matched to code groups, the CLR looks at the security policy to calculate the
permissions it grants to an assembly. When managing permissions in Windows, you generally don’t
want to apply permissions to users, but you apply permissions to user groups instead. This is also true
with assemblies; permissions are applied to code groups rather than to individual assemblies, which
makes the management of security policy in .NET a much easier task.

 Look more closely at viewing an assembly’s permissions. Imagine using a Microsoft application in which
you use a feature that you have not used before. The application does not have a copy of the code stored
locally, so the code is requested from the Internet and downloaded into the Download Assembly Cache.
Figure 20-7 illustrates what an assembly’s code group membership might look like with code from the
Internet published by a named organization that has signed the assembly with a certificate.

c20.indd 618c20.indd 618 2/19/08 5:17:08 PM2/19/08 5:17:08 PM

Chapter 20: Security

619

 Although the All Code and Internet code groups have only limited permissions according to the policy in
this example, membership of the code group in the bottom right-hand corner grants the assembly the
FullTrust permission. The overall effective permission is the union of permissions across the matching
code groups. When the permissions are merged this way, the effective permission is that of all permissions
granted, that is, each code group to which an assembly belongs brings additional permissions.

 Just as you can check what code groups an assembly belongs to, it is also possible to look at the
permissions assigned to the code groups. By doing this you will see not only the code access permissions
(what the code is allowed to do), but also the code identity permissions that will give you access to the
evidence the code presented to the runtime. To see the permissions for an assembly’s code groups, use a
command like this:

 caspol.exe -resolveperm assembly.dll

 Try this on an assembly and look at the granted code access and identity permissions when the assembly
is accessed over a local intranet. When you type the following command, you will see the code access
permissions and then the three identity permissions at the end:

 caspol.exe -resolveperm http://somehost/assembly.dll
Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

Resolving permissions for level = Enterprise
Resolving permissions for level = Machine
Resolving permissions for level = User

Grant =
<PermissionSet class=”System.Security.PermissionSet”
 version=”1”>
 <IPermission class=”System.Security.Permissions.EnvironmentPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” Version=”1” Read=”USERNAME”/>

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: Internet

Permission:Internet

Membership Condition: Zone

Code Group: https://Intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

Figure 20-7

(continued)

c20.indd 619c20.indd 619 2/19/08 5:17:08 PM2/19/08 5:17:08 PM

Part III: Base Class Libraries

620

 <IPermission class=”System.Security.Permissions.FileDialogPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”
 version=”1” Unrestricted=”true”/>
 <IPermission
 class=”System.Security.Permissions.IsolatedStorageFilePermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Allowed=”AssemblyIsolationByUser”
 UserQuota=”9223372036854775807” Expiry=”9223372036854775807”
 Permanent=”True”/>
 <IPermission class=”System.Security.Permissions.ReflectionPermission,
 mscorlib, Version=”2.0.0.0, Culture=neutral,
 PublicKeyToken= b77a5c561934e089” Version=”1”
 Flags=”ReflectionEmit” />
 <IPermission class=”System.Security.Permissions.SecurityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Flags=”Assertion, Execution, BindingRedirects”/>
 <IPermission class=”System.Security.Permissions.UIPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.SiteIdentityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Site=”somehost” />
 <IPermission class=”System.Security.Permissions.UrlIdentityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Url=”http://somehost/assembly.dll” />
 <IPermission class=”System.Security.Permissions.ZoneIdentityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Zone=”Intranet” />
 <IPermission class=”System.Net.DnsPermission,
 System, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Unrestricted=”true” />
 <IPermission class=”System.Drawing.Printing.PrintingPermission,
 System.Drawing, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a” version=”1”
 Level=”DefaultPrinting” />
 <IPermission class=”System.Net.WebPermission,
 System, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”>
 <ConnectAccess>
 <URI uri=”(https|http)://somehost/.*”/>
 </ConnectAccess>
 </IPermission>
</PermissionSet>

Success

(continued)

c20.indd 620c20.indd 620 2/19/08 5:17:09 PM2/19/08 5:17:09 PM

Chapter 20: Security

621

 The output shows each of the permissions in XML, including the class defining the permission, the
assembly containing the class, the permission version, and an encryption token. The output suggests
that it is possible for you to create your own permissions. You can also see that each of the identity
permissions includes more detailed information on, for example, the UrlIdentityPermission class,
which provides access to the URL from which the code originated.

 Note how at the start of the output, caspol.exe resolved the permissions at the enterprise, machine,
and user levels and then listed the effective granted permissions, which is worth a closer look.

 Policy Levels: Machine, User, and Enterprise
 Up to now, you have dealt with security in the context of a single machine. It’s often necessary to specify
security policies for specific users or for an entire organization, and that is why .NET provides not one
but three policy levels:

 Machine

 Enterprise

 User

 The code group levels are independently managed and exist in parallel, as shown in Figure 20-8 .

❑

❑

❑

Code Group: All Code
Permission: Nothing

Membership Condition: All Code

Code Group: All Code
Permission: Nothing

Membership Condition: All Code

Code Group: MyComputer
Permission: FullTrust

Membership Condition: Zone

Code Group: All Code
Permission: Nothing

Membership Condition: All Code

Code Group: MyComputer
Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet
Permission: LocalIntranet

Membership Condition: Zone

Code Group: Internet
Permission:Internet

Membership Condition: Zone

Code Group: https://Intranet/
Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.
Permission: FullTrust

Membership Condition: Publisher

User Level

Enterprise Level

Machine Level

Figure 20-8

 If there are three security policies, how do you know which one applies? The effective permission is the
 intersection of the permissions from these three levels. Each of the three levels has the ability to veto the
permissions allowed by another — this is really good news for administrators because their settings will
override user settings.

 To work with code groups and permissions on the user or enterprise levels using caspol.exe , add
either the -enterprise or -user argument to change the command’s mode. caspol.exe works at the

c20.indd 621c20.indd 621 2/19/08 5:17:09 PM2/19/08 5:17:09 PM

Part III: Base Class Libraries

622

machine level by default and that’s how you’ve been using it until now. Use the following command to
see the code groups listing at the user level:

 caspol.exe -user -listgroups

 The output of the command on a default installation looks like this:

 Security is ON
Execution checking is ON
Policy change prompt is ON

Level = User

Code Groups:

1. All code: FullTrust
Success

 Now run the same command, but this time with the code groups at the enterprise level:

 caspol.exe -enterprise -listgroups

 The output of the command looks like this:

 Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Enterprise

Code Groups:

1. All code: FullTrust
Success

 As you can see, by default, both the user level and the enterprise level are configured to allow FullTrust
for the single code group All Code. The result of this is that the default setting for .NET security places
no restrictions at the enterprise or user levels, and the enforced policy is dictated solely by the machine-
level policy. For example, if you were to assign a more restrictive permission or permission set than
FullTrust to either the enterprise or user levels, those restrictions would restrict the overall permissions,
and probably override permissions at the machine level. The effective permissions are intersected. If you
want to apply FullTrust to a code group, this permission must be assigned to the code group on each of
the three policy levels.

 When you run caspol.exe as an administrator, it defaults to the machine level, but if you log out and
log back in as a user who is not in the Administrator user group, caspol.exe will default to the user
level instead. In addition, caspol.exe will not allow you to alter the security policy in a way that
renders the caspol.exe utility itself inoperable.

 Managing Security Policies
 As you have already seen, the glue that connects code groups, permissions, and permission sets consists
of three levels of security policy (enterprise, machine, and user). Security configuration information in
.NET is stored in XML configuration files that are protected by Windows security. For example, the
machine-level security policy is writable only by users in the Administrators and SYSTEM
Windows groups.

c20.indd 622c20.indd 622 2/19/08 5:17:10 PM2/19/08 5:17:10 PM

Chapter 20: Security

623

 The files that store the security policy are located in the following paths:

 Enterprise policy configuration — <windows>\Microsoft.NET\Framework\<version>\
Config\enterprise.config

 Machine policy configuration — <windows>\Microsoft.NET\Framework\<version>\
Config\security.config

 User policy configuration — %USERPROFILE%\application data\Microsoft\CLR
Security Config\<version>\security.config

 The subdirectory <version> varies, depending on the version of the CLR you have on your machine.
Because .NET 2.0, 3.0, and .NET 3.5 are based on the same version of the runtime, you find just one
configuration for all these Framework versions. If necessary, it’s possible to edit these configuration files
manually, for example, if an administrator needs to configure policy for a user without logging in to his
account. However, in general it’s recommended to use caspol.exe or other administrator tools.

 Given everything you have read so far, you are ready for a simple application that accesses the local
drive — the kind of behavior you are likely to want to manage carefully. The application is a C#
Windows Forms application with a list box and a button (see Figure 20-9). When you click the button,
the list box is populated from a file called animals.txt from your local user folder. Before starting the
application, you need to copy the file to this folder. In Windows Vista, the file is c:\users\
<username>\Documents\animals.txt .

❑

❑

❑

Figure 20-9

 The application was created by using Visual Studio, and the only changes were to add the list box and
Load Data button to the form and to add an event to the button that looks like this:

 // Example from SimpleExample

private void OnLoadData(object sender, System.EventArgs e)
{
 string filename = Path.Combine(Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments), “animals.txt”);
 using (StreamReader stream = File.OpenText(filename))
 {
 string str;
 while ((str=stream.ReadLine()) != null)
 {
 listAnimals.Items.Add(str);
 }
 }
}

c20.indd 623c20.indd 623 2/19/08 5:17:10 PM2/19/08 5:17:10 PM

Part III: Base Class Libraries

624

 It opens a simple text file animals.txt from the user folder, which contains a list of animals on separate
lines, and loads each line into a string, which it then uses to create each item in the list box.

 If you run the application from your local machine and click the button, you will see the data loaded and
displayed in the list box (see Figure 20-10). Behind the scenes the runtime has granted the assembly the
permission it needs to execute, access the user interface, and read data from the local disk.

Figure 20-10

Figure 20-11

 As mentioned earlier, the permissions on the Intranet zone code group are more restrictive than on the
local machine; in particular, they do not allow access to the local disk. If you run the application again,
but this time from a network share, it will run just as before because it is granted the permissions to
execute and access the user interface; however, if you now click the Load Data button on the form, a
security exception is thrown (see Figure 20-11). You’ll see in the exception message text that it mentions
the System.Security.Permissions.FileIOPermission object; this is the permission that the
application was not granted and that was demanded by the class in the Framework that was used to
load the data from the file on the local disk.

 By default, the Intranet code group is granted the LocalIntranet permission set; change the permission
set to FullTrust so that any code from the Intranet zone can run completely unrestricted.

 First, you need to get the numeric label of the LocalIntranet code group. You can do this with the
following command:

 >caspol.exe -listgroups

c20.indd 624c20.indd 624 2/19/08 5:17:10 PM2/19/08 5:17:10 PM

Chapter 20: Security

625

 This will output something like this:

 Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9
F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD2361321
02900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93
C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC09334
4D5AD293: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - ‘Read, PathDiscovery’
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web.
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.

 Notice that the LocalIntranet group is listed as 1.2. You can use the following command to apply
full trust:

 >caspol.exe -chggroup 1.2 FullTrust

 If you run the application from the network share again and click the button, you will see that the list
box is populated with the content of the file in the root of the C:\ drive and no exception occurs.

 In scenarios like these, in which you are making use of resources governed by permissions, it is
advisable to extend the code so that security exceptions are caught and the application can degrade
gracefully. For example, in the sample application, you can add a try/catch block around the file access
code, and if a SecurityException is thrown, you can display a line in the list box saying “Permission
denied accessing file”:

 private void OnLoadData(object sender, System.EventArgs e)
{
 try
 {
 string filename = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments) + @”\animals.txt”;
 StreamReader din = File.OpenText(filename);
 string str;
 while ((str=din.ReadLine()) != null)
 {
 listAnimals.Items.Add(str);
 }
 }
 catch (SecurityException ex)
 {
 MessageBox.Show(ex.Message);
 }
}

 In reality, if you wanted to run a specific application from a network share, you would most likely opt
for a solution that didn’t open up the client machine to all code on the intranet. Instead, code groups and

c20.indd 625c20.indd 625 2/19/08 5:17:11 PM2/19/08 5:17:11 PM

Part III: Base Class Libraries

626

membership conditions can be used to tightly control the requirements of the application — perhaps
using its location on the intranet, a strong name, or a certificate proving the identity of the publisher.

 Managing Code Groups and Permissions
 In managing security on .NET, if you find that an assembly is failing with a security exception, you
usually have three choices:

 Ease the policy permissions — You can change the permissions for the Machine policy to allow
more permissions for specific code groups. However, it is not a good practice to give more
permissions to the assemblies from an intranet or the Internet, because this can lead to Trojan
horses gaining access to your system. Instead, you can add new code groups that have specific
permissions as required.

 Move the assembly — Assemblies from a network share are not trusted as much as assemblies
installed on the local system. Instead of creating a new code group, you can move the assembly
to the local system so that it gets more permissions.

 Apply a strong name to the assembly — A good practice is to apply a strong name to the
assembly and create a code group that trusts the strong name.

 To make these kinds of decisions, you must take into account your level of trust of the assembly.

 Turning Security On and Off
 By default, .NET security is enabled. If, for any reason, you need to turn it off, you can do so like this:

 >caspol.exe -security off

 As a new security feature, running this command from the command prompt turns security off only
temporarily. As soon as you press the Enter key, security is turned on again. You can keep this command
prompt open as long as required and continue working with another command prompt. When you are
finished doing the security related tasks, press the Enter key and security is turned on again. You can
also explicitly turn it on again:

 >caspol.exe -security on

 To return the security configuration to its original state, you can type this command:

 >caspol.exe -reset

 This command resets the security policy to the installation’s default.

 Creating a Code Group
 You can create your own code groups and then apply specific permissions to them. For example, you
could specify that you want to trust all code from the Web site www.wrox.com and to give it full access to
the system (without trusting code from any other Web site).

 Earlier, the tool caspol was used to display a list with the available group and number assignments. The
zone Internet is labeled 1.3, so now type this command:

 >caspol.exe -addgroup 1.3 -site www.wrox.com FullTrust

 Note that this command will ask for confirmation because this is an attempt to alter the security policy
on the machine. If the command caspol.exe –listgroups is now run again, you will see that the new
code group has been added and assigned FullTrust:

❑

❑

❑

c20.indd 626c20.indd 626 2/19/08 5:17:11 PM2/19/08 5:17:11 PM

Chapter 20: Security

627

 …
1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - Read, PathDiscovery
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web.
 1.3.2. Site - www.wrox.com: FullTrust
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.

 Here’s another example. Say that you want to create a code group under the Intranet code group (1.2)
that grants FullTrust to all applications running from a specific network share. To do so, you run the
following command:

 >caspol.exe -addgroup 1.2 -url file:\\intranetserver/sharename/* FullTrust

 Deleting a Code Group
 To remove a code group that has been created, you can type a command like this:

 >caspol.exe -remgroup 1.3.2

 It will ask for confirmation that you want to alter the security policy, and if you give it positive
confirmation, it will state that the group has been removed.

 Be aware that although you cannot delete the code group All Code, you can delete
code groups at the level below it, including the Internet, MyComputer, and
 LocalIntranet groups.

 Changing a Code Group’s Permissions
 To ease or restrict the permissions assigned to a code group, you use caspol.exe again. Suppose that
you want to apply FullTrust to the Intranet zone; first, you need to get the label that represents the
Intranet code group:

 >caspol.exe -listgroups

 The output shows the Intranet code group:

 Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9
F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD2361321
02900B72
3CF980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB9928
5D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293
: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - Read, PathDiscovery

(continued)

c20.indd 627c20.indd 627 2/19/08 5:17:11 PM2/19/08 5:17:11 PM

Part III: Base Class Libraries

628

 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web.
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.

 Once you have the Intranet code group’s label, 1.2, you can enter a second command to alter the code
group’s permissions:

 >caspol.exe -chggroup 1.2 FullTrust

 The command asks you to confirm the change to the security policy, and if you run the caspol.exe –
listgroups command again, you can see that the permission on the end of the Intranet line has
changed to FullTrust:

 Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9
F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD2361321
02900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93
C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC09334
4D5AD293: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: FullTrust
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - Read, PathDiscovery
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web.
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.

 Creating and Applying Permissions Sets
 You can create new permission sets using a command like this:

 >caspol.exe -addpset MyCustomPermissionSet permissionset.xml

 This command specifies that you are creating a new permission set called MyCustomPermissionSet,
which is configured with the contents of the specified XML file. The XML file must contain a standard
format that specifies a PermissionSet . For reference, here is the permission set file for the Everything
permission set, which you can trim down to the permission set you want to create:

 <PermissionSet class=”System.Security.NamedPermissionSet” version=”1”
 Name=”Everything”
 Description=”Allows unrestricted access to all resources covered by
 built-in permissions”>
 <IPermission class=”System.Security.Permissions.EnvironmentPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.FileDialogPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />

(continued)

c20.indd 628c20.indd 628 2/19/08 5:17:12 PM2/19/08 5:17:12 PM

Chapter 20: Security

629

 <IPermission class=”System.Security.Permissions.FileIOPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.IsolatedStorageFilePermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.ReflectionPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.RegistryPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.SecurityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1”
 Flags=”Assertion, UnmanagedCode, Execution, ControlThread,
 ControlEvidence, ControlPolicy, SerializationFormatter,
 ControlDomainPolicy, ControlPrincipal, ControlAppDomain,
 RemotingConfiguration, Infrastructure, BindingRedirects” />
 <IPermission class=”System.Security.Permissions.UIPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.KeyContainerPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Net.DnsPermission, System, Version=2.0.3600.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089” version=”1”
 Unrestricted=”true” />
 <IPermission class=”System.Net.SocketPermission, System,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Net.WebPermission, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.StorePermission, System,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Diagnostics.PerformanceCounterPermission,
 System, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Data.OleDb.OleDbPermission,
 System.Data, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Data.SqlClient.SqlClientPermission,
 System.Data, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” version=”1” Unrestricted=”true” />
 <IPermission class=”System.Security.Permissions.DataProtectionPermission,
 System.Security, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a” version=”1” Unrestricted=”true” />
</PermissionSet>

 To view all permission sets in XML format, you can use this command:

 >caspol.exe -listpset

c20.indd 629c20.indd 629 2/19/08 5:17:12 PM2/19/08 5:17:12 PM

Part III: Base Class Libraries

630

 To give a new definition to an existing permission set by applying an XML PermissionSet
configuration file, you can use this command:

 >caspol.exe -chgpset permissionset.xml MyCustomPermissionSet

 Distributing Code Using a Strong Name
 .NET provides the ability to match an assembly to a code group when the assembly’s identity and
integrity have been confirmed using a strong name. This scenario is very common when assemblies are
being deployed across networks (for example, when distributing software over the Internet).

 If you are a software company and you want to provide code to your customers via the Internet, you
build an assembly and give it a strong name. The strong name ensures that the assembly can be uniquely
identified, and also provides protection against tampering. Your customers can incorporate this strong
name into their code access security policy; an assembly that matches this unique strong name can then
be assigned permissions explicitly. As discussed in Chapter 17 , “Assemblies,” the strong name includes
checksums for hashes of all the files within an assembly, so you have strong evidence that the assembly
has not been altered since the publisher created the strong name.

 Note that if your application uses an installer, the installer will install assemblies that have already been
given a strong name. The strong name is generated once for each distribution before being sent to
customers; the installer does not run these commands. The reason for this is that the strong name
provides an assurance that the assembly has not been modified since it left your company. A common
way to achieve this is to give your customer not only the application code but also, separately, a copy of
the strong name for the assembly. You might find it beneficial to pass the strong name to your customer
using a secure form (perhaps a fax or an encrypted email) to guard against the assembly being tampered
with in the process.

 Consider an example in which an assembly with a strong name is created to distribute it in such a
way that the recipient of the assembly can use the strong name to grant the FullTrust permission to the
assembly.

 First, a key pair is needed. Creating strong names has already been discussed in Chapter 17 , so there is
no need to repeat it here. Rebuilding the assembly with the key ensures that the hash is recalculated and
the assembly is protected against malicious modifications. Also, the assembly can be uniquely identified
with the strong name. This identification can be used with membership conditions of code groups. A
membership condition can be based on the requirement to match a specific strong name.

 The following command states that a new code group is created using the strong name from the
specified assembly manifest file, that the code group is independent of the version number of
the assembly, and that the code group has granted the FullTrust permissions:

 >caspol.exe -addgroup 1 -strong -file SimpleExample.exe -noname -noversion
FullTrust

 In this example, the application will now run from any zone, even the Internet zone, because the strong
name provides powerful evidence that the assembly can be trusted. Look at your code groups using
 caspol.exe -listgroups , and you will see the new code group (1.6 and its associated public key in
hexadecimal):

 Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9
F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD2361321

c20.indd 630c20.indd 630 2/19/08 5:17:12 PM2/19/08 5:17:12 PM

Chapter 20: Security

631

02900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93
C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC09334
4D5AD293: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web
 1.2.2. All code: Same directory FileIO - ‘Read, PathDiscovery’
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web
 1.6. StrongName -
002400000480000094000000060200000024000052534131000400000100010047008BB48DA2FA
B8C17E6277D76D0E8867273B5BB7962C155A03F118D8C6289CA3F05C08174EE2A933ABF8D3E9E4
24D2635399B9A7B0C7CD45742A3770694456776087AABB92041CB0783CDD9E4AAD04AA8D43488A
C599469ABD2E891DB2B5BDAD5C62EB5AFF23CEEA3EFED03539AC9FFEA8D3165EEBD67B246AB4C3
D6B31EB3: FullTrust
Success

 To access the strong name in an assembly, you can use the secutil.exe tool against the assembly
manifest file. Using the -hex option, the public key is shown in hexadecimal (like caspol.exe); the
argument -strongname specifies that the strong name should be shown. Type this command, and you
will see a listing containing the strong name public key, the assembly name, and the assembly version:

 >secutil.exe -hex -strongname SimpleExample.exe
Microsoft (R) .NET Framework SecUtil 3.5.21004.1
Copyright (c) Microsoft Corporation. All rights reserved.

Public Key =
0x002400000480000094000000060200000024000052534131000400000100010047008BB48DA2
FAB8C17E6277D76D0E8867273B5BB7962C155A03F118D8C6289CA3F05C08174EE2A933ABF8D3E9
E424D2635399B9A7B0C7CD45742A3770694456776087AABB92041CB0783CDD9E4AAD04AA8D4348
8AC599469ABD2E891DB2B5BDAD5C62EB5AFF23CEEA3EFED03539AC9FFEA8D3165EEBD67B246AB4
C3D6B31EB3
Name =
SimpleExample
Version =
1.0.0.0
Success

 You may be surprised about the two strong name code groups that are installed by default and what
they refer to. One is a strong name key for Microsoft code; the other strong name key is for the parts of
.NET that have been submitted to the ECMA for standardization, which will give Microsoft much
less control.

 Distributing Code Using Certificates
 The preceding section discussed how a strong name can be applied to an assembly so that system
administrators can explicitly grant permissions to assemblies that match that strong name, using a code
access group. Although this method of security policy management can be very effective, it is sometimes
necessary to work at a higher level, where the administrator of the security policy grants permissions on
the basis of the publisher of the software, rather than to each individual software component. You
probably have seen a similar method used before when you have downloaded executables from the
Internet that have been Authenticode signed.

c20.indd 631c20.indd 631 2/19/08 5:17:13 PM2/19/08 5:17:13 PM

Part III: Base Class Libraries

632

 To provide information about the software publisher, you can make use of digital certificates and sign
assemblies so that consumers of the software can verify the identity of the software publisher. In a
commercial environment, you would obtain a certificate from a company such as Verisign or Thawte.

 The advantage of buying a certificate from a supplier instead of creating your own is that it provides a
high level of trust in its authenticity; the supplier acts as a trusted third party. For test purposes,
however, .NET includes a command-line utility you can use to create a test certificate. The process of
creating certificates and using them for publishing software is complex, but we walk through a simple
example in this section.

 The example code will be made for the fictitious company called ABC Corporation. In this company, the
software product ABC Suite should be trusted. First, create a test certificate by typing the following
command:

 >makecert -sv abckey.pvk -r -n “CN=ABC Corporation” abccorptest.cer

 The command creates a test certificate under the name ABC Corporation and saves it to a file called
 abccorptest.cer . The -sv abckey.pvk argument creates a key file to store the private key. When
creating the key file, you are asked for a password that you should remember.

 After creating the certificate, you can create a software publisher test certificate with the Software
Publisher Certificate Test tool (Cert2spc.exe):

 >cert2spc abccorptest.cer abccorptest.spc

 To sign the assembly with the certificate, use the signcode.exe utility on the assembly file containing
the assembly manifest. Often, the easiest way to sign an assembly is to use the signtool.exe in its
wizard mode; to start the wizard, just type signtool.exe with the parameter signwizard .

 When you click Next, the program asks you to specify where the file is that should be signed. For an
assembly, select the file containing the manifest, for example SimpleExample.exe , and click the Next
button. On the Signing Options page, you must select the Custom option to define the previously created
certificate file.

 In the next dialog box, you are asked to specify the certificate that should be used to sign the assembly.
Click Select from File and browse to the file abccorptest.spc . You will now see the screen shown in
Figure 20-12 .

 The next screen that appears asks for your private key. The key file abckey.pvk was created by the
 makecert utility, so you can select the options as shown in Figure 20-13 . The cryptographic service
provider is an application that implements the cryptographic standards.

 Next you are asked a series of questions about the encryption algorithm that should be used for signing
the assembly (md5 or sha1) and the name and URL of the application, and you are shown a final
confirmation dialog.

 Because the executable is now signed with the certificate, a recipient of the assembly has access to strong
evidence as to who published the software. The runtime can examine the certificate and match the
publisher of the assembly to a code group with high levels of confidence about the identity of the code
because the trusted third-party certifies the publisher’s identity.

c20.indd 632c20.indd 632 2/19/08 5:17:13 PM2/19/08 5:17:13 PM

Chapter 20: Security

633

 The test certificate must now be installed with the trusted certificates. Start the Certificate Manager
 certmgr :

 >certmgr

 Select the Trusted Root Certification Authorities tab and Certificates below in the tree. Select Action All
Task Import . . . to import the certificate file. With the Certificate Import, select the certificate file
 abccorptest.cer .

 After clicking the Next button, verify that the certificate store listed is Trusted Root Certification
Authorities, which is the case when you have chosen this selection in the tree view (see Figure 20-14).

Figure 20-12

Figure 20-13

c20.indd 633c20.indd 633 2/19/08 5:17:14 PM2/19/08 5:17:14 PM

Part III: Base Class Libraries

634

 Before the import is completed, you will get a warning dialog, as shown in Figure 20-15 , because the test
certificate cannot be validated. Click Yes to install the certificate.

Figure 20-14

Figure 20-15

c20.indd 634c20.indd 634 2/19/08 5:17:14 PM2/19/08 5:17:14 PM

Chapter 20: Security

635

 After the certificate is installed as a trusted root authority, you can see it in the certificates list, as shown
in Figure 20-16 .

Figure 20-16

 Now turn your attention to a machine that you want to configure to trust software from the ABC
Corporation. You can create a new code access group that matches this software from ABC Corporation.
You just have to grab a hexadecimal representation of the certificate from the assembly using the
 secutil.exe tool:

 >secutil.exe -hex -x SimpleExample.exe

 This command results in the following output:

 Microsoft (R) .NET Framework SecUtil 2.0.50727.42
Copyright (c) Microsoft Corp. All rights reserved.

X.509 Certificate =
0x3082020830820171A0030201020210229DECFA1C01E89D46E23F35B6284691300D06092A8648
86F70D0101040500301A311830160603550403130F41424320436F72706F726174696F6E301E17
0D3037303132323130323334395A170D3339313233313233353935395A301A3118301606035504
03130F41424320436F72706F726174696F6E30819F300D06092A864886F70D010101050003818D
0030818902818100B7AE9EC301F76CC661EBF7F9C23E2B4A92F6B4BE318F50B7CB0DA36D4BFECC
69E390384AC33717779A0EAD683536A18B98FC8CA67D10CA05B9FF5AEAA42BCA01D85F95E79442
7915B9AAA8CC5C55E9855F5F5D7A5FEEBDF788E2B574E9CBB11B30BC424260415B28A73509048A
DDC9BEF28C07E9C8CE166CB92074D07D17798F0203010001A34F304D304B0603551D0104443042
80101BA15BEAA3E3B66F2497401512C79799A11C301A311830160603550403130F41424320436F
72706F726174696F6E8210229DECFA1C01E89D46E23F35B6284691300D06092A864886F70D0101
04050003818100746FFF169DE478C34684FAABDBF326A8CEB4588B96C0948BA14D5C73ACF174E5
608CBAE8C7BB77B2A38622E7662BA75F9D0E2A328C8A7E3A28790DC05A7E32557150F8F549E2B3
F36F8A609248AF094387784048A7A4B0FFA505A7105A4DDDAAF12DC622B4E7956247BEF3D95F18
7DAEF1A92A34DE83880174ADCFF93A97BBA8
Success

c20.indd 635c20.indd 635 2/19/08 5:17:15 PM2/19/08 5:17:15 PM

Part III: Base Class Libraries

636

 Now create the new code group and apply the FullTrust permission to assemblies published by the ABC
Corporation using this (rather long) command:

 >caspol -addgroup 1 -pub -hex
“0x3082020830820171A0030201020210229DECFA1C01E89D46E23F35B6284691300D06092A864
886F70D0101040500301A311830160603550403130F41424320436F72706F726174696F6E301E1
70D3037303132323130323334395A170D3339313233313233353935395A301A311830160603550
403130F41424320436F72706F726174696F6E30819F300D06092A864886F70D010101050003818
D0030818902818100B7AE9EC301F76CC661EBF7F9C23E2B4A92F6B4BE318F50B7CB0DA36D4BFEC
C69E390384AC33717779A0EAD683536A18B98FC8CA67D10CA05B9FF5AEAA42BCA01D85F95E7944
27915B9AAA8CC5C55E9855F5F5D7A5FEEBDF788E2B574E9CBB11B30BC424260415B28A73509048
ADDC9BEF28C07E9C8CE166CB92074D07D17798F0203010001A34F304D304B0603551D010444304
280101BA15BEAA3E3B66F2497401512C79799A11C301A311830160603550403130F41424320436
F72706F726174696F6E8210229DECFA1C01E89D46E23F35B6284691300D06092A864886F70D010
104050003818100746FFF169DE478C34684FAABDBF326A8CEB4588B96C0948BA14D5C73ACF174E
5608CBAE8C7BB77B2A38622E7662BA75F9D0E2A328C8A7E3A28790DC05A7E32557150F8F549E2B
3F36F8A609248AF094387784048A7A4B0FFA505A7105A4DDDAAF12DC622B4E7956247BEF3D95F1
87DAEF1A92A34DE83880174ADCFF93A97BBA8”
FullTrust

 The parameters specify that the code group should be added at the top level (1) and that the code group
membership condition is of the type Publisher ; the last parameter specifies the permission set to grant
(FullTrust). The command will ask for confirmation:

 Microsoft (R) .NET Framework CasPol 2.0.50727.1426
Copyright (c) Microsoft Corporation. All rights reserved.

The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)
y
Added union code group with “-pub” membership condition to the Machine level.
Success

 The machine is now configured to fully trust all assemblies that have been signed with the certificate
from ABC Corporation. To confirm that, you can run a caspol.exe –lg command, which lists the new
code access group.

 As another check, ask caspol.exe to tell you what code groups your assembly matches:

 >caspol.exe -resolvegroup SimpleExample.exe
Level = Enterprise

Code Groups:

1. All code: FullTrust

Level = Machine

Code Groups:
1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.7. Publisher -
30818902818100B7AE9EC301F76CC661EBF7F9C23E2B4A92F6B4BE318F50B7CB0DA36D4BFECC69
E390384AC33717779A0EAD683536A18B98FC8CA67D10CA05B9FF5AEAA42BCA01D85F95E7944279
15B9AAA8CC5C55E9855F5F5D7A5FEEBDF788E2B574E9CBB11B30BC424260415B28A73509048ADD
C9BEF28C07E9C8CE166CB92074D07D17798F0203010001: FullTrust

c20.indd 636c20.indd 636 2/19/08 5:17:15 PM2/19/08 5:17:15 PM

Chapter 20: Security

637

Level = User

Code Groups:

1. All code: FullTrust

Success

 In the center of the results, you can see that the assembly has been successfully matched to your new
code group and granted the FullTrust permission set.

 Summary
 This chapter covered several security aspects with .NET applications. Code-access security adds a
security layer to an application in that it gives different permissions to applications based on the
evidence of the application. How much can you trust the application? It depends on what .NET
permissions apply. Permissions are grouped in permission sets and managed with using user, machine,
and enterprise policies.

 Authentication and authorization with role-based security allow you to decide in the application which
users are allowed to access application features. Users are represented by identities and principals,
classes that implement the interface IIdentity and IPrincipal . Role verification can be done within
the code but also in a simple way using attributes.

 Cryptography was shown to demonstrate signing and encrypting of data, to exchange keys in a secure
way. .NET offers several cryptography algorithms offering both symmetric and asymmetric algorithms.
.NET 3.5 also supports Cryptography Next Generation, which is available with Windows Vista and
Windows Server 2008.

 With access control lists, you have also seen how to read and modify access to operating system
resources such as files. Programming ACLs is done in ways similar to the programming of secure pipes,
registry keys, Active Directory entries, and many other operating system resources.

 You’ve seen how to use tools to manage security policies such as caspol, and how to distribute code with
a certificate.

 If your applications are used in different regions and with different languages, in the next chapter you
can read about globalization and localization features of .NET.

c20.indd 637c20.indd 637 2/19/08 5:17:15 PM2/19/08 5:17:15 PM

c20.indd 638c20.indd 638 2/19/08 5:17:16 PM2/19/08 5:17:16 PM

 Localization

 NASA ’ s Mars Climate Orbiter was lost on September 23, 1999, at a cost of $ 125 million, because
one engineering team used metric units, while another one used inches for a key spacecraft
operation. When writing applications for international distribution, different cultures and regions
must be kept in mind.

 Different cultures have diverging calendars and use different number and date formats. Also,
sorting strings may lead to various results because the order of A – Z is defined differently
based on the culture. To make applications fit for global markets, you have to globalize and
localize them.

 Globalization is about internationalizing applications: preparing applications for international
markets. With globalization, the application supports number and date formats that vary
depending on the culture, different calendars, and so on. Localization is about translating
applications for specific cultures. For translations of strings, you can use resources.

 .NET supports globalization and localization of Windows and Web applications. To
globalize an application, you can use classes from the namespace System.Globalization ;
to localize an application, you can use resources that are supported by the namespace
 System.Resources .

 This chapter covers the globalization and localization of .NET applications; more specifically,
it discusses the following:

 Using classes that represent cultures and regions

 Globalization of applications

 Localization of applications

 Namespace System.Globalization
 The System.Globalization namespace holds all culture and region classes to support different
date formats, different number formats, and even different calendars that are represented in classes
such as GregorianCalendar , HebrewCalendar , JapaneseCalendar , and so on. By using these
classes, you can display different representations depending on the user ’ s locale.

❑

❑

❑

c21.indd 639c21.indd 639 2/19/08 5:17:35 PM2/19/08 5:17:35 PM

Part III: Base Class Libraries

640

 This section looks at the following issues and considerations with using the System.Globalization
namespace:

 Unicode issues

 Cultures and regions

 An example showing all cultures and their characteristics

 Sorting

 Unicode Issues
 A Unicode character has 16 bits, so there is room for 65,536 characters. Is this enough for all languages
currently used in information technology? In the case of the Chinese language, for example, more than
80,000 characters are needed. However, Unicode has been designed to deal with this issue. With Unicode
you have to differentiate between base characters and combining characters. You can add multiple
combining characters to a base character to build up a single display character or a text element.

 Take, for example, the Icelandic character Ogonek. Ogonek can be combined by using the base
character 0x006F (Latin small letter o) and the combining characters 0x0328 (combining Ogonek) and
0x0304 (combining Macron) as shown in Figure 21 - 1 . Combining characters are defined within ranges
from 0x0300 to 0x0345. For American and European markets, predefined characters exist to facilitate
dealing with special characters. The character Ogonek is also defined with the predefined character
0x01ED.

❑

❑

❑

❑

Q O .
– –

� � �

0�01ED 0�006F 0�0928 0�0904

 Figure 21 - 1

 For Asian markets, where more than 80,000 characters are necessary for Chinese alone, such predefined
characters do not exist. In Asian languages, you always have to deal with combining characters. The
problem is getting the right number of display characters or text elements, and getting to the base
characters instead of the combined characters. The namespace System.Globalization offers the class
 StringInfo , which you can use to deal with this issue.

 The following table lists the static methods of the class StringInfo that help in dealing with combined
characters.

 Method Description

 GetNextTextElement Returns the first text element (base character and all combining
characters) of a specified string.

 GetTextElementEnumerator Returns a TextElementEnumerator object that allows iterating
all text elements of a string.

 ParseCombiningCharacters Returns an integer array referencing all base characters of a string.

c21.indd 640c21.indd 640 2/19/08 5:17:36 PM2/19/08 5:17:36 PM

Chapter 21: Localization

641

 Cultures and Regions
 The world is divided into multiple cultures and regions, and applications have to be aware of these
cultural and regional differences. A culture is a set of preferences based on a user ’ s language and cultural
habits. RFC 1766 (www.ietf.org/rfc/rfc1766.txt) defines culture names that are used worldwide
depending on a language and a country or region. Some examples are en - AU, en - CA, en - GB, and en - US
for the English language in Australia, Canada, the United Kingdom, and the United States, respectively.

 Possibly the most important class in the System.Globalization namespace is
 CultureInfo . CultureInfo represents a culture and defines calendars, formatting of numbers
and dates, and sorting strings used with the culture.

 The class RegionInfo represents regional settings (such as the currency) and shows whether the region
is using the metric system. Some regions can use multiple languages. One example is the region of Spain,
which has Basque (eu - ES), Catalan (ca - ES), Spanish (es - ES), and Galician (gl - ES) cultures. Similar to one
region having multiple languages, one language can be spoken in different regions; for example, Spanish
is spoken in Mexico, Spain, Guatemala, Argentina, and Peru, to name only a few countries.

 Later in this chapter, you see a sample application that demonstrates these characteristics of cultures
and regions.

 Specific, Neutral, and Invariant Cultures
 With the use of cultures in the .NET Framework, you have to differentiate between three types: specific ,
 neutral , and invariant cultures.

 A specific culture is associated with a real, existing culture defined with RFC 1766, as you saw in the
preceding section. A specific culture can be mapped to a neutral culture. For example, de is the neutral
culture of the specific cultures de - AT, de - DE, de - CH, and others. de is shorthand for the German
language; AT, DE, and CH are shorthand for the countries Austria, Germany, and Switzerland,
respectively.

 When translating applications, it is typically not necessary to do translations for every region; not much
difference exists between the German language in the countries Austria and Germany. Instead of using
specific cultures, you can use a neutral culture for localizing applications.

 The invariant culture is independent of a real culture. When storing formatted numbers or dates in files,
or sending them across a network to a server, using a culture that is independent of any user settings is
the best option.

 Figure 21 - 2 shows how the culture types relate to each other.

 A single display character can contain multiple Unicode characters. To address this
issue, when you write applications that support international markets, don ’ t use the
data type char ; use string instead. A string can hold a text element that contains
both base characters and combining characters, whereas a char cannot.

c21.indd 641c21.indd 641 2/19/08 5:17:37 PM2/19/08 5:17:37 PM

Part III: Base Class Libraries

642

Invariant

de-AT

de-DE

de-CH

de

en

 Figure 21 - 2

 CurrentCulture and CurrentUICulture
 When you set cultures, you need to differentiate between a culture for the user interface and a culture for
the number and date formats. Cultures are associated with a thread, and with these two culture types,
two culture settings can be applied to a thread. The Thread class has the properties CurrentCulture
and CurrentUICulture . The property CurrentCulture is for setting the culture that is used with
formatting and sort options, whereas the property CurrentUICulture is used for the language of the
user interface.

 Users can change the default setting of the CurrentCulture by using the Regional and Language
options in the Windows Control Panel (see Figure 21 - 3). With this configuration, it is also possible to
change the default number, the time, and the date format for the culture.

 The CurrentUICulture does not depend on this configuration. The CurrentUICulture setting
depends on the language of the operating system. There is one exception, though: If a multi-language
user interface (MUI) is installed with Windows Vista or Windows XP, it is possible to change the
language of the user interface with the regional configuration, and this influences the property
 CurrentUICulture .

 These settings make a very good default, and in many cases, there is no need to change the default
behavior. If the culture should be changed, you can easily do this by changing both cultures of the thread
to, say, the Spanish culture, as shown in this code snippet:

System.Globalization.CultureInfo ci = new
 System.Globalization.CultureInfo(“es-ES”);
System.Threading.Thread.CurrentThread.CurrentCulture = ci;
System.Threading.Thread.CurrentThread.CurrentUICulture = ci;

 Now that you know about setting the culture, the following sections discuss number and date
formatting, which are influenced by the CurrentCulture setting.

c21.indd 642c21.indd 642 2/19/08 5:17:37 PM2/19/08 5:17:37 PM

Chapter 21: Localization

643

 Figure 21 - 3

 Number Formatting
 The number structures Int16 , Int32 , Int64 , and so on in the System namespace have an overloaded
 ToString() method. This method can be used to create a different representation of the number
depending on the locale. For the Int32 structure, ToString() is overloaded with these four versions:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

 ToString() without arguments returns a string without format options. You can also pass a string and
a class that implements IFormatProvider .

 The string specifies the format of the representation. The format can be a standard numeric formatting
string or a picture numeric formatting string. For standard numeric formatting, strings are predefined,
where C specifies the currency notation, D creates a decimal output, E creates scientific output, F creates
fixed - point output, G creates general output, N creates number output, and X creates hexadecimal output.
With a picture numeric format string, it is possible to specify the number of digits, section and
group separators, percent notation, and so on. The picture numeric format string ###,### means
two three - digit blocks separated by a group separator.

 The IFormatProvider interface is implemented by the NumberFormatInfo , DateTimeFormatInfo ,
and CultureInfo classes. This interface defines a single method, GetFormat() , that returns a
format object.

c21.indd 643c21.indd 643 2/19/08 5:17:37 PM2/19/08 5:17:37 PM

Part III: Base Class Libraries

644

 NumberFormatInfo can be used to define custom formats for numbers. With the default constructor
of NumberFormatInfo , a culture - independent or invariant object is created. Using the properties of
 NumberFormatInfo , it is possible to change all the formatting options, such as a positive sign, a percent
symbol, a number group separator, a currency symbol, and a lot more. A read - only culture - independent
 NumberFormatInfo object is returned from the static property InvariantInfo . A NumberFormatInfo
object in which the format values are based on the CultureInfo of the current thread is returned from
the static property CurrentInfo .

 To create the next example, you can start with a simple console project. In this code, the first example
shows a number displayed in the format of the culture of the thread (here: English - US, the setting of the
operating system). The second example uses the ToString() method with the IFormatProvider
argument. CultureInfo implements IFormatProvider , so create a CultureInfo object using the
French culture. The third example changes the culture of the thread. The culture is changed to German
using the property CurrentCulture of the Thread instance:

using System;
using System.Globalization;
using System.Threading;

namespace Wrox.ProCSharp.Localization
{
 class Program
 {
 static void Main()
 {
 int val = 1234567890;

 // culture of the current thread
 Console.WriteLine(val.ToString(“N”));

 // use IFormatProvider
 Console.WriteLine(val.ToString(“N”,
 new CultureInfo(“fr-FR”)));

 // change the culture of the thread
 Thread.CurrentThread.CurrentCulture =
 new CultureInfo(“de-DE”);
 Console.WriteLine(val.ToString(“N”));
 }
 }
}

 The output is shown here. You can compare the outputs with the previously listed differences for U.S.
English, French, and German.

1,234,567,890.00
1 234 567 890,00
1.234.567.890,00

 Date Formatting
 The same support for numbers is available for dates. The DateTime structure has some methods for
date - to - string conversions. The public instance methods ToLongDateString() , ToLongTimeString() ,
 ToShortDateString() , and ToShortTimeString() create string representations using the current
culture. You can use the ToString() method to assign a different culture:

c21.indd 644c21.indd 644 2/19/08 5:17:38 PM2/19/08 5:17:38 PM

Chapter 21: Localization

645

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

 With the string argument of the ToString() method, you can specify a predefined format character or a
custom format string for converting the date to a string. The class DateTimeFormatInfo specifies the
possible values. With DateTimeFormatInfo, the case of the format strings has a different meaning. D
defines a long date format, d a short date format. Other examples of possible formats are ddd for the
abbreviated day of the week, dddd for the full day of the week, yyyy for the year, T for a long time, and t
for a short time format. With the IFormatProvider argument, you can specify the culture. Using an
overloaded method without the IFormatProvider argument implies that the culture of the current
thread is used:

 DateTime d = new DateTime(2008, 02, 14);

 // current culture
 Console.WriteLine(d.ToLongDateString());

 // use IFormatProvider
 Console.WriteLine(d.ToString(“D”, new CultureInfo(“fr-FR”)));

 // use culture of thread
 CultureInfo ci = Thread.CurrentThread.CurrentCulture;
 Console.WriteLine(“{0}: {1}”, ci.ToString(), d.ToString(“D”));

 ci = new CultureInfo(“es-ES”);
 Thread.CurrentThread.CurrentCulture = ci;
 Console.WriteLine(“{0}: {1}”, ci.ToString(), d.ToString(“D”));

 The output of this example program shows ToLongDateString() with the current culture of the
thread, a French version where a CultureInfo instance is passed to the ToString() method, and a
Spanish version where the CurrentCulture property of the thread is changed to es - ES:

Thursday, February 14, 2008
jeudi 14 f é vrier 2008
en-US: Thursday, February 14, 2008
es-ES: jeuves, 14 de febrero de 2008

 Cultures in Action
 To see all cultures in action, you can use a sample WPF application that lists all cultures and
demonstrates different characteristics of culture properties. Figure 21 - 4 shows the user interface of the
application in the Visual Studio 2008 WPF Designer.

 During initialization of the application, all available cultures are added to the tree view control that is
placed on the left side of the application. This initialization happens in the method
 AddCulturesToTree() that is called in the constructor of the Window class CultureDemoWindow :

 public CultureDemoWindow()
 {
 InitializeComponent();

 AddCulturesToTree();
 }

c21.indd 645c21.indd 645 2/19/08 5:17:38 PM2/19/08 5:17:38 PM

Part III: Base Class Libraries

646

 In the method AddCulturesToTree() , you get all cultures from the static method
CultureInfo.GetCultures() . Passing CultureTypes.AllCultures to this method returns an
unsorted array of all available cultures. The array is sorted using a Lambda expression that is passed to
the Comparison delegate of the second argument of the Array.Sort() method. Next, in the foreach
loop, every single culture is added to the tree view. A TreeViewItem object is created for every single
culture because the WPF TreeView class uses TreeViewItem objects for display. The Tag property of
the TreeViewItem object is set to the CultureInfo object, so that you can access the CultureInfo
object at a later time from within the tree.

 Where the TreeViewItem is added inside the tree depends on the culture type. If the culture does not
have a parent culture, it is added to the root nodes of the tree. To find parent cultures, all cultures are
remembered inside a dictionary. Recall Chapter 10 , “ Collections, ” for more information about
dictionaries and Chapter 7 , “ Delegates and Events ” for Lambda expressions.

 // add all cultures to the tree view
 public void AddCulturesToTree()
 {
 Dictionary < string, TreeViewItem > culturesByName =
 new Dictionary < string, TreeViewItem > ();

 // get all cultures
 var cultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures);
 Array.Sort(cultures, (c1, c2) = > c1.Name.CompareTo(c2.Name));

 TreeViewItem[] nodes = new TreeViewItem[cultures.Length];

 int i = 0;
 foreach (var ci in cultures)
 {
 nodes[i] = new TreeViewItem();
 nodes[i].Header = ci.DisplayName;

 Figure 21 - 4

c21.indd 646c21.indd 646 2/19/08 5:17:39 PM2/19/08 5:17:39 PM

Chapter 21: Localization

647

 nodes[i].Tag = ci;
 culturesByName.Add(ci.Name, nodes[i]);

 TreeViewItem parent;
 if (String.IsNullOrEmpty(ci.Parent.Name) & &
 culturesByName.TryGetValue(ci.Parent.Name, out parent)
 {
 parent.Items.Add(nodes[i]);
 }
 else
 {
 treeCultures.Items.Add(nodes[i]);
 }
 i++;
 }
 }

 When the user selects a node inside the tree, the handler of the SelectedItemChanged event
of the TreeView will be called. Here the handler is implemented in the method TreeCultures_
SelectedItemChanged() . Within this method, all fields are cleared by calling the method
 ClearTextFields() before you get the CultureInfo object from the tree by selecting
the Tag property of the TreeViewItem . Then some text fields are set using the properties Name ,
 NativeName , and EnglishName of the CultureInfo object. If the CultureInfo is a neutral culture
that can be queried with the IsNeutralCulture property, the corresponding check box will be set:

 private void TreeCultures_SelectedItemChanged(object sender,
 RoutedPropertyChangedEventArgs < object > e)
 {
 ClearTextFields();

 // get CultureInfo object from tree
 CultureInfo ci = (CultureInfo)((TreeViewItem)e.NewValue).Tag;

 textCultureName.Text = ci.Name;
 textNativeName.Text = ci.NativeName;
 textEnglishName.Text = ci.EnglishName;

 checkIsNeutral.IsChecked = ci.IsNeutralCulture;

 Then you get the calendar information about the culture. The Calendar property of the CultureInfo
class returns the default Calendar object for the specific culture. Because the Calendar class doesn ’ t
have a property to tell its name, you use the ToString() method of the base class to get the name of the
class, and remove the namespace of this string to be displayed in the text field textCalendar .

 Because a single culture might support multiple calendars, the OptionalCalendars property returns an
array of additional supported Calendar objects. These optional calendars are displayed in the list box
 listCalendars . The GregorianCalendar class that derives from Calendar has an additional property
called CalendarType that lists the type of the Gregorian calendar. This type can be a value of the
enumeration GregorianCalendarTypes: Arabic , MiddleEastFrench , TransliteratedFrench ,
 USEnglish , or Localized depending on the culture. With Gregorian calendars, the type is also
displayed in the list box:

 // default calendar
 textCalendar.Text = ci.Calendar.ToString().
 Remove(0, 21).Replace(“Calendar”, “”);

(continued)

c21.indd 647c21.indd 647 2/19/08 5:17:39 PM2/19/08 5:17:39 PM

Part III: Base Class Libraries

648

 // fill optional calendars
 listCalendars.Items.Clear();
 foreach (Calendar optCal in ci.OptionalCalendars)
 {
 StringBuilder calName = new StringBuilder(50);
 calName.Append(optCal.ToString());
 calName.Remove(0, 21);
 calName.Replace(“Calendar”, “”);

 // for GregorianCalendar add type information
 GregorianCalendar gregCal = optCal as GregorianCalendar;
 if (gregCal != null)
 {
 calName.AppendFormat(“ {0}”, gregCal.CalendarType.ToString());
 }
 listCalendars.Items.Add(calName.ToString());
 }

 Next, you check whether the culture is a specific culture (not a neutral culture) by using
 !ci.IsNeutralCulture in an if statement. The method ShowSamples() displays number
and date samples. This method is implemented in the next code section. The method
 ShowRegionInformation() is used to display some information about the region. With the invariant
culture, you can display only number and date samples, but no region information. The invariant culture
is not related to any real language, and therefore it is not associated with a region:

 // display number and date samples
 if (!ci.IsNeutralCulture)
 {
 groupSamples.IsEnabled = true;
 ShowSamples(ci);

 // invariant culture doesn’t have a region
 if (ci.ThreeLetterISOLanguageName == “IVL”)
 {
 groupRegion.IsEnabled = false;
 }
 else
 {
 groupRegion.IsEnabled = true;
 ShowRegionInformation(ci.Name);
 }
 }
 else // neutral culture: no region, no number/date formatting
 {
 groupSamples.IsEnabled = false;
 groupRegion.IsEnabled = false;
 }
 }

 To show some localized sample numbers and dates, the selected object of type CultureInfo is passed
with the IFormatProvider argument of the ToString() method:

(continued)

c21.indd 648c21.indd 648 2/19/08 5:17:39 PM2/19/08 5:17:39 PM

Chapter 21: Localization

649

 private void ShowSamples(CultureInfo ci)
 {
 double number = 9876543.21;
 textSampleNumber.Text = number.ToString(“N”, ci);

 DateTime today = DateTime.Today;
 textSampleDate.Text = today.ToString(“D”, ci);

 DateTime now = DateTime.Now;
 textSampleTime.Text = now.ToString(“T”, ci);
 }

 To display the information associated with a RegionInfo object, in the method
 ShowRegionInformation() a RegionInfo object is constructed passing the selected culture
identifier. Then you access the properties DisplayName , CurrencySymbol , ISOCurrencySymbol ,
and IsMetric properties to display this information:

 private void ShowRegionInformation(string culture)
 {
 RegionInfo ri = new RegionInfo(culture);
 textRegion.Text = ri.DisplayName;
 textCurrency.Text = ri.CurrencySymbol;
 textCurrencyISO.Text = ri.ISOCurrencySymbol;
 checkIsMetric.IsChecked = ri.IsMetric;
 }

 When you start the application, you can see all available cultures in the tree view, and selecting a culture
lists the cultural characteristics, as shown in Figure 21 - 5 .

 Figure 21 - 5

c21.indd 649c21.indd 649 2/19/08 5:17:40 PM2/19/08 5:17:40 PM

Part III: Base Class Libraries

650

 Sorting
 Sorting strings is dependent on the culture. Some cultures have different sorting orders. One example is
Finnish, where the characters V and W are treated the same. The algorithms that compare strings for
sorting by default use a culture - sensitive sort, in which the sort is dependent on the culture.

 To demonstrate this behavior with a Finnish sort, the following code creates a small sample console
application where some U.S. states are stored unsorted inside an array. You are going to use classes from
the namespaces System.Collections.Generic , System.Threading , and System.Globalization ,
so these namespaces must be declared. The method DisplayNames() shown here is used to display all
elements of an array or of a collection on the console:

 static void DisplayNames(string title, IEnumerable < string > e)
 {
 Console.WriteLine(title);
 foreach (string s in e)
 Console.Write(s + “ - “);
 Console.WriteLine();
 Console.WriteLine();
 }

 In the Main() method, after creating the array with some of the U.S. states, the thread property
 CurrentCulture is set to the Finnish culture, so that the following Array.Sort() uses the Finnish sort
order. Calling the method DisplayNames() displays all the states on the console:

 static void Main()
 {
 string[] names = {“Alabama”, “Texas”, “Washington”,
 “Virginia”, “Wisconsin”, “Wyoming”,
 “Kentucky”, “Missouri”, “Utah”, “Hawaii”,
 “Kansas”, “Louisiana”, “Alaska”, “Arizona”};

 Thread.CurrentThread.CurrentCulture =
 new CultureInfo(“fi-FI”);

 Array.Sort(names);
 DisplayNames(“Sorted using the Finnish culture”, names);

 After the first display of some U.S. states in the Finnish sort order, the array is sorted once again. If you
want to have a sort that is independent of the users ’ culture, which would be useful when the sorted
array is sent to a server or stored somewhere, you can use the invariant culture.

 You can do this by passing a second argument to Array.Sort() . The Sort() method expects
an object implementing IComparer with the second argument. The Comparer class from the
 System.Collections namespace implements IComparer . Comparer.DefaultInvariant returns
a Comparer object that uses the invariant culture for comparing the array values for a
culture - independent sort:

 // sort using the invariant culture
 Array.Sort(names, System.Collections.Comparer.DefaultInvariant);
 DisplayNames(“Sorted using the invariant culture”, names);
 }

 The program output shows different sorts with the Finnish and the culture - independent cultures:
Virginia goes before Washington when using the invariant sort order and vice versa using Finnish.

c21.indd 650c21.indd 650 2/19/08 5:17:40 PM2/19/08 5:17:40 PM

Chapter 21: Localization

651

Sorted using the Finnish culture
Alabama - Alaska - Arizona - Hawaii - Kansas - Kentucky - Louisiana - Missouri
- Texas - Utah - Washington - Virginia - Wisconsin - Wyoming -

Sorted using the invariant culture
Alabama - Alaska - Arizona - Hawaii - Kansas - Kentucky - Louisiana - Missouri
- Texas - Utah - Virginia - Washington - Wisconsin - Wyoming -

 If sorting a collection should be independent of a culture, the collection must be
sorted with the invariant culture. This can be particularly useful when sending the
sort result to a server or storing it inside a file.

 In addition to a locale - dependent formatting and measurement system, text and pictures may differ
depending on the culture. This is where resources come into play.

 Resources
 Resources such as pictures or string tables can be put into resource files or satellite assemblies.
Such resources can be very helpful when localizing applications, and .NET has built - in support to
search for localized resources.

 Before you see how to use resources to localize applications, the next sections discuss how resources can
be created and read without looking at language aspects.

 Creating Resource Files
 Resource files can contain such things as pictures and string tables. A resource file is created by using
either a normal text file or a .resX file that uses XML. This section starts with a simple text file.

 A resource that embeds a string table can be created by using a normal text file. The text file just assigns
strings to keys. The key is the name that can be used from a program to get the value. Spaces are allowed
in both keys and values.

 This example shows a simple string table in the file strings.txt :

Title = Professional C#
Chapter = Localization
Author = Christian Nagel
Publisher = Wrox Press

 When saving text files with Unicode characters, you must save the file with the proper encoding. Select
the Unicode encoding with the Save dialog.

 Resource File Generator
 The Resource File Generator (Resgen.exe) utility can be used to create a resource file out of
 strings.txt . Typing

resgen strings.txt

c21.indd 651c21.indd 651 2/19/08 5:17:41 PM2/19/08 5:17:41 PM

Part III: Base Class Libraries

652

creates the file strings.resources . The resulting resource file can either be added to an assembly as
an external file or embedded into the DLL or EXE. Resgen also supports the creation of XML - based
 .resX resource files. One easy way to build an XML file is by using Resgen itself:

resgen strings.txt strings.resX

 This command creates the XML resource file strings.resX . You see how to work with XML resource
files in the section “ Windows Forms Localization Using Visual Studio ” later in this chapter.

 Since .NET 2.0, Resgen supports strongly typed resources. A strongly typed resource is represented by a
class that accesses the resource. The class can be created with the /str option of the Resgen utility:

resgen /str:C#,DemoNamespace,DemoResource,DemoResource.cs strings.resX

 With the option /str , the language, namespace, class name, and the file name for the source code are
defined in that order.

 The Resgen utility does not support adding pictures. With the .NET Framework SDK samples, you get a
ResXGen sample with the tutorials. With ResXGen it is possible to reference pictures in a .resX file.
Adding pictures can also be done programmatically by using the ResourceWriter or
 ResXResourceWriter classes, as you see next.

 ResourceWriter
 Instead of using the Resgen utility to build resource files, it ’ s a simple task to write a program to create
resources. The class ResourceWriter from the namespace System.Resources can be used to write
binary resource files; ResXResourceWriter writes XML - based resource files. Both of these classes
support pictures and any other object that is serializable. When you use the class ResXResourceWriter ,
the assembly System.Windows.Forms must be referenced.

 In the following code example, you create a ResXResourceWriter object, rw , using a constructor with
the file name Demo.resx . After creating an instance, you can add a number of resources of up to 2GB in
total size using the AddResource() method of the ResXResourceWriter class. The first argument of
 AddResource() specifies the name of the resource and the second argument specifies the value.
A picture resource can be added using an instance of the Image class. To use the Image class, you have to
reference the assembly System.Drawing . You also add the using directive to open the namespace
 System.Drawing .

 Create an Image object by opening the file logo.gif . You will have to copy the picture to the directory
of the executable or specify the full path to the picture in the method argument of Image.ToFile() .
The using statement specifies that the image resource should automatically be disposed at the end
of the using block. Additional simple string resources are added to the ResXResourceWriter object.
The Close() method of the ResXResourceWriter class automatically calls
 ResXResourceWriter.Generate() to finally write the resources to the file Demo.resx :

using System;
using System.Resources;
using System.Drawing;

class Program
{
 static void Main()
 {
 ResXResourceWriter rw = new ResXResourceWriter(“Demo.resx”);
 using (Image image = Image.FromFile(“logo.gif”))
 {
 rw.AddResource(“WroxLogo”, image);

c21.indd 652c21.indd 652 2/19/08 5:17:41 PM2/19/08 5:17:41 PM

Chapter 21: Localization

653

 rw.AddResource(“Title”, “Professional C#”);
 rw.AddResource(“Chapter”, “Localization”);
 rw.AddResource(“Author”, “Christian Nagel”);
 rw.AddResource(“Publisher”, “Wrox Press”);
 rw.Close();
 }
 }
}

 Starting this small program creates the resource file Demo.resx that embeds the image logo.gif . The
resources will now be used in the next example with a Windows application.

 Using Resource Files
 You can add resource files to assemblies with the command - line C# compiler csc.exe using the
/resource option, or directly with Visual Studio 2008. To see how resource files can be used with Visual
Studio 2008, create a C# Windows application and name it ResourceDemo .

 Use the context menu of the Solution Explorer (Add Add Existing Item) to add the previously created
resource file Demo.resx to this project. By default, Build Action of this resource is set to Embedded
Resource so that this resource is embedded into the output assembly (see Figure 21 - 6).

 Figure 21 - 6

 Set the Neutral Language setting of the application to the main language, for example, English (United
States), as shown in Figure 21 - 7 .

 Changing this setting adds the attribute [NeutralResourceLanguageAttribute] to the file
 assemblyinfo.cs as you can see here:

[assembly: NeutralResourcesLanguageAttribute(“en-US”)]

c21.indd 653c21.indd 653 2/19/08 5:17:41 PM2/19/08 5:17:41 PM

Part III: Base Class Libraries

654

 Figure 21 - 7

 Setting this option gives a performance improvement with the ResourceManager because it more
quickly finds the resources for en - US that are also used as a default fallback. With this attribute you can
also specify the location of the default resource using the second parameter with the constructor. With
the enumeration UltimateResourceFallbackLocation you can specify the default resource to be
stored in the main assembly or in a satellite assembly (values MainAssembly and Satellite).

 After building the project, you can check the generated assembly with ildasm to see the attribute
 .mresource in the manifest (see Figure 21 - 8). .mresource declares the name for the resource in the
assembly. If .mresource is declared as public (as in the example), the resource is exported from
the assembly and can be used from classes in other assemblies. .mresource private means that the
resource is not exported and is available only within the assembly.

 Figure 21 - 8

 When you add resources to the assembly using Visual Studio 2008, the resource is always public, as
shown in Figure 21 - 8 . If the assembly generation tool is used to create assemblies, you can use
command - line options to differentiate between adding public and private resources. The option
 /embed:demo.resources,Y adds the resource as public, whereas /embed:demo.resources,N adds
the resource as private.

c21.indd 654c21.indd 654 2/19/08 5:17:42 PM2/19/08 5:17:42 PM

Chapter 21: Localization

655

 If the assembly was generated using Visual Studio 2008, you can change the
 visibility of the resources later. Use ilasm and select File Dump to open the
 assembly and generate an MSIL source file. You can change the MSIL code with
a text editor. Using the text editor, you can change .mresource public to
 . mresource private . Using the tool ilasm , you can then regenerate the
 assembly with the MSIL source code: ilasm /exe ResourceDemo.il .

 In your Windows application, you add some text boxes and a picture by dropping Windows Forms
elements from the toolbox into the Designer. The values from the resources will be displayed in these
Windows Forms elements. Change the Text and Name properties of the text boxes and the labels to the
values that you can see in the following code. The name property of the PictureBox control is changed
to logo. Figure 21 - 9 shows the final form in the Forms Designer. The PictureBox control is shown as a
rectangle without a grid in the upper - left corner.

 Figure 21 - 9

 To access the embedded resource, use the ResourceManager class from the System.Resources
namespace. You can pass the assembly that has the resources as an argument to the constructor of the
 ResourceManager class. In this example, the resources are embedded in the executing assembly, so
pass the result of Assembly.GetExecutingAssembly() as the second argument. The first argument
is the root name of the resources. The root name consists of the namespace, with the name of the
resource file but without the resources extension. As you saw earlier, ildasm shows the name. All you
have to do is remove the file extension resources from the name shown. You can also get the name
programmatically using the GetManifestResourceNames() method of the
 System.Reflection.Assembly class:

using System.Reflection;
using System.Resources;

//...

 partial class ResourceDemoForm : Form
 {
 private System.Resources.ResourceManager rm;

(continued)

c21.indd 655c21.indd 655 2/19/08 5:17:42 PM2/19/08 5:17:42 PM

Part III: Base Class Libraries

656

 public ResourceDemoForm()
 {
 InitializeComponent();

 Assembly assembly = Assembly.GetExecutingAssembly();

 rm = new ResourceManager(“ResourceDemo.Demo”, assembly);

 Using the ResourceManager instance rm , you can get all the resources by specifying the key to the
methods GetObject() and GetString() :

 logo.Image = (Image)rm.GetObject(“WroxLogo”);
 textTitle.Text = rm.GetString(“Title”);
 textChapter.Text = rm.GetString(“Chapter”);
 textAuthor.Text = rm.GetString(“Author”);
 textPublisher.Text = rm.GetString(“Publisher”);
 }

 When you run the code, you can see the string and picture resources (see Figure 21 - 10).

 Figure 21 - 10

 With strongly typed resources, the code written earlier in the constructor of the class
 ResourceDemoForm can be simplified; there is no need to instantiate the ResourceManager and
access the resources using indexers. Instead, the names of the resources are accessed with properties:

 public ResourceDemoForm()
 {
 InitializeComponent();

 pictureLogo.Image = Demo.WroxLogo;
 textTitle.Text = Demo.Title;
 textChapter.Text = Demo.Chapter;
 textAuthor.Text = Demo.Author;
 textPublisher.Text = Demo.Publisher;
 }

(continued)

c21.indd 656c21.indd 656 2/19/08 5:17:43 PM2/19/08 5:17:43 PM

Chapter 21: Localization

657

 To create a strongly typed resource, the Custom Tool property of the XML - based resource file must be
set to ResXFileCodeGenerator . By setting this option, the class Demo (it has the same name as the
resource) is created. This class has static properties for all the resources to offer a strongly typed resource
name. With the implementation of the static properties, a ResourceManager object is used that is
instantiated on first access and then cached:

 /// < summary >
 /// A strongly-typed resource class, for looking up localized strings,
 /// etc.
 /// < /summary >
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute(
 “System.Resources.Tools.StronglyTypedResourceBuilder”,
 “2.0.0.0”)]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Demo {

 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute(
 “Microsoft.Performance”, “CA1811:AvoidUncalledPrivateCode”)]
 internal Demo() {
 }

 /// < summary >
 /// Returns the cached ResourceManager instance used by this class.
 /// < /summary >
 [global::System.ComponentModel.EditorBrowsableAttribute(
 global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager
 ResourceManager {
 get {
 if (object.ReferenceEquals(resourceMan, null)) {
 global::System.Resources.ResourceManager temp =
 new global::System.Resources.ResourceManager(
 “ResourceDemo.Demo”, typeof(Demo).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// < summary >
 /// Overrides the current thread’s CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.

(continued)

c21.indd 657c21.indd 657 2/19/08 5:17:43 PM2/19/08 5:17:43 PM

Part III: Base Class Libraries

658

 /// < /summary >
 [global::System.ComponentModel.EditorBrowsableAttribute(
 global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static System.Globalization.CultureInfo Culture {
 get {
 return resourceCulture;
 }
 set {
 resourceCulture = value;
 }
 }

 /// < summary >
 /// Looks up a localized string similar to “Christian Nagel”.
 /// < /summary >
 internal static string Author {
 get {
 return ResourceManager.GetString(“Author”, resourceCulture);
 }
 }

 /// < summary >
 /// Looks up a localized string similar to “Localization”.
 /// < /summary >
 internal static string Chapter {
 get {
 return ResourceManager.GetString(“Chapter”, resourceCulture);
 }
 }

 /// < summary >
 /// Looks up a localized string similar to “Wrox Press”.
 /// < /summary >
 internal static string Publisher {
 get {
 return ResourceManager.GetString(“Publisher”, resourceCulture);
 }
 }

 /// < summary >
 /// Looks up a localized string similar to “Professional C#”.
 /// < /summary >
 internal static string Title {
 get {
 return ResourceManager.GetString(“Title”, resourceCulture);
 }
 }

 internal static System.Drawing.Bitmap WroxLogo {
 get {
 return ((System.Drawing.Bitmap)(ResourceManager.GetObject(
 “WroxLogo”, resourceCulture)));
 }
 }
 }

(continued)

c21.indd 658c21.indd 658 2/19/08 5:17:43 PM2/19/08 5:17:43 PM

Chapter 21: Localization

659

 The System.Resources Namespace
 Before moving on to the next example, this section concludes with a review of the classes contained in
the System.Resources namespace that deal with resources:

 The ResourceManager class can be used to get resources for the current culture from assemblies
or resource files. Using the ResourceManager , you can also get a ResourceSet for a particular
culture.

 A ResourceSet represents the resources for a particular culture. When a ResourceSet instance
is created, it enumerates over a class, implementing the interface IResourceReader , and it
stores all resources in a Hashtable .

 The interface IResourceReader is used from the ResourceSet to enumerate resources. The
class ResourceReader implements this interface.

 The class ResourceWriter is used to create a resource file. ResourceWriter implements the
interface IResourceWriter .

 ResXResourceSet , ResXResourceReader , and ResXResourceWriter are similar to
 ResourceSet , ResourceReader , and ResourceWriter ; however, they are used to create an
XML - based resource file .resX instead of a binary file. You can use ResXFileRef to make a link
to a resource instead of embedding it inside an XML file.

 Windows Forms Localization Using
Visual Studio

 In this section, you create a simple Windows application that shows how to use Visual Studio 2008 for
localization. This application does not use complex Windows Forms and does not have any real inner
functionality because the key feature it is intended to demonstrate here is localization. In the
automatically generated source code, change the namespace to Wrox.ProCSharp.Localization and
the class name to BookOfTheDayForm . The namespace is not only changed in the source file
 BookOfTheDayForm.cs but also in the project settings, so that all generated resource files will get this
namespace, too. You can change the namespace for all new items that are created by selecting Common
Properties from the Project Properties menu.

 Windows Forms applications are covered in more detail in Chapter 31 , “ Windows Forms, ” Chapter 32 ,
 “ Data Binding, ” and Chapter 33 , “ Graphics with GDI+. ”

❑

❑

❑

❑

❑

 Figure 21 - 11

c21.indd 659c21.indd 659 2/19/08 5:17:44 PM2/19/08 5:17:44 PM

Part III: Base Class Libraries

660

 To show some issues with localization, this program has a picture, some text, a date, and a number. The
picture shows a flag that is also localized. Figure 21 - 11 shows this form of the application as seen in
the Windows Forms Designer.

 The following table lists the values for the Name and Text properties of the Windows Forms elements.

 Name Text

 labelBookOfTheDay Book of the day

 labelItemsSold Books sold

 textDate Date

 textTitle Professional C#

 textItemsSold 30000

 pictureFlag

 In addition to this form, you might want a message box that displays a welcome message; this message
might change depending on the current time of day. This example demonstrates that the localization for
dynamically created dialogs must be done differently. In the method WelcomeMessage() , display a
message box using MessageBox.Show() . Call the method WelcomeMessage() in the constructor of the
form class BookOfTheDayForm , before the call to InitializeComponent() .

 Here is the code for the method WelcomeMessage() :

 public void WelcomeMessage()
 {
 DateTime now = DateTime.Now;
 string message;
 if (now.Hour < = 12)
 {
 message = “Good Morning”;
 }
 else if (now.Hour < = 19)
 {
 message = “Good Afternoon”;
 }
 else
 {
 message = “Good Evening”;
 }
 MessageBox.Show(String.Format(“{0}\nThis is a localization sample”,
 message);
 }

 The number and date in the form should be set by using formatting options. Add a new method,
 SetDateAndNumber() , to set the values with the format option. In a real application, these values could
be received from a Web service or a database, but this example is just concentrating on localization. The
date is formatted using the D option (to display the long date name). The number is displayed using
the picture number format string ###,###,### , where # represents a digit and “ , ” is the group
separator.

c21.indd 660c21.indd 660 2/19/08 5:17:44 PM2/19/08 5:17:44 PM

Chapter 21: Localization

661

 public void SetDateAndNumber()
 {
 DateTime today = DateTime.Today;
 textDate.Text = today.ToString(“D”);
 int itemsSold = 327444;
 textItemsSold.Text = itemsSold.ToString(“###,###,###”);
 }

 In the constructor of the BookOfTheDayForm class, both the WelcomeMessage() and
 SetDateAndNumber() methods are called:

 public BookOfTheDayForm()
 {
 WelcomeMessage();

 InitializeComponent();

 SetDateAndNumber();
 }

 A magic feature of the Windows Forms Designer is started when you set the Localizable
property of the form from false to true . This results in the creation of an XML - based resource file
for the dialog box that stores all resource strings, properties (including the location and size of
Windows Forms elements), embedded pictures, and so on. In addition, the implementation of the
 InitializeComponent() method is changed; an instance of the class System.Resources.
ResourceManager is created, and to get to the values and positions of the text fields and pictures, the
 GetObject() method is used instead of writing the values directly into the code. GetObject() uses
the CurrentUICulture property of the current thread for finding the correct localization of the resources.

 Here is part of InitializeComponent() from the file BookOfTheDayForm.Designer.cs before the
 Localizable property is set to true , where all properties of textboxTitle are set:

 private void InitializeComponent()
 {
 //...
 this.textTitle = new System.Windows.Forms.TextBox();
 //...
 //
 // textTitle
 //
 this.textTitle.Location = new System.Drawing.Point(24, 152);
 this.textTitle.Name = “textTitle”;
 this.textTitle.Size = new System.Drawing.Size(256, 20);
 this.textTitle.TabIndex = 2;
 this.textTitle.Text = “Professional C#”;

 The code for the IntializeComponent() method is automatically changed by setting the Localizable
property to true :

 private void InitializeComponent()
 {
 System.ComponentModel.ComponentResourceManager resources =
 new System.ComponentModel.ComponentResourceManager(
 typeof(BookOfTheDayForm));
 //...
 this.textTitle = new System.Windows.Forms.TextBox();
 //...
 resources.ApplyResources(this.textTitle, “textTitle”);

c21.indd 661c21.indd 661 2/19/08 5:17:44 PM2/19/08 5:17:44 PM

Part III: Base Class Libraries

662

 Where does the resource manager get the data from? When the Localizable property is set to true , the
resource file BookOfTheDay.resX is generated. In this file, you can find the scheme of the XML
resource, followed by all elements in the form: Type , Text , Location , TabIndex , and so on.

 The class ComponentResourceManager is derived from ResourceManager and offers the method
 ApplyResources() . With ApplyResources() , the resources that are defined with the second argument
are applied to the object in the first argument.

 The following XML segment shows a few of the properties of textBoxTitle : the Location property
has a value of 13, 133 ; the TabIndex property has a value of 2 ; the Text property is set to
 Professional C# ; and so on. For every value, the type of the value is stored as well. For example, the
 Location property is of type System.Drawing.Point , and this class can be found in the assembly
 System.Drawing .

 Why are the locations and sizes stored in this XML file? With translations, many strings have completely
different sizes and no longer fit into the original positions. When the locations and sizes are all stored
inside the resource file, everything that is needed for localizations is stored in these files, separate from
the C# code:

 < data name=”textTitle.Anchor” type=”System.Windows.Forms.AnchorStyles,
 System.Windows.Forms” >
 < value > Bottom, Left, Right < /value >
 < /data >
 < data name=”textTitle.Location” type=”System.Drawing.Point, System.Drawing >
 < value > 13, 133 < /value >
 < /data >
 < data name=”textTitle.Size” type=”System.Drawing.Size, System.Drawing >
 < value > 196, 20 < /value >
 < /data >
 < data name=”textTitle.TabIndex” type=”System.Int32, mscorlib >
 < value > 2 < /value >
 < /data >
 < data name=”textTitle.Text” >
 < value xml:space=”preserve” > Professional C# < /value >
 < /data >

 When changing some of these resource values, it is not necessary to work directly with the XML code.
You can change these resources directly in the Visual Studio 2008 Designer. Whenever you change the
 Language property of the form and the properties of some form elements, a new resource file is
generated for the specified language. Create a German version of the form by setting the Language
property to German, and a French version by setting the Language property to French. For every
language, you get a resource file with the changed properties: in this case, BookOfTheDayForm.de.resX
and BookOfTheDayForm.fr.resX .

 The following table shows the changes needed for the German version.

 German Name Value

 $ this.Text (title of the form) Buch des Tages

 labelItemsSold.Text B ü cher verkauft:

 labelBookOfTheDay.Text Buch des Tages:

c21.indd 662c21.indd 662 2/19/08 5:17:45 PM2/19/08 5:17:45 PM

Chapter 21: Localization

663

 The following table lists the changes for the French version.

 French Name Value

 $ this.Text (title of the form) Le livre du jour

 labelItemsSold.Text Des livres vendus:

 labelBookOfTheDay.Text Le livre du jour:

 By default, images are not moved to satellite assemblies. However, in the sample application, the flag
should be different depending on the country. To do this, you have to add the image of the American
flag to the file Resources.resx . You can find this file in the Properties section of the Visual Studio
Solution Explorer. With the resource editor, select the Images categories as shown in Figure 21 - 12 , and
add the file americanflag.bmp . To make localization with images possible, the image must have the
same name in all languages. Here the image in the file Resources.resx has the name Flag. You can
rename the image in the properties editor. Within the properties editor, you can also change whether the
image should be linked or embedded. For best performance with resources, images are linked by default.
With linked images, the image file must be delivered together with the application. If you want to embed
the image within the assembly, you can change the Persistence property to Embedded .

 Figure 21 - 12

 The localized versions of the flags can be added by copying the file Resource.resx to Resource.
de.resx and Resource.fr.resx and replacing the flags with GermanFlag.bmp and
FranceFlag.bmp . Because a strongly typed resource class is needed only with the neutral resource,
the property CustomTool can be cleared with the resource files of all specific languages.

 Compiling the project now creates a satellite assembly for each language. Inside the debug directory (or
the release, depending on your active configuration), language subdirectories like de and fr are created.
In such a subdirectory, you will find the file BookOfTheDay.resources.dll . Such a file is a satellite
assembly that includes only localized resources. Opening this assembly with ildasm , you see a manifest
with the embedded resources and a defined locale. The assembly has the locale de in the assembly
attributes, so it can be found in the de subdirectory. You can also see the name of the resource with
 .mresource ; it is prefixed with the namespace name Wrox.ProCSharp.Localization , followed by
the class name BookOfTheDayForm and the language code de .

 Changing the Culture Programmatically
 After translating the resources and building the satellite assemblies, you will get the correct translations
depending on the configured culture for the user. The welcome message is not translated at this time.
This needs to be done in a different way, as you’ll see shortly.

c21.indd 663c21.indd 663 2/19/08 5:17:45 PM2/19/08 5:17:45 PM

Part III: Base Class Libraries

664

 In addition to the system configuration, it should be possible to send the language code as a command -
 line argument to your application for testing purposes. The BookOfTheDayForm constructor is changed
to allow passing a culture string, and setting the culture depending on this string. A CultureInfo
instance is created to pass it to the CurrentCulture and CurrentUICulture properties of the current
thread. Remember that the CurrentCulture is used for formatting, and the CurrentUICulture is used
for loading of resources.

 public BookOfTheDayForm(string culture)
 {
 if (!String.IsNullOrEmpty(culture))
 {
 CultureInfo ci = new CultureInfo(culture);
 // set culture for formatting
 Thread.CurrentThread.CurrentCulture = ci;
 // set culture for resources
 Thread.CurrentThread.CurrentUICulture = ci;
 }

 WelcomeMessage();

 InitializeComponent();
 SetDateAndNumber();
 }

 The BookOfTheDayForm is instantiated in the Main() method, which can be found in the file
 Program.cs . In this method, you pass the culture string to the BookOfTheDayForm constructor:

 [STAThread]
 static void Main(string[] args)
 {
 string culture = “”;
 if (args.Length == 1)
 {
 culture = args[0];
 }

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new BookOfTheDayForm(culture));
 }

 Now you can start the application by using command - line options. With the running application, you
can see that the formatting options and the resources that were generated from the Windows Forms
Designer show up. Figures 21 - 13 and 21 - 14 show two localizations in which the application is started
with the command - line options de - DE and fr - FR .

 There is still a problem with the welcome message box: the strings are hard - coded inside the program.
Because these strings are not properties of elements inside the form, the Forms Designer does not extract
XML resources as it does from the properties for Windows controls when changing the Localizable
property of the form. You have to change this code yourself.

c21.indd 664c21.indd 664 2/19/08 5:17:46 PM2/19/08 5:17:46 PM

Chapter 21: Localization

665

 Figure 21 - 13 Figure 21 - 14

 Using Custom Resource Messages
 For the welcome message, you have to translate the hard - coded strings. The following table shows the
translations for German and French. You can write custom resource messages directly in the file
 Resources.resx and the language - specific derivations. Of course, you can also create a new
resource file.

 Name English German French

 GoodMorning Good Morning Guten Morgen Bonjour

 GoodAfternoon Good Afternoon Guten Tag Bonjour

 GoodEvening Good Evening Guten Abend Bonsoir

 Message1 This is a localization
sample.

 Das ist ein Beispiel mit
Lokalisierung.

 C ’ est un exemple avec
la localisation.

 The source code of the method WelcomeMessage() must also be changed to use the resources. With
strongly typed resources, there is no need to instantiate the ResourceManager class. Instead, the
properties of the strongly typed resource can be used:

 public static void WelcomeMessage()
 {
 DateTime now = DateTime.Now;
 string message;
 if (now.Hour < = 12)
 {
 message = Properties.Resources.GoodMorning;
 }
 else if (now.Hour < = 19)
 {
 message = Properties.Resources.GoodAfternoon;
 }
 else

(continued)

c21.indd 665c21.indd 665 2/19/08 5:17:46 PM2/19/08 5:17:46 PM

Part III: Base Class Libraries

666

 {
 message = Properties.Resources.GoodEvening;
 }
 MessageBox.Show(message + “\n” +
 Properties.Resources.Message1);
 }

 When the program is started using English, German, or French, you will get the message boxes shown in
Figures 21 - 15 , 21 - 16 , and 21 - 17 , respectively.

 Figure 21 - 16 Figure 21 - 15

 Figure 21 - 17

(continued)

 Automatic Fallback for Resources
 For the French and German versions in the example, all the resources are inside the satellite assemblies. If
not, then all the values of labels or text boxes are changed; this is not a problem at all. You must have only the
values that will change in the satellite assembly; the other values will be taken from the parent assembly. For
example, for de - at (Austria), you could change the value for the Good Afternoon resource to Gr ü � Gott while
leaving the other values intact. During runtime, when looking for the value of the resource Good Morning ,
which is not located in the de - at satellite assembly, the parent assembly would be searched. The parent for
 de - at is de . In cases where the de assembly does not have this resource either, the value would be searched
for in the parent assembly of de , the neutral assembly. The neutral assembly does not have a culture code.

 Keep in mind that with the culture code of the main assembly, you shouldn ’ t define
any culture!

 Outsourcing Translations
 It is an easy task to outsource translations using resource files. It is not necessary to install Visual Studio
for translating resource files; a simple XML editor will suffice. The disadvantage of using an XML editor
is that there is no real chance to rearrange Windows Forms elements and change the sizes if the

c21.indd 666c21.indd 666 2/19/08 5:17:47 PM2/19/08 5:17:47 PM

Chapter 21: Localization

667

translated text does not fit into the original borders of a label or button. Using a Windows Forms
Designer to do translations is a natural choice.

 Microsoft provides a tool as part of the .NET Framework SDK that fulfills all these requirements: the
Windows Resource Localization Editor winres.exe (see Figure 21 - 18). Users working with this tool do
not need access to the C# source files; only binary or XML - based resource files are needed for
translations. After these translations are completed, you can import the resource files to the Visual Studio
project to build satellite assemblies.

 Figure 21 - 18

 If you don ’ t want your translation bureau to change the sizes and locations of labels and buttons, and
they cannot deal with XML files, you can send a simple text - based file. With the command - line utility
 resgen.exe , you can create a text file from an XML file:

resgen myresource.resX myresource.txt

 And after you have received the translation from the translation bureau, you can create an XML file from
the returned text file. Remember to add the culture name to the file name:

resgen myresource.es.txt myresource.es.resX

 Localization with ASP . NET
 With ASP.NET applications, localization happens in a similar way to Windows applications. Chapter 37 ,
 “ ASP.NET Pages, ” discusses the functionality of ASP.NET applications; this section discusses the
localization issues of ASP.NET applications. ASP.NET 2.0 and Visual Studio 2008 have many new
features to support localization. The basic concepts of localization and globalization are the same as
discussed before. However, some specific issues are associated with ASP.NET.

c21.indd 667c21.indd 667 2/19/08 5:17:47 PM2/19/08 5:17:47 PM

Part III: Base Class Libraries

668

 As you have already learned, with ASP.NET you have to differentiate between the user interface culture
and the culture used for formatting. Both of these cultures can be defined on a web and page level, as
well as programmatically.

 To be independent of the web server ’ s operating system, the culture and user interface culture can be
defined with the < globalization > element in the configuration file web.config :

 < configuration >
 < system.web >
 < globalization culture=”en-US” uiCulture=”en-US” / >
 < /system.web >
 < /configuration >

 If the configuration should be different for specific web pages, the Page directive allows assigning the
culture:

 < %Page Language=”C#” Culture=”en-US” UICulture=”en-US” % >

 The user can configure the language with the browser. With Internet Explorer, this setting is defined with
the Language Preference options (see Figure 21 - 19).

 If the page language should be set depending on the language setting of the client, the culture of the
thread can be set programmatically to the language setting that is received from the client. ASP.NET 2.0
has an automatic setting that does just that. Setting the culture to the value Auto sets the culture of the
thread depending on the client ’ s settings.

 < %Page Language=”C#” Culture=”Auto” UICulture=”Auto” % >

 Figure 21 - 19

 In dealing with resources, ASP.NET differentiates resources that are used for the complete web site and
resources that are needed only within a page.

 If a resource is used within a page, you can create resources for the page by selecting the Visual
Studio 2008 menu Tools Generate Local Resource in the design view. This way, the subdirectory
App_LocalResources is created where a resource file for every page is stored. These resources can be
localized similarly to Windows applications. The association between the web controls and the local

c21.indd 668c21.indd 668 2/19/08 5:17:48 PM2/19/08 5:17:48 PM

Chapter 21: Localization

669

 Figure 21 - 20

resource files happens with a meta:resourcekey attribute as shown here with the ASP.NET Label
control. LabelResource1 is the name of the resource that can be changed in the local resource file:

 < asp:Label ID=”Label1” Runat=”server” Text=”Label”
 meta:resourcekey=”LabelResource1” > < /asp:Label >

 For the resources that should be shared between multiple pages, you have to create a subdirectory,
 Appl_GlobalResources . In this directory, you can add resource files, for example, Messages.resx
with its resources. To associate the web controls with these resources, you can use Expressions in the
property editor. Clicking the Expressions button opens the Expressions dialog (see Figure 21 - 20). Here,
you can select the expression type Resources, set the name of the ClassKey (which is the name of the
resource file — here, a strongly typed resource file is generated), and the name of the ResourceKey ,
which is the name of the resource.

 In the ASPX file, you can see the association to the resource with the binding expressions syntax < % $:

 < asp:Label ID=”Label1” Runat=”server”
 Text=” < %$ Resources:Messages, String1 % > ” >
 < /asp:Label >

 Localization with WPF
 Visual Studio 2008 does not have great support for localization of WPF (Windows Presentation
Foundation) applications. However, you do not have to wait until the next version to localize your WPF
application. WPF has localization support built - in from the beginning, and you have several options to
localize your applications. You can use .NET resources similar to what you ’ ve done with Windows
Forms and ASP.NET applications, but you can also use an XAML (XML for Applications Markup
Language) resource dictionary.

 These options are discussed next. You can read more about WPF and XAML in Chapters 34 , “ Windows
Presentation Foundation, ” and 35 , “ Advanced WPF. ”

c21.indd 669c21.indd 669 2/19/08 5:17:48 PM2/19/08 5:17:48 PM

Part III: Base Class Libraries

670

 WPF Application
 To demonstrate the use of resources with a WPF application, create a simple WPF application containing
just one button, as shown in Figure 21 - 21 .

 Figure 21 - 21

 The XAML code for this application is shown here:

 < Window x:Class=”Wrox.ProCSharp.Localization.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”WPF Sample” Height=”300” Width=”300” >
 < Grid >
 < Button Name=”button1” Margin=”30,20,30,20” Click=”Button_Click”
 Content=”English Button” / >
 < /Grid >
 < /Window >

 With the handler code for the click event of the button, just a message box containing a sample message
pops up:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(“English Message”);
 }

 . NET Resources
 You can add .NET resources to a WPF application similar to the way you have with other applications.
Define the resources named Button1Text and Button1Message in the file Resources.resx .

 To use the generated resource class, you need to change the XAML code. Add an XML namespace
alias to reference the .NET namespace Wrox.ProCSharp.Localization.Properties as shown. Here,
the alias is set to the value props . From XAML elements, properties of this class can be used with the
 x:Static markup extension. The Content property of the Button is set to the Button1Text property
of the Resources class.

 < Window x:Class=”Wrox.ProCSharp.Localization.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

c21.indd 670c21.indd 670 2/19/08 5:17:48 PM2/19/08 5:17:48 PM

Chapter 21: Localization

671

 xmlns:props=”clr-namespace:Wrox.ProCSharp.Localization.Properties”
 Title=”WPF Sample” Height=”300” Width=”300” >
 < Grid >
 < Button Name=”button1” Margin=”30,20,30,20” Click=”Button_Click”
 Content=”{x:Static props:Resources.Button1Text}” / >
 < /Grid >
 < /Window >

 Because resources added in a Visual Studio Solution have the internal access modifier with the
 resource class and its members, and there is not an option to change this, you should add a custom build
step to use the Resgen utility with the /publicClass option and add the generated class to the
 project. Otherwise, the WPF project won ’ t compile.

 To use the .NET resource from code - behind, you can just access the Button1Message property directly
in the same way you did with Windows Forms applications:

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(Properties.Resources.Button1Message);
 }

 Localization with XAML
 Instead of using .NET resources for localization of WPF applications, you can work directly with XAML
to create localized content. The steps for a localization process can be described by these actions:

 Create a satellite assembly from the main content

 Use resource dictionaries for localizable content

 Add x:Uid attributes to elements that should be localized

 Extract localization content from an assembly

 Translate the content

 Create satellite assemblies for every language

 When compiling a WPF application, the XAML code is compiled to a binary format BAML that is stored
into an assembly. To move the BAML code from the main assembly to a separate satellite assembly, you
can change the .csproj build file and add a < UICulture > element as shown as a child to the
 < PropertyGroup > element. The culture, here en - US , defines the default culture of the project. Building
the project with this build - setting creates a subdirectory en - US and creates a satellite assembly
containing BAML code for the default language.

 < UICulture > en-US < /UICulture >

 Separating the BAML into a satellite assembly, you should also apply the NeutralResourcesLanguage
attribute and supply the resource fallback location to a satellite assembly. If you decide to keep BAML in
the main assembly (by not defining the < UICulture > to the .csproj file), the
 UltimateResourceFallbackLocation should be set to MainAssembly .

[assembly: NeutralResourcesLanguage(“en-US”,
 UltimateResourceFallbackLocation.Satellite)]

 For code - behind content that needs to be localized, a resource dictionary can be added. Using XAML,
you can define resources within the < ResourceDictionary > element as shown. With Visual Studio,
you can create a new resource dictionary by adding a new resource dictionary item and defining the file
name. In the example here, the resource dictionary contains one string item. To get access to the String
type from the System namespace, an XML namespace alias needs to be defined. Here, the alias system

❑

❑

❑

❑

❑

❑

c21.indd 671c21.indd 671 2/19/08 5:17:49 PM2/19/08 5:17:49 PM

Part III: Base Class Libraries

672

is set to the clr - namespace System in the assembly mscorlib . The string that is defined can be accessed
with the key message1 . This resource dictionary is defined in the file LocalizedStrings.xaml .

 < ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:system=”clr-namespace:System;assembly=mscorlib”
 >
 < system:String x:Key=”message1” > English Message < /system:String >
 < /ResourceDictionary >

 To have the resource dictionary available with the application, it must be added to the resources. If the
resource dictionary would be required only within a window or just within a specific WPF element, it
can be added to the resources collection of the specific window or WPF element. Here, the resource
dictionary is added to the file App.xaml within the < Application > element, and thus is available to the
complete application.

 < Application x:Class=”Wrox.ProCSharp.Localization.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 StartupUri=”Window1.xaml” >
 < Application.Resources >
 < ResourceDictionary >
 < ResourceDictionary.MergedDictionaries >
 < ResourceDictionary Source=”LocalizationStrings.xaml” / >
 < /ResourceDictionary.MergedDictionaries >
 < /ResourceDictionary >
 < /Application.Resources >
 < /Application >

 To use the XAML resource dictionary from code behind, you can use the FindResource() method.
Because the resource is defined with the application, here an object of the Application class is used to
find the resource. You can also use the FindResource() method from a WPF element, because the
resources are searched in a hierarchical way. With the simple application here, if you use the
 FindResource() method of the Button , and if it is not found with the Button resources, then resources
are searched in the Grid . If the resource is not there, a lookup to the Window resources is done before the
 Application resources are consulted.

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 string message1 =
 (string)Application.Current.FindResource(“message1”);
 MessageBox.Show(message1);
 }

 With WPF elements, the x:Uid attribute is used as a unique identifier for elements that need localization.
You don ’ t have to apply this attribute manually to the XAML content; instead you can use the msbuild
command with this option:

msbuild /t:updateuid

 When you call this command in the directory where the project file is located, the XAML files of the
project are modified to add an x:Uid attribute with a unique identifier to every element. The same
XAML as shown before now has the new attributes applied:

 < Window x:Uid=”Window_1” x:Class=”Wrox.ProCSharp.Localization.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

c21.indd 672c21.indd 672 2/19/08 5:17:49 PM2/19/08 5:17:49 PM

Chapter 21: Localization

673

 Title=”WPF Sample” Height=”300” Width=”300” >
 < Grid x:Uid=”Grid_1” >
 < Button x:Uid=”button1” Name=”button1” Margin=”30,20,30,20”
 Click=”Button_Click” Content=”English Button” / >
 < /Grid >
 < /Window >

 If you change the XAML file after x:Uid attributes have been added, you can verify correctness of the
 x:Uid attributes with the option /t:checkuid .

 Compiling the project creates a satellite assembly containing the BAML code. From this
satellite assembly, you can extract the content that needs to be localized with classes from the
 System.Windows.Markup.Localizer namespace. With the Windows SDK you will find the sample
program LocBaml. This program can be used to extract localization content from BAML. You need to
copy the executable, the satellite assembly with the default content, and LocBaml.exe to one directory
and start the sample program to produce a .csv file with the localization content:

LocBaml /parse WPFandXAMLresources.resources.dll /out: trans.csv

 You can use Microsoft Excel to open the .csv file and translate its content. An extract from the .csv file
that lists the content of the button and the message from the resource dictionary is shown here:

WPFandXAMLResources.g.en-US.resources:localizationstrings.baml,
system:String_1:System.String.$Content,None,True,True,,English Message
WPFandXAMLResources.g.en-US.resources:window1.baml,
button1:System.Windows.Controls.ContentControl.Content,Button,True,True,,
English Button

 This file contains these fields:

 Name of the BAML

 The identifier of the resource

 The category of the resource that gives the type of the content

 A Boolean value if the resource is visible for translation (readable)

 A Boolean value if the resource can be modified for the translation (modifiable)

 Localization comments

 The value of the resource

 After localization of the resource, you can create a new directory for the new language (for example,
de for German). The directory structure follows the same convention as shown earlier in this chapter
with satellite assemblies. With the LocBaml tool, you can create satellite assemblies with the translated
content:

LocBaml /generate WPFandXAMLResources.resources.dll /trans:trans_de.csv /out: ../de
/cul:de-DE

 Now the same rules for setting the culture of the thread and finding satellite assemblies as shown with
Windows Forms applications apply here.

 A Custom Resource Reader
 With the resource readers that are part of .NET Framework 3.5, you can read resources from resource
files and satellite assemblies. If you want to put the resources into a different store (such as a database),
you can use a custom resource reader to read these resources.

❑

❑

❑

❑

❑

❑

❑

c21.indd 673c21.indd 673 2/19/08 5:17:50 PM2/19/08 5:17:50 PM

Part III: Base Class Libraries

674

 To use a custom resource reader, you also need to create a custom resource set and a custom resource
manager. Doing this is not a difficult task, however, because you can derive the custom classes from
existing classes.

 For the sample application, you need to create a simple database with just one table for storing messages
that has one column for every supported language. The following table lists the columns and their
corresponding values.

 Key Default de es fr it

 Welcome Welcome Willkommen Recepci ó n Bienvenue Benvenuto

 GoodMorning Good morning Guten Morgen Buonas d í az Bonjour Buona mattina

 GoodEvening Good evening Guten Abend Buonas noches Bonsoir Buona sera

 ThankYou Thank you Danke Gracias Merçi Grazie

 Goodbye Goodbye Auf
Wiedersehen

 Adi ó s Au revoir Arrivederci

 For the custom resource reader, you create a component library with three classes. The classes are
 DatabaseResourceReader , DatabaseResourceSet , and DatabaseResourceManager .

 Creating a DatabaseResourceReader
 With the class DatabaseResourceReader , you define two fields: the connection string that is needed to
access the database and the language that should be returned by the reader. These fields are filled
inside the constructor of this class. The field language is set to the name of the culture that is passed
with the CultureInfo object to the constructor:

 public class DatabaseResourceReader : IResourceReader
 {
 private string connectionString;
 private string language;

 public DatabaseResourceReader(string connectionString,
 CultureInfo culture)
 {
 this.connectionString = connectionString;
 this.language = culture.Name;
 }

 A resource reader has to implement the interface IResourceReader . This interface defines the methods
 Close() and GetEnumerator() to return an IDictionaryEnumerator that returns keys and values
for the resources. In the implementation of GetEnumerator() , create a Hashtable where all keys and
values for a specific language are stored. Next, you can use the SqlConnection class in the namespace
 System.Data.SqlClient to access the database in SQL Server. Connection.CreateCommand()
creates a SqlCommand() object that you use to specify the SQL SELECT statement to access the data in
the database. If the language is set to de , the SELECT statement is SELECT [key], [de] FROM
Messages . Then you use a SqlDataReader object to read all values from the database, and put it into a
 Hashtable . Finally, the enumerator of the Hashtable is returned.

c21.indd 674c21.indd 674 2/19/08 5:17:50 PM2/19/08 5:17:50 PM

Chapter 21: Localization

675

 For more information about accessing data with ADO.NET, see Chapter 26 , “ Data Access. ”

 public System.Collections.IDictionaryEnumerator GetEnumerator()
 {
 Dictionary < string, string > dict = new Dictionary < string, string > ();

 SqlConnection connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();
 if (String.IsNullOrEmpty(language))
 language = “Default”;

 command.CommandText = “SELECT [key], [“ + language + “] “ +
 “FROM Messages”;

 try
 {
 connection.Open();

 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 if (reader.GetValue(1) != System.DBNull.Value)
 {
 dict.Add(reader.GetString(0).Trim(), reader.GetString(1));
 }
 }

 reader.Close();
 }
 catch (SqlException ex)
 {
 if (ex.Number != 207) // ignore missing columns in the database
 throw; // rethrow all other exceptions
 }
 finally
 {
 connection.Close();
 }
 return dict.GetEnumerator();
 }

 public void Close()
 {
 }

 Because the interface IResourceReader is derived from IEnumerable and IDisposable , the
methods GetEnumerator() , which returns an IEnumerator interface, and Dispose() must be
implemented, too:

 IEnumerator IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }

 void IDisposable.Dispose()
 {
 }
 }

c21.indd 675c21.indd 675 2/19/08 5:17:50 PM2/19/08 5:17:50 PM

Part III: Base Class Libraries

676

 Creating a DatabaseResourceSet
 The class DatabaseResourceSet can use nearly all implementations of the base class ResourceSet .
You just need a different constructor that initializes the base class with your own resource reader,
 DatabaseResourceReader . The constructor of ResourceSet allows passing an object by implementing
 IResourceReader ; this requirement is fulfilled by DatabaseResourceReader :

 public class DatabaseResourceSet : ResourceSet
 {
 internal DatabaseResourceSet(string connectionString,
 CultureInfo culture)
 : base(new DatabaseResourceReader(connectionString, culture))
 {
 }

 public override Type GetDefaultReader()
 {
 return typeof(DatabaseResourceReader);
 }
 }

 Creating a DatabaseResourceManager
 The third class you have to create is the custom resource manager. DatabaseResourceManager is
derived from the class ResourceManager , and you only have to implement a new constructor and
override the method InternalGetResourceSet() .

 In the constructor, create a new Hashtable to store all queried resource sets and set it into the field
 ResourceSets defined by the base class:

 public class DatabaseResourceManager : ResourceManager
 {
 private string connectionString;

 public DatabaseResourceManager(string connectionString)
 {
 this.connectionString = connectionString;
 ResourceSets = new Hashtable();
 }

 The methods of the ResourceManager class that you can use to access resources (such as GetString()
and GetObject()) invoke the method InternalGetResourceSet() to access a resource set where the
appropriate values can be returned.

 In the implementation of InternalGetResourceSet() , check first if the resource set for the culture
queried for a resource is already in the hash table; if it already exists, return it to the caller. If the resource
set is not available, create a new DatabaseResourceSet object with the queried culture, add it to the
hash table, and return it to the caller:

 protected override ResourceSet InternalGetResourceSet(
 CultureInfo culture, bool createIfNotExists, bool tryParents)
 {
 DatabaseResourceSet rs = null;

 if (ResourceSets.Contains(culture.Name))
 {
 rs = ResourceSets[culture.Name] as DatabaseResourceSet;
 }

c21.indd 676c21.indd 676 2/19/08 5:17:51 PM2/19/08 5:17:51 PM

Chapter 21: Localization

677

 else
 {
 rs = new DatabaseResourceSet(connectionString, culture);
 ResourceSets.Add(culture.Name, rs);
 }
 return rs;
 }
 }

 Client Application for DatabaseResourceReader
 How the class ResourceManager is used from the client application here does not differ much from
the previous use of the ResourceManager class. The only difference is that the custom class
 DatabaseResourceManager is used instead of the class ResourceManager . The following code
snippet demonstrates how you can use your own resource manager.

 A new DatabaseResourceManager object is created by passing the database connection string to the
constructor. Then, you can invoke the GetString() method that is implemented in the base class as you
did earlier, passing the key and an optional object of type CultureInfo to specify a culture. In turn, you
get a resource value from the database because this resource manager is using the classes
 DatabaseResourceSet and DatabaseResourceReader .

 DatabaseResourceManager rm = new DatabaseResourceManager(
 “server=(local);database=LocalizationDemo;trusted_connection=true”);

 string spanishWelcome = rm.GetString(“Welcome”,
 new CultureInfo(“es-ES”));
 string italianThankyou = rm.GetString(“ThankYou”,
 new CultureInfo(“it”));
 string threadDefaultGoodMorning = rm.GetString(“GoodMorning”);

 Creating Custom Cultures
 Over time, more and more languages are supported with the .NET Framework. However, not all
languages of the world are available with .NET. You can create a custom culture. Some examples of
when creating custom cultures can be useful are to support a minority within a region or to create
subcultures for different dialects.

 Custom cultures and regions can be created with the class CultureAndRegionInfoBuilder in the
namespace System.Globalization . This class is located in the assembly sysglobl in the file
 sysglobl.dll .

 With the constructor of the class CultureAndRegionInfoBuilder , you can pass the culture ’ s name. The
second argument of the constructor requires an enumeration of type CultureAndRegionModifiers .
This enumeration allows one of three values: Neutral for a neutral culture, Replacement if an existing
Framework - culture should be replaced, or None .

 After the CultureAndRegionInfoBuilder object is instantiated, you can configure the culture by
setting properties. With the properties of this class, you can define all the cultural and regional
information such as name, calendar, number format, metric information, and so on. If the culture should
be based on existing cultures and regions, you can set the properties of the instance using the methods
 LoadDataFromCultureInfo() and LoadDataFromRegionInfo() , and change the values that are
different by setting the properties afterward.

c21.indd 677c21.indd 677 2/19/08 5:17:51 PM2/19/08 5:17:51 PM

Part III: Base Class Libraries

678

 Calling the method Register() registers the new culture with the operating system. Indeed, you can
find the file that describes the culture in the directory < windows > \Globalization . Look for files with
the extension .nlp .

 // Create a Styria culture
 CultureAndRegionInfoBuilder styria = new CultureAndRegionInfoBuilder(
 “de-AT-ST”, CultureAndRegionModifiers.None);
 CultureInfo parent = new CultureInfo(“de-AT”);
 styria.LoadDataFromCultureInfo(parent);
 styria.LoadDataFromRegionInfo(new RegionInfo(“AT”));
 styria.Parent = parent;
 styria.RegionNativeName = “Steiermark”;
 styria.RegionEnglishName = “Styria”;
 styria.CultureEnglishName = “Styria (Austria)”;
 styria.CultureNativeName = “Steirisch”;

 styria.Register();

 The newly created culture can now be used like other cultures:

 CultureInfo ci = new CultureInfo(“de-AT-ST”);
 Thread.CurrentThread.CurrentCulture = ci;
 Thread.CurrentThread.CurrentUICulture = ci;

 You can use the culture for formatting and also for resources. If you start the Cultures in Action
application that was written earlier in this chapter again, you can see the custom culture as well.

 Summary
 This chapter discussed the globalization and localization of .NET applications.

 In the context of globalization of applications, you learned about using the namespace
 System.Globalization to format culture - dependent numbers and dates. Furthermore, you
learned that sorting strings by default depends on the culture, and you used the invariant culture for a
culture - independent sort. Using the CultureAndRegionInfoBuilder class, you ’ ve learned how to
create a custom culture.

 Localization of applications is accomplished by using resources. Resources can be packed into files,
satellite assemblies, or a custom store such as a database. The classes used with localization are in the
namespace System.Resources . For reading resources from other places such as satellite assemblies or
resource files, you can create a custom resource reader.

 You have seen how to localize Windows Forms, WPF, and ASP.NET applications.

 The next chapter provides information about a completely different topic — transactions. Don ’ t expect
that transactions are only useful with databases. In addition to database transactions, the chapter also
gives you information on memory - based transactional resources and a transactional file system.

c21.indd 678c21.indd 678 2/19/08 5:17:51 PM2/19/08 5:17:51 PM

 Transactions

 All or nothing — this is the main characteristic of a transaction. When writing a few records, either
all are written, or everything will be undone. If there is even one failure when writing one record, all
the other things that are done within the transaction will be rolled back.

 Transactions are commonly used with databases, but with classes from the namespace
System.Transactions , you can also perform transactions on volatile or in - memory-based objects
such as a list of objects. With a list that supports transactions, if an object is added or removed and
the transaction fails, the list action is automatically undone. Writing to a memory - based list can be
done in the same transaction as writing to a database.

 In Windows Vista, the file system and registry also get transactional support. Writing a file and
making changes within the registry supports transactions.

 In this chapter, the following topics are covered:

 Overview of transaction phases and ACID properties

 Traditional transactions

 Committable transactions

 Transaction promotions

 Dependent transactions

 Ambient transactions

 Transaction isolation level

 Custom resource managers

 Transactions with Windows Vista and Windows Server 2008

 Overview
 What are transactions? Think about ordering a book from a web site. The book-ordering process
removes the book you want to buy from stock and puts it in your order box, and the cost of your
book is charged to your credit card. With these two actions, either both actions should complete

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 679c22.indd 679 2/19/08 5:18:04 PM2/19/08 5:18:04 PM

Part III: Base Class Libraries

680

successfully or neither of these actions should happen. If there is a failure when getting the book from
stock, the credit card should not be charged. Transactions address such scenarios.

 The most common use of transactions is writing or updating data within the database. Transactions can
also be performed when writing a message to a message queue, or writing data to a file or the registry.
Multiple actions can be part of a single transaction.

 System.Messaging is discussed in Chapter 45 , “ Message Queuing. ”

 Figure 22 - 1 shows the main actors in a transaction. Transactions are managed and coordinated by the
transaction manager, and a resource manager manages every resource that influences the outcome of
the transaction. The transaction manager communicates with resource managers to define the outcome
of the transaction.

Transaction
Manager

Client Transaction

Resource
Manager

Resource
Manager

Figure 22-1

 Transaction Phases
 The timely phases of a transaction are the active , preparing , and committing phases:

 Active phase — During the active phase, the transaction is created. Resource managers that
manage the transaction for resources can enlist with the transaction.

 Preparing phase — During the preparing phase, every resource manager can define the
outcome of the transaction. This phase starts when the creator of the transaction sends a commit
to end the transaction. The transaction manager sends a Prepare message to all resource
managers. If the resource manager can produce the transaction outcome successfully, it sends a
 Prepared message to the transaction manager. Resource managers can abort the transaction if
they fail to prepare by forcing a rollback with the transaction manager by sending a Rollback
message. After the Prepared message is sent, the resource managers must guarantee to finish the
work successfully in the committing phase. To make this possible, durable resource managers
must write a log with the information from the prepared state, so that they can continue from
there in case of, for example, a power failure between prepared and committing.

 Committing phase — The committing phase begins when all resource managers have prepared
successfully. This is when the Prepared message is received from all resource managers. Then the

❑

❑

❑

c22.indd 680c22.indd 680 2/19/08 5:18:05 PM2/19/08 5:18:05 PM

Chapter 22: Transactions

681

transaction manager can complete the work by sending a Commit message to all participants.
The resource managers can now finish the work on the transaction and return a Committed
message.

 ACID Properties
 A transaction has specific requirements; for example, a transaction must result in a valid state, even if the
server has a power failure. The characteristics of transactions can be defined by the term ACID. ACID is
a four - letter acronym for atomicity , consistency , isolation , and durability :

 Atomicity — Atomicity represents one unit of work. With a transaction, either the complete unit
of work succeeds or nothing is changed.

 Consistency — The state before the transaction was started and after the transaction is
completed must be valid. During the transaction, the state may have interim values.

 Isolation — Isolation means that transactions that happen concurrently are isolated from the
state, which is changed during a transaction. Transaction A cannot see the interim state of
transaction B until the transaction is completed.

 Durability — After the transaction is completed, it must be stored in a durable way. This means
that if the power goes down or the server crashes, the state must be recovered at reboot.

 Not every transaction requires all four ACID properties. For example, a memory - based transaction (for
example, writing an entry into a list) does not need to be durable. Also, a complete isolation from the
outside is not always required, as we discuss later with transaction isolation levels.

 Database and Entity Classes
 The sample database CourseManagement that is used with the transactions in this chapter is
defined by the structure from Figure 22 - 2 . The table Courses contains information about courses:
course numbers and titles; for example, the course number 2124 with the title Programming C#. The
table CourseDates contains the date of specific courses and is linked to the Courses table. The table
 Students contains information about persons attending a course. The table CourseAttendees is
the link between Students and CourseDates . It defines which student is attending what course.

 You can download the database along with the source code for this chapter from the Wrox web site.

❑

❑

❑

❑

Figure 22-2

c22.indd 681c22.indd 681 2/19/08 5:18:05 PM2/19/08 5:18:05 PM

Part III: Base Class Libraries

682

 The sample applications in this chapter use a library with entity and data access classes. The class
 Student contains properties to define a student; for example, FirstName , LastName , and Company :

using System;

namespace Wrox.ProCSharp.Transactions
{
 [Serializable]
 public class Student
 {
 public Student() { }

 public Student(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Company { get; set; }
 public int Id { get; set; }

 public override string ToString()
 {
 return String.Format(“{0} {1}”, FirstName, LastName);
 }
 }
}

 Adding student information to the database is done in the method AddStudent() of the class
 StudentData . Here, an ADO.NET connection is created to connect to the SQL Server database, the
 SqlCommand object defines the SQL statement, and the command is executed by invoking
 ExecuteNonQuery() :

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 public class StudentData
 {
 public void AddStudent(Student student)
 {
 SqlConnection connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 connection.Open();
 try
 {
 SqlCommand command = connection.CreateCommand();

 command.CommandText = “INSERT INTO Students “ +
 “(FirstName, LastName, Company) VALUES “ +

c22.indd 682c22.indd 682 2/19/08 5:18:06 PM2/19/08 5:18:06 PM

Chapter 22: Transactions

683

 “(@FirstName, @LastName, @Company)”;
 command.Parameters.AddWithValue(“@FirstName”, student.FirstName);
 command.Parameters.AddWithValue(“@LastName”, student.LastName);
 command.Parameters.AddWithValue(“@Company”, student.Company);

 command.ExecuteNonQuery();
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

 ADO.NET is covered in detail in Chapter 26 , “ Data Access ”

 Traditional Transactions
 Before System.Transaction was released, you could create transactions directly with ADO.NET, or
you could do transactions with the help of components, attributes, and the COM+ runtime, which is
covered in the namespace System.EnterpriseServices . To show you how the new transaction
model compares to the traditional ways of working with transactions, we present a short look at how
ADO.NET transactions and transactions with Enterprise Services are done.

 ADO.NET Transactions
 Let ’ s start with traditional ADO.NET transactions. If you don ’ t create transactions manually, there is a
single transaction with every SQL statement. If multiple statements need to participate with the same
transaction, however, you must create a transaction manually to achieve this.

 The following code segment shows how to work with ADO.NET transactions. The SqlConnection class
defines the method BeginTransaction() , which returns an object of type SqlTransaction . This
transaction object must then be associated with every command that participates with the transaction. To
associate a command with a transaction, set the Transaction property of the SqlCommand class to the
 SqlTransaction instance. For the transaction to be successful, you must invoke the Commit() method
of the SqlTransaction object. If there is an error, you have to invoke the Rollback() method, and
every change is undone. You can check for an error with the help of a try / catch and do the rollback
inside the catch.

using System;
using System.Data.SqlClient;
using System.Diagnostics;

namespace Wrox.ProCSharp.Transactions
{
 public class CourseData
 {
 public void AddCourse(Course course)
 {
 SqlConnection connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 SqlCommand courseCommand = connection.CreateCommand();

(continued)

c22.indd 683c22.indd 683 2/19/08 5:18:06 PM2/19/08 5:18:06 PM

Part III: Base Class Libraries

684

 courseCommand.CommandText =
 “INSERT INTO Courses (Number, Title) VALUES (@Number, @Title)”;
 connection.Open();
 SqlTransaction tx = connection.BeginTransaction();

 try
 {
 courseCommand.Transaction = tx;

 courseCommand.Parameters.AddWithValue(“@Number”, course.Number);
 courseCommand.Parameters.AddWithValue(“@Title”, course.Title);
 courseCommand.ExecuteNonQuery();

 tx.Commit();
 }
 catch (Exception ex)
 {
 Trace.WriteLine(“Error: “ + ex.Message);
 tx.Rollback();
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

 If you have multiple commands that should run in the same transaction, every command must be
associated with the transaction. Because the transaction is associated with a connection, every one of
these commands must also be associated with the same connection instance. ADO.NET transactions do
not support transactions across multiple connections; it is always a local transaction associated with one
connection.

 When you create an object persistence model using multiple objects, for example, classes Course and
 CourseDate , which should be persisted inside one transaction, it gets very difficult using ADO.NET
transactions. Here, it is necessary to pass the transaction to all of the objects participating in the
same transaction.

 ADO.NET transactions are not distributed transactions. In ADO.NET transactions, it
is difficult to have multiple objects working on the same transaction.

 System.EnterpriseServices
 With Enterprise Services you get a lot of services for free. One of them is automatic transactions. Using
transactions with System.EnterpriseServices has the advantage that it is not necessary to deal
with transactions explicitly; transactions are automatically created by the runtime. You just have to add
the attribute [Transaction] with the transactional requirements to the class. The [AutoComplete]
attribute marks the method to automatically set the status bit for the transaction: if the method succeeds,
the success bit is set, so the transaction can commit. If an exception happens, the transaction is aborted.

(continued)

c22.indd 684c22.indd 684 2/19/08 5:18:06 PM2/19/08 5:18:06 PM

Chapter 22: Transactions

685

using System;
using System.Data.SqlClient;
using System.EnterpriseServices;
using System.Diagnostics;

namespace Wrox.ProCSharp.Transactions
{
 [Transaction(TransactionOption.Required)]
 public class CourseData : ServicedComponent
 {
 [AutoComplete]
 public void AddCourse(Course course)
 {
 SqlConnection connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 SqlCommand courseCommand = connection.CreateCommand();
 courseCommand.CommandText =
 “INSERT INTO Courses (Number, Title) VALUES (@Number, @Title)”;
 connection.Open();
 try
 {
 courseCommand.Parameters.AddWithValue(“@Number”, course.Number);
 courseCommand.Parameters.AddWithValue(“@Title”, course.Title);
 courseCommand.ExecuteNonQuery();
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

 A big advantage of creating transactions with System.EnterpriseServices is that multiple objects
can easily run within the same transaction, and transactions are automatically enlisted. The
disadvantages are that it requires the COM+ hosting model, and the class using the features of this
technology must be derived from the base class ServicedComponent .

 Enterprise Services and using COM+ transactional services are covered in Chapter 44 ,
“ Enterprise Services. ”

 System.Transactions
 The namespace System.Transactions has been available since .NET 2.0 and brings a new transaction
programming model to .NET applications. Figure 22 - 3 shows a Visual Studio class diagram with the
transaction classes, and their relationships, from the System.Transactions namespace: Transaction ,
 CommittableTransaction , DependentTransaction , and SubordinateTransaction .

 Transaction is the base class of all transaction classes and defines properties, methods, and events
available with all transaction classes. CommittableTransaction is the only transaction class that supports
committing. This class has a Commit() method; all other transaction classes can do only a rollback. The
class DependentTransaction is used with transactions that are dependent on another transaction.
A dependent transaction can depend on a transaction created from the committable transaction. Then the
dependent transaction adds to the outcome of the committable transaction whether or not it is successful.

c22.indd 685c22.indd 685 2/19/08 5:18:07 PM2/19/08 5:18:07 PM

Part III: Base Class Libraries

686

The class SubordinateTransaction is used in conjunction with the Distributed Transaction Coordinator
(DTC). This class represents a transaction that is not a root transaction but can be managed by the DTC.

Figure 22-3

Transaction Class Members Description

Current The property Current is a static property without the need
to have an instance. Transaction.Current returns an
ambient transaction if one exists. Ambient transactions are
discussed later in this chapter.

IsolationLevel The IsolationLevel property returns an object of type
IsolationLevel. IsolationLevel is an enumeration that
defines what access other transactions have to the interim
results of the transaction. This affects the I of ACID; not all
transactions are isolated.

TransactionInformation The TransactionInformation property returns
a TransactionInformation object.
TransactionInformation gives you information about the
current state of the transaction, the time when the transaction
was created, and transaction identifiers.

EnlistVolatile()
EnlistDurable()
EnlistPromotableSinglePhase()

With the enlist methods EnlistVolatile(),
EnlistDurable(), and
EnlistPromotableSinglePhase(), you can enlist custom
resource managers that participate with the transaction.

 The following table describes the properties and methods of the Transaction class.

c22.indd 686c22.indd 686 2/19/08 5:18:07 PM2/19/08 5:18:07 PM

Chapter 22: Transactions

687

Transaction Class Members Description

Rollback() With the Rollback() method, you can abort a transaction
and undo everything to set all results to the state before the
transaction.

DependentClone() With the DependentClone() method, you can create a
transaction that depends on the current transaction.

TransactionCompleted TransactionCompleted is an event that is fired when the
transaction is completed — either successfully or unsuccess-
fully. With an event handler object of type Transaction
CompletedEventHandler, you get access to the
Transaction object and can read its status.

 For demonstrating the features of System.Transaction , the class Utilities inside a separate
assembly offers some static methods. The method AbortTx() returns true or false depending on
the input from the user. The method DisplayTransactionInformation() gets a
 TransactionInformation object as parameter and displays all the information from the transaction:
creation time, status, local, and distributed identifiers:

 public static class Utilities
 {
 public static bool AbortTx()
 {
 Console.Write(“Abort the Transaction (y/n)?”);
 return Console.ReadLine() == “y”;
 }

 public static void DisplayTransactionInformation(string title,
 TransactionInformation ti)
 {
 if (ti != null)
 {
 Console.WriteLine(title);

 Console.WriteLine(“Creation Time: {0:T}”, ti.CreationTime);
 Console.WriteLine(“Status: {0}”, ti.Status);
 Console.WriteLine(“Local ID: {0}”, ti.LocalIdentifier);
 Console.WriteLine(“Distributed ID: {0}”,
 ti.DistributedIdentifier);
 Console.WriteLine();
 }
 }
 }

 Committable Transactions
 The Transaction class cannot be committed programmatically; it does not have a method to commit
the transaction. The base class Transaction just supports aborting the transaction. The only transaction
class that supports a commit is the class CommittableTransaction .

c22.indd 687c22.indd 687 2/19/08 5:18:08 PM2/19/08 5:18:08 PM

Part III: Base Class Libraries

688

 With ADO.NET, a transaction can be enlisted with the connection. To make this possible, an
 AddStudent() method is added to the class StudentData that accepts a System.Transactions.
Transaction object as second parameter. The object tx is enlisted with the connection by calling the
method EnlistTransaction of the SqlConnection class. This way, the ADO.NET connection is
associated with the transaction.

 public void AddStudent(Student student, Transaction tx)
 {
 SqlConnection connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 connection.Open();
 try
 {
 if (tx != null)
 connection.EnlistTransaction(tx);
 SqlCommand command = connection.CreateCommand();

 command.CommandText = “INSERT INTO Students (FirstName, “ +
 “LastName, Company)” +
 “VALUES (@FirstName, @LastName, @Company)”;
 command.Parameters.AddWithValue(“@FirstName”, student.FirstName);
 command.Parameters.AddWithValue(“@LastName”, student.LastName);
 command.Parameters.AddWithValue(“@Company”, student.Company);

 command.ExecuteNonQuery();
 }
 finally
 {
 connection.Close();
 }
 }

 In the Main() method of the console application CommittableTransaction , first a transaction of type
 CommittableTransaction is created, and information is shown on the console. Then a Student object
is created, and this object is written to the database from the AddStudent() method. If you verify the
record in the database from outside of the transaction, you cannot see the student added until the
transaction is completed. In case the transaction fails, there is a rollback, and the student is not written
to the database.

 After the AddStudent() method is invoked, the helper method Utilities.AbortTx() is called to ask
if the transaction should be aborted. If the user aborts, an exception of type ApplicationException is
thrown and, in the catch block, a rollback with the transaction is done by calling the method
 Rollback() of the Transaction class. The record is not written to the database. If the user does not
abort, the Commit() method commits the transaction, and the final state of the transaction is committed.

 static void Main()
 {
 CommittableTransaction tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation(“TX created”,
 tx.TransactionInformation);

 try
 {
 Student s1 = new Student();

c22.indd 688c22.indd 688 2/19/08 5:18:08 PM2/19/08 5:18:08 PM

Chapter 22: Transactions

689

 s1.FirstName = “Neno”;
 s1.LastName = “Loye”;
 s1.Company = “thinktecture”;
 StudentData db = new StudentData();
 db.AddStudent(s1, tx);

 if (Utilities.AbortTx())
 {
 throw new ApplicationException(“transaction abort”);
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation(“TX completed”,
 tx.TransactionInformation);

 }

 Here, you can see the output of the application where the transaction is active and has a local identifier.
The output of the application that follows shows the result with the user choice to abort the transaction.
After the transaction is finished, you can see the aborted state.

TX created
Creation Time: 7:30:49 PM
Status: Active
Local ID: bdcf1cdc-a67e-4ccc-9a5c-cbdfe0fe9177:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Abort the Transaction (y/n)? y
Transaction abort

TX completed
Creation Time: 7:30:49 PM
Status: Aborted
Local ID: bdcf1cdc-a67e-4ccc-9a5c-cbdfe0fe9177:1
Distributed ID: 00000000-0000-0000-0000-000000000000
Press any key to continue ...

 With the second output of the application that you can see here, the transaction is not aborted by the
user. The transaction has the status committed, and the data is written to the database.

TX Created
Creation Time: 7:33:04 PM
Status: Active
Local ID: 708bda71-fa24-46a9-86b4-18b83120f6af:1

(continued)

c22.indd 689c22.indd 689 2/19/08 5:18:08 PM2/19/08 5:18:08 PM

Part III: Base Class Libraries

690

Distributed ID: 00000000-0000-0000-0000-000000000000

Abort the Transaction (y/n)? n

TX completed
Creation Time: 7:33:04 PM
Status: Committed
Local ID: 708bda71-fa24-46a9-86b4-18b83120f6af:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Press any key to continue ...

 Transaction Promotion
 System.Transactions supports promotable transactions. Depending on the resources that participate
with the transaction, either a local or a distributed transaction is created. SQL Server 2005 and 2008
support promotable transactions. So far you have seen only local transactions. With the samples until
now, the distributed transaction ID was always set to 0, and only the local ID was assigned. With
a resource that does not support promotable transactions, a distributed transaction is created. If multiple
resources are added to the transaction, the transaction may start with a local transaction and promote to
a distributed transaction as required. Such a promotion happens when multiple SQL Server database
connections are added to the transaction. The transaction starts as a local transaction and then is
promoted to a distributed transaction.

 The console application is now changed in that a second student is added by using the same transaction
object tx . Because every AddStudent() method opens a new connection, two connections are associated
with the transaction after the second student is added.

 static void Main()
 {
 CommittableTransaction tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation(“TX created”,
 tx.TransactionInformation);

 try
 {
 Student s1 = new Student();
 s1.FirstName = “Neno”;
 s1.LastName = “Loye”;
 s1.Company = “thinktecture”;
 StudentData db = new StudentData();
 db.AddStudent(s1, tx);

 Student s2 = new Student();
 s2.FirstName = “Dominick”;
 s2.LastName = “Baier”;
 s2.Company = “thinktecture”;
 db.AddStudent(s2, tx);

 Utilities.DisplayTransactionInformation(“2nd connection enlisted”,
 tx.TransactionInformation);

 if (Utilities.AbortTx())

(continued)

c22.indd 690c22.indd 690 2/19/08 5:18:08 PM2/19/08 5:18:08 PM

Chapter 22: Transactions

691

 {
 throw new ApplicationException(“transaction abort”);
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation(“TX finished”,
 tx.TransactionInformation);

 }

 Running the application now, you can see that with the first student added the distributed identifier is 0,
but with the second student added the transaction was promoted, so a distributed identifier is associated
with the transaction.

TX created
Creation Time: 7:56:24 PM
Status: Active
Local ID: 0d2f5ada-32aa-40eb-b9d7-cc6aa9a2a554:1
Distributed ID: 00000000-0000-0000-0000-0000000000

2nd connection enlisted
Creation Time: 7:56:24 PM
Status: Active
Local ID: 0d2f5ada-32aa-40eb-b9d7-cc6aa9a2a554:1
Distributed ID: 70762617-2ee8-4d23-aa87-6ac8c1418bdfd

Abort the Transaction (y/n)?

 Transaction promotion requires the Distributed Transaction Coordinator (DTC) to be started. If
promoting transactions fails with your system, verify that the DTC service is started. Starting the
Component Services MMC snap - in, you can see the actual status of all DTC transactions running on
your system. By selecting Transaction List on the tree view, you can see all active transactions. In Figure
 22 - 4 , you can see that there is a transaction active with the same distributed identifier as was shown with
the console output earlier. If you verify the output on your system, make sure that the transaction has a
timeout and aborts in case the timeout is reached. After the timeout, you cannot see the transaction in the
transaction list anymore. You can also verify the transaction statistics with the same tool. Transaction
Statistics shows the number of committed and aborted transactions.

Figure 22-4

c22.indd 691c22.indd 691 2/19/08 5:18:09 PM2/19/08 5:18:09 PM

Part III: Base Class Libraries

692

 You can start the Component Services MMC snap - in by starting the Microsoft Management Console
(mmc.exe) application, selecting the menu File Add/Remove Snap - In, and selecting Component
Services from the list of snap - ins.

 Dependent Transactions
 With dependent transactions, you can influence one transaction from multiple threads. A dependent
transaction depends on another transaction and influences the outcome of the transaction.

 The sample application DependentTransactions creates a dependent transaction for a new thread. The
method TxThread() is the method of the new thread where a DependentTransaction object is passed
as a parameter. Information about the dependent transaction is shown with the helper method
 DisplayTransactionInformation() . Before the thread exits, the Complete() method of the
dependent transaction is invoked to define the outcome of the transaction. A dependent transaction can
define the outcome of the transaction by calling either the Complete() or Rollback() method. The
 Complete() method sets the success bit. If the root transaction finishes, and if all dependent
transactions have set the success bit to true , the transaction commits. If any of the dependent
transactions set the abort bit by invoking the Rollback() method, the complete transaction aborts.

 static void TxThread(object obj)
 {
 DependentTransaction tx = obj as DependentTransaction;
 Utilities.DisplayTransactionInformation(“Dependent Transaction”,
 tx.TransactionInformation);

 Thread.Sleep(3000);

 tx.Complete();

 Utilities.DisplayTransactionInformation(“Dependent TX Complete”,
 tx.TransactionInformation);
 }

 With the Main() method, first a root transaction is created by instantiating the class
 CommittableTransaction , and the transaction information is shown. Next, the method
 tx.DependentClone() creates a dependent transaction. This dependent transaction is passed to
the method TxThread() that is defined as the entry point of a new thread.

 The method DependentClone() requires an argument of type DependentCloneOption , which is an
enumeration with the values BlockCommitUntilComplete and RollbackIfNotComplete . This option
is important if the root transaction completes before the dependent transaction. Setting the option to
 RollbackIfNotComplete , the transaction aborts if the dependent transaction didn ’ t invoke the
 Complete() method before the Commit() method of the root transaction. Setting the option to
 BlockCommitUntilComplete , the method Commit() waits until the outcome is defined by all
dependent transactions.

 Next, the Commit() method of the CommittableTransaction class is invoked if the user does not abort
the transaction.

 Chapter 19 , “ Threading and Synchronization, ” covers threading.

 static void Main()
 {
 CommittableTransaction tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation(“Root TX created”,
 tx.TransactionInformation);

c22.indd 692c22.indd 692 2/19/08 5:18:09 PM2/19/08 5:18:09 PM

Chapter 22: Transactions

693

 try
 {
 new Thread(TxThread).Start(
 tx.DependentClone(
 DependentCloneOption.BlockCommitUntilComplete));

 if (Utilities.AbortTx())
 {
 throw new ApplicationException(“transaction abort”);
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation(“TX finished”,
 tx.TransactionInformation);
 }

 With the output of the application, you can see the root transaction with its identifier. Because of the
option DependentCloneOption.BlockCommitUntilComplete , the root transaction waits in the
 Commit() method until the outcome of the dependent transaction is defined. As soon as the dependent
transaction is finished, the transaction is committed.

Root TX created
Creation Time: 8:35:25 PM
Status: Active
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Abort the Transaction (y/n)? n

Dependent Transaction
Creation Time: 8:35:25 PM
Status: Active
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Dependent TX Complete
Root TX finished
Creation Time: 8:35:25 PM
Status: Committed
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Creation Time: 8:35:25 PM
Status: Committed
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Press any key to continue ...

c22.indd 693c22.indd 693 2/19/08 5:18:09 PM2/19/08 5:18:09 PM

Part III: Base Class Libraries

694

 Ambient Transactions
 The really big advantage of System.Transactions is the ambient transactions feature. With ambient
transactions, there is no need to manually enlist a connection with a transaction; this is done
automatically from the resources supporting ambient transactions.

 An ambient transaction is associated with the current thread. You can get and set the ambient transaction
with the static property Transaction.Current . APIs supporting ambient transactions check this
property to get an ambient transaction, and enlist with the transaction. ADO.NET connections support
ambient transactions.

 You can create a CommittableTransaction object and assign it to the property Transaction.Current
to initialize the ambient transaction. Another way to create ambient transactions is with the
 TransactionScope class. The constructor of the TransactionScope creates an ambient transaction.
Because of the implemented interface IDisposable , you can use a transaction scope easily with the
 using statement.

 The members of TransactionScope are listed in the following table.

TransactionScope Members Description

Constructor With the constructor of TransactionScope, you can define the
transactional requirements. You can also pass an existing
 transaction and define the transaction timeout.

Complete() Invoking the Complete() method, you set the success bit of the
transaction scope.

Dispose() The Dispose() method completes the scope and commits or aborts
the transaction if the scope is associated with the root transaction.
If the success bit is set with all dependent transactions, the
Dispose() method commits; otherwise, a rollback is done.

 Because the TransactionScope class implements the IDisposable interface, you can define the scope
with the using statement. The default constructor creates a new transaction. Immediately after creating
the TransactionScope instance, the transaction is accessed with the get accessor of the property
 Transaction.Current to display the transaction information on the console.

 To get the information when the transaction is completed, the method OnTransactionCompleted() is
set to the TransactionCompleted event of the ambient transaction.

 Then a new Student object is created and written to the database by calling the
StudentData.AddStudent() method. With ambient transactions, it is no longer necessary to
pass a Transaction object to this method because the SqlConnection class supports ambient
transactions and automatically enlists it with the connection. Then the Complete() method
of the TransactionScope class sets the success bit. With the end of the using statement, the
 TransactionScope is disposed, and a commit is done. If the Complete() method is not invoked,
the Dispose() method aborts the transaction.

 If an ADO.NET connection should not enlist with an ambient transaction, you can set the value
 Enlist=false with the connection string.

c22.indd 694c22.indd 694 2/19/08 5:18:10 PM2/19/08 5:18:10 PM

Chapter 22: Transactions

695

 static void Main()
 {
 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation(“Ambient TX created”,
 Transaction.Current.TransactionInformation);

 Student s1 = new Student();
 s1.FirstName = “Ingo”;
 s1.LastName = “Rammer”;
 s1.Company = “thinktecture”;
 StudentData db = new StudentData();
 db.AddStudent(s1);

 if (!Utilities.AbortTx())
 scope.Complete();
 else
 Console.WriteLine(“transaction will be aborted”);

 } // scope.Dispose()
 }

 static void OnTransactionCompleted(object sender,
 TransactionEventArgs e)
 {
 Utilities.DisplayTransactionInformation(“TX completed”,
 e.Transaction.TransactionInformation);
 }

 Running the application, you can see an active ambient transaction after an instance of the
 TransactionScope class is created. The last output of the application is the output from the
 TransactionCompleted event handler to display the finished transaction state.

Ambient TX created
Creation Time: 9:55:40 PM
Status: Active
Local ID: a06df6fb-7266-435e-b90e-f024f1d6966e:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Abort the Transaction (y/n)? n

TX completed
Creation Time: 9:55:40 PM
Status: Committed
Local ID: a06df6fb-7266-435e-b90e-f024f1d6966e:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Press any key to continue ...

 Nested Scopes with Ambient Transactions
 With the TransactionScope class you can also nest scopes. The nested scope can be directly inside the
scope or within a method that is invoked from a scope. A nested scope can use the same transaction as

c22.indd 695c22.indd 695 2/19/08 5:18:10 PM2/19/08 5:18:10 PM

Part III: Base Class Libraries

696

the outer scope, suppress the transaction, or create a new transaction that is independent from the outer
scope. The requirement for the scope is defined with a TransactionScopeOption enumeration that is
passed to the constructor of the TransactionScope class.

 The values available with the TransactionScopeOption enumeration and their functionality are
described in the following table.

TransactionScopeOption
Member Description

Required Required defines that the scope requires a transaction. If the outer scope
already contains an ambient transaction, the inner scope uses the existing
transaction. If an ambient transaction does not exist, a new transaction is
created.
If both scopes share the same transaction, every scope influences the out-
come of the transaction. Only if all scopes set the success bit can the
transaction commit. If one scope does not invoke the Complete()
method before the root scope is disposed of, the transaction is aborted.

RequiresNew RequiresNew always creates a new transaction. If the outer scope already
defines a transaction, the transaction from the inner scope is completely
independent. Both transactions can commit or abort independently.

Suppress With Suppress, the scope does not contain an ambient transaction,
whether or not the outer scope contains a transaction.

 The next sample defines two scopes, in which the inner scope is configured to require a new transaction
with the option TransactionScopeOption.RequiresNew :

 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation(“Ambient TX created”,
 Transaction.Current.TransactionInformation);

 using (TransactionScope scope2 =
 new TransactionScope(TransactionScopeOption.RequiresNew))
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation(
 “Inner Transaction Scope”,
 Transaction.Current.TransactionInformation);

 scope2.Complete();
 }
 scope.Complete();
 }

c22.indd 696c22.indd 696 2/19/08 5:18:10 PM2/19/08 5:18:10 PM

Chapter 22: Transactions

697

 Running the application, you can see that both scopes have different transaction identifiers, although the
same thread is used. Having one thread with different ambient transactions because of different scopes,
the transaction identifier differs in the last number following the GUID.

 A GUID is a globally unique identifier consisting of a 128 - bit unique value.

Ambient TX created
Creation Time: 11:01:09 PM
Status: Active
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Inner Transaction Scope
Creation Time: 11:01:09 PM
Status: Active
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:2
Distributed ID: 00000000-0000-0000-0000-0000000000

TX completed
Creation Time: 11:01:09 PM
Status: Committed
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:2
Distributed ID: 00000000-0000-0000-0000-0000000000

TX completed
Creation Time: 11:01:09 PM
Status: Committed
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:1
Distributed ID: 00000000-0000-0000-0000-0000000000

 If you change the inner scope to the setting TransactionScopeOption.Required , you will find that
both scopes are using the same transaction, and both scopes influence the outcome of the transaction.

 Multithreading with Ambient Transactions
 If multiple threads should use the same ambient transaction, you need to do some extra work. An
ambient transaction is bound to a thread, so if a new thread is created, it does not have the ambient
transaction from the starter thread.

 This behavior is demonstrated in the next example. In the Main() method, a TransactionScope is
created. Within this transaction scope, a new thread is started. The main method of the new thread
 ThreadMethod() creates a new transaction scope. With the creation of the scope, no parameters are
passed, and therefore, the default option TransactionScopeOption.Required gets into play. If an
ambient transaction exists, the existing transaction is used. If there is no ambient transaction, a new
transaction is created.

using System;
using System.Threading;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()

(continued)

c22.indd 697c22.indd 697 2/19/08 5:18:11 PM2/19/08 5:18:11 PM

Part III: Base Class Libraries

698

 {
 try
 {
 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation(“Main thread TX”,
 Transaction.Current.TransactionInformation);

 new Thread(ThreadMethod).Start(null);

 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine(“Main - Transaction was aborted, {0}”,
 ex.Message);
 }
 }

 static void TransactionCompleted(object sender, TransactionEventArgs e)
 {
 Utilities.DisplayTransactionInformation(“TX completed”,
 e.Transaction.TransactionInformation);
 }

 static void ThreadMethod(object dependentTx)
 {
 try
 {
 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 Current_TransactionCompleted;

 Utilities.DisplayTransactionInformation(“Thread TX”,
 Transaction.Current.TransactionInformation);
 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine(“ThreadMethod - Transaction was aborted, {0}”,
 ex.Message);
 }
 }
 }
}

(continued)

c22.indd 698c22.indd 698 2/19/08 5:18:11 PM2/19/08 5:18:11 PM

Chapter 22: Transactions

699

 As you start the application, you can see that the transactions from the two threads are completely
independent. The transaction from the new thread has a different transaction ID. The transaction ID
differs by the last number after the GUID in the same way as you have seen with nested scopes when the
nested scope required a new transaction.

Main thread TX
Creation Time: 21:41:25
Status: Active
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 21:41:25
Status: Committed
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Thread TX
Creation Time: 21:41:25
Status: Active
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:2
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 21:41:25
Status: Committed
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:2
Distributed ID: 00000000-0000-0000-0000-000000000000

 To use the same ambient transaction in another thread, you need the help of dependent transactions. Now
the sample is changed to pass a dependent transaction to the new thread. The dependent transaction is
created from the ambient transaction by calling the DependentClone() method on the ambient transaction.
With this method, the setting DependentCloneOption.BlockCommitUntilComplete is set so that the
calling thread waits until the new thread is completed before committing the transaction.

 class Program
 {
 static void Main()
 {
 try
 {
 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation(“Main thread TX”,
 Transaction.Current.TransactionInformation);

 new Thread(ThreadMethod).Start(
 Transaction.Current.DependentClone(
 DependentCloneOption.BlockCommitUntilComplete));

 scope.Complete();
 }

(continued)

c22.indd 699c22.indd 699 2/19/08 5:18:11 PM2/19/08 5:18:11 PM

Part III: Base Class Libraries

700

 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine(“Main - Transaction was aborted, {0}”,
 ex.Message);
 }
 }

 In the method of the thread, the dependent transaction that is passed is assigned to the ambient
transaction by using the set accessor of the Transaction.Current property. Now the transaction scope
is using the same transaction by using the dependent transaction. When you are finished using the
dependent transaction, you need to invoke the Complete() method of the DependentTransaction
object.

 static void ThreadMethod(object dependentTx)
 {
 DependentTransaction dTx = dependentTx as DependentTransaction;

 try
 {
 Transaction.Current = dTx;

 using (TransactionScope scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 Current_TransactionCompleted;

 Utilities.DisplayTransactionInformation(“Thread TX”,
 Transaction.Current.TransactionInformation);
 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine(“ThreadMethod - Transaction was aborted, {0}”,
 ex.Message);
 }
 finally
 {
 if (dTx != null)
 {
 dTx.Complete();
 }
 }
 }
 }

 Running the application now, you can see that the main thread and the newly created thread are using,
and influencing, the same transaction. The transaction listed by the threads has the same identifier. If
with one thread the success bit is not set by calling the Complete() method, the complete transaction
aborts.

(continued)

c22.indd 700c22.indd 700 2/19/08 5:18:12 PM2/19/08 5:18:12 PM

Chapter 22: Transactions

701

Main thread TX
Creation Time: 23:00:57
Status: Active
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Thread TX
Creation Time: 23:00:57
Status: Active
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 23:00:57
Status: Committed
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 23:00:57
Status: Committed
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

 Isolation Level
 At the beginning of this chapter, you saw the ACID properties used to describe transactions. The letter I
(Isolation) of ACID is not always fully required. For performance reasons, you might reduce isolation
requirements, but you must be aware of the issues that you will encounter if you change the isolation
level.

 The problems that you can encounter if you don ’ t completely isolate the scope outside the transaction
can be divided into three categories:

 Dirty reads — With a dirty read , another transaction can read records that are changed within
the transaction. Because the data that is changed within the transaction might roll back to its
original state, reading this intermediate state from another transaction is considered “ dirty ” —
 the data has not been committed. You can avoid this by locking the records to be changed.

 Nonrepeatable reads — Nonrepeatable reads occur when data is read inside a transaction, and
while the transaction is running, another transaction changes the same records. If the record is
read once more inside the transaction, the result is different — nonrepeatable. You can avoid this
by locking the read records.

 Phantom reads — Phantom reads happen when a range of data is read, for example, with a
 WHERE clause. Another transaction can add a new record that belongs to the range that is read
within the transaction. A new read with the same WHERE clause returns a different number of
rows. Phantom reads can be a specific problem when doing an UPDATE of a range of rows. For
example, UPDATE Addresses SET Zip=4711 WHERE (Zip=2315) updates the ZIP code of all
records from 2315 to 4711. After doing the update, there may still be records with a ZIP code of
2315 if another user added a new record with ZIP 2315 while the update was running. You can
avoid this by doing a range lock.

❑

❑

❑

c22.indd 701c22.indd 701 2/19/08 5:18:12 PM2/19/08 5:18:12 PM

Part III: Base Class Libraries

702

 When defining the isolation requirements, you can set the isolation level. This is set with an
 IsolationLevel enumeration that is configured when the transaction is created (either with the
constructor of the CommittableTransaction class or with the constructor of the TransactionScope
class). The IsolationLevel defines the locking behavior. The next table lists the values of the
 IsolationLevel enumeration.

Isolation Level Description

ReadUncommitted With ReadUncommitted, transactions are not isolated from each other. With
this level, there is no wait for locked records from other transactions. This
way, uncommitted data can be read from other transactions — dirty reads.
This level is usually used just for reading records where it does not matter
if you read interim changes (for example, reports).

ReadCommitted ReadCommitted waits for records with a write-lock from other transactions.
This way, a dirty read cannot happen. This level sets a read-lock for the cur-
rent record read and a write-lock for the records being written until the
transaction is completed. Reading a sequence of records, with every new
record that is read, the prior record is unlocked. That’s why nonrepeatable
reads can happen.

RepeatableRead RepeatableRead holds the lock for the records read until the transaction is
completed. This way, the problem of nonrepeatable reads is avoided.
Phantom reads can still occur.

Serializable Serializable holds a range lock. While the transaction is running, it is
not possible to add a new record that belongs to the same range from which
the data is being read.

Snapshot The isolation level Snapshot is possible only with SQL Server 2005 and
later versions. This level reduces the locks as modified rows are copied.
This way, other transactions can still read the old data without the need to
wait for an unlock.

Unspecified The level Unspecified indicates that the provider is using an isolation
level value that is different from the values defined by the
IsolationLevel enumeration.

Chaos The level Chaos is similar to ReadUncommitted, but in addition to per-
forming the actions of the ReadUncommitted value, Chaos does not lock
updated records.

 The next table gives you a summary of the problems that can occur as a result of setting the most
commonly used transaction isolation levels.

c22.indd 702c22.indd 702 2/19/08 5:18:12 PM2/19/08 5:18:12 PM

Chapter 22: Transactions

703

 The following code segment shows how the isolation level can be set with the TransactionScope class.
With the constructor of TransactionScope , you can set the TransactionScopeOption that was
discussed earlier and the TransactionOptions . The TransactionOptions class allows you to define
the IsolationLevel and the Timeout .

 TransactionOptions options = new TransactionOptions();
 options.IsolationLevel = IsolationLevel.ReadUncommitted;
 options.Timeout = TimeSpan.FromSeconds(90);
 using (TransactionScope scope =
 new TransactionScope(TransactionScopeOption.Required,
 options))
 {
 // Read data without waiting for locks from other transactions,
 // dirty reads are possible.
 }

 Custom Resource Managers
 One of the biggest advantages of the new transaction model is that it is relatively easy to create custom
resource managers that participate in the transaction. A resource manager does not manage only
durable resources but can also manage volatile or in - memory resources — for example, a simple
int and a generic list.

 Figure 22 - 5 shows the relationship between a resource manager and transaction classes. The resource
manager implements the interface IEnlistmentNotification that defines the methods Prepare() ,
 InDoubt() , Commit() , and Rollback() . The resource manager implements this interface to manage
transactions for a resource. To be part of a transaction, the resource manager must enlist with the
 Transaction class. Volatile resource managers invoke the method EnlistVolatile() ; durable resource
managers invoke EnlistDurable() . Depending on the transaction ’ s outcome, the transaction manager
invokes the methods from the interface IEnlistmentNotification with the resource manager.

Isolation Level Dirty Reads Nonrepeatable Reads Phantom Reads

Read Uncommitted Y Y Y

Read Committed N Y Y

Repeatable Read N N Y

Serializable N N N

Figure 22-5

c22.indd 703c22.indd 703 2/19/08 5:18:13 PM2/19/08 5:18:13 PM

Part III: Base Class Libraries

704

 The next table explains the methods of the IEnlistmentNotification interface that you must
implement with resource managers. As you review the table, recall the active, prepared, and committing
phases explained earlier in this chapter.

IEnlistmentNotification
Members

Description

Prepare() The transaction manager invokes the Prepare() method for preparation
of the transaction. The resource manager completes the preparation by
invoking the Prepared() method of the PreparingEnlistment param-
eter, which is passed to the Prepare() method. If the work cannot be
done successfully, the resource manager informs the transaction manager
by invoking the method ForceRollback().

A durable resource manager must write a log so that it can finish the
transaction successfully after the prepare phase.

Commit() When all resource managers have successfully prepared for the transac-
tion, the transaction manager invokes the Commit() method. The resource
manager can now complete the work to make it visible outside the trans-
action and invoke the Done() method of the Enlistment parameter.

Rollback() If one of the resources could not successfully prepare for the transaction,
the transaction manager invokes the Rollback() method with all
resource managers. After the state is returned to the state prior to the
transaction, the resource manager invokes the Done() method of the
Enlistment parameter.

InDoubt() If there is a problem after the transaction manager invokes the Commit()
method (and the resources don’t return completion information with the
Done() method), the transaction manager invokes the InDoubt() method.

 Transactional Resources
 A transactional resource must keep the live value and a temporary value. The live value is read from
outside the transaction and defines the valid state when the transaction rolls back. The temporary value
defines the valid state of the transaction when the transaction commits.

 To make non-transactional types transactional, the generic sample class Transactional < T > wraps a
non - generic type, so you can use it like this:

Transactional < int > txInt = new Transactional < int > ();
Transactional < string > txString = new Transactional < string > ();

 Let ’ s look at the implementation of the class Transactional < T > . The live value of the managed
resource has the variable liveValue ; the temporary value that is associated with a transaction is stored
within the ResourceManager < T > . The variable enlistedTransaction is associated with the ambient
transaction if there is one.

c22.indd 704c22.indd 704 2/19/08 5:18:13 PM2/19/08 5:18:13 PM

Chapter 22: Transactions

705

using System.Diagnostics;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{

 public partial class Transactional < T >
 {
 private T liveValue;
 private ResourceManager < T > enlistment;
 private Transaction enlistedTransaction;

 With the Transactional constructor, the live value is set to the variable liveValue . If the constructor
is invoked from within an ambient transaction, the GetEnlistment() helper method is invoked.
 GetEnlistment() first checks if there is an ambient transaction and asserts if there is none. If
the transaction is not already enlisted, the ResourceManager < T > helper class is instantiated, and the
resource manager is enlisted with the transaction by invoking the method EnlistVolatile() . Also,
the variable enlistedTransaction is set to the ambient transaction.

 If the ambient transaction is different from the enlisted transaction, an exception is thrown. The
implementation does not support changing the same value from within two different transactions. If you
have this requirement, you can create a lock and wait for the lock to be released from one transaction
before changing it within another transaction.

 public Transactional(T value)
 {
 if (Transaction.Current == null)
 {
 this.liveValue = value;
 }
 else
 {
 this.liveValue = default(T);
 GetEnlistment().Value = value;
 }
 }

 public Transactional()
 : this(default(T)) {}

 private ResourceManager < T > GetEnlistment()
 {
 Transaction tx = Transaction.Current;
 Trace.Assert(tx != null, “Must be invoked with ambient transaction”);

 if (enlistedTransaction == null)
 {
 enlistment = new ResourceManager < T > (this, tx);
 tx.EnlistVolatile(enlistment, EnlistmentOptions.None);
 enlistedTransaction = tx;
 return enlistment;
 }
 else if (enlistedTransaction == Transaction.Current)

(continued)

c22.indd 705c22.indd 705 2/19/08 5:18:13 PM2/19/08 5:18:13 PM

Part III: Base Class Libraries

706

 {
 return enlistment;
 }
 else
 {
 throw new TransactionException(
 “This class only supports enlisting with one transaction”);
 }
 }

 The property Value returns the value of the contained class and sets it. However, with transactions, you
cannot just set and return the liveValue variable. This would be the case only if the object were outside
a transaction. To make the code more readable, the property Value uses the methods GetValue() and
 SetValue() in the implementation:

 public T Value
 {
 get { return GetValue(); }
 set { SetValue(value); }
 }

 The method GetValue() checks if an ambient transaction exists. If one doesn ’ t exist, the liveValue is
returned. If there is an ambient transaction, the GetEnlistment() method shown earlier returns the
resource manager, and with the Value property, the temporary value for the contained object within the
transaction is returned.

 The method SetValue() is very similar to GetValue() ; the difference is that it changes the live or
temporary value.

 protected virtual T GetValue()
 {
 if (Transaction.Current == null)
 {
 return liveValue;
 }
 else
 {
 return GetEnlistment().Value;
 }
 }

 protected virtual void SetValue(T value)
 {
 if (Transaction.Current == null)
 {
 liveValue = value;
 }
 else
 {
 GetEnlistment().Value = value;
 }
 }

 The Commit() and Rollback() methods that are implemented in the class Transactional < T > are
invoked from the resource manager. The Commit() method sets the live value from the temporary value
received with the first argument and nullifies the variable enlistedTransaction as the transaction is

(continued)

c22.indd 706c22.indd 706 2/19/08 5:18:14 PM2/19/08 5:18:14 PM

Chapter 22: Transactions

707

completed. With the Rollback() method, the transaction is completed as well, but here the temporary
value is ignored, and the live value is kept in use.

 internal void Commit(T value, Transaction tx)
 {
 liveValue = value;
 enlistedTransaction = null;
 }

 internal void Rollback(Transaction tx)
 {
 enlistedTransaction = null;
 }
 }

 Because the resource manager that is used by the class Transactional < T > is used only within the
 Transactional < T > class itself, it is implemented as an inner class. With the constructor, the parent
variable is set to have an association with the transactional wrapper class. The temporary value used
within the transaction is copied from the live value. Remember the isolation requirements with
transactions.

using System;
using System.Diagnostics;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 public partial class Transactional < T >
 {
 internal class ResourceManager < T1 > : IEnlistmentNotification
 {
 private Transactional < T1 > parent;
 private Transaction currentTransaction;

 internal ResourceManager(Transactional < T1 > parent, Transaction tx)
 {
 this.parent = parent;
 Value = DeepCopy(parent.liveValue);
 currentTransaction = tx;
 }

 public T1 Value { get; set; }

 Because the temporary value may change within the transaction, the live value of the wrapper class may
not be changed within the transaction. When creating a copy with some classes, it is possible to invoke
the Clone() method that is defined with the ICloneable interface. However, as the Clone() method is
defined, it allows implementations to create either a shallow or a deep copy. If type T contains reference
types and implements a shallow copy, changing the temporary value would also change the original
value. This would be in conflict with the isolation and consistency features of transactions. Here, a deep
copy is required.

 To do a deep copy, the method DeepCopy() serializes and deserializes the object to and from a stream.
Because in C# 3.0 it is not possible to define a constraint to the type T indicating that serialization is
required, the static constructor of the class Transactional < T > checks if the type is serializable by
checking the property IsSerializable of the Type object.

c22.indd 707c22.indd 707 2/19/08 5:18:14 PM2/19/08 5:18:14 PM

Part III: Base Class Libraries

708

 static ResourceManager()
 {
 Type t = typeof(T1);
 Trace.Assert(t.IsSerializable, “Type “ + t.Name +
 “ is not serializable”);
 }

 private T1 DeepCopy(T1 value)
 {
 using (MemoryStream stream = new MemoryStream())
 {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, value);
 stream.Flush();
 stream.Seek(0, SeekOrigin.Begin);

 return (T1)formatter.Deserialize(stream);
 }
 }

 The interface IEnlistmentNotification is implemented by the class ResourceManager < T > . This
is the requirement for enlisting with transactions.

 The implementation of the Prepare() method just answers by invoking Prepared() with
 preparingEnlistment . There should not be a problem assigning the temporary value to the live value, so
the Prepare() method succeeds. With the implementation of the Commit() method, the Commit()
method of the parent is invoked, where the variable liveValue is set to the value of the ResourceManager
that is used within the transaction. The Rollback() method just completes the work and leaves the live
value where it was. With a volatile resource, there is not a lot you can do in the InDoubt() method. Writing
a log entry could be useful.

 public void Prepare(PreparingEnlistment preparingEnlistment)
 {
 preparingEnlistment.Prepared();
 }

 public void Commit(Enlistment enlistment)
 {
 parent.Commit(Value, currentTransaction);
 enlistment.Done();
 }

 public void Rollback(Enlistment enlistment)
 {
 parent.Rollback(currentTransaction);
 enlistment.Done();
 }

 public void InDoubt(Enlistment enlistment)
 {
 enlistment.Done();
 }
 }
 }
}

c22.indd 708c22.indd 708 2/19/08 5:18:14 PM2/19/08 5:18:14 PM

Chapter 22: Transactions

709

 The class Transactional < T > can now be used to make non-transactional classes transactional — for
example, int and string but also more complex classes such as Student — as long as the type is
serializable:

using System;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()
 {
 Transactional < int > intVal = new Transactional < int > (1);
 Transactional < Student > student1 = new Transactional < Student > (
 new Student());
 student1.Value.FirstName = “Andrew”;
 student1.Value.LastName = “Wilson”;

 Console.WriteLine(“before the transaction, value: {0}”,
 intVal.Value);
 Console.WriteLine(“before the transaction, student: {0}”,
 student1.Value);

 using (TransactionScope scope = new TransactionScope())
 {
 intVal.Value = 2;
 Console.WriteLine(“inside transaction, value: {0}”, intVal.Value);

 student1.Value.FirstName = “Ten”;
 student1.Value.LastName = “Sixty-Nine”;

 if (!Utilities.AbortTx())
 scope.Complete();
 }
 Console.WriteLine(“outside of transaction, value: {0}”,
 intVal.Value);
 Console.WriteLine(“outside of transaction, student: {0}”,
 student1.Value);
 }
 }
}

 The following console output shows a run of the application with a committed transaction:

before the transaction, value: 1
before the transaction: student: Andrew Wilson
inside transaction, value: 2

Abort the Transaction (y/n)? n

outside of transaction, value: 2
outside of transaction, student: Ten Sixty-Nine

Press any key to continue . . .

c22.indd 709c22.indd 709 2/19/08 5:18:15 PM2/19/08 5:18:15 PM

Part III: Base Class Libraries

710

 Transactions with Windows Vista
and Windows Server 2008

 You can write a custom durable resource manager that works with the File and Registry classes. A file -
 based durable resource manager can copy the original file and write changes to the temporary file inside a
temporary directory to make the changes persistent. When committing the transaction, the original file is
replaced by the temporary file. Writing custom durable resource managers for files and the registry is no
longer necessary with Windows Vista and Windows Server 2008. With these operating systems, native
transactions with the file system and with the registry are supported. For this, there are new API calls such
as CreateFileTransacted() , CreateHardLinkTransacted() , CreateSymbolicLinkTransacted() ,
 CopyFileTransacted() , and so on. What these API calls have in common is that they require a handle
to a transaction passed as an argument; they do not support ambient transactions. The transactional API
calls are not available from .NET 3.5, but you can create a custom wrapper by using Platform Invoke .

 Platform Invoke is discussed in more detail in Chapter 24 , “ Interoperability. ”

 The sample application wraps the native method CreateFileTransacted() for creating transactional
file streams from .NET applications.

 When invoking native methods, the parameters of the native methods must be mapped to .NET data
types. Because of security issues, .NET 2.0 introduced the class SafeHandle to map a native HANDLE
type. SafeHandle is an abstract type that wraps operating system handles and supports critical
finalization of handle resources. Depending on the allowed values of a handle, the derived classes
 SafeHandleMinusOneIsInvalid and SafeHandleZeroOrMinusOneIsInvalid can be used to wrap
native handles. SafeFileHandle itself derives from SafeHandleZeroOrMinusOneIsInvalid . To map
a handle to a transaction, the class SafeTransactionHandle is defined.

using System;
using System.Runtime.Versioning;
using System.Security.Permissions;
using Microsoft.Win32.SafeHandles;

namespace Wrox.ProCSharp.Transactions
{
 [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]
 public sealed class SafeTransactionHandle :
 SafeHandleZeroOrMinusOneIsInvalid
 {
 private SafeTransactionHandle()
 : base(true) { }

 public SafeTransactionHandle(IntPtr preexistingHandle, bool ownsHandle)
 : base(ownsHandle)
 {
 SetHandle(preexistingHandle);
 }

 [ResourceExposure(ResourceScope.Machine)]
 [ResourceConsumption(ResourceScope.Machine)]
 protected override bool ReleaseHandle()
 {
 return NativeMethods.CloseHandle(handle);
 }
 }
}

c22.indd 710c22.indd 710 2/19/08 5:18:15 PM2/19/08 5:18:15 PM

Chapter 22: Transactions

711

 All native methods used from .NET are defined with the class NativeMethods shown here. With the
sample, the native APIs needed are CreateFileTransacted() and CloseHandle() , which are defined
as static members of the class. The methods are declared extern because there is no C# implementation.
Instead, the implementation is found in the native DLL as defined by the attribute DllImport . Both of
these methods can be found in the native DLL Kernel32.dll. With the method declaration, the
parameters defined with the Windows API call are mapped to .NET data types. The parameter txHandle
represents a handle to a transaction and is of the previously defined type SafeTransactionHandle .

using System;
using System.Runtime.ConstrainedExecution;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
using Microsoft.Win32.SafeHandles;

namespace Wrox.ProCSharp.Transactions
{
 internal static class NativeMethods
 {
 [DllImport(“Kernel32.dll”,
 CallingConvention = CallingConvention.StdCall,
 CharSet = CharSet.Unicode)]
 internal static extern SafeFileHandle CreateFileTransacted(
 String lpFileName,
 uint dwDesiredAccess,
 uint dwShareMode,
 IntPtr lpSecurityAttributes,
 uint dwCreationDisposition,
 int dwFlagsAndAttributes,
 IntPtr hTemplateFile,
 SafeTransactionHandle txHandle,
 IntPtr miniVersion,
 IntPtr extendedParameter);

 [DllImport(“Kernel32.dll”, SetLastError = true)]
 [ResourceExposure(ResourceScope.Machine)]
 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
 [return: MarshalAs(UnmanagedType.Bool)]
 internal static extern bool CloseHandle(IntPtr handle);

 }
}

 The interface IKernelTransaction is used to get a transaction handle and pass it to the transacted
Windows API calls. This is a COM interface and must be wrapped to .NET by using COM Interop
attributes as shown. The attribute GUID must have exactly the identifier as it is used here with the
interface definition, because this is the identifier used with the definition of the COM interface.

using System;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.Transactions
{
 [ComImport]
 [Guid(“79427A2B-F895-40e0-BE79-B57DC82ED231”)]
 [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 public interface IKernelTransaction

(continued)

c22.indd 711c22.indd 711 2/19/08 5:18:15 PM2/19/08 5:18:15 PM

Part III: Base Class Libraries

712

 {
 void GetHandle(out SafeTransactionHandle ktmHandle);
 }
}

 Finally, the class TransactedFile is the class that will be used by .NET applications. This class defines
the method GetTransactedFileStream() that requires a file name as parameter and returns a
 System.IO.FileStream . The returned stream is a normal .NET stream; it just references a transacted file.

 With the implementation, TransactionInterop.GetDtcTransaction() creates an interface
pointer of the IKernelTransaction to the ambient transaction that is passed as an argument
to GetDtcTransaction() . Using the interface IKernelTransaction , the handle of type
 SafeTransactionHandle is created. This handle is then passed to the wrapped API call
 NativeMethods.CreateFileTransacted() . With the returned file handle, a new FileStream
instance is created and returned to the caller.

using System;
using System.IO;
using System.Transactions;
using Microsoft.Win32.SafeHandles;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.Transactions
{
 public static class TransactedFile
 {
 internal const short FILE_ATTRIBUTE_NORMAL = 0x80;
 internal const short INVALID_HANDLE_VALUE = -1;
 internal const uint GENERIC_READ = 0x80000000;
 internal const uint GENERIC_WRITE = 0x40000000;
 internal const uint CREATE_NEW = 1;
 internal const uint CREATE_ALWAYS = 2;
 internal const uint OPEN_EXISTING = 3;

 [FileIOPermission(SecurityAction.Demand, Unrestricted=true)]
 public static FileStream GetTransactedFileStream(string fileName)
 {
 IKernelTransaction ktx = (IKernelTransaction)
 TransactionInterop.GetDtcTransaction(Transaction.Current);

 SafeTransactionHandle txHandle;
 ktx.GetHandle(out txHandle);

 SafeFileHandle fileHandle = NativeMethods.CreateFileTransacted(
 fileName, GENERIC_WRITE, 0,
 IntPtr.Zero, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
 null,
 txHandle, IntPtr.Zero, IntPtr.Zero);

 return new FileStream(fileHandle, FileAccess.Write);
 }
 }
}

 Now it is very easy to use the transactional API from .NET code. You can create an ambient transaction
with the TransactionScope class and use the TransactedFile class within the context of the ambient

(continued)

c22.indd 712c22.indd 712 2/19/08 5:18:15 PM2/19/08 5:18:15 PM

Chapter 22: Transactions

713

transaction scope. If the transaction is aborted, the file is not written. If the transaction is committed, you
can find the file in the temp directory.

using System;
using System.IO;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()
 {
 using (TransactionScope scope = new TransactionScope())
 {
 FileStream stream =
 TransactedFile.GetTransactedFileStream(
 “c:/temp/sample.txt”);

 StreamWriter writer = new StreamWriter(stream);
 writer.WriteLine(“Write a transactional file”);
 writer.Close();

 if (!Utilities.AbortTx())
 scope.Complete();
 }
 }
 }
}

 Now you can use databases, volatile resources, and files within the same transaction.

 Summary
 In this chapter, you learned the attributes of transactions and how you can create and manage
transactions with the classes from the System.Transactions namespace.

 Transactions are described with ACID properties: atomicity, consistency, isolation, and durability. Not all
of these properties are always required, as you have seen with volatile resources that don ’ t support
durability and with isolation options.

 The easiest way to deal with transactions is by creating ambient transactions and using the
 TransactionScope class. Ambient transactions are very useful working with the ADO.NET data
adapter and LINQ to SQL where usually you do not open and close database connections explicitly.
ADO.NET is covered in Chapter 26 . LINQ to SQL is explained in Chapter 27 .

 Using the same transaction across multiple threads, you can use the DependentTransaction class to
create a dependency on another transaction. By enlisting a resource manager that implements the interface
 IEnlistmentNotification , you can create custom resources that participate with transactions.

 Finally, you have seen how to use Windows Vista and Windows Server 2008 transactions with the .NET
Framework and C#.

 With .NET Enterprise Services, you can create automatic transactions that make use of
 System.Transactions . You can read about this technology in Chapter 44 , “ Enterprise Services. ”

 In the next chapter, you can read how to create a Windows service that can be automatically started
when the operating system boots. Transactions can be useful within a service as well.

c22.indd 713c22.indd 713 2/19/08 5:18:16 PM2/19/08 5:18:16 PM

c22.indd 714c22.indd 714 2/19/08 5:18:16 PM2/19/08 5:18:16 PM

 Windows Services

 Windows Services are programs that can be started automatically at boot time without the need for
anyone to log on to the machine.

 In this chapter, you learn:

 The architecture of Windows Services, including the functionality of a service program, a
service control program, and a service configuration program

 How to implement a Windows Service with the classes found in the
System.ServiceProcess namespace

 Installation programs to configure the Windows Service in the registry

 How to write a program to control the Windows Service using the ServiceController
class

 How to troubleshoot Windows Service programs

 How to react to power events from the operating system

 The first section explains the architecture of Windows Services. You can download the code for this
chapter from the Wrox Web site at www.wrox.com .

 What Is a Windows Service?
 Windows Services are applications that can be automatically started when the operating system
boots. They can run without having an interactive user logged on to the system and do some
processing in the background. For example, on a Windows Server, system networking services
should be accessible from the client without a user logging on to the server. On the client system,
services are useful as well; for example, to get a new software version from the Internet or to
do some file cleanup on the local disk. You can configure a Windows Service to be run from a
specially configured user account or from the system user account — a user account that has even
more privileges than that of the system administrator.

 Unless otherwise noted, when we refer to a service, we are referring to a Windows Service.

❑

❑

❑

❑

❑

❑

c23.indd 715c23.indd 715 2/19/08 5:18:28 PM2/19/08 5:18:28 PM

716

Part III: Base Class Libraries

 Here are a few examples of services:

 Simple TCP/IP Services is a service program that hosts some small TCP/IP servers: echo,
daytime, quote, and others.

 World Wide Publishing Service is the service of the Internet Information Server (IIS).

 Event Log is a service to log messages to the event log system.

 Windows Search is a service that creates indexes of data on the disk.

 You can use the Services administration tool, shown in Figure 23 - 1 , to see all of the services on a system.
On a Windows 2003 server, this program can be accessed by selecting Start Programs Administrative
Tools Services; on Windows Vista and Windows XP, the program is accessible through Settings Control
Panel Administrative Tools Services.

❑

❑

❑

❑

 Figure 23 - 1

 Windows Services Architecture
 Three program types are necessary to operate a Windows Service:

 A service program

 A service control program

 A service configuration program

 The service program itself provides the actual functionality you are looking for. With a service control
program, it is possible to send control requests to a service, such as start, stop, pause, and continue. With
a service configuration program, a service can be installed; it is copied to the file system, written into the
registry, and configured as a service. Although .NET components can be installed simply with an xcopy,
because they don ’ t need to write information to the registry, installation for services requires registry
configuration. A service configuration program can also be used to change the configuration of that
service at a later point.

 These three ingredients of a Windows Service are discussed in the following subsections.

❑

❑

❑

c23.indd 716c23.indd 716 2/19/08 5:18:29 PM2/19/08 5:18:29 PM

717

Chapter 23: Windows Services

 Service Program
 Before looking at the .NET implementation of a service, let ’ s explore, from an independent point of view,
what the Windows architecture of services looks like and what the inner functionality of a service is.

 The service program implements the functionality of the service. It needs three parts:

 A main function

 A service - main function

 A handler

 Before discussing these parts, we need to quickly introduce you to the Service Control Manager (SCM).
The SCM plays an important role for services — sending requests to your service to start and to stop it.

 Service Control Manager
 The SCM is the part of the operating system that communicates with the service. Figure 23 - 2 illustrates
how this communication works with a Unified Modeling Language (UML) sequence diagram.

❑

❑

❑

SCM

Service
start service process

register service-mains

service-main

register handler

Figure 23-2

 At boot time, each process for which a service is set to start automatically is started, and so the
main function of this process is called. The service has the responsibility of registering the service - main
function for each of its services. The main function is the entry point of the service program, and in
this function the entry points for the service - main functions must be registered with the SCM.

 Main Function, Service - Main, and Handlers
 The main function of the service is the normal entry point of a program, the Main() method. The main
function of the service might register more than one service - main function. The service - main function
contains the actual functionality of the service. The service must register a service - main function for each
service it provides. A service program can provide a lot of services in a single program; for example,
 < windows > \system32\services.exe is the service program that includes Alerter, Application
Management, Computer Browser, and DHCP Client, among other items.

c23.indd 717c23.indd 717 2/19/08 5:18:29 PM2/19/08 5:18:29 PM

718

Part III: Base Class Libraries

 The SCM now calls the service - main function for each service that should be started. One important task
of the service - main function is to register a handler with the SCM.

 The handler function is the third part of a service program. The handler must respond to events from the
SCM. Services can be stopped, suspended, and resumed, and the handler must react to these events.

 Once a handler has been registered with the SCM, the service control program can post requests to the
SCM to stop, suspend, and resume the service. The service control program is independent of the SCM
and the service itself. The operating system contains many service control programs, for example, the
MMC Services snap - in that you saw earlier. You can also write your own service control program; a good
example of this is the SQL Server Configuration Manager shown in Figure 23 - 3 .

Figure 23-3

 Service Control Program
 As the name suggests, with a service control program, you can control the service. For stopping,
suspending, and resuming the service, you can send control codes to the service, and the handler should
react to these events. It is also possible to ask the service about the actual status and to implement a
custom handler that responds to custom control codes.

 Service Configuration Program
 Because services must be configured in the registry, you can ’ t use Xcopy installation with services. The
registry contains the startup type of the service which can be set to automatic, manual, or disabled. You
also need to configure the user of the service program and dependencies of the service — for example, the
services that must be started before this one can start. All of these configurations are made within a service
configuration program. The installation program can use the service configuration program to configure
the service, but this program can also be used at a later time to change service configuration parameters.

 System.ServiceProcess Namespace
 In the .NET Framework, you can find service classes in the System.ServiceProcess namespace that
implement the three parts of a service:

c23.indd 718c23.indd 718 2/19/08 5:18:30 PM2/19/08 5:18:30 PM

719

Chapter 23: Windows Services

 You must inherit from the ServiceBase class to implement a service. The ServiceBase class is
used to register the service and to answer start and stop requests.

 The ServiceController class is used to implement a service control program. With this class,
you can send requests to services.

 The ServiceProcessInstaller and ServiceInstaller classes are, as their names suggest,
classes to install and configure service programs.

 Now you are ready to create a new service.

 Creating a Windows Service
 The service that you create will host a quote server. With every request that is made from a client, the
quote server returns a random quote from a quote file. The first part of the solution uses three assemblies,
one for the client and two for the server. Figure 23 - 4 gives an overview of the solution. The assembly
 QuoteServer holds the actual functionality. The service reads the quote file in a memory cache, and
answers requests for quotes with the help of a socket server. The QuoteClient is a Windows Forms rich -
 client application. This application creates a client socket to communicate with the QuoteServer . The
third assembly is the actual service. The QuoteService starts and stops the QuoteServer ; the service
controls the server:

 Before creating the service part of your program, create a simple socket server in an extra C# class library
that will be used from your service process.

❑

❑

❑

Windows Forms Application
and Socket client Socket Server

Client Server

Windows Service

«assembly»
QuoteClient

«assembly»
QuoteServer

«assembly»
QuoteService

communicates

Figure 23-4

 A Class Library Using Sockets
 You can build any functionality in the service, for example, scanning for files to do a backup or a virus
check, or starting a WCF server. However, all service programs share some similarities. The program
must be able to start (and to return to the caller), stop, and suspend. This section looks at such an
implementation using a socket server.

 With Windows Vista, the Simple TCP/IP Services can be installed as part of the Windows components.
Part of the Simple TCP/IP Services is a “ quote of the day, ” or qotd, TCP/IP server. This simple service
listens to port 17 and answers every request with a random message from the file < windir > \system32\
drivers\etc\quotes . With the sample service, a similar server will be built. The sample server returns
a Unicode string, in contrast to the good-old qotd server that returns an ASCII string.

c23.indd 719c23.indd 719 2/19/08 5:18:30 PM2/19/08 5:18:30 PM

720

Part III: Base Class Libraries

 First, create a Class Library called QuoteServer and implement the code for the server. The following
walks through the source code of your QuoteServer class in the file QuoteServer.cs :

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;

namespace Wrox.ProCSharp.WinServices
{
 public class QuoteServer
 {
 private TcpListener listener;
 private int port;
 private string filename;
 private List < string > quotes;
 private Random random;
 private Thread listenerThread;

 The constructor QuoteServer() is overloaded so that a file name and a port can be passed to the
call. The constructor where just the file name is passed uses the default port 7890 for the server.
The default constructor defines the default file name for the quotes as quotes.txt :

 public QuoteServer() : this (“quotes.txt””)
 {
 }
 public QuoteServer(string filename) : this(filename, 7890)
 {
 }
 public QuoteServer(string filename, int port)
 {
 this.filename = filename;
 this.port = port;
 }

 ReadQuotes() is a helper method that reads all the quotes from a file that was specified in the
constructor. All the quotes are added to the StringCollection quotes. In addition, you are creating an
instance of the Random class that will be used to return random quotes:

 protected void ReadQuotes()
 {
 quotes = new List < string > ();
 Stream stream = File.OpenRead(filename);
 StreamReader streamReader = new StreamReader(stream);
 string quote;
 while ((quote = streamReader.ReadLine()) != null)
 {
 quotes.Add(quote);
 }
 streamReader.Close();
 stream.Close();
 random = new Random();
 }

c23.indd 720c23.indd 720 2/19/08 5:18:30 PM2/19/08 5:18:30 PM

721

Chapter 23: Windows Services

 Another helper method is GetRandomQuoteOfTheDay() . This method returns a random quote from the
 StringCollection quotes:

 protected string GetRandomQuoteOfTheDay()
 {
 int index = random.Next(0, quotes.Count);
 return quotes[index];
 }

 In the Start() method, the complete file containing the quotes is read in the StringCollection
quotes by using the helper method ReadQuotes() . After this, a new thread is started, which
immediately calls the Listener() method — similarly to the TcpReceive example in Chapter 41 ,
 “ Accessing the Internet. ”

 Here a thread is used because the Start() method cannot block and wait for a client; it must return
immediately to the caller (SCM). The SCM would assume that the start failed if the method didn ’ t return
to the caller in a timely fashion (30 seconds). The listener thread is set as a background thread so that the
application can exit without stopping this thread. The Name property of the thread is set because this
helps with debugging, as the name will show up in the debugger:

 public void Start()
 {
 ReadQuotes();
 listenerThread = new Thread(ListenerThread);
 listenerThread.IsBackground = true;
 listenerThread.Name = “Listener”;
 listenerThread.Start();
 }

 The thread function ListenerThread() creates a TcpListener instance. The AcceptSocket()
method waits for a client to connect. As soon as a client connects, AcceptSocket() returns with a socket
associated with the client. Next, GetRandomQuoteOfTheDay() is called to send the returned random
quote to the client using socket.Send() :

 protected void ListenerThread()
 {
 try
 {
 IPAddress ipAddress = IPAddress.Parse(“127.0.0.1”);
 listener = new TcpListener(ipAddress, port);
 listener.Start();
 while (true)
 {
 Socket clientSocket = listener.AcceptSocket();
 string message = GetRandomQuoteOfTheDay();
 UnicodeEncoding encoder = new UnicodeEncoding();
 byte[] buffer = encoder.GetBytes(message);
 clientSocket.Send(buffer, buffer.Length, 0);
 clientSocket.Close();
 }
 }
 catch (SocketException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

c23.indd 721c23.indd 721 2/19/08 5:18:31 PM2/19/08 5:18:31 PM

722

Part III: Base Class Libraries

 In addition to the Start() method, the following methods are needed to control the service: Stop() ,
 Suspend() , and Resume() :

 public void Stop()
 {
 listener.Stop();
 }
 public void Suspend()
 {
 listener.Stop();
 }
 public void Resume()
 {
 Start();
 }

 Another method that will be publicly available is RefreshQuotes() . If the file containing the quotes
changes, the file is re - read with this method:

 public void RefreshQuotes()
 {
 ReadQuotes();
 }
 }
}

 Before building a service around the server, it is useful to build a test program that creates just an
instance of the QuoteServer and calls Start() . This way, you can test the functionality without the
need to handle service - specific issues. This test server must be started manually, and you can easily walk
through the code with a debugger.

 The test program is a C# console application, TestQuoteServer . You need to reference the assembly
of the QuoteServer class. The file containing the quotes must be copied to the directory c:\ProCSharp\
Services (or you must change the argument in the constructor to specify where you have copied the
file). After calling the constructor, the Start() method of the QuoteServer instance is called. Start()
returns immediately after having created a thread, so the console application keeps running until Return
is pressed:

 static void Main()
 {
 QuoteServer qs = new QuoteServer(
 @”c:\ProCSharp\WindowsServices\quotes.txt”, 4567);
 qs.Start();
 Console.WriteLine(“Hit return to exit”);
 Console.ReadLine();
 qs.Stop();
 }

 Note that QuoteServer will be running on port 4567 on localhost using this program — you will have to
use these settings in the client later.

 TcpClient Example
 The client is a simple WPF Windows application in which you can request quotes from the server. This
application uses the TcpClient class to connect to the running server, and receives the returned
message, displaying it in a text box (see Figure 23 - 5).

c23.indd 722c23.indd 722 2/19/08 5:18:31 PM2/19/08 5:18:31 PM

723

Chapter 23: Windows Services

 Server and port information to connect to the server is configured with settings of the application. You
can add settings with the Settings tab inside the properties of the project (see Figure 23 - 6). Here, you can
define the ServerName and PortNumber settings, and define some default values. From here, with the
Scope set to User, the settings go into a user - specific configuration file, and every user of the application
can have different settings. This Settings feature of Visual Studio also creates a Settings class so that
the settings can be read and written with a strongly typed class.

Figure 23-5

Figure 23-6

 You need to add the following using directives to your code:

using System;
using System.Net.Sockets;
using System.Text;
using System.Windows;
using System.Windows.Input;

 Within the constructor of the class QuoteOfTheDayWindow , you can define a handler method to the
 Click event of the button buttonGetQuote :

 public QuoteOfTheDayWindow()
 {
 InitializeComponent();
 this.buttonGetQuote.Click += new RoutedEventHandler(OnGetQuote);
 }

c23.indd 723c23.indd 723 2/19/08 5:18:31 PM2/19/08 5:18:31 PM

724

Part III: Base Class Libraries

 The major functionality of the client lies in the handler for the click event of the Get Quote button:

 protected void OnGetQuote(object sender, RoutedEventArgs e)
 {
 Cursor currentCursor = this.Cursor;
 this.Cursor = Cursors.Wait;

 string serverName = Properties.Settings.Default.ServerName;
 int port = Properties.Settings.Default.PortNumber;

 TcpClient client = new TcpClient();
 NetworkStream stream = null;
 try
 {
 client.Connect(serverName, port);
 stream = client.GetStream();
 byte[] buffer = new Byte[1024];
 int received = stream.Read(buffer, 0, 1024);
 if (received < = 0)
 {
 return;
 }
 textQuote.Text = Encoding.Unicode.GetString(buffer).Trim(‘\0’);
 }
 catch (SocketException ex)
 {
 MessageBox.Show(ex.Message, “Error Quote of the day””,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 if (stream != null)
 {
 stream.Close();
 }

 if (client.Connected)
 {
 client.Close();
 }
 }
 this.Cursor = currentCursor;
 }

 After starting the test server and this Windows application client, you can test the functionality. Figure 23 - 7
shows a successful run of this application.

 Next, you implement the service functionality in the server. The program is already running, so what
else do you need? Well, the server program should be automatically started at boot time without anyone
logged on to the system. You want to control this by using service control programs.

c23.indd 724c23.indd 724 2/19/08 5:18:32 PM2/19/08 5:18:32 PM

725

Chapter 23: Windows Services

 Windows Service Project
 Using the new project wizard for C# Windows Services, you can now start to create a Windows Service.
For the new service, use the name QuoteService (see Figure 23 - 8).

 After you click the OK button to create the Windows Service application, you will see the Designer
surface (just as with Windows Forms applications). However, you can ’ t insert any Windows Forms
components because the application cannot directly display anything on the screen. The Designer
surface is used later in this chapter to add other components, such as performance counters and event
logging.

Figure 23-7

Figure 23-8

 Selecting the properties of this service opens up the Properties editor window (see Figure 23 - 9).

c23.indd 725c23.indd 725 2/19/08 5:18:32 PM2/19/08 5:18:32 PM

726

Part III: Base Class Libraries

 With the service properties, you can configure the following values:

 AutoLog specifies that events are automatically written to the event log for starting and
stopping the service.

 CanPauseAndContinue , CanShutdown , and CanStop specify pause, continue, shut down, and
stop requests.

 ServiceName is the name of the service written to the registry and is used to control the service.

 CanHandleSessionChangeEvent defines if the service can handle change events from a
terminal server session.

 CanHandlePowerEvent is a very useful option for services running on a laptop or mobile
devices. If this option is enabled, the service can react to low-power events, and change the
behavior of the service accordingly.

❑

❑

❑

❑

❑

The default service name is WinService1, regardless of what the project is called.
You can install only one WinService1 service. If you get installation errors during
your testing process, you might already have installed one WinService1 service.
Therefore, make sure that you change the name of the service with the Properties
editor to a more suitable name at the beginning of the service development.

Figure 23-9

 Changing these properties with the Properties editor sets the values of your ServiceBase - derived class
in the InitalizeComponent() method. You already know this method from Windows Forms
applications. It is used in a similar way with services.

 A wizard generates the code, but change the file name to QuoteService.cs , the name of the namespace
to Wrox.ProCSharp.WinServices , and the class name to QuoteService . The code of the service is
discussed in detail shortly.

 The ServiceBase Class
 The ServiceBase class is the base class for all Windows Services developed with the .NET Framework. The
class QuoteService is derived from ServiceBase ; this class communicates with the SCM using an

c23.indd 726c23.indd 726 2/19/08 5:18:32 PM2/19/08 5:18:32 PM

727

Chapter 23: Windows Services

undocumented helper class, System.ServiceProcess.NativeMethods , which is just a wrapper class
to the Win32 API calls. The class is private, so it cannot be used in your code.

 The sequence diagram in Figure 23 - 10 shows the interaction of the SCM, the class QuoteService ,
and the classes from the System.ServiceProcess namespace. In the sequence diagram, you can see
the lifelines of objects vertically and the communication going on horizontally. The communication is
time - ordered from top to bottom.

SCM quoteService :ServiceBase :NativeMethods

Main()
Run()

StartServiceCtrlDispatcher()

ServiceMainCallback()

OnStart()

ServiceCommandCallback()ServiceCommandCallback()

OnStep()

RegisterServiceCtrlHandler(Ex)()

on a
stop

request
for the
service

Figure 23-10

 The SCM starts the process of a service that should be started. At startup, the Main() method is called. In the
 Main() method of the sample service, the Run() method of the base class ServiceBase is called. Run()
registers the method ServiceMainCallback() using NativeMethods.StartServiceCtrlDispatcher()
in the SCM and writes an entry to the event log.

 Next, the SCM calls the registered method ServiceMainCallback() in the service
program. ServiceMainCallback() itself registers the handler in the SCM using
NativeMethods.RegisterServiceCtrlHandler[Ex]() and sets the status of the service
in the SCM. Then the OnStart() method is called. In OnStart() , you need to implement the startup
code. If OnStart() is successful, the string “ Service started successfully ” is written to the event log.

 The handler is implemented in the ServiceCommandCallback() method. The SCM calls this method
when changes are requested from the service. The ServiceCommandCallback() method routes the
requests further to OnPause() , OnContinue() , OnStop() , OnCustomCommand() , and
 OnPowerEvent() .

 Main Function
 This section looks into the application wizard – generated main function of the service process. In the
main function, an array of ServiceBase classes, ServicesToRun , is declared. One instance of the
 QuoteService class is created and passed as the first element to the ServicesToRun array. If more than
one service should run inside this service process, it is necessary to add more instances of the specific
service classes to the array. This array is then passed to the static Run() method of the ServiceBase
class. With the Run() method of ServiceBase , you are giving the SCM references to the entry points of
your services. The main thread of your service process is now blocked and waits for the service to
terminate.

c23.indd 727c23.indd 727 2/19/08 5:18:33 PM2/19/08 5:18:33 PM

728

Part III: Base Class Libraries

 Here is the automatically generated code:

 /// < summary >
 /// The main entry point for the process
 /// < /summary >
 static void Main()
 {
 ServiceBase[] ServicesToRun;
 ServicesToRun = new ServiceBase[]
 {
 new QuoteService()
 };
 ServiceBase.Run(ServicesToRun);
 }

 If there is only a single service in the process, the array can be removed; the Run() method accepts a
single object derived from the class ServiceBase , so the Main() method can be reduced to this:

 System.ServiceProcess.ServiceBase.Run(new QuoteService());

 The service program Services.exe includes multiple services. If you have a similar service, where
more than one service is running in a single process in which you must initialize some shared state for
multiple services, the shared initialization must be done before the Run() method. With the Run()
method, the main thread is blocked until the service process is stopped, and any following instructions
would not be reached before the end of the service.

 The initialization shouldn ’ t take longer than 30 seconds. If the initialization code were to take longer
than this, the SCM would assume that the service startup failed. You need to take into account the
slowest machines where this service should run within the 30 - second limit. If the initialization takes
longer, you could start the initialization in a different thread so that the main thread calls Run() in time.
An event object can then be used to signal that the thread has completed its work.

 Service Start
 At service start, the OnStart() method is called. In this method, you can start the previously created
socket server. You must reference the QuoteServer assembly for the use of the QuoteService . The
thread calling OnStart() cannot be blocked; this method must return to the caller, which is the
 ServiceMainCallback() method of the ServiceBase class. The ServiceBase class registers the
handler and informs the SCM that the service started successfully after calling OnStart() :

 protected override void OnStart(string[] args)
 {
 quoteServer = new QuoteServer(
 @”c:\ProCSharp\WindowsServices\quotes.txt”, 5678);
 quoteServer.Start();
 }

 The quoteServer variable is declared as a private member in the class:

namespace Wrox.ProCSharp.WinServices
{
 public partial class QuoteService : ServiceBase
 {
 private QuoteServer quoteServer;

 Handler Methods
 When the service is stopped, the OnStop() method is called. You should stop the service functionality in
this method:

c23.indd 728c23.indd 728 2/19/08 5:18:33 PM2/19/08 5:18:33 PM

729

Chapter 23: Windows Services

 protected override void OnStop()
 {
 quoteServer.Stop();
 }

 In addition to OnStart() and OnStop() , you can override the following handlers in the service class:

 OnPause() is called when the service should be paused.

 OnContinue() is called when the service should return to normal operation after being paused.
To make it possible for the overridden methods OnPause() and OnContinue() to be called, the
 CanPauseAndContinue property must be set to true .

 OnShutdown() is called when Windows is undergoing system shutdown. Normally, the behavior
of this method should be similar to the OnStop() implementation; if more time is needed for a
shutdown, you can request additional time. Similarly to OnPause() and OnContinue() , a
property must be set to enable this behavior: CanShutdown must be set to true .

 OnPowerEvent() is called when the power status of the system changes. The information
about the change of the power status is in the argument of type PowerBroadcastStatus .
 PowerBroadcastStatus is an enumeration with values such as Battery Low and
 PowerStatusChange . Here, you will also get information if the system would like to suspend
(QuerySuspend), where you can approve or deny the suspend. You can read more about power
events later in this chapter.

 OnCustomCommand() is a handler that can serve custom commands that are sent by a service
control program. The method signature of OnCustomCommand() has an int argument where
you get the custom command number. The value can be in the range from 128 to 256; values
below 128 are system - reserved values. In your service, you are re - reading the quotes file with
the custom command 128:

 protected override void OnPause()
 {
 quoteServer.Suspend();
 }

 protected override void OnContinue()
 {
 quoteServer.Resume();
 }

 protected override void OnShutdown()
 {
 OnStop();
 }

 public const int commandRefresh = 128;
 protected override void OnCustomCommand(int command)
 {
 switch (command)
 {
 case commandRefresh:
 quoteServer.RefreshQuotes();
 break;

 default:
 break;
 }
 }

❑

❑

❑

❑

❑

c23.indd 729c23.indd 729 2/19/08 5:18:33 PM2/19/08 5:18:33 PM

730

Part III: Base Class Libraries

 Threading and Services
 As stated earlier, the SCM will assume that the service failed if the initialization takes too long. To deal
with this, you need to create a thread.

 The OnStart() method in your service class must return in time. If you call a blocking method like
 AcceptSocket() from the TcpListener class, you need to start a thread for doing this. With a
networking server that deals with multiple clients, a thread pool is also very useful. AcceptSocket()
should receive the call and hand the processing off to another thread from the pool. This way, no one
waits for the execution of code and the system seems responsive.

 Service Installation
 A service must be configured in the registry. All services can be found in HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Services . You can view the registry entries by using regedit . The type
of the service, display name, path to the executable, startup configuration, and so on are all found here.
Figure 23 - 11 shows the registry configuration of the W3SVC service.

Figure 23-11

 This configuration can be done by using the installer classes from the System.ServiceProcess
namespace, as discussed in the following section.

 Installation Program
 You can add an installation program to the service by switching to the design view with Visual Studio
and then selecting the Add Installer option from the context menu. With this option, a new
 ProjectInstaller class is created, and a ServiceInstaller and a ServiceProcessInstaller
instance are created.

 Figure 23 - 12 shows the class diagram of the installer classes for services.

 With this diagram in mind, let ’ s go through the source code in the file ProjectInstaller.cs that was
created with the Add Installer option.

 The Installer Class
 The class ProjectInstaller is derived from System.Configuration.Install.Installer . This
is the base class for all custom installers. With the Installer class, it is possible to build transaction -
 based installations. With a transaction - based installation, it is possible to roll back to the previous state if
the installation fails, and any changes made by this installation up to that point will be undone. As you
can see in Figure 23 - 12 , the Installer class has Install() , Uninstall() , Commit() , and
 Rollback() methods, and they are called from installation programs.

c23.indd 730c23.indd 730 2/19/08 5:18:34 PM2/19/08 5:18:34 PM

731

Chapter 23: Windows Services

Figure 23-12

 The attribute [RunInstaller(true)] means that the class ProjectInstaller should be invoked
when installing an assembly. Custom action installers, as well as installutil.exe (which is used later
in this chapter), check for this attribute.

 Similarly to Windows Forms applications, InitializeComponent() is called inside the constructor of
the ProjectInstaller class:

using System.ComponentModel;
using System.Configuration.Install;

namespace Wrox.ProCSharp.WinServices
{
 [RunInstaller(true)]
 public partial class ProjectInstaller : Installer
 {
 public ProjectInstaller()
 {
 InitializeComponent();
 }
 }

 The ServiceProcessInstaller and ServiceInstaller Classes
 Within the implementation of InitializeComponent() , instances of the ServiceProcessInstaller
class and the ServiceInstaller class are created. Both of these classes derive from the
 ComponentInstaller class, which itself derives from Installer .

 Classes derived from ComponentInstaller can be used with an installation process. Remember that a
service process can include more than one service. The ServiceProcessInstaller class is used for the
configuration of the process that defines values for all services in this process, and the
 ServiceInstaller class is for the configuration of the service, so one instance of ServiceInstaller
is required for each service. If three services are inside the process, you need to add ServiceInstaller
objects — three ServiceInstaller instances are needed in that case:

 partial class ProjectInstaller
 {
 /// < summary >
 /// Required designer variable.
 /// < /summary >

(continued)

c23.indd 731c23.indd 731 2/19/08 5:18:34 PM2/19/08 5:18:34 PM

732

Part III: Base Class Libraries

 private System.ComponentModel.Container components = null;

 /// < summary >
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// < /summary >
 private void InitializeComponent()
 {
 this.serviceProcessInstaller1 =
 new System.ServiceProcess.ServiceProcessInstaller();
 this.serviceInstaller1 =
 new System.ServiceProcess.ServiceInstaller();
 //
 // serviceProcessInstaller1
 //
 this.serviceProcessInstaller1.Password = null;
 this.serviceProcessInstaller1.Username = null;
 //
 // serviceInstaller1
 //
 this.serviceInstaller1.ServiceName = “QuoteService”;
 //
 // ProjectInstaller
 //
 this.Installers.AddRange(
 new System.Configuration.Install.Installer[]
 {this.serviceProcessInstaller1,
 this.serviceInstaller1});
 }

 private System.ServiceProcess.ServiceProcessInstaller
 serviceProcessInstaller1;
 private System.ServiceProcess.ServiceInstaller serviceInstaller1;

 }

 ServiceProcessInstaller installs an executable that implements the class ServiceBase .
ServiceProcessInstaller has properties for the complete process. The following table explains the
properties shared by all the services inside the process.

Property Description

Username, Password Indicates the user account under which the service runs if the Account
property is set to ServiceAccount.User.

Account With this property, you can specify the account type of the service.

HelpText HelpText is a read-only property that returns the help text for setting
the username and password.

(continued)

 The process that is used to run the service can be specified with the Account property of the
 ServiceProcessInstaller class using the ServiceAccount enumeration. The following table
explains the different values of the Account property.

c23.indd 732c23.indd 732 2/19/08 5:18:34 PM2/19/08 5:18:34 PM

733

Chapter 23: Windows Services

 ServiceInstaller is the class needed for every service; it has the following properties for each service
inside a process: StartType , DisplayName , ServiceName , and ServicesDependentOn , as described in
the following table.

Value Meaning

LocalSystem Setting this value specifies that the service uses a highly privileged user
account on the local system, but this account presents an anonymous user to
the network. Thus, it doesn’t have rights on the network.

LocalService This account type presents the computer’s credentials to any remote server.

NetworkService Similarly to LocalService, this value specifies that the computer’s
credentials are passed to remote servers, but unlike LocalService, such a
service acts as a nonprivileged user on the local system. As the name implies,
this account should be used only for services that need resources from the
network.

User Setting the Account property to ServiceAccount.User means that you can
define the account that should be used from the service.

Property Description

StartType The StartType property indicates whether the service is manually or
automatically started. Possible values are ServiceStartMode.
Automatic, ServiceStartMode.Manual, and
ServiceStartMode.Disabled. With ServiceStartMode.Disabled,
the service cannot be started. This option is useful for services that
shouldn’t be started on a system. You might want to set the option to
Disabled if, for example, a required hardware controller is not available.

DisplayName DisplayName is the friendly name of the service that is displayed to
the user. This name is also used by management tools that control and
monitor the service.

ServiceName ServiceName is the name of the service. This value must be identical to
the ServiceName property of the ServiceBase class in the service
program. This name associates the configuration of the
ServiceInstaller to the required service program.

ServicesDependentOn Specifies an array of services that must be started before this service
can be started. When the service is started, all these dependent services
are started automatically, and then your service will start.

If you change the name of the service in the ServiceBase-derived class, be sure to
also change the ServiceName property in the ServiceInstaller object!

c23.indd 733c23.indd 733 2/19/08 5:18:35 PM2/19/08 5:18:35 PM

734

Part III: Base Class Libraries

 In the testing phases, set StartType to Manual . This way, if you can ’ t stop the service (for example,
when it has a bug), you still have the possibility to reboot the system. But if you have StartType set to
 Automatic , the service would be started automatically with the reboot! You can change this configura-
tion at a later time when you are sure that it works.

 The ServiceInstallerDialog Class
 Another installer class in the System.ServiceProcess.Design namespace is ServiceInstallerDialog .
This class can be used if you want the System Administrator to enter the username and password during
the installation.

 If you set the Account property of the class ServiceProcessInstaller to ServiceAccount.User
and the Username and Password properties to null , you will see the Set Service Login dialog box at
installation time (see Figure 23 - 13). You can also cancel the installation at this point.

Figure 23-13

 installutil
 After adding the installer classes to the project, you can use the installutil.exe utility to install and
uninstall the service. This utility can be used to install any assembly that has an Installer class. The
 installutil.exe utility calls the method Install() of the class that derives from the Installer
class for installation, and Uninstall() for the uninstallation .

 The command - line inputs for the installation and uninstallation of our service are:

installutil quoteservice.exe
installutil /u quoteservice.exe

If the installation fails, be sure to check the installation log files, InstallUtil.
InstallLog and <servicename>.InstallLog. Often, you can find very useful
information, such as “The specified service already exists.”

 Client
 After the service has been successfully installed, you can start the service manually from the Services
MMC (see the next section for further details), and then you can start the client application. Figure 23 - 14
shows the client accessing the service.

 Monitoring and Controlling the Service
 To monitor and control services, you can use the Services MMC snap - in that is part of the Computer
Management administration tool. Every Windows system also has a command - line utility, net.exe ,
which allows you to control services. Another command - line utility is sc.exe . This utility has much

c23.indd 734c23.indd 734 2/19/08 5:18:35 PM2/19/08 5:18:35 PM

735

Chapter 23: Windows Services

Figure 23-15

Figure 23-14

more functionality than net.exe , which is part of the Platform SDK. In this section, you create a small
Windows application that makes use of the System.ServiceProcess.ServiceController class to
monitor and control services.

 MMC Computer Management
 Using the Services snap - in to the Microsoft Management Console (MMC), you can view the status of all
services (see Figure 23 - 15). It is also possible to send control requests to services to stop, enable, or
disable them, as well as to change their configuration. The Services snap - in is a service control program
as well as a service configuration program.

 When you double - click QuoteService, you will get the Properties dialog box shown in Figure 23 - 16 . This
dialog box enables you to view the service name, the description, the path to the executable, the startup
type, and the status. The service is currently started. The account for the service process can be changed
with the Log On tab in this dialog.

c23.indd 735c23.indd 735 2/19/08 5:18:36 PM2/19/08 5:18:36 PM

736

Part III: Base Class Libraries

 net.exe
 The Services snap - in is easy to use, but the system administrator cannot automate it because it is not
usable within an administrative script. To control services, you can use the command - line utility
net.exe : net start shows all running services, net start servicename starts a service, and
net stop servicename sends a stop request to the service. It is also possible to pause and to continue
a service with net pause and net continue (only if the service allows it, of course).

 Figure 23 - 17 shows the result of net start in the console window.

Figure 23-16

Figure 23-17

 sc.exe
 There is a little - known utility delivered as part of the operating system: sc.exe .

c23.indd 736c23.indd 736 2/19/08 5:18:36 PM2/19/08 5:18:36 PM

737

Chapter 23: Windows Services

Figure 23-18

 sc.exe is a great tool to play with services. Much more can be done with sc.exe than with the net.exe
utility. With sc.exe , it is possible to check the actual status of a service, or configure, remove, and add
services, as Figure 23 - 18 shows. This tool also facilitates the deinstallation of the service, if it fails to
function correctly.

 Visual Studio Server Explorer
 It is also possible to control services using the Server Explorer within Visual Studio; Services is below
Servers and the name of your computer. By selecting a service and opening the context menu, a service
can be started and stopped. This context menu can also be used to add a ServiceController class to the
project. To control a specific service in your application, drag and drop a service from the Server Explorer
to the Designer: a ServiceController instance is added to the application. The properties of this object
are automatically set to access the selected service, and the assembly System.ServiceProcess is
referenced. You can use this instance to control a service in the same way you can with the application
that you develop in the next section.

 ServiceController Class
 In this section, you create a small Windows application that uses the ServiceController class to
monitor and control Windows Services.

c23.indd 737c23.indd 737 2/19/08 5:18:36 PM2/19/08 5:18:36 PM

738

Part III: Base Class Libraries

 Create a WPF application with a user interface as shown in Figure 23 - 19 . The main window of this
application has a list box to show all services, four text boxes to display the display name, status, type,
and name of the service, and six buttons. Four buttons are used to send control events, one button for a
refresh of the list, and one button to exit the application.

 You can read more about WPF in Chapter 34 , “ Windows Presentation Foundation. ”

Figure 23-19

 Monitoring the Service
 With the ServiceController class, you can get the information about each service. The following table
shows the properties of the ServiceController class.

Property Description

CanPauseAndContinue Returns true if pause and continue requests can be sent to the service.

CanShutdown Returns true if the service has a handler for a system shutdown.

CanStop Returns true if the service is stoppable.

DependentServices Returns a collection of dependent services. If the service is stopped,
then all dependent services are stopped beforehand.

ServicesDependentOn Returns a collection of the services that this service depends on.

DisplayName Specifies the name that should be displayed for this service.

MachineName Specifies the name of the machine that the service runs on.

ServiceName Specifies the name of the service.

ServiceType Specifies the type of the service. The service can be run inside a shared
process where more than one service uses the same process
(Win32ShareProcess), or run in such a way that there is just one ser-
vice in a process (Win32OwnProcess). If the service can interact with
the desktop, the type is InteractiveProcess.

Status Specifies the status of the service. The status can be running, stopped,
paused, or in some intermediate mode like start pending, stop pending,
and so on. The status values are defined in the enumeration
ServiceControllerStatus.

c23.indd 738c23.indd 738 2/19/08 5:18:37 PM2/19/08 5:18:37 PM

739

Chapter 23: Windows Services

 In the sample application, the properties DisplayName , ServiceName , ServiceType , and Status are
used to display the service information. Also, CanPauseAndContinue and CanStop are used to enable
or disable the Pause, Continue, and Stop buttons.

 To get all the needed information for the user interface, the class ServiceControllerInfo is created. This
class can be used for data binding and offers status information, the name of the service, the service type,
and the information about which buttons to control the service should be enabled or disabled.

 Because the class System.ServiceProcess.ServiceController is used, you must reference the
assembly System.ServiceProcess .

 ServiceControllerInfo contains an embedded ServiceController that is set with the constructor
of the ServiceControllerInfo class. There is also a read - only property Controller to access the
embedded ServiceController .

 public class ServiceControllerInfo
 {
 private ServiceController controller;

 public ServiceControllerInfo(ServiceController controller)
 {
 this.controller = controller;
 }

 public ServiceController Controller
 {
 get { return controller; }
 }

 To display current information about the service, the ServiceControllerInfo class has the
read - only properties DisplayName , ServiceName , ServiceTypeName , and ServiceStatusName .
The implementation of the properties DisplayName and ServiceName just accesses the properties
 DisplayName and ServiceName of the underlying ServiceController class. With the implementation
of the properties ServiceTypeName and ServiceStatusName , more work is done: The status and type
of the service cannot be returned that easily because a string should be displayed instead of a number,
which is what the ServiceController class returns. The property ServiceTypeName returns a
string that represents the type of the service. The ServiceType you get from the property
 ServiceController.ServiceType represents a set of flags that can be combined by using the
bitwise OR operator. The InteractiveProcess bit can be set together with Win32OwnProcess and
 Win32ShareProcess . So, first it is checked if the InteractiveProcess bit is set before continuing to
check for the other values. With services, the string returned will be “ Win32 Service Process ” or “ Win32
Shared Process ” :

 public string ServiceTypeName
 {
 get
 {
 ServiceType type = controller.ServiceType;
 string serviceTypeName = “”;
 if ((type & ServiceType.InteractiveProcess) != 0)
 {
 serviceTypeName = “Interactive “;
 type -= ServiceType.InteractiveProcess;
 }
 switch (type)

(continued)

c23.indd 739c23.indd 739 2/19/08 5:18:37 PM2/19/08 5:18:37 PM

740

Part III: Base Class Libraries

 {
 case ServiceType.Adapter:
 serviceTypeName += “Adapter”;
 break;

 case ServiceType.FileSystemDriver:
 case ServiceType.KernelDriver:
 case ServiceType.RecognizerDriver:
 serviceTypeName += “Driver”;
 break;

 case ServiceType.Win32OwnProcess:
 serviceTypeName += “Win32 Service Process”;
 break;

 case ServiceType.Win32ShareProcess:
 serviceTypeName += “Win32 Shared Process”;
 break;

 default:
 serviceTypeName += “unknown type “ + type.ToString();
 break;
 }
 return serviceTypeName;
 }
 }

 public string ServiceStatusName
 {
 get
 {
 switch (controller.Status)
 {
 case ServiceControllerStatus.ContinuePending:
 return “Continue Pending”;
 case ServiceControllerStatus.Paused:
 return “Paused”;
 case ServiceControllerStatus.PausePending:
 return “Pause Pending”;
 case ServiceControllerStatus.StartPending:
 return “Start Pending”;
 case ServiceControllerStatus.Running:
 return “Running”;
 case ServiceControllerStatus.Stopped:
 return “Stopped”;
 case ServiceControllerStatus.StopPending:
 return “Stop Pending”;
 default:
 return “Unknown status”;
 }
 }
 }

 public string DisplayName

(continued)

c23.indd 740c23.indd 740 2/19/08 5:18:38 PM2/19/08 5:18:38 PM

741

Chapter 23: Windows Services

 {
 get { return controller.DisplayName; }
 }

 public string ServiceName
 {
 get { return controller.ServiceName; }
 }

 The ServiceControllerInfo class has some more properties to enable the Start, Stop, Pause, and
Continue buttons: EnableStart , EnableStop , EnablePause , and EnableContinue . These properties
return a Boolean value according to the current status of the service:

 public bool EnableStart
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Stopped;
 }
 }

 public bool EnableStop
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Running;
 }
 }

 public bool EnablePause
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Running & &
 controller.CanPauseAndContinue;
 }
 }

 public bool EnableContinue
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Paused;
 }
 }
 }

 In the ServiceControlWindow class, the method RefreshServiceList() gets all the services using
 ServiceController.GetServices() for display in the list box. The GetServices() method returns an
array of ServiceController instances representing all Windows Services installed on the operating
system. The ServiceController class also has the static method GetDevices() that returns a
 ServiceController array representing all device drivers. The returned array is sorted with the help of the
generic Array.Sort() method. The sort is done by the DisplayName as is defined with the anonymous
method that is passed to the Sort() method. Using Array.ConvertAll() , the ServiceController
instances are converted to the type ServiceControllerInfo . Here, an anonymous method is passed that

c23.indd 741c23.indd 741 2/19/08 5:18:38 PM2/19/08 5:18:38 PM

742

Part III: Base Class Libraries

invokes the ServiceControllerInfo constructor for every ServiceController object. Last, the
 ServiceControllerInfo array is assigned to the DataContext property of the window for data binding.

 protected void RefreshServiceList()
 {
 ServiceController[] services = ServiceController.GetServices();

 Array.Sort < ServiceController > (services,
 delegate(ServiceController s1, ServiceController s2)
 {
 return s1.DisplayName.CompareTo(s2.DisplayName);
 });
 ServiceControllerInfo[] serviceInfo =
 Array.ConvertAll < ServiceController, ServiceControllerInfo > (
 services,
 delegate(ServiceController controller)
 {
 return new ServiceControllerInfo(controller);
 });

 this.DataContext = serviceInfo;
 }

 The method RefreshServiceList() to get all the services in the list box is called within the
constructor of the class ServiceControlWindow . The constructor also defines the event handler for the
 Click event of the buttons:

 public ServiceControlWindow()
 {
 InitializeComponent();

 buttonStart.Click += OnServiceCommand;
 buttonStop.Click += OnServiceCommand;
 buttonPause.Click += OnServiceCommand;
 buttonContinue.Click += OnServiceCommand;
 buttonRefresh.Click += OnRefresh;
 buttonExit.Click += OnExit;

 RefreshServiceList();
 }

 Now, you can define the XAML code to bind the information to the controls.

 First, a DataTemplate is defined for the information that is shown inside the ListBox . The ListBox
will contain a Label where the Content is bound to the DisplayName property of the data source. As
you bind an array of ServiceControllerInfo objects, the property DisplayName is defined with the
 ServiceControllerInfo class:

 < Window.Resources >
 < DataTemplate x:Key=”listTemplate” >
 < Label Content=”{Binding Path=DisplayName}”/ >
 < /DataTemplate >
 < /Window.Resources >

 The ListBox that is placed in the left side of the Window sets the ItemsSource property to {Binding} .
This way, the data that is shown in the list is received from the DataContext property that was set in the
 RefreshServiceList() method. The ItemTemplate property references the resource listTemplate

c23.indd 742c23.indd 742 2/19/08 5:18:38 PM2/19/08 5:18:38 PM

743

Chapter 23: Windows Services

that is defined with the DataTemplate shown earlier. The property IsSynchronizedWithCurrentItem
is set to True so that the TextBox and Button controls that are inside the same Window are bound to
the current item that is selected with the ListBox .

 < ListBox Grid.Row=”0” Grid.Column=”0” HorizontalAlignment=”Left”
 Name=”listBoxServices” VerticalAlignment=”Top”
 ItemsSource=”{Binding}”
 ItemTemplate=”{StaticResource listTemplate}”
 IsSynchronizedWithCurrentItem=”True” >
 < /ListBox >

 With the TextBox controls, the Text property is bound to the corresponding property of the
 ServiceControllerInfo instance. Whether the Button controls are enabled or disabled is also defined
from the data binding by binding the IsEnabled property to the corresponding properties of the
 ServiceControllerInfo instance that return a Boolean value:

 < TextBox Grid.Row=”0” Grid.ColumnSpan=”2” Name=”textDisplayName”
 Text=”{Binding Path=DisplayName, Mode=OneTime}” / >
 < TextBox Grid.Row=”1” Grid.ColumnSpan=”2” Name=”textStatus”
 Text=”{Binding Path=ServiceStatusName, Mode=OneTime}” / >
 < TextBox Grid.Row=”2” Grid.ColumnSpan=”2” Name=”textType”
 Text=”{Binding Path=ServiceTypeName, Mode=OneTime}” / >
 < TextBox Grid.Row=”3” Grid.ColumnSpan=”2” Name=”textName”
 Text=”{Binding Path=ServiceName, Mode=OneTime}” / >
 < Button Grid.Row=”4” Grid.Column=”0” Name=”buttonStart” Content=”Start”
 IsEnabled=”{Binding Path=EnableStart, Mode=OneTime}” / >
 < Button Grid.Row=”4” Grid.Column=”1” Name=”buttonStop” Content=”Stop”
 IsEnabled=”{Binding Path=EnableStop, Mode=OneTime}” / >
 < Button Grid.Row=”5” Grid.Column=”0” Name=”buttonPause” Content=”Pause”
 IsEnabled=”{Binding Path=EnablePause, Mode=OneTime}” / >
 < Button Grid.Row=”5” Grid.Column=”1” Name=”buttonContinue”
 Content=”Continue” IsEnabled=”{Binding Path=EnableContinue,
 Mode=OneTime}” / >

 Controlling the Service
 With the ServiceController class, you can also send control requests to the service. The following
table explains the methods that can be applied.

Method Description

Start() Start() tells the SCM that the service should be started. In the example ser-
vice program, OnStart() is called.

Stop() Stop() calls OnStop() in the example service program with the help of the
SCM if the property CanStop is true in the service class.

Pause() Pause() calls OnPause() if the property CanPauseAndContinue is true.

Continue() Continue() calls OnContinue() if the property CanPauseAndContinue is
true.

ExecuteCommand() With ExecuteCommand(), it is possible to send a custom command to the service.

c23.indd 743c23.indd 743 2/19/08 5:18:38 PM2/19/08 5:18:38 PM

744

Part III: Base Class Libraries

 The following code controls the services. Because the code for starting, stopping, suspending, and
pausing is similar, only one handler is used for the four buttons:

 protected void OnServiceCommand(object sender, RoutedEventArgs e)
 {
 Cursor oldCursor = Cursor.Current;
 Cursor.Current = Cursors.Wait;
 ServiceControllerInfo si =
 (ServiceControllerInfo)listBoxServices.SelectedItem;
 if (sender == this.buttonStart)
 {
 si.Controller.Start();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running);
 }
 else if (sender == this.buttonStop)
 {
 si.Controller.Stop();
 si.Controller.WaitForStatus(ServiceControllerStatus.Stopped);
 }
 else if (sender == this.buttonPause)
 {
 si.Controller.Pause();
 si.Controller.WaitForStatus(ServiceControllerStatus.Paused);
 }
 else if (sender == this.buttonContinue)
 {
 si.Controller.Continue();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running);
 }
 int index =listBoxServices.SelectedIndex;
 RefreshServiceList();
 listBoxServices.SelectedIndex = index;
 Cursor.Current = oldCursor;
 }

 protected void OnExit(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }

 protected void OnRefresh_Click(object sender, RoutedEventArgs e)
 {
 RefreshServiceList();
 }

 Because the action of controlling the services can take some time, the cursor is switched to the wait
cursor in the first statement. Then a ServiceController method is called depending on the pressed
button. With the WaitForStatus() method, you are waiting to check that the service changes the status
to the requested value, but you only wait 10 seconds maximum. After this time, the information in the
 ListBox is refreshed, and the same service as before is selected, and the new status of this service is
displayed. Figure 23 - 20 shows the completed, running application.

c23.indd 744c23.indd 744 2/19/08 5:18:39 PM2/19/08 5:18:39 PM

745

Chapter 23: Windows Services

Figure 23-20

 Troubleshooting
 Troubleshooting services is different from troubleshooting normal applications. This section touches on
some service issues, problems specific to interactive services, and event logging.

 The best way to start building a service is to create an assembly with the functionality you want and a
test client, before the service is actually created. Here, you can do normal debugging and error handling.
As soon as the application is running, you can build a service by using this assembly. Of course, there
might still be problems with the service:

 Don ’ t display errors in a message box from the service (except for interactive services that are
running on the client system). Instead, use the event logging service to write errors to the event
log. Of course, in the client application that uses the service, you can display a message box to
inform the user about errors.

 The service cannot be started from within a debugger, but a debugger can be attached to the
running service process. Open the solution with the source code of the service and set
breakpoints. From the Visual Studio Debug menu, select Processes and attach the running
process of the service.

 The Performance Monitor can be used to monitor the activity of services. You can add your own
performance objects to the service. This can add some useful information for debugging. For
example, with the Quote service, you could set up an object to give the total number of quotes
returned, the time it takes to initialize, and so on.

 Interactive Services
 When an interactive service runs with a logged - on user, it can be helpful to display message boxes to the
user. If the service should run on a server that is locked inside a computer room, the service should never
display a message box. When you open a message box to wait for some user input, the user input
probably won ’ t happen for some days because nobody is looking at the server in the computer room.
Even worse, if the service isn ’ t configured as an interactive service, the message box opens up on a
different, hidden, window station. In this case, no one can respond to that message box because it is
hidden, and the service is blocked.

❑

❑

❑

Never open dialog boxes for services running on a server system. Nobody will
respond to them.

c23.indd 745c23.indd 745 2/19/08 5:18:39 PM2/19/08 5:18:39 PM

746

Part III: Base Class Libraries

 In cases when you really want to interact with the user, an interactive service can be configured. Some
examples of such interactive services are the Print Spooler, which displays paper - out messages to the
user, and the NetMeeting Remote Desktop Sharing service.

 To configure an interactive service, you must set the option “ Allow service to interact with desktop ” in
the Services configuration tool (see Figure 23 - 21). This changes the type of the service by adding the
 SERVICE_INTERACTIVE_PROCESS flag to the type.

Figure 23-21

 Event Logging
 Services can report errors and other information by adding events to the event log. A service class
derived from ServiceBase automatically logs events when the AutoLog property is set to true . The
 ServiceBase class checks this property and writes a log entry at start, stop, pause, and continue
requests.

 Figure 23 - 22 shows an example of a log entry from a service.

 You can read more about event logging and how to write custom events in Chapter 18 , “ Tracing and
Events. ”

 Power Events
 The Windows Service can react when the power status changes. One example of a power event is when the
system hibernates — all the memory content is written to the disk, so a faster boot is possible. It is also
possible to suspend the system to reduce the power consumption, but it can be awakened automatically
on demand.

 For all power events, the service can receive the control code SERVICE_CONTROL_POWEREVENT with
additional parameters. The reason for the event is passed through these parameters. The reason could be

c23.indd 746c23.indd 746 2/19/08 5:18:39 PM2/19/08 5:18:39 PM

747

Chapter 23: Windows Services

Figure 23-22

low battery power, a power status change, or the system is going to a suspended state. Depending on the
circumstances, the service should slow down, suspend background threads, close network connections,
close files, and so on.

 The classes in the System.ServiceProcess namespace have support for power events. In the same
way that you can configure a service so that it reacts to pause and continue events with the
 CanPauseAndContinue property, you can also set a property for power management:
 CanHandlePowerEvent . Windows Services that handle power events are registered in the SCM with the
Win32 API method RegisterServiceCtrlHandlerEx() .

 If you set the property CanHandlePowerEvent to true , the method OnPowerEvent() of the class
 ServiceBase is called. You can override this method to receive power events and to react with your
service implementation accordingly. The reason for the power event is passed in an argument of type
 PowerBroadcastStatus . The possible values of this enumeration are listed in the following table.

Value Description

BatteryLow The battery power is low. You should reduce the functionality of the
service to a minimum.

PowerStatusChange A switch from battery power to A/C happened, or the battery power
slipped below a threshold, and so on.

QuerySuspend The system requests permission to go into a suspended mode. You could
deny the permission, or prepare to go into the suspended mode by
closing files, disconnecting network connections, and so on.

QuerySuspendFailed The change into the suspended mode was denied for the system. You can
go on with the functionality as before.

Suspend Nobody denied the request to go into the suspended mode. The system
will be suspended soon.

c23.indd 747c23.indd 747 2/19/08 5:18:40 PM2/19/08 5:18:40 PM

748

Part III: Base Class Libraries

 Summary
 In this chapter, you have seen the architecture of Windows Services and how you can create them with
the .NET Framework. Applications can start automatically at boot time with Windows Services, and you
can use a privileged system account as the user of the service. Windows Services are built from a main
function, a service - main function, and a handler, and you ’ ve seen other relevant programs in regard to
Windows Services, such as a service control program and a service installation program.

 The .NET Framework has great support for Windows Services. All the plumbing code that is
necessary for building, controlling, and installing services is built into the .NET Framework classes in
the System.ServiceProcess namespace. By deriving a class from ServiceBase , you can override
methods that are invoked when the service is paused, resumed, or stopped. For installation of services,
the classes ServiceProcessInstaller and ServiceInstaller deal with all registry configurations
needed for services. You can also control and monitor services by using ServiceController .

 The next chapter gives you information about interop with native code. Behind the scenes, many .NET
classes make use of native code. For example, the ServiceBase class wraps the Windows API
 CreateService() . With the next chapter, you learn how to use native methods and COM objects from
your own classes.

c23.indd 748c23.indd 748 2/19/08 5:18:40 PM2/19/08 5:18:40 PM

 Interoperability

 If you have Windows programs written prior to .NET, you probably don ’ t have the time and
resources to rewrite everything for .NET. Sometimes rewriting code is useful for refactoring or
rethinking the application architecture. A rewrite can also help with productivity in the long - term,
when adding new features is easier to do with the new technology. However, there should not be a
reason to rewrite old code just because a new technology is available. You might have thousands
of lines of existing, running code, which would require too much effort to rewrite just to move it
into the managed environment.

 The same applies to Microsoft. With the namespace System.DirectoryServices , Microsoft
hasn ’ t rewritten the COM objects accessing the hierarchical data store; the classes inside this
namespace are wrappers accessing the ADSI COM objects instead. The same thing happens with
 System.Data.OleDb , where the OLE DB providers that are used by classes from this namespace
do have quite complex COM interfaces.

 The same issue may apply for your own solutions. If you have existing COM objects that should
be used from .NET applications, or the other way around, if you want to write .NET components
that should be used in old COM clients, this chapter will be a starter for using COM
interoperability.

 If you don ’ t have existing COM components you want to integrate with your application, or old
COM clients that should use some .NET components, you can skip this chapter.

 This chapter discusses the following:

 COM and .NET technologies

 Using COM objects from within .NET applications

 Using .NET components from within COM clients

 Platform invoke for invoking native methods

 Like all other chapters, you can download the sample code for this chapter from the Wrox web site
at www.wrox.com .

❑

❑

❑

❑

c24.indd 749c24.indd 749 2/19/08 8:50:23 PM2/19/08 8:50:23 PM

Part III: Base Class Libraries

750

 . NET and COM
 COM is the predecessor technology to .NET. COM defines a component model where components can
be written in different programming languages. A component written with C++ can be used from a
Visual Basic client. Components can also be used locally inside a process, across processes, or across the
network. Does this sound familiar? Of course, .NET has similar goals. However, the way in which these
goals are achieved is different. The COM concepts became more and more complex to use and turned
out not to be extensible enough. .NET fulfills goals similar to those of COM, but introduces new concepts
to make your job easier.

 Even today, when using COM interop the prerequisite is to know COM. It doesn ’ t matter if .NET
components are used by COM clients or COM components are used by .NET applications, you must
know COM. So, this section compares COM and .NET functionality.

 If you already have a good grasp of COM technologies, this section may be a refresher to your COM
knowledge. Otherwise, it introduces you to the concepts of COM — now using .NET — that you can be
happy not to deal with anymore in your daily business. However, all the problems that came with COM
still apply when COM technology is integrated in .NET applications.

 COM and .NET do have many similar concepts with very different solutions, including the following:

 Metadata

 Freeing memory

 Interfaces

 Method binding

 Data types

 Registration

 Threading

 Error handling

 Event handling

 Metadata
 With COM, all information about the component is stored inside the type library. The type library includes
information such as names and IDs of interfaces, methods, and arguments. With .NET, all this information
can be found inside the assembly itself, as you saw in Chapter 13 , “ Reflection, ” and Chapter 17 ,
 “ Assemblies. ” The problem with COM is that the type library is not extensible. With C++, IDL (interface
definition language) files have been used to describe the interfaces and methods. Some of the IDL
modifiers cannot be found inside the type library, because Visual Basic (and the Visual Basic team was
responsible for the type library) couldn ’ t use these IDL modifiers. With .NET, this problem doesn ’ t exist
because the .NET metadata is extensible using custom attributes.

 As a result of this behavior, some COM components have a type library and others don ’ t. Where no type
library is available, a C++ header file can be used that describes the interfaces and methods. With .NET, it
is easier using COM components that do have a type library, but it is also possible to use COM components
without a type library. In that case, it is necessary to redefine the COM interface by using C# code.

 Freeing Memory
 With .NET, memory is released by the garbage collector. This is completely different with COM. COM
relies on reference counts.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c24.indd 750c24.indd 750 2/19/08 8:50:24 PM2/19/08 8:50:24 PM

Chapter 24: Interoperability

751

 The interface IUnknown , which is the interface that is required to be implemented by every COM object,
offers three methods. Two of these methods are related to reference counts. The method AddRef() must
be called by the client if another interface pointer is needed; this method increments the reference count.
The method Release() decrements the reference count, and if the resulting reference count is 0, the
object destroys itself to free memory.

 Interfaces
 Interfaces are the heart of COM. They distinguish between a contract used between the client and the
object, and the implementation. The interface (the contract) defines the methods that are offered by the
component and that can be used by the client. With .NET, interfaces play an important part, too.

 COM distinguishes among three interface types: custom , dispatch , and dual interfaces.

 Custom Interfaces
 Custom interfaces derive from the interface IUnknown . A custom interface defines the order of the
methods in a virtual table (vtable), so that the client can access the methods of the interface directly. This
also means that the client needs to know the vtable during development time, because binding to the
methods happens by using memory addresses. As a conclusion, custom interfaces cannot be used by
scripting clients. Figure 24 - 1 shows the vtable of the custom interface IMath that offers the methods
 Add() and Sub() in addition to the methods of the IUnknown interface.

QueryInterface

AddRef

Release

Add

Sub

Figure 24-1

 Dispatch Interfaces
 Because a scripting client (and earlier Visual Basic clients) doesn ’ t support custom interfaces, a different
interface type is needed. With dispatch interfaces, the interface available for the client is always
the IDispatch interface. IDispatch derives from IUnknown and offers four methods in addition to the
 IUnknown methods. The two most important methods are GetIDsOfNames() and Invoke() . As shown
in Figure 24 - 2 , with a dispatch interface two tables are needed. The first one maps the method or
property name to a dispatch ID; the second one maps the dispatch ID to the implementation of the
method or property.

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

"Add"

"Sub"

47

48

47 pAdd

48 pSub

Figure 24-2

c24.indd 751c24.indd 751 2/19/08 8:50:25 PM2/19/08 8:50:25 PM

Part III: Base Class Libraries

752

 When the client invokes a method in the component, at first it calls the method GetIDsOfNames() ,
passing the name of the method it wants to call. GetIDsOfNames() makes a lookup into the name - to - ID
table to return the dispatch ID. This ID is used by the client to call the Invoke() method.

 Usually, the two tables for the IDispatch interface are stored inside the type library, but this is not a
requirement, and some components have the tables in other places.

 Dual Interfaces
 As you can imagine, dispatch interfaces are a lot slower than custom interfaces. On the other hand,
custom interfaces cannot be used by scripting clients. A dual interface can solve this dilemma. As you
can see in Figure 24 - 3 , a dual interface is derived from IDispatch but offers the additional methods of
the interface directly in the vtable. Scripting clients can use the IDispatch interface to invoke the
methods, whereas clients aware of the vtable can call the methods directly.

 Casting and QueryInterface
 If a .NET class implements multiple interfaces, casts can be done to get one interface or another. With
COM, the interface IUnknown offers a similar mechanism with the method QueryInterface() . As
discussed in the previous section, the interface IUnknown is the base interface of every interface, so
 QueryInterface() is available anyway.

 Method Binding
 How a client maps to a method is defined with the terms early and late binding . Late binding means that
the method to invoke is looked for during runtime. .NET uses the System.Reflection namespace to
make this possible (see Chapter 13 , “ Reflection ”).

 COM uses the IDispatch interface discussed earlier for late binding. Late binding is possible with
dispatch and dual interfaces.

 With COM, early binding has two different options. One way of early binding, also known as vtable
binding, is to use the vtable directly — this is possible with custom and dual interfaces. The second
option for early binding is also known as ID binding. Here the dispatch ID is stored inside the client
code, so during runtime only a call to Invoke() is necessary. GetIdsOfNames() is called during design
time. With such clients, it is important to remember that the dispatch ID must not be changed.

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

Add

Sub

"Add"

"Sub"

47

48

47 pAdd

48 pSub

Figure 24-3

c24.indd 752c24.indd 752 2/19/08 8:50:26 PM2/19/08 8:50:26 PM

Chapter 24: Interoperability

753

 Data Types
 For dual and dispatch interfaces, the data types that can be used with COM are restricted to a list of
automation - compatible data types. The Invoke() method of the IDispatch interface accepts an array
of VARIANT data types. The VARIANT is a union of many different data types, such as BYTE , SHORT , LONG ,
 FLOAT , DOUBLE , BSTR , IUnknown* , IDispatch* , and so on. VARIANT s have been easy to use from Visual
Basic, but it was complex to use them from C++. .NET has the Object class instead of VARIANT s.

 With custom interfaces, all data types available with C++ can be used with COM. However, this also
restricts the clients that can use this component to certain programming languages.

 Registration
 .NET distinguishes between private and shared assemblies, as discussed in Chapter 17 , “ Assemblies. ”
With COM, all components are globally available by a registry configuration.

 All COM objects have a unique identifier that consists of a 128 - bit number and is also known as class ID
(CLSID). The COM API call to create COM objects, CoCreateInstance() , just looks into the registry to
find the CLSID and the path to the DLL or EXE to load the DLL or launch the EXE and instantiate the
component.

 Because such a 128 - bit number cannot be easily remembered, many COM objects also have a ProgID.
The ProgID is an easy - to - remember name, such as Excel.Application , that just maps to the CLSID.

 In addition to the CLSID, COM objects also have a unique identifier for each interface (IID) and for the
type library (typelib ID).

 Information in the registry is discussed in more detail later in the chapter.

 Threading
 COM uses apartment models to relieve the programmer of having to deal with threading issues.
However, this also adds some more complexity. Different apartment types have been added with
different releases of the operating system. This section discusses the single - threaded apartment and the
multithreaded apartment.

 Threading with .NET is discussed in Chapter 19 , “ Threading and Synchronization. ”

 Single - threaded Apartment
 The single - threaded apartment (STA) was introduced with Windows NT 3.51. With an STA, only one
thread (the thread that created the instance) is allowed to access the component. However, it is legal to
have multiple STAs inside one process, as shown in Figure 24 - 4 .

 In this figure, the inner rectangles with the lollipop represent COM components. Components and
threads (curved arrows) are surrounded by apartments. The outer rectangle represents a process.

 With STAs, there ’ s no need to protect instance variables from multiple thread access, because this
protection is provided by a COM facility, and only one thread accesses the component.

 A COM object that is not programmed with thread safety marks the requirements for an STA in the
registry with the registry key ThreadingModel set to Apartment .

 Multithreaded Apartment
 Windows NT 4.0 introduced the concept of a multithreaded apartment (MTA). With an MTA, multiple
threads can access the component simultaneously. Figure 24 - 5 shows a process with one MTA and two
STAs.

c24.indd 753c24.indd 753 2/19/08 8:50:26 PM2/19/08 8:50:26 PM

Part III: Base Class Libraries

754

 A COM object programmed with thread safety in mind marks the requirement for an MTA in the registry
with the key ThreadingModel set to Free . The value Both is used for thread - safe COM objects that
don ’ t mind the apartment type.

 Visual Basic 6.0 didn ’ t offer support for multithreaded apartments. If you ’ re using COM objects that
have been developed with VB6 that ’ s an important issue to know.

 Error Handling
 With .NET, errors are generated by throwing exceptions. With the older COM technology, errors are
defined by returning HRESULT values with the methods. An HRESULT value of S_OK means that the
method was successful.

 If a more detailed error message is offered by the COM component, the COM component implements
the interface ISupportErrorInfo , where not only an error message but also a link to a help file and the
source of the error is returned with an error information object on the return of the method. Objects that
implement ISupportErrorInfo are automatically mapped to more detailed error information with an
exception in .NET.

 How to trace and log errors is discussed in Chapter 18 , “ Tracing and Events. ”

 Event Handling
 .NET offers an event - handling mechanism with the C# keywords event and delegate (see Chapter 7 ,
 “ Delegates and Events ”).

Process

STA1

STA2

Figure 24-4

c24.indd 754c24.indd 754 2/19/08 8:50:27 PM2/19/08 8:50:27 PM

Chapter 24: Interoperability

755

 Figure 24 - 6 shows the COM event - handling architecture. With COM events, the component has to
implement the interface IConnectionPointContainer and one or more connection point objects
(CPOs) that implement the interface IConnectionPoint . The component also defines an outgoing
interface — ICompletedEvents in Figure 24 - 6 — that is invoked by the CPO. The client must
implement this out - going interface in the sink object, which itself is a COM object. During runtime, the
client queries the server for the interface IConnectionPointContainer . With the help of this interface,
the client asks for a CPO with the method FindConnectionPoint() to get a pointer to
 IConnectionPoint returned. This interface pointer is used by the client to call the Advise() method,
where a pointer to the sink object is passed to the server. In turn, the component can invoke methods
inside the sink object of the client.

 Later in this chapter, you learn how the .NET events and the COM events can be mapped so that COM
events can be handled by a .NET client and vice versa.

 Marshaling
 Data passed from .NET to the COM component and the other way around must be converted to the
corresponding representation. This mechanism is also known as marshaling . What happens here depends
on the data type of the data that is passed: You have to differentiate between blittable and nonblittable
data types.

 Blittable data types have a common representation with both .NET and COM, and no conversion is
needed. Simple data types such as byte , short , int , long , and classes and arrays that only contain
these simple data types belong to the blittable data types. Arrays must be one - dimensional to be blittable.

Process

MTA STA1

STA2

Figure 24-5

c24.indd 755c24.indd 755 2/19/08 8:50:27 PM2/19/08 8:50:27 PM

Part III: Base Class Libraries

756

 A conversion is needed with nonblittable data types. The following table lists some of the nonblittable
COM data types with their .NET - related data types. Nonblittable types have a higher overhead because
of the conversion.

COM Data Type .NET Data Type

SAFEARRAY Array

VARIANT Object

BSTR String

IUnknown*, IDispatch* Object

 Using a COM Component from a . NET Client
 To see how a .NET application can use a COM component, you first have to create a COM component.
Creating COM components is not possible with C# or Visual Basic 2005; you need either Visual Basic 6.0
or C++ (or any other language that supports COM). This chapter uses the Active Template Library (ATL)
and C++.

 A short note about building COM components with Visual Basic 9.0 and C#: With Visual Basic 9.0 and
C# it is possible to build .NET components that can be used as COM objects by using a wrapper that is
the real COM component. It would make no sense for a .NET component that is wrapped from a COM
component to be used by a .NET client with a COM interop.

 Because this is not a COM book, it does not discuss all aspects of the code but only what you need to
build the sample.

 Creating a COM Component
 To create a COM component with ATL and C++, create a new ATL Project. You can find the ATL Project
Wizard within the Visual C++ Projects group when you select File New Project. Set the name to
COMServer. With the Application Settings, select Dynamic Link Library and click Finish.

lConnectionPointContainer

lConnectionPoint

lCompletedEvents

Client

Sink

Server

lConnectionPoint

lConnectionPointContainer

lConnectionPoint

lCompletedEvents

CPO

Figure 24-6

c24.indd 756c24.indd 756 2/19/08 8:50:27 PM2/19/08 8:50:27 PM

Chapter 24: Interoperability

757

 The ATL Project Wizard just creates the foundation for the server. A COM object is still needed. Add a
class in Solution Explorer and select ATL Simple Object. In the dialog that starts up, enter COMDemo in
the field for the Short name. The other fields will be filled automatically, but change the interface name
to IWelcome (see Figure 24 - 7). Click Finish to create the stub code for the class and the interface.

 The COM component offers two interfaces, so that you can see how QueryInterface() is mapped
from .NET, and just three simple methods, so that you can see how the interaction takes place. In class
view, select the interface IWelcome and add the method Greeting() (see Figure 24 - 8) with these
parameters:

HRESULT Greeting([in] BSTR name, [out, retval] BSTR* message);

Figure 24-7

Figure 24-8

c24.indd 757c24.indd 757 2/19/08 8:50:28 PM2/19/08 8:50:28 PM

Part III: Base Class Libraries

758

 The IDL file COMDemo.idl defines the interface for COM. Your wizard - generated code from the file
 COMDemo.idl should look similar to the following code. The unique identifiers (uuid s) will differ. The
interface IWelcome defines the Greeting() method. The brackets before the keyword _interface define
some attributes for the interface. uuid defines the interface ID and dual marks the type of the interface:

[
 object,
 uuid(615B801E-3A5C-44EA-913B-8C8F53BBFB3F),
 dual,
 nonextensible,
 helpstring(“IWelcome Interface”),
 pointer_default(unique)
]
interface IWelcome : IDispatch{
 [id(1), helpstring(“method Greeting”)] HRESULT Greeting(
 [in] BSTR name, [out,retval] BSTR* message);
};

 The IDL file also defines the content of the type library, which is the COM object (coclass) that
implements the interface IWelcome :

[
 uuid(1CE0DFFF-ADA8-47DD-BA06-DDD89C584242),
 version(1.0),
 helpstring(“COMServer 1.0 Type Library”)
]
library COMServerLib
{
 importlib(“stdole2.tlb”);
 [
 uuid(AB13E0B8-F8E1-497E-985F-FA30C5F449AA),
 helpstring(“COMDemo Class”)
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 };
};

With custom attributes, it is possible to change the name of the class and interfaces
that are generated by a .NET wrapper class. You just have to add the attribute
 custom with the identifier 0F21F359-AB84-41e8-9A78-36D110E6D2F9, and the
name under which it should appear within .NET.

 Add the custom attribute with the same identifier and the name Wrox.ProCSharp.COMInterop.
Server.IWelcome to the header section of the IWelcome interface. Add the same attribute with a
corresponding name to the class CCOMDemo :

[
 object,
 uuid(615B801E-3A5C-44EA-913B-8C8F53BBFB3F),
 dual,
 nonextensible,
 helpstring(“IWelcome Interface”),

c24.indd 758c24.indd 758 2/19/08 8:50:29 PM2/19/08 8:50:29 PM

Chapter 24: Interoperability

759

 pointer_default(unique),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.IWelcome”)
]
interface IWelcome : IDispatch{
 [id(1), helpstring(“method Greeting”)] HRESULT Greeting([in] BSTR name,
[out,retval] BSTR* message);
};

library COMServerLib
{
 importlib(“stdole2.tlb”);
 [
 uuid(AB13E0B8-F8E1-497E-985F-FA30C5F449AA),
 helpstring(“COMDemo Class”)
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.COMDemo”),
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 };

 Now add a second interface to the file COMDemo.idl . You can copy the header section of the IWelcome
interface to the header section of the new IMath interface, but be sure to change the unique identifier
that is defined with the uuid keyword. You can generate such an ID with the guidgen utility. The
interface IMath offers the methods Add() and Sub() :

// IMath
[
 object,
 uuid(“2158751B-896E-461d-9012-EF1680BE0628”),
 dual,
 nonextensible,
 helpstring(“IMath Interface”),
 pointer_default(unique),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.IMath”)
]
interface IMath : IDispatch
{
 [id(1)] HRESULT Add([in] LONG val1, [in] LONG val2,
 [out, retval] LONG* result);
 [id(2)] HRESULT Sub([in] LONG val1, [in] LONG val2,
 [out, retval] LONG* result);
};

 The coclass COMDemo must also be changed so that it implements both the interfaces IWelcome and
 IMath . The IWelcome interface is the default interface:

 [
 uuid(AB13E0B8-F8E1-497E-985F-FA30C5F449AA),
 helpstring(“COMDemo Class”),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.COMDemo”)
]

(continued)

c24.indd 759c24.indd 759 2/19/08 8:50:29 PM2/19/08 8:50:29 PM

Part III: Base Class Libraries

760

 coclass COMDemo
 {
 [default] interface IWelcome;
 interface IMath;
 };

 Now, you can set the focus away from the IDL file toward the C++ code. In the file COMDemo.h , you can
find the class definition of the COM object. The class CCOMDemo uses multiple inheritances to derive from
the template classes CComObjectRootEx , CComCoClass , and IDisplatchImpl . CComObjectRootEx
offers an implementation of the IUnknown interface functionality such as AddRef and Release ,
 CComCoClass creates a factory that instantiates objects of the template argument, which here is
 CComDemo , and IDispatchImpl offers an implementation of the methods from the IDispatch interface.

 With the macros that are surrounded by BEGIN_COM_MAP and END_COM_MAP , a map is created to define
all the COM interfaces that are implemented by the COM class. This map is used by the implementation
of the QueryInterface method.

class ATL_NO_VTABLE CCOMDemo :
 public CComObjectRootEx < CComSingleThreadModel > ,
 public CComCoClass < CCOMDemo, & CLSID_COMDemo > ,
 public IDispatchImpl < IWelcome, & IID_IWelcome, & LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0 >
{
public:
 CCOMDemo()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_COMDEMO)

BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:
 STDMETHOD(Greeting)(BSTR name, BSTR* message);
};

OBJECT_ENTRY_AUTO(__uuidof(COMDemo), CCOMDemo)

 With this class definition, you have to add the second interface, IMath , as well as the methods that are
defined with the IMath interface:

(continued)

c24.indd 760c24.indd 760 2/19/08 8:50:30 PM2/19/08 8:50:30 PM

Chapter 24: Interoperability

761

class ATL_NO_VTABLE CCOMDemo :
 public CComObjectRootEx < CComSingleThreadModel > ,
 public CComCoClass < CCOMDemo, & CLSID_COMDemo > ,
 public IDispatchImpl < IWelcome, & IID_IWelcome, & LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0 >
 public IDispatchImpl < IMath, & IID_IMath, & LIBID_COMServerLib, 1, 0 >
{
public:
 CCOMDemo()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_COMDEMO)

BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IMath)
 COM_INTERFACE_ENTRY2(IDispatch, IWelcome)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:
 STDMETHOD(Greeting)(BSTR name, BSTR* message);
 STDMETHOD(Add)(long val1, long val2, long* result);
 STDMETHOD(Sub)(long val1, long val2, long* result);
};

OBJECT_ENTRY_AUTO(__uuidof(COMDemo), CCOMDemo)

 Now, you can implement the three methods in the file COMDemo.cpp with the following code. The
 CComBSTR is an ATL class that makes it easier to deal with BSTR s. In the Greeting() method, only a
welcome message is returned, which adds the name passed in the first argument to the message that is
returned. The Add() method just does a simple addition of two values, and the Sub() method does a
subtraction and returns the result:

STDMETHODIMP CCOMDemo::Greeting(BSTR name, BSTR* message)
{
 CComBSTR tmp(“Welcome, “);
 tmp.Append(name);
 *message = tmp;
 return S_OK;
}
 (continued)

c24.indd 761c24.indd 761 2/19/08 8:50:30 PM2/19/08 8:50:30 PM

Part III: Base Class Libraries

762

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{
 *result = val1 + val2;
 return S_OK;
}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{
 *result = val1 - val2;
 return S_OK;
}

 Now, you can build the component. The build process also configures the component in the registry.

 Creating a Runtime Callable Wrapper
 You can now use the COM component from within .NET. To make this possible, you must create a
runtime callable wrapper (RCW). Using the RCW, the .NET client sees a .NET object instead of the COM
component; there is no need to deal with the COM characteristics because this is done by the wrapper.
An RCW hides the IUnknown and IDispatch interfaces (see Figure 24 - 9) and deals itself with the
reference counts of the COM object.

.NET

Client

COM

Object

RCW

IMath

IDispatch

IUnknown

IWelcome

IMath
IWelcome

Figure 24-9

 The RCW can be created by using the command - line utility tlbimp or by using Visual Studio. Starting
the command

tlbimp COMServer.dll /out:Interop.COMServer.dll

creates the file Interop.COMServer.dll that contains a .NET assembly with the wrapper class. In this
generated assembly, you can find the namespace COMWrapper with the class CCOMDemoClass and the
interfaces CCOMDemo , IMath , and IWelcome . The name of the namespace can be changed by using
options of the tlbimp utility. The option /namespace allows you to specify a different namespace, and
with /asmversion you can define the version number of the assembly.

 Another important option of this command - line utility is /keyfile , which is used for assigning a
strong name to the generated assembly. Strong names are discussed in Chapter 17 , “ Assemblies. ”

 An RCW can also be created by using Visual Studio. To create a simple sample application, create a C#
console project. In Solution Explorer, add a reference to the COM server by selecting the COM tab in the
Add Reference dialog, and scroll down to the entry COMServer 1.0 Type Library (see Figure 24 - 10).

(continued)

c24.indd 762c24.indd 762 2/19/08 8:50:30 PM2/19/08 8:50:30 PM

Chapter 24: Interoperability

763

Here, all COM objects are listed that are configured in the registry. Selecting a COM component from the
list creates an assembly with an RCW class.

Figure 24-10

 Using the RCW
 After creating the wrapper class, you can write the code for the application to instantiate and
access the component. Because of the custom attributes in the C++ file, the generated namespace of
the RCW class is Wrox.ProCSharp.COMInterop.Server . Add this namespace as well as the
namespace System.Runtime.InteropServices to the declarations. From the namespace
System.Runtime.InteropServices , the Marshal class will be used to release the COM object:

using System;
using System.Runtime.InteropServices;
using Wrox.ProCSharp.COMInteorp.Server

namespace Wrox.ProCSharp.COMInterop.Client
{
 class Program
 {
 [STAThread]
 static void Main()
 {

 Now, the COM component can be used similarly to a .NET class. obj is a variable of type COMDemo .
 COMDemo is a .NET interface that offers the methods of both the IWelcome and IMath interfaces.
However, it is also possible to cast to a specific interface such as IWelcome . With a variable that is
declared as type IWelcome , the method Greeting() can be called.

 COMDemo obj = new COMDemo();
 IWelcome welcome = obj;
 Console.WriteLine(welcome.Greeting(“Christian”));

 Although COMDemo is an interface, you can instantiate new objects of type COMDemo . Contrary to
 normal interfaces, you can do this with wrapped COM interfaces.

 If the object — as in this case — offers multiple interfaces, a variable of the other interface can be
declared, and by using a simple assignment with the cast operator, the wrapper class does a
 QueryInterface() with the COM object to return the second interface pointer. With the math variable,
the methods of the IMath interface can be called.

c24.indd 763c24.indd 763 2/19/08 8:50:31 PM2/19/08 8:50:31 PM

Part III: Base Class Libraries

764

 IMath math;
 math = (IMath)welcome;
 int x = math.Add(4, 5);
 Console.WriteLine(x);

 If the COM object should be released before the garbage collector cleans up the object, the static method
 Marshal.ReleaseComObject() invokes the Release() method of the component, so that the
component can destroy itself and free up memory:

 Marshal.ReleaseComObject(math);
 }
 }
}

 Earlier you learned that the COM object is released as soon as the reference count is 0. Marshal.
ReleaseComObject() decrements the reference count by 1 by invoking the Release() method.
 Because the RCW does just one call to AddRef() to increment the reference count, a single call to
 Marshal.ReleaseComObject() is enough to release the object no matter how many references to
the RCW you keep.

 After releasing the COM object using Marshal.ReleaseComObject() , you may not use any variable
that references the object. In the example, the COM object is released by using the variable math . The
variable welcome , which references the same object, cannot be used after releasing the object. Otherwise,
you will get an exception of type InvalidComObjectException .

Releasing COM objects when they are no longer needed is extremely important.
COM objects make use of the native memory heap, whereas .NET objects make use of
the managed memory heap. The garbage collector only deals with managed memory.

 As you can see, with a runtime callable wrapper, a COM component can be used similarly to a .NET object.

 A special case of a runtime callable wrapper is a primary interop assembly, which is discussed next.

 Primary Interop Assemblies
 A primary interop assembly is an assembly that is already prepared by the vendor of the COM component.
This makes it easier to use the COM component. A primary interop assembly is a runtime - callable
wrapper that might differ from an automatically generated RCW.

 You can find primary interop assemblies in the directory < program files > \Microsoft .NET\Primary
Interop Assemblies . A primary interop assembly already exists for the use of ADO from within .NET.
If you add a reference to the COM library Microsoft ActiveX Data Objects 2.7 Library, no wrapper class is
created because a primary interop assembly already exists; the primary interop assembly is referenced
instead.

 Threading Issues
 As discussed earlier in this chapter, a COM component marks the apartment (STA or MTA) it wants to
live in, based on whether or not it is implemented as thread - safe. However, the thread has to join an
apartment. What apartment the thread should join can be defined with the [STAThread] and
 [MTAThread] attributes, which can be applied to the Main() method of an application. The attribute
 [STAThread] means that the thread joins an STA, whereas the attribute [MTAThread] means that the
thread joins an MTA. Joining an MTA is the default if no attribute is applied.

c24.indd 764c24.indd 764 2/19/08 8:50:31 PM2/19/08 8:50:31 PM

Chapter 24: Interoperability

765

 It is also possible to set the apartment state programmatically with the ApartmentState property of the
 Thread class. The ApartmentState property allows you to set a value from the ApartmentState
enumeration. ApartmentState has the possible values STA and MTA (and Unknown if it wasn ’ t set).
Be aware that the apartment state of a thread can be set only once. If it is set a second time, the second
setting is ignored.

What happens if the thread chooses a different apartment from the apartments sup-
ported by the component? The correct apartment for the COM component is created
automatically by the COM runtime. However, the performance decreases if the
apartment boundaries are crossed while calling the methods of a component.

 Adding Connection Points
 To see how COM events can be handled in a .NET application, first the COM component must be
extended. Implementing a COM event in an ATL class using attributes looks very similar to the events in
.NET, although the functionality is different.

 First, you have to add another interface to the interface definition file COMDemo.idl . The interface
_ICompletedEvents is implemented by the client, which is the .NET application, and called by the
component. In this example, the method Completed() is called by the component when the calculation
is ready. Such an interface is also known as an outgoing interface. An outgoing interface must either be a
dispatch or a custom interface. Dispatch interfaces are supported by all clients. The custom attribute
with the ID 0F21F359 - AB84 - 41e8 - 9A78 - 36D110E6D2F9 defines the name of this interface that will be
created in the RCW. The outgoing interface must also be written to the interfaces supported by the
component inside the coclass section, and marked as a source interface:

library COMServerLib
{
 importlib(“stdole2.tlb”);

 [
 uuid(5CFF102B-0961-4EC6-8BB4-759A3AB6EF48),
 helpstring(“_ICompletedEvents Interface”),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.ICompletedEvents”),
]
 dispinterface _ICompletedEvents
 {
 properties:
 methods:
 [id(1)] void Completed(void);
 };

 [
 uuid(AB13E0B8-F8E1-497E-985F-FA30C5F449AA),
 helpstring(“COMDemo Class”)
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 “Wrox.ProCSharp.COMInterop.Server.COMDemo”),
]
 coclass COMDemo

(continued)

c24.indd 765c24.indd 765 2/19/08 8:50:32 PM2/19/08 8:50:32 PM

Part III: Base Class Libraries

766

 {
 [default] interface IWelcome;
 interface IMath;
 [default, source] dispinterface _ICompletedEvents;
 };

 You can use a wizard to create an implementation that fires the event back to the client. Open the class
view, select the class CComDemo , open the context menu, and start the Implement Connection Point
Wizard (see Figure 24 - 11). Select the source interface ICompletedEvents for implementation with the
connection point.

Figure 24-11

(continued)

 The wizard creates the proxy class CProxy_ICompletedEvents to fire the events to the client. Also,
the class CCOMDemo is changed. The class now inherits from IConnectionPointContainerImpl and the
proxy class. The interface IConnectionPointContainer is added to the interface map, and a
connection point map is added to the source interface _ICompletedEvents .

class ATL_NO_VTABLE CCOMDemo :
 public CComObjectRootEx < CComSingleThreadModel > ,
 public CComCoClass < CCOMDemo, & CLSID_COMDemo > ,
 public IDispatchImpl < IWelcome, & IID_IWelcome, & LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0 > ,
 public IDispatchImpl < IMath, & IID_IMath, & LIBID_COMServerLib, 1, 0 > ,
 public IConnectionPointContainerImpl < CCOMDemo > ,
 public CProxy_ICompletedEvents < CCOMDemo >
{
public:

//...

BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IMath)

c24.indd 766c24.indd 766 2/19/08 8:50:32 PM2/19/08 8:50:32 PM

Chapter 24: Interoperability

767

 COM_INTERFACE_ENTRY2(IDispatch, IWelcome)
 COM_INTERFACE_ENTRY(IConnectionPointContainer)
END_COM_MAP()

//...

public:
 BEGIN_CONNECTION_POINT_MAP(CCOMDemo)
 CONNECTION_POINT_ENTRY(__uuidof(_ICompletedEvents))
 END_CONNECTION_POINT_MAP()
};

 Finally, the method Fire_Completed() from the proxy class can be called inside the methods Add()
and Sub() in the file COMDemo.cpp :

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{
 *result = val1 + val2;
 Fire_Completed();
 return S_OK;
}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{
 *result = val1 - val2;
 Fire_Completed();
 return S_OK;
}

 After rebuilding the COM DLL, you can change the .NET client to use these COM events just like a
normal .NET event:

 static void Main()
 {
 COMDemo obj = new COMDemo();

 IWelcome welcome = obj;
 Console.WriteLine(welcome.Greeting(“Christian”));

 obj.Completed +=
 delegate
 {
 Console.WriteLine(“Calculation completed”);
 });

 IMath math = (IMath)welcome;
 int result = math.Add(3, 5);
 Console.WriteLine(result);

 Marshal.ReleaseComObject(math);
 }

 As you can see, the RCW offers automatic mapping from COM events to .NET events. COM events can
be used similarly to .NET events in a .NET client.

c24.indd 767c24.indd 767 2/19/08 8:50:33 PM2/19/08 8:50:33 PM

Part III: Base Class Libraries

768

 Using ActiveX Controls in Windows Forms
 ActiveX controls are COM objects with a user interface and many optional COM interfaces to deal with
the user interface and the interaction with the container. ActiveX controls can be used by many different
containers, such as Internet Explorer, Word, Excel, and applications written using Visual Basic 6.0, MFC
(Microsoft Foundation Classes), or ATL (Active Template Library). A Windows Forms application is
another container that can manage ActiveX controls. ActiveX controls can be used similarly to Windows
Forms controls as you’ll see shortly.

 ActiveX Control Importer
 Similar to runtime callable wrappers, you can also create a wrapper for ActiveX controls. A wrapper for
an ActiveX control is created by using the command - line utility Windows Forms ActiveX Control Importer ,
 aximp.exe . This utility creates a class that derives from the base class System.Windows.Forms.AxHost
that acts as a wrapper to use the ActiveX control.

 You can enter this command to create a wrapper class from the Web Forms control:

aximp c:\windows\system32\shdocvw.dll

 ActiveX controls can also be imported directly using Visual Studio. If the ActiveX control is configured
within the toolbox, it can be dragged and dropped onto a Windows Forms control that creates the wrapper.

 Creating a Windows Forms Application
 To see ActiveX controls running inside a Windows Forms application, create a simple Windows Forms
application project. With this application, you will build a simple Internet browser that uses the Web
Browser control, which comes as part of the operating system.

 Create a form as shown in Figure 24 - 12 . The form should include a toolstrip with a text box and three
buttons. The text box with the name toolStripTextUrl is used to enter a URL, three buttons with the
names toolStripButtonNavigate , toolStripButtonBack , and toolStripButtonForward to
navigate web pages, and a status strip with the name statusStrip . The status strip also needs a label
to display status messages.

Figure 24-12

c24.indd 768c24.indd 768 2/19/08 8:50:33 PM2/19/08 8:50:33 PM

Chapter 24: Interoperability

769

 Using Visual Studio, you can add ActiveX controls to the toolbar to use it in the same way as a Windows
Forms control. On the Customize Toolbox context menu, select the Add/Remove Items menu entry and
select the Microsoft Web Browser control in the COM Components category (see Figure 24 - 13).

(continued)

Figure 24-13

 This way, an icon will show up in the toolbox. Similarly to other Windows controls, you can drag and
drop this icon to the Windows Forms designer to create (with the aximp utility) a wrapper assembly
hosting the ActiveX control. You can see the wrapper assemblies with the references in the project:
 AxSHDocVw and SHDocVw . Now you can invoke methods of the control by using the generated variable
 axWebBrowser1 , as shown in the following code. Add a Click event handler to the button
 toolStripButtonNavigate in order to navigate the browser to a web page. The method Navigate()
used for this purpose requires a URL string with the first argument that you get by accessing the Text
property of the text box control toolStripTextUrl :

 private void OnNavigate(object sender, System.EventArgs e)
 {
 try
 {
 axWebBrowser1.Navigate(toolStripTextUrl.Text);
 }
 catch (COMException ex)
 {
 statusStrip.Items[0].Text = ex.Message;
 }
 }

 With the Click event handler of the Back and Forward buttons, call the GoBack() and GoForward()
methods of the browser control:

 private void OnGoBack(object sender, System.EventArgs e)
 {
 try
 {
 axWebBrowser1.GoBack();
 }
 catch (COMException ex)

c24.indd 769c24.indd 769 2/19/08 8:50:33 PM2/19/08 8:50:33 PM

Part III: Base Class Libraries

770

 {
 statusStrip.Items[0].Text = ex.Message;
 }
 }

 private void OnGoForward(object sender, System.EventArgs e)
 {
 try
 {
 axWebBrowser1.GoForward();
 }
 catch (COMException ex)
 {
 statusStrip.Items[0].Text = ex.Message;
 }
 }

 The web control also offers some events that can be used just like a .NET event. Add the event handler
 OnStatusChange() to the event StatusTextChange to set the status that is returned by the control to
the status strip in the Windows Forms application:

 private void OnStatusChange(object sender,
 AxSHDocVw.DWebBrowserEvents2_StatusTextChangeEvent e)
 {
 statusStrip.Items[0].Text = e.text;
 }

 Now, you have a simple browser that you can use to navigate to web pages (see Figure 24 - 14).

(continued)

Figure 24-14

c24.indd 770c24.indd 770 2/19/08 8:50:34 PM2/19/08 8:50:34 PM

Chapter 24: Interoperability

771

 Using COM Objects from Within ASP.NET
 COM objects can be used in a similar way to what you have seen before from within ASP.NET. However,
there is one important distinction. The ASP.NET runtime by default runs in an MTA. If the COM object is
configured with the threading model value Apartment (as all COM objects that have been written with
Visual Basic 6.0 are), an exception is thrown. For performance and scalability reasons, it is best to avoid
STA objects within ASP.NET. If you really want to use an STA object with ASP.NET, you can set the
 AspCompat attribute with the Page directive as shown in the following snippet. Be aware that the web
site performance might suffer when you are using this option:

 < %@ Page AspCompat=”true” Language=”C#” % >

 Using STA COM objects with ASP.NET can lead to scalability problems. It ’ s best to
avoid using STA COM objects with ASP.NET.

 Using a . NET Component from a COM Client
 So far, you have seen how to access a COM component from a .NET client. Equally interesting is to find a
solution for accessing .NET components in an old COM client that is using Visual Basic 6.0, or C++ with
MFC, or ATL.

 COM Callable Wrapper
 If you want to access a COM component with a .NET client, you have to work with an RCW. To access a
.NET component from a COM client application, you must use a COM callable wrapper (CCW). Figure
 24 - 15 shows a CCW that wraps a .NET class, and offers COM interfaces that a COM client expects to use.
The CCW offers interfaces such as IUnknown , IDispatch , ISupportErrorInfo , and others. It also
offers interfaces such as IConnectionPointContainer and IConnectionPoint for events. A COM
client gets what it expects from a COM object — although a .NET component is behind the scenes. The
wrapper deals with methods such as AddRef() , Release() , and QueryInterface() from the
 IUnknown interface, whereas in the .NET object you can count on the garbage collector without the need
to deal with reference counts.

CCW
COM

Client

.NET
Object

IUnknown

IDispatch

IMath

IWelcome

IWelcome

IMath

Figure 24-15

c24.indd 771c24.indd 771 2/19/08 8:50:34 PM2/19/08 8:50:34 PM

Part III: Base Class Libraries

772

 Creating a . NET Component
 In the following example, you build the same functionality into a .NET class that you have previously
built into a COM component. Start by creating a C# class library, and name it DotNetComponent . Then
add the interfaces IWelcome and IMath , and the class DotNetComponent that implements these
interfaces. The attribute [ComVisible(true)] makes the class and interfaces available for COM:

using System;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.COMInterop.Server
{
 [ComVisible(true)]
 public interface IWelcome
 {
 string Greeting(string name);
 }

 [ComVisible(true)]
 public interface IMath
 {
 int Add(int val1, int val2);
 int Sub(int val1, int val2);
 }

 [ComVisible(true)]
 public class DotnetComponent : IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

 public string Greeting(string name)
 {
 return “Hello “ + name;
 }

 public int Add(int val1, int val2)
 {
 return val1 + val2;
 }

 public int Sub(int val1, int val2)
 {
 return val1 - val2;
 }
 }
}

 After building the project, you can create a type library.

 Creating a Type Library
 A type library can be created by using the command - line utility tlbexp . The command

tlbexp DotnetComponent.dll

c24.indd 772c24.indd 772 2/19/08 8:50:35 PM2/19/08 8:50:35 PM

Chapter 24: Interoperability

773

creates the type library DotnetComponent.tlb . You can view the type library with the utility OLE/COM
Object Viewer oleview32.exe . This tool is part of the Microsoft SDK, and you can start it from the Visual
Studio 2008 Command Prompt. Select File View TypeLib to open the type library. Now you can see the
interface definition shown in the following code. The unique IDs will differ.

 The name of the type library is created from the name of the assembly. The header of the type library
also defines the full name of the assembly in a custom attribute, and all the interfaces are forward -
 declared before they are defined:

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: dotnetcomponent.dll

[
 uuid(0AA0953A-B2A0-32CB-A5AC-5DA0DF698EB8),
 version(1.0),
 custom(90883F05-3D28-11D2-8F17-00A0C9A6186D, DotNetComponent,
 Version=1.0.0.0., Culture=neutral, PublicKeyToken=null)
]
library DotnetComponent
{
 // TLib : Common Language Runtime Library :
 // {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
 importlib(“mscorlib.tlb”);
 // TLib : OLE Automation : {00020430-0000-0000-c000-000000000046}
 importlib(“stdole2.tlb”);

 // Forward declare all types defined in this typelib
 interface IWelcome;
 interface IMath;
 interface _DotnetComponent;

 In the following generated code, you can see that the interfaces IWelcome and IMath are defined as
COM dual interfaces. You can see all methods that have been declared in the C# code are listed here in
the type library definition. The parameters changed; the .NET types are mapped to COM types (for
example, from the String class to the BSTR type), and the signature is changed, so that a HRESULT is
returned. Because the interfaces are dual, dispatch IDs are also generated:

 [
 odl,
 uuid(F39A4143-F88D-321E-9A33-8208E256A2DF),
 version(1.0),
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.IWelcome)
]
 interface IWelcome : IDispatch {
 [id(0x60020000)]
 HRESULT Greeting([in] BSTR name, [out, retval] BSTR* pRetVal);
 };

 [
 odl,
 uuid(EF596F3F-B69B-3657-9D48-C906CBF12565),
 version(1.0),
 dual, (continued)

c24.indd 773c24.indd 773 2/19/08 8:50:35 PM2/19/08 8:50:35 PM

Part III: Base Class Libraries

774

 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.IMath)
]
 interface IMath : IDispatch {
 [id(0x60020000)] HRESULT Add([in] long val1, [in] long val2,
 [out, retval] long* pRetVal);
 [id(0x60020001)] HRESULT Sub([in] long val1, [in] long val2,
 [out, retval] long* pRetVal);
 };

 The coclass section marks the COM object itself. The uuid in the header is the CLSID used to
instantiate the object. The class DotnetComponent supports the interfaces _DotnetComponent ,
 _Object , IWelcome , and IMath . _Object is defined in the file mscorlib.tlb included in an earlier
code section and offers the methods of the base class Object . The default interface of the component is
 _DotnetComponent , which is defined after the coclass section as a dispatch interface. In the interface
declaration it is marked as dual, but because no methods are included, it is a dispatch interface. With this
interface, it is possible to access all methods of the component using late binding:

 [
 uuid(5BCD9C26-D68D-38C2-92E3-DA0C1741A8CD),
 version(1.0),
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
 coclass DotnetComponent {
 [default] interface _DotnetComponent;
 interface _Object;
 interface IWelcome;
 interface IMath;
 };

 [
 odl,
 uuid(884C59C6-B3C2-3455-BB74-52753C409097),
 hidden,
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
 interface _DotnetComponent : IDispatch {
 };
};

 There are quite a few defaults for generating the type library. However, often it is advantageous to
change some of the default .NET to COM mappings. This can be done with several attributes in the
 System.Runtime.InteropServices namespaces.

 COM Interop Attributes
 Applying attributes from the namespace System.Runtime.InteropServices to classes, interfaces, or
methods allows you to change the implementation of the CCW. The following table lists these attributes
and a description.

(continued)

c24.indd 774c24.indd 774 2/19/08 8:50:36 PM2/19/08 8:50:36 PM

Chapter 24: Interoperability

775

Attribute Description

Guid This attribute can be assigned to the assembly, interfaces, and classes. Using
the Guid as an assembly attribute defines the type-library ID, applying it to
interfaces defines the interface ID (IID), and setting the attribute to a class
defines the class ID (CLSID).
The unique IDs needed to be defined with this attribute can be created with
the utility guidgen.
The CLSID and type-library IDs are changed automatically with every build.
If you don’t want to change it with every build, you can fix it by using this
attribute. The IID is only changed if the signature of the interface changes; for
example, a method is added or removed, or some parameters changed.
Because with COM the IID should change with every new version of this
interface, this is a very good default behavior, and usually there’s no need to
apply the IID with the Guid attribute. The only time you want to apply a fixed
IID for an interface is when the .NET interface is an exact representation of
an existing COM interface, and the COM client already expects this
identifier.

ProgId This attribute can be applied to a class to specify what name should be used
when the object is configured in the registry.

ComVisible This attribute enables you to hide classes, interfaces, and delegates from COM
when set to false. This prevents a COM representation from being created.

InterfaceType This attribute, if set to a ComInterfaceType enumeration value, enables
you to modify the default dual interface type that is created for .NET
interfaces. ComInterfaceType has the values InterfaceIsDual,
InterfaceIsIDispatch, and InterfaceIsIUnknown. If you want to apply
a custom interface type to a .NET interface, set the attribute like this:
[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

ClassInterface This attribute enables you to modify the default dispatch interface that is
 created for a class. ClassInterface accepts an argument of a
ClassInterfaceType enumeration. The possible values are AutoDispatch,
AutoDual, and None. In the previous example, you have seen that the default
is AutoDispatch, because a dispatch interface is created. If the class
should only be accessible by the defined interfaces, apply the attribute
[ClassInterface(ClassInterfaceType.None)] to the class.

DispId This attribute can be used with dual and dispatch interfaces to define the
DispId of methods and properties.

InOut COM allows specifying attributes to parameter types if the parameter should
be sent to the component [In], from the component to the client [Out], or in
both directions [In, Out].

Optional Parameters of COM methods may be optional. Parameters that should be
optional can be marked with the Optional attribute.

c24.indd 775c24.indd 775 2/19/08 8:50:36 PM2/19/08 8:50:36 PM

Part III: Base Class Libraries

776

 Now, you can change the C# code to specify a dual interface type for the IWelcome interface and a
custom interface type for the IMath interface. With the class DotnetComponent , the attribute
 ClassInterface with the argument ClassInterfaceType.None specifies that no separate COM
interface will be generated. The attributes ProgId and Guid specify a ProgID and a GUID:

 [InterfaceType(ComInterfaceType.InterfaceIsDual)]
 [ComVisible(true)]
 public interface IWelcome
 {
 [DispId(60040)] string Greeting(string name);
 }

 [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 [ComVisible(true)]
 public interface IMath
 {
 int Add(int val1, int val2);
 int Sub(int val1, int val2);
 }

 [ClassInterface(ClassInterfaceType.None)]
 [ProgId(“Wrox.DotnetComponent”)]
 [Guid(“77839717-40DD-4876-8297-35B98A8402C7”)]
 [ComVisible(true)]
 public class DotnetComponent : IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

 Rebuilding the class library and the type library changes the interface definition. You can verify this with
 OleView.exe . As you can see in the following IDL code, the interface IWelcome is still a dual interface,
whereas the IMath interface now is a custom interface that is derived from IUnknown instead of
 IDispatch . In the coclass section, the interface _DotnetComponent is removed, and now IWelcome is
the new default interface, because it was the first interface in the inheritance list of the class
 DotnetComponent :

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: < could not determine filename >

[
 uuid(11E86506-EA54-3611-A55C-6830C48A554B),
 version(1.0),
 custom(90883F05-3D28-11D2-8F17-00A0C9A6186D, DotNetComponent,
 Version=1.0.1321.28677, Culture=neutral, PublicKeyToken=null)
]
library DotnetComponent
{
 // TLib : Common Language Runtime Library :
 // {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
 importlib(“mscorlib.tlb”);
 // TLib : OLE Automation : {00020430-0000-0000-c000-000000000046}
 importlib(“stdole2.tlb”);

 // Forward declare all types defined in this typelib

c24.indd 776c24.indd 776 2/19/08 8:50:36 PM2/19/08 8:50:36 PM

Chapter 24: Interoperability

777

 interface IWelcome;
 interface IMath;

 [
 odl,
 uuid(F39A4143-F88D-321E-9A33-8208E256A2DF),
 version(1.0),
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.IWelcome)
]
 interface IWelcome : IDispatch {
 [id(0x0000ea88)]
 HRESULT Greeting([in] BSTR name, [out, retval] BSTR* pRetVal);
 };

 [
 odl,
 uuid(EF596F3F-B69B-3657-9D48-C906CBF12565),
 version(1.0),
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.IMath)
]
 interface IMath : IUnknown {
 HRESULT _stdcall Add([in] long val1, [in] long val2,
 [out, retval] long* pRetVal);
 HRESULT _stdcall Sub([in] long val1, [in] long val2,
 [out, retval] long* pRetVal);
 };

 [
 uuid(77839717-40DD-4876-8297-35B98A8402C7),
 version(1.0),
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
 coclass DotnetComponent {
 interface _Object;
 [default] interface IWelcome;
 interface IMath;
 };
};

 COM Registration
 Before the .NET component can be used as a COM object, it is necessary to configure it in the registry.
Also, if you don ’ t want to copy the assembly into the same directory as the client application, it is
necessary to install the assembly in the global assembly cache. The global assembly cache itself is
discussed in Chapter 17 , “ Assemblies. ”

 To install the assembly in the global assembly cache, you must sign it with a strong name (using Visual
Studio 2008, you can define a strong name in properties of the solution). Then you can register the
assembly in the global assembly cache:

gacutil -i dotnetcomponent.dll

c24.indd 777c24.indd 777 2/19/08 8:50:37 PM2/19/08 8:50:37 PM

Part III: Base Class Libraries

778

 Now, you can use the regasm utility to configure the component inside the registry. The option /tlb
extracts the type library and also configures the type library in the registry:

regasm dotnetcomponent.dll /tlb

 The information for the .NET component that is written to the registry is as follows. The All COM
configuration is in the hive HKEY_CLASSES_ROOT (HKCR) . The key of the ProgID (in this example, it is
 Wrox.DotnetComponent) is written directly to this hive, along with the CLSID.

 The key HKCR\CLSID\{CLSID}\InProcServer32 has the following entries:

 mscoree.dll — mscoree.dll represents the CCW. This is a real COM object that is responsible
for hosting the .NET component. This COM object accesses the .NET component to offer COM
behavior for the client. The file mscoree.dll is loaded and instantiated from the client via the
normal COM instantiation mechanism.

 ThreadingModel=Both — This is an attribute of the mscoree.dll COM object. This component
is programmed in a way to offer support both for STA and MTA.

 Assembly=DotnetComponent, Version=1.0.0.0, Culture=neutral, PublicKeyToken=
5cd57c93b4d9c41a — The value of the Assembly stores the assembly full name, including the
version number and the public key token, so that the assembly can be uniquely identified. The
assembly registered here will be loaded by mscoree.dll .

 Class=Wrox.ProCSharp.COMInterop.Server.DotnetComponent — The name of the class will
also be used by mscoree.dll . This is the class that will be instantiated.

 RuntimeVersion=v2.0.50727 — The registry entry RuntimeVersion specifies the version of the
.NET runtime that will be used to host the .NET assembly.

 In addition to the configurations shown here, all the interfaces and the type library are configured with
their identifiers, too.

 Creating a COM Client
 Now, it ’ s time to create a COM client. Start by creating a simple C++ Win32 Console application project,
and name it COMClient . You can leave the default options selected, and click Finish in the project wizard.

 At the beginning of the file COMClient.cpp , add a preprocessor command to include the < iostream >
header file and to import the type library that you created for the .NET component. The import
statement creates a “ smart pointer ” class that makes it easier to deal with COM objects. During a build
process, the import statement creates .tlh and .tli files that you can find in the debug directory of
your project, which includes the smart pointer class. Then add using namespace directives to open the
namespace std that will be used for writing output messages to the console, and the namespace
 DotnetComponent that is created inside the smart pointer class:

// COMClient.cpp : Defines the entry point for the console application.
//

#include “stdafx.h”
#include < iostream >
#import “../DotNetComponent/bin/debug/DotnetComponent.tlb” named_guids

using namespace std;
using namespace DotnetComponent;

 In the _tmain() method, the first thing to do before any other COM call is the initialization of COM
with the API call CoInitialize() . CoInitialize() creates and enters an STA for the thread. The
variable spWelcome is of type IWelcomePtr , which is a smart pointer. The smart pointer method

❑

❑

❑

❑

❑

c24.indd 778c24.indd 778 2/19/08 8:50:37 PM2/19/08 8:50:37 PM

Chapter 24: Interoperability

779

 CreateInstance() accepts the ProgID as an argument to create the COM object by using the COM API
 CoCreateInstance() . The operator - > is overridden with the smart pointer, so that you can invoke the
methods of the COM object such as Greeting() :

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr;
 hr = CoInitialize(NULL);

 try
 {
 IWelcomePtr spWelcome;

 // CoCreateInstance()
 hr = spWelcome.CreateInstance(“Wrox.DotnetComponent”);

 cout < < spWelcome- > Greeting(“Bill”) < < endl;

 The second interface supported by your .NET component is IMath , and there is also a smart pointer that
wraps the COM interface: IMathPtr . You can directly assign one smart pointer to another as in spMath
= spWelcome; . In the implementation of the smart pointer (the = operator is overridden), the
 QueryInterface() method is called. With a reference to the IMath interface, you can call the Add()
method.

 IMathPtr spMath;
 spMath = spWelcome; // QueryInterface()

 long result = spMath- > Add(4, 5);
 cout < < “result:” < < result < < endl;
 }

 If an HRESULT error value is returned by the COM object (this is done by the CCW that returns HRESULT
errors if the .NET component generates exceptions), the smart pointer wraps the HRESULT errors and
generates _com_error exceptions instead. Errors are handled in the catch block. At the end of the
program, the COM DLLs are closed and unloaded using CoUninitialize() :

 catch (_com_error & e)
 {
 cout < < e.ErrorMessage() < < endl;
 }

 CoUninitialize();
 return 0;
}

 Now you can run the application, and you will get outputs from the Greeting() and the Add()
methods to the console. You can also try to debug into the smart pointer class, where you can see the
COM API calls directly.

If you get an exception that the component cannot be found, check if the same
 version of the assembly that is configured in the registry is installed in the global
assembly cache.

c24.indd 779c24.indd 779 2/19/08 8:50:38 PM2/19/08 8:50:38 PM

Part III: Base Class Libraries

780

 Adding Connection Points
 Adding support for COM events to the .NET components requires some changes to the implementation
of your .NET class. Offering COM events is not a simple matter of using the event and delegate
keywords; it is necessary to add some more COM interop attributes.

 First, you have to add an interface to the .NET project: IMathEvents . This interface is the source or
outgoing interface for the component, and will be implemented by the sink object in the client. A source
interface must be either a dispatch or a custom interface. A scripting client supports only dispatch
interfaces. Dispatch interfaces are usually preferred as source interfaces:

 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 [ComVisible(true)]
 public interface IMathEvents
 {
 [DispId(46200)] void CalculationCompleted();
 }

 Next, you have to add a delegate. The delegate must have the same signature and return type as the
method in the outgoing interface. If you have multiple methods in your source interface, for each one
that differs in its arguments, you have to specify a separate delegate. Because the COM client does not
have to access this delegate directly, the delegate can be marked with the attribute
 [ComVisible(false)] :

 [ComVisible(false)]
 public delegate void CalculationCompletedEventHandler();

 With the class DotnetComponent , a source interface must be specified. This can be done with the
attribute [ComSourceInterfaces] . Add the attribute [ComSourceInterfaces] , and specify the
outgoing interface declared earlier. You can add more than one source interface with different
constructors of the attribute class; however, the only client language that supports more than one source
interface is C++. Visual Basic 6.0 clients support only one source interface.

 [ClassInterface(ClassInterfaceType.None)]
 [ProgId(“Wrox.DotnetComponent”)]
 [Guid(“77839717-40DD-4876-8297-35B98A8402C7”)]
 [ComSourceInterfaces(typeof(IMathEvents))]
 [ComVisible(true)]
 public class DotnetComponent : IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

 Inside the class DotnetComponent , you have to declare an event for every method of the source
interface. The type of the method must be the name of the delegate, and the name of the event must be
exactly the same as the name of the method inside the source interface. You can add the event calls to
the Add() and Sub() methods. This step is the normal .NET way to invoke events, as discussed in
Chapter 7 , “ Delegates and Events. ”

 public event CalculationCompletedEventHandler CalculationCompleted;

 public int Add(int val1, int val2)
 {
 int result = val1 + val2;
 if (CalculationCompleted != null)
 CalculationCompleted();
 return result;
 }

c24.indd 780c24.indd 780 2/19/08 8:50:38 PM2/19/08 8:50:38 PM

Chapter 24: Interoperability

781

 public int Sub(int val1, int val2)
 {
 int result = val1 - val2;
 if (CalculationCompleted != null)
 CalculationCompleted();
 return result;
 }
 }

 The name of the event must be the same as the name of the method inside the source
interface. Otherwise, the events cannot be mapped for COM clients.

 Creating a Client with a Sink Object
 After you ’ ve built and registered the .NET assembly, and installed it into the global assembly cache, you
can build a client application by using the event sources. Implementing a callback or sink object that
implements the IDispatch interface was — using Visual Basic 6.0 — just a matter of adding the With
Events keyword, very similar to how Visual Basic deals with .NET events today. It ’ s more work with
C++, but here the Active Template Library helps.

 Open the C++ Console application created previously and add the following includes to the file stdafx.h :

#include < atlbase.h >
extern CComModule _Module;
#include < atlcom.h >

 The file stdafx.cpp requires an include of the ATL implementation file atlimpl.cpp :

#include < atlimpl.cpp >

 Add the new class CEventHandler to the file COMClient.cpp . This class contains the implementation
of the IDispatch interface to be called by the component. The implementation of the IDispatch
interface is done by the base class IDispEventImpl . This class reads the type library to match the
dispatch IDs of the methods and the parameters to the methods of the class. The template parameters of
the class IDispatchEventImpl requires an ID of the sink object (here the ID 4 is used), the class that
implements the callback methods (CEventHandler), the interface ID of the callback interface (DIID_
IMathEvents), the ID of the type library (LIBID_DotnetComponent), and the version number of the
type library. You can find the named IDs DIID_IMathEvents and LIBID_DotnetComponent in the file
 dotnetcomponent.tlh that was created from the #import statement.

 The sink map that is surrounded by BEGIN_SINK_MAP and END_SINK_MAP defines the methods that are
implemented by the sink object. SINK_ENTRY_EX maps the method OnCalcCompleted to the dispatch
ID 46200. This dispatch ID was defined with the method CalculationCompleted of the IMathEvents
interface in the .NET component.

class CEventHandler : public IDispEventImpl < 4, CEventHandler,
 & DIID_IMathEvents, & LIBID_DotnetComponent, 1, 0 >
{
public:
 BEGIN_SINK_MAP(CEventHandler)
 SINK_ENTRY_EX(4, DIID_IMathEvents, 46200, OnCalcCompleted)
 END_SINK_MAP()

(continued)

c24.indd 781c24.indd 781 2/19/08 8:50:38 PM2/19/08 8:50:38 PM

Part III: Base Class Libraries

782

 HRESULT __stdcall OnCalcCompleted()
 {
 cout < < “calculation completed” < < endl;
 return S_OK;
 }
};

 The main method now needs a change to advise the event sink object to the component, so that the
component can call back into the sink. This can be done with the method DispEventAdvise() of the
 CEventHandler class by passing an IUnknown interface pointer. The method DispEventUnadvise()
unregisters the sink object again.

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr;
 hr = CoInitialize(NULL);

 try
 {
 IWelcomePtr spWelcome;
 hr = spWelcome.CreateInstance(“Wrox.DotnetComponent”);

 IUnknownPtr spUnknown = spWelcome;

 cout < < spWelcome- > Greeting(“Isabella”) < < endl;

 CEventHandler* eventHandler = new CEventHandler();
 hr = eventHandler- > DispEventAdvise(spUnknown);

 IMathPtr spMath;
 spMath = spWelcome; // QueryInterface()

 long result = spMath- > Add(4, 5);
 cout < < “result:” < < result < < endl;

 eventHandler- > DispEventUnadvise(spWelcome.GetInterfacePtr());
 delete eventHandler;
 }
 catch (_com_error & e)
 {
 cout < < e.ErrorMessage() < < endl;
 }

 CoUninitialize();
 return 0;
}

 Running Windows Forms Controls in Internet Explorer
 Windows Forms controls can be hosted in Internet Explorer as ActiveX controls. Because there are many
different ActiveX control containers, and all these containers do have different requirements on the
ActiveX controls, hosting Windows Forms controls in any container is not supported by Microsoft.

(continued)

c24.indd 782c24.indd 782 2/19/08 8:50:39 PM2/19/08 8:50:39 PM

Chapter 24: Interoperability

783

Supported containers are Internet Explorer and MFC containers (MFC containers were supported first in
Visual Studio .NET 2003). With MFC containers, however, you have to manually change the code to host
ActiveX controls from an MFC application.

 To host a Windows Forms control inside Internet Explorer, you have to copy the assembly file to your
web server and add some information about the control inside the HTML page. For the support of
Windows Forms controls, the syntax of the < object > tag has been extended. With the attribute
 classid , you can add the assembly file and the name of the class separated by a # sign:
 classid= “ < assembly file > #class name ” .

 With the assembly file ControlDemo.dll and the class UserControl1 in the namespace
 Wrox.ProCSharp.COMInterop , the syntax looks like this:

 < object id=”myControl”
 classid=”ControlDemo.dll#Wrox.ProCSharp.COMInterop.UserControl1”
 height=”400” width=”400” >
 < /object >

 As soon as a user opens the HTML page, the assembly is downloaded to the client system. The assembly
is stored in the download assembly cache, and every time the user accesses the page, the version
numbers are rechecked. If the version numbers haven ’ t changed, the assembly will be used from the
local cache.

A requirement for using a Windows Forms control in a web page is that the client
must have the .NET runtime installed. Internet Explorer 5.5 or higher must be used,
and the security setting must allow the downloading of assemblies.

 Platform Invoke
 Not all the features of Windows API calls are available from the .NET Framework. This is not only true
for old Windows API calls but also for very new features from Windows Vista or Windows Server 2008.
Maybe you ’ ve written some DLLs that export unmanaged methods, and you would like to use them
from C# as well.

 You can read about some Windows Vista — and Windows Server 2008 – specific features in Appendix C ,
 “ Windows Vista and Windows Server 2008. ”

 To reuse an unmanaged library that doesn ’ t contain COM objects but just exported functions, platform
invoke can be used. With platform invoke services, the CLR loads the DLL that includes the function that
should be called and marshals the parameters.

 To use the unmanaged function, first you have to find out the name of the function as it is exported. You
can do this by using the dumpbin tool with the /exports option.

 For example, the command

dumpbin /exports c:\windows\system32\kernel32.dll | more

lists all exported functions from the DLL kernel32.dll . In the example, you use the
 CreateHardLink() Windows API function to create a hard link to an existing file. With this API call,
you can have several file names that reference the same file as long as the file names are on just one hard
disk. This API call is not available from .NET Framework 3.5, so platform invoke must be used.

c24.indd 783c24.indd 783 2/19/08 8:50:39 PM2/19/08 8:50:39 PM

Part III: Base Class Libraries

784

 To call a native function, you have to define a C# external method with the same number of arguments,
and the argument types that are defined with the unmanaged method must have mapped types with
managed code.

 The Windows API call CreateHardLink() has this definition in C++:

BOOL CreateHardLink(
 LPCTSTR lpFileName,
 LPCTSTR lpExistingFileName,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes);

 Now, this definition must be mapped to .NET data types. The return type is a BOOL with unmanaged
code; this simply maps to the bool data type. LPCTSTR defines a long pointer to a const string. The
Windows API uses the Hungarian naming convention for the data type. LP is a long pointer, C a const,
and STR is a null - terminated string. The T marks the type as a generic type, and the type is either resolved
to LPCSTR (an ANSI string) or LPWSTR (a wide Unicode string), depending on compiler settings. C strings
map to the .NET type String. LPSECURITY_ATTRIBUTES , which is a long pointer to a struct of type
 SECURITY_ATTRIBUTES . Because you can pass NULL to this argument, mapping this type to IntPtr is
okay. The C# declaration of this method must be marked with the extern modifier, because there ’ s no
implementation of this method within the C# code. Instead, the implementation of this method is found
in the DLL kernel32.dll , which is referenced with the attribute [DllImport] . Because the return type
of the .NET declaration CreateHardLink() is of type bool , and the native method CreateHardLink()
returns a BOOL , some additional clarification is useful. Because there are different Boolean data types with
C++, for example the native bool and the Windows - defined BOOL , which have different values, the
attribute [MarshalAs] specifies to what native type the .NET type bool should map.

 [DllImport(“kernel32.dll”, SetLastError=”true”,
 EntryPoint=”CreateHardLink”, CharSet=CharSet.Unicode)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CreateHardLink(string newFileName,
 string existingFilename, IntPtr securityAttributes);

 The settings that you can specify with the attribute [DllImport] are listed in the following table.

DllImport Property or Field Description

EntryPoint You can give the C# declaration of the function a different name
than it has with the unmanaged library. The name of the method
in the unmanaged library is defined in the field EntryPoint.

CallingConvention Depending on the compiler or compiler settings that were used to
compile the unmanaged function, different calling conventions
can be used. The calling convention defines how the parameters
are dealt with and where to put them on the stack. You can define
the calling convention by setting an enumerable value.
The Windows API usually uses the StdCall calling convention
on the Windows operating system, and it uses the Cdecl calling
convention on Windows CE. Setting the value to
CallingConvention.Winapi works for the Windows API both
in the Windows and the Windows CE environments.

c24.indd 784c24.indd 784 2/19/08 8:50:39 PM2/19/08 8:50:39 PM

Chapter 24: Interoperability

785

 To make the CreateHardLink() method easier to use from a .NET environment, you should follow
these guidelines:

 Create an internal class named NativeMethods that wraps the platform invoke method calls

 Create a public class to offer the native method functionality to .NET applications

 Use security attributes to mark the required security

 In the sample code, the public method CreateHardLink() in the class FileUtility is the method that
can be used by .NET applications. This method has the file name arguments reversed compared to the
native Windows API method CreateHardLink() . The first argument is the name of the existing file,
and the second argument is the name of the new file. This is similar to other classes in the Framework;
for example, File.Copy() . Because the third argument to pass the security attributes for the new file
name is not used with this implementation, the public method has just two parameters. The return type
is changed as well. Instead of returning an error by returning the value false , an exception is thrown.
In case of an error, the unmanaged method CreateHardLink() sets the error number with the
unmanaged API SetLastError() . To read this value from .NET, the [DllImport] field SetLastError
is set to true . Within the managed method CreateHardLink() , the error number is read by calling
 Marshal.GetLastWin32Error() . To create an error message from this number, the Win32Exception
class from the namespace System.ComponentModel is used. This class accepts an error number with the
constructor, and returns a localized error message. In case of an error, an exception of type IOException
is thrown, which has an inner exception of type Win32Exception . The public method
 CreateHardLink() has the FileIOPermission attribute applied to check if the caller has the necessary
permission. You can read more information about .NET security in Chapter 20 .

using System;
using System.Runtime.InteropServices;
using System.ComponentModel;
using System.IO;

namespace Wrox.ProCSharp.Interop
{
 internal static class NativeMethods
 {
 [DllImport(“kernel32.dll”, SetLastError=true,
 EntryPoint=”CreateHardLink”, CharSet=CharSet.Unicode)]
 [return: MarshalAs(UnmanagedType.Bool)]

❑

❑

❑

(continued)

DllImport Property or Field Description

CharSet String parameters can be either ANSI or Unicode. With the
CharSet setting, you can define how strings are managed.
Possible values that are defined with the CharSet enumeration
are Ansi, Unicode, and Auto. CharSet.Auto uses Unicode on
the Windows NT platform, and ANSI on Windows 98 and
Windows ME.

SetLastError If the unmanaged function sets an error by using the Windows
API SetLastError, you can set the SetLastError field to true.
This way, you can read the error number afterward by using
Marshal.GetLastWin32Error().

c24.indd 785c24.indd 785 2/19/08 8:50:40 PM2/19/08 8:50:40 PM

Part III: Base Class Libraries

786

 private static extern bool CreateHardLink(
 string newFileName, string existingFileName,
 IntPtr securityAttributes);

 internal static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 if (!CreateHardLink(newFileName, oldFileName, IntPtr.Zero))
 {
 Win32Exception ex = new Win32Exception(
 Marshal.GetLastWin32Error());
 throw new IOException(ex.Message, ex);
 }
 }
 }

 public static class FileUtility
 {
 [FileIOPermission(SecurityAction.LinkDemand, Unrestricted=true)]
 public static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 NativeMethods.CreateHardLink(oldFileName, newFileName);
 }
 }
}

 This class can now be used to create hard links very easily. If the file file1.txt does not exist, you will
get an exception with the message “ The system cannot find the file specified. ” If the file exists, you get a
new file name referencing the original file. You can easily verify this by changing text in one file; it will
show up in the other file as well.

 static void Main()
 {
 try
 {
 FileUtility.CreateHardLink(“file1.txt”, “file2.txt”);
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 With native method calls, often you have to use Window handles. A Window handle is a 32 - bit value
where depending on the handle types some values are not allowed. With .NET 1.0 for handles, usually
the IntPtr structure was used because you can set every possible 32 - bit value with this structure.
However, with some handle types, this led to security problems and possible threading race conditions
and leaked handles with the finalization phase. That ’ s why .NET 2.0 introduced the SafeHandle class.
The class SafeHandle is an abstract base class for every Windows handle. Derived classes inside the
 Microsoft.Win32.SafeHandles namespace are SafeHandleZeroOrMinusOneIsInvalid and
 SafeHandleMinusOneIsInvalid . As the name tells, these classes do not accept invalid 0 or – 1 values.
Further derived handle types are SafeFileHandle , SafeWaitHandle , SafeNCryptHandle , and
 SafePipeHandle that can be used by the specific Windows API calls.

(continued)

c24.indd 786c24.indd 786 2/19/08 8:50:40 PM2/19/08 8:50:40 PM

Chapter 24: Interoperability

787

 For example, to map the Windows API CreateFile() , you can use this declaration to return a
 SafeFileHandle . Of course, usually you could use the .NET classes File and FileInfo instead.

 [DllImport(“Kernel32.dll”, SetLastError = true,
 CharSet = CharSet.Unicode)]
 internal static extern SafeFileHandle CreateFile(
 string fileName,
 [MarshalAs(UnmanagedType.U4)] FileAccess fileAccess,
 [MarshalAs(UnmanagedType.U4)] FileShare fileShare,
 IntPtr securityAttributes,
 [MarshalAs(UnmanagedType.U4)] FileMode creationDisposition,
 int flags,
 SafeFileHandle template);

 In Chapter 22 , “ Transactions, ” you see how to create a custom SafeHandle class to work with the transacted file
API from Windows Vista.

 Summary
 In this chapter, you have seen how the different generations of COM and .NET applications can interact.
Instead of rewriting applications and components, a COM component can be used from a .NET
application just like a .NET class. The tool that makes this possible is tlbimp , which creates a runtime
callable wrapper (RCW) that hides the COM object behind a .NET fa ç ade.

 Likewise, tlbexp creates a type library from a .NET component that is used by the COM callable
wrapper (CCW). The CCW hides the .NET component behind a COM fa ç ade. Using .NET classes as
COM components makes it necessary to use some attributes from the namespace System.Runtime.
InteropServices to define specific COM characteristics that are needed by the COM client.

 With platform invoke, you ’ ve seen how native methods can be invoked using C#. Platform invoke
requires redefining the native method with C# and .NET data types. After defining the mapping, you
can invoke the native method as if it would be a C# method. Another option for doing interop would be
to use the technology It Just Works (IJW) with C++/CLI. You can read information about C++/CLI in
Appendix B .

 The next part of this book is all about data. The next chapter gives information on how to access the file
system, followed by chapters on how to read and write from the database and manipulate XML.

c24.indd 787c24.indd 787 2/19/08 8:50:41 PM2/19/08 8:50:41 PM

c24.indd 788c24.indd 788 2/19/08 8:50:41 PM2/19/08 8:50:41 PM

Part IV

Data

Chapter 25: Manipulating Files and the Registry

Chapter 26: Data Access

Chapter 27: LINQ to SQL

Chapter 28: Manipulating XML

Chapter 29: LINQ to XML

Chapter 30: .NET Programming with SQL Server

c25.indd 789c25.indd 789 2/19/08 5:19:38 PM2/19/08 5:19:38 PM

c25.indd 790c25.indd 790 2/19/08 5:19:38 PM2/19/08 5:19:38 PM

 Manipulating Files
and the Registry

 This chapter examines how to perform tasks involving reading from and writing to files and the
system registry in C#. In particular, it covers the following:

 Exploring the directory structure, finding out what files and folders are present, and
checking their properties

 Moving, copying, and deleting files and folders

 Reading and writing text in files

 Reading and writing keys in the registry

 Reading and writing to isolated storage

 Microsoft has provided very intuitive object models covering these areas, and in this chapter, you
learn how to use .NET base classes to perform the listed tasks. In the case of file system operations,
the relevant classes are almost all found in the System.IO namespace, whereas registry operations
are dealt with by classes in the Microsoft.Win32 namespace.

 The .NET base classes also include a number of classes and interfaces in the System.Runtime
.Serialization namespace concerned with serialization — that is, the process of converting
data (for example, the contents of a document) into a stream of bytes for storage. This chapter
does not focus on these classes; it focuses on the classes that give you direct access to files.

 Note that security is particularly important when modifying files or registry entries. The whole
area of security is covered separately in Chapter 20 , “ Security. ” In this chapter, however, we
assume that you have sufficient access rights to run all of the examples that modify files or registry
entries, which should be the case if you are running from an account with administrator privileges.

 Managing the File System
 The classes that are used to browse around the file system and perform operations such as moving,
copying, and deleting files are shown in Figure 25 - 1 .

❑

❑

❑

❑

❑

c25.indd 791c25.indd 791 2/19/08 5:19:38 PM2/19/08 5:19:38 PM

Part IV: Data

792

I Serializable

I Serializable

Object
Class

Directory
Static Class

File
Static Class

Path
Static Class

Drive Info
Sealed Class

Directory Info
Sealed Class
 File System Info

File Info
Sealed Class
 File System Info

File System Info
Abstract Class
 Marshal By Ref Object

Marshal By Ref Object
Abstract Class

Figure 25-1

 The following list explains the function of these classes:

 System.MarshalByRefObject — This is the base object class for .NET classes that are
remotable; permits marshaling of data between application domains.

 FileSystemInfo — This is the base class that represents any file system object.

 FileInfo and File — These classes represent a file on the file system.

 DirectoryInfo and Directory — These classes represent a folder on the file system.

 Path — This class contains static members that you can use to manipulate path names.

 DriveInfo — This class provides properties and methods that provide information on a
selected drive.

 On Windows, the objects that contain files and that are used to organize the file system are termed fold-
ers. For example, in the path C:\My Documents\ReadMe.txt , ReadMe.txt is a file and My
Documents is a folder. Folder is a very Windows - specific term: on virtually every other operating
system the term directory is used in place of folder, and in accordance with Microsoft ’ s goal to design
.NET as a platform - independent technology, the corresponding .NET base classes are called
Directory and DirectoryInfo . However, due to the potential for confusion with LDAP directories
(as discussed in Chapter 46 , “ Directory Services ”), and because this is a Windows book, we ’ ll stick to
the term folder in this discussion.

 . NET Classes That Represent Files and Folders
 You will notice from the previous list that two classes are used to represent a folder and two classes are
used to represent a file. Which one of these classes you use depends largely on how many times you
need to access that folder or file:

❑

❑

❑

❑

❑

❑

c25.indd 792c25.indd 792 2/19/08 5:19:39 PM2/19/08 5:19:39 PM

Chapter 25: Manipulating Files and the Registry

793

 Directory and File contain only static methods and are never instantiated. You use these
classes by supplying the path to the appropriate file system object whenever you call a member
method. If you want to do only one operation on a folder or file, using these classes is more
efficient because it saves the overhead of instantiating a .NET class.

 DirectoryInfo and FileInfo implement roughly the same public methods as Directory
and File , as well as some public properties and constructors, but they are stateful and the
members of these classes are not static. You need to instantiate these classes before each instance
is associated with a particular folder or file. This means that these classes are more efficient if
you are performing multiple operations using the same object. That ’ s because they read in the
authentication and other information for the appropriate file system object on construction, and
then do not need to read that information again, no matter how many methods and so on you
call against each object (class instance). In comparison, the corresponding stateless classes need
to check the details of the file or folder again with every method you call.

 In this section, you will be mostly using the FileInfo and DirectoryInfo classes, but it so happens
that many (though not all) of the methods called are also implemented by File and Directory
(although in those cases these methods require an extra parameter — the path name of the file system
object; also, a couple of the methods have slightly different names). For example:

FileInfo myFile = new FileInfo(@”C:\Program Files\My Program\ReadMe.txt”);
myFile.CopyTo(@”D:\Copies\ReadMe.txt”);

has the same effect as:

File.Copy(@”C:\Program Files\My Program\ReadMe.txt”, @”D:\Copies\ReadMe.txt”);

 The first code snippet will take slightly longer to execute because of the need to instantiate a FileInfo
object, myFile , but it leaves myFile ready for you to perform further actions on the same file. By using
the second example, there is no need to instantiate an object to copy the file.

 You can instantiate a FileInfo or DirectoryInfo class by passing to the constructor a string
containing the path to the corresponding file system object. You have just seen the process for a file. For a
folder, the code looks similar:

DirectoryInfo myFolder = new DirectoryInfo(@”C:\Program Files”);

 If the path represents an object that does not exist, an exception will not be thrown at construction, but
will instead be thrown the first time that you call a method that actually requires the corresponding file
system object to be there. You can find out whether the object exists and is of the appropriate type by
checking the Exists property, which is implemented by both of these classes:

FileInfo test = new FileInfo(@”C:\Windows”);
Console.WriteLine(test.Exists.ToString());

 Note that for this property to return true , the corresponding file system object must be of the
appropriate type. In other words, if you instantiate a FileInfo object supplying the path of a folder, or
you instantiate a DirectoryInfo object, giving it the path of a file, Exists will have the value false .
Most of the properties and methods of these objects will return a value if possible — they won ’ t
necessarily throw an exception just because the wrong type of object has been called, unless they are
asked to do something that really is impossible. For example, the preceding code snippet might first
display false (because C:\Windows is a folder). However, it still displays the time the folder was
created because a folder still has that information. But if you tried to open the folder as if it were a file,
using the FileInfo.Open() method, you ’ d get an exception.

 After you have established whether the corresponding file system object exists, you can (if you are using
the FileInfo or DirectoryInfo class) find out information about it using the properties in the
following table.

❑

❑

c25.indd 793c25.indd 793 2/19/08 5:19:39 PM2/19/08 5:19:39 PM

Part IV: Data

794

 Name Description

 CreationTime Time file or folder was created

 DirectoryName (FileInfo only) Full path name of the containing folder

 Parent (DirectoryInfo only) The parent directory of a specified subdirectory

 Exists Whether file or folder exists

 Extension Extension of the file; returns blank for folders

 FullName Full path name of the file or folder

 LastAccessTime Time file or folder was last accessed

 LastWriteTime Time file or folder was last modified

 Name Name of the file or folder

 Root (DirectoryInfo only) The root portion of the path

 Length (FileInfo only) The size of the file in bytes

 You can also perform actions on the file system object using the methods in the following table.

 Name Purpose

 Create() Creates a folder or empty file of the given name. For a FileInfo this
also returns a stream object to let you write to the file. (Streams are cov-
ered later in the chapter.)

 Delete() Deletes the file or folder. For folders, there is an option for the Delete to
be recursive.

 MoveTo() Moves and/or renames the file or folder.

 CopyTo() (FileInfo only) Copies the file. Note that there is no copy method for fold-
ers. If you are copying complete directory trees you will need to individu-
ally copy each file and create new folders corresponding to the old folders.

 GetDirectories() (DirectoryInfo only) Returns an array of DirectoryInfo objects rep-
resenting all folders contained in this folder.

 GetFiles() (DirectoryInfo only) Returns an array of FileInfo objects represent-
ing all files contained in this folder.

 GetFileSystemInfos() (DirectoryInfo only) Returns FileInfo and DirectoryInfo objects
representing all objects contained in this folder, as an array of
 FileSystemInfo references.

 Note that these tables list the main properties and methods and are not intended to be exhaustive.

 The preceding tables do not list most of the properties or methods that allow you to write to or read the
data in files. This is actually done using stream objects, which are covered later in this chapter.
 FileInfo also implements a number of methods, Open() , OpenRead() , OpenText() ,
OpenWrite() , Create() , and CreateText() , that return stream objects for this purpose.

c25.indd 794c25.indd 794 2/19/08 5:19:40 PM2/19/08 5:19:40 PM

Chapter 25: Manipulating Files and the Registry

795

 Interestingly, the creation time, last access time, and last write time are all writable:

// displays the creation time of a file,
// then changes it and displays it again
FileInfo test = new FileInfo(@”C:\MyFile.txt”);
Console.WriteLine(test.Exists.ToString());
Console.WriteLine(test.CreationTime.ToString());
test.CreationTime = new DateTime(2008, 1, 1, 7, 30, 0);
Console.WriteLine(test.CreationTime.ToString());

 Running this application produces results similar to the following:

True
2/5/2007 2:59:32 PM
1/1/2008 7:30:00 AM

 Being able to manually modify these properties might seem strange at first, but it can be quite useful.
For example, if you have a program that effectively modifies a file by simply reading it in, deleting it,
and creating a new file with the new contents, you would probably want to modify the creation date to
match the original creation date of the old file.

 The Path Class
 The Path class is not a class that you would instantiate. Rather, it exposes some static methods that make
operations on path names easier. For example, suppose that you want to display the full path name for a file,
 ReadMe.txt in the folder C:\My Documents . You could find the path to the file using the following code:

Console.WriteLine(Path.Combine(@”C:\My Documents”, “ReadMe.txt”));

 Using the Path class is a lot easier than using separation symbols manually, especially because the Path
class is aware of different formats for path names on different operating systems. At the time of writing,
Windows is the only operating system supported by .NET. However, if .NET were later ported to Unix,
 Path would be able to cope with Unix paths, in which / , rather than \ , is used as a separator in path
names. Path.Combine() is the method of this class that you are likely to use most often, but Path also
implements other methods that supply information about the path or the required format for it.

 Some of the properties available to the Path class include the following:

 Property Description

 AltDirectorySeparatorChar Provides a platform - agnostic way to specify an alternative charac-
ter to separate directory levels. On Windows, a / symbol is used,
whereas on UNIX, a \ symbol is used.

 DirectorySeparatorChar Provides a platform - agnostic way to specify a character to sepa-
rate directory levels. On Windows, a / symbol is used, whereas on
UNIX, a \ symbol is used.

 PathSeparator Provides a platform - agnostic way to specify path strings which
divide environmental variables. The default value of this setting is
a semicolon.

 VolumeSeparatorChar Provides a platform - agnostic way to specify a volume separator.
The default value of this setting is a colon.

 The following example illustrates how to browse directories and view the properties of files.

c25.indd 795c25.indd 795 2/19/08 5:19:40 PM2/19/08 5:19:40 PM

Part IV: Data

796

 Example: A File Browser
 This section presents a sample C# application called FileProperties . This application presents a
simple user interface that allows you to browse the file system and view the creation time, last access
time, last write time, and size of files. (You can download the sample code for this application from the
Wrox web site at www.wrox.com .)

 The FileProperties application works like this. You type in the name of a folder or file in the main
text box at the top of the window and click the Display button. If you type in the path to a folder, its
contents are listed in the list boxes. If you type in the path to a file, its details are displayed in the text
boxes at the bottom of the form and the contents of its parent folder are displayed in the list boxes.
Figure 25 - 2 shows the FileProperties sample application in action.

 The user can very easily navigate around the file system by clicking any folder in the right - hand list box to
move down to that folder or by clicking the Up button to move up to the parent folder. Figure 25 - 2 shows
the contents of the My Documents folder. The user can also select a file by clicking its name in the list
box. This displays the file ’ s properties in the text boxes at the bottom of the application (see Figure 25 - 3).

 Note that if you wanted to, you could also display the creation time, last access time, and last
modification time for folders using the DirectoryInfo property. You are going to display these
properties only for a selected file to keep things simple.

 You create the project as a standard C# Windows application in Visual Studio 2008, and add the various
text boxes and the list box from the Windows Forms area of the toolbox. You have also renamed the
controls with the more intuitive names of textBoxInput , textBoxFolder , buttonDisplay , buttonUp ,
 listBoxFiles , listBoxFolders , textBoxFileName , textBoxCreationTime ,
 textBoxLastAccessTime , textBoxLastWriteTime , and textBoxFileSize .

Figure 25-2

c25.indd 796c25.indd 796 2/19/08 5:19:41 PM2/19/08 5:19:41 PM

Chapter 25: Manipulating Files and the Registry

797

 Next, you need to indicate that you will be using the System.IO namespace:

using System;
using System.IO;
using System.Windows.Forms;

 You need to do this for all of the file - system – related examples in this chapter, but this part of the code
will not be explicitly shown in the remaining examples. You then add a member field to the main form:

 public partial class Form1 : Form
 {
 private string currentFolderPath;

 currentFolderPath stores the path of the folder whose contents are displayed in the list boxes.

 Next, you need to add event handlers for the user - generated events. The possible user inputs are:

 User clicks the Display button — In this case, you need to determine whether what the user has
typed in the main text box is the path to a file or folder. If it is a folder, you list the files and
subfolders of this folder in the list boxes. If it is a file, you still do this for the folder containing
that file, but you also display the file properties in the lower text boxes.

 User clicks a file name in the Files list box — In this case, you display the properties of this file in
the lower text boxes.

 User clicks a folder name in the Folders list box — In this case, you clear all the controls and
then display the contents of this subfolder in the list boxes.

 User clicks the Up button — In this case, you clear all the controls and then display the contents
of the parent of the currently selected folder.

❑

❑

❑

❑

Figure 25-3

c25.indd 797c25.indd 797 2/19/08 5:19:41 PM2/19/08 5:19:41 PM

Part IV: Data

798

 Before you see the code for the event handlers, here is the code for the methods that do all the work.
First, you need to clear the contents of all the controls. This method is fairly self - explanatory:

protected void ClearAllFields()
{
 listBoxFolders.Items.Clear();
 listBoxFiles.Items.Clear();
 textBoxFolder.Text = “”;
 textBoxFileName.Text = “”;
 textBoxCreationTime.Text = “”;
 textBoxLastAccessTime.Text = “”;
 textBoxLastWriteTime.Text = “”;
 textBoxFileSize.Text = “”;
}

 Next, you define a method, DisplayFileInfo() , that handles the process of displaying the information
for a given file in the text boxes. This method takes one parameter, the full path name of the file as a
 String , and works by creating a FileInfo object based on this path:

protected void DisplayFileInfo(string fileFullName)
{
 FileInfo theFile = new FileInfo(fileFullName);

 if (!theFile.Exists)
 {
 throw new FileNotFoundException(“File not found: “ + fileFullName);
 }

 textBoxFileName.Text = theFile.Name;
 textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();
 textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
 textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
 textBoxFileSize.Text = theFile.Length.ToString() + “ bytes”;
}

 Note that you take the precaution of throwing an exception if there are any problems locating a file at the
specified location. The exception itself will be handled in the calling routine (one of the event handlers).
Finally, you define a method, DisplayFolderList() , which displays the contents of a given folder in
the two list boxes. The full path name of the folder is passed in as a parameter to this method:

protected void DisplayFolderList(string folderFullName)
{
 DirectoryInfo theFolder = new DirectoryInfo(folderFullName);

 if (!theFolder.Exists)
 {
 throw new DirectoryNotFoundException(“Folder not found: “ + folderFullName);
 }

 ClearAllFields();
 textBoxFolder.Text = theFolder.FullName;
 currentFolderPath = theFolder.FullName;

c25.indd 798c25.indd 798 2/19/08 5:19:42 PM2/19/08 5:19:42 PM

Chapter 25: Manipulating Files and the Registry

799

 // list all subfolders in folder
 foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())
 listBoxFolders.Items.Add(nextFolder.Name);

 // list all files in folder
 foreach(FileInfo nextFile in theFolder.GetFiles())
 listBoxFiles.Items.Add(nextFile.Name);
}

 Next, you examine the event handlers. The event handler that manages the event that is triggered when
the user clicks the Display button is the most complex because it needs to handle three different
possibilities for the text the user enters in the text box. For instance, it could be the path name of a folder,
the path name of a file, or neither of these:

protected void OnDisplayButtonClick(object sender, EventArgs e)
{
 try
 {
 string folderPath = textBoxInput.Text;
 DirectoryInfo theFolder = new DirectoryInfo(folderPath);
 if (theFolder.Exists)
 {
 DisplayFolderList(theFolder.FullName);
 return;
 }
 FileInfo theFile = new FileInfo(folderPath);
 if (theFile.Exists)
 {
 DisplayFolderList(theFile.Directory.FullName);
 int index = listBoxFiles.Items.IndexOf(theFile.Name);
 listBoxFiles.SetSelected(index, true);
 return;
 }
 throw new FileNotFoundException(“There is no file or folder with “
 + “this name: “ + textBoxInput.Text);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

 In this code, you establish if the supplied text represents a folder or file by instantiating DirectoryInfo
and FileInfo instances and examining the Exists property of each object. If neither exists, you throw
an exception. If it ’ s a folder, you call DisplayFolderList() to populate the list boxes. If it ’ s a file, you
need to populate the list boxes and sort out the text boxes that display the file properties. You handle this
case by first populating the list boxes. You then programmatically select the appropriate file name in the
Files list box. This has exactly the same effect as if the user had selected that item — it raises the item -
 selected event. You can then simply exit the current event handler, knowing that the selected item event
handler will immediately be called to display the file properties.

c25.indd 799c25.indd 799 2/19/08 5:19:42 PM2/19/08 5:19:42 PM

Part IV: Data

800

 The following code is the event handler that is called when an item in the Files list box is selected, either
by the user or, as indicated previously, programmatically. It simply constructs the full path name of the
selected file, and passes this to the DisplayFileInfo() method presented earlier:

protected void OnListBoxFilesSelected(object sender, EventArgs e)
{
 try
 {
 string selectedString = listBoxFiles.SelectedItem.ToString();
 string fullFileName = Path.Combine(currentFolderPath, selectedString);
 DisplayFileInfo(fullFileName);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

 The event handler for the selection of a folder in the Folders list box is implemented in a very similar
way, except that in this case you call DisplayFolderList() to update the contents of the list boxes:

protected void OnListBoxFoldersSelected(object sender, EventArgs e)
{
 try
 {
 string selectedString = listBoxFolders.SelectedItem.ToString();
 string fullPathName = Path.Combine(currentFolderPath, selectedString);
 DisplayFolderList(fullPathName);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

 Finally, when the Up button is clicked, DisplayFolderList() must also be called, except that this time
you need to obtain the path of the parent of the folder currently being displayed. This is done with the
 FileInfo.DirectoryName property, which returns the parent folder path:

protected void OnUpButtonClick(object sender, EventArgs e)
{
 try
 {
 string folderPath = new FileInfo(currentFolderPath).DirectoryName;
 DisplayFolderList(folderPath);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

 Moving, Copying, and Deleting Files
 As mentioned, moving and deleting files or folders is done by the MoveTo() and Delete() methods of
the FileInfo and DirectoryInfo classes. The equivalent methods on the File and Directory classes
are Move() and Delete() . The FileInfo and File classes also implement the methods CopyTo() and

c25.indd 800c25.indd 800 2/19/08 5:19:42 PM2/19/08 5:19:42 PM

Chapter 25: Manipulating Files and the Registry

801

 Copy() , respectively. However, no methods exist to copy complete folders — you need to do that by
copying each file in the folder.

 Using all of these methods is quite intuitive — you can find detailed descriptions in the SDK
documentation. This section illustrates their use for the particular cases of calling the static Move() ,
 Copy() , and Delete() methods on the File class. To do this, you will build on the previous
 FileProperties example and call its iteration FilePropertiesAndMovement . This example will have
the extra feature that whenever the properties of a file are displayed, the application gives you the option
of deleting that file or moving or copying the file to another location.

 Example: FilePropertiesAndMovement
 Figure 25 - 4 shows the user interface of the new sample application.

Figure 25-4

 As you can see, FilePropertiesAndMovement is similar in appearance to FileProperties , except for
the group of three buttons and a text box at the bottom of the window. These controls are enabled only
when the example is actually displaying the properties of a file; at all other times, they are disabled. The
existing controls are also squashed up a bit to stop the main form from getting too big. When the
properties of a selected file are displayed, FilePropertiesAndMovement automatically places the full
path name of that file in the bottom text box for the user to edit. Users can then click any of the buttons
to perform the appropriate operation. When they do, a message box is displayed that confirms the action
taken by the user (see Figure 25 - 5).

 When the user clicks the Yes button, the action will be initiated. There are some actions in the form that
the user can take that will then cause the display to be incorrect. For instance, if the user moves or
deletes a file, you obviously cannot continue to display the contents of that file in the same location. In
addition, if you change the name of a file in the same folder, your display will also be out of date. In
these cases, FilePropertiesAndMovement resets its controls to display only the folder where the file
resides after the file operation.

c25.indd 801c25.indd 801 2/19/08 5:19:43 PM2/19/08 5:19:43 PM

Part IV: Data

802

 Looking at the Code for FilePropertiesAndMovement
 To code this process, you need to add the relevant controls, as well as their event handlers, to the code
for the FileProperties example. The new controls are given the names buttonDelete ,
 buttonCopyTo , buttonMoveTo , and textBoxNewPath .

 First, look at the event handler that is called when the user clicks the Delete button:

protected void OnDeleteButtonClick(object sender, EventArgs e)
{
 try
 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = “Really delete the file\n” + filePath + “?”;
 if (MessageBox.Show(query,
 “Delete File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Delete(filePath);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show(“Unable to delete file. The following exception”
 + “ occurred:\n” + ex.Message, “Failed”);
 }
}

 The code for this method is contained in a try block because of the obvious risk of an exception being
thrown if, for example, you don ’ t have permission to delete the file, or the file is moved by another
process after it has been displayed but before the user presses the Delete button. You construct the path
of the file to be deleted from the CurrentParentPath field, which contains the path of the parent folder,
and the text in the textBoxFileName text box, which contains the name of the file.

 The methods to move and copy the file are structured in a very similar manner:

protected void OnMoveButtonClick(object sender, EventArgs e)
{
 try
 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = “Really move the file\n” + filePath + “\nto “
 + textBoxNewPath.Text + “?”;

Figure 25-5

c25.indd 802c25.indd 802 2/19/08 5:19:43 PM2/19/08 5:19:43 PM

Chapter 25: Manipulating Files and the Registry

803

 if (MessageBox.Show(query,
 “Move File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Move(filePath, textBoxNewPath.Text);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show(“Unable to move file. The following exception”
 + “ occurred:\n” + ex.Message, “Failed”);
 }
}

protected void OnCopyButtonClick(object sender, EventArgs e)
{
 try
 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = “Really copy the file\n” + filePath + “\nto “
 + textBoxNewPath.Text + “?”;
 if (MessageBox.Show(query,
 “Copy File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Copy(filePath, textBoxNewPath.Text);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show(“Unable to copy file. The following exception”
 + “ occurred:\n” + ex.Message, “Failed”);
 }
}

 You are not quite done yet. You also need to make sure that the new buttons and text box are enabled
and disabled at the appropriate times. To enable them when you are displaying the contents of a file, you
add the following code to DisplayFileInfo() :

protected void DisplayFileInfo(string fileFullName)
{
 FileInfo theFile = new FileInfo(fileFullName);

 if (!theFile.Exists)
 {
 throw new FileNotFoundException(“File not found: “ + fileFullName);
 }

 textBoxFileName.Text = theFile.Name;
 textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();
 textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
 textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
 textBoxFileSize.Text = theFile.Length.ToString() + “ bytes”;
 (continued)

c25.indd 803c25.indd 803 2/19/08 5:19:43 PM2/19/08 5:19:43 PM

Part IV: Data

804

 // enable move, copy, delete buttons
 textBoxNewPath.Text = theFile.FullName;
 textBoxNewPath.Enabled = true;
 buttonCopyTo.Enabled = true;
 buttonDelete.Enabled = true;
 buttonMoveTo.Enabled = true;
}

 You also need to make one change to DisplayFolderList :

protected void DisplayFolderList(string folderFullName)
{
 DirectoryInfo theFolder = new DirectoryInfo(folderFullName);

 if (!theFolder.Exists)
 {
 throw new DirectoryNotFoundException(“Folder not found: “ + folderFullName);
 }

 ClearAllFields();
 DisableMoveFeatures();
 textBoxFolder.Text = theFolder.FullName;
 currentFolderPath = theFolder.FullName;

 // list all subfolders in folder
 foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())
 listBoxFolders.Items.Add(NextFolder.Name);

 // list all files in folder
 foreach(FileInfo nextFile in theFolder.GetFiles())
 listBoxFiles.Items.Add(NextFile.Name);
}

 DisableMoveFeatures is a small utility function that disables the new controls:

 void DisableMoveFeatures()
 {
 textBoxNewPath.Text = “”;
 textBoxNewPath.Enabled = false;
 buttonCopyTo.Enabled = false;
 buttonDelete.Enabled = false;
 buttonMoveTo.Enabled = false;
 }

 You also need to add extra code to ClearAllFields() to clear the extra text box:

 protected void ClearAllFields()
 {
 listBoxFolders.Items.Clear();
 listBoxFiles.Items.Clear();
 textBoxFolder.Text = “”;
 textBoxFileName.Text = “”;
 textBoxCreationTime.Text = “”;

(continued)

c25.indd 804c25.indd 804 2/19/08 5:19:44 PM2/19/08 5:19:44 PM

Chapter 25: Manipulating Files and the Registry

805

 textBoxLastAccessTime.Text = “”;
 textBoxLastWriteTime.Text = “”;
 textBoxFileSize.Text = “”;
 textBoxNewPath.Text = “”;
 }

 The next section takes a look at reading and writing to files.

 Reading and Writing to Files
 Reading and writing to files is in principle very simple; however, it is not done through the
 DirectoryInfo or FileInfo objects. Instead, using the .NET Framework 3.5, you can do it through the
 File object. Later in this chapter, you see how to accomplish this using a number of other classes that
represent a generic concept called a stream .

 Before the .NET Framework 2.0, it took a bit of wrangling to read and write to files. It was possible using
the available classes from the framework, but it was not that straightforward. The .NET Framework 2.0
has expanded the File class to make it as simple as just one line of code to read or write to a file. This
same functionality is also available in version 3.5 of the .NET Framework.

 Reading a File
 For an example of reading a file, create a Windows Form application that contains a regular text box, a
button, and a multiline text box. In the end, your form should appear something like Figure 25 - 6 .

Figure 25-6

c25.indd 805c25.indd 805 2/19/08 5:19:44 PM2/19/08 5:19:44 PM

Part IV: Data

806

 The idea of this form is that the end user will enter in the path of a specific file in the first text box and
click the Read button. From here, the application will read the specified file and display the file ’ s
contents in the multiline text box. This is illustrated in the following code example:

using System;
using System.IO;
using System.Windows.Forms;

namespace ReadingFiles
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 textBox2.Text = File.ReadAllText(textBox1.Text);
 }
 }
}

 In building this example, the first step is to add the using statement to bring in the System.IO
namespace. From there, simply use the button1_Click event for the Send button on the form to
populate the text box with what comes back from the file. You can now access the file ’ s contents by
using the File.ReadAllText() method. As you can see, you can read files with a single statement.
The ReadAllText() method opens the specified file, reads the contents, and then closes the file. The
return value of the ReadAllText() method is a string array containing the entire contents of the file
specified. The result would be something similar to what is shown in Figure 25 - 7 .

Figure 25-7

c25.indd 806c25.indd 806 2/19/08 5:19:44 PM2/19/08 5:19:44 PM

Chapter 25: Manipulating Files and the Registry

807

 The File.ReadAllText() signature shown in the preceding example is of the following construction:

File.ReadAllText(FilePath);

 The other option is to also specify the encoding of the file being read:

File.ReadAllText(FilePath, Encoding);

 Using this signature allows you to specify the encoding to use when opening and reading the contents of
the file. Therefore, this means that you could do something like the following:

File.ReadAllText(textBox1.Text, Encoding.ASCII);

 Some of the other options for opening and working with files include using the ReadAllBytes()
and the ReadAllLines() methods. The ReadAllBytes() method allows you to open a binary file and
read the contents into a byte array. The ReadAllText() method shown earlier gives you the entire
contents of the specified file in a single string array instance. This might not be something that you are
interested in. You might instead be interested in working with what comes back from the file in a
line - by - line fashion. In this case, you will want to use the ReadAllLines() method because it will
allow for this kind of functionality.

 Writing to a File
 Besides making reading from files an extremely simple process under the .NET Framework umbrella,
the base class library has made writing to files just as easy. Just as the base class library (BCL) gives
you the ReadAllText() , ReadAllLines() , and ReadAllBytes() methods to read files in a few
different ways, it gives you the WriteAllText() , WriteAllBytes() , and WriteAllLines()
methods to write files.

 For an example of how to write to a file, use the same Windows Form application, but use the multiline
text box in the form to input data into a file. The code for the button1_Click event handler should
appear as shown here:

private void button1_Click(object sender, EventArgs e)
{
 File.WriteAllText(textBox1.Text, textBox2.Text);
}

 Build and start the form, type C:\Testing.txt in the first text box, type some random content in the
second text box, and then click the button. Nothing will happen visually, but if you look in your root C
drive, you will see the Testing.txt file with the content you specified.

 The WriteAllText() method went to the specified location, created a new text file, and provided the
specified contents to the file before saving and closing the file. Not bad for just one line of code!

 If you run the application again, and specify the same file (Testing.txt) but with some new content,
pressing the button again will cause the application to perform the same task. This time though, the new
content is not added to the previous content you specified — instead, the new content completely
overrides the previous content. In fact, WriteAllText() , WriteAllBytes() , and WriteAllLines()
all override any previous files, so you must be careful when using these methods.

 The WriteAllText() method in the previous example uses the following signature:

File.WriteAllText(FilePath, Contents)

 You can also specify the encoding of the new file:

File.WriteAllText(FilePath, Contents, Encoding)

c25.indd 807c25.indd 807 2/19/08 5:19:45 PM2/19/08 5:19:45 PM

Part IV: Data

808

 The WriteAllBytes() method allows you to write content to a file using a byte array, and the
 WriteAllLines() method allows you to write a string array to a file. An example of this is illustrated in
the following event handler:

private void button1_Click(object sender, EventArgs e)
{
 string[] movies =
 {“Grease”,
 “Close Encounters of the Third Kind”,
 “The Day After Tomorrow”};

 File.WriteAllLines(@”C:\Testing.txt”, movies);
}

 Now clicking the button for such an application will give you a Testing.txt file with the following
contents:

Grease
Close Encounters of the Third Kind
The Day After Tomorrow

 The WriteAllLines() method writes out the string array with each array item taking its own line in
the file.

 Because data may be written not only to disk but to other places as well (such as to named pipes or to
memory), it is also important to understand how to deal with file I/O in .NET using streams as a means
of moving file contents around. This is shown in the following section.

 Streams
 The idea of a stream has been around for a very long time. A stream is an object used to transfer
data. The data can be transferred in one of two directions:

 If the data is being transferred from some outside source into your program, it is called reading
from the stream.

 If the data is being transferred from your program to some outside source, it is called writing to
the stream.

 Very often, the outside source will be a file, but that is not always the case. Other possibilities include:

 Reading or writing data on the network using some network protocol, where the intention is for
this data to be picked up by or sent from another computer

 Reading or writing to a named pipe

 Reading or writing to an area of memory

 Of these examples, Microsoft has supplied a .NET base class for writing to or reading from memory, the
 System.IO.MemoryStream object. The System.Net.Sockets.NetworkStream object handles
network data. There are no base stream classes for writing to or reading from pipes, but there is a generic
stream class, System.IO.Stream , from which you would inherit if you wanted to write such a class.
 Stream does not make any assumptions about the nature of the external data source.

 The outside source might even be a variable within your own code. This might sound paradoxical,
but the technique of using streams to transmit data between variables can be a useful trick for converting
data between data types. The C language used something similar — the function, sprintf — to convert
between integer data types and strings or to format strings.

 The advantage of having a separate object for the transfer of data, rather than using the FileInfo or
 DirectoryInfo classes to do this, is that separating the concept of transferring data from the particular

❑

❑

❑

❑

❑

c25.indd 808c25.indd 808 2/19/08 5:19:45 PM2/19/08 5:19:45 PM

Chapter 25: Manipulating Files and the Registry

809

data source makes it easier to swap data sources. Stream objects themselves contain a lot of generic
code that concerns the movement of data between outside sources and variables in your code. By keeping
this code separate from any concept of a particular data source, you make it easier for this code to be reused
(through inheritance) in different circumstances. For example, the StringReader and StringWriter
classes are part of the same inheritance tree as two classes that you will be using later on to read and write
text files. The classes will almost certainly share a substantial amount of code behind the scenes.

 Figure 25 - 8 illustrates the actual hierarchy of stream - related classes in the System.IO namespace.

 As far as reading and writing files, the classes that concern us most are:

 FileStream — This class is intended for reading and writing binary data in a binary file.
However, you can also use it to read from or write to any file.

 StreamReader and StreamWriter — These classes are designed specifically for reading from
and writing to text files.

❑

❑

System.Object

BufferedStream StringReader StringWriter

MemoryStream StreamReader StreamWriter

FileStream

Stream TextReader TextWriter

System.MarshalByRefObject BinaryReader BinaryWriter

Figure 25-8

BinaryReader

BinaryWriter

underlying
Stream object

Data source
(file, network etc.)

Your code

Figure 25-9

 You might also find the BinaryReader and BinaryWriter classes useful, although they are not used in
the examples here. These classes do not actually implement streams themselves, but they are able to
provide wrappers around other stream objects. BinaryReader and BinaryWriter provide extra
formatting of binary data, which allows you to directly read or write the contents of C# variables to or
from the relevant stream. Think of the BinaryReader and BinaryWriter as sitting between the stream
and your code, providing extra formatting (see Figure 25 - 9).

c25.indd 809c25.indd 809 2/19/08 5:19:46 PM2/19/08 5:19:46 PM

Part IV: Data

810

 The difference between using these classes and directly using the underlying stream objects is that a
basic stream works in bytes. For example, suppose that as part of the process of saving some document
you want to write the contents of a variable of type long to a binary file. Each long occupies 8 bytes,
and if you used an ordinary binary stream, you would have to explicitly write each of those 8 bytes of
memory. In C# code, that would mean you would have to perform some bitwise operations to extract
each of those 8 bytes from the long value. Using a BinaryWriter instance, you can encapsulate the
entire operation in an overload of the BinaryWriter.Write() method, which takes a long as a
parameter, and which will place those 8 bytes into the stream (and if the stream is directed to a file, into
the file). A corresponding BinaryReader.Read() method will extract 8 bytes from the stream and
recover the value of the long . For more information on the BinaryReader and BinaryWriter classes,
refer to the SDK documentation.

 Buffered Streams
 For performance reasons, when you read or write to or from a file, the output is buffered. This means
that if your program asks for the next 2 bytes of a file stream, and the stream passes the request on to
Windows, then Windows will not go through the trouble of connecting to the file system and then
locating and reading the file off the disk, just to get 2 bytes. Instead, Windows will retrieve a large block
of the file at one time and store this block in an area of memory known as a buffer . Subsequent requests
for data from the stream are satisfied from the buffer until the buffer runs out, at which point, Windows
grabs another block of data from the file. Writing to files works in the same way. For files, this is done
automatically by the operating system, but you might have to write a stream class to read from some
other device that is not buffered. If so, you can derive your class from BufferedStream , which
implements a buffer itself. (Note, however, that BufferedStream is not designed for the situation in
which an application frequently alternates between reading and writing data.)

 Reading and Writing to Binary Files Using FileStream
 Reading and writing to and from binary files can be done using the FileStream class. (Note that if you
are working with the .NET Framework 1.x, this will most likely be the case.)

 The FileStream Class
 A FileStream instance is used to read or write data to or from a file. In order to construct a
 FileStream , you need four pieces of information:

 1. The file you want to access.

 2. The mode , which indicates how you want to open the file. For example, are you intending to
create a new file or open an existing file? And if you are opening an existing file, should any
write operations be interpreted as overwriting the contents of the file or appending to the file?

 3. The access , which indicates how you want to access the file. For example, do you want to read
from or write to the file or do both?

 4. The share access, which specifies whether you want exclusive access to the file. Or, are you
willing to have other streams access the file simultaneously? If so, should other streams have
 access to read the file, to write to it, or to do both?

 The first of these pieces of information is usually represented by a string that contains the full path name
of the file, and this chapter considers only those constructors that require a string here. Besides those
constructors, however, some additional ones take an old Windows - API – style Windows handle to a file
instead. The remaining three pieces of information are represented by three .NET enumerations called

c25.indd 810c25.indd 810 2/19/08 5:19:46 PM2/19/08 5:19:46 PM

Chapter 25: Manipulating Files and the Registry

811

 FileMode , FileAccess , and FileShare . The values of these enumerations are listed in the following
table; they should be self - explanatory.

 Enumeration Values

 FileMode Append , Create , CreateNew , Open , OpenOrCreate , or Truncate

 FileAccess Read , ReadWrite , or Write

 FileShare Delete , Inheritable , None , Read , ReadWrite , or Write

 Note that in the case of FileMode , exceptions can be thrown if you request a mode that is inconsistent
with the existing status of the file. Append , Open , and Truncate will throw an exception if the file does
not already exist, and CreateNew will throw an exception if it does. Create and OpenOrCreate will
cope with either scenario, but Create will delete any existing file to replace it with a new, initially
empty, one. The FileAccess and FileShare enumerations are bitwise flags, so values can be combined
with the C# bitwise OR operator, | .

 There are a large number of constructors for the FileStream . The three simplest ones work as follows:

 // creates file with read-write access and allows other streams read access
 FileStream fs = new FileStream(@”C:\C# Projects\Project.doc”,
 FileMode.Create);
 // as above, but we only get write access to the file
 FileStream fs2 = new FileStream(@”C:\C# Projects\Project2.doc”,
 FileMode.Create, FileAccess.Write);
 // as above but other streams don’t get access to the file while
 // fs3 is open
 FileStream fs3 = new FileStream(@”C:\C# Projects\Project3.doc”,
 FileMode.Create, FileAccess.Write, FileShare.None);

 As this code reveals, the overloads of these constructors have the effect of providing default values of
 FileAccess.ReadWrite and FileShare.Read to the third and fourth parameters. It is also possible to
create a file stream from a FileInfo instance in various ways:

 FileInfo myFile4 = new FileInfo(@”C:\C# Projects\Project4.doc”);
 FileStream fs4 = myFile4.OpenRead();
 FileInfo myFile5= new FileInfo(@”C:\C# Projects\Project5doc”);
 FileStream fs5 = myFile5.OpenWrite();
 FileInfo myFile6= new FileInfo(@”C:\C# Projects\Project6doc”);
 FileStream fs6 = myFile6.Open(FileMode.Append, FileAccess.Write,
 FileShare.None);
 FileInfo myFile7 = new FileInfo(@”C:\C# Projects\Project7.doc”);
 FileStream fs7 = myFile7.Create();

 FileInfo.OpenRead() supplies a stream that gives you read - only access to an existing file, whereas
 FileInfo.OpenWrite() gives you read - write access. FileInfo.Open() allows you to specify the
mode, access, and file share parameters explicitly.

 Of course, after you have finished with a stream, you should close it:

 fs.Close();

c25.indd 811c25.indd 811 2/19/08 5:19:46 PM2/19/08 5:19:46 PM

Part IV: Data

812

 Closing the stream frees up the resources associated with it and allows other applications to set up
streams to the same file. This action also flushes the buffer. In between opening and closing the stream,
you will want to read data from it and/or write data to it. FileStream implements a number of
methods to do this.

 ReadByte() is the simplest way of reading data. It grabs 1 byte from the stream and casts the result to
an int that has a value between 0 and 255. If you have reached the end of the stream, it returns - 1 :

 int NextByte = fs.ReadByte();

 If you prefer to read a number of bytes at a time, you can call the Read() method, which reads a
specified number of bytes into an array. Read() returns the number of bytes actually read — if this value
is zero, you know that you are at the end of the stream. Here is an example where you read into a byte
array called ByteArray :

 int nBytesRead = fs.Read(ByteArray, 0, nBytes);

 The second parameter to Read() is an offset, which you can use to request that the Read operation start
populating the array at some element other than the first. The third parameter is the number of bytes to
read into the array.

 If you want to write data to a file, two parallel methods are available, WriteByte() and Write() .
 WriteByte() writes a single byte to the stream:

 byte NextByte = 100;
 fs.WriteByte(NextByte);

 Write() , however, writes out an array of bytes. For instance, if you initialized the ByteArray
mentioned before with some values, you could use the following code to write out the first nBytes of
the array:

 fs.Write(ByteArray, 0, nBytes);

 As with Read() , the second parameter allows you to start writing from some point other than the
beginning of the array. Both WriteByte() and Write() return void .

 In addition to these methods, FileStream implements various other methods and properties related to
bookkeeping tasks such as determining how many bytes are in the stream, locking the stream, or
flushing the buffer. These other methods are not usually required for basic reading and writing, but if
you need them, full details are in the SDK documentation.

 Example: BinaryFileReader
 The use of the FileStream class is illustrated by writing an example, BinaryFileReader , which reads
in and displays any file. Create the project in Visual Studio 2008 as a Windows application. It has one
menu item, which brings up a standard OpenFileDialog asking what file to read in and then displays
the file as binary code. As you are reading in binary files, you need to be able to display nonprintable
characters. You will do this by displaying each byte of the file individually, showing 16 bytes on each line
of a multiline text box. If the byte represents a printable ASCII character, you will display that character;
otherwise, you will display the value of the byte in a hexadecimal format. In either case, you pad out the
displayed text with spaces so that each byte displayed occupies four columns; this way, the bytes line up
nicely under each other.

 Figure 25 - 10 shows what the BinaryFileReader application looks like when viewing a text file.
(Because BinaryFileReader can view any file, it is quite possible to use it on text files as well as binary
ones.) In this case, the application has read in a basic ASP.NET page (.aspx).

c25.indd 812c25.indd 812 2/19/08 5:19:47 PM2/19/08 5:19:47 PM

Chapter 25: Manipulating Files and the Registry

813

 Clearly, this format is more suited to looking at the values of individual bytes than to displaying text!
Later in this chapter, when you develop an example that is specifically designed to read text files, you
will be able to see what this file really says. The advantage of this example is that you can look at the
contents of any file.

 This example will not demonstrate writing to files because you don ’ t want to get bogged down in the
complexities of trying to translate the contents of a text box like the one shown in Figure 25 - 10 into a
binary stream! You see how to write to files later when you develop an example that can read or write,
but only to and from text files.

 Here is the code used to get these results. First, you need to make sure that you have brought in the
 System.IO namespace through the use of the using statement:

using System.IO;

 Next, you add a couple of fields to the main form class — one representing the file dialog and a string
that gives the path of the file currently being viewed:

 partial class Form1 : Form
 {
 private readonly OpenFileDialog chooseOpenFileDialog =
 new OpenFileDialog();
 private string chosenFile;

 You also need to add some standard Windows Forms code to deal with the handlers for the menu and
the file dialog:

 public Form1()
 {
 InitializeComponent();

Figure 25-10

(continued)

c25.indd 813c25.indd 813 2/19/08 5:19:47 PM2/19/08 5:19:47 PM

Part IV: Data

814

 menuFileOpen.Click += OnFileOpen;
 chooseOpenFileDialog.FileOk += OnOpenFileDialogOK;
 }

 void OnFileOpen(object Sender, EventArgs e)
 {
 chooseOpenFileDialog.ShowDialog();
 }

 void OnOpenFileDialogOK(object Sender, CancelEventArgs e)
 {
 chosenFile = chooseOpenFileDialog.FileName;
 this.Text = Path.GetFileName(chosenFile);
 DisplayFile();
 }

 As this code demonstrates, when the user clicks OK to select a file in the file dialog, you call the
 DisplayFile() method, which does the work of reading in the selected file:

 void DisplayFile()
 {
 int nCols = 16;
 FileStream inStream = new FileStream(chosenFile, FileMode.Open,
 FileAccess.Read);
 long nBytesToRead = inStream.Length;
 if (nBytesToRead > 65536/4)
 nBytesToRead = 65536/4;

 int nLines = (int)(nBytesToRead/nCols) + 1;
 string [] lines = new string[nLines];
 int nBytesRead = 0;

 for (int i=0 ; i < nLines ; i++)
 {
 StringBuilder nextLine = new StringBuilder();
 nextLine.Capacity = 4*nCols;

 for (int j = 0 ; j < nCols ; j++)
 {
 int nextByte = inStream.ReadByte();
 nBytesRead++;
 if (nextByte < 0 || nBytesRead > 65536)
 break;
 char nextChar = (char)nextByte;
 if (nextChar < 16)
 nextLine.Append(“ x0” + string.Format(“{0,1:X}”,
 (int)nextChar));
 else if
 (char.IsLetterOrDigit(nextChar) ||
 char.IsPunctuation(nextChar))
 nextLine.Append(“ “ + nextChar + “ “);
 else
 nextLine.Append(“ x” + string.Format(“{0,2:X}”,
 (int)nextChar));
 }

(continued)

c25.indd 814c25.indd 814 2/19/08 5:19:48 PM2/19/08 5:19:48 PM

Chapter 25: Manipulating Files and the Registry

815

 lines[i] = nextLine.ToString();
 }
 inStream.Close();
 this.textBoxContents.Lines = lines;
 }

 There is quite a lot going on in this method, so here is a breakdown. You instantiate a FileStream
object for the selected file, which specifies that you want to open an existing file for reading. You then
work out how many bytes there are to read in and how many lines should be displayed. The number of
bytes will normally be the number of bytes in the file. However, text boxes can display a maximum of
only 65,536 characters and with the chosen display format, you are displaying four characters for every
byte in the file. Therefore, you will need to cap the number of bytes shown in the text box if the selected
file is longer than 65,536/4 = 16,384 bytes.

 If you want to display longer files in this sort of environment, you might want to look up the
 RichTextBox class in the System.Windows.Forms namespace. RichTextBox is similar to a text
box, but has many more advanced formatting facilities and does not have a limit on how much text it can
display. TextBox is used here to keep the example simple and focused on the process of reading in files.

 The bulk of the method is given over to two nested for loops that construct each line of text to be
displayed. You use a StringBuilder class to construct each line for performance reasons: you are
appending suitable text for each byte to the string that represents each line 16 times. If on each occasion
you allocate a new string and take a copy of the half - constructed line, you are not only going to be
spending a lot of time allocating strings but will also be wasting a lot of memory on the heap. Notice that
the definition of printable characters is anything that is a letter, digit, or punctuation, as indicated by the
relevant static System.Char methods. You exclude any character with a value less than 16 from the
printable list, however; this means that you will trap the carriage return (13) and line feed (10) as binary
characters (a multiline text box isn ’ t able to display these characters properly if they occur individually
within a line).

 Furthermore, using the Properties window, you change the Font property for the text box to a fixed -
 width font. In this case, you choose Courier New 9pt regular , and set the text box to have vertical
and horizontal scroll bars.

 Upon completion, you close the stream and set the contents of the text box to the array of strings that
you have built up.

 Reading and Writing to Text Files
 Theoretically, it is perfectly possible to use the FileStream class to read in and display text files. You
have, after all, just done that. The format in which the Default.aspx file is displayed in the preceding
example is not particularly user - friendly, but that has nothing to do with any intrinsic problem with the
 FileStream class, only with how you chose to display the results in the text box.

 Having said that, if you know that a particular file contains text, you will usually find it more convenient
to read and write it using the StreamReader and StreamWriter classes instead of the FileStream
class. That is because these classes work at a slightly higher level and are specifically geared to reading
and writing text. The methods that they implement are able to automatically detect convenient points to
stop reading text, based on the contents of the stream. In particular:

 These classes implement methods to read or write one line of text at a time, StreamReader
.ReadLine() and StreamWriter.WriteLine() . In the case of reading, this means that the
stream will automatically determine for you where the next carriage return is and stop reading
at that point. In the case of writing, it means that the stream will automatically append the
carriage return – line feed combination to the text that it writes out.

❑

c25.indd 815c25.indd 815 2/19/08 5:19:48 PM2/19/08 5:19:48 PM

Part IV: Data

816

 By using the StreamReader and StreamWriter classes, you don ’ t need to worry about the
encoding (the text format) used in the file. Possible encodings include ASCII (1 byte for each
character), or any of the Unicode - based formats, Unicode, UTF7, UTF8, and UTF32. Text files on
Windows 9x systems are always in ASCII because Windows 9x does not support Unicode;
however, because Windows NT, 2000, XP, 2003, Vista, and Windows Server 2008 all do support
Unicode, text files might theoretically contain Unicode, UTF7, UTF8, or UTF32 data instead of
ASCII data. The convention is that if the file is in ASCII format, it will simply contain the text. If
it is in any Unicode format, this will be indicated by the first 2 or 3 bytes of the file, which are set
to particular combinations of values to indicate the format used in the file.

 These bytes are known as the byte code markers . When you open a file using any of the standard
Windows applications, such as Notepad or WordPad, you do not need to worry about this because these
applications are aware of the different encoding methods and will automatically read the file correctly.
This is also true for the StreamReader class, which will correctly read in a file in any of these formats,
and the StreamWriter class is capable of formatting the text it writes out using whatever encoding
technique you request. If you wanted to read in and display a text file using the FileStream class,
however, you would have to handle all of this yourself.

 The StreamReader Class
 StreamReader is used to read text files. Constructing a StreamReader is in some ways easier than
constructing a FileStream instance because some of the FileStream options are not required when
using StreamReader . In particular, the mode and access types are not relevant to StreamReader
because the only thing you can do with a StreamReader is read! Furthermore, there is no direct option
to specify the sharing permissions. However, there are a couple of new options:

 You need to specify what to do about the different encoding methods. You can instruct the
 StreamReader to examine the byte code markers in the beginning of the file to determine the
encoding method, or you can simply tell the StreamReader to assume that the file uses a
specified encoding method.

 Instead of supplying a file name to be read from, you can supply a reference to another stream.

 This last option deserves a bit more discussion because it illustrates another advantage of basing the
model for reading and writing data on the concept of streams. Because the StreamReader works at a
relatively high level, you might find it useful if you have another stream that is there to read data
from some other source, but you would like to use the facilities provided by StreamReader to
process that other stream as if it contained text. You can do so by simply passing the output from this
stream to a StreamReader . In this way, StreamReader can be used to read and process data from
any data source — not only files. This is essentially the situation discussed earlier with regard to the
 BinaryReader class. However, in this book you will only use StreamReader to connect directly
to files.

 The result of these possibilities is that StreamReader has a large number of constructors. Not only that,
but there are a couple of FileInfo methods that return StreamReader references, too: OpenText() and
 CreateText() . The following just illustrates some of the constructors.

 The simplest constructor takes just a file name. This StreamReader will examine the byte order marks to
determine the encoding:

 StreamReader sr = new StreamReader(@”C:\My Documents\ReadMe.txt”);

 Alternatively, if you prefer to specify that UTF8 encoding should be assumed:

 StreamReader sr = new StreamReader(@”C:\My Documents\ReadMe.txt”,
 Encoding.UTF8);

❑

❑

❑

c25.indd 816c25.indd 816 2/19/08 5:19:49 PM2/19/08 5:19:49 PM

Chapter 25: Manipulating Files and the Registry

817

 You specify the encoding by using one of several properties on a class, System.Text.Encoding . This
class is an abstract base class, from which a number of classes are derived and which implements
methods that actually perform the text encoding. Each property returns an instance of the appropriate
class, and the possible properties you can use here are:

 ASCII

 Unicode

 UTF7

 UTF8

 UTF32

 BigEndianUnicode

 The following example demonstrates hooking up a StreamReader to a FileStream . The advantage of
this is that you can specify whether to create the file and the share permissions, which you cannot do if
you directly attach a StreamReader to the file:

 FileStream fs = new FileStream(@”C:\My Documents\ReadMe.txt”,
 FileMode.Open, FileAccess.Read, FileShare.None);
 StreamReader sr = new StreamReader(fs);

 For this example, you specify that the StreamReader will look for byte code markers to determine the
encoding method used, as it will do in the following examples, in which the StreamReader is obtained
from a FileInfo instance:

 FileInfo myFile = new FileInfo(@”C:\My Documents\ReadMe.txt”);
 StreamReader sr = myFile.OpenText();

 Just as with a FileStream , you should always close a StreamReader after use. Failure to do so will
result in the file remaining locked to other processes (unless you used a FileStream to construct the
 StreamReader and specified FileShare.ShareReadWrite):

 sr.Close();

 Now that you have gone to the trouble of instantiating a StreamReader , you can do something with it.
As with the FileStream , you will simply see the various ways to read data, and the other, less
commonly used StreamReader methods are left to the SDK documentation.

 Possibly the easiest method to use is ReadLine() , which keeps reading until it gets to the end of a line.
It does not include the carriage return – line feed combination that marks the end of the line in the
returned string:

 string nextLine = sr.ReadLine();

 Alternatively, you can grab the entire remainder of the file (or strictly, the remainder of the stream) in
one string:

 string restOfStream = sr.ReadToEnd();

 You can read a single character:

 int nextChar = sr.Read();

 This overload of Read() casts the returned character to an int . This is so that it has the option of
returning a value of - 1 if the end of the stream has been reached.

❑

❑

❑

❑

❑

❑

c25.indd 817c25.indd 817 2/19/08 5:19:49 PM2/19/08 5:19:49 PM

Part IV: Data

818

 Finally, you can read a given number of characters into an array, with an offset:

 // to read 100 characters in.

 int nChars = 100;
 char [] charArray = new char[nChars];
 int nCharsRead = sr.Read(charArray, 0, nChars);

 nCharsRead will be less than nChars if you have requested to read more characters than are left in the file.

 The StreamWriter Class
 This works in the same way as the StreamReader , except that you can use StreamWriter only to write
to a file (or to another stream). Possibilities for constructing a StreamWriter include:

 StreamWriter sw = new StreamWriter(@”C:\My Documents\ReadMe.txt”);

 This will use UTF8 encoding, which is regarded by .NET as the default encoding method. If you want,
you can specify an alternative encoding:

 StreamWriter sw = new StreamWriter(@”C:\My Documents\ReadMe.txt”, true,
 Encoding.ASCII);

 In this constructor, the second parameter is a Boolean that indicates whether the file should be opened
for appending. There is, oddly, no constructor that takes only a file name and an encoding class.

 Of course, you may want to hook up StreamWriter to a file stream to give you more control over the
options for opening the file:

 FileStream fs = new FileStream(@”C:\My Documents\ReadMe.txt”,
 FileMode.CreateNew, FileAccess.Write, FileShare.Read);
 StreamWriter sw = new StreamWriter(fs);

 FileStream does not implement any methods that return a StreamWriter class.

 Alternatively, if you want to create a new file and start writing data to it, you will find this
sequence useful:

 FileInfo myFile = new FileInfo(@”C:\My Documents\NewFile.txt”);
 StreamWriter sw = myFile.CreateText();

 Just as with all other stream classes, it is important to close a StreamWriter class when you have
finished with it:

 sw.Close();

 Writing to the stream is done using any of four overloads of StreamWriter.Write() . The simplest
writes out a string and appends it with a carriage return – line feed combination:

 string nextLine = “Groovy Line”;
 sw.Write(nextLine);

 It is also possible to write out a single character:

 char nextChar = ‘a’;
 sw.Write(nextChar);

 And an array of characters:

 char [] charArray = new char[100];

 // initialize these characters

 sw.Write(charArray);

c25.indd 818c25.indd 818 2/19/08 5:19:50 PM2/19/08 5:19:50 PM

Chapter 25: Manipulating Files and the Registry

819

 It is even possible to write out a portion of an array of characters:

 int nCharsToWrite = 50;
 int startAtLocation = 25;
 char [] charArray = new char[100];

 // initialize these characters

 sw.Write(charArray, startAtLocation, nCharsToWrite);

 Example: ReadWriteText
 The ReadWriteText example displays the use of the StreamReader and StreamWriter classes. It is
similar to the earlier ReadBinaryFile example, but it assumes that the file to be read in is a text file and
displays it as such. It is also capable of saving the file (with any modifications you have made to the text
in the text box). It will save any file in Unicode format.

 The screenshot in Figure 25 - 11 shows ReadWriteText displaying the same Default.aspx file that you
used earlier. This time, however, you are able to read the contents a bit more easily!

Figure 25-11

 We won ’ t cover the details of adding the event handlers for the Open File dialog box, because they are
basically the same as in the earlier BinaryFileReader example. As with that example, opening a new
file causes the DisplayFile() method to be called. The only real difference between this example and
the previous one is the implementation of DisplayFile as well as that you now have the option to save
a file. This is represented by another menu option, Save. The handler for this option calls another
method you have added to the code, SaveFile() . (Note that the new file always overwrites the original
file; this example does not have an option to write to a different file.)

c25.indd 819c25.indd 819 2/19/08 5:19:50 PM2/19/08 5:19:50 PM

Part IV: Data

820

 You will look at SaveFile() first because that is the simplest function. You simply write each line of the
text box, in turn, to a StreamWriter stream, relying on the StreamReader.WriteLine() method to
append the trailing carriage return and line feed to the end of each line:

 void SaveFile()
 {
 StreamWriter sw = new StreamWriter(chosenFile, false, Encoding.Unicode);

 foreach (string line in textBoxContents.Lines)
 sw.WriteLine(line);
 sw.Close();
 }

 chosenFile is a string field of the main form, which contains the name of the file you have read in
(just as for the previous example). Notice that you specify Unicode encoding when you open the stream.
If you wanted to write files in some other format, you would simply need to change the value of this
parameter. The second parameter to this constructor would be set to true if you wanted to append to a
file, but you do not in this case. The encoding must be set at construction time for a StreamWriter . It is
subsequently available as a read - only property, Encoding .

 Now you examine how files are read in. The process of reading in is complicated by the fact that you
don ’ t know how many lines it is going to contain until you have read in the file. For example, you don ’ t
know how many (char)13(char)10 sequences are in the file because char(13)char(10) is the
carriage return – line feed combination that occurs at the end of a line. You solve this problem by initially
reading the file into an instance of the StringCollection class, which is in the System.Collections.
Specialized namespace. This class is designed to hold a set of strings that can be dynamically
expanded. It implements two methods that you will be interested in: Add() , which adds a string to the
collection, and CopyTo() , which copies the string collection into a normal array (a System.Array
instance). Each element of the StringCollection object will hold one line of the file.

 The DisplayFile() method calls another method, ReadFileIntoStringCollection() , which
actually reads in the file. After doing this, you now know how many lines there are, so you are in a
position to copy the StringCollection into a normal, fixed - size array and feed this array into the text
box. Because only the references to the strings, not the strings themselves, are copied when you actually
make the copy, the process is reasonably efficient:

 void DisplayFile()
 {
 StringCollection linesCollection = ReadFileIntoStringCollection();
 string [] linesArray = new string[linesCollection.Count];
 linesCollection.CopyTo(linesArray, 0);
 this.textBoxContents.Lines = linesArray;
 }

 The second parameter of StringCollection.CopyTo() indicates the index within the destination
array of where you want the collection to start.

 Now you examine the ReadFileIntoStringCollection() method. You use a StreamReader to read
in each line. The main complication here is the need to count the characters read in to make sure that you
do not exceed the capacity of the text box:

 StringCollection ReadFileIntoStringCollection()
 {
 const int MaxBytes = 65536;
 StreamReader sr = new StreamReader(chosenFile);
 StringCollection result = new StringCollection();

c25.indd 820c25.indd 820 2/19/08 5:19:50 PM2/19/08 5:19:50 PM

Chapter 25: Manipulating Files and the Registry

821

 int nBytesRead = 0;
 string nextLine;
 while ((nextLine = sr.ReadLine()) != null)
 {
 nBytesRead += nextLine.Length;
 if (nBytesRead > MaxBytes)
 break;
 result.Add(nextLine);
 }
 sr.Close();
 return result;
 }

 That completes the code for this example.

 If you run ReadWriteText , read in the Default.aspx file, and then save it, the file will be in Unicode
format. You would not be able to tell this from any of the usual Windows applications. Notepad,
WordPad, and even the ReadWriteText example will still read the file in and display it correctly under
Windows NT/2000/XP/2003/Vista/2008, although, because Windows 9x doesn ’ t support Unicode,
applications like Notepad won ’ t be able to understand the Unicode file on those platforms. (If you
download the example from the Wrox Press web site at www.wrox.com , you can try this!) However, if
you try to display the file again using the earlier BinaryFileReader example, you can see the
difference immediately, as shown in Figure 25 - 12 . The two initial bytes that indicate the file is in Unicode
format are visible, and thereafter you see that every character is represented by 2 bytes. This last fact is
obvious because the high - order byte of every character in this particular file is zero, so every second byte
in this file now displays x00 .

Figure 25-12

c25.indd 821c25.indd 821 2/19/08 5:19:51 PM2/19/08 5:19:51 PM

Part IV: Data

822

 Reading Drive Information
 In addition to working with files and directories, the .NET Framework includes the ability to read
information from a specified drive. This is done using the DriveInfo class. The DriveInfo class can
perform a scan of a system to provide a list of available drives and then can dig in deeper, providing
you with tons of details about any of the drives.

 For an example of using the DriveInfo class, create a simple Windows Form that will list out all the
available drives on a computer and then will provide details on a user - selected drive. Your Windows
Form will consist of a simple ListBox and should look as illustrated in Figure 25 - 13 .

Figure 25-13

 Once you have the form all set, the code will consist of two events — one for when the form loads and
another for when the end user makes a drive selection in the list box. The code for this form is shown here:

using System;
using System.IO;
using System.Windows.Forms;

namespace DriveInfo
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 DriveInfo[] di = DriveInfo.GetDrives();

 foreach (DriveInfo itemDrive in di)
 {
 listBox1.Items.Add(itemDrive.Name);
 }
 }

 private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
 {
 DriveInfo di = new DriveInfo(listBox1.SelectedItem.ToString());

c25.indd 822c25.indd 822 2/19/08 5:19:51 PM2/19/08 5:19:51 PM

Chapter 25: Manipulating Files and the Registry

823

 MessageBox.Show(“Available Free Space: “
 + di.AvailableFreeSpace + “\n” +
 “Drive Format: “ + di.DriveFormat + “\n” +
 “Drive Type: “ + di.DriveType + “\n” +
 “Is Ready: “ + di.IsReady + “\n” +
 “Name: “ + di.Name + “\n” +
 “Root Directory: “ + di.RootDirectory + “\n” +
 “ToString() Value: “ + di + “\n” +
 “Total Free Space: “ + di.TotalFreeSpace + “\n” +
 “Total Size: “ + di.TotalSize + “\n” +
 “Volume Label: “ + di.VolumeLabel, di.Name +
 “ DRIVE INFO”);
 }
 }
}

 The first step is to bring in the System.IO namespace with the using keyword. Within the Form1_Load
event, you use the DriveInfo class to get a list of all the available drives on the system. This is done
using an array of DriveInfo objects and populating this array with the DriveInfo.GetDrives()
method. Then using a foreach loop, you are able to iterate through each drive found and populate the
list box with the results. This produces something similar to what is shown in Figure 25 - 14 .

Figure 25-14

Figure 25-15

 This form allows the end user to select one of the drives in the list. Once a drive is selected, a message
box appears that contains details about that drive. As you can see in Figure 25 - 14 , I have six drives on
my current computer. Selecting a couple of these drives produces the message boxes collectively shown
in Figure 25 - 15 .

c25.indd 823c25.indd 823 2/19/08 5:19:51 PM2/19/08 5:19:51 PM

Part IV: Data

824

 From here, you can see that these message boxes provide details about three entirely different drives.
The first, drive C:\ , is my hard drive, as the message box shows its drive type as Fixed . The second
drive, drive D:\ , is my CD/DVD drive. The third drive, drive F:\ , is my USB pen and is labeled with
a drive type of Removable .

 File Security
 When the .NET Framework 1.0/1.1 was first introduced, it didn ’ t come with a way to easily access and
work access control lists (ACLs) for files, directories, and registry keys. To do such things at that time
usually meant some work with COM interop, thus also requiring a more advanced programming
knowledge of working with ACLs.

 This has considerably changed since the release of the .NET Framework 2.0, which made the process of
working with ACLs considerably easier with a namespace — System.Security.AccessControl . With
this namespace, it is now possible to manipulate security settings for files, registry keys, network shares,
Active Directory objects, and more.

 Reading ACL s from a File
 For an example of working with System.Security.AccessControl , this section looks at working with
the ACLs for both files and directories. It starts by looking at how you would review the ACLs for a
particular file. This example is accomplished in a console application and illustrated here:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace ConsoleApplication1
{
 internal class Program
 {
 private static string myFilePath;

 private static void Main()
 {
 Console.Write(“Provide full file path: “);
 myFilePath = Console.ReadLine();

 try
 {
 using (FileStream myFile =
 new FileStream(myFilePath, FileMode.Open, FileAccess.Read))
 {
 FileSecurity fileSec = myFile.GetAccessControl();

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof (NTAccount)))
 {
 Console.WriteLine(“{0} {1} {2} access for {3}”,
 myFilePath,
 fileRule.AccessControlType ==

c25.indd 824c25.indd 824 2/19/08 5:19:52 PM2/19/08 5:19:52 PM

Chapter 25: Manipulating Files and the Registry

825

 AccessControlType.Allow
 ? “provides” : “denies”,
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }
 }
 catch
 {
 Console.WriteLine(“Incorrect file path given!”);
 }

 Console.ReadLine();
 }
 }
}

 For this example to work, the first step is to refer to the System.Security.AccessControl namespace.
This will give you access to the FileSecurity and the FileSystemAccessRule classes later in the
program.

 After the specified file is retrieved and placed in a FileStream object, the ACLs of the file are grabbed
using the GetAccessControl() method now found on the File object. This information from the
 GetAccessControl() method is then placed in a FileSecurity class. This class has access rights to
the referenced item. Each individual access right is then in turn represented by a
 FileSystemAccessRule object. That is why a foreach loop is used to iterate through all the access
rights found in the created FileSecurity object.

 Running this example with a simple text file in the root directory produces something similar to the
following results:

Provide full file path: C:\Sample.txt
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides FullControl access for PUSHKIN\Bill
C:\Sample.txt provides ReadAndExecute, Synchronize access for BUILTIN\Users

 The next section presents reading ACLs from a directory instead of a file.

 Reading ACL s from a Directory
 Reading ACL information about a directory instead of an actual file is not much different from the
preceding example. The code for this is illustrated in the following sample:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace ConsoleApplication1
{
 internal class Program
 {
 private static string mentionedDir;

 private static void Main()

(continued)

c25.indd 825c25.indd 825 2/19/08 5:19:52 PM2/19/08 5:19:52 PM

Part IV: Data

826

 {
 Console.Write(“Provide full directory path: “);
 mentionedDir = Console.ReadLine();

 try
 {
 DirectoryInfo myDir = new DirectoryInfo(mentionedDir);

 if (myDir.Exists)
 {
 DirectorySecurity myDirSec = myDir.GetAccessControl();

 foreach (FileSystemAccessRule fileRule in
 myDirSec.GetAccessRules(true, true,
 typeof (NTAccount)))
 {
 Console.WriteLine(“{0} {1} {2} access for {3}”,
 mentionedDir, fileRule.AccessControlType ==
 AccessControlType.Allow
 ? “provides” : “denies”,
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }
 }
 catch
 {
 Console.WriteLine(“Incorrect directory provided!”);
 }

 Console.ReadLine();
 }
 }
}

 The big difference with this example is that it uses the DirectoryInfo class, which now also
includes the GetAccessControl() method to pull information about the directory ’ s ACLs. Running
this example produces the following results:

Provide full directory path: C:\Test
C:\Test provides FullControl access for BUILTIN\Administrators
C:\Test provides FullControl access for NT AUTHORITY\SYSTEM
C:\Test provides FullControl access for PUSHKIN\Bill
C:\Test provides 268435456 access for CREATOR OWNER
C:\Test provides ReadAndExecute, Synchronize access for BUILTIN\Users
C:\Test provides AppendData access for BUILTIN\Users
C:\Test provides CreateFiles access for BUILTIN\Users

 The final thing you will look at in working with ACLs is using the new System.Security.
AccessControl namespace to add and remove items to and from a file ’ s ACL.

(continued)

c25.indd 826c25.indd 826 2/19/08 5:19:53 PM2/19/08 5:19:53 PM

Chapter 25: Manipulating Files and the Registry

827

 Adding and Removing ACL s from a File
 It is also possible to manipulate the ACLs of a resource using the same objects that were used in the
previous examples. The following code example changes a previous code example where a file ’ s ACL
information was read. Here, the ACLs are read for a specified file, changed, and then read again:

try
{
 using (FileStream myFile = new FileStream(myFilePath,
 FileMode.Open, FileAccess.ReadWrite))
 {
 FileSecurity fileSec = myFile.GetAccessControl();

 Console.WriteLine(“ACL list before modification:”);

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof(System.Security.Principal.NTAccount)))
 {
 Console.WriteLine(“{0} {1} {2} access for {3}”, myFilePath,
 fileRule.AccessControlType == AccessControlType.Allow ?
 “provides” : “denies”,
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }

 Console.WriteLine();
 Console.WriteLine(“ACL list after modification:”);

 FileSystemAccessRule newRule = new FileSystemAccessRule(
 new System.Security.Principal.NTAccount(@”PUSHKIN\Tuija”),
 FileSystemRights.FullControl,
 AccessControlType.Allow);

 fileSec.AddAccessRule(newRule);
 File.SetAccessControl(myFilePath, fileSec);

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof(System.Security.Principal.NTAccount)))
 {
 Console.WriteLine(“{0} {1} {2} access for {3}”, myFilePath,
 fileRule.AccessControlType == AccessControlType.Allow ?
 “provides” : “denies”,
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }
}

 In this case, a new access rule is added to the file ’ s ACL. This is done by using the
 FileSystemAccessRule object. The FileSystemAccessRule class is an abstraction access control
entry (ACE) instance. The ACE defines the user account to use, the type of access that this user account
can deal with, and whether or not to allow or deny this access. In creating a new instance of this object, a
new NTAccount is created and given Full Control to the file. Even though a new NTAccount is

c25.indd 827c25.indd 827 2/19/08 5:19:53 PM2/19/08 5:19:53 PM

Part IV: Data

828

created, it must still reference an existing user. Then the AddAccessRule method of the FileSecurity
class is used to assign the new rule. From there, the FileSecurity object reference is used to set the
access control to the file in question using the SetAccessControl() method of the File class.

 Next, the file ’ s ACL is listed again. The following is an example of what the preceding code could
produce:

Provide full file path: C:\Sample.txt
ACL list before modification:
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides FullControl access for PUSHKIN\Bill
C:\Sample.txt provides ReadAndExecute, Synchronize access for BUILTIN\Users

ACL list after modification:
C:\Sample.txt provides FullControl access for PUSHKIN\Tuija
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides FullControl access for PUSHKIN\Bill
C:\Sample.txt provides ReadAndExecute, Synchronize access for BUILTIN\Users

 To remove a rule from the ACL list, there is really not much that needs to be done to the code. From the
previous code example, you simply need to change the line

fileSec.AddAccessRule(newRule);

to the following to remove the rule that was just added:

fileSec.RemoveAccessRule(newRule);

 Reading and Writing to the Registry
 In all versions of Windows since Windows 95, the registry has been the central repository for all
configuration information relating to Windows setup, user preferences, and installed software and
devices. Almost all commercial software these days uses the registry to store information about itself,
and COM components must place information about themselves in the registry in order to be called by
clients. The .NET Framework and its accompanying concept of zero - impact installation has slightly
reduced the significance of the registry for applications in the sense that assemblies are entirely self -
 contained; no information about particular assemblies needs to be placed in the registry, even for shared
assemblies. In addition, the .NET Framework has brought the concept of isolated storage, by which
applications can store information that is particular to each user in files; the .NET Framework ensures
that data is stored separately for each user registered on a machine.

 The fact that applications can now be installed using the Windows Installer also frees developers from
some of the direct manipulation of the registry that used to be involved in installing applications.
However, despite this, the possibility exists that if you distribute any complete application, your
application will use the registry to store information about its configuration. For instance, if you want
your application to show up in the Add/Remove Programs dialog box in the Control Panel, this will
involve appropriate registry entries. You may also need to use the registry for backward compatibility
with legacy code.

 As you would expect from a library as comprehensive as the .NET library, it includes classes that
give you access to the registry. Two classes are concerned with the registry, and both are in the
 Microsoft.Win32 namespace. The classes are Registry and RegistryKey . Before you examine
these classes, the following section briefly reviews the structure of the registry itself.

c25.indd 828c25.indd 828 2/19/08 5:19:53 PM2/19/08 5:19:53 PM

Chapter 25: Manipulating Files and the Registry

829

 The Registry
 The registry has a hierarchical structure much like that of the file system. The usual way to view or
modify the contents of the registry is with one of two utilities: regedit or regedt32 . Of these, regedit
comes standard with all versions of Windows since Windows 95. regedt32 comes with Windows NT
and Windows 2000; it is less user - friendly than regedit , but allows access to security information that
 regedit is unable to view. Windows Server 2003 has merged regedit and regedt32 into a single new
editor simply called regedit . For the discussion here, you will use regedit from Windows XP
Professional, which you can launch by typing in regedit in the Run dialog or at the command prompt.

 Figure 25 - 16 shows what you get when you launch regedit for the first time.

Figure 25-16

 regedit has a tree view/list view – style user interface similar to Windows Explorer, which matches the
hierarchical structure of the registry itself. However, you will see some key differences shortly.

 In a file system, the topmost - level nodes can be thought of as being the partitions on your disks, C:\ ,
 D:\ , and so on. In the registry, the equivalent to a partition is the registry hive . It is not possible to change
the existing hives — they are fixed, and there are seven of them, although only five are actually visible
through regedit :

 HKEY_CLASSES_ROOT (HKCR) contains details of types of files on the system (.txt , .doc , and
so on) and which applications are able to open files of each type. It also contains registration
information for all COM components (this latter area is usually the largest single area of the
registry because Windows, these days, comes with a huge number of COM components).

 HKEY_CURRENT_USER (HKCU) contains details of user preferences for the user currently logged
on to the machine locally. These settings include desktop settings, environment variables,
network and printer connections, and other settings that define the user operating environment
of the user.

 HKEY_LOCAL_MACHINE (HKLM) is a huge hive that contains details of all software and hardware
installed on the machine. These settings are not user - specific but are for all users that log on to
the machine. This hive also includes the HKCR hive; HKCR is actually not really an
independent hive in its own right but is simply a convenient mapping onto the registry key
 HKLM/SOFTWARE/Classes .

 HKEY_USERS (HKUSR) contains details of user preferences for all users. As you might guess, it
also contains the HKCU hive, which is simply a mapping onto one of the keys in HKEY_USERS .

 HKEY_CURRENT_CONFIG (HKCF) contains details of hardware on the machine.

❑

❑

❑

❑

❑

c25.indd 829c25.indd 829 2/19/08 5:19:54 PM2/19/08 5:19:54 PM

Part IV: Data

830

 The remaining two keys contain information that is temporary and that changes frequently

 HKEY_DYN_DATA is a general container for any volatile data that needs to be stored somewhere
in the registry.

 HKEY_PERFORMANCE_DATA contains information concerning the performance of running
applications.

 Within the hives is a tree structure of registry keys . Each key is in many ways analogous to a folder or file
on the file system. However, there is one very important difference. The file system distinguishes
between files (which are there to contain data) and folders (which are primarily there to contain other
files or folders), but in the registry there are only keys. A key may contain both data and other keys.

 If a key contains data, it will be presented as a series of values. Each value will have an associated name,
data type, and data. In addition, a key can have a default value, which is unnamed.

 You can see this structure by using regedit to examine registry keys. Figure 25 - 17 shows the contents
of the key HKCU\Control Panel\Appearance , which contains the details of the chosen color scheme of
the currently logged - in user. regedit shows which key is being examined by displaying it with an open
folder icon in the tree view.

❑

❑

Figure 25-17

 The HKCU\Control Panel\Appearance key has three named values set, although the default value
does not contain any data. The column in the screenshot marked Type details the data type of each
value. Registry entries can be formatted as one of three data types:

 REG_SZ (which roughly corresponds to a .NET string instance; the matching is not exact because
the registry data types are not .NET data types)

 REG_DWORD (corresponds roughly to uint)

 REG_BINARY (array of bytes)

 An application that stores data in the registry will do so by creating a number of registry keys, usually
under the key HKLM\Software\ < CompanyName > . Note that it is not necessary for these keys to contain
any data. Sometimes the very fact that a key exists provides the data that an application needs.

 The . NET Registry Classes
 Access to the registry is available through two classes in the Microsoft.Win32 namespace: Registry
and RegistryKey . A RegistryKey instance represents a registry key. This class implements methods to
browse child keys, to create new keys, or to read or modify the values in the key — in other words, to do

❑

❑

❑

c25.indd 830c25.indd 830 2/19/08 5:19:54 PM2/19/08 5:19:54 PM

Chapter 25: Manipulating Files and the Registry

831

everything you would normally want to do with a registry key, including setting the security levels for
the key. RegistryKey will be the class you use for much of your work with the registry. Registry , by
contrast, is a class that allows for singular access to registry keys for simple operations. Another role of
the Registry class is simply to provide you with RegistryKey instances that represent the top - level
keys, the different hives, in order to enable you to navigate the registry. Registry provides these
instances through static properties, and there are seven of them called, respectively, ClassesRoot ,
 CurrentConfig , CurrentUser , DynData , LocalMachine , PerformanceData , and Users . It should be
obvious which property corresponds to which hive.

 So, for example, to obtain a RegistryKey instance that represents the HKLM key, you would write:

RegistryKey hklm = Registry.LocalMachine;

 The process of obtaining a reference to a RegistryKey object is known as opening the key.

 Although you might expect that the methods exposed by RegistryKey would be similar to those
implemented by DirectoryInfo , given that the registry has a similar hierarchical structure to the file
system, this actually isn ’ t the case. Often, the way that you access the registry is different from the way
that you would use files and folders, and RegistryKey implements methods that reflect this.

 The most obvious difference is in how you open a registry key at a given location in the registry. The
 Registry class does not have any public constructor that you can use, nor does it have any methods
that let you go directly to a key, given its name. Instead, you are expected to browse down to that key
from the top of the relevant hive. If you want to instantiate a RegistryKey object, the only way is to
start off with the appropriate static property of Registry , and work down from there. So, for example,
if you want to read some data in the HKLM/Software/Microsoft key, you would get a reference to it
like this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey(“Microsoft”);

 A registry key accessed in this way will give you read - only access. If you want to be able to write to the
key (that includes writing to its values or creating or deleting direct children of it), you need to use
another override to OpenSubKey , which takes a second parameter, of type bool , that indicates whether
you want read - write access to the key. For example, if you want to be able to modify the Microsoft key
(and assuming that you are a system administrator with permission to do this), you would write this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey(“Microsoft”, true);

 Incidentally, because this key contains information used by Microsoft ’ s applications, in most cases you
probably shouldn ’ t be modifying this particular key.

 The OpenSubKey() method is the one you will call if you are expecting the key to be present. If the key
isn ’ t there, it will return a null reference. If you want to create a key, you should use the
 CreateSubKey() method (which automatically gives you read - write access to the key through the
reference returned):

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMine = hkSoftware.CreateSubKey(“MyOwnSoftware”);

 The way that CreateSubKey() works is quite interesting. It will create the key if it does not already
exist, but if it does already exist, it will quietly return a RegistryKey instance that represents the
existing key. The reason for the method behaving in this manner has to do with how you will normally
use the registry. The registry, overall, contains long - term data such as configuration information for

c25.indd 831c25.indd 831 2/19/08 5:19:55 PM2/19/08 5:19:55 PM

Part IV: Data

832

Windows and for various applications. It is not very common, therefore, that you find yourself in a
situation where you need to explicitly create a key.

 What is much more common is that your application needs to make sure that some data is present in
the registry — in other words, create the relevant keys if they do not already exist, but do nothing if they
do. CreateSubKey() fills that need perfectly. Unlike the situation with FileInfo.Open() , for
example, there is no chance with CreateSubKey() of accidentally removing any data. If deleting
registry keys is your intention, you will need to call the RegistryKey.DeleteSubKey() method. This
makes sense given the importance of the registry to Windows. The last thing you want is to completely
break Windows accidentally by deleting a couple of important keys while you are debugging your
C# registry calls!

 Once you have located the registry key you want to read or modify, you can use the SetValue() or
 GetValue() methods to set or get at the data in it. Both of these methods take a string giving the name
of the value as a parameter, and SetValue() requires an additional object reference containing details of
the value. Because the parameter is defined as an object reference, it can actually be a reference to any
class you want. SetValue() will decide from the type of class actually supplied whether to set the value
as a REG_SZ , REG_DWORD , or REG_BINARY value. For example:

RegistryKey hkMine = HkSoftware.CreateSubKey(“MyOwnSoftware”);
hkMine.SetValue(“MyStringValue”, “Hello World”);
hkMine.SetValue(“MyIntValue”, 20);

 This code will set the key to have two values: MyStringValue will be of type REG_SZ , and MyIntValue
will be of type REG_DWORD . These are the only two types you will consider here, and use in the example
presented later.

 RegistryKey.GetValue() works in much the same way. It is defined to return an object reference,
which means that it is free to actually return a string reference if it detects the value is of type REG_SZ ,
and an int if that value is of type REG_DWORD :

string stringValue = (string)hkMine.GetValue(“MyStringValue”);
int intValue = (int)hkMine.GetValue(“MyIntValue”);

 Finally, after you have finished reading or modifying the data, close the key:

hkMine.Close();

 RegistryKey implements a large number of methods and properties. The following table lists the most
useful properties.

 Property Name Description

 Name Name of the key (read - only)

 SubKeyCount The number of children of this key

 ValueCount How many values the key contains

c25.indd 832c25.indd 832 2/19/08 5:19:55 PM2/19/08 5:19:55 PM

Chapter 25: Manipulating Files and the Registry

833

 The following table lists the most useful methods.

 Method Name Purpose

 Close() Closes the key.

 CreateSubKey() Creates a subkey of a given name (or opens it if it already exists).

 DeleteSubKey() Deletes a given subkey.

 DeleteSubKeyTree() Recursively deletes a subkey and all its children.

 DeleteValue() Removes a named value from a key.

 GetAccessControl() Returns the access control list (ACL) for a specified registry key. This
method is new to the .NET Framework 2.0.

 GetSubKeyNames() Returns an array of strings containing the names of the subkeys.

 GetValue() Returns a named value.

 GetValueKind() Returns a named value whose registry data type is to be retrieved. This
method is new to the .NET Framework 2.0.

 GetValueNames() Returns an array of strings containing the names of all the values of
the key.

 OpenSubKey() Returns a reference to a RegistryKey instance that represents a given
subkey.

 SetAccessControl() Allows you to apply an access control list (ACL) to a specified
registry key.

 SetValue() Sets a named value.

 Example: SelfPlacingWindow
 The use of the registry classes is illustrated with an application called SelfPlacingWindow . This
example is a simple C# Windows application that has almost no features. The only thing you can do with
it is click a button, which brings up a standard Windows color dialog box (represented by the System.
Windows.Forms.ColorDialog class) to let you choose a color, which will become the background color
of the form.

 Despite its lack of features, the self - placing window scores higher than just about every other application
that you have developed in this book in one important and very user - friendly way. If you drag the
window around the screen, change its size, or maximize or minimize it before you exit the application, it
will remember the new position, as well as the background color, so that the next time it is launched it
automatically reappears the way you chose last time. It remembers this information because it writes it
to the registry whenever it shuts down. In this way, it demonstrates not only the .NET registry classes
themselves but also a very typical use for them, which you will almost certainly want to replicate in any
serious commercial Windows Forms application that you write.

c25.indd 833c25.indd 833 2/19/08 5:19:55 PM2/19/08 5:19:55 PM

Part IV: Data

834

 The location in which SelfPlacingWindow stores its information in the registry is the key HKLM\
Software\WroxPress\SelfPlacingWindow . HKLM is the usual place for application configuration
information, but note that it is not user - specific. If you wanted to be more sophisticated in a real
application, you would probably want to replicate the information inside the HK_Users hive as well, so
that each user can have his or her own profile.

 It is also worth noting that, if you are implementing this in a real .NET application, you may want to
consider using isolated storage instead of the registry to store this information. However, because
isolated storage is available only in .NET, you will need to use the registry if you need any
 interoperability with non - .NET apps.

 The very first time that you run the example, it will look for this key and not find it (obviously). Therefore,
it is forced to use a default size, color, and position that you set in the developer environment. The example
also features a list box in which it displays any information read in from the registry. On its first run, it will
look similar to Figure 25 - 18 .

Figure 25-18

 If you now modify the background color and resize SelfPlacingWindow or move it around on the
screen a bit before exiting, it will create the HKLM\Software\WroxPress\SelfPlacingWindow key and
write its new configuration information into it. You can examine the information using regedit . The
details are shown in Figure 25 - 19 .

Figure 25-19

c25.indd 834c25.indd 834 2/19/08 5:19:56 PM2/19/08 5:19:56 PM

Chapter 25: Manipulating Files and the Registry

835

 As this figure shows, SelfPlacingWindow has placed a number of values in the registry key.

 The values Red, Green, and Blue give the color components that make up the selected background color
(see Chapter 33 , “ Graphics with GDI+ ”). For now, just know that any color display on the system can be
completely described by these three components, which are each represented by a number between
0 and 255 (or 0x00 and 0xff in hexadecimal). The values given here make up a bright green color. There
are also four more REG_DWORD values, which represent the position and size of the window: X and Y are
the coordinates of the top left of the window on the desktop — that is to say the numbers of pixels across
from the top left of the screen and the numbers of pixels down. And, Width and Height give the size of
the window. WindowsState is the only value for which you have used a string data type (REG_SZ), and
it can contain one of the strings Normal , Maximized , or Minimized , depending on the final state of the
window when you exited the application.

 When you launch SelfPlacingWindow again, it will read this registry key and automatically position
itself accordingly (see Figure 25 - 20).

Figure 25-20

 This time when you exit SelfPlacingWindow , it will overwrite the previous registry settings with
whatever new values are relevant at the time that you exit it. To code the example, you create the usual
Windows Forms project in Visual Studio .NET and add the list box and button, using the developer
environment ’ s toolbox. You will change the names of these controls, respectively, to listBoxMessages
and buttonChooseColor . You also need to ensure that you use the Microsoft.Win32 namespace:

using System;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.Win32;

 You need to add one field (chooseColorDialog) to the main Form1 class, which will represent the color
dialog box:

 public partial class Form1 : Form
 {
 private readonly ColorDialog chooseColorDialog = new ColorDialog();

 Quite a lot of action takes place in the Form1 constructor:

 public Form1()
 {
 InitializeComponent();

 buttonChooseColor.Click += OnClickChooseColor;
 (continued)

c25.indd 835c25.indd 835 2/19/08 5:19:56 PM2/19/08 5:19:56 PM

Part IV: Data

836

 try
 {
 if (ReadSettings() == false)
 {
 listBoxMessages.Items.Add(“No information in registry”);
 }
 else
 {
 listBoxMessages.Items.Add(“Information read in from registry”);
 }

 StartPosition = FormStartPosition.Manual;
 }
 catch (Exception e)
 {
 listBoxMessages.Items.Add(“A problem occurred reading in data
 from registry:”);
 listBoxMessages.Items.Add(e.Message);
 }
 }

 In this constructor, you begin by setting up the event handler for when the user clicks the button. The
handler is a method called OnClickChooseColor() , which is covered shortly. Reading in the
configuration information is done using another method that you have to write, called
 ReadSettings() . ReadSettings() returns true if it finds the information in the registry, and false
if it does not (which it should be because this is the first time you have run the application). You place
this part of the constructor in a try block, just in case any exceptions are generated while reading in
the registry values (this might happen if some user has come in and played around with the registry
using regedit).

 The StartPosition = FormStartPosition.Manual; statement tells the form to take its initial
starting position from the DeskTopLocation property instead of using the Windows default location
(the default behavior). Possible values are taken from the FormStartPosition enumeration.

 SelfPlacingWindow is also one of the few applications in this book in which you have a serious use for
adding code to the Dispose() method. Remember that Dispose() is called whenever the application
terminates normally, so this is the ideal place from which to save the configuration information to the
registry. You will find the Dispose() method in the Form1.Designer.cs file. Within this method, you
will place another method that you have to write, SaveSettings() :

 protected override void Dispose(bool disposing)
 {
 if (disposing & & (components != null))
 {
 components.Dispose();
 }
 SaveSettings();
 base.Dispose(disposing);
 }

 The SaveSettings() and ReadSettings() methods are the ones that contain the registry code you are
interested in, but before you examine them, you have one more piece of housekeeping to do: handle the
event of the user clicking that button. This involves displaying the color dialog and setting the
background color to whatever color the user chose:

(continued)

c25.indd 836c25.indd 836 2/19/08 5:19:57 PM2/19/08 5:19:57 PM

Chapter 25: Manipulating Files and the Registry

837

 void OnClickChooseColor(object Sender, EventArgs e)
 {
 if(chooseColorDialog.ShowDialog() == DialogResult.OK)
 BackColor = chooseColorDialog.Color;
 }

 Now, look at how you save the settings:

 void SaveSettings()
 {
 RegistryKey softwareKey =
 Registry.LocalMachine.OpenSubKey(“Software”, true);
 RegistryKey wroxKey = softwareKey.CreateSubKey(“WroxPress”);
 RegistryKey selfPlacingWindowKey =
 wroxKey.CreateSubKey(“SelfPlacingWindow”);
 selfPlacingWindowKey.SetValue(“BackColor”,
 BackColor.ToKnownColor());
 selfPlacingWindowKey.SetValue(“Red”, (int)BackColor.R);
 selfPlacingWindowKey.SetValue(“Green”, (int)BackColor.G);
 selfPlacingWindowKey.SetValue(“Blue”, (int)BackColor.B);
 selfPlacingWindowKey.SetValue(“Width”, Width);
 selfPlacingWindowKey.SetValue(“Height”, Height);
 selfPlacingWindowKey.SetValue(“X”, DesktopLocation.X);
 selfPlacingWindowKey.SetValue(“Y”, DesktopLocation.Y);
 selfPlacingWindowKey.SetValue(“WindowState”,
 WindowState.ToString());
 }

 There is a lot going on here. You start by navigating through the registry to get to the HKLM\Software\
WroxPress\SelfPlacingWindow registry key using the technique demonstrated earlier, starting with
the Registry.LocalMachine static property that represents the HKLM hive.

 Then you use the RegistryKey.OpenSubKey() method, rather than RegistryKey.CreateSubKey() ,
to get to the HKLM/Software key. That is because you can be very confident that this key already exists.
If it does not, then there is something seriously wrong with your computer, because this key contains
settings for a lot of system software! You also indicate that you need write access to this key. That is
because if the WroxPress key does not already exist, you will need to create it, which involves writing to
the parent key.

 The next key to navigate to is HKLM\Software\WroxPress — and here you are not certain
whether the key already exists, so you use CreateSubKey() to automatically create it if it does not.
Note that CreateSubKey() automatically gives you write access to the key in question. Once you have
reached HKLM\Software\WroxPress\SelfPlacingWindow , it is simply a matter of calling the
 RegistryKey.SetValue() method a number of times to either create or set the appropriate values.
There are, however, a couple of complications.

 First, you might notice that you are using a couple of classes that you have not encountered before. The
 DeskTopLocation property of the Form class indicates the position of the top - left corner of the screen
and is of type Point . (The Point is discussed in Chapter 33 , “ Graphics with GDI+ ” .) What you need to
know here is that it contains two int values, X and Y , which represent the horizontal and vertical
position on the screen. You also look up three member properties of the Form.BackColor property,
which is an instance of the Color class: R , G , and B : Color , which represents a color. These properties on
it give the red, green, and blue components that make up the color, and they are all of type byte . You
also use the Form.WindowState property, which contains an enumeration that gives the current state of
the window: Minimized , Maximized , or Normal .

c25.indd 837c25.indd 837 2/19/08 5:19:57 PM2/19/08 5:19:57 PM

Part IV: Data

838

 The other complication here is that you need to be a little careful about your casts. SetValue() takes
two parameters: a string that gives the name of the key and a System.Object instance, which
contains the value. SetValue() has a choice of format for storing the value — it can store it as REG_SZ ,
 REG_BINARY , or REG_DWORD — and it is actually pretty intelligent about making a sensible choice
depending on the data type that has been given. Hence for the WindowState , you pass it a string , and
 SetValue() determines that this should be translated to REG_SZ . Similarly, for the various positions and
dimensions, you supply int s, which will be converted into REG_DWORD . However, the color components
are more complicated, as you want these to be stored as REG_DWORD too because they are numeric types.
However, if SetValue() sees that the data is of type byte , it will store it as a string — as REG_SZ in the
registry. To prevent this, you cast the color components to int s.

 You have also explicitly cast all the values to the type object . You don ’ t really need to do this because
the cast from any other data type to object is implicit, but you are doing this to make it clear what is
going on and to remind yourself that SetValue() is defined to take just an object reference as its second
parameter.

 The ReadSettings() method is a little longer because for each value read in, you also need to interpret
it, display the value in the list box, and make the appropriate adjustments to the relevant property of the
main form. ReadSettings() looks like this:

 bool ReadSettings()
 {
 RegistryKey softwareKey =
 Registry.LocalMachine.OpenSubKey(“Software”);
 RegistryKey wroxKey = softwareKey.OpenSubKey(“WroxPress”);

 if (wroxKey == null)
 {
 return false;
 }

 RegistryKey selfPlacingWindowKey =
 wroxKey.OpenSubKey(“SelfPlacingWindow”);

 if (selfPlacingWindowKey == null)
 {
 return false;
 }
 else
 {
 listBoxMessages.Items.Add(“Successfully opened key “ +
 selfPlacingWindowKey);
 }

 int redComponent = (int) selfPlacingWindowKey.GetValue(“Red”);
 int greenComponent = (int) selfPlacingWindowKey.GetValue(“Green”);
 int blueComponent = (int) selfPlacingWindowKey.GetValue(“Blue”);
 BackColor = Color.FromArgb(redComponent, greenComponent,
 blueComponent);
 listBoxMessages.Items.Add(“Background color: “ + BackColor.Name);
 int X = (int) selfPlacingWindowKey.GetValue(“X”);
 int Y = (int) selfPlacingWindowKey.GetValue(“Y”);

c25.indd 838c25.indd 838 2/19/08 5:19:58 PM2/19/08 5:19:58 PM

Chapter 25: Manipulating Files and the Registry

839

 DesktopLocation = new Point(X, Y);
 listBoxMessages.Items.Add(“Desktop location: “ +
 DesktopLocation);
 Height = (int) selfPlacingWindowKey.GetValue(“Height”);
 Width = (int) selfPlacingWindowKey.GetValue(“Width”);
 listBoxMessages.Items.Add(“Size: “ + new Size(Width, Height));
 string initialWindowState =
 (string) selfPlacingWindowKey.GetValue(“WindowState”);
 listBoxMessages.Items.Add(“Window State: “ + initialWindowState);
 WindowState = (FormWindowState) FormWindowState.Parse
 (WindowState.GetType(), initialWindowState);
 return true;
 }

 In ReadSettings() you first have to navigate to the HKLM/Software/WroxPress/
SelfPlacingWindow registry key. In this case, however, you are hoping to find the key there so that
you can read it. If it is not there, it is probably the first time you have run the example. In this case, you
just want to abort reading the keys, and you certainly don ’ t want to create any keys. Now you use the
 RegistryKey.OpenSubKey() method all the way down. If at any stage OpenSubkey() returns a null
reference, then you know that the registry key is not there, and you can simply return the value false to
the calling code.

 When it comes to actually reading the keys, you use the RegistryKey.GetValue() method, which is
defined as returning an object reference (meaning that this method can actually return an instance of
literally any class it chooses). Like SetValue() , it will return a class of object appropriate to the type of
data it found in the key. Therefore, you can usually assume that the REG_SZ keys will give you a string,
and the other keys will give you an int . You also cast the return reference from SetValue()
accordingly. If there is an exception, say someone has fiddled with the registry and mangled the value
types, your cast will cause an exception to be thrown — which will be caught by the handler in the
 Form1 constructor.

 The rest of this code uses one more data type, the Size structure. This is similar to a Point structure but
is used to represent sizes rather than coordinates. It has two member properties, Width and Height , and
you use the Size structure here simply as a convenient way of packaging the size of the form for
displaying in the list box.

 Reading and Writing to Isolated Storage
 In addition to being able to read and write to and from the registry, another option is reading and
writing values to and from what is called isolated storage . If you are having issues writing to the registry
or to disk in general, then isolated storage is where you should turn. You can use isolated storage to store
application state or user settings quite easily.

 Think of isolated storage as a virtual disk where you can save items that can be shared only by the
application that created them, or with other application instances. There are two types of access types for
isolated storage. The first is user and assembly.

 When accessing isolated storage by user and assembly, there is a single storage location on the machine,
which is accessible via multiple application instances. Access is guaranteed through the user identity and
the application (or assembly) identity. Figure 25 - 21 shows this in a diagram.

c25.indd 839c25.indd 839 2/19/08 5:19:58 PM2/19/08 5:19:58 PM

Part IV: Data

840

 This means that you can have multiple instances of the same application all working from the
same store.

 The second type of access for isolated storage is user, assembly, and domain. In this case, each
application instance will work off its own isolation store. This is detailed in Figure 25 - 22 .

App Domain A

Assembly 1

App Domain B

Assembly 1

Isolation Store 1

Figure 25-21

 In this case, each application instance works off its own store, and the settings that each application
instance records are related only to itself. This is a more fine - grained approach to isolated storage.

 For an example of using isolated storage from a Windows Forms application (although you can use this
from an ASP.NET application just as well), change the SelfPlacingWindow example that was
previously used in this chapter to illustrate how to record information to the registry. Through a new
 ReadSettings() and SaveSettings() method, you read and write values to isolated storage as
opposed to doing the same to the registry.

 It is important to note that the only code shown here is for the ReadSettings() and
SaveSettings() methods. There is more code to the application, and you can see the rest of the code
in the previous example titled “ Example: SelfPlacingWindow. ”

 To start, you need to rework the SaveSettings() method. For this next bit of code to work, you need to
add the following using directives:

using System.IO;
using System.IO.IsolatedStorage;
using System.Text;

App Domain A

Assembly 1

App Domain B

Assembly 1

Isolation Store 1 Isolation Store 2

Figure 25-22

c25.indd 840c25.indd 840 2/19/08 5:19:58 PM2/19/08 5:19:58 PM

Chapter 25: Manipulating Files and the Registry

841

 The SaveSettings() method is detailed in the following code example:

void SaveSettings()
{
 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 IsolatedStorageFileStream storStream = new
 IsolatedStorageFileStream(“SelfPlacingWindow.xml”,

 FileMode.Create, FileAccess.Write);

 System.Xml.XmlTextWriter writer = new
 System.Xml.XmlTextWriter(storStream, Encoding.UTF8);
 writer.Formatting = System.Xml.Formatting.Indented;

 writer.WriteStartDocument();
 writer.WriteStartElement(“Settings”);

 writer.WriteStartElement(“BackColor”);
 writer.WriteValue(BackColor.ToKnownColor().ToString());
 writer.WriteEndElement();

 writer.WriteStartElement(“Red”);
 writer.WriteValue(BackColor.R);
 writer.WriteEndElement();

 writer.WriteStartElement(“Green”);
 writer.WriteValue(BackColor.G);
 writer.WriteEndElement();

 writer.WriteStartElement(“Blue”);
 writer.WriteValue(BackColor.B);
 writer.WriteEndElement();

 writer.WriteStartElement(“Width”);
 writer.WriteValue(Width);
 writer.WriteEndElement();

 writer.WriteStartElement(“Height”);
 writer.WriteValue(Height);
 writer.WriteEndElement();

 writer.WriteStartElement(“X”);
 writer.WriteValue(DesktopLocation.X);
 writer.WriteEndElement();

 writer.WriteStartElement(“Y”);
 writer.WriteValue(DesktopLocation.Y);
 writer.WriteEndElement();

 writer.WriteStartElement(“WindowState”);
 writer.WriteValue(WindowState.ToString());
 writer.WriteEndElement();

 writer.WriteEndElement();
 (continued)

c25.indd 841c25.indd 841 2/19/08 5:19:59 PM2/19/08 5:19:59 PM

Part IV: Data

842

 writer.Flush();
 writer.Close();

 storStream.Close();
 storFile.Close();
}

 It is a bit more code than working with the registry example, but that is mainly due to the code required
to build the XML document placed in isolated storage. The first important thing happening with this
code is presented here:

 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 IsolatedStorageFileStream storStream = new
 IsolatedStorageFileStream(“SelfPlacingWindow.xml”,
 FileMode.Create, FileAccess.Write);

 Here, an instance of an IsolatedStorageFile is created using a user, assembly, and domain type of
access. A stream is created using the IsolatedStorageFileStream object, which will create the virtual
 SelfPlacingWindow.xml file.

 From there, an XmlTextWriter object is created to build the XML document and the XML contents are
written to the IsolatedStorageFileStream object instance:

 System.Xml.XmlTextWriter writer = new
 System.Xml.XmlTextWriter(storStream, Encoding.UTF8);

 After the XmlTextWriter object is created, all the values are written to the XML document node by
node. Once everything is written to the XML document, everything is closed and will now be stored in
the isolated storage.

 Reading from the storage is done through the ReadSettings() method. This method is presented in the
following code sample:

bool ReadSettings()
{
 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 string[] userFiles = storFile.GetFileNames(“SelfPlacingWindow.xml”);

 foreach (string userFile in userFiles)
 {
 if(userFile == “SelfPlacingWindow.xml”)
 {
 listBoxMessages.Items.Add(“Successfully opened file “ +
 userFile.ToString());

 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream(“SelfPlacingWindow.xml”,
 FileMode.Open, storFile));
 System.Xml.XmlTextReader reader = new
 System.Xml.XmlTextReader(storStream);

 int redComponent = 0;
 int greenComponent = 0;
 int blueComponent = 0;

c25.indd 842c25.indd 842 2/19/08 5:19:59 PM2/19/08 5:19:59 PM

Chapter 25: Manipulating Files and the Registry

843

 int X = 0;
 int Y = 0;

 while (reader.Read())
 {
 switch (reader.Name)
 {
 case “Red”:
 redComponent = int.Parse(reader.ReadString());
 break;
 case “Green”:
 greenComponent = int.Parse(reader.ReadString());
 break;
 case “Blue”:
 blueComponent = int.Parse(reader.ReadString());
 break;
 case “X”:
 X = int.Parse(reader.ReadString());
 break;
 case “Y”:
 Y = int.Parse(reader.ReadString());
 break;
 case “Width”:
 this.Width = int.Parse(reader.ReadString());
 break;
 case “Height”:
 this.Height = int.Parse(reader.ReadString());
 break;
 case “WindowState”:
 this.WindowState = (FormWindowState)FormWindowState.Parse
 (WindowState.GetType(), reader.ReadString());
 break;
 default:
 break;
 }
 }

 this.BackColor =
 Color.FromArgb(redComponent, greenComponent, blueComponent);
 this.DesktopLocation = new Point(X, Y);

 listBoxMessages.Items.Add(“Background color: “ + BackColor.Name);
 listBoxMessages.Items.Add(“Desktop location: “ +
 DesktopLocation.ToString());
 listBoxMessages.Items.Add(“Size: “ + new Size(Width, Height).ToString());
 listBoxMessages.Items.Add(“Window State: “ + WindowState.ToString());

 storStream.Close();
 storFile.Close();
 }
 }
 return true;
}

c25.indd 843c25.indd 843 2/19/08 5:20:00 PM2/19/08 5:20:00 PM

Part IV: Data

844

 Using the GetFileNames() method, the SelfPlacingWindow.xml document is pulled from the
isolated storage and then placed into a stream and parsed using the XmlTextReader object:

 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 string[] userFiles = storFile.GetFileNames(“SelfPlacingWindow.xml”);

 foreach (string userFile in userFiles)
 {
 if(userFile == “SelfPlacingWindow.xml”)
 {
 listBoxMessages.Items.Add(“Successfully opened file “ +
 userFile.ToString());

 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream(“SelfPlacingWindow.xml”,
 FileMode.Open, storFile));

 Once the XML document is contained within the IsolatedStorageFileStream object, it is parsed
using the XmlTextReader object:

 System.Xml.XmlTextReader reader = new
 System.Xml.XmlTextReader(storStream);

 After, it is pulled from the stream via the XmlTextReader . The element values are then pushed back into
the application. You will now find — just as was accomplished in the SelfPlacingWindow example that
used the registry to record and retrieve application state values — using isolated storage is just as
effective as working with the registry. The application will remember the color, size, and position just as
before.

 Summary
 In this chapter, you have examined how to use the .NET base classes to access the file system and registry
from your C# code. You have seen that in both cases the base classes expose simple, but powerful, object
models that make it very simple to perform almost any kind of action in these areas. For the file system,
these actions are copying files; moving, creating, and deleting files and folders; and reading and writing
both binary and text files. For the registry, these are creating, modifying, or reading keys.

 This chapter also reviewed isolated storage and how to use this from your applications to store them in
the application state.

 This chapter assumed that you are running your code from an account that has sufficient access rights
to do whatever the code needs to do. Obviously, the question of security is an important one, and it is
discussed in Chapter 20 , “ Security. ”

 The next chapter walks you through data access and ADO.NET, XML, and XML Schemas.

c25.indd 844c25.indd 844 2/19/08 5:20:00 PM2/19/08 5:20:00 PM

 Data Access

 This chapter discusses how to access data from your C# programs using ADO.NET. The following
details are covered:

 Connecting to the database — You learn how to use the SqlConnection and
 OleDbConnection classes to connect to and disconnect from the database.

 Executing commands — ADO.NET has command objects that can execute SQL
commands or issue a call to a stored procedure with optional return values. You learn
the various command object options and see how commands can be used for each of the
options presented by the Sql and OleDB classes.

 Stored procedures — You learn how to call stored procedures with command objects and
how the results of those stored procedures can be integrated into the data cached on the
client.

 The ADO.NET object model — This is significantly different from the objects available
with ADO. The DataSet , DataTable , DataRow , and DataColumn classes are discussed as
well as the relationships between tables and constraints that are part of DataSet . The class
hierarchy has changed significantly with version 2 of the .NET Framework, and some of
these changes are also described.

 Using XML and XML schemas — You examine the XML framework on which ADO.NET
is built.

 Microsoft has also added support for Language Integrated Query (LINQ) in C# for the 3.0 release.
Although this topic largely supersedes the information in this chapter, it is included here for
completeness. See Chapters 28 , “ Manipulating XML, ” 29 , “ LINQ to XML, ” and 31 , “ Windows
Forms, ” for some details on new data access capabilities in .NET.

 As is the case with the other chapters, you can download the code for the examples used in
this chapter from the Wrox Web site at www.wrox.com . The chapter begins with a brief tour of
ADO.NET.

❑

❑

❑

❑

❑

c26.indd 845c26.indd 845 2/19/08 5:25:17 PM2/19/08 5:25:17 PM

846

Part IV: Data

 ADO.NET Overview
 ADO.NET is more than just a thin veneer over some existing API. The similarity to ADO is fairly
minimal — the classes and methods of accessing data are completely different.

 ADO (ActiveX Data Objects) is a library of COM components that has had many incarnations over the
past few years. Currently at version 2.8, ADO consists primarily of the Connection , Command ,
 Recordset , and Field objects. Using ADO, a connection is opened to the database, some data is
selected into a record set consisting of fields, that data is then manipulated and updated on the server,
and the connection is closed. ADO also introduced a so - called disconnected record set, which is used
when keeping the connection open for long periods of time is not desirable.

 There were several problems that ADO did not address satisfactorily, most notably the unwieldiness
(in physical size) of a disconnected record set. This support was more necessary than ever with the
evolution of Web - centric computing, so a fresh approach was required. Upgrading to ADO.NET from
ADO shouldn ’ t be too difficult because there are some similarities between the two. What ’ s more, if you
are using SQL Server, there is a fantastic new set of managed classes that are tuned to squeeze maximum
performance out of the database. This alone should be reason enough to migrate to ADO.NET.

 ADO.NET ships with four database client namespaces: one for SQL Server, another for Oracle, the third
for ODBC data sources, and the fourth for any database exposed through OLE DB. If your database of
choice is not SQL Server or Oracle, use the OLE DB route unless you have no other choice than to use
ODBC.

 Namespaces
 All of the examples in this chapter access data in one way or another. The following namespaces expose
the classes and interfaces used in .NET data access.

Namespace Brief Description

System.Data All generic data access classes

System.Data.Common Classes shared (or overridden) by individual data providers

System.Data.Odbc ODBC provider classes

System.Data.OleDb OLE DB provider classes

System.Data.ProviderBase New base classes and connection factory classes

System.Data.Oracle Oracle provider classes

System.Data.Sql New generic interfaces and classes for SQL Server data access

System.Data.SqlClient SQL Server provider classes

System.Data.SqlTypes SQL Server data types

 The main classes in ADO.NET are listed in the following subsections.

c26.indd 846c26.indd 846 2/19/08 5:25:19 PM2/19/08 5:25:19 PM

847

Chapter 26: Data Access

 Shared Classes
 ADO.NET contains a number of classes that are used regardless of whether you are using the SQL Server
classes or the OLE DB classes.

 The following classes are contained in the System.Data namespace.

Class Description

DataSet This object is designed for disconnected use and can contain a set of
DataTables and relationships between these tables.

DataTable A container of data that consists of one or more DataColumns and, when
populated, will have one or more DataRows containing data.

DataRow A number of values, akin to a row from a database table or a row from a
spreadsheet.

DataColumn This object contains the definition of a column, such as the name and data
type.

DataRelation A link between two DataTable classes within a DataSet class; used for
foreign key and master/detail relationships.

Constraint This class defines a rule for a DataColumn class (or set of data columns),
such as unique values.

 The following classes are found in the System.Data.Common namespace:

Class Description

DataColumnMapping Maps the name of a column from the database with the name of a
column within a DataTable.

DataTableMapping Maps a table name from the database to a DataTable within a
DataSet.

 Database - Specific Classes
 In addition to the shared classes introduced in the previous section, ADO.NET contains a number of
database - specific classes. These classes implement a set of standard interfaces defined within the
 System.Data namespace, allowing the classes to be used in a generic manner if necessary.
For example, both the SqlConnection and OleDbConnection classes derive from the DbConnection
class, which implements the IDbConnection interface.

c26.indd 847c26.indd 847 2/19/08 5:25:19 PM2/19/08 5:25:19 PM

848

Part IV: Data

Classes Description

SqlCommand, OleDbCommand, OracleCommand,
and ODBCCommand

Used as wrappers for SQL statements or stored
procedure calls. Examples for the SqlCommand
class are shown later in the chapter.

SqlCommandBuilder, OleDbCommandBuilder,
OracleCommandBuilder, and
ODBCCommandBuilder

Used to generate SQL commands (such as
INSERT, UPDATE, and DELETE statements) from
a SELECT statement.

SqlConnection, OleDbConnection,
OracleConnection, and ODBCConnection

Used to connect to the database and is similar
to an ADO connection. Examples are shown
later in the chapter.

SqlDataAdapter, OleDbDataAdapter,
OracleDataAdapter, and ODBCDataAdapter

Used to hold select, insert, update, and
delete commands, which are then used to
populate a DataSet and update the database.
Examples of the SqlDataAdapter are pre-
sented in this chapter.

SqlDataReader, OleDbDataReader,
OracleDataReader, and ODBCDataReader

Used as a forward only, connected data reader.
Some examples of the SqlDataReader are
shown in this chapter.

SqlParameter, OleDbParameter,
OracleParameter, and ODBCParameter

Used to define a parameter to a stored proce-
dure. Examples of how to use the
SqlParameter class are shown in this chapter.

SqlTransaction, OleDbTransaction,
OracleTransaction, and ODBCTransaction

Used for a database transaction, wrapped in an
object.

 As you can see from the previous list, there are four classes for each type of object — one for each of the
providers that are part of .NET version 1.1. In the rest of this chapter, unless otherwise stated, the prefix
 < provider > is used to indicate that the particular class used is dependent on the database provider in
use. With version 2.0 of .NET, the designers have updated the class hierarchy for these classes
significantly. In 1.1, all that was common between the various connection classes was the implementation
of the IConnection interface. This has changed in .NET 2.0 because now both share a common base
class. Similarly the other classes such as Commands , DataAdapters , DataReaders , and so on also share
common base classes.

 The most important feature of the ADO.NET classes is that they are designed to work in a disconnected
manner, which is important in today ’ s highly Web - centric world. It is now common practice to architect
a service (such as an online bookshop) to connect to a server, retrieve some data, and then work on that
data on the client before reconnecting and passing the data back for processing. The disconnected nature
of ADO.NET enables this type of behavior.

 ADO 2.1 introduced the disconnected record set, which would permit data to be retrieved from a
database, passed to the client for processing, and then reattached to the server. This used to be
cumbersome to use because disconnected behavior was not part of the original design. The ADO.NET

c26.indd 848c26.indd 848 2/19/08 5:25:19 PM2/19/08 5:25:19 PM

849

Chapter 26: Data Access

classes are different — in all but one case (the < provider > DataReader) they are designed for use offline
from the database.

 The classes and interfaces used for data access in the .NET Framework are introduced in the course of
this chapter. The focus is mainly on the SQL classes used when connecting to the database because the
Framework SDK samples install an MSDE database (SQL Server). In most cases, the OLE DB, Oracle,
and ODBC classes mimic the SQL code exactly.

 Using Database Connections
 To access the database, you need to provide connection parameters, such as the machine that the
database is running on and possibly your login credentials. Anyone who has worked with ADO will be
familiar with the .NET connection classes: OleDbConnection and SqlConnection . Figure 26 - 1 shows
two of the connection classes and includes the class hierarchy.

DBConnectionIDBConnection

DBConnectionBase

OracleConnection SqlConnection Other ...

Figure 26-1

 This is a significant change from .NET versions 1.0 and 1.1; however, in practice, using the connection
class (and other classes in ADO.NET) is backward compatible.

 The examples in this chapter use the Northwind database, which is installed with the .NET Framework
SDK samples. The following code snippet illustrates how to create, open, and close a connection to the
Northwind database:

using System.Data.SqlClient;

string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
SqlConnection conn = new SqlConnection(source);
conn.Open();

// Do something useful

conn.Close();

 The connection string should be very familiar to you if you have used ADO or OLE DB before — indeed,
you should be able to cut and paste from your old code if you use the OleDb provider. In the example

c26.indd 849c26.indd 849 2/19/08 5:25:20 PM2/19/08 5:25:20 PM

850

Part IV: Data

connection string, the parameters used are as follows (the parameters are delimited by a semicolon in
the connection string):

 server=(local) — This denotes the database server to connect to. SQL Server permits a
number of separate database server instances to be running on the same machine, and here you
are connecting to the default SQL Server instance. If you are using SQL Express, change the
server part to server=./sqlexpress .

 integrated security=SSPI — This uses Windows Authentication to connect to the database,
which is highly recommended over using a username and password within the source code.

 database=Northwind — This describes the database instance to connect to; each SQL Server
process can expose several database instances.

 In case you forget the format of database connection strings (as many of us do now
and then), the following URL is very handy: www.connectionstrings.com .

 The example opens a database connection using the defined connection string and then closes that
connection. Once the connection has been opened, you can issue commands against the data source, and
when you are finished, the connection can be closed.

 SQL Server has another mode of authentication — it can use Windows - integrated security, so that the
credentials supplied at logon are passed to SQL Server. This is accomplished by removing the uid and
 pwd portions of the connection string, and adding in Integrated Security=SSPI .

 In the download code available for this chapter, you will find the file Login.cs , which simplifies the
examples in this chapter. It is linked to all the example code and includes database connection
information used for the examples; you can alter this to supply your own server name, user, and
password as appropriate. This by default uses Windows - integrated security; however, you can change
the username and password as appropriate.

 Managing Connection Strings
 In the initial release of .NET, it was up to the developer to manage the database connection strings, often
done by storing a connection string in the application configuration file or, more commonly, hard - coded
somewhere within the application itself.

 With .NET 2.0, you now have a predefined way to store connection strings, and even use database
connections in a type - agnostic manner — for example, it would now be possible to write an application
and then plug in various database providers, all without altering the main application.

 To define a database connection string, you should use the < connectionStrings > section of the
configuration file. Here, you can specify a name for the connection and the actual database connection
string parameters; in addition, you can also specify the provider for this connection type. Here is an
example:

 < configuration >
 ...
 < connectionStrings >
 < add name=”Northwind”
 providerName=”System.Data.SqlClient”
 connectionString=”server=(local);integrated security=SSPI;
 database=Northwind” / >
 < /connectionStrings >
 < /configuration >

❑

❑

❑

c26.indd 850c26.indd 850 2/19/08 5:25:20 PM2/19/08 5:25:20 PM

851

Chapter 26: Data Access

 You use this same connection string in the other examples in this chapter.

 Once the database connection information has been defined within the configuration file, you then
need to utilize this within the application. You will most likely want to create a method such as the
following to retrieve a database connection based on the name of the connection:

private DbConnection GetDatabaseConnection (string name)
{
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[name];

 DbProviderFactory factory = DbProviderFactories.GetFactory
 (settings.ProviderName) ;

 DbConnection conn = factory.CreateConnection () ;
 conn.ConnectionString = settings.ConnectionString ;

 return conn ;
}

 This code reads the named connection string section (using the ConnectionStringSettings class),
and then requests a provider factory from the base DbProviderFactories class. This uses the
 ProviderName property, which was set to “ System.Data.SqlClient ” in the application configuration
file. You might be wondering how this maps to the actual factory class used to generate a database
connection for SQL Server — in this case, it should utilize the SqlClientFactory class from System
.Data.SqlClient . You will need to add a reference to the System.Configuration assembly in order
to resolve the ConfigurationManager class used in the preceding code.

 If you look into the machine.config file for .NET 2.0, you may notice the DbProviderFactories
section — this maps the alias names (such as ‘ System.Data.SqlClient ’) to the factory object for that
type of database. The following shows an abridged copy of the information within that file:

 < system.data >
 < DbProviderFactories >
 ...
 < add name=”SqlClient Data Provider”
 invariant=”System.Data.SqlClient” support=”FF”
 description=”.Net Framework Data Provider for SqlServer”
 type=”System.Data.SqlClient.SqlClientFactory, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” / >
 ...
 < /DbProviderFactories >
 < /system.data >

 This just shows the entry for the SqlClient provider — there are other entries for Odbc , OleDb , Oracle ,
and also SqlCE .

 So, in the example, the DbProviderFactory class just looks up the factory class from the machine
configuration settings, and uses that concrete factory class to instantiate the connection object. In the case
of the SqlClientFactory class, all this does is construct an instance of SqlConnection and return this
to the caller.

 This may seem like a lot of unnecessary work to obtain a database connection, and indeed it is if your
application is never going to run on any other database than the one it was designed for. If, however,

c26.indd 851c26.indd 851 2/19/08 5:25:20 PM2/19/08 5:25:20 PM

852

Part IV: Data

you use the preceding factory method and also use the generic Db* classes (such as DbConnection ,
 DbCommand , and DbDataReader), you will future - proof the application, and any move in the future to
another database system will be fairly simple.

 Using Connections Efficiently
 In general, when using scarce resources in .NET, such as database connections, windows, or graphics
objects, it is good practice to ensure that each resource is closed after use. Although the designers of
.NET have implemented automatic garbage collection, which will tidy up eventually, it is necessary to
release resources as early as possible to avoid starvation of resources.

 This is all too apparent when writing code that accesses a database because keeping a connection open
for slightly longer than necessary can affect other sessions. In extreme circumstances, not closing a
connection can lock other users out of an entire set of tables, hurting application performance
considerably. Closing database connections should be considered mandatory, so this section shows how
to structure your code to minimize the risk of leaving a resource open.

 You have two main ways to ensure that database connections and the like are released after use.

 Option One: try . . . catch . . . finally
 The first option to ensure that resources are cleaned up is to use try … catch … finally blocks, and ensure
that you close any open connections within the finally block. Here is a short example:

try
{
 // Open the connection
 conn.Open();
 // Do something useful
}
catch (SqlException ex)
{
 // Log the exception
}
finally
{
 // Ensure that the connection is freed
 conn.Close () ;
}

 Within the finally block, you can release any resources you have used. The only trouble with this
method is that you have to ensure that you close the connection — it is all too easy to forget to add the
 finally clause, so something less prone to vagaries in coding style might be worthwhile.

 Also, you might find that you open a number of resources (say two database connections and a file)
within a given method, so the cascading of try ... catch ... finally blocks can sometimes become less
easy to read. There is, however, another way to guarantee resource cleanup — the using statement.

 Option Two: The using Block Statement
 During development of C#, the debate on how .NET uses nondeterministic destruction became very
heated.

 In C++, as soon as an object went out of scope, its destructor would be automatically called. This was
great news for designers of resource - based classes because the destructor was the ideal place to close the

c26.indd 852c26.indd 852 2/19/08 5:25:20 PM2/19/08 5:25:20 PM

853

Chapter 26: Data Access

resource if the user had forgotten to do so. A C++ destructor is called whenever an object goes out of
scope — so, for instance, if an exception was raised and not caught, all destructors would be called.

 With C# and the other managed languages, there is no concept of automatic, deterministic destruction.
Instead, there is the garbage collector, which disposes of resources at some point in the future. What
makes this nondeterministic is that you have little say over when this process actually happens.
Forgetting to close a database connection could cause all sorts of problems for a .NET executable.
Luckily, help is at hand. The following code demonstrates how to use the using clause to ensure that
objects that implement the IDisposable interface (see Chapter 12 , “ Memory Management and
Pointers ”) are cleared up immediately after the block exits:

string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;

using (SqlConnection conn = new SqlConnection (source))
{
 // Open the connection
 conn.Open () ;

 // Do something useful
}

 In this instance, the using clause ensures that the database connection is closed, regardless of how the
block is exited.

 Looking at the IL code for the Dispose() method of the connection classes, all of them check the current
state of the connection object, and if open will call the Close() method. A great tool for browsing .NET
assemblies is Reflector (available at www.aisto.com/roeder/dotnet). This tool permits you to view
the IL code for any .NET method and will also reverse - engineer the IL into C# source code, so you can
easily see what a given method is doing.

 When programming, you should use at least one of these methods, and probably both. Wherever you
acquire resources, it is good practice to use the using statement; even though we all mean to write the
 Close() statement, sometimes we forget, and in the face of exceptions the using clause does the right
thing. There is no substitute for good exception handling either, so in most instances, it is best to use both
methods together, as in the following example:

try
{
 using (SqlConnection conn = new SqlConnection (source))
 {
 // Open the connection
 conn.Open () ;

 // Do something useful

 // Close it myself
 conn.Close () ;
 }
}
catch (SqlException e)
{
 // Log the exception
}

c26.indd 853c26.indd 853 2/19/08 5:25:21 PM2/19/08 5:25:21 PM

854

Part IV: Data

 Note that this example called Close() , which isn ’ t strictly necessary, because the using clause will
ensure that this is done anyway. However, you should ensure that any resources such as this are released
as soon as possible — you might have more code in the rest of the block, and there is no point locking a
resource unnecessarily.

 In addition, if an exception is raised within the using block, the IDisposable.Dispose method will be
called on the resource guarded by the using clause, which in this example ensures that the database
connection is always closed. This produces easier - to - read code than having to ensure you close
a connection within an exception clause. You might also note that the exception is defined as a
 SqlException rather than the catch - all Exception type — always try to catch as specific an exception
as possible and let all others that are not explicitly handled rise up the execution stack.

 In conclusion, if you are writing a class that wraps a resource, whatever that resource may be, always
implement the IDisposable interface to close the resource. That way anyone coding with your class can
use the using() statement and guarantee that the resource will be cleared up.

 Transactions
 Often when there is more than one update to be made to the database, these updates must be
performed within the scope of a transaction. It is common in code to find a transaction object being
passed around to many methods that update the database, however in .NET 2.0 and above the
 TransactionScope class has been added which is defined within the System.Transactions
assembly. This can vastly simplify writing transactional code because you can compose several
transactional methods within a transaction scope, and the transaction will be flowed to each of these
methods as necessary.

 The following sequence of code initiates a transaction on a SQL Server connection:

string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;

using (TransactionScope scope = new TransactionScope(TransactionScopeOption
.Required))
{
 using (SqlConnection conn = new SqlConnection(source))
 {
 // Do something in SQL
 ...

 // Then mark complete
 scope.Complete();
 }
}

 Here the transaction is explicitly marked as complete by using the scope.Complete() method. In the
absence of this call, the transaction will be rolled back so that no changes are made to the database.

 When you use a transaction scope you can optionally choose the isolation level for commands
executed within that transaction. The level determines how changes made in one database session
are viewed by another. Not all database engines support all of the four levels presented in the
following table.

c26.indd 854c26.indd 854 2/19/08 5:25:21 PM2/19/08 5:25:21 PM

855

Chapter 26: Data Access

Isolation Level Description

ReadCommitted The default for SQL Server. This level ensures that data written by
one transaction will be accessible in a second transaction only after the first
transaction is committed.

ReadUncommitted This permits your transaction to read data within the database, even data
that has not yet been committed by another transaction. For example,
if two users were accessing the same database, and the first inserted some
data without concluding the transaction (by means of a Commit or
Rollback), the second user with his or her isolation level set to
ReadUncommitted could read the data.

RepeatableRead This level, which extends the ReadCommitted level, ensures that if the same
statement is issued within the transaction, regardless of other potential
updates made to the database, the same data will always be returned. This
level does require extra locks to be held on the data, which could adversely
affect performance.
This level guarantees that, for each row in the initial query, no changes can be
made to that data. It does, however, permit “phantom” rows to show up —
these are completely new rows that another transaction might have inserted
while your transaction was running.

Serializable This is the most “exclusive” transaction level, which in effect serializes
access to data within the database. With this isolation level, phantom rows
can never show up, so a SQL statement issued within a serializable transac-
tion will always retrieve the same data. The negative performance impact of
a Serializable transaction should not be underestimated — if you don’t
absolutely need to use this level of isolation, stay away from it.

 The SQL Server default isolation level, ReadCommitted , is a good compromise between data coherence
and data availability because fewer locks are required on data than in RepeatableRead or
 Serializable modes. However, situations exist where the isolation level should be increased, and so
within .NET you can simply begin a transaction with a different level from the default. There are no
hard - and - fast rules as to which levels to pick — that comes with experience.

 If you are currently using a database that does not support transactions, it is well worth changing to a
database that does. Once I was working as a trusted employee and had been given complete access to the
bug database. I typed what I thought was delete from bug where id=99999 , but in fact had
typed a < rather than an =. I deleted the entire database of bugs (except the one I wanted to!). Luckily for
me, our IS team backed up the database on a nightly basis and we could restore this, but a rollback
command would have been much easier.

 Commands
 The “ Using Database Connections ” section briefly touched on the idea of issuing commands against a
database. A command is, in its simplest form, a string of text containing SQL statements that is to be
issued to the database. A command could also be a stored procedure, or the name of a table that will
return all columns and all rows from that table (in other words, a SELECT * - style clause).

c26.indd 855c26.indd 855 2/19/08 5:25:21 PM2/19/08 5:25:21 PM

856

Part IV: Data

 A command can be constructed by passing the SQL clause as a parameter to the constructor of the
 Command class, as shown in this example:

string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);

 The < provider > Command classes have a property called CommandType , which is used to define
whether the command is a SQL clause, a call to a stored procedure, or a full table statement (which simply
selects all columns and rows from a given table). The following table summarizes the CommandType
enumeration.

CommandType Example

Text (default) String select = “SELECT
ContactName FROM Customers”;
SqlCommand cmd = new SqlCommand(select , conn);

StoredProcedure SqlCommand cmd = new
SqlCommand(“CustOrderHist”, conn);
cmd.CommandType =
CommandType.StoredProcedure;
cmd.Parameters.AddWithValue(“@CustomerID”, “QUICK”);

TableDirect OleDbCommand cmd = new
OleDbCommand(“Categories”, conn);
cmd.CommandType =
CommandType.TableDirect;

 When executing a stored procedure, it might be necessary to pass parameters to that procedure. The
previous example sets the @CustomerID parameter directly, although there are other ways of setting the
parameter value, which you look at later in this chapter. Note that in .NET 2.0, the AddWithValue()
method was added to the command parameters collection — and the Add (name, value) member
was attributed as Obsolete . If you have used this original method of constructing parameters for calling
a stored procedure, you will receive compiler warnings when you recompile your code. We suggest
altering your code now because Microsoft will most likely remove the older method in a subsequent
release of .NET.

 The TableDirect command type is valid only for the OleDb provider; other providers will throw an
exception if you attempt to use this command type with them.

 Executing Commands
 After you have defined the command, you need to execute it. A number of ways exist to issue the
statement, depending on what you expect to be returned (if anything) from that command. The
 < provider > Command classes provide the following execute methods:

 ExecuteNonQuery() — Executes the command but does not return any output

 ExecuteReader() — Executes the command and returns a typed IDataReader

 ExecuteScalar() — Executes the command and returns a single value

❑

❑

❑

c26.indd 856c26.indd 856 2/19/08 5:25:21 PM2/19/08 5:25:21 PM

857

Chapter 26: Data Access

 In addition to these methods, the SqlCommand class exposes the following method:

 ExecuteXmlReader() — Executes the command and returns an XmlReader object, which can
be used to traverse the XML fragment returned from the database

 As with the other chapters, you can download the sample code from the Wrox Web site at www.wrox.com .

 ExecuteNonQuery()
 This method is commonly used for UPDATE , INSERT , or DELETE statements, where the only returned
value is the number of records affected. This method can, however, return results if you call a stored
procedure that has output parameters:

using System;
using System.Data.SqlClient;
public class ExecuteNonQueryExample
{
 public static void Main(string[] args)
 {
 string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
 string select = “UPDATE Customers “ +
 “SET ContactName = ‘Bob’ “ +
 “WHERE ContactName = ‘Bill’”;
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 int rowsReturned = cmd.ExecuteNonQuery();
 Console.WriteLine(“{0} rows returned.”, rowsReturned);
 conn.Close();
 }
}

 ExecuteNonQuery() returns the number of rows affected by the command as an int .

 ExecuteReader()
 This method executes the command and returns a typed data reader object, depending on the provider
in use. The object returned can be used to iterate through the record(s) returned, as shown in the
following code:

using System;
using System.Data.SqlClient;
public class ExecuteReaderExample
{
 public static void Main(string[] args)
 {
 string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
 string select = “SELECT ContactName,CompanyName FROM Customers”;
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);

❑

(continued)

c26.indd 857c26.indd 857 2/19/08 5:25:22 PM2/19/08 5:25:22 PM

858

Part IV: Data

 SqlDataReader reader = cmd.ExecuteReader();
 while(reader.Read())
 {
 Console.WriteLine(“Contact : {0,-20} Company : {1}” ,
 reader[0] , reader[1]);
 }
 }
}

 Figure 26 - 2 shows the output of this code.

Figure 26-2

(continued)

 The < provider > DataReader objects are discussed later in this chapter.

 ExecuteScalar()
 On many occasions, it is necessary to return a single result from a SQL statement, such as the count of
records in a given table, or the current date/time on the server. The ExecuteScalar method can be used
in such situations:

using System;
using System.Data.SqlClient;
public class ExecuteScalarExample
{
 public static void Main(string[] args)
 {
 string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
 string select = “SELECT COUNT(*) FROM Customers”;
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 object o = cmd.ExecuteScalar();
 Console.WriteLine (o) ;
 }
}

c26.indd 858c26.indd 858 2/19/08 5:25:22 PM2/19/08 5:25:22 PM

859

Chapter 26: Data Access

 The method returns an object, which you can cast to the appropriate type if required. If the SQL you are
calling returns only one column, it is preferable to use ExecuteScalar over any other method of
retrieving that column. That also applies to stored procedures that return a single value.

 ExecuteXmlReader() (SqlClient Provider Only)
 As its name implies, this method executes the command and returns an XmlReader object to the caller.
SQL Server permits a SQL SELECT statement to be extended with a FOR XML clause. This clause can take
one of three options:

 FOR XML AUTO — Builds a tree based on the tables in the FROM clause

 FOR XML RAW — Maps result set rows to elements, with columns mapped to attributes

 FOR XML EXPLICIT — Requires that you specify the shape of the XML tree to be returned

 Professional SQL Server 2000 XML (Wrox Press, ISBN 1 - 861005 - 46 - 6) includes a complete description of
these options. For this example, use AUTO :

using System;
using System.Data.SqlClient;
using System.Xml;
public class ExecuteXmlReaderExample
{
 public static void Main(string[] args)
 {
 string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=Northwind”;
 string select = “SELECT ContactName,CompanyName “ +
 “FROM Customers FOR XML AUTO”;
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 XmlReader xr = cmd.ExecuteXmlReader();
 xr.Read();
 string data;
 do
 {
 data = xr.ReadOuterXml();
 if (!string.IsNullOrEmpty(data))
 Console.WriteLine(data);
 } while (!string.IsNullOrEmpty(data));
 conn.Close();
 }
}

 Note that you have to import the System.Xml namespace in order to output the returned XML. This
namespace and further XML capabilities of .NET Framework are explored in more detail in Chapter 28 ,
 “ Manipulating XML. ” Here, you include the FOR XML AUTO clause in the SQL statement, then call the
 ExecuteXmlReader() method. Figure 26 - 3 shows the output of this code.

❑

❑

❑

c26.indd 859c26.indd 859 2/19/08 5:25:22 PM2/19/08 5:25:22 PM

860

Part IV: Data

Figure 26-3

 In the SQL clause, you specified FROM Customers , so an element of type Customers is shown in the
output. To this are added attributes, one for each column selected from the database. This builds up an
XML fragment for each row selected from the database.

 Calling Stored Procedures
 Calling a stored procedure with a command object is just a matter of defining the name of the stored
procedure, adding a definition for each parameter of the procedure, and then executing the command
with one of the methods presented in the previous section.

 To make the examples in this section more useful, a set of stored procedures has been defined that can be
used to insert, update, and delete records from the Region table in the Northwind sample database.
Despite its small size, this is a good candidate to choose for the example because it can be used to define
examples for each of the types of stored procedures you will commonly write.

 Calling a Stored Procedure That Returns Nothing
 The simplest example of calling a stored procedure is one that returns nothing to the caller. Two such
procedures are defined in the following two subsections: one for updating a preexisting Region record
and one for deleting a given Region record.

Record Update
 Updating a Region record is fairly trivial because there is only one column that can be modified
(assuming primary keys cannot be updated). You can type these examples directly into the SQL Server
Query Analyzer, or run the StoredProcs.sql file that is part of the downloadable code for this chapter.
This file installs each of the stored procedures in this section:

CREATE PROCEDURE RegionUpdate (@RegionID INTEGER,
 @RegionDescription NCHAR(50)) AS
 SET NOCOUNT OFF
 UPDATE Region
 SET RegionDescription = @RegionDescription
 WHERE RegionID = @RegionID
GO

 An update command on a more real - world table might need to reselect and return the updated record in
its entirety. This stored procedure takes two input parameters (@RegionID and @RegionDescription),
and issues an UPDATE statement against the database.

c26.indd 860c26.indd 860 2/19/08 5:25:22 PM2/19/08 5:25:22 PM

861

Chapter 26: Data Access

 To run this stored procedure from within .NET code, you need to define a SQL command and execute it:

SqlCommand cmd = new SqlCommand(“RegionUpdate”, conn);

cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue (“@RegionID”, 23);
cmd.Parameters.AddWithValue (“@RegionDescription”, “Something”);

 This code creates a new SqlCommand object named aCommand , and defines it as a stored procedure. You
then add each parameter in turn using the AddWithValue method. This constructs a parameter and also
sets its value — you can also manually construct SqlParameter instances and add these to the
 Parameters collection if appropriate.

 The stored procedure takes two parameters: the unique primary key of the Region record being updated
and the new description to be given to this record. After the command has been created, it can be
executed by issuing the following command:

cmd.ExecuteNonQuery();

 Because the procedure returns nothing, ExecuteNonQuery() will suffice. Command parameters can be
set directly using the AddWithValue method, or by constructing SqlParameter instances. Note that the
parameter collection is indexable by position or parameter name.

Record Deletion
 The next stored procedure required is one that can be used to delete a Region record from the database:

CREATE PROCEDURE RegionDelete (@RegionID INTEGER) AS
 SET NOCOUNT OFF
 DELETE FROM Region
 WHERE RegionID = @RegionID
GO

 This procedure requires only the primary key value of the record. The code uses a SqlCommand object to
call this stored procedure as follows:

SqlCommand cmd = new SqlCommand(“RegionDelete” , conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(new SqlParameter(“@RegionID” , SqlDbType.Int , 0 ,
 “RegionID”));
cmd.UpdatedRowSource = UpdateRowSource.None;

 This command accepts only a single parameter, as shown in the following code, which will execute the
 RegionDelete stored procedure; here, you see an example of setting the parameter by name. If you
have many similar calls to make to the same stored procedure, then constructing SqlParameter
instances and setting the values as in the following may lead to better performance than re - constructing
the entire SqlCommand for each call.

cmd.Parameters[“@RegionID”].Value= 999;
cmd.ExecuteNonQuery();

 Calling a Stored Procedure That Returns Output Parameters
 Both of the previous examples execute stored procedures that return nothing. If a stored procedure
includes output parameters, these need to be defined within the .NET client so that they can be filled
when the procedure returns. The following example shows how to insert a record into the database and
return the primary key of that record to the caller.

c26.indd 861c26.indd 861 2/19/08 5:25:23 PM2/19/08 5:25:23 PM

862

Part IV: Data

Record Insertion
 The Region table consists of only a primary key (RegionID) and description field
(RegionDescription). To insert a record, this numeric primary key must be generated, and then a new
row needs to be inserted into the database. The primary key generation in this example has been
simplified by creating one within the stored procedure. The method used is exceedingly crude, which is
why there is a section on key generation later in this chapter. For now, this primitive example suffices:

CREATE PROCEDURE RegionInsert(@RegionDescription NCHAR(50),
 @RegionID INTEGER OUTPUT)AS
 SET NOCOUNT OFF
 SELECT @RegionID = MAX(RegionID)+ 1
 FROM Region
 INSERT INTO Region(RegionID, RegionDescription)
 VALUES(@RegionID, @RegionDescription)
GO

 The insert procedure creates a new Region record. Because the primary key value is generated by the
database itself, this value is returned as an output parameter from the procedure (@RegionID). This is
sufficient for this simple example, but for a more complex table (especially one with default values),
it is more common not to use output parameters, and instead select the entire inserted row and return
this to the caller. The .NET classes can cope with either scenario.

SqlCommand cmd = new SqlCommand(“RegionInsert” , conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(new SqlParameter(“@RegionDescription” ,
 SqlDbType.NChar ,
 50 ,
 “RegionDescription”));
cmd.Parameters.Add(new SqlParameter(“@RegionID” ,
 SqlDbType.Int,
 0 ,
 ParameterDirection.Output ,
 false ,
 0 ,
 0 ,
 “RegionID” ,
 DataRowVersion.Default ,
 null));
cmd.UpdatedRowSource = UpdateRowSource.OutputParameters;

 Here, the definition of the parameters is much more complex. The second parameter, @RegionID , is
defined to include its parameter direction, which in this example is Output . In addition to this flag, on
the last line of the code, the UpdateRowSource enumeration is used to indicate that data will be
returned from this stored procedure via output parameters. This flag is mainly used when issuing stored
procedure calls from a DataTable (which is discussed later in this chapter).

 Calling this stored procedure is similar to the previous examples, except in this instance the output
parameter is read after executing the procedure:

cmd.Parameters[“@RegionDescription”].Value = “South West”;
cmd.ExecuteNonQuery();
int newRegionID = (int) cmd.Parameters[“@RegionID”].Value;

 After executing the command, the value of the @RegionID parameter is read and cast to an integer.
A shorthand version of the preceding is the ExecuteScalar() method, which will return (as an object)
the first value returned from the stored procedure.

c26.indd 862c26.indd 862 2/19/08 5:25:23 PM2/19/08 5:25:23 PM

863

Chapter 26: Data Access

 You might be wondering what to do if the stored procedure you call returns output parameters and a set
of rows. In this instance, define the parameters as appropriate, and rather than calling
 ExecuteNonQuery() , call one of the other methods (such as ExecuteReader()) that will permit you to
traverse any record(s) returned.

 Fast Data Access: The Data Reader
 A data reader is the simplest and fastest way of selecting some data from a data source, but it is also
the least capable. You cannot directly instantiate a data reader object — an instance is returned from the
appropriate database ’ s command object (such as SqlCommand) after having called the
 ExecuteReader() method.

 The following code demonstrates how to select data from the Customers table in the Northwind
database. The example connects to the database, selects a number of records, loops through these
selected records, and outputs them to the console.

 This example uses the OLE DB provider as a brief respite from the SQL provider. In most cases,
the classes have a one - to - one correspondence with their SqlClient cousins; for example, there is the
 OleDbConnection object, which is similar to the SqlConnection object used in the previous examples.

 To execute commands against an OLE DB data source, the OleDbCommand class is used. The following
code shows an example of executing a simple SQL statement and reading the records by returning an
 OleDbDataReader object.

 Note the second using directive that makes available the OleDb classes:

using System;
using System.Data.OleDb;

 Most of the data providers currently available are shipped within the same assembly, so it is only
necessary to reference the System.Data.dll assembly to import all classes used in this section. The
only exceptions are the Oracle classes, which reside in System.Data.Oracle.dll .

public class DataReaderExample
{
 public static void Main(string[] args)
 {
 string source = “Provider=SQLOLEDB;” +
 “server=(local);” +
 “integrated security=SSPI;” +
 “database=northwind”;
 string select = “SELECT ContactName,CompanyName FROM Customers”;
 OleDbConnection conn = new OleDbConnection(source);
 conn.Open();
 OleDbCommand cmd = new OleDbCommand(select , conn);
 OleDbDataReader aReader = cmd.ExecuteReader();
 while(aReader.Read())
 Console.WriteLine(“’{0}’ from {1}” ,
 aReader.GetString(0) , aReader.GetString(1));
 aReader.Close();
 conn.Close();
 }
}

c26.indd 863c26.indd 863 2/19/08 5:25:23 PM2/19/08 5:25:23 PM

864

Part IV: Data

 The preceding code includes many familiar aspects of C# already covered in this chapter. To compile the
example, issue the following command:

csc /t:exe /debug+ DataReaderExample.cs /r:System.Data.dll

 The following code from the previous example creates a new OLE DB .NET database connection, based
on the source connection string:

OleDbConnection conn = new OleDbConnection(source);
 conn.Open();
 OleDbCommand cmd = new OleDbCommand(select, conn);

 The third line creates a new OleDbCommand object, based on a particular SELECT statement, and the
database connection to be used when the command is executed. When you have a valid command, you
need to execute it, which returns an initialized OleDbDataReader :

OleDbDataReader aReader = cmd.ExecuteReader();

 An OleDbDataReader is a forward - only “ connected ” cursor. In other words, you can only traverse the
records returned in one direction, and the database connection used is kept open until the data reader
has been closed.

 An OleDbDataReader keeps the database connection open until it is explicitly closed.

 The OleDbDataReader class cannot be instantiated directly — it is always returned by a call to the
 ExecuteReader() method of the OleDbCommand class. Once you have an open data reader, there are
various ways to access the data contained within the reader.

 When the OleDbDataReader object is closed (via an explicit call to Close() , or the object being garbage
collected), the underlying connection may also be closed, depending on which of the ExecuteReader()
methods is called. If you call ExecuteReader() and pass CommandBehavior.CloseConnection , you
can force the connection to be closed when the reader is closed.

 The OleDbDataReader class has an indexer that permits access (although not type - safe access) to any
field using the familiar array style syntax:

 object o = aReader[0];
or
 object o = aReader[“CategoryID”];

 Assuming that the CategoryID field was the first in the SELECT statement used to populate the reader,
these two lines are functionally equivalent, although the second is slower than the first; to verify this, a
test application was written that performed a million iterations of accessing the same column from an
open data reader, just to get some numbers that were big enough to read. You probably don ’ t read the
same column a million times in a tight loop, but every (micro) second counts, so you should write code
that is as optimal as possible.

 As an aside, the numeric indexer took on average 0.09 seconds for the million accesses, and the textual
one 0.63 seconds. The reason for this difference is that the textual method looks up the column number
internally from the schema and then accesses it using its ordinal. If you know this information
beforehand you can do a better job of accessing the data.

 So, should you use the numeric indexer? Maybe, but there is a better way.

 In addition to the indexers just presented, OleDbDataReader has a set of type - safe methods that can be
used to read columns. These are fairly self - explanatory, and all begin with Get . There are methods to
read most types of data, such as GetInt32 , GetFloat , GetGuid , and so on.

c26.indd 864c26.indd 864 2/19/08 5:25:24 PM2/19/08 5:25:24 PM

865

Chapter 26: Data Access

 The million iterations using GetInt32 took 0.06 seconds. The overhead in the numeric indexer is
incurred while getting the data type, calling the same code as GetInt32 , then boxing (and in this
instance unboxing) an integer. So, if you know the schema beforehand, are willing to use cryptic
numbers instead of column names, and can be bothered to use a type - safe function for each and every
column access, you stand to gain somewhere in the region of a tenfold speed increase over using a
textual column name (when selecting those million copies of the same column).

 Needless to say, there is a tradeoff between maintainability and speed. If you must use numeric indexers,
define constants within class scope for each of the columns that you will be accessing. The preceding
code can be used to select data from any OLE DB database; however, there are a number of SQL Server –
 specific classes that can be used with the obvious portability tradeoff.

 The following example is the same as the previous one, except that in this instance the OLE DB provider
and all references to OLE DB classes have been replaced with their SQL counterparts. The example is in
the 04_DataReaderSql directory:

using System;
using System.Data.SqlClient;
public class DataReaderSql
{
 public static int Main(string[] args)
 {
 string source = “server=(local);” +
 “integrated security=SSPI;” +
 “database=northwind”;
 string select = “SELECT ContactName,CompanyName FROM Customers”;
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select , conn);
 SqlDataReader aReader = cmd.ExecuteReader();
 while(aReader.Read())
 Console.WriteLine(“’{0}’ from {1}” , aReader.GetString(0) ,
 aReader.GetString(1));
 aReader.Close();
 conn.Close();
 return 0;
 }
}

 Notice the difference? If you ’ re typing this, do a global replace on OleDb with Sql , change the data
source string, and recompile. It ’ s that easy!

 The same performance tests were run on the indexers for the SQL provider, and this time the
numeric indexers were both exactly the same at 0.13 seconds for the million accesses, and
the string - based indexer ran at about 0.65 seconds.

 Managing Data and Relationships:
The DataSet Class

 The DataSet class has been designed as an offline container of data. It has no notion of database
connections. In fact, the data held within a DataSet does not necessarily need to have come from a
database — it could just as easily be records from a CSV file, or points read from a measuring device.

c26.indd 865c26.indd 865 2/19/08 5:25:24 PM2/19/08 5:25:24 PM

866

Part IV: Data

 A DataSet class consists of a set of data tables, each of which will have a set of data columns and data
rows (see Figure 26 - 4). In addition to defining the data, you can also define links between tables within
the DataSet class. One common scenario would be when defining a parent - child relationship
(commonly known as master/detail). One record in a table (say Order) links to many records in another
table (say Order_Details). This relationship can be defined and navigated within the DataSet .

DataTable

DataSet

DataRow

DataTable DataColumn

Figure 26-4

 The following sections describe the classes that are used with a DataSet class.

 Data Tables
 A data table is very similar to a physical database table — it consists of a set of columns with particular
properties and might have zero or more rows of data. A data table might also define a primary key,
which can be one or more columns, and might also contain constraints on columns. The generic term for
this information used throughout the rest of the chapter is schema .

 Several ways exist to define the schema for a particular data table (and indeed the DataSet class as a
whole). These are discussed after introducing data columns and data rows. Figure 26 - 5 shows some of
the objects that are accessible through the data table.

DataTable

Columns DataColumn

Rows DataRows

Constraints Constraint

ExtendedProperties Object

Figure 26-5

c26.indd 866c26.indd 866 2/19/08 5:25:24 PM2/19/08 5:25:24 PM

867

Chapter 26: Data Access

 A DataTable object (and also a DataColumn) can have an arbitrary number of extended properties
associated with it. This collection can be populated with any user - defined information pertaining to the
object. For example, a given column might have an input mask used to validate the contents of that
column — a typical example is the U.S. Social Security number. Extended properties are especially useful
when the data is constructed within a middle tier and returned to the client for some processing. You
could, for example, store validation criteria (such as min and max) for numeric columns in extended
properties and use this in the UI tier when validating user input.

 When a data table has been populated — by selecting data from a database, reading data from a file, or
manually populating within code — the Rows collection will contain this retrieved data.

 The Columns collection contains DataColumn instances that have been added to this table. These
define the schema of the data, such as the data type, nullability, default values, and so on.
The Constraints collection can be populated with either unique or primary key constraints.

 One example of where the schema information for a data table is used is when displaying that data in a
 DataGrid (which is discussed in Chapter 32 , “ Data Binding ”). The DataGrid control uses properties
such as the data type of the column to decide what control to use for that column. A bit field within
the database will be displayed as a check box within the DataGrid . If a column is defined within the
database schema as NOT NULL , this fact will be stored within the DataColumn so that it can be tested
when the user attempts to move off a row.

 Data Columns
 A DataColumn object defines properties of a column within the DataTable , such as the data type of that
column, whether the column is read - only, and various other facts. A column can be created in code, or it
can be automatically generated by the runtime.

 When creating a column, it is also useful to give it a name; otherwise, the runtime will generate a name
for you in the form Columnn where n is an incrementing number.

 The data type of the column can be set either by supplying it in the constructor or by setting the
 DataType property. Once you have loaded data into a data table you cannot alter the type of a
column — you will just receive an ArgumentException .

 Data columns can be created to hold the following .NET Framework data types:

Boolean Decimal

Int64 TimeSpan

Byte Double

Sbyte UInt16

Char Int16

Single UInt32

DateTime Int32

String UInt64

c26.indd 867c26.indd 867 2/19/08 5:25:31 PM2/19/08 5:25:31 PM

868

Part IV: Data

 Once created, the next thing to do with a DataColumn object is to set up other properties, such as the
nullability of the column or the default value. The following code fragment shows a few of the more
common options to set on a DataColumn object:

DataColumn customerID = new DataColumn(“CustomerID” , typeof(int));
customerID.AllowDBNull = false;
customerID.ReadOnly = false;
customerID.AutoIncrement = true;
customerID.AutoIncrementSeed = 1000;
DataColumn name = new DataColumn(“Name” , typeof(string));
name.AllowDBNull = false;
name.Unique = true;

 The following table shows the properties that can be set on a DataColumn object.

Property Description

AllowDBNull If true, permits the column to be set to DBNull.

AutoIncrement Defines that this column value is automatically generated as an incre-
menting number.

AutoIncrementSeed Defines the initial seed value for an AutoIncrement column.

AutoIncrementStep Defines the step between automatically generated column values, with a
default of one.

Caption Can be used for displaying the name of the column onscreen.

ColumnMapping Defines how a column is mapped into XML when a DataSet class is
saved by calling DataSet.WriteXml.

ColumnName The name of the column; this is auto-generated by the runtime if not set
in the constructor.

DataType Defines the System.Type value of the column.

DefaultValue Can define a default value for a column.

Expression Defines the expression to be used in a computed column.

 Data Rows
 This class makes up the other part of the DataTable class. The columns within a data table are defined
in terms of the DataColumn class. The actual data within the table is accessed using the DataRow object.
The following example shows how to access rows within a data table. First, the connection details:

string source = “server=(local);” +
 “ integrated security=SSPI;” +
 “database=northwind”;
string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);

 The following code introduces the SqlDataAdapter class, which is used to place data into a DataSet
class. SqlDataAdapter issues the SQL clause and fills a table in the DataSet class called Customers

c26.indd 868c26.indd 868 2/19/08 5:25:31 PM2/19/08 5:25:31 PM

869

Chapter 26: Data Access

with the output of the following query. (For more details on the SqlDataAdapter class, see the section
 “ Populating a DataSet ” later in this chapter.)

SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

 In the following code, you might notice the use of the DataRow indexer to access values from within that
row. The value for a given column can be retrieved using one of the several overloaded indexers. These
permit you to retrieve a value knowing the column number, name, or DataColumn :

foreach(DataRow row in ds.Tables[“Customers”].Rows)
 Console.WriteLine(“’{0}’ from {1}” , row[0] ,row[1]);

 One of the most appealing aspects of DataRow is that it is versioned. This permits you to receive various
values for a given column in a particular row. The versions are described in the following table.

DataRow Version Value Description

Current The value existing at present within the column. If no edit has
occurred, this will be the same as the original value. If an edit (or edits)
has occurred, the value will be the last valid value entered.

Default The default value (in other words, any default set up for the column).

Original The value of the column when originally selected from the database.
If the DataRow’s AcceptChanges() method is called, this value will
update to the Current value.

Proposed When changes are in progress for a row, it is possible to retrieve this
modified value. If you call BeginEdit() on the row and make
changes, each column will have a proposed value until either
EndEdit() or CancelEdit() is called.

 The version of a given column could be used in many ways. One example is when updating rows within
the database, in which instance it is common to issue a SQL statement such as the following:

UPDATE Products
SET Name = Column.Current
WHERE ProductID = xxx
AND Name = Column.Original;

 Obviously, this code would never compile, but it shows one use for original and current values of a
column within a row.

 To retrieve a versioned value from the DataRow indexer, use one of the indexer methods that accepts a
 DataRowVersion value as a parameter. The following snippet shows how to obtain all values of each
column in a DataTable object:

foreach (DataRow row in ds.Tables[“Customers”].Rows)
{
 foreach (DataColumn dc in ds.Tables[“Customers”].Columns)
 {

(continued)

c26.indd 869c26.indd 869 2/19/08 5:25:31 PM2/19/08 5:25:31 PM

870

Part IV: Data

 Console.WriteLine (“{0} Current = {1}” , dc.ColumnName ,
 row[dc,DataRowVersion.Current]);
 Console.WriteLine (“ Default = {0}” , row[dc,DataRowVersion.Default]);
 Console.WriteLine (“ Original = {0}” ,
 row[dc,DataRowVersion.Original]);
 }
}

 The whole row has a state flag called RowState , which can be used to determine what operation is
needed on the row when it is persisted back to the database. The RowState property is set to keep track
of all the changes made to the DataTable , such as adding new rows, deleting existing rows, and
changing columns within the table. When the data is reconciled with the database, the row state flag is
used to determine what SQL operations should occur. The following table provides an overview of the
flags that are defined by the DataRowState enumeration.

(continued)

DataRowState Value Description

Added Indicates that the row has been newly added to a DataTable’s Rows collec-
tion. All rows created on the client are set to this value and will ultimately
issue SQL INSERT statements when reconciled with the database.

Deleted Indicates that the row has been marked as deleted from the DataTable by
means of the DataRow.Delete() method. The row still exists within the
DataTable but will not normally be viewable onscreen (unless a
DataView has been explicitly set up). DataViews are discussed in the next
chapter. Rows marked as deleted in the DataTable will be deleted from
the database when reconciled.

Detached Indicates that a row is in this state immediately after it is created, and can
also be returned to this state by calling DataRow.Remove(). A detached
row is not considered to be part of any data table, and, as such, no SQL for
rows in this state will be issued.

Modified Indicates that a row will be Modified if the value in any column has been
changed.

Unchanged Indicates that the row has not been changed since the last call to
AcceptChanges().

 The state of the row depends also on what methods have been called on the row. The AcceptChanges()
method is generally called after successfully updating the data source (that is, after persisting changes to
the database).

 The most common way to alter data in a DataRow is to use the indexer; however, if you have a number
of changes to make, you also need to consider the BeginEdit() and EndEdit() methods.

c26.indd 870c26.indd 870 2/19/08 5:25:32 PM2/19/08 5:25:32 PM

871

Chapter 26: Data Access

 When an alteration is made to a column within a DataRow , the ColumnChanging event is raised on the
row ’ s DataTable . This permits you to override the ProposedValue property of the
 DataColumnChangeEventArgs class, and change it as required. This is one way of performing some
data validation on column values. If you call BeginEdit() before making changes, the
 ColumnChanging event will not be raised. This permits you to make multiple changes and then call
 EndEdit() to persist these changes. If you want to revert to the original values, call CancelEdit() .

 A DataRow can be linked in some way to other rows of data. This permits the creation of navigable links
between rows, which is common in master/detail scenarios. The DataRow contains a GetChildRows()
method that will return an array of associated rows from another table in the same DataSet as the
current row. These are discussed in the “ Data Relationships ” section later in this chapter.

 Schema Generation
 You can create the schema for a DataTable in three ways:

 Let the runtime do it for you.

 Write code to create the table(s).

 Use the XML schema generator.

 Runtime Schema Generation
 The DataRow example shown earlier presented the following code for selecting data from a database and
populating a DataSet class:

SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

 This is obviously easy to use, but it has a few drawbacks as well. For example, you have to make do with
the default column names, which might work for you, but in certain instances, you might want to
rename a physical database column (say PKID) to something more user - friendly.

 You could naturally alias columns within your SQL clause, as in SELECT PID AS PersonID FROM
PersonTable ; it ’ s best to not rename columns within SQL, though, because a column only really needs
to have a “ pretty ” name onscreen.

 Another potential problem with automated DataTable / DataColumn generation is that you have no
control over the column types that the runtime chooses for your data. It does a fairly good job of
deciding the correct data type for you, but as usual there are instances where you need more control. For
example, you might have defined an enumerated type for a given column to simplify user code written
against your class. If you accept the default column types that the runtime generates, the column will
likely be an integer with a 32 - bit range, as opposed to an enum with your predefined options.

 Last, and probably most problematic, is that when using automated table generation, you have no type -
 safe access to the data within the DataTable — you are at the mercy of indexers, which return instances
of object rather than derived data types. If you like sprinkling your code with typecast expressions,
skip the following sections.

Hand - Coded Schema
 Generating the code to create a DataTable , replete with associated DataColumns , is fairly easy. The
examples within this section access the Products table from the Northwind database shown in Figure 26 - 6 .

❑

❑

❑

c26.indd 871c26.indd 871 2/19/08 5:25:32 PM2/19/08 5:25:32 PM

872

Part IV: Data

 The following code manufactures a DataTable , which corresponds to the schema shown in Figure 26 - 6
(but does not cover the nullability of columns):

public static void ManufactureProductDataTable(DataSet ds)
{
 DataTable products = new DataTable(“Products”);
 products.Columns.Add(new DataColumn(“ProductID”, typeof(int)));
 products.Columns.Add(new DataColumn(“ProductName”, typeof(string)));
 products.Columns.Add(new DataColumn(“SupplierID”, typeof(int)));
 products.Columns.Add(new DataColumn(“CategoryID”, typeof(int)));
 products.Columns.Add(new DataColumn(“QuantityPerUnit”, typeof(string)));
 products.Columns.Add(new DataColumn(“UnitPrice”, typeof(decimal)));
 products.Columns.Add(new DataColumn(“UnitsInStock”, typeof(short)));
 products.Columns.Add(new DataColumn(“UnitsOnOrder”, typeof(short)));
 products.Columns.Add(new DataColumn(“ReorderLevel”, typeof(short)));
 products.Columns.Add(new DataColumn(“Discontinued”, typeof(bool)));
 ds.Tables.Add(products);
}

 You can alter the code in the DataRow example to use this newly generated table definition as follows:

string source = “server=(local);” +
 “integrated security=sspi;” +
 “database=Northwind”;
string select = “SELECT * FROM Products”;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter cmd = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
ManufactureProductDataTable(ds);
cmd.Fill(ds, “Products”);
foreach(DataRow row in ds.Tables[“Products”].Rows)
 Console.WriteLine(“’{0}’ from {1}”, row[0], row[1]);

 The ManufactureProductDataTable() method creates a new DataTable , adds each column in turn,
and finally appends this to the list of tables within the DataSet . The DataSet has an indexer that takes
the name of the table and returns that DataTable to the caller.

 The previous example is still not really type - safe because indexers are being used on columns to retrieve
the data. What would be better is a class (or set of classes) derived from DataSet , DataTable , and
 DataRow that defines type - safe accessors for tables, rows, and columns. You can generate this code
yourself; it is not particularly tedious and you end up with truly type - safe data access classes.

Figure 26-6

c26.indd 872c26.indd 872 2/19/08 5:25:32 PM2/19/08 5:25:32 PM

873

Chapter 26: Data Access

 If you don ’ t like generating these type - safe classes yourself, help is at hand. The .NET Framework
includes support for the third method listed at the start of this section: using XML schemas to define a
 DataSet class, a DataTable class, and the other classes that we have described here. (For more details
on this method, see the section “ XML Schemas: Generating Code with XSD ” later in this chapter.)

 Data Relationships
 When writing an application, it is often necessary to obtain and cache various tables of information. The
 DataSet class is the container for this information. With regular OLE DB, it was necessary to provide a
strange SQL dialect to enforce hierarchical data relationships, and the provider itself was not without its
own subtle quirks.

 The DataSet class, however, has been designed from the start to establish relationships between data
tables with ease. The code in this section shows how to generate manually and populate two tables with
data. So, if you don ’ t have access to SQL Server or the Northwind database, you can run this example
anyway:

DataSet ds = new DataSet(“Relationships”);
ds.Tables.Add(CreateBuildingTable());
ds.Tables.Add(CreateRoomTable());
ds.Relations.Add(“Rooms”,
 ds.Tables[“Building”].Columns[“BuildingID”],
 ds.Tables[“Room”].Columns[“BuildingID”]);

 The tables used in this example are shown in Figure 26 - 7 . They contain a primary key and name field,
with the Room table having BuildingID as a foreign key.

Figure 26-7

 These tables have been kept deliberately simple. The following code shows how to iterate through the
rows in the Building table and traverse the relationship to list all of the child rows from the Room table:

foreach(DataRow theBuilding in ds.Tables[“Building”].Rows)
{
 DataRow[] children = theBuilding.GetChildRows(“Rooms”);
 int roomCount = children.Length;
 Console.WriteLine(“Building {0} contains {1} room{2}”,
 theBuilding[“Name”],
 roomCount,
 roomCount > 1 ? “s” : “”);
 // Loop through the rooms
 foreach(DataRow theRoom in children)
 Console.WriteLine(“Room: {0}”, theRoom[“Name”]);
}

c26.indd 873c26.indd 873 2/19/08 5:25:33 PM2/19/08 5:25:33 PM

874

Part IV: Data

 The key difference between the DataSet class and the old - style hierarchical Recordset object is in the
way the relationship is presented. In a hierarchical Recordset object, the relationship was presented as a
pseudo - column within the row. This column itself was a Recordset object that could be iterated through.
Under ADO.NET, however, a relationship is traversed simply by calling the GetChildRows() method:

DataRow[] children = theBuilding.GetChildRows(“Rooms”);

 This method has a number of forms, but the preceding simple example uses just the name of the
relationship to traverse between parent and child rows. It returns an array of rows that can be updated
as appropriate by using the indexers, as shown in earlier examples.

 What ’ s more interesting with data relationships is that they can be traversed both ways. Not only can
you go from a parent to the child rows, but you can also find a parent row (or rows) from a child record
simply by using the ParentRelations property on the DataTable class. This property returns a
 DataRelationCollection , which can be indexed using the [] array syntax (for example, ParentRela
tions[“ Rooms ”]), or as an alternative, the GetParentRows() method can be called, as shown here:

foreach(DataRow theRoom in ds.Tables[“Room”].Rows)
{
 DataRow[] parents = theRoom.GetParentRows(“Rooms”);
 foreach(DataRow theBuilding in parents)
 Console.WriteLine(“Room {0} is contained in building {1}”,
 theRoom[“Name”],
 theBuilding[“Name”]);
}

 Two methods with various overrides are available for retrieving the parent row(s): GetParentRows()
(which returns an array of zero or more rows) and GetParentRow() (which retrieves a single parent
row given a relationship).

 Data Constraints
 Changing the data type of columns created on the client is not the only thing a DataTable is good for.
ADO.NET permits you to create a set of constraints on a column (or columns), which are then used to
enforce rules within the data.

 The following table lists the constraint types that are currently supported by the runtime, embodied as
classes in the System.Data namespace.

Constraint Description

ForeignKeyConstraint Enforces a link between two DataTables within a DataSet.

UniqueConstraint Ensures that entries in a given column are unique.

 Setting a Primary Key
 As is common with a table in a relational database, you can supply a primary key, which can be based on
one or more columns from the DataTable .

 The following code creates a primary key for the Products table, whose schema was constructed by
hand earlier.

 Note that a primary key on a table is just one form of constraint. When a primary key is added to a
 DataTable , the runtime also generates a unique constraint over the key column(s). This is because there

c26.indd 874c26.indd 874 2/19/08 5:25:33 PM2/19/08 5:25:33 PM

875

Chapter 26: Data Access

isn ’ t actually a constraint type of PrimaryKey — a primary key is simply a unique constraint over one or
more columns.

public static void ManufacturePrimaryKey(DataTable dt)
{
 DataColumn[] pk = new DataColumn[1];
 pk[0] = dt.Columns[“ProductID”];
 dt.PrimaryKey = pk;
}

 Because a primary key can contain several columns, it is typed as an array of DataColumn s. A table ’ s
primary key can be set to those columns simply by assigning an array of columns to the property.

 To check the constraints for a table, you can iterate through the ConstraintCollection . For the auto -
 generated constraint produced by the preceding code, the name of the constraint is Constraint1 . That ’ s
not a very useful name, so to avoid this problem it is always best to create the constraint in code first,
then define which column(s) make up the primary key.

 The following code names the constraint before creating the primary key:

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns[“ProductID”];
dt.Constraints.Add(new UniqueConstraint(“PK_Products”, pk[0]));
dt.PrimaryKey = pk;

 Unique constraints can be applied to as many columns as you want.

 Setting a Foreign Key
 In addition to unique constraints, a DataTable class can also contain foreign key constraints. These are
primarily used to enforce master/detail relationships but can also be used to replicate columns between
tables if you set up the constraint correctly. A master/detail relationship is one where there is commonly
one parent record (say an order) and many child records (order lines), linked by the primary key of the
parent record.

 A foreign key constraint can operate only over tables within the same DataSet , so the following
example uses the Categories table from the Northwind database (shown in Figure 26 - 8), and assigns a
constraint between it and the Products table.

Figure 26-8

c26.indd 875c26.indd 875 2/19/08 5:25:33 PM2/19/08 5:25:33 PM

876

Part IV: Data

 The first step is to generate a new data table for the Categories table:

DataTable categories = new DataTable(“Categories”);
categories.Columns.Add(new DataColumn(“CategoryID”, typeof(int)));
categories.Columns.Add(new DataColumn(“CategoryName”, typeof(string)));
categories.Columns.Add(new DataColumn(“Description”, typeof(string)));
categories.Constraints.Add(new UniqueConstraint(“PK_Categories”,
 categories.Columns[“CategoryID”]));
categories.PrimaryKey = new DataColumn[1]
 {categories.Columns[“CategoryID”]};

 The last line of this code creates the primary key for the Categories table. The primary key in this
instance is a single column; however, it is possible to generate a key over multiple columns using the
array syntax shown.

 Then the constraint can be created between the two tables:

DataColumn parent = ds.Tables[“Categories”].Columns[“CategoryID”];
DataColumn child = ds.Tables[“Products”].Columns[“CategoryID”];
ForeignKeyConstraint fk =
 new ForeignKeyConstraint(“FK_Product_CategoryID”, parent, child);
fk.UpdateRule = Rule.Cascade;
fk.DeleteRule = Rule.SetNull;
ds.Tables[“Products”].Constraints.Add(fk);

 This constraint applies to the link between Categories.CategoryID and Products.CategoryID .
There are four different ForeignKeyConstraint s — use those that permit you to name the constraint.

 Setting Update and Delete Constraints
 In addition to defining that there is some type of constraint between parent and child tables, you can
define what should happen when a column in the constraint is updated.

 The previous example sets the update rule and the delete rule. These rules are used when an action
occurs to a column (or row) within the parent table, and the rule is used to decide what should happen
to the row(s) within the child table that could be affected. Four different rules can be applied through the
 Rule enumeration:

 Cascade — If the parent key has been updated, copy the new key value to all child records. If
the parent record has been deleted, delete the child records also. This is the default option.

 None — No action whatsoever. This option leaves orphaned rows within the child data table.

 SetDefault — Each child record affected has the foreign key column(s) set to its default value,
if one has been defined.

 SetNull — All child rows have the key column(s) set to DBNull . (Following the naming
convention that Microsoft uses, this should really be SetDBNull .)

 Constraints are enforced only within a DataSet class if the EnforceConstraints
property of the DataSet is true .

 This section has covered the main classes that make up the constituent parts of the DataSet class and
has shown how to manually generate each of these classes in code. You can also define a DataTable ,
 DataRow , DataColumn , DataRelation , and Constraint using the XML schema file(s) and the XSD tool
that ships with .NET. The following section describes how to set up a simple schema and generate type -
 safe classes to access your data.

❑

❑

❑

❑

c26.indd 876c26.indd 876 2/19/08 5:25:33 PM2/19/08 5:25:33 PM

877

Chapter 26: Data Access

 XML Schemas: Generating Code with XSD
 XML is firmly entrenched in ADO.NET — indeed, the remoting format for passing data between objects
is now XML. With the .NET runtime, it is possible to describe a DataTable class within an XML schema
definition file (XSD). What ’ s more, you can define an entire DataSet class, with a number of DataTable
classes, and a set of relationships between these tables, and you can include various other details to fully
describe the data.

 When you have defined an XSD file, there is a tool in the runtime that will convert this schema to the
corresponding data access class(es), such as the type - safe product DataTable class shown earlier. Let ’ s
start with a simple XSD file (Products.xsd) that describes the same information as the Products
sample discussed earlier and then extend it to include some extra functionality:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < xs:schema id=”Products” targetNamespace=”http://tempuri.org/XMLSchema1.xsd”
 xmlns:mstns=”http://tempuri.org/XMLSchema1.xsd”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” >
 < xs:element name=”Product” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”ProductID” msdata:ReadOnly=”true”
 msdata:AutoIncrement=”true” type=”xs:int” / >
 < xs:element name=”ProductName” type=”xs:string” / >
 < xs:element name=”SupplierID” type=”xs:int” minOccurs=”0” / >
 < xs:element name=”CategoryID” type=”xs:int” minOccurs=”0” / >
 < xs:element name=”QuantityPerUnit” type=”xs:string” minOccurs=”0” / >
 < xs:element name=”UnitPrice” type=”xs:decimal” minOccurs=”0” / >
 < xs:element name=”UnitsInStock” type=”xs:short” minOccurs=”0” / >
 < xs:element name=”UnitsOnOrder” type=”xs:short” minOccurs=”0” / >
 < xs:element name=”ReorderLevel” type=”xs:short” minOccurs=”0” / >
 < xs:element name=”Discontinued” type=”xs:boolean” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:schema >

 These options are covered in detail in Chapter 28 , “ Manipulating XML ” ; for now, this file basically
defines a schema with the id attribute set to Products . A complex type called Product is defined,
which contains a number of elements, one for each of the fields within the Products table.

 These items map to data classes as follows. The Products schema maps to a class derived from
 DataSet . The Product complex type maps to a class derived from DataTable . Each sub - element maps
to a class derived from DataColumn . The collection of all columns maps to a class derived from
 DataRow .

 Thankfully, there is a tool within the .NET Framework that produces the code for these classes with the
help of the input XSD file. Because its sole job is to perform various functions on XSD files, the tool itself
is called XSD.EXE .

 Assuming that you saved the preceding file as Product.xsd , you would convert the file into code by
issuing the following command in a command prompt:

xsd Product.xsd /d

 This creates the file Product.cs .

c26.indd 877c26.indd 877 2/19/08 5:25:34 PM2/19/08 5:25:34 PM

878

Part IV: Data

 Various switches can be used with XSD to alter the output generated. Some of the more commonly used
switches are shown in the following table.

Switch Description

/dataset (/d) Enables you to generate classes derived from DataSet, DataTable,
and DataRow.

/language:<language> Permits you to choose which language the output file will be writ-
ten in. C# is the default, but you can choose VB for a Visual Basic
.NET file.

/namespace:<namespace> Enables you to define the namespace that the generated code should
reside within. The default is no namespace.

 The following is an abridged version of the output from XSD for the Products schema. The output has
been altered slightly to fit into a format appropriate for this book. To see the complete output, run XSD
.EXE on the Products schema (or one of your own making) and take a look at the .cs file generated.
The example includes the entire source code plus the Product.xsd file (note that this output is part of
the downloadable code file available at www.wrox.com):

//--
// < autogenerated >
// This code was generated by a tool.
// Runtime Version:2.0.50727.312
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// < /autogenerated >
//--

using System;

//
// This source code was auto-generated by xsd, Version=2.0.40426.16.
//

[Serializable()]
[System.ComponentModel.DesignerCategoryAttribute(“code”)]
[System.Diagnostics.DebuggerStepThrough()]
[System.ComponentModel.ToolboxItem(true)]
[System.Xml.Serialization.XmlSchemaProviderAttribute(“GetTypedDataSetSchema”)]
[System.Xml.Serialization.XmlRootAttribute(“Products”)]
public partial class Products : System.Data.DataSet {
{
 private ProductDataTable tableProduct;
 public Products()
 public ProductDataTable Product

c26.indd 878c26.indd 878 2/19/08 5:25:34 PM2/19/08 5:25:34 PM

879

Chapter 26: Data Access

 public override DataSet Clone()
 public delegate void ProductRowChangeEventHandler (object sender,
 ProductRowChangeEvent e);

 [System.Diagnostics.DebuggerStepThrough()]
 public partial class ProductDataTable : DataTable, IEnumerable

 [System.Diagnostics.DebuggerStepThrough()]
 public class ProductRow : DataRow
}

 All private and protected members have been removed to concentrate on the public interface. The
 ProductDataTable and ProductRow definitions show the positions of two nested classes, which will
be implemented next. You review the code for these classes after a brief explanation of the DataSet -
 derived class.

 The Products() constructor calls a private method, InitClass() , which constructs an instance of the
 DataTable - derived class ProductDataTable , and adds the table to the Tables collection of the
 DataSet class. The Products data table can be accessed by the following code:

DataSet ds = new Products();
DataTable products = ds.Tables[“Products”];

 Or, more simply by using the property Product , available on the derived DataSet object:

DataTable products = ds.Product;

 Because the Product property is strongly typed, you could naturally use ProductDataTable rather
than the DataTable reference shown in the previous code.

 The ProductDataTable class includes far more code (note this is an abridged version of the code):

 [System.Serializable()]
[System.Diagnostics.DebuggerStepThrough()]
[System.Xml.Serialization.XmlSchemaProviderAttribute(“GetTypedTableSchema”)]
public partial class ProductDataTable : DataTable, System.Collections.IEnumerable
{
 private DataColumn columnProductID;
 private DataColumn columnProductName;
 private DataColumn columnSupplierID;
 private DataColumn columnCategoryID;
 private DataColumn columnQuantityPerUnit;
 private DataColumn columnUnitPrice;
 private DataColumn columnUnitsInStock;
 private DataColumn columnUnitsOnOrder;
 private DataColumn columnReorderLevel;
 private DataColumn columnDiscontinued;

 public ProductDataTable() {
 this.TableName = “Product”;
 this.BeginInit();
 this.InitClass();
 this.EndInit(); }

c26.indd 879c26.indd 879 2/19/08 5:25:34 PM2/19/08 5:25:34 PM

880

Part IV: Data

 The ProductDataTable class, derived from DataTable and implementing the IEnumerable interface,
defines a private DataColumn instance for each of the columns within the table. These are initialized
again from the constructor by calling the private InitClass() member. Each column is given an
internal accessor, which is used by the DataRow class (which is described shortly):

 [System.ComponentModel.Browsable(false)]
public int Count
{
 get { return this.Rows.Count; }
}
internal DataColumn ProductIDColumn
{
 get { return this.columnProductID; }
}
// Other row accessors removed for clarity -- there is one for each column

 Adding rows to the table is taken care of by the two overloaded (and significantly different)
 AddProductRow() methods. The first takes an already constructed DataRow and returns a void. The
second takes a set of values, one for each of the columns in the DataTable , constructs a new row, sets
the values within this new row, adds the row to the DataTable object, and returns the row to the caller.
Such widely different functions shouldn ’ t really have the same name!

public void AddProductRow(ProductRow row)
{
 this.Rows.Add(row);
}

public ProductRow AddProductRow (string ProductName , int SupplierID ,
 int CategoryID , string QuantityPerUnit ,
 System.Decimal UnitPrice , short UnitsInStock ,
 short UnitsOnOrder , short ReorderLevel ,
 bool Discontinued)
{
 ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
 rowProductRow.ItemArray = new object[]
 {
 null,
 ProductName,
 SupplierID,
 CategoryID,
 QuantityPerUnit,
 UnitPrice,
 UnitsInStock,
 UnitsOnOrder,
 ReorderLevel,
 Discontinued
 };
 this.Rows.Add(rowProductRow);
 return rowProductRow;
}

 Just like the InitClass() member in the DataSet - derived class, which added the table into the
 DataSet class, the InitClass() member in ProductDataTable adds columns to the DataTable class.

c26.indd 880c26.indd 880 2/19/08 5:25:34 PM2/19/08 5:25:34 PM

881

Chapter 26: Data Access

Each column ’ s properties are set as appropriate, and the column is then appended to the columns
collection:

private void InitClass()
{
 this.columnProductID = new DataColumn (“ProductID”,
 typeof(int),
 null,
 System.Data.MappingType.Element);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_ChangedEventName”, “ProductIDChanged”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_ChangingEventName”, “ProductIDChanging”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_ColumnPropNameInRow”, “ProductID”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_ColumnPropNameInTable”, “ProductIDColumn”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_ColumnVarNameInTable”, “columnProductID”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_DelegateName”, “ProductIDChangeEventHandler”);
 this.columnProductID.ExtendedProperties.Add
 (“Generator_EventArgName”, “ProductIDChangeEventArg”);
 this.Columns.Add(this.columnProductID);
 // Other columns removed for clarity

 this.columnProductID.AutoIncrement = true;
 this.columnProductID.AllowDBNull = false;
 this.columnProductID.ReadOnly = true;
 this.columnProductName.AllowDBNull = false;
 this.columnDiscontinued.AllowDBNull = false;
}

public ProductRow NewProductRow()
{
 return ((ProductRow)(this.NewRow()));
}

 NewRowFromBuilder() is called internally from the DataTable class ’ s NewRow() method. Here, it
creates a new strongly typed row. The DataRowBuilder instance is created by the DataTable class, and
its members are accessible only within the System.Data assembly:

protected override DataRow NewRowFromBuilder(DataRowBuilder builder)
{
 return new ProductRow(builder);
}

 The last class to discuss is the ProductRow class, derived from DataRow . This class is used to provide
type - safe access to all fields in the data table. It wraps the storage for a particular row, and provides
members to read (and write) each of the fields in the table.

c26.indd 881c26.indd 881 2/19/08 5:25:35 PM2/19/08 5:25:35 PM

882

Part IV: Data

 In addition, for each nullable field, there are functions to set the field to null , and to check if the field is
 null . The following example shows the functions for the SupplierID column:

 [System.Diagnostics.DebuggerStepThrough()]
public class ProductRow : DataRow
{
 private ProductDataTable tableProduct;

 internal ProductRow(DataRowBuilder rb) : base(rb)
 {
 this.tableProduct = ((ProductDataTable)(this.Table));
 }

 public int ProductID
 {
 get { return ((int)(this[this.tableProduct.ProductIDColumn])); }
 set { this[this.tableProduct.ProductIDColumn] = value; }
 }
 // Other column accessors/mutators removed for clarity

 public bool IsSupplierIDNull()
 {
 return this.IsNull(this.tableProduct.SupplierIDColumn);
 }

 public void SetSupplierIDNull()
 {
 this[this.tableProduct.SupplierIDColumn] = System.Convert.DBNull;
 }
}

 The following code uses the classes ouptut from the XSD tool to retrieve data from the Products table
and display that data to the console:

using System;
using System.Data;
using System.Data.SqlClient;

public class XSD_DataSet
{
 public static void Main()
 {
 string source = “server=(local);” +
 “ integrated security=SSPI;” +
 “database=northwind”;
 string select = “SELECT * FROM Products”;
 SqlConnection conn = new SqlConnection(source);
 SqlDataAdapter da = new SqlDataAdapter(select , conn);
 Products ds = new Products();
 da.Fill(ds , “Product”);
 foreach(Products.ProductRow row in ds.Product)
 Console.WriteLine(“’{0}’ from {1}” ,
 row.ProductID ,
 row.ProductName);
 }
}

c26.indd 882c26.indd 882 2/19/08 5:25:35 PM2/19/08 5:25:35 PM

883

Chapter 26: Data Access

 The output of the XSD file contains a class derived from DataSet , Products , which is created and then
filled by the use of the data adapter. The foreach statement uses the strongly typed ProductRow and
also the Product property, which returns the Product data table.

 To compile this example, issue the following commands:

xsd product.xsd /d

and

csc /recurse:*.cs

 The first generates the Products.cs file from the Products.XSD schema, and then the csc command
uses the /recurse:*.cs parameter to go through all files with the extension .cs and add these to the
resulting assembly.

 Populating a DataSet
 After you have defined the schema of your data set, replete with DataTable , DataColumn , and
 Constraint classes, and whatever else is necessary, you need to be able to populate the DataSet class
with some information. You have two main ways to read data from an external source and insert it into
the DataSet class:

 Use a data adapter.

 Read XML into the DataSet class.

 Populating a DataSet Class with a Data Adapter
 The section on data rows briefly introduced the SqlDataAdapter class, as shown in the following code:

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
 SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

 The bold line shows the SqlDataAdapter class in use; the other data adapter classes are again virtually
identical in functionality to the Sql equivalent.

 To retrieve data into a DataSet , it is necessary to have some form of command that is executed to select
that data. The command in question could be a SQL SELECT statement, a call to a stored procedure, or
for the OLE DB provider, a TableDirect command. The preceding example uses one of the constructors
available on SqlDataAdapter that converts the passed SQL SELECT statement into a SqlCommand , and
issues this when the Fill() method is called on the adapter.

 In the stored procedures example earlier in this chapter, the INSERT , UPDATE , and DELETE procedures
were defined but the SELECT procedure was not. That gap is filled in the next section, which also shows
how to call a stored procedure from a SqlDataAdapter class to populate data in a DataSet class.

 Using a Stored Procedure in a Data Adapter
 The first step in this example is to define the stored procedure. The stored procedure to SELECT data is:

CREATE PROCEDURE RegionSelect AS
 SET NOCOUNT OFF
 SELECT * FROM Region
GO

❑

❑

c26.indd 883c26.indd 883 2/19/08 5:25:35 PM2/19/08 5:25:35 PM

884

Part IV: Data

 You can type this stored procedure directly into the SQL Server Query Analyzer, or you can run the
 StoredProc.sql file that is provided for use by this example.

 Next, you need to define the SqlCommand that executes this stored procedure. Again the code is very
simple, and most of it was already presented in the earlier section on issuing commands:

private static SqlCommand GenerateSelectCommand(SqlConnection conn)
{
 SqlCommand aCommand = new SqlCommand(“RegionSelect” , conn);
 aCommand.CommandType = CommandType.StoredProcedure;
 aCommand.UpdatedRowSource = UpdateRowSource.None;
 return aCommand;
}

 This method generates the SqlCommand that calls the RegionSelect procedure when executed. All that
remains is to hook up this command to a SqlDataAdapter class, and call the Fill() method:

DataSet ds = new DataSet();
// Create a data adapter to fill the DataSet
SqlDataAdapter da = new SqlDataAdapter();
// Set the data adapter’s select command
da.SelectCommand = GenerateSelectCommand (conn);
da.Fill(ds , “Region”);

 Here, the SqlDataAdapter class is created, and the generated SqlCommand is then assigned to the
 SelectCommand property of the data adapter. Subsequently, Fill() is called, which will execute the
stored procedure and insert all rows returned into the Region DataTable (which in this instance is
generated by the runtime).

 There ’ s more to a data adapter than just selecting data by issuing a command, as discussed shortly in the
 “ Persisting DataSet Changes ” section.

 Populating a DataSet from XML
 In addition to generating the schema for a given DataSet , associated tables, and so on, a DataSet class
can read and write data in native XML, such as a file on disk, a stream, or a text reader.

 To load XML into a DataSet class, simply call one of the ReadXML() methods to read data from a disk
file, as shown in this example:

DataSet ds = new DataSet();
ds.ReadXml(“.\\MyData.xml”);

 The ReadXml() method attempts to load any inline schema information from the input XML, and if
found, uses this schema in the validation of any data loaded from that file. If no inline schema is found,
the DataSet will extend its internal structure as data is loaded. This is similar to the behavior of Fill()
in the previous example, which retrieves the data and constructs a DataTable based on the data selected.

 Persisting DataSet Changes
 After editing data within a DataSet , it is usually necessary to persist these changes. The most common
example is selecting data from a database, displaying it to the user, and returning those updates to the
database.

 In a less “ connected ” application, changes might be persisted to an XML file, transported to a middle - tier
application server, and then processed to update several data sources.

 A DataSet class can be used for either of these examples; what ’ s more, it ’ s really easy to do.

c26.indd 884c26.indd 884 2/19/08 5:25:35 PM2/19/08 5:25:35 PM

885

Chapter 26: Data Access

 Updating with Data Adapters
 In addition to the SelectCommand that a SqlDataAdapter most likely includes, you can also define an
 InsertCommand , UpdateCommand , and DeleteCommand . As these names imply, these objects are
instances of the command object appropriate for your provider such as SqlCommand and OleDbCommand .

 With this level of flexibility, you are free to tune the application by judicious use of stored procedures for
frequently used commands (say SELECT and INSERT), and use straight SQL for less commonly used
commands such as DELETE . In general, it is recommended to provide stored procedures for all database
interaction because it is faster and easier to tune.

 This example uses the stored procedure code from the “ Calling Stored Procedures ” section for inserting,
updating, and deleting Region records, coupled with the RegionSelect procedure written previously,
which produces an example that uses each of these commands to retrieve and update data in a DataSet
class. The main body of code is shown in the following section.

 Inserting a New Row
 You can add a new row to a DataTable in two ways. The first way is to call the NewRow() method,
which returns a blank row that you then populate and add to the Rows collection, as follows:

DataRow r = ds.Tables[“Region”].NewRow();
r[“RegionID”]=999;
r[“RegionDescription”]=”North West”;
ds.Tables[“Region”].Rows.Add(r);

 The second way to add a new row would be to pass an array of data to the Rows.Add() method as
shown in the following code:

DataRow r = ds.Tables[“Region”].Rows.Add
 (new object [] { 999 , “North West” });

 Each new row within the DataTable will have its RowState set to Added . The example dumps out the
records before each change is made to the database, so after adding a row (either way) to the DataTable ,
the rows will look something like the following. Note that the right - hand column shows the row state:

New row pending inserting into database
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 999 North West Added

 To update the database from the DataAdapter , call one of the Update() methods as shown here:

da.Update(ds , “Region”);

 For the new row within the DataTable , this executes the stored procedure (in this instance
 RegionInsert). The example then dumps the state of the data so you can see that changes have been
made to the database.

New row updated and new RegionID assigned by database
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 5 North West Unchanged

c26.indd 885c26.indd 885 2/19/08 5:25:35 PM2/19/08 5:25:35 PM

886

Part IV: Data

 Look at the last row in the DataTable . The RegionID had been set in code to 999 , but after executing
the RegionInsert stored procedure the value has been changed to 5 . This is intentional — the database
will often generate primary keys for you, and the updated data in the DataTable is due to the fact that
the SqlCommand definition within the source code has the UpdatedRowSource property set to
 UpdateRowSource.OutputParameters :

SqlCommand aCommand = new SqlCommand(“RegionInsert” , conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter(“@RegionDescription” ,
 SqlDbType.NChar ,
 50 ,
 “RegionDescription”));
aCommand.Parameters.Add(new SqlParameter(“@RegionID” ,
 SqlDbType.Int,
 0 ,
 ParameterDirection.Output ,
 false ,
 0 ,
 0 ,
 “RegionID” , // Defines the SOURCE column
 DataRowVersion.Default ,
 null));
aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

 What this means is that whenever a data adapter issues this command, the output parameters should be
mapped to the source of the row, which in this instance was a row in a DataTable . The flag states what
data should be updated — the stored procedure has an output parameter that is mapped to the DataRow .
The column it applies to is RegionID because this is defined within the command definition.

 The following table shows the values for UpdateRowSource .

UpdateRowSource Value Description

Both A stored procedure might return output parameters and also a
complete database record. Both of these data sources are used to
update the source row.

FirstReturnedRecord This infers that the command returns a single record, and that the
contents of that record should be merged into the original source
DataRow. This is useful where a given table has a number of default
(or computed) columns because after an INSERT statement these
need to be synchronized with the DataRow on the client.
An example might be ‘INSERT (columns) INTO (table)
WITH (primarykey)‘, then ‘SELECT (columns) FROM (table)
WHERE (primarykey)‘. The returned record would then be merged
into the original row.

None All data returned from the command is discarded.

OutputParameters Any output parameters from the command are mapped onto the
appropriate column(s) in the DataRow.

c26.indd 886c26.indd 886 2/19/08 5:25:36 PM2/19/08 5:25:36 PM

887

Chapter 26: Data Access

 Updating an Existing Row
 Updating an existing row within the DataTable is just a case of using the DataRow class ’ s indexer with
either a column name or column number, as shown in the following code:

r[“RegionDescription”]=”North West England”;
r[1] = “North Wast England”;

 Both of these statements are equivalent (in this example):

Changed RegionID 5 description
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 5 North West England Modified

 Prior to updating the database, the row updated has its state set to Modified as shown.

 Deleting a Row
 Deleting a row is a matter of calling the Delete() method:

r.Delete();

 A deleted row has its row state set to Deleted , but you cannot read columns from the deleted DataRow
because they are no longer valid. When the adaptor ’ s Update() method is called, all deleted rows will
use the DeleteCommand , which in this instance executes the RegionDelete stored procedure.

 Writing XML Output
 As you have seen already, the DataSet class has great support for defining its schema in XML, and just
as you can read data from an XML document, you can also write data to an XML document.

 The DataSet.WriteXml() method enables you to output various parts of the data stored within the
 DataSet . You can elect to output just the data, or the data and the schema. The following code shows an
example of both for the Region example shown earlier:

ds.WriteXml(“.\\WithoutSchema.xml”);
ds.WriteXml(“.\\WithSchema.xml” , XmlWriteMode.WriteSchema);

 The first file, WithoutSchema.xml , is shown here:

 < ?xml version=”1.0” standalone=”yes”? >
 < NewDataSet >
 < Region >
 < RegionID > 1 < /RegionID >
 < RegionDescription > Eastern < /RegionDescription >
 < /Region >
 < Region >
 < RegionID > 2 < /RegionID >
 < RegionDescription > Western < /RegionDescription >
 < /Region >
 < Region >
 < RegionID > 3 < /RegionID >
 < RegionDescription > Northern < /RegionDescription >

(continued)

c26.indd 887c26.indd 887 2/19/08 5:25:36 PM2/19/08 5:25:36 PM

888

Part IV: Data

 < /Region >
 < Region >
 < RegionID > 4 < /RegionID >
 < RegionDescription > Southern < /RegionDescription >
 < /Region >
 < /NewDataSet >

 The closing tag on RegionDescription is over to the right of the page because the database column is
defined as NCHAR(50) , which is a 50 - character string padded with spaces.

 The output produced in the WithSchema.xml file includes the XML schema for the DataSet as well as
the data itself:

 < ?xml version=”1.0” standalone=”yes”? >
 < NewDataSet >
 < xs:schema id=”NewDataSet” xmlns=””
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” >
 < xs:element name=”NewDataSet” msdata:IsDataSet=”true” >
 < xs:complexType >
 < xs:choice maxOccurs=”unbounded” >
 < xs:element name=”Region” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”RegionID”
 msdata:AutoIncrement=”true”
 msdata:AutoIncrementSeed=”1”
 type=”xs:int” / >
 < xs:element name=”RegionDescription”
 type=”xs:string” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:choice >
 < /xs:complexType >
 < /xs:element >
 < /xs:schema >
 < Region >
 < RegionID > 1 < /RegionID >
 < RegionDescription > Eastern < /RegionDescription >
 < /Region >
 < Region >
 < RegionID > 2 < /RegionID >
 < RegionDescription > Western < /RegionDescription >
 < /Region >
 < Region >
 < RegionID > 3 < /RegionID >
 < RegionDescription > Northern < /RegionDescription >
 < /Region >
 < Region >
 < RegionID > 4 < /RegionID >
 < RegionDescription > Southern < /RegionDescription >
 < /Region >
 < /NewDataSet >

(continued)

c26.indd 888c26.indd 888 2/19/08 5:25:36 PM2/19/08 5:25:36 PM

889

Chapter 26: Data Access

 Note the use in this file of the msdata schema, which defines extra attributes for columns within a
 DataSet , such as AutoIncrement and AutoIncrementSeed — these attributes correspond directly
with the properties definable on a DataColumn class.

 Working with ADO.NET
 This section addresses some common scenarios when developing data access applications with ADO.NET.

 Tiered Development
 Producing an application that interacts with data is often done by splitting up the application into
tiers. A common model is to have an application tier (the front end), a data services tier, and the
database itself.

 One of the difficulties with this model is deciding what data to transport between tiers, and the format
that it should be transported in. With ADO.NET you will be pleased to learn that these wrinkles have
been ironed out, and support for this style of architecture is part of the design.

 One of the things that is much better in ADO.NET than OLE DB is the support for copying an entire
record set. In .NET it is easy to copy a DataSet :

DataSet source = {some dataset};
DataSet dest = source.Copy();

 This creates an exact copy of the source DataSet — each DataTable , DataColumn , DataRow , and
 Relation will be copied, and all data will be in exactly the same state as it was in the source. If all you
want to copy is the schema of the DataSet , you can use the following code:

DataSet source = {some dataset};
DataSet dest = source.Clone();

 This again copies all tables, relations, and so on. However, each copied DataTable will be empty. This
process really couldn ’ t be more straightforward.

 A common requirement when writing a tiered system, whether based on a Windows client application or
the Web, is to be able to ship as little data as possible between tiers. This reduces the amount of resources
consumed.

 To cope with this requirement, the DataSet class has the GetChanges() method. This simple method
performs a huge amount of work, and returns a DataSet with only the changed rows from the source
data set. This is ideal for passing data between tiers because only a minimal set of data has to be passed
along.

 The following example shows how to generate a “ changes ” DataSet :

DataSet source = {some dataset};
DataSet dest = source.GetChanges();

 Again, this is trivial. Under the hood, things are a little more interesting. There are two overloads of the
 GetChanges() method. One overload takes a value of the DataRowState enumeration, and returns
only rows that correspond to that state (or states). GetChanges() simply calls GetChanges(Deleted |
Modified | Added) , and first checks to ensure that there are some changes by calling HasChanges() .
If no changes have been made, null is returned to the caller immediately.

 The next operation is to clone the current DataSet . Once done, the new DataSet is set up to ignore
constraint violations (EnforceConstraints = false), and then each changed row for every table is
copied into the new DataSet .

c26.indd 889c26.indd 889 2/19/08 5:25:36 PM2/19/08 5:25:36 PM

890

Part IV: Data

 When you have a DataSet that just contains changes, you can then move these off to the data services
tier for processing. After the data has been updated in the database, the “ changes ” DataSet can be
returned to the caller (for example, there might be some output parameters from the stored procedures
that have updated values in the columns). These changes can then be merged into the original DataSet
using the Merge() method. Figure 26 - 9 depicts this sequence of operations.

Database TierClient Tier Data Services Tier

DataSet

Changes

Merge

Update

New DataDataSet

Figure 26-9

 Key Generation with SQL Server
 The RegionInsert stored procedure presented earlier in this chapter is one example of generating a
primary key value on insertion into the database. The method for generating the key in this particular
example is fairly crude and wouldn ’ t scale well, so for a real application you should use some other
strategy for generating keys.

 Your first instinct might be to define an identity column, and return the @@IDENTITY value from the
stored procedure. The following stored procedure shows how this might be defined for the Categories
table in the Northwind example database. Type this stored procedure into SQL Query Analyzer, or run
the StoredProcs.sql file that is part of the code download:

CREATE PROCEDURE CategoryInsert(@CategoryName NVARCHAR(15),
 @Description NTEXT,
 @CategoryID INTEGER OUTPUT) AS
 SET NOCOUNT OFF
 INSERT INTO Categories (CategoryName, Description)
 VALUES(@CategoryName, @Description)
 SELECT @CategoryID = @@IDENTITY
GO

 This inserts a new row into the Category table and returns the generated primary key to the caller (the
value of the CategoryID column). You can test the procedure by typing the following in SQL Query
Analyzer:

DECLARE @CatID int;
EXECUTE CategoryInsert ‘Pasties’ , ‘Heaven Sent Food’ , @CatID OUTPUT;
PRINT @CatID;

 When executed as a batch of commands, this inserts a new row into the Categories table, and returns
the identity of the new record, which is then displayed to the user.

 Suppose that some months down the line, someone decides to add a simple audit trail, which will record
all insertions and modifications made to the category name. In that case, you define a table similar to the
one shown in Figure 26 - 10 , which will record the old and new value of the category.

c26.indd 890c26.indd 890 2/19/08 5:25:37 PM2/19/08 5:25:37 PM

891

Chapter 26: Data Access

 The script for this table is included in the StoredProcs.sql file. The AuditID column is defined as an
 IDENTITY column. You then construct a couple of database triggers that will record changes to the
 CategoryName field:

CREATE TRIGGER CategoryInsertTrigger
 ON Categories
 AFTER UPDATE
AS
 INSERT INTO CategoryAudit(CategoryID , OldName , NewName)
 SELECT old.CategoryID, old.CategoryName, new.CategoryName
 FROM Deleted AS old,
 Categories AS new
 WHERE old.CategoryID = new.CategoryID;
GO

 If you are used to Oracle stored procedures, SQL Server doesn ’ t exactly have the concept of OLD and NEW
rows; instead, for an insert trigger there is an in - memory table called Inserted , and for deletes and
updates the old rows are available within the Deleted table.

 This trigger retrieves the CategoryID of the record(s) affected and stores this together with the old and
new value of the CategoryName column.

 Now, when you call your original stored procedure to insert a new CategoryID , you receive an identity
value; however, this is no longer the identity value from the row inserted into the Categories table — it
is now the new value generated for the row in the CategoryAudit table. Ouch!

 To view the problem first - hand, open a copy of SQL Server Enterprise Manager, and view the contents of
the Categories table (see Figure 26 - 11).

Figure 26-10

Figure 26-11

c26.indd 891c26.indd 891 2/19/08 5:25:37 PM2/19/08 5:25:37 PM

892

Part IV: Data

 This lists all the categories in the Northwind database.

 The next identity value for the Categories table should be 9 , so a new row can be inserted by executing
the following code, to see what ID is returned:

DECLARE @CatID int;
EXECUTE CategoryInsert ‘Pasties’ , ‘Heaven Sent Food’ , @CatID OUTPUT;
PRINT @CatID;

 The output value of this on a test PC was 1 . If you look at the CategoryAudit table shown in
Figure 26 - 12 , you will find that this is the identity of the newly inserted audit record, not the identity
of the category record created.

Figure 26-12

 The problem lies in the way that @@IDENTITY actually works. It returns the LAST identity value created
by your session, so as shown in Figure 26 - 12 , it isn ’ t completely reliable.

 Two other identity functions can be used instead of @@IDENTITY , but neither is free from possible
problems. The first, SCOPE_IDENTITY() , returns the last identity value created within the current scope .
SQL Server defines scope as a stored procedure, trigger, or function. This may work most of the time, but
if for some reason someone adds another INSERT statement into the stored procedure, you can receive
this value rather than the one you expected.

 The other identity function, IDENT_CURRENT() , returns the last identity value generated for a given
table in any scope. For example, if two users were accessing SQL Server at exactly the same time, it
might be possible to receive the other user ’ s generated identity value.

 As you might imagine, tracking down a problem of this nature isn ’ t easy. The moral of the story is to
beware when using IDENTITY columns in SQL Server.

 Naming Conventions
 The following tips and conventions are not directly .NET - related. However, they are worth sharing and
following, especially when naming constraints. Feel free to skip this section if you already have your
own views on this subject.

 Conventions for Database Tables
 Always use singular names — Product rather than Products . This one is largely due to having
to explain a database schema to customers; it is much better grammatically to say “ The Product
table contains products ” than “ The Products table contains products. ” Check out the
Northwind database to see an example of how not to do this.

 Adopt some form of naming convention for the fields that go into a table — Ours is
< Table > _Id for the primary key of a table (assuming that the primary key is a single column),
 Name for the field considered to be the user - friendly name of the record, and Description for
any textual information about the record itself. Having a good table convention means you can
look at virtually any table in the database and instinctively know what the fields are used for.

❑

❑

c26.indd 892c26.indd 892 2/19/08 5:25:37 PM2/19/08 5:25:37 PM

893

Chapter 26: Data Access

 Conventions for Database Columns
 Use singular rather than plural names.

 Any columns that link to another table should be named the same as the primary key of that
table. For example, a link to the Product table would be Product_Id , and to the Sample table
 Sample_Id . This isn ’ t always possible, especially if one table has multiple references to another.
In that case, use your own judgment.

 Date fields should have a suffix of _On , as in Modified_On and Created_On . Then it is easy to
read some SQL output and infer what a column means just by its name.

 Fields that record the user should be suffixed with _By , as in Modified_By and Created_By .
Again, this aids legibility.

 Conventions for Constraints
 If possible, include in the name of the constraint the table and column name, as in CK_ < Table > _
 < Field > . For example, CK_Person_Sex for a check constraint on the Sex column of the Person
table. A foreign key example would be FK_Product_Supplier_Id , for the foreign key
relationship between product and supplier.

 Show the type of constraint with a prefix, such as CK for a check constraint and FK for a foreign
key constraint. Feel free to be more specific, as in CK_Person_Age_GT0 for a constraint on the
age column indicating that the age should be greater than zero.

 If you have to trim the length of the constraint, do it on the table name part rather than the
column name. When you get a constraint violation, it is usually easy to infer which table was in
error, but sometimes not so easy to check which column caused the problem. Oracle has a
30 - character limit on names, which is easy to surpass.

 Stored Procedures
 Just like the obsession many have fallen into over the past few years of putting a C in front of each and
every class they declare (you know you have!), many SQL Server developers feel compelled to
prefix every stored procedure with sp_ or something similar. This is not a good idea.

 SQL Server uses the sp_ prefix for all (well, most) system stored procedures. So, you risk confusing your
users into thinking that sp_widget is something that comes as standard with SQL Server. In addition,
when looking for a stored procedure, SQL Server treats procedures with the sp_ prefix differently from
those without it.

 If you use this prefix and do not qualify the database/owner of the stored procedure, SQL Server will
look in the current scope and then jump into the master database and look up the stored procedure there.
Without the sp_ prefix, your users would get an error a little earlier. What ’ s worse, and also possible to
do, is to create a local stored procedure (one within your database) that has the same name and
parameters as a system stored procedure. Avoid this at all costs — if in doubt, don ’ t prefix.

 When calling stored procedures, always prefix them with the owner of the procedure, as in
dbo.selectWidgets . This is slightly faster than not using the prefix, because SQL Server has less work
to do to find the stored procedure. Something like this is not likely to have a huge impact on the
execution speed of your application, but it is a tuning trick that is essentially available for free.

 Above all, when naming entities, whether within the database or within code, be consistent .

❑

❑

❑

❑

❑

❑

❑

c26.indd 893c26.indd 893 2/19/08 5:25:38 PM2/19/08 5:25:38 PM

894

Part IV: Data

 Summary
 The subject of data access is a large one, especially in .NET, because there is an abundance of new
material to cover. This chapter has provided an outline of the main classes in the ADO.NET namespaces
and has shown how to use the classes when manipulating data from a data source.

 First, the Connection object was explored, through the use of both SqlConnection (SQL Server –
 specific) and OleDbConnection (for any OLE DB data sources). The programming model for these two
classes is so similar that one can normally be substituted for the other, and the code will continue to run.
With the advent of .NET version 1.1, you can use an Oracle provider and also an ODBC provider.

 This chapter also discussed how to use connections properly, so that these scarce resources could be
closed as early as possible. All of the connection classes implement the IDisposable interface, called
when the object is placed within a using clause. If there is one thing you should take away from this
chapter, it is the importance of closing database connections as early as possible.

 In addition, this chapter discussed database commands by way of examples that executed with no
returned data to calling stored procedures with input and output parameters. It described various
execute methods, including the ExecuteXmlReader method available only on the SQL Server provider.
This vastly simplifies the selection and manipulation of XML - based data.

 The generic classes within the System.Data namespace were all described in detail, from the
DataSet class through DataTable , DataColumn , DataRow , and on to relationships and constraints.
The DataSet class is an excellent container of data, and various methods make it ideal for cross - tier data
flow. The data within a DataSet is represented in XML for transport, and in addition, methods are
available that pass a minimal amount of data between tiers. The ability to have many tables of data
within a single DataSet can greatly increase its usability; being able to maintain relationships
automatically between master/details rows is explored further in the next chapter, “ LINQ to SQL. ”

 Having the schema stored within a DataSet is one thing, but .NET also includes the data adapter that,
next to various Command objects, can be used to select data for a DataSet and subsequently update data
in the data store. One of the beneficial aspects of a data adapter is that a distinct command can be
defined for each of the four actions: SELECT , INSERT , UPDATE , and DELETE . The system can create a
default set of commands based on database schema information and a SELECT statement, but for the best
performance, a set of stored procedures can be used, with the DataAdapter ’ s commands defined
appropriately to pass only the necessary information to these stored procedures.

 The XSD tool (XSD.EXE) was described, using an example that shows how to work with classes based on
an XML schema from within .NET. The classes produced are ready to be used within an application, and
their automatic generation can save many hours of laborious typing.

 Finally, this chapter discussed some best practices and naming conventions for database development.

 Further information about accessing SQL Server databases is provided in Chapter 30 , “ .NET
Programming with SQL Server. ”

c26.indd 894c26.indd 894 2/19/08 5:25:38 PM2/19/08 5:25:38 PM

 LINQ to SQL

 Probably the biggest and most exciting addition to the .NET Framework 3.5 is the addition of the
.NET Language Integrated Query Framework (LINQ) into C# 2008. Basically, what LINQ provides is
a lightweight fa ç ade over programmatic data integration. This is such a big deal because data is king .

 Pretty much every application deals with data in some manner, whether that data comes from
memory (in - memory data), databases, XML files, text files, or something else. Many developers
find it very difficult to move from the strongly typed object - oriented world of C# to the data tier
where objects are second - class citizens. The transition from the one world to the next was a kludge
at best and was full of error - prone actions.

 In C#, programming with objects means a wonderful strongly typed ability to work with code. You
can navigate very easily through the namespaces, work with a debugger in the Visual Studio IDE,
and more. However, when you have to access data, you will notice that things are dramatically
different.

 You end up in a world that is not strongly typed, where debugging is a pain or even non - existent,
and you end up spending most of the time sending strings to the database as commands. As a
developer, you also have to be aware of the underlying data and how it is structured or how all the
data points relate.

 Microsoft has provided LINQ as a lightweight fa ç ade that provides a strongly typed interface to
the underlying data stores. LINQ provides the means for developers to stay within the coding
environment they are used to and access the underlying data as objects that work with the IDE,
IntelliSense, and even debugging.

 With LINQ, the queries that you create now become first - class citizens within the .NET Framework
alongside everything else you are used to. When you work with queries for the data store you are
working with, you will quickly realize that they now work and behave as if they are types in the
system. This means that you can now use any .NET - compliant language and query the underlying
data store as you never have before.

 Chapter 11 , “ Language Integrated Query, ” provides an introduction to LINQ.

 Figure 27 - 1 shows LINQ ’ s place in querying data.

c27.indd 895c27.indd 895 2/19/08 5:25:53 PM2/19/08 5:25:53 PM

Part IV: Data

896

C# 2008 Visual Basic 2008 Others

LINQ to
Objects

LINQ to
DataSets

LINQ to
SQL

LINQ to
Entities

LINQ to
XML

.NET Language Integrated Query (LINQ)

Objects

Relational
Data Stores

<XML>

XML

Figure 27-1

 Looking at the figure, you can see that there are different types of LINQ capabilities depending on the
underlying data that you are going to be working with in your application. From the list, you will find
the following LINQ technologies:

 LINQ to Objects

 LINQ to DataSets

 LINQ to SQL

 LINQ to Entities

 LINQ to XML

 As a developer, you are given class libraries that provide objects that, using LINQ, can be queried as any
other data store can. Objects are really nothing more than data that is stored in memory. In fact, your
objects themselves might be querying data. This is where LINQ to Objects comes into play.

 LINQ to SQL (the focus of this chapter), LINQ to Entities, and LINQ to DataSets provide the means to
query relational data. Using LINQ, you can query directly against your database and even against the
stored procedures that your database exposes. The last item from the diagram is the ability to query against
your XML using LINQ to XML (this topic is covered in Chapter 29). The big thing that makes LINQ exciting
is that it matters very little what you are querying against, because your queries will be quite similar.

 This chapter looks at the following:

 Working with LINQ to SQL along with Visual Studio 2008

 Looking at how LINQ to SQL objects map to database entities

 Building LINQ to SQL operations without the O/R Designer

 Using the O/R Designer with custom objects

 Querying the SQL Server database using LINQ

 Stored procedures and LINQ to SQL

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c27.indd 896c27.indd 896 2/19/08 5:25:53 PM2/19/08 5:25:53 PM

897

Chapter 27: LINQ to SQL

 LINQ to SQL and Visual Studio 2008
 LINQ to SQL in particular is a means to have a strongly typed interface against a SQL Server database.
You will find the approach that LINQ to SQL provides is by far the easiest approach to querying SQL
Server available at the moment. It is not just simply about querying single tables within the database,
but, for instance, if you call the Customers table of the Northwind database and want to pull a
customer ’ s specific orders from the Orders table in the same database, LINQ will use the relations of the
tables and make the query on your behalf. LINQ will query the database and load up the data for you to
work with from your code (again, strongly typed).

 It is important to remember that LINQ to SQL is not only about querying data, but you also are able to
perform the Insert/Update/Delete statements that you need to perform.

 You can also interact with the entire process and customize the operations performed to add your own
business logic to any of the CRUD operations (Create/Read/Update/Delete).

 Visual Studio 2008 comes into strong play with LINQ to SQL in that you will find an extensive user
interface that allows you to design the LINQ to SQL classes you will work with.

 The next section of the chapter focuses on showing you how to set up your first LINQ to SQL instance
and pull items from the Products table of the Northwind database.

 Calling the Products Table Using LINQ to SQL — Creating
the Console Application

 For an example of using LINQ to SQL, this chapter starts by calling a single table from the Northwind
database and using this table to populate some results to the screen.

 To start off, create a console application (using the .NET Framework 3.5) and add the Northwind
database file to this project (Northwind.MDF).

 The following example makes use of the Northwind.mdf SQL Server Express Database file. To get this
database, please search for ” Northwind and pubs Sample Databases for SQL Server 2000. ” You can find
this link at http://www.microsoft.com/downloads/details.aspx?familyid=06616212-
0356-46a0-8da2-eebc53a68034 & displaylang=en . Once installed, you will find the
Northwind.mdf file in the C:\SQL Server 2000 Sample Databases directory. To add this da-
tabase to your application, right - click the solution you are working with and select Add Existing Item.
From the provided dialog, you are then able to browse to the location of the Northwind.mdf file that
you just installed. If you are having trouble getting permissions to work with the database, make a data
connection to the file from the Visual Studio Server Explorer and you will be asked to be made the ap-
propriate user of the database. VS will make the appropriate changes on your behalf for this to occur.

 By default now, when creating many of the application types provided in the .NET Framework 3.5 within
Visual Studio 2008, you will notice that you already have the proper references in place to work with
LINQ. When creating a console application, you will get the following using statements in your code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Runtime.Remoting.Messaging;
using System.Text;

 From this, you can see that the LINQ reference that will be required is already in place. The next step is
to add a LINQ to SQL class.

c27.indd 897c27.indd 897 2/19/08 5:25:54 PM2/19/08 5:25:54 PM

Part IV: Data

898

 Adding a LINQ to SQL Class
 When working with LINQ to SQL, one of the big advantages you will find is that Visual Studio
2008 does an outstanding job of making it as easy as possible. VS2008 provides an object - relational
mapping designer, called the O/R Designer, which allows you to visually design the object to
database mapping.

 To start this task, right - click your solution and select Add New Item from the provided menu. From the
items in the Add New Item dialog, you will find LINQ to SQL Classes as an option. This is presented in
Figure 27 - 2 .

Figure 27-2

Figure 27-3

 Because this example is using the Northwind database, name the file Northwind.dbml . Click the Add
button, and you will see that this operation creates a couple of files for you. Figure 27 - 3 presents the
Solution Explorer after adding the Northwind.dbml file.

 A number of things were added to your project with this action. The Northwind.dbml file was added
and it contains two components. Because the LINQ to SQL class that was added works with LINQ,

c27.indd 898c27.indd 898 2/19/08 5:25:54 PM2/19/08 5:25:54 PM

899

Chapter 27: LINQ to SQL

the following references were also added on your behalf: System.Core , System.Data
.DataSetExtensions , System.Data.Linq , and System.Xml.Linq .

 Introducing the O / R Designer
 Another big addition to the IDE that appeared when you added the LINQ to SQL class to your project
(the Northwind.dbml file), was a visual representation of the .dbml file. The new O/R Designer will
appear as a tab within the document window directly in the IDE. Figure 27 - 4 shows a view of the O/R
Designer when it is first initiated.

Figure 27-4

 The O/R Designer is made up of two parts. The first part is for data classes, which can be tables, classes,
associations, and inheritances. Dragging such items on this design surface will give you a visual
representation of the object that can be worked with. The second part (on the right) is for methods,
which map to the stored procedures within a database.

 When viewing your .dbml file within the O/R Designer, you will also have an Object Relational
Designer set of controls in the Visual Studio toolbox. The toolbox is presented in Figure 27 - 5 .

Figure 27-5

c27.indd 899c27.indd 899 2/19/08 5:25:55 PM2/19/08 5:25:55 PM

Part IV: Data

900

 Creating the Product Object
 For this example, you want to work with the Products table from the Northwind database, which
means that you are going to have to create a Products table that will use LINQ to SQL to map to this
table. Accomplishing this task is simply a matter of opening up a view of the tables contained within the
database from the Server Explorer dialog within Visual Studio and dragging and dropping the Products
table onto the design surface of the O/R Designer. This action ’ s results are illustrated in Figure 27 - 6 .

Figure 27-6

 With this action, a bunch of code is added to the designer files of the .dbml file on your behalf. These classes
will give you a strongly typed access to the Products table. For a demonstration of this, turn your attention
to the console application ’ s Program.cs file. The following shows the code that is required for this example:

using System;
using System.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 var query = dc.Products;

 foreach (Product item in query)

c27.indd 900c27.indd 900 2/19/08 5:25:55 PM2/19/08 5:25:55 PM

901

Chapter 27: LINQ to SQL

 {
 Console.WriteLine(“{0} | {1} | {2}”,
 item.ProductID, item.ProductName, item.UnitsInStock);
 }

 Console.ReadLine();
 }
 }
}

 This bit of code does not have many lines to it, but it is querying the Products table within the
Northwind database and pulling out the data to display. It is important to step through this code starting
with the first line in the Main() method:

NorthwindDataContext dc = new NorthwindDataContext();

 The NorthwindDataContext object is an object of type DataContext . Basically, you can view this as
something that maps to a Connection type object. This object works with the connection string and
connects to the database for any required operations.

 The next line is quite interesting:

var query = dc.Products;

 Here, you are using the new var keyword, which is an implicitly typed variable. If you are unsure of the
output type, you can use var instead of defining a type and the type will be set into place at compile
time. Actually, the code dc.Products; returns a System.Data.Linq.Table < ConsoleApplication1.
Product > object and this is what var is set as when the application is compiled. Therefore, this means
that you could have also just as easily written the statement as such:

Table < Product > query = dc.Products;

 This approach is actually better because programmers coming to look at the code of the application will
find it easier to understand what is happening. Using the var keyword has so much of a hidden aspect
to it that programmers might find it problematic. To use Table < Product > , which is basically a generic
list of Product objects, you should make a reference to the System.Data.Linq namespace.

 The value assigned to the query object is the value of the Products property, which is of type
 Table < Product > . From there, the next bit of code iterates through the collection of Product objects
found in Table < Product > :

foreach (Product item in query)
{
 Console.WriteLine(“{0} | {1} | {2}”,
 item.ProductID, item.ProductName, item.UnitsInStock);
}

 The iteration, in this case, pulls out the ProductID , ProductName , and UnitsInStock properties
from the Product object and writes them out to the program. Because you are using only a few of

c27.indd 901c27.indd 901 2/19/08 5:25:55 PM2/19/08 5:25:55 PM

Part IV: Data

902

the items from the table, you also have the option from the O/R Designer to delete the columns that
you are not interested in pulling from the database. The results coming out from the program are
presented here:

1 | Chai | 39
2 | Chang | 17
3 | Aniseed Syrup | 13
4 | Chef Anton’s Cajun Seasoning | 53
5 | Chef Anton’s Gumbo Mix | 0

** Results removed for space reasons **

73 | R ö d Kaviar | 101
74 | Longlife Tofu | 4
75 | Rh ö nbr ä u Klosterbier | 125
76 | Lakkalik ö ö ri | 57
77 | Original Frankfurter gr ü ne So ß e | 32

 From this example, you can see just how easy it is to query a SQL Server database using LINQ to SQL.

 How Objects Map to LINQ Objects
 The great thing about LINQ is that it gives you strongly typed objects to use in your code (with
IntelliSense) and these objects map to existing database objects. Again, LINQ is nothing more than a thin
fa ç ade over these pre - existing database objects. The following table shows the mappings that are
between the database objects and the LINQ objects.

Database Object LINQ Object

Database DataContext

Table Class and Collection

View Class and Collection

Column Property

Relationship Nested Collection

Stored Procedure Method

 On the left side, you are dealing with your database. The database is the entire entity — the tables,
views, triggers, stored procedures — everything that makes up the database. On the LINQ side of this,
you have an object called the DataContext object. A DataContext object is bound to the database.
For the required interaction with the database, it contains a connection string, it will manage all of the
transactions that occur, it will take care of any logging, and it will manage the output of the data.
The DataContext object completely manages the transactions with the database on your behalf.

c27.indd 902c27.indd 902 2/19/08 5:25:56 PM2/19/08 5:25:56 PM

903

Chapter 27: LINQ to SQL

 Tables, as you saw in the example, are converted to classes. This means that if you have a Products
table, you will have a Product class. You will notice that LINQ is name - friendly in that it changes plural
tables to singular to give the proper name to the class that you are using in your code. In addition to
database tables being treated as classes, you will find that database views are also treated as the same.
Columns, on the other hand, are treated as properties. This gives you the ability to manage the attributes
(names and type definitions) of the column directly.

 Relationships are nested collections that map between these various objects. This gives you the ability to
define relationships that are mapped to multiple items.

 It is also important to understand the mapping of stored procedures. These actually map to methods
within your code from the DataContext instance. The next section takes a closer look at the
 DataContext and the table objects within LINQ.

 When dealing with the architecture of LINQ to SQL, you will notice that there are really three layers to
this — your application, the LINQ to SQL layer, and the SQL Server database. As you saw from the
previous examples, you can create a strongly typed query in your application ’ s code:

dc.Products;

 This in turn gets translated to a SQL query by the LINQ to SQL layer, which is then supplied to the
database on your behalf:

SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID],
[t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice],
[t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel],
[t0].[Discontinued]
FROM [dbo].[Products] AS [t0]

 In return, the LINQ to SQL layer takes the rows coming out of the database from this query and turns
the returned data into a collection of strongly typed objects that you can easily work with.

 The DataContext Object
 Again, the DataContext object manages the transactions that occur with the database that you are
working with when working with LINQ to SQL. There is actually a lot that you can do with the
 DataContext object.

 In instantiating one of these objects, you will notice that it takes a couple of optional parameters. These
options include:

 A string that represents the location of the SQL Server Express database file or the name of the
SQL Server that is used

 A connection string

 Another DataContext object

 The first two string options also have the option of including your own database mapping file. Once you
have instantiated this object, you are then able to programmatically use it for many types of operations.

 Using ExecuteQuery
 One of the simpler things that you can accomplish with the DataContext object is to run quick
commands that you write yourself using the ExecuteQuery < T > () method. For instance, if you are

❑

❑

❑

c27.indd 903c27.indd 903 2/19/08 5:25:56 PM2/19/08 5:25:56 PM

Part IV: Data

904

going to pull all the products from the Products table using the ExecuteQuery < T > () method, your
code would be similar to the following:

using System;
using System.Collections.Generic;
using System.Data.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 DataContext dc = new DataContext(@”Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
 Integrated Security=True;User Instance=True”);

 IEnumerable < Product > myProducts =
 dc.ExecuteQuery < Product > (“SELECT * FROM PRODUCTS”, “”);

 foreach (Product item in myProducts)
 {
 Console.WriteLine(item.ProductID + “ | “ + item.ProductName);
 }

 Console.ReadLine();
 }
 }
}

 In this case, the ExecuteQuery < T > () method is called passing in a query string and returning a
collection of Product objects. The query utilized in the method call is a simple Select statement that
doesn ’ t require any additional parameters to be passed in. Because there are no parameters passed in
with the query, you will instead need to use the double quotes as the second required parameter to the
method call. If you were going to optionally substitute any values in the query, you would construct
your ExecuteQuery < T > () call as such:

IEnumerable < Product > myProducts =
 dc.ExecuteQuery < Product > (“SELECT * FROM PRODUCTS WHERE UnitsInStock > {0}”,
 50);

 In this case, the {0} is a placeholder for the substituted parameter value that you are going to pass in,
and the second parameter of the ExecuteQuery < T > () method is the parameter that will be used in the
substitution.

 Using Connection
 The Connection property actually returns an instance of the System.Data.SqlClient.
SqlConnection that is used by the DataContext object. This is ideal if you need to share this
connection with other ADO.NET code that you might be using in your application, or if you need to get
at any of the SqlConnection properties or methods that it exposes. For instance, getting at the
connection string is a simple affair:

NorthwindDataContext dc = new NorthwindDataContext();

Console.WriteLine(dc.Connection.ConnectionString);

c27.indd 904c27.indd 904 2/19/08 5:25:56 PM2/19/08 5:25:56 PM

905

Chapter 27: LINQ to SQL

 Using Transaction
 If you have an ADO.NET transaction that you can use, you are able to assign that transaction to the
 DataContext object instance using the Transaction property. You can also make use of transactions
using the TransactionScope object that is from the .NET 2.0 Framework:

using System;
using System.Collections.Generic;
using System.Data.Linq;
using System.Transactions;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 using (TransactionScope myScope = new TransactionScope())
 {
 Product p1 = new Product() { ProductName = “Bill’s Product” };
 dc.Products.InsertOnSubmit(p1);

 Product p2 = new Product() { ProductName = “Another Product” };
 dc.Products.InsertOnSubmit(p2);

 try
 {
 dc.SubmitChanges();

 Console.WriteLine(p1.ProductID);
 Console.WriteLine(p2.ProductID);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 myScope.Complete();
 }

 Console.ReadLine();
 }
 }
}

 In this case, the TransactionScope object is used and if one of the operations on the database fails,
everything will be rolled back to the original state.

 Other Methods and Properties of the DataContext Object
 In addition to the items just described, a number of other methods and properties are available from the
 DataContext object. The following table shows some of the available methods from DataContext .

c27.indd 905c27.indd 905 2/19/08 5:25:57 PM2/19/08 5:25:57 PM

Part IV: Data

906

 In addition to these methods, the DataContext object exposes some of the properties shown in the
following table.

Method Description

CreateDatabase Allows you to create a database on the server.

DatabaseExists Allows you to determine whether a database exists and can be opened.

DeleteDatabase Deletes the associated database.

ExecuteCommand Allows you to pass in a command to the database to be executed.

ExecuteQuery Allows you to pass queries directly to the database.

GetChangeSet The DataContext object keeps track of changes occurring in the database on
your behalf and this method allows you access to these changes.

GetCommand Gives you access to the commands that are performed.

GetTable Provides access to a collection of tables from the database.

Refresh Allows you to refresh your objects from the data that is stored within the
database.

SubmitChanges Executes your CRUD commands in the database that have been established
in your code.

Translate Converts an IDataReader to objects.

Property Description

ChangeConflicts Provides a collection of objects that cause concurrency conflicts
when the SubmitChanges() method is called.

CommandTimeout Allows you to set the timeout period in which a command against
the database is allowed to run. You should set this to a higher value
if your query needs more time to execute.

Connection Allows you to work with the System.Data.SqlClient.
SqlConnection object used by the client.

DeferredLoadingEnabled Allows you to specify whether or not to delay the loading of one-to-
many or one-to-one relationships.

LoadOptions Allows you to specify or retrieve the value of the
DataLoadOptions object.

Log Allows you to specify the location of the output of the command
that was used in the query.

Mapping Provides the MetaModel on which the mapping is based.

ObjectTrackingEnabled Specifies whether or not to track changes to the objects within the
database for transactional purposes. If you are dealing with a read-
only database, you should set this property to false.

Transaction Allows you to specify the local transaction used with the database.

c27.indd 906c27.indd 906 2/19/08 5:25:57 PM2/19/08 5:25:57 PM

907

Chapter 27: LINQ to SQL

 The Table < TEntity > Object
 The Table < TEntity > object is a representation of the tables that you are working with from the
database. For instance, you saw the use of the Product class, which is a Table < Product > instance. As
you will see throughout this chapter, a number of methods are available from the Table < TEntity >
object. Some of these methods are defined in the following table.

Method Description

Attach Allows you to attach an entity to the DataContext instance.

AttachAll Allows you to attach a collection of entities to the
DataContext instance.

DeleteAllOnSubmit<TSubEntity> Allows you to put all the pending actions into a state of
being ready for deletion. Everything here is enacted when
the SubmitChanges() method is called from the
DataContext object.

DeleteOnSubmit Allows you to put a pending action into a state of being
ready for deletion. Everything here is enacted when the
SubmitChanges() method is called from the
DataContext object.

GetModifiedMembers Provides an array of modified objects. You will be able to
access their current and changed values.

GetNewBindingList Provides a new list for binding to the data store.

GetOriginalEntityState Provides you an instance of the object as it appeared in its
original state.

InsertAllOnSubmit<TSubEntity> Allows you to put all the pending actions into a state of
being ready for insertion. Everything here is enacted with
the SubmitChanges() method called off of the
DataContext object.

InsertOnSubmit Allows you to put a pending action into a state of being
ready for insertion. Everything here is enacted when the
SubmitChanges() method is called from the
DataContext object.

 Working Without the O / R Designer
 Although the new O/R Designer in Visual Studio 2008 makes the creation of everything you need for
LINQ to SQL quite easy, it is important to note that the underlying framework upon which this all rests
allows you to do everything from the ground up yourself. This provides the most control over the
situation and what is actually happening.

c27.indd 907c27.indd 907 2/19/08 5:25:57 PM2/19/08 5:25:57 PM

Part IV: Data

908

 Creating Your Own Custom Object
 To accomplish the same task as was accomplished earlier with the Customer table, you will need to
expose the Customer table yourself via a class. The first step is to create a new class in your project
called Customer.cs . The code for this class is presented here:

using System.Data.Linq.Mapping;

namespace ConsoleApplication1
{
 [Table(Name = “Customers”)]
 public class Customer
 {
 [Column(IsPrimaryKey = true)]
 public string CustomerID { get; set; }
 [Column]
 public string CompanyName { get; set; }
 [Column]
 public string ContactName { get; set; }
 [Column]
 public string ContactTitle { get; set; }
 [Column]
 public string Address { get; set; }
 [Column]
 public string City { get; set; }
 [Column]
 public string Region { get; set; }
 [Column]
 public string PostalCode { get; set; }
 [Column]
 public string Country { get; set; }
 [Column]
 public string Phone { get; set; }
 [Column]
 public string Fax { get; set; }
 }
}

 Here, the Customer.cs file defines the Customer object that you want to use with LINQ to SQL. The
class has the Table attribute assigned to it in order to signify the table class. The Table class attribute
includes a property called Name , which defines the name of the table to use within the database that
is referenced with the connection string. Using the Table attribute also means that you need to
make a reference to the System.Data.Linq.Mapping namespace in your code.

 In addition to the Table attribute, each of the defined properties in the class makes use of the Column
attribute. As stated earlier, columns from the SQL Server database will map to properties in your code.

 Querying with Your Custom Object and LINQ
 With only the Customer class in place, you are then able to query the Northwind database for the
 Customers table. The code to accomplish this task is illustrated in the following example:

using System;
using System.Data.Linq;

c27.indd 908c27.indd 908 2/19/08 5:25:58 PM2/19/08 5:25:58 PM

909

Chapter 27: LINQ to SQL

namespace ConsoleApplication1
{
 class Program
 {
 static void Main()
 {
 DataContext dc = new DataContext(@”Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
 Integrated Security=True;User Instance=True”);

 dc.Log = Console.Out; // Used for outputting the SQL used

 Table < Customer > myCustomers = dc.GetTable < Customer > ();

 foreach (Customer item in myCustomers)
 {
 Console.WriteLine(“{0} | {1}”,
 item.CompanyName, item.Country);
 }

 Console.ReadLine();
 }
 }
}

 In this case, the default DataContext object is used and the connection string to the Northwind SQL
Server Express database is passed in as a parameter. A Table class of type Customer is then populated
using the GetTable < TEntity > () method. For this example, the GetTable < TEntity > () operation uses
your custom - defined Customer class:

dc.GetTable < Customer > ();

 What happens is that LINQ to SQL will use the DataContext object to make the query to the SQL Server
database on your behalf and will get the returned rows as strongly typed Customer objects. This will
allow you to then iterate through each of the Customer objects in the Table object ’ s collection and get at
the information that you need, as is done with the Console.WriteLine() statements here:

foreach (Customer item in myCustomers)
{
 Console.WriteLine(“{0} | {1}”,
 item.CompanyName, item.Country);
}

 Running this code produces the following results in your console application:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region],
[t0].[PostalCode], [t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [Customers] AS [t0]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.21022.8

Alfreds Futterkiste | Germany
Ana Trujillo Emparedados y helados | Mexico
Antonio Moreno Taquer í a | Mexico

(continued)

c27.indd 909c27.indd 909 2/19/08 5:25:58 PM2/19/08 5:25:58 PM

Part IV: Data

910

Around the Horn | UK
Berglunds snabbk ö p | Sweden

// Output removed for clarity

Wartian Herkku | Finland
Wellington Importadora | Brazil
White Clover Markets | USA
Wilman Kala | Finland
Wolski Zajazd | Poland

 Limiting the Columns Called with the Query
 You will notice that the query retrieved every single column that was specified in your Customer class
file. If you remove the columns that you are not going to need, you can then have a new Customer
class file as shown here:

using System.Data.Linq.Mapping;

namespace ConsoleApplication1
{
 [Table(Name = “Customers”)]
 public class Customer
 {
 [Column(IsPrimaryKey = true)]
 public string CustomerID { get; set; }
 [Column]
 public string CompanyName { get; set; }
 [Column]
 public string Country { get; set; }
 }
}

 In this case, I removed all the columns that are not utilized by the application. Now if you run
the console application and look at the SQL query that is produced, you will see the following
results:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[Country]
FROM [Customers] AS [t0]

 You can see that only the three columns that are defined within the Customer class are utilized in the
query to the Customers table.

 The property CustomerID is interesting in that you are able to signify that this column is a primary key
for the table through the use of the IsPrimaryKey setting in the Column attribute. This setting takes a
 Boolean value and in this case, it is set to true .

 Working with Column Names
 The other important point of the columns is that the name of the property that you define in the
 Customer class needs to be the same name as what is used in the database. For instance, if you change

(continued)

c27.indd 910c27.indd 910 2/19/08 5:25:58 PM2/19/08 5:25:58 PM

911

Chapter 27: LINQ to SQL

the name of the CustomerID property to MyCustomerID , you will get the following exception when you
try to run your console application:

System.Data.SqlClient.SqlException was unhandled
 Message=”Invalid column name ‘MyCustomerID’.”
 Source=”.Net SqlClient Data Provider”
 ErrorCode=-2146232060
 Class=16
 LineNumber=1
 Number=207
 Procedure=””
 Server=”\\\\.\\pipe\\F5E22E37-1AF9-44\\tsql\\query”

 To get around this, you need to define the name of the column in the custom Customer class that you
have created. You can do this by using the Column attribute as illustrated here:

[Column(IsPrimaryKey = true, Name = “CustomerID”)]
public string MyCustomerID { get; set; }

 Like the Table attribute, the Column attribute includes a Name property that allows you to specify the
name of the column as it appears in the Customers table.

 Doing this will generate a query as shown here:

SELECT [t0].[CustomerID] AS [MyCustomerID], [t0].[CompanyName], [t0].[Country]
FROM [Customers] AS [t0]

 This also means that you will need to now reference the column using the new name of MyCustomerID
(for example, item.MyCustomerID).

 Creating Your Own DataContext Object
 Now it is probably not the best approach to use the plain - vanilla DataContext object, but instead, you
will find that you have more control by creating your own DataContext class. To accomplish this task,
create a new class called MyNorthwindDataContext.cs and have the class inherit from DataContext .
Your class in its simplest form is illustrated here:

using System.Data.Linq;

namespace ConsoleApplication1
{
 public class MyNorthwindDataContext : DataContext
 {
 public Table < Customer > Customers;

 public MyNorthwindDataContext()
 : base(@”Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
 Integrated Security=True;User Instance=True”)
 {
 }
 }
}

 Here, the class MyNorthwindDataContext inherits from DataContext and provides an instance of the
 Table < Customer > object from the Customer class that you created earlier. The constructor is the other
requirement of this class. This constructor uses a base to initialize a new instance of the object referencing
a file (in this case a connection to a SQL database file).

c27.indd 911c27.indd 911 2/19/08 5:25:59 PM2/19/08 5:25:59 PM

Part IV: Data

912

 Using your own DataContext object now allows you to change the code in your application to the
following:

using System;
using System.Data.Linq;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main()
 {
 MyNorthwindDataContext dc = new MyNorthwindDataContext();
 Table < Customer > myCustomers = dc.Customers;

 foreach (Customer item in myCustomers)
 {
 Console.WriteLine(“{0} | {1}”,
 item.CompanyName, item.Country);
 }

 Console.ReadLine();
 }
 }
}

 By creating an instance of the MyNorthwindDataContext object, you are now allowing the class to
manage the connection to the database. You will also notice that now you have direct access to the
 Customer class through the dc.Customers statement.

 Note that the examples provided in this chapter are considered bare - bones examples in that they don ’ t
include all the error handling and logging that would generally go into building your applications. This
is done to illustrate the points being discussed in the chapter and nothing more.

 Custom Objects and the O / R Designer
 In addition to building your custom object in your own .cs file and then tying that class to the
 DataContext that you have built, you can also use the O/R Designer in Visual Studio 2008 to build your
class files. When you use Visual Studio in this manner, it will create the appropriate .cs file on your
behalf, but by using the O/R Designer, you will also have a visual representation of the class file and any
possible relationships that you have established.

 When viewing the Designer view of your .dbml file, you will notice that there are three items present in
the toolbox. These items are Class, Association, and Inheritance.

 For an example of this, take the Class object from the toolbox and drop it onto the design surface.
You will be presented with an image of the generic class as shown in Figure 27 - 7 .

Figure 27-7

c27.indd 912c27.indd 912 2/19/08 5:25:59 PM2/19/08 5:25:59 PM

913

Chapter 27: LINQ to SQL

 From here, you can now click the Class1 name and rename this class to Customer . Right - clicking next
to the name enables you to add properties to the class file by selecting Add Property from the
provided menu. For this example, give the Customer class three properties — CustomerID ,
 CompanyName , and Country . If you highlight the CustomerID property, you will be able to configure
the property from the Properties dialog in Visual Studio and change the Primary Key setting from False
to True . You also want to highlight the entire class and go to the Properties dialog and change the
 Source property to Customers because this is the name of the table from which this Customer object
needs to work. After this is all done, you will have a visual representation of the class as shown in
Figure 27 - 8 .

Figure 27-8

 As you can see from this image, the CustomerID property is properly represented with a primary key
icon next to the name. With this in place, you can expand the plus sign next to the Northwind.dbml file
and you will find two files here — Northwind.dbml.layout and Northwind.designer.cs . The
 Northwind.dbml.layout file is an XML file that helps Visual Studio with the visual representation
shown in the O/R Designer. The file that is the most important is the Northwind.designer.cs file.
This is the Customer class file that was created on your behalf. When you open this file, you are able to
see what Visual Studio created for you.

 First, you will find the Customer class file within the code of the page:

[Table(Name=”Customers”)]
public partial class Customer : INotifyPropertyChanging,
 INotifyPropertyChanged
{

 // Code removed for clarity

}

 The Customer class is the name of the class according to what you provided in the designer. The class
comes with the Table attribute and provides a name value of Customers because this is the name of the
database that this object will need to work with when connecting to the Northwind database.

 Within the Customer class, you will find the three properties that you defined. Presented here is just one
of the properties — CustomerID :

[Column(Storage=”_CustomerID”, CanBeNull=false, IsPrimaryKey=true)]
public string CustomerID
{
 get
 {
 return this._CustomerID;
 }
 set

(continued)

c27.indd 913c27.indd 913 2/19/08 5:25:59 PM2/19/08 5:25:59 PM

Part IV: Data

914

 {
 if ((this._CustomerID != value))
 {
 this.OnCustomerIDChanging(value);
 this.SendPropertyChanging();
 this._CustomerID = value;
 this.SendPropertyChanged(“CustomerID”);
 this.OnCustomerIDChanged();
 }
 }
}

 Similar to when you built a class for yourself from the earlier example, the properties defined use the
 Column attribute and some of the properties available to this attribute. You can see that the primary key
setting is set using the IsPrimaryKey item.

 In addition to the Customer class, you will find that a class inheriting from the DataContext object is
also within the created file:

[System.Data.Linq.Mapping.DatabaseAttribute(Name=”NORTHWND”)]
public partial class NorthwindDataContext : System.Data.Linq.DataContext
{

 // Code removed for clarity

}

 This DataContext object, NorthwindDataContext , allows you to connect to the Northwind database
and class the Customers table as was accomplished in the previous examples.

 You will find that using the O/R Designer is a process that can make the creation of your database object
class files simple and straightforward. However, at the same time, if you want complete control, you can
code up everything yourself and get the results you are after.

 Querying the Database
 As you ’ ve seen, there are a number of ways in which you can query the database from the code of your
application. In some of the simplest forms, your queries looked like the following:

Table < Product > query = dc.Products;

 This command was pulling down the entire Products table to your query object instance.

 Using Query Expressions
 In addition to a pulling a table straight out of the database using dc.Products , you also can use a query
expression directly in your code that is strongly typed. An example of this is shown in the following code:

using System;
using System.Linq;

(continued)

c27.indd 914c27.indd 914 2/19/08 5:26:00 PM2/19/08 5:26:00 PM

915

Chapter 27: LINQ to SQL

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 var query = from p in dc.Products
 select p;

 foreach (Product item in query)
 {
 Console.WriteLine(item.ProductID + “ | “ + item.ProductName);
 }

 Console.ReadLine();
 }
 }
}

 In this case, a query object (again, a Table < Product > object) is populated with the query value of from
p in dc.Products select p; . This command, though shown on two lines for readability purposes,
can also be presented on a single line if you wish.

 Query Expressions in Detail
 You will find that there are a number of query expressions that you can use from your code. The
previous example is a simple select statement that returns the entire table. The following list of items are
some of the other query expressions that you have at your disposal.

Segmentation Syntax

Project select <expression>

Filter where <expression>, distinct

Test any(<expression>), all(<expression>)

Join <expression> join <expression> on <expression> equals <expression>

Group group by <expression>, into <expression>, <expression> group join <decision> on
<expression> equals <expression> into <expression>

Aggregate count([<expression>]), sum(<expression>), min(<expression>), max(<expression>),
avg(<expression>)

Partition skip [while] <expression>, take [while] <expression>

Set union, intersect, except

Order order by <expression>, <expression> [ascending | descending]

c27.indd 915c27.indd 915 2/19/08 5:26:00 PM2/19/08 5:26:00 PM

Part IV: Data

916

 Filtering Using Expressions
 In addition to straight queries for the entire table, you can filter items using the where and distinct
options. The following provides an example of querying the Products table for a specific type of record:

var query = from p in dc.Products
 where p.ProductName.StartsWith(“L”)
 select p;

 In this case, this query is selecting all the records from the Products table that start with the letter L .
This is done via the where p.ProductName.StartsWith(“ L “) expression. You will find a large
selection of methods available from the ProductName property that allows you to fine - tune the filtering
you need. This operation produces the following results:

65 | Louisiana Fiery Hot Pepper Sauce
66 | Louisiana Hot Spiced Okra
67 | Laughing Lumberjack Lager
74 | Longlife Tofu
76 | Lakkalik ö ö ri

 You can also add as many of these expressions to the list as you need. For instance, here is an example of
adding two where statements to your query:

var query = from p in dc.Products
 where p.ProductName.StartsWith(“L”)
 where p.ProductName.EndsWith(“i”)
 select p;

 In this case, there is a filter expression that looks for items with a product name starting with the letter L
and then a second expression is done to make sure that the second criteria is also applied, which states
that the items must also end with the letter i . This would give you the following results:

76 | Lakkalik ö ö ri

 Performing Joins
 In addition to working with one table, you can work with multiple tables and perform joins with your
queries. If you drag and drop both the Customers table and the Orders table onto the Northwind.dbml
design surface, you will get the result presented in Figure 27 - 9 .

Figure 27-9

c27.indd 916c27.indd 916 2/19/08 5:26:00 PM2/19/08 5:26:00 PM

917

Chapter 27: LINQ to SQL

 From this figure, you can see that after you drag and drop both of these elements onto the design
surface, Visual Studio will know that there is a relationship between these items and will create this
relationship for you in the code and represent it with the black arrow.

 From here, you can use a join statement in your query to work with both of the tables as presented in
the following example:

using System;
using System.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();
 dc.Log = Console.Out;

 var query = from c in dc.Customers
 join o in dc.Orders on c.CustomerID equals o.CustomerID
 orderby c.CustomerID
 select new { c.CustomerID, c.CompanyName,
 c.Country, o.OrderID, o.OrderDate };

 foreach (var item in query)
 {
 Console.WriteLine(item.CustomerID + “ | “ + item.CompanyName
 + “ | “ + item.Country + “ | “ + item.OrderID
 + “ | “ + item.OrderDate);
 }

 Console.ReadLine();
 }
 }
}

 This example is pulling from the Customers table and joining on the Orders table where the
 CustomerID columns match. This is done through the join statement:

join o in dc.Orders on c.CustomerID equals o.CustomerID

 From here, a new object is created with the select new statement and this new object comprises of the
 CustomerID , CompanyName , and Country columns from the Customer table as well as the OrderID and
 OrderDate columns from the Orders table.

 When it comes to iterating through the collection of this new object, the interesting part is that the
 foreach statement also uses the var keyword because the type is not known at this point in time:

foreach (var item in query)
{
 Console.WriteLine(item.CustomerID + “ | “ + item.CompanyName
 + “ | “ + item.Country + “ | “ + item.OrderID
 + “ | “ + item.OrderDate);
}

c27.indd 917c27.indd 917 2/19/08 5:26:01 PM2/19/08 5:26:01 PM

Part IV: Data

918

 Regardless, the item object here has access to all the properties that you specified. When you run this
example, you will get results similar to what is presented in this partial result:

WILMK | Wilman Kala | Finland | 10695 | 10/7/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 10615 | 7/30/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 10673 | 9/18/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 11005 | 4/7/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10879 | 2/10/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10873 | 2/6/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10910 | 2/26/1998 12:00:00 AM

 Grouping Items
 You are also easily able to group items with your queries. In the Northwind.dbml example that you are
working with, drag and drop the Categories table onto the design surface and you will see that there is
a relation with this table and the Products table from earlier. The following example shows you how to
group products by categories:

using System;
using System.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 var query = from p in dc.Products
 orderby p.Category.CategoryName ascending
 group p by p.Category.CategoryName into g
 select new { Category = g.Key, Products = g};

 foreach (var item in query)
 {
 Console.WriteLine(item.Category);

 foreach (var innerItem in item.Products)
 {
 Console.WriteLine(“ “ + innerItem.ProductName);
 }

 Console.WriteLine();
 }

 Console.ReadLine();
 }
 }
}

 This example creates a new object, which is a group of categories, and packages the entire Product table
into this new table called g . Before that, the categories are ordered by name using the orderby statement
because the order provided is an ascending order (the other option being descending). The output is
the Category (passed in through the Key property) and the Product instance. The iteration with the

c27.indd 918c27.indd 918 2/19/08 5:26:01 PM2/19/08 5:26:01 PM

919

Chapter 27: LINQ to SQL

 foreach statements is done once for the categories and another for each of the products that are found
in the category.

 A partial output of this program is presented here:

Beverages
 Chai
 Chang
 Guaran á Fant á stica
 Sasquatch Ale
 Steeleye Stout
 C ô te de Blaye
 Chartreuse verte
 Ipoh Coffee
 Laughing Lumberjack Lager
 Outback Lager
 Rh ö nbr ä u Klosterbier
 Lakkalik ö ö ri

Condiments
 Aniseed Syrup
 Chef Anton’s Cajun Seasoning
 Chef Anton’s Gumbo Mix
 Grandma’s Boysenberry Spread
 Northwoods Cranberry Sauce
 Genen Shouyu
 Gula Malacca
 Sirop d’ é rable
 Vegie-spread
 Louisiana Fiery Hot Pepper Sauce
 Louisiana Hot Spiced Okra
 Original Frankfurter gr ü ne So b e

 You will find that there a lot more commands and expressions available to you beyond what are
presented in this short chapter.

 Stored Procedures
 So far, you have been querying the tables directly and leaving it up to LINQ to create the appropriate
SQL statement for the operation. When working with pre - existing databases that make heavy use of
stored procedures and for those that want to follow the best practice of using stored procedures within a
database, you will find that LINQ is still a viable option.

 LINQ to SQL treats working with stored procedures as a method call. As you saw in Figure 27 - 4 , there is
a design surface called the O/R Designer that allows you to drag and drop tables onto it so that you can
then programmatically work with the table. On the right side of the O/R Designer, you will find a spot
where you are able to drag and drop stored procedures.

 Any stored procedures that you drag and drop onto this part of the O/R Designer will now become
available methods to you from DataContext object. For this example, drag and drop the
 TenMostExpensiveProducts stored procedure onto this part of the O/R Designer.

c27.indd 919c27.indd 919 2/19/08 5:26:01 PM2/19/08 5:26:01 PM

Part IV: Data

920

 The following example shows how you would call this stored procedure within the Northwind database:

using System;
using System.Collections.Generic;
using System.Data.Linq;
using System.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 ISingleResult < Ten_Most_Expensive_ProductsResult > result =
 dc.Ten_Most_Expensive_Products();

 foreach (Ten_Most_Expensive_ProductsResult item in result)
 {
 Console.WriteLine(item.TenMostExpensiveProducts + “ | “ +
 item.UnitPrice);
 }

 Console.ReadLine();
 }
 }
}

 From this example, you can see that the rows coming out of the stored procedure are collected into an
 ISingleResult < Ten_Most_Expensive_ProductsResult > object. From here, iteration through this
object is as simple as all the rest.

 As you can see from this example, calling your stored procedures is a simple process.

 Summary
 One of the more exciting features of the .NET Framework 3.5 release is the LINQ capabilities that the
platform provides. This chapter focused on using LINQ to SQL and some of the options available to you
in querying your SQL Server databases.

 Using LINQ to SQL enables to have a strongly typed set of operations for performing CRUD operations
against your database. With that said, though, you are still able to use pre - existing access capabilities
whether that is interacting with ADO.NET or working with your stored procedures.

 The next chapter takes a look manipulating XML, in preparation for Chapter 29 , “ LINQ to XML. ”

c27.indd 920c27.indd 920 2/19/08 5:26:02 PM2/19/08 5:26:02 PM

 Manipulating XML

 XML plays a significant role in the .NET Framework. Not only does the .NET Framework allow
you to use XML in your application, but the .NET Framework itself uses XML for configuration
files and source code documentation, as do SOAP, Web services, and ADO.NET, to name just
a few.

 To accommodate this extensive use of XML, the .NET Framework includes the System.Xml
namespace. This namespace is loaded with classes that can be used for the processing of XML, and
many of these classes are discussed in this chapter.

 This chapter discusses how to use the XmlDocument class, which is the implementation of
the Document Object Model (DOM), as well as what .NET offers as a replacement for SAX (the
 XmlReader and XmlWriter classes). It also discusses the class implementations of XPath and
XSLT and demonstrates how XML and ADO.NET work together, as well as how easy it is to
transform one to the other. You also learn how you can serialize your objects to XML and create an
object from (or deserialize) an XML document using classes in the System.Xml.Serialization
namespace. More to the point, you learn how you can incorporate XML into your C#
applications.

 You should note that the XML namespace allows you to get similar results in a number of
different ways. It is impossible to include all these variations in one chapter, so while exploring
one possible way of doing things we ’ ll try our best to mention alternative routes that will yield the
same or similar results.

 Because it ’ s beyond the scope of this book to teach you XML from scratch, we assume that you are
already somewhat familiar with XML technology. For example, you should be familiar with elements,
attributes, and nodes, and you should also know what we mean when we refer to a well - formed
document. You should also be familiar with SAX and DOM. If you want to find out more about XML,
Wrox ’ s Beginning XML (Wiley Publishing, Inc., ISBN 0 - 7645 - 7077 - 3) is a great place to start.

 This chapter covers the following:

 XML standards

 XmlReader and XmlWriter

 XmlDocument

❑

❑

❑

c28.indd 921c28.indd 921 2/19/08 5:26:13 PM2/19/08 5:26:13 PM

Part IV: Data

922

 XPathDocument

 XmlNavigator

 The discussion begins with a brief overview of the current status of XML standards.

 XML Standards Support in . NET
 The World Wide Web Consortium (W3C) has developed a set of standards that give XML its power and
potential. Without these standards, XML would not have the impact on the development world that it
does. The W3C Web site (www.w3.org) is a valuable source for all things XML.

 The .NET Framework supports the following W3C standards:

 XML 1.0 (www.w3.org/TR/1998/REC-xml-19980210), including DTD support

 XML namespaces (www.w3.org/TR/REC-xml-names), both stream level and DOM

 XML schemas (www.w3.org/2001/XMLSchema)

 XPath expressions (www.w3.org/TR/xpath)

 XSLT transformations (www.w3.org/TR/xslt)

 DOM Level 1 Core (www.w3.org/TR/REC-DOM-Level-1)

 DOM Level 2 Core (www.w3.org/TR/DOM-Level-2-Core)

 SOAP 1.1 (www.w3.org/TR/SOAP)

 The level of standards support will change as the framework matures and the W3C updates the
recommended standards. Because of this, you need to make sure you stay up - to - date with the standards
and the level of support provided by Microsoft.

 Introducing the System.Xml Namespace
 Support for processing XML is provided by the classes in the System.Xml namespace in .NET. This
section looks (in no particular order) at some of the more important classes that the System.Xml
namespace provides. The following table lists the main XML reader and writer classes.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Class Name Description

XmlReader An abstract reader class that provides fast, non-cached XML data. XmlReader
is forward-only, like the SAX parser.

XmlWriter An abstract writer class that provides fast, non-cached XML data in stream or
file format.

XmlTextReader Extends XmlReader. Provides fast forward-only stream access to XML data.

XmlTextWriter Extends XmlWriter. Fast forward-only generation of XML streams.

c28.indd 922c28.indd 922 2/19/08 5:26:14 PM2/19/08 5:26:14 PM

923

Chapter 28: Manipulating XML

 The following table lists some other useful classes for handling XML.

Class Name Description

XmlNode An abstract class that represents a single node in an XML document. Base
class for several classes in the XML namespace.

XmlDocument Extends XmlNode. This is the W3C DOM implementation. It provides a tree
representation in memory of an XML document, enabling navigation and
editing.

XmlDataDocument Extends XmlDocument. This is a document that can be loaded from XML data
or from relational data in an ADO.NET DataSet. Allows the mixing of XML
and relational data in the same view.

XmlResolver An abstract class that resolves external XML-based resources such as DTD
and schema references. Also used to process <xsl:include> and
<xsl:import> elements.

XmlNodeList A list of XmlNodes that can be iterated through.

XmlUrlResolver Extends XmlResolver. Resolves external resources named by a uniform
resource identifier (URI).

 Many of the classes in the System.Xml namespace provide a means to manage XML documents and
streams, whereas others (such as the XmlDataDocument class) provide a bridge between XML data
stores and the relational data stored in DataSet s.

 It is worth noting that the XML namespace is available to any language that is part of the .NET family.
This means that all of the examples in this chapter could also be written in Visual Basic .NET, managed
C++, and so on.

 Using System.Xml Classes
 The following examples use books.xml as the source of data. You can download this file from the Wrox
Web site (www.wrox.com), but it is also included in several examples in the .NET SDK. The books.xml
file is a book catalog for an imaginary bookstore. It includes book information such as genre, author
name, price, and ISBN number. As with the other chapters, you can download all code examples in this
chapter from the Wrox Web site (www.wrox.com).

 This is what the books.xml file looks like:

 < ?xml version=’1.0’? >
 < !-- This file represents a fragment of a book store inventory database -- >
 < bookstore >
 < book genre=”autobiography” publicationdate=”1991” ISBN=”1-861003-11-0” >
 < title > The Autobiography of Benjamin Franklin < /title >
 < author >
 < first-name > Benjamin < /first-name >
 < last-name > Franklin < /last-name >
 < /author >

(continued)

c28.indd 923c28.indd 923 2/19/08 5:26:14 PM2/19/08 5:26:14 PM

Part IV: Data

924

 < price > 8.99 < /price >
 < /book >
 < book genre=”novel” publicationdate=”1967” ISBN=”0-201-63361-2” >
 < title > The Confidence Man < /title >
 < author >
 < first-name > Herman < /first-name >
 < last-name > Melville < /last-name >
 < /author >
 < price > 11.99 < /price >
 < /book >
 < book genre=”philosophy” publicationdate=”1991” ISBN=”1-861001-57-6” >
 < title > The Gorgias < /title >
 < author >
 < name > Plato < /name >
 < /author >
 < price > 9.99 < /price >
 < /book > < /bookstore >

 Reading and Writing Streamed XML
 The XmlReader and XmlWriter classes will feel familiar if you have ever used SAX. XmlReader - based
classes provide a very fast, forward - only, read - only cursor that streams the XML data for processing.
Because it is a streaming model, the memory requirements are not very demanding. However, you don ’ t
have the navigation flexibility and the read or write capabilities that would be available from a
DOM - based model. XmlWriter - based classes produce an XML document that conforms to the W3C ’ s
XML 1.0 Namespace Recommendations.

 XmlReader and XmlWriter are both abstract classes. The following classes are derived from XmlReader :

 XmlNodeReader

 XmlTextReader

 XmlValidatingReader

 The following classes are derived from XmlWriter :

 XmlTextWriter

 XmlQueryOutput

 XmlTextReader and XmlTextWriter work with either a stream - based object from the System.IO
namespace or TextReader / TextWriter objects. XmlNodeReader uses an XmlNode as its source instead
of a stream. The XmlValidatingReader adds DTD and schema validation and therefore offers data
validation. You look at these a bit more closely later in this chapter.

 Using the XmlReader Class
 XmlReader is a lot like SAX in the MSXML SDK. One of the biggest differences, however, is that whereas
SAX is a push type of model (that is, it pushes data out to the application, and the developer has to be
ready to accept it), the XmlReader has a pull model, where data is pulled into an application requesting
it. This provides an easier and more intuitive programming model. Another advantage to this is that a
pull model can be selective about the data that is sent to the application: if you don ’ t want all of the data,
you don ’ t need to process it. In a push model, all of the XML data has to be processed by the application,
whether it is needed or not.

❑

❑

❑

❑

❑

(continued)

c28.indd 924c28.indd 924 2/19/08 5:26:15 PM2/19/08 5:26:15 PM

925

Chapter 28: Manipulating XML

 The following is a very simple example of reading XML data, and later you take a closer look at the
 XmlReader class. You ’ ll find the code in the XmlReaderSample folder. Here is the code for reading in the
 books.xml document. As each node is read, the NodeType property is checked. If the node is a text
node, the value is appended to the text box:

using System.Xml;
private void button3_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create(“books.xml”);
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Text)
 richTextBox1.AppendText(rdr.Value + “\r\n”);
 }
}

 As previously discussed, XmlReader is an abstract class. So in order to use the XmlReader class directly,
a Create static method has been added. The create method returns an XmlReader object. The overload
list for the Create method contains nine entries. In the preceding example, a string that represents the
file name of the XmlDocument is passed in as a parameter. Stream - based objects and TextReader - based
objects can also be passed in.

 An XmlReaderSettings object can also be used. XmlReaderSettings specifies the features of the
reader. For example, a schema can be used to validate the stream. Set the Schemas property to a valid
 XmlSchemaSet object, which is a cache of XSD schemas. Then the XsdValidate property on the
 XmlReaderSettings object can be set to true .

 Several Ignore properties exist that can be used to control the way the reader processes certain
nodes and values. These properties include IgnoreComments , IgnoreIdentityConstraints ,
 IgnoreInlineSchema , IgnoreProcessingInstructions , IgnoreSchemaLocation ,
and IgnoreWhitespace . These properties can be used to strip certain items from the document.

 Read Methods
 Several ways exist to move through the document. As shown in the previous example, Read() takes you
to the next node. You can then verify whether the node has a value (HasValue()) or, as you see shortly,
whether the node has any attributes (HasAttributes()). You can also use the ReadStartElement()
method, which verifies whether the current node is the start element and then positions you on to the
next node. If you are not on the start element, an XmlException is raised. Calling this method is the
same as calling the IsStartElement() method followed by a Read() method.

 ReadElementString() is similar to ReadString() , except that you can optionally pass in the name of
an element. If the next content node is not a start tag, or if the Name parameter does not match the
current node Name , an exception is raised.

 Here is an example of how ReadElementString() can be used. Notice that this example uses
 FileStream s, so you will need to make sure that you include the System.IO namespace via a using
statement:

private void button6_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create(“books.xml”);
 while (!rdr.EOF)

(continued)

c28.indd 925c28.indd 925 2/19/08 5:26:15 PM2/19/08 5:26:15 PM

Part IV: Data

926

 {
 //if we hit an element type, try and load it in the listbox
 if (rdr.MoveToContent() == XmlNodeType.Element & & rdr.Name == “title”)
 {
 richTextBox1.AppendText(rdr.ReadElementString() + “\r\n”);
 }
 else
 {
 //otherwise move on
 rdr.Read();
 }
 }
}

 In the while loop, you use MoveToContent() to find each node of type XmlNodeType.Element with
the name title . You use the EOF property of the XmlTextReader as the loop condition. If the node is not
of type Element or not named title , the else clause will issue a Read() method to move to the next
node. When you find a node that matches the criteria, you add the result of a ReadElementString() to
the list box. This should leave you with just the book titles in the list box. Note that you don ’ t have to
issue a Read() call after a successful ReadElementString() because ReadElementString() consumes
the entire Element and positions you on the next node.

 If you remove & & rdr.Name== ” title ” from the if clause, you will have to catch the XmlException
when it is thrown. If you look at the data file, you will see that the first element that MoveToContent()
will find is the < bookstore > element. Because it is an element, it will pass the check in the if statement.
However, because it does not contain a simple text type, it will cause ReadElementString() to raise an
 XmlException . One way to work around this is to put the ReadElementString() call in a function of
its own. Then, if the call to ReadElementString() fails inside this function, you can deal with the error
and return to the calling function.

 Go ahead and do this; call this new method LoadTextBox() and pass in the XmlTextReader as a
parameter. This is what the LoadTextBox() method looks like with these changes:

private void LoadTextBox(XmlReader reader)
{
 try
 {
 richTextBox1.AppendText (reader.ReadElementString() + “\r\n”);
 }
 // if an XmlException is raised, ignore it.
 catch(XmlException er){}
}

 This section from the previous example:

if (tr.MoveToContent() == XmlNodeType.Element & & tr.Name == “title”)
{
 richTextBox1.AppendText(tr.ReadElementString() + “\r\n”);
}
else
{
 //otherwise move on
 tr.Read();
}

(continued)

c28.indd 926c28.indd 926 2/19/08 5:26:15 PM2/19/08 5:26:15 PM

927

Chapter 28: Manipulating XML

will have to change to the following:

if (tr.MoveToContent() == XmlNodeType.Element)
{
 LoadTextBox(tr);
}
else
{
 //otherwise move on
 tr.Read();
}

 After running this example, the results should be the same as before. What you are seeing is that there is
more than one way to accomplish the same goal. This is where the flexibility of the classes in the
 System.Xml namespace starts to become apparent.

 The XmlReader can also read strongly typed data. There are several ReadElementContentAs methods,
such as ReadElementContentAsDouble , ReadElementContentAsBoolean , and so on. The following
example shows how to read in the values as a decimal and do some math on the value. In this case, the
value from the price element is increased by 25 percent:

private void button5_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create(“books.xml”);
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Element)
 {
 if (rdr.Name == “price”)
 {
 decimal price = rdr.ReadElementContentAsDecimal();
 richTextBox1.AppendText(“Current Price = “ + price + “\r\n”);
 price += price * (decimal).25;
 richTextBox1.AppendText(“New Price = “ + price + “\r\n\r\n”);
 }
 else if(rdr.Name== “title”)
 richTextBox1.AppendText(rdr.ReadElementContentAsString() + “\r\n”);
 }
 }
}

 If the value cannot be converted to a decimal value, a FormatException is raised. This is a much more
efficient method than reading the value as a string and casting it to the proper data type.

 Retrieving Attribute Data
 As you play with the sample code, you might notice that when the nodes are read in, you don ’ t see any
attributes. This is because attributes are not considered part of a document ’ s structure. When you are on
an element node, you can check for the existence of attributes and optionally retrieve the attribute values.

 For example, the HasAttributes property returns true if there are any attributes; otherwise, it returns
 false . The AttributeCount property tells you how many attributes there are, and the
 GetAttribute() method gets an attribute by name or by index. If you want to iterate through the
attributes one at a time, you can use the MoveToFirstAttribute() and MoveToNextAttribute()
methods.

c28.indd 927c28.indd 927 2/19/08 5:26:16 PM2/19/08 5:26:16 PM

Part IV: Data

928

 The following is an example of iterating through the attributes of the books.xml document:

private void button7_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader tr = XmlReader.Create(“books.xml”);
 //Read in node at a time
 while (tr.Read())
 {
 //check to see if it’s a NodeType element
 if (tr.NodeType == XmlNodeType.Element)
 {
 //if it’s an element, then let’s look at the attributes.
 for (int i = 0; i < tr.AttributeCount; i++)
 {
 richTextBox1.AppendText(tr.GetAttribute(i) + “\r\n”);
 }
 }
 }
}

 This time you are looking for element nodes. When you find one, you loop through all of the attributes
and, using the GetAttribute() method, you load the value of the attribute into the list box. In this
example, those attributes would be genre , publicationdate , and ISBN .

 Validating with XmlReader
 Sometimes it ’ s important to know not only that the document is well formed but also that the document
is valid. An XmlReader can validate the XML according to an XSD schema by using the
 XmlReaderSettings class. The XSD schema is added to the XmlSchemaSet that is exposed through the
 Schemas property. The XsdValidate property must also be set to true ; the default for this property is
 false .

 The following example demonstrates the use of the XmlReaderSettings class. The following is the XSD
schema that will be used to validate the books.xml document:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < xs:schema attributeFormDefault=”unqualified”
 elementFormDefault=”qualified” xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
 < xs:element name=”bookstore” >
 < xs:complexType >
 < xs:sequence >
 < xs:element maxOccurs=”unbounded” name=”book” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”title” type=”xs:string” / >
 < xs:element name=”author” >
 < xs:complexType >
 < xs:sequence >
 < xs:element minOccurs=”0” name=”name”
 type=”xs:string” / >
 < xs:element minOccurs=”0” name=”first-name”
 type=”xs:string” / >
 < xs:element minOccurs=”0” name=”last-name”
 type=”xs:string” / >
 < /xs:sequence >

c28.indd 928c28.indd 928 2/19/08 5:26:16 PM2/19/08 5:26:16 PM

929

Chapter 28: Manipulating XML

 < /xs:complexType >
 < /xs:element >
 < xs:element name=”price” type=”xs:decimal” / >
 < /xs:sequence >
 < xs:attribute name=”genre” type=”xs:string” use=”required” / >
 < !-- < xs:attribute name=”publicationdate”
 type=”xs:unsignedShort” use=”required” / > -- >
 < xs:attribute name=”ISBN” type=”xs:string” use=”required” / >
 < /xs:complexType >
 < /xs:element >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:schema >

 This schema was generated from the books.xml in Visual Studio. Notice that the publicationdate
attribute has been commented out. This will cause the validation to fail.

 The following is the code that uses the schema to validate the books.xml document:

private void button8_Click(object sender, EventArgs e)
{

 richTextBox1.Clear();
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.Schemas.Add(null, “books.xsd”);
 settings.ValidationType = ValidationType.Schema;
 settings.ValidationEventHandler +=
new System.Xml.Schema.ValidationEventHandler(settings_ValidationEventHandler);
 XmlReader rdr = XmlReader.Create(“books.xml”, settings);
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Text)
 richTextBox1.AppendText(rdr.Value + “\r\n”);
 }
}

 After the XmlReaderSettings object setting is created, the schema books.xsd is added to the
 XmlSchemaSet object. The Add method for XmlSchemaSet has four overloads. One takes an XmlSchema
object. The XmlSchema object can be used to create a schema on - the - fly without having to create the
schema file on disk. Another overload takes another XmlSchemaSet object as a parameter. Another takes
two string values: the first is the target namespace and the other is the URL for the XSD document. If the
target namespace parameter is null, the targetNamespace of the schema will be used. The last overload
takes the targetNamespace as the first parameter as well, but it used an XmlReader - based object to
read in the schema. The XmlSchemaSet preprocesses the schema before the document to be validated is
processed.

 After the schema is referenced, the XsdValidate property is set to one of the ValidationType
enumeration values. These valid values are DTD , Schema , or None . If the value selected is set to None ,
then no validation will occur.

 Because the XmlReader object is being used, if there is a validation problem with the document, it
will not be found until that attribute or element is read by the reader. When the validation failure does
occur, an XmlSchemaValidationException is raised. This exception can be handled in a catch
block; however, handling exceptions can make controlling the flow of the data difficult. To help with

c28.indd 929c28.indd 929 2/19/08 5:26:16 PM2/19/08 5:26:16 PM

Part IV: Data

930

this, a ValidationEvent is available in the XmlReaderSettings class. This way, the validation failure
can be handled without your having to use exception handling. The event is also raised by validation
warnings, which do not raise an exception. The ValidationEvent passes in a ValidationEventArgs
object that contains a Severity property. This property determines whether the event was raised by an
error or a warning. If the event was raised by an error, the exception that caused the event to be raised is
passed in as well. There is also a message property. In the example, the message is displayed in a
 MessageBox .

 Using the XmlWriter Class
 The XmlWriter class allows you write XML to a stream, a file, a StringBuilder , a TextWriter , or
another XmlWriter object. Like XmlTextReader , it does so in a forward - only, non - cached manner.
 XmlWriter is highly configurable, allowing you to specify such things as whether or not to indent
content, the amount to indent, what quote character to use in attribute values, and whether namespaces
are supported. Like the XmlReader , this configuration is done using an XmlWriterSettings
object.

 Here ’ s a simple example that shows how the XmlTextWriter class can be used:

private void button9_Click(object sender, EventArgs e)
{
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 settings.NewLineOnAttributes = true;
 XmlWriter writer = XmlWriter.Create(“newbook.xml”, settings);
 writer.WriteStartDocument();
 //Start creating elements and attributes
 writer.WriteStartElement(“book”);
 writer.WriteAttributeString(“genre”, “Mystery”);
 writer.WriteAttributeString(“publicationdate”, “2001”);
 writer.WriteAttributeString(“ISBN”, “123456789”);
 writer.WriteElementString(“title”, “Case of the Missing Cookie”);
 writer.WriteStartElement(“author”);
 writer.WriteElementString(“name”, “Cookie Monster”);
 writer.WriteEndElement();
 writer.WriteElementString(“price”, “9.99”);
 writer.WriteEndElement();
 writer.WriteEndDocument();
 //clean up
 writer.Flush();
 writer.Close();
}

 Here, you are writing to a new XML file called newbook.xml , adding the data for a new book. Note that
 XmlWriter will overwrite an existing file with a new one. You look at inserting a new element or node
into an existing document later in this chapter. You are instantiating the XmlWriter object using the
 Create static method. In this example, a string representing a file name is passed as a parameter along
with an instance of an XmlWriterSetting class.

 The XmlWriterSettings class has properties that control the way that the XML is generated. The
 CheckedCharacters property is a Boolean that will raise an exception if a character in the XML does
not conform to the W3C XML 1.0 recommendation. The Encoding class sets the encoding used for the
XML being generated; the default is Encoding.UTF8. The Indent property is a Boolean value that
determines if elements should be indented. The IndentChars property is set to the character string that

c28.indd 930c28.indd 930 2/19/08 5:26:17 PM2/19/08 5:26:17 PM

931

Chapter 28: Manipulating XML

it is used to indent. The default is two spaces. The NewLine property is used to determine the characters
for line breaks. In the preceding example, the NewLineOnAttribute is set to true . This will put each
attribute in a separate line, which can make the XML generated a little easier to read.

 WriteStartDocument() adds the document declaration. Now you start writing data. First comes the
 book element; then you add the genre , publicationdate , and ISBN attributes. Then you write the
 title , author , and price elements. Note that the author element has a child element name.

 When you click the button, you produce the booknew.xml file, which looks like this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < book
 genre=”Mystery”
 publicationdate=”2001”
 ISBN=”123456789” >
 < title > Case of the Missing Cookie < /title >
 < author >
 < name > Cookie Monster < /name >
 < /author >
 < price > 9.99 < /price >
 < /book >

 The nesting of elements is controlled by paying attention to when you start and finish writing elements
and attributes. You can see this when you add the name child element to the authors element. Note how
the WriteStartElement() and WriteEndElement() method calls are arranged and how that
arrangement produces the nested elements in the output file.

 To go along with the WriteElementString() and WriteAttributeString() methods, there are
several other specialized write methods. WriteCData() outputs a CData section (< !CDATA[...]] >),
writing out the text it takes as a parameter. WriteComment() writes out a comment in proper XML
format. WriteChars() writes out the contents of a char buffer. This works in a similar fashion to the
 ReadChars() method that you looked at earlier; they both use the same type of parameters.
 WriteChars() needs a buffer (an array of characters), the starting position for writing (an integer), and
the number of characters to write (an integer).

 Reading and writing XML using the XmlReader - and XmlWriter - based classes are surprisingly flexible
and simple to do. Next you ’ ll learn how the DOM is implemented in the System.Xml namespace
through the XmlDocument and XmlNode classes.

 Using the DOM in . NET
 The DOM implementation in .NET supports the W3C DOM Level 1 and Core DOM Level 2
specifications. The DOM is implemented through the XmlNode class, which is an abstract class that
represents a node of an XML document.

 There is also an XmlNodeList class, which is an ordered list of nodes. This is a live list of nodes, and any
changes to any node are immediately reflected in the list. XmlNodeList supports indexed access or
iterative access.

 The XmlNode and XmlNodeList classes make up the core of the DOM implementation in the .NET
Framework. The following table lists some of the classes that are based on XmlNode .

c28.indd 931c28.indd 931 2/19/08 5:26:17 PM2/19/08 5:26:17 PM

Part IV: Data

932

 The following table lists classes that extend XmlCharacterData .

Class Name Description

XmlLinkedNode Returns the node immediately before or after the current node. Adds
NextSibling and PreviousSibling properties to XmlNode.

XmlDocument Represents the entire document. Implements the DOM Level 1 and
Level 2 specifications.

XmlDocumentFragment Represents a fragment of the document tree.

XmlAttribute Represents an attribute object of an XmlElement object.

XmlEntity Represents a parsed or unparsed entity node.

XmlNotation Contains a notation declared in a DTD or schema.

Class Name Description

XmlCDataSection Represents a CData section of a document.

XmlComment Represents an XML comment object.

XmlSignificantWhitespace Represents a node with whitespace. Nodes are created only if the
PreserveWhiteSpace flag is true.

XmlWhitespace Represents whitespace in element content. Nodes are created only
if the PreserveWhiteSpace flag is true.

XmlText Represents the textual content of an element or attribute.

Class Name Description

XmlDeclaration Represents the declaration node (<?xml version=‘1.0’...>).

XmlDocumentType Represents data relating to the document type declaration.

XmlElement Represents an XML element object.

XmlEntityReferenceNode Represents an entity reference node.

XmlProcessingInstruction Contains an XML processing instruction.

 The following table lists classes that extend the XmlLinkedNode .

 As you can see, .NET makes available a class to fit just about any XML type that you might encounter.
Because of this, you end up with a very flexible and powerful tool set. This section won ’ t look at every
class in detail, but you will see several examples to give you an idea of what you can accomplish.

c28.indd 932c28.indd 932 2/19/08 5:26:17 PM2/19/08 5:26:17 PM

933

Chapter 28: Manipulating XML

 Using the XmlDocument Class
 XmlDocument and its derived class XmlDataDocument (discussed later in this chapter) are the classes
that you will be using to represent the DOM in .NET. Unlike XmlReader and XmlWriter , XmlDocument
gives you read and write capabilities as well as random access to the DOM tree. XmlDocument resembles
the DOM implementation in MSXML. If you have experience programming with MSXML, you will feel
comfortable using XmlDocument .

 This section introduces an example that creates an XmlDocument object, loads a document from disk,
and loads a text box with data from the title elements. This is similar to one of the examples that you
constructed in the “ Using the XmlReader Class ” section. The difference here is that you will be
selecting the nodes you want to work with, instead of going through the entire document as in the
 XmlReader - based example.

 Here is the code to create an XmlDocument object. Notice how simple it looks in comparison to the
 XmlReader example:

private void button1_Click(object sender, System.EventArgs e)
{
//doc is declared at the module level
 //change path to math your path structure
 _doc.Load(“books.xml”);
 //get only the nodes that we want.
 XmlNodeList nodeLst = _doc.GetElementsByTagName(“title”);
 //iterate through the XmlNodeList
 textBox1.Text = “”;
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + “\r\n”;
 }
}

 Note that you also add the following declaration at the module level for the examples in this section:

private XmlDocument doc=new XmlDocument();

 If this is all that you wanted to do, using the XmlReader would have been a much more efficient way to
load the text box, because you just go through the document once and then you are finished with it. This
is exactly the type of work that XmlReader was designed for. However, if you wanted to revisit a node,
using XmlDocument is a better way.

 Here is an example of using the XPath syntax to retrieve a set of nodes from the document.

private void button2_Click(object sender, EventArgs e)
{
 //doc is declared at the module level
 //change path to math your path structure
 doc.Load(“books.xml”);
 //get only the nodes that we want.
 XmlNodeList nodeLst = _doc.SelectNodes(“/bookstore/book/title”);
 textBox1.Text = “”;
 //iterate through the XmlNodeList
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + “\r\n”;
 }
}

c28.indd 933c28.indd 933 2/19/08 5:26:18 PM2/19/08 5:26:18 PM

Part IV: Data

934

 SelectNodes() returns a NodeList , or a collection of XmlNodes . The list contains only nodes that
match the XPath statement passed in as the parameter SelectNodes . In this example, all you want to see
are the title nodes. If you would have made the call to SelectSingleNode , then you would have
received a single node object that contained the first node in the XmlDocument that matched the XPath
criteria.

 A quick comment regarding the SelectSingleNode() method: This is an XPath implementation in the
 XmlDocument class. Both the SelectSingleNode() and SelectNodes() methods are defined in
 XmlNode , which XmlDocument is based on. SelectSingleNode() returns an XmlNode and
 SelectNodes() returns an XmlNodeList . However, the System.Xml.XPath namespace contains a
richer XPath implementation, and you look at that in a later section.

 Inserting Nodes
 Earlier, you looked at an example using XmlTextWriter that created a new document. The limitation
was that it would not insert a node into a current document. With the XmlDocument class, you can do
just that. Change the button1_Click() event handler from the last example to the following
(DOMSample3 in the download code):

private void button4_Click(object sender, System.EventArgs e)
{
//change path to match your structure
 _doc.Load(“books.xml”);
 //create a new ‘book’ element
 XmlElement newBook = _doc.CreateElement(“book”);
 //set some attributes
 newBook.SetAttribute(“genre”, “Mystery”);
 newBook.SetAttribute(“publicationdate”, “2001”);
 newBook.SetAttribute(“ISBN”, “123456789”);
 //create a new ‘title’ element
 XmlElement newTitle = _doc.CreateElement(“title”);
 newTitle.InnerText = “Case of the Missing Cookie”;
 newBook.AppendChild(newTitle);
 //create new author element
 XmlElement newAuthor = _doc.CreateElement(“author”);
 newBook.AppendChild(newAuthor);
 //create new name element
 XmlElement newName = _doc.CreateElement(“name”);
 newName.InnerText = “Cookie Monster”;
 newAuthor.AppendChild(newName);
 //create new price element
 XmlElement newPrice = _doc.CreateElement(“price”);
 newPrice.InnerText = “9.95”;
 newBook.AppendChild(newPrice);
 //add to the current document
 _doc.DocumentElement.AppendChild(newBook);
 //write out the doc to disk
 XmlTextWriter tr = new XmlTextWriter(“booksEdit.xml”, null);
 tr.Formatting = Formatting.Indented;
 _doc.WriteContentTo(tr);
 tr.Close();
 //load listBox1 with all of the titles, including new one
 XmlNodeList nodeLst = _doc.GetElementsByTagName(“title”);

c28.indd 934c28.indd 934 2/19/08 5:26:18 PM2/19/08 5:26:18 PM

935

Chapter 28: Manipulating XML

 textBox1.Text = “”;
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + “\r\n”;
 }
}

 After executing this code, you end up with the same functionality as in the previous example, but there
is one additional book in the text box, The Case of the Missing Cookie (a soon - to - be classic). If you look
closely at the code, you can see that this is actually a fairly simple process. The first thing that you do is
create a new book element:

XmlElement newBook = doc.CreateElement(“book”);

 CreateElement() has three overloads that allow you to specify the following:

 The element name

 The name and namespace URI

 The prefix, localname, and namespace

 Once the element is created you need to add attributes:

newBook.SetAttribute(“genre”,”Mystery”);
newBook.SetAttribute(“publicationdate”,”2001”);
newBook.SetAttribute(“ISBN”,”123456789”);

 Now that you have the attributes created, you need to add the other elements of a book:

XmlElement newTitle = doc.CreateElement(“title”);
newTitle.InnerText = “The Case of the Missing Cookie”;
newBook.AppendChild(newTitle);

 Once again, you create a new XmlElement - based object (newTitle). Then you set the InnerText
property to the title of our new classic, and append the element as a child to the book element. You
repeat this for the rest of the elements in this book element. Note that you add the name element as a
child to the author element. This will give you the proper nesting relationship, as in the other book
elements.

 Finally, you append the newBook element to the doc.DocumentElement node. This is the same level as
all of the other book elements. You have now updated an existing document with a new element.

 The last thing to do is to write the new XML document to disk. In this example, you create a new
 XmlTextWriter and pass it to the WriteContentTo() method. WriteContentTo() and WriteTo()
both take an XmlTextWriter as a parameter. WriteContentTo() saves the current node and all of its
children to the XmlTextWriter , whereas WriteTo() just saves the current node. Because doc is an
 XmlDocument - based object, it represents the entire document and so that is what is saved. You could also
use the Save() method. It will always save the entire document. Save() has four overloads. You can
specify a string with the file name and path, a Stream - based object, a TextWriter - based object, or an
 XmlWriter - based object.

 You also call the Close() method on XmlTextWriter to flush the internal buffers and close the file.

 Figure 28 - 1 shows what you get when you run this example. Notice the new entry at the bottom of
the list.

❑

❑

❑

c28.indd 935c28.indd 935 2/19/08 5:26:18 PM2/19/08 5:26:18 PM

Part IV: Data

936

 Earlier in the chapter, you saw how to create a document using the XmlTextWriter class. You can also
use XmlDocument . Why would you use one in preference to the other? If the data that you want
streamed to XML is available and ready to write, then the XmlTextWriter class is the best choice.
However, if you need to build the XML document a little at a time, inserting nodes into various places,
then creating the document with XmlDocument might be the better choice. You can accomplish this by
changing the following line:

 doc.Load(“books.xml”);

to this:

 //create the declaration section
 XmlDeclaration newDec = doc.CreateXmlDeclaration(“1.0”,null,null);
 doc.AppendChild(newDec);
 //create the new root element
 XmlElement newRoot = doc.CreateElement(“newBookstore”);
 doc.AppendChild(newRoot);

 First, you create a new XmlDeclaration . The parameters are the version (always 1.0 for now), the
encoding, and the standalone flag. The encoding parameter should be set to a string that is part of the
 System.Text.Encoding class if null isn ’ t used (null defaults to UTF - 8). The standalone flag can
be either yes , no , or null . If it is null , the attribute is not used and will not be included in the document.

 The next element that is created will become the DocumentElement . In this case, it is called
 newBookstore so that you can see the difference. The rest of the code is the same as in the previous
example and works in the same way. This is booksEdit.xml , which is generated from the following code:

 < ?xml version=”1.0”? >
 < newBookstore >
 < book genre=”Mystery” publicationdate=”2001” ISBN=”123456789” >
 < title > The Case of the Missing Cookie < /title >
 < author >
 < name > C. Monster < /name >
 < /author >
 < price > 9.95 < /price >
 < /book >
 < /newBookstore >

 You will want to use the XmlDocument class when you want to have random access to the document, or
the XmlReader - based classes when you want a streaming - type model instead. Remember that there is a
cost for the flexibility of the XmlNode - based XmlDocument class — memory requirements are higher and
the performance of reading the document is not as good as when using XmlReader . There is another
way to traverse an XML document: the XPathNavigator .

 Figure 28 - 1

c28.indd 936c28.indd 936 2/19/08 5:26:19 PM2/19/08 5:26:19 PM

937

Chapter 28: Manipulating XML

 Using XPathNavigators
 An XPathNavigator is used to select, iterate, and sometimes edit data from an XML document. An
 XPathNavigator can be created from an XmlDocument to allow editing capabilities or from an
 XPathDocument for read - only use. Because the XPathDocument is read - only, it performs very well.
Unlike the XmlReader , the XPathNavigator isn ’ t a streaming model, so the same document can be
used without having to re - read and parse.

 The XPathNavigaor is part of the System.Xml.XPath namespace. XPath is a query language used to
select specific nodes or elements from an XML document for processing.

 The System.Xml.XPath Namespace
 The System.Xml.XPath namespace is built for speed. It provides a read - only view of your XML
documents, so there are no editing capabilities. Classes in this namespace are built to do fast iteration
and selections on the XML document in a cursory fashion.

 The following table lists the key classes in System.Xml.XPath and gives a short description of the
purpose of each class.

Class Name Description

XPathDocument Provides a view of the entire XML document. Read-only.

XPathNavigator Provides the navigational capabilities to an XPathDocument.

XPathNodeIterator Provides iteration capabilities to a node set.

XPathExpression Represents a compiled XPath expression. Used by SelectNodes,
SelectSingleNodes, Evaluate, and Matches.

XPathException An XPath exception class.

 XPathDocument
 XPathDocument doesn ’ t offer any of the functionality of the XmlDocument class. Its sole purpose is to
create XPathNavigators . As a matter of fact, that is the only method available on the XPathDocument
class (other then those provided by Object).

 An XPathDocument can be created in a number of different ways. You can pass in an XmlReader , a file
name of an XML document or a Stream - based object to the constructor. This allows a great deal of
flexibility. For example, you can use the XmlValidatingReader to validate the XML and then use that
same object to create the XPathDocument .

 XPathNavigator
 XPathNavigator contains all of the methods for moving and selecting elements that you need. The
following table lists some of the “ move ” methods defined in this class.

c28.indd 937c28.indd 937 2/19/08 5:26:19 PM2/19/08 5:26:19 PM

Part IV: Data

938

 In order to select a subset of the document you can use one of the Select methods listed in the
following table.

Method Name Description

MoveTo() Takes XPathNavigator as a parameter. Moves the current position
to be the same as that passed in to XPathNavigator.

MoveToAttribute() Moves to the named attribute. Takes the attribute name and
namespace as parameters.

MoveToFirstAttribute() Moves to the first attribute in the current element. Returns true if
successful.

MoveToNextAttribute() Moves to the next attribute in the current element. Returns true if
successful.

MoveToFirst() Moves to the first sibling in the current node. Returns true if
 successful; otherwise it returns false.

MoveToLast() Moves to the last sibling in the current node. Returns true if
 successful.

MoveToNext() Moves to the next sibling in the current node. Returns true if
su ccessful.

MoveToPrevious() Moves to the previous sibling in the current node. Returns true if
successful.

MoveToFirstChild() Moves to the first child of the current element. Returns true if
 successful.

MoveToId() Moves to the element with the ID supplied as a parameter. There
needs to be a schema for the document, and the data type for the
 element must be of type ID.

MoveToParent() Moves to the parent of the current node. Returns true if successful.

MoveToRoot() Moves to the root node of the document.

Method Name Description

Select() Selects a node set using an XPath expression.

SelectAncestors() Selects all of the ancestors of the current node based on an XPath
 expression.

SelectChildren() Selects all of the children of the current node based on an XPath
 expression.

SelectDescendants() Selects all of the descendants of the current node based on an XPath
expression.

SelectSingleNode() Selects one node based on an XPath expression.

c28.indd 938c28.indd 938 2/19/08 5:26:20 PM2/19/08 5:26:20 PM

939

Chapter 28: Manipulating XML

 If the XPathNavigator was created from an XPathDocument , it is read - only. If it is created from an
 XmlDocument , the XPathNavigator can be used to edit the document. This can be verified by checking
the CanEdit property. If it is true, you can use one of the Insert methods. InsertBefore and
 InsertAfter will create a new node either before or after the current node. The source of the new node
can be from an XmlReader or a string. Optionally, an XmlWriter can be returned and used to write the
new node information.

 Strongly typed values can be read from the nodes using the ValueAs properties. Notice that this is
different from XmlReader , which used ReadValue methods.

 XPathNodeIterator
 XPathNodeIterator can be thought of as the equivalent of a NodeList or a NodeSet in XPath . This
object has three properties and two methods:

 Clone — Creates a new copy of itself

 Count — Number of nodes in the XPathNodeIterator object

 Current — Returns an XPathNavigator pointing to the current node

 CurrentPosition() — Returns an integer with the current position

 MoveNext() — Moves to the next node that matches the XPath expression that created the
 XPathNodeIterator

 The XPathNodeIterator is returned by the XPathNavigator Select methods. You use it to iterate
over the set of nodes returned by a Select method of the XPathNavigator . Using the MoveNext
method of the XPathNodeIterator does not change the location of the XPathNavigator that created it.

 Using Classes from the XPath Namespace
 The best way to see how these classes are used is to look at some code that iterates through the books.
xml document. This will allow you to see how the navigation works. In order to use the examples, you
first add a reference to the System.Xml.Xsl and System.Xml.XPath namespaces:

using System.Xml.XPath;
using System.Xml.Xsl;

 For this example, you use the file booksxpath.xml . It is similar to the books.xml file that you have
been using, except that there are a couple of extra books added. Here ’ s the form code, which is part of
the XmlSample project:

private void button1_Click(object sender, EventArgs e)
{
 //modify to match your path structure
 XPathDocument doc = new XPathDocument(“books.xml”);
 //create the XPath navigator
 XPathNavigator nav = ((IXPathNavigable)doc).CreateNavigator();
 //create the XPathNodeIterator of book nodes
 // that have genre attribute value of novel
 XPathNodeIterator iter = nav.Select(“/bookstore/book[@genre=’novel’]”);
 textBox1.Text = “”;
 while (iter.MoveNext())
 {
 XPathNodeIterator newIter =
 iter.Current.SelectDescendants(XPathNodeType.Element, false);

❑

❑

❑

❑

❑

(continued)

c28.indd 939c28.indd 939 2/19/08 5:26:20 PM2/19/08 5:26:20 PM

Part IV: Data

940

 while (newIter.MoveNext())
 {
 textBox1.Text += newIter.Current.Name + “: “ +
 newIter.Current.Value + “\r\n”;
 }
 }
}

 The first thing you do in the button1_Click() method is create the XPathDocument (called doc),
passing in the file and path string of the document you want opened. The next line is where the
 XPathNavigator is created:

XPathNavigator nav = doc.CreateNavigator();

 In the example, you can see that you use the Select() method to retrieve a set of nodes that all have
 novel as the value of the genre attribute. You then use the MoveNext() method to iterate through all of
the novels in the book list.

 To load the data into the list box, you use the XPathNodeIterator.Current property. This creates a
new XPathNavigator object based on just the node that the XPathNodeIterator is pointing to. In this
case, you are creating an XPathNavigator for one book node in the document.

 The next loop takes this XPathNavigator and creates another XPathNodeIterator by issuing another
type of select method, the SelectDescendants() method. This gives you an XPathNodeIterator of
all of the child nodes and children of the child nodes of the book node.

 Then you do another MoveNext() loop on the XPathNodeIterator and load the text box with the
element names and element values.

 Figure 28 - 2 shows what the screen looks like after running the code. Note that novels are the only books
listed now.

 What if you wanted to add up the cost of these books? XPathNavigator includes the Evaluate()
method for just this reason. Evaluate() has three overloads. The first one contains a string that is the
XPath function call. The second overload uses the XPathExpression object as a parameter, and the
third uses XPathExpression and an XPathNodeIterator as parameters. The following code is similar
to the previous example, except this time all of the nodes in the document are iterated. The Evaluate
method call at the end totals up the cost of all of the books:

private void button2_Click(object sender, EventArgs e)
{
 //modify to match your path structure
 XPathDocument doc = new XPathDocument(“books.xml”);
 //create the XPath navigator
 XPathNavigator nav = ((IXPathNavigable)doc).CreateNavigator();

(continued)

Figure 28-2

c28.indd 940c28.indd 940 2/19/08 5:26:20 PM2/19/08 5:26:20 PM

941

Chapter 28: Manipulating XML

 //create the XPathNodeIterator of book nodes
 XPathNodeIterator iter = nav.Select(“/bookstore/book”);
 textBox1.Text = “”;
 while (iter.MoveNext())
 {
 XPathNodeIterator newIter =
iter.Current.SelectDescendants(XPathNodeType.Element, false);
 while (newIter.MoveNext())
 {
 textBox1.Text += newIter.Current.Name + “: “ + newIter.Current.Value +
“\r\n”;
 }
 }
 textBox1.Text += “=========================” + “\r\n”;
 textBox1.Text += “Total Cost = “ + nav.Evaluate(“sum(/bookstore/book/price)”);
}

 This time, you see the total cost of the books evaluated in the text box (see Figure 28 - 3).

Figure 28-3

 Now let ’ s say that you need to add a node for discount. You can use the InsertAfter method to get this
done fairly easily. Here is the code:

private void button3_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load(“books.xml”);
 XPathNavigator nav = doc.CreateNavigator();

 if (nav.CanEdit)
 {
 XPathNodeIterator iter = nav.Select(“/bookstore/book/price”);
 while (iter.MoveNext())
 {
 iter.Current.InsertAfter(“ < disc > 5 < /disc > ”);
 }
 }
 doc.Save(“newbooks.xml”);
}

c28.indd 941c28.indd 941 2/19/08 5:26:21 PM2/19/08 5:26:21 PM

Part IV: Data

942

 Here, you add the < disc > 5 < /disc > element after the price elements. First, all of the price nodes are
selected. The XPathNodeIterator is used to iterate over the nodes and the new node is inserted.
The modified document is saved with a new name, newbooks.xml . The new version looks like the
following:

 < ?xml version=”1.0”? >
 < !-- This file represents a fragment of a book store inventory database -- >
 < bookstore >
 < book genre=”autobiography” publicationdate=”1991” ISBN=”1-861003-11-0” >
 < title > The Autobiography of Benjamin Franklin < /title >
 < author >
 < first-name > Benjamin < /first-name >
 < last-name > Franklin < /last-name >
 < /author >
 < price > 8.99 < /price >
 < disc > 5 < /disc >
 < /book >
 < book genre=”novel” publicationdate=”1967” ISBN=”0-201-63361-2” >
 < title > The Confidence Man < /title >
 < author >
 < first-name > Herman < /first-name >
 < last-name > Melville < /last-name >
 < /author >
 < price > 11.99 < /price >
 < disc > 5 < /disc >
 < /book >
 < book genre=”philosophy” publicationdate=”1991” ISBN=”1-861001-57-6” >
 < title > The Gorgias < /title >
 < author >
 < name > Plato < /name >
 < /author >
 < price > 9.99 < /price >
 < disc > 5 < /disc >
 < /book >
 < /bookstore >

 Nodes can be inserted before or after a selected node. The nodes can also be changed, and they can be
deleted. If you have changes that have to be done to large numbers of nodes, using the XPathNavigator
created from an XmlDocument may be your best choice.

 The System.Xml.Xsl Namespace
 The System.Xml.Xsl namespace contains the classes that the .NET Framework uses to support XSL
transforms. The contents of this namespace are available to any store whose classes implement the
 IXPathNavigable interface. In the .NET Framework, that would currently include XmlDocument ,
 XmlDataDocument , and XPathDocument . Again, just as with XPath, use the store that makes the most
sense. If you plan to create a custom store, such as one using the file system and you want to be able to
do transforms, be sure to implement the IXPathNavigable interface in your class.

 XSLT is based on a streaming pull model. Because of this, you can chain several transforms together.
You could even apply a custom reader between transforms if needed. This allows a great deal of
flexibility in design.

c28.indd 942c28.indd 942 2/19/08 5:26:21 PM2/19/08 5:26:21 PM

943

Chapter 28: Manipulating XML

 Transforming XML
 The first example you look at takes the books.xml document and transforms it into a simple HTML
document for display using the XSLT file books.xsl . (This code is in the XSLSample folder.) You will
need to add the following using statements:

using System.IO;
using System.Xml.Xsl;
using System.Xml.XPath;

 The following is the code to perform the transform:

private void button1_Click(object sender, EventArgs e)
{
 XslCompiledTransform trans = new XslCompiledTransform();
 trans.Load(“books.xsl”);
 trans.Transform(“books.xml”, “out.html”);
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + “out.html”);
}

 A transform doesn ’ t get any simpler than this. First, a new XmlCompiledTransform object is created.
It loads the books.xsl transform document and then performs the transform. In this example, a string
with the file name is used as the input. The output is out.html . This file is then loaded into the Web
browser control used on the form. Instead of the file name books.xml as the input document, you can
also use an IXPathNavigable - based object. This would be any object that can create an
 XPathNavigator .

 After the XmlCompiledTransform object is created and the stylesheet is loaded, the transform is
performed. The Transform method can take just about any combination of IXPathNavigable
objects , Streams , TextWriters , XmlWriters , and URIs as parameters. This allows a great deal of
flexibility on transform flow. You can pass the output of one transform in as the input to the next
transform.

 XsltArgumentLists and XmlResolver objects are also included in the parameter options. We look at
the XsltArgumentList object in the next section. XmlResolver - based objects are used to resolve items
that are external to the current document. This could be things such as schemas, credentials and, of
course, stylesheets.

 The books.xsl document is a fairly straightforward stylesheet. The document looks like this:

 < xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >
 < xsl:template match=”/” >
 < html >
 < head >
 < title > Price List < /title >
 < /head >
 < body >
 < table >
 < xsl:apply-templates/ >
 < /table >
 < /body >
 < /html >
 < /xsl:template >
 < xsl:template match=”bookstore” >
 < xsl:apply-templates select=”book”/ >

(continued)

c28.indd 943c28.indd 943 2/19/08 5:26:21 PM2/19/08 5:26:21 PM

Part IV: Data

944

 < /xsl:template >
 < xsl:template match=”book” >
 < tr > < td >
 < xsl:value-of select=”title”/ >
 < /td > < td >
 < xsl:value-of select=”price”/ >
 < /td > < /tr >
 < /xsl:template >
 < /xsl:stylesheet >

 Using XsltArgumentList
 XsltArgumentList is a way that you can bind an object with methods to a namespace. Once this is
done, you can invoke the methods during the transform. Here ’ s an example:

private void button3_Click(object sender, EventArgs e)
{
 //new XPathDocument
 XPathDocument doc = new XPathDocument(“books.xml”);
 //new XslTransform
 XslCompiledTransform trans = new XslCompiledTransform();
 trans.Load(“booksarg.xsl”);
 //new XmlTextWriter since we are creating a new xml document
 XmlWriter xw = new XmlTextWriter(“argSample.xml”, null);
 //create the XslArgumentList and new BookUtils object
 XsltArgumentList argBook = new XsltArgumentList();
 BookUtils bu = new BookUtils();
 //this tells the argumentlist about BookUtils
 argBook.AddExtensionObject(“urn:XslSample”, bu);
 //new XPathNavigator
 XPathNavigator nav = doc.CreateNavigator();
 //do the transform
 trans.Transform(nav, argBook, xw);
 xw.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + “argSample.xml”);
}

 The following is the code for the BooksUtil class. This is the class that will be called from the transform:

class BookUtils
{
 public BookUtils() { }

 public string ShowText()
 {
 return “This came from the ShowText method!”;
 }
}

 The following is what the output of the transform looks like; the output has been formatted for easier
viewing (argSample.xml):

 < books >
 < discbook >
 < booktitle > The Autobiography of Benjamin Franklin < /booktitle >
 < showtext > This came from the ShowText method! < /showtext >

(continued)

c28.indd 944c28.indd 944 2/19/08 5:26:22 PM2/19/08 5:26:22 PM

945

Chapter 28: Manipulating XML

 < /discbook >
 < discbook >
 < booktitle > The Confidence Man < /booktitle >
 < showtext > This came from the ShowText method! < /showtext >
 < /discbook >
 < discbook >
 < booktitle > The Gorgias < /booktitle >
 < showtext > This came from the ShowText method! < /showtext >
 < /discbook >
 < discbook >
 < booktitle > The Great Cookie Caper < /booktitle >
 < showtext > This came from the ShowText method! < /showtext >
 < /discbook >
 < discbook >
 < booktitle > A Really Great Book < /booktitle >
 < showtext > This came from the ShowText method! < /showtext >
 < /discbook >
 < /books >

 In this example, you define a new class, BookUtils . In this class, you have one rather useless method
that returns the string This came from the ShowText method! In the button3_Click() event, you
create the XPathDocument and XslTransform objects. In a previous example, you loaded the XML
document and the transform document directly into the XslCompiledTransform object. This time,
you will use the XPathNavigator to load the documents.

 Next, you need to do the following:

XsltArgumentList argBook=new XsltArgumentList();
BookUtils bu=new BookUtils();
argBook.AddExtensionObject(“urn:XslSample”,bu);

 This is where you create the XsltArgumentList object. You create an instance of the BookUtils object,
and when you call the AddExtensionObject() method, you pass in a namespace for your extension
and the object that you want to be able to call methods from. When you make the Transform() call, you
pass in the XsltArgumentList (argBook) along with the XPathNavigator and the XmlWriter object
you made.

 The following is the booksarg.xsl document (based on books.xsl):

 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

 xmlns:bookUtil=”urn:XslSample” >

 < xsl:output method=”xml” indent=”yes”/ >

 < xsl:template match=”/” >
 < xsl:element name=”books” >
 < xsl:apply-templates/ >
 < /xsl:element >
 < /xsl:template >
 < xsl:template match=”bookstore” >
 < xsl:apply-templates select=”book”/ >
 < /xsl:template >
 < xsl:template match=”book” >
 < xsl:element name=”discbook” >
 < xsl:element name=”booktitle” >

(continued)

c28.indd 945c28.indd 945 2/19/08 5:26:22 PM2/19/08 5:26:22 PM

Part IV: Data

946

 < xsl:value-of select=”title”/ >
 < /xsl:element >
 < xsl:element name=”showtext” >

 < xsl:value-of select=”bookUtil:ShowText()”/ >

 < /xsl:element >
 < /xsl:element >
 < /xsl:template >
 < /xsl:stylesheet >

 The two important new lines are highlighted. First, you add the namespace that you created when you
added the object to XsltArgumentList . Then when you want to make the method call, you use
standard XSLT namespace prefixing syntax and make the method call.

 Another way you could have accomplished this is with XSLT scripting. You can include C#, Visual Basic,
and JavaScript code in the stylesheet. The great thing about this is that unlike current non - .NET
implementations, the script is compiled at the XslTransform.Load() call; this way, you are executing
already compiled scripts.

 Go ahead and modify the previous XSLT file in this way. First, you add the script to the stylesheet. You
can see the following changes in booksscript.xsl :

 < xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

 xmlns:msxsl=”urn:schemas-microsoft-com:xslt”
 xmlns:user=”http://wrox.com” >

 < msxsl:script language=”C#” implements-prefix=”user” >

 string ShowText()
 {
 return “This came from the ShowText method!”;

 }
 < /msxsl:script >

 < xsl:output method=”xml” indent=”yes”/ >
 < xsl:template match=”/” >
 < xsl:element name=”books” >
 < xsl:apply-templates/ >
 < /xsl:element >
 < /xsl:template >
 < xsl:template match=”bookstore” >
 < xsl:apply-templates select=”book”/ >
 < /xsl:template >
 < xsl:template match=”book” >
 < xsl:element name=”discbook” >
 < xsl:element name=”booktitle” >
 < xsl:value-of select=”title”/ >
 < /xsl:element >
 < xsl:element name=”showtext” >

 < xsl:value-of select=”user:ShowText()”/ >

 < /xsl:element >
 < /xsl:element >
 < /xsl:template >
 < /xsl:stylesheet >

(continued)

c28.indd 946c28.indd 946 2/19/08 5:26:22 PM2/19/08 5:26:22 PM

947

Chapter 28: Manipulating XML

 Once again, the changes are highlighted. You set the scripting namespace, add the code (which was
copied and pasted in from the Visual Studio .NET IDE), and make the call in the stylesheet. The output
looks the same as that of the previous example.

 Debugging XSLT
 Visual Studio 2008 has the capability to debug transforms. You can actually step through a transform line
by line, inspect variables, access the call stack, and set break points just like you were debugging C#
source code. You can debug a transform in two ways: by just using the stylesheet and input XML file or
by running the application that the transform belongs to.

Debugging Without the Application
 When you first start creating the transforms, sometimes you don ’ t really want to run through the entire
application. You just want to get a stylesheet working. Visual Studio 2008 allows you to do this using the
XSLT editor.

 Load the books.xsl stylesheet into the Visual Studio 2008 XSLT editor. Set a break point on the
following line:

 < xsl:value-of select=”title”/ >

 Now select the XML menu and then Debug XSLT. You will be asked for the input XML document. This is
the XML that you will want transformed. Now under the default configuration the next thing you will
see is in Figure 28 - 4 .

Figure 28-4

 Now that the transform has been paused, you can explore almost all of the same debug information you
can when debugging source code. Notice that the debugger is showing you the XSLT, the input
document with the current element highlighted and the output of the transform. Now you can step

c28.indd 947c28.indd 947 2/19/08 5:26:23 PM2/19/08 5:26:23 PM

Part IV: Data

948

through the transform line by line. If your XSLT had any scripting, you could also set breakpoints in the
scripts and have the same debugging experience.

 Debugging with the Application
 If you want to debug a transform and the application at the same time, then you will have to make one
small change when you create the XslCompiledTransform object. The constructor has an overload that
takes a Boolean as a parameter. This parameter is enableDebug . The default is false, which means that
even if you have a breakpoint set in the transform, if you run the application code that calls the
transform, it will not break. If you set the parameter to true, the debug information for the CSLT is
generated and the break point will be hit. So in the previous example, the line of code that created the
 XlsCompiledTransform would change to this:

XslCompiledTransform trans = new XslCompiledTransform(true);

 Now when the application is run in debug mode, even the XSLT will have debug information and you
will again have the full Visual Studio debugging experience in your stylesheets.

 To summarize, the key thing to keep in mind when performing transforms is to remember to use the
proper XML data store. Use XPathDocument if you don ’ t need editing capabilities, XmlDataDocument if
you ’ re getting your data from ADO.NET, and XmlDocument if you need to be able to edit the data. In
each case, you are dealing with the same process.

 XML and ADO . NET
 XML is the glue that binds ADO.NET to the rest of the world. ADO.NET was designed from the ground
up to work within the XML environment. XML is used to transfer the data to and from the data store and
the application or Web page. Because ADO.NET uses XML as the transport in remoting scenarios, data
can be exchanged with applications and systems that are not even aware of ADO.NET. Because of the
importance of XML in ADO.NET, there are some powerful features in ADO.NET that allow the reading
and writing of XML documents. The System.Xml namespace also contains classes that can consume or
utilize ADO.NET relational data.

 The database that is used for the examples is from the AdventureWorksLT sample application. The
sample database can be downloaded from codeplex.com/SqlServerSamples. Note that there are
several versions of the AdventureWorks database. Most will work, but the LT version is the simplified
version and is more than adequate for the purposes of this chapter.

 Converting ADO . NET Data to XML
 The first example uses ADO.NET, streams, and XML to pull some data from the database into a
 DataSet , load an XmlDocument object with the XML from the DataSet , and load the XML into a text
box. To run the next few examples, you need to add the following using statements:

using System.Data;
using System.Xml;
using System.Data.SqlClient;
using System.IO;

 The connection string is defined as a module - level variable.

string _connectString = “Server=.\\SQLExpress;
 Database=adventureworkslt;Trusted_Connection=Yes”;

 The ADO.NET samples have a DataGrid object added to the forms. This will allow you to see the data
in the ADO.NET DataSet because it is bound to the grid, as well as the data from the generated XML

c28.indd 948c28.indd 948 2/19/08 5:26:23 PM2/19/08 5:26:23 PM

949

Chapter 28: Manipulating XML

documents that you load in the text box. Here is the code for the first example. The first step in the
examples is to create the standard ADO.NET objects to create a dataset. After the dataset has been
created, it is bound to the grid.

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 DataSet ds = new DataSet(“XMLProducts”);
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter da = new SqlDataAdapter
 (“SELECT Name, StandardCost FROM SalesLT.Product”, conn);
 //fill the dataset
 da.Fill(ds, “Products”);
 //load data into grid
 dataGridView1.DataSource = ds.Tables[“Products”];

 After you create the ADO.Net objects and bind to the grid, you instantiate a MemoryStream object, a
 StreamReader object, and a StreamWriter object. The StreamReader and StreamWriter objects will
use the MemoryStream to move the XML around:

 MemoryStream memStrm=new MemoryStream();
 StreamReader strmRead=new StreamReader(memStrm);
 StreamWriter strmWrite=new StreamWriter(memStrm);

 You use a MemoryStream so that you don ’ t have to write anything to disk; however, you could have
used any object that was based on the Stream class, such as FileStream .

 This next step is where the XML is generated. You call the WriteXml() method from the DataSet
class. This method generates an XML document. WriteXml() has two overloads: one takes a string with
the file path and name, and the other adds a mode parameter. This mode is an XmlWriteMode
enumeration, with the following possible values:

 IgnoreSchema

 WriteSchema

 DiffGram

 IgnoreSchema is used if you don ’ t want WriteXml() to write an inline schema at the start of your XML
file; use the WriteSchema parameter if you do want one. A DiffGram shows the data before and after an
edit in a DataSet.

 //write the xml from the dataset to the memory stream
 ds.WriteXml(strmWrite, XmlWriteMode.IgnoreSchema);
 memStrm.Seek(0, SeekOrigin.Begin);
 //read from the memory stream to a XmlDocument object
 doc.Load(strmRead);
 //get all of the products elements
 XmlNodeList nodeLst = doc.SelectNodes(“//XMLProducts/Products”);
 textBox1.Text = “”;

 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + “\r\n”;
 }

 Figure 28 - 5 shows the data in the list as well as the bound data grid.

❑

❑

❑

c28.indd 949c28.indd 949 2/19/08 5:26:23 PM2/19/08 5:26:23 PM

Part IV: Data

950

 If you had wanted only the schema, you could have called WriteXmlSchema() instead of WriteXml() . This
method has four overloads. One takes a string, which is the path and file name of where to write the XML
document. The second overload uses an object that is based on the XmlWriter class. The third overload uses
an object based on the TextWriter class. The fourth overload is derived from the Stream class.

 Also, if you wanted to persist the XML document to disk, you would have used something like this:

string file = “c:\\test\\product.xml”;
ds.WriteXml(file);

 This would give you a well - formed XML document on disk that could be read in by another stream, or
by DataSet , or used by another application or Web site. Because no XmlMode parameter is specified, this
 XmlDocument would have the schema included. In this example, you use the stream as a parameter to
the XmlDocument.Load() method.

 You now have two views of the data, but more important, you can manipulate the data using two
different models. You can use the System.Data namespace to use the data, or you can use the System.
Xml namespace on the data. This can lead to some very flexible designs in your applications, because
now you are not tied to just one object model to program with. This is the real power to the ADO.NET
and System.Xml combination. You have multiple views of the same data and multiple ways to access
the data.

 The following example simplifies the process by eliminating the three streams and by using some of the
ADO capabilities built into the System.Xml namespace. You will need to change the module - level line
of code:

private XmlDocument doc = new XmlDocument();

to:

private XmlDataDocument doc;

Figure 28-5

c28.indd 950c28.indd 950 2/19/08 5:26:24 PM2/19/08 5:26:24 PM

951

Chapter 28: Manipulating XML

 You need this because you are now using the XmlDataDocument . Here is the code (which you can find
in the ADOSample2 folder):

private void button3_Click(object sender, EventArgs e)
{
 XmlDataDocument doc;
 //create a dataset
 DataSet ds = new DataSet(“XMLProducts”);
 //connect to the northwind database and
 //select all of the rows from products table
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter da = new SqlDataAdapter
 (“SELECT Name, StandardCost FROM SalesLT.Product”, conn);
 //fill the dataset
 da.Fill(ds, “Products”);
 ds.WriteXml(“sample.xml”, XmlWriteMode.WriteSchema);
 //load data into grid
 dataGridView1.DataSource = ds.Tables[0];
 doc = new XmlDataDocument(ds);
 //get all of the products elements
 XmlNodeList nodeLst = doc.GetElementsByTagName(“Products”);
 textBox1.Text = “”;
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + “\r\n”;
 }
}

 As you can see, the code to load the DataSet object into the XML document has been simplified. Instead
of using the XmlDocument class, you are using the XmlDataDocument class. This class was built
specifically for using data with a DataSet object.

 The XmlDataDocument is based on the XmlDocument class, so it has all of the functionality that the
 XmlDocument class has. One of the main differences is the overloaded constructor that the
 XmlDataDocument has. Note the line of code that instantiates XmlDataDocument (doc):

doc = new XmlDataDocument(ds);

 It passes in the DataSet object that you created, ds , as a parameter. This creates the XML document from
the DataSet , and you don ’ t have to use the Load() method. In fact, if you instantiate a new
 XmlDataDocument object without passing in a DataSet as the parameter, it will contain a DataSet with
the name NewDataSet that has no DataTables in the tables collection. There is also a DataSet
property, which you can set after an XmlDataDocument - based object is created.

 Suppose that you add the following line of code after the DataSet.Fill() call:

 ds.WriteXml(“c:\\test\\sample.xml”, XmlWriteMode.WriteSchema);

 In this case, the following XML file, sample.xml , is produced in the folder c:\test :

 < ?xml version=”1.0” standalone=”yes”? >
 < XMLProducts >
 < xs:schema id=”XMLProducts” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” >
 < xs:element name=”XMLProducts” msdata:IsDataSet=”true” msdata:
UseCurrentLocale=”true” >
 < xs:complexType >

(continued)

c28.indd 951c28.indd 951 2/19/08 5:26:24 PM2/19/08 5:26:24 PM

Part IV: Data

952

 < xs:choice minOccurs=”0” maxOccurs=”unbounded” >
 < xs:element name=”Products” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”Name” type=”xs:string” minOccurs=”0” / >
 < xs:element name=”StandardCost” type=”xs:decimal” minOccurs=”0” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:choice >
 < /xs:complexType >
 < /xs:element >
 < /xs:schema >
 < Products >
 < Name > HL Road Frame - Black, 58 < /Name >
 < StandardCost > 1059.3100 < /StandardCost >
 < /Products >
 < Products >
 < Name > HL Road Frame - Red, 58 < /Name >
 < StandardCost > 1059.3100 < /StandardCost >
 < /Products >
 < Products >
 < Name > Sport-100 Helmet, Red < /Name >
 < StandardCost > 13.0863 < /StandardCost >
 < /Products >
 < /XMLProducts >

 Only the first couple of P roducts elements are shown. The actual XML file would contain all of the
products in the Products table of Northwind database.

 Converting Relational Data
 This looks simple enough for a single table, but what about relational data, such as multiple DataTable s
and Relations in the DataSet ? It all still works the same way. Here is an example using two related
tables:

private void button5_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 DataSet ds = new DataSet(“XMLProducts”);
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter daProduct = new SqlDataAdapter
 (“SELECT Name, StandardCost, ProductCategoryID FROM SalesLT.Product”, conn);
 SqlDataAdapter daCategory = new SqlDataAdapter
 (“SELECT ProductCategoryID, Name from SalesLT.ProductCategory”, conn);
 //Fill DataSet from both SqlAdapters
 daProduct.Fill(ds, “Products”);
 daCategory.Fill(ds, “Categories”);
 //Add the relation
 ds.Relations.Add(ds.Tables[“Categories”].Columns[“ProductCategoryID”],
 ds.Tables[“Products”].Columns[“ProductCategoryID”]);
 //Write the Xml to a file so we can look at it later
 ds.WriteXml(“Products.xml”, XmlWriteMode.WriteSchema);
 //load data into grid
 dataGridView1.DataSource = ds.Tables[0];

(continued)

c28.indd 952c28.indd 952 2/19/08 5:26:24 PM2/19/08 5:26:24 PM

953

Chapter 28: Manipulating XML

 //create the XmlDataDocument
 doc = new XmlDataDocument(ds);
 //Select the productname elements and load them in the grid
 XmlNodeList nodeLst = doc.SelectNodes(“//XMLProducts/Products”);
 textBox1.Text = “”;
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + “\r\n”;
 }
}

 In this sample you are creating, two DataTable s in the XMLProducts DataSet : Products and
 Categories . You create a new relation on the ProductCategoryID column in both tables.

 By making the same WriteXml() method call that you did in the previous example, you will get the
following XML file (SuppProd.xml):

 < ?xml version=”1.0” standalone=”yes”? >
 < XMLProducts >
 < xs:schema id=”XMLProducts” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” >
 < xs:element name=”XMLProducts” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true” >
 < xs:complexType >
 < xs:choice minOccurs=”0” maxOccurs=”unbounded” >
 < xs:element name=”Products” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”Name” type=”xs:string” minOccurs=”0” / >
 < xs:element name=”StandardCost” type=”xs:decimal” minOccurs=”0” / >
 < xs:element name=”ProductCategoryID” type=”xs:int” minOccurs=”0” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < xs:element name=”Categories” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”ProductCategoryID” type=”xs:int” minOccurs=”0” / >
 < xs:element name=”Name” type=”xs:string” minOccurs=”0” / >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:choice >
 < /xs:complexType >
 < xs:unique name=”Constraint1” >
 < xs:selector xpath=”.//Categories” / >
 < xs:field xpath=”ProductCategoryID” / >
 < /xs:unique >
 < xs:keyref name=”Relation1” refer=”Constraint1” >
 < xs:selector xpath=”.//Products” / >
 < xs:field xpath=”ProductCategoryID” / >
 < /xs:keyref >
 < /xs:element >

(continued)

c28.indd 953c28.indd 953 2/19/08 5:26:25 PM2/19/08 5:26:25 PM

Part IV: Data

954

 < /xs:schema >
 < Products >
 < Name > HL Road Frame - Black, 58 < /Name >
 < StandardCost > 1059.3100 < /StandardCost >
 < ProductCategoryID > 18 < /ProductCategoryID >
 < /Products >
 < Products >
 < Name > HL Road Frame - Red, 58 < /Name >
 < StandardCost > 1059.3100 < /StandardCost >
 < ProductCategoryID > 18 < /ProductCategoryID >
 < /Products >
 < /XMLProducts >

 The schema includes both DataTable s that were in the DataSet . In addition, the data includes all of the
data from both tables. For the sake of brevity, only the first Products and ProductCategory records are
shown here. As before, you could have saved just the schema or just the data by passing in the correct
 XmlWriteMode parameter.

 Converting XML to ADO . NET Data
 Suppose that you have an XML document that you would like to get into an ADO.NET DataSet . You
would want to do this so that you could load the XML into a database, or perhaps bind the data to a
.NET data control such as a DataGrid . This way, you could actually use the XML document as your data
store and eliminate the overhead of the database altogether. If your data is reasonably small in size, this
is an attractive possibility. Here is some code to get you started (ADOSample5):

private void button7_Click(object sender, EventArgs e)
{
//create the DataSet
DataSet ds = new DataSet(“XMLProducts”);
//read in the xml document
ds.ReadXml(“Products.xml”);
//load data into grid
dataGridView1.DataSource = ds.Tables[0];
 textBox1.Text = “”;
foreach (DataTable dt in ds.Tables)
{
 textBox1.Text += dt.TableName + “\r\n”;
foreach (DataColumn col in dt.Columns)
{
textBox1.Text += “\t” + col.ColumnName + “ - “ + col.DataType.FullName + “\r\n”;
}
}
}

 It is that easy. You instantiate a new DataSet object. Then you call the ReadXml() method, and you have
XML in a DataTable in your DataSet . As with the WriteXml() methods, ReadXml() has an
 XmlReadMode parameter. ReadXml() has a few more options in the XmlReadMode , as shown in the
following table.

(continued)

c28.indd 954c28.indd 954 2/19/08 5:26:25 PM2/19/08 5:26:25 PM

955

Chapter 28: Manipulating XML

 There is also the ReadXmlSchema() method. This reads in a standalone schema and creates the tables,
columns, and relations. You use this if your schema is not inline with your data. ReadXmlSchema() has
the same four overloads: a string with file and path name, a Stream - based object, a TextReader - based
object, and an XmlReader - based object.

 To show that the data tables are getting created properly we iterate through the tables and columns and
display the names in the text box. You can compare this to the database and see that all is well. The last
foreach loops perform this task.

 Figure 28 - 6 shows the output.

 Looking at the list box, you can check that the data tables were created with the columns all having the
correct names and data types.

 Something else you might want to note is that because the previous two examples didn ’ t transfer
any data to or from a database, no SqlDataAdapter or SqlConnection was defined. This shows the
real flexibility of both the System.Xml namespace and ADO.NET: You can look at the same data in
multiple formats. If you need to do a transform and show the data in HTML format, or if you need
to bind the data to a grid, you can take the same data and, with just a method call, have it in the
required format.

Value Description

Auto Sets the XmlReadMode to the most appropriate setting. If the data is in DiffGram
format, DiffGram is selected. If a schema has already been read, or an inline
schema is detected, then ReadSchema is selected. If no schema has been assigned
to the DataSet, and none is detected inline, then IgnoreSchema is selected.

DiffGram Reads in the DiffGram and applies the changes to the DataSet.

Fragment Reads documents that contain XDR schema fragments, such as the type created
by SQL Server.

IgnoreSchema Ignores any inline schema that may be found. Reads data into the current
DataSet schema. If data does not match DataSet schema, it is discarded.

InferSchema Ignores any inline schema. Creates the schema based on data in the XML docu-
ment. If a schema exists in the DataSet, that schema is used, and extended with
additional columns and tables if needed. An exception is thrown if a column
exists but is of a different data type.

ReadSchema Reads the inline schema and loads the data. Will not overwrite a schema in the
DataSet but will throw an exception if a table in the inline schema already exists
in the DataSet.

c28.indd 955c28.indd 955 2/19/08 5:26:25 PM2/19/08 5:26:25 PM

Part IV: Data

956

 Serializing Objects in XML
 Serializing is the process of persisting an object to disk. Another part of your application, or even a
separate application, can deserialize the object and it will be in the same state it was in prior to
serialization. The .NET Framework includes a couple of ways to do this.

 This section looks at the System.Xml.Serialization namespace, which contains classes used to
serialize objects into XML documents or streams. This means that an object ’ s public properties and
public fields are converted into XML elements or attributes or both.

 The most important class in the System.Xml.Serialization namespace is XmlSerializer . To
serialize an object, you first need to instantiate an XmlSerializer object, specifying the type of the
object to serialize. Then you need to instantiate a stream/writer object to write the file to a stream/
document. The final step is to call the Serialize() method on the XMLSerializer , passing it the
stream/writer object and the object to serialize.

 Data that can be serialized can be primitive types, fields, arrays, and embedded XML in the form of
 XmlElement and XmlAttribute objects.

 To deserialize an object from an XML document, you reverse the process in the previous example. You
create a stream/reader and an XmlSerializer object and then pass the stream/reader to the
 Deserialize() method. This method returns the deserialized object, although it needs to be cast to the
correct type.

 The XML serializer cannot convert private data, only public data, and it cannot serialize object graphs.

 However, these should not be serious limitations; by carefully designing your classes, they should be
easily avoided. If you do need to be able to serialize public and private data as well as an object graph
containing many nested objects, you will want to use the System.Runtime.Serialization
.Formatters.Binary namespace.

Figure 28-6

c28.indd 956c28.indd 956 2/19/08 5:26:26 PM2/19/08 5:26:26 PM

957

Chapter 28: Manipulating XML

 Some of the other tasks that you can accomplish with System.Xml.Serialization classes are:

 Determine if the data should be an attribute or element

 Specify the namespace

 Change the attribute or element name

 The links between your object and the XML document are the custom C# attributes that annotate your
classes. These attributes are what are used to inform the serializer how to write out the data. The xsd
.exe tool, which is included with the .NET Framework, can help create these attributes for you. xsd.exe
can do the following:

 Generate an XML schema from an XDR schema file

 Generate an XML schema from an XML file

 Generate DataSet classes from an XSD schema file

 Generate runtime classes that have the custom attributes for XmlSerialization

 Generate an XSD file from classes that you have already developed

 Limit which elements are created in code

 Determine which programming language the generated code should be in (C#, Visual Basic
.NET, or JScript .NET)

 Create schemas from types in compiled assemblies

 You should refer to the framework documentation for details of command - line options for xsd.exe .

 Despite these capabilities, you don ’ t have to use xsd.exe to create the classes for serialization. The process
is quite simple. The following is a simple application that serializes a class. At the beginning of the
example, you have very simple code that creates a new Product object, pd , and fills it with some data:

private void button1_Click(object sender, EventArgs e)
{
 //new products object
 Product pd = new Product();
 //set some properties
 pd.ProductID = 200;
 pd.CategoryID = 100;
 pd.Discontinued = false;
 pd.ProductName = “Serialize Objects”;
 pd.QuantityPerUnit = “6”;
 pd.ReorderLevel = 1;
 pd.SupplierID = 1;
 pd.UnitPrice = 1000;
 pd.UnitsInStock = 10;
 pd.UnitsOnOrder = 0;

}

 The Serialize() method of the XmlSerializer class actually performs the serialization, and it has
nine overloads. One of the parameters required is a stream to write the data to. It can be a Stream ,
 TextWriter , or an XmlWriter parameter. In the example, you create a TextWriter - based object, tr .
The next thing to do is to create the XmlSerializer - based object, sr . The XmlSerializer needs to
know type information for the object that it is serializing, so you use the typeof keyword with the type
that is to be serialized. After the sr object is created, you call the Serialize() method, passing in the

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c28.indd 957c28.indd 957 2/19/08 5:26:26 PM2/19/08 5:26:26 PM

Part IV: Data

958

 tr (Stream - based object) and the object that you want serialized, in this case pd . Be sure to close the
stream when you are finished with it:

 //new TextWriter and XmlSerializer
 TextWriter tr = new StreamWriter(“serialprod.xml”);
 XmlSerializer sr = new XmlSerializer(typeof(Product));
 //serialize object
 sr.Serialize(tr, pd);
 tr.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + “serialprod.xml”);

 Next is the Product class, the class to be serialized. The only differences between this and any other
class that you may write are the C# attributes that have been added. The XmlRootAttribute and
 XmlElementAttribute classes in the attributes inherit from the System.Attribute class. Don ’ t
confuse these attributes with the attributes in an XML document. A C# attribute is simply some
declarative information that can be retrieved at runtime by the CLR (see Chapter 7 , “ Delegates and
Events, ” for more details). In this case, the attributes describe how the object should be serialized:

//class that will be serialized.
//attributes determine how object is serialized
[System.Xml.Serialization.XmlRootAttribute()]
 public class Product {
 private int prodId;
 private string prodName;
 private int suppId;
 private int catId;
 private string qtyPerUnit;
 private Decimal unitPrice;
 private short unitsInStock;
 private short unitsOnOrder;
 private short reorderLvl;
 private bool discont;
 private int disc;
 //added the Discount attribute
 [XmlAttributeAttribute(AttributeName=”Discount”)]
 public int Discount {
 get {return disc;}
 set {disc=value;}
 }
 [XmlElementAttribute()]
 public int ProductID {
 get {return prodId;}
 set {prodId=value;}
 }
 [XmlElementAttribute()]
 public string ProductName {
 get {return prodName;}
 set {prodName=value;}
 }
 [XmlElementAttribute()]
 public int SupplierID {
 get {return suppId;}
 set {suppId=value;}
 }
 [XmlElementAttribute()]

c28.indd 958c28.indd 958 2/19/08 5:26:26 PM2/19/08 5:26:26 PM

959

Chapter 28: Manipulating XML

 public int CategoryID {
 get {return catId;}
 set {catId=value;}
 }
 [XmlElementAttribute()]
 public string QuantityPerUnit {
 get {return qtyPerUnit;}
 set {qtyPerUnit=value;}
 }
 [XmlElementAttribute()]
 public Decimal UnitPrice {
 get {return unitPrice;}
 set {unitPrice=value;}
 }
 [XmlElementAttribute()]
 public short UnitsInStock {
 get {return unitsInStock;}
 set {unitsInStock=value;}
 }
 [XmlElementAttribute()]
 public short UnitsOnOrder {
 get {return unitsOnOrder;}
 set {unitsOnOrder=value;}
 }
 [XmlElementAttribute()]
 public short ReorderLevel {
 get {return reorderLvl;}
 set {reorderLvl=value;}
 }
 [XmlElementAttribute()]
 public bool Discontinued {
 get {return discont;}
 set {discont=value;}
 }
 public override string ToString()
 {
 StringBuilder outText = new StringBuilder();
 outText.Append(prodId);
 outText.Append(“ “);
 outText.Append(prodName);
 outText.Append(“ “);
 outText.Append(unitPrice);
 return outText.ToString();
 }
 }

 The XmlRootAttribute() invocation in the attribute above the Products class definition identifies
this class as a root element (in the XML file produced upon serialization). The attribute containing
 XmlElementAttribute() identifies that the member below the attribute represents an XML
element.

 You will also notice that the ToString() method has been overridden. This provides the string that the
message box will show when you run the deserialize example.

c28.indd 959c28.indd 959 2/19/08 5:26:27 PM2/19/08 5:26:27 PM

Part IV: Data

960

 If you take a look at the XML document created during serialization, you will see that it looks like any
other XML document that you might have created, which is the point of the exercise:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Products xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
Discount=”0” >
 < ProductID > 200 < /ProductID >
 < ProductName > Serialize Objects < /ProductName >
 < SupplierID > 1 < /SupplierID >
 < CategoryID > 100 < /CategoryID >
 < QuantityPerUnit > 6 < /QuantityPerUnit >
 < UnitPrice > 1000 < /UnitPrice >
 < UnitsInStock > 10 < /UnitsInStock >
 < UnitsOnOrder > 0 < /UnitsOnOrder >
 < ReorderLevel > 1 < /ReorderLevel >
 < Discontinued > false < /Discontinued >
 < /Products >

 There is nothing out of the ordinary here. You could use this any way that you would use an XML
document. You could transform it and display it as HTML, load it into a DataSet using ADO.NET, load
an XmlDocument with it, or, as you can see in the example, deserialize it and create an object in the same
state that pd was in prior to serializing it (which is exactly what you ’ re doing with the second button).

 Next, you add another button event handler to deserialize a new Products - based object, newPd . This
time you use a FileStream object to read in the XML:

private void button2_Click(object sender, EventArgs e)
 {
 //create a reference to producst type
 Product newPd;
 //new filestream to open serialized object
 FileStream f = new FileStream(“serialprod.xml”, FileMode.Open);

 Once again, you create a new XmlSerializer , passing in the type information of Product . You can
then make the call to the Deserialize() method. Note that you still need to do an explicit cast when
you create the newPd object. At this point, newPd is in exactly the same state that pd was:

 //new serializer
 XmlSerializer newSr = new XmlSerializer(typeof(Product));
 //deserialize the object
 newPd = (Product)newSr.Deserialize(f);
 f.Close();
 MessageBox.Show(newPd.ToString());
 }

 The message box should show you the product ID, product name, and the unit price of the object you
just deserialized. This comes from the ToString() override that you implemented in the Product class.

 What about situations where you have derived classes and possibly properties that return an array?
 XmlSerializer has that covered as well. Here ’ s a slightly more complex example that deals with these
issues.

 First, you define three new classes, Product , BookProduct (derived from Product), and Inventory
(which contains both of the other classes). Notice that once again you have overridden the ToString()
method. This time you ’ re just going to list the items in the Inventory class:

public class BookProduct : Product
{
 private string isbnNum;

c28.indd 960c28.indd 960 2/19/08 5:26:27 PM2/19/08 5:26:27 PM

961

Chapter 28: Manipulating XML

 public BookProduct() {}
 public string ISBN
 {
 get {return isbnNum;}
 set {isbnNum=value;}
 }
}
public class Inventory
{
 private Product[] stuff;
 public Inventory() {}
 //need to have an attribute entry for each data type
 [XmlArrayItem(“Prod”,typeof(Product)),
 XmlArrayItem(“Book”,typeof(BookProduct))]
 public Product[] InventoryItems
 {
 get {return stuff;}
 set {stuff=value;}
 }
 public override string ToString()
 {
 StringBuilder outText = new StringBuilder();
 foreach (Product prod in stuff)
 {
 outText.Append(prod.ProductName);
 outText.Append(“\r\n”);
 }
 return outText.ToString();
 }
}

 The Inventory class is the one of interest here. If you are to serialize this class, you need to insert an attribute
containing XmlArrayItem constructors for each type that can be added to the array. You should note that
 XmlArrayItem is the name of the .NET attribute represented by the XmlArrayItemAttribute class.

 The first parameter supplied to these constructors is what you would like the element name to be in the
XML document that is created during serialization. If you leave off the ElementName parameter, the
elements will be given the same name as the object type (Product and BookProduct in this case).
The second parameter that must be specified is the type of the object.

 There is also an XmlArrayAttribute class that you would use if the property were returning an array
of objects or primitive types. Because you are returning different types in the array, you use
 XmlArrayItemAttribute , which allows the higher level of control.

 In the button4_Click() event handler, you create a new Product object and a new BookProduct
object (newProd and newBook). You add data to the various properties of each object, and add the objects
to a Product array. You then create a new Inventory object and pass in the array as a parameter.
You can then serialize the Inventory object to recreate it at a later time:

private void button4_Click(object sender, EventArgs e)
{
 //create the XmlAttributes boject
 XmlAttributes attrs = new XmlAttributes();
 //add the types of the objects that will be serialized
 attrs.XmlElements.Add(new XmlElementAttribute(“Book”, typeof(BookProduct)));

(continued)

c28.indd 961c28.indd 961 2/19/08 5:26:27 PM2/19/08 5:26:27 PM

Part IV: Data

962

 attrs.XmlElements.Add(new XmlElementAttribute(“Product”, typeof(Product)));
 XmlAttributeOverrides attrOver = new XmlAttributeOverrides();
 //add to the attributes collection
 attrOver.Add(typeof(Inventory), “InventoryItems”, attrs);
 //create the Product and Book objects
 Product newProd = new Product();
 BookProduct newBook = new BookProduct();
 newProd.ProductID = 100;
 newProd.ProductName = “Product Thing”;
 newProd.SupplierID = 10;
 newBook.ProductID = 101;
 newBook.ProductName = “How to Use Your New Product Thing”;
 newBook.SupplierID = 10;
 newBook.ISBN = “123456789”;
 Product[] addProd ={ newProd, newBook };
 Inventory inv = new Inventory();
 inv.InventoryItems = addProd;
 TextWriter tr = new StreamWriter(“inventory.xml”);
 XmlSerializer sr = new XmlSerializer(typeof(Inventory), attrOver);
 sr.Serialize(tr, inv);
 tr.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + “inventory.xml”);
}
}

 The XML document looks like this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Inventory xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < Product Discount=”0” >
 < ProductID > 100 < /ProductID >
 < ProductName > Product Thing < /ProductName >
 < SupplierID > 10 < /SupplierID >
 < CategoryID > 0 < /CategoryID >
 < UnitPrice > 0 < /UnitPrice >
 < UnitsInStock > 0 < /UnitsInStock >
 < UnitsOnOrder > 0 < /UnitsOnOrder >
 < ReorderLevel > 0 < /ReorderLevel >
 < Discontinued > false < /Discontinued >
 < /Product >
 < Book Discount=”0” >
 < ProductID > 101 < /ProductID >
 < ProductName > How to Use Your New Product Thing < /ProductName >
 < SupplierID > 10 < /SupplierID >
 < CategoryID > 0 < /CategoryID >
 < UnitPrice > 0 < /UnitPrice >
 < UnitsInStock > 0 < /UnitsInStock >
 < UnitsOnOrder > 0 < /UnitsOnOrder >
 < ReorderLevel > 0 < /ReorderLevel >
 < Discontinued > false < /Discontinued >
 < ISBN > 123456789 < /ISBN >
 < /Book >
 < /Inventory >

(continued)

c28.indd 962c28.indd 962 2/19/08 5:26:28 PM2/19/08 5:26:28 PM

963

Chapter 28: Manipulating XML

 The button2_Click() event handler implements deserialization of the Inventory object. Note that
you iterate through the array in the newly created newInv object to show that it is the same data:

private void button2_Click(object sender, System.EventArgs e)
{
 Inventory newInv;
 FileStream f=new FileStream(“order.xml”,FileMode.Open);
 XmlSerializer newSr=new XmlSerializer(typeof(Inventory));
 newInv=(Inventory)newSr.Deserialize(f);
 foreach(Product prod in newInv.InventoryItems)
 listBox1.Items.Add(prod.ProductName);
 f.Close();
}

 Serialization Without Source Code Access
 Well, this all works great, but what if you don ’ t have access to the source code for the types that are
being serialized? You can ’ t add the attribute if you don ’ t have the source. There is another way. You can
use the XmlAttributes class and the XmlAttributeOverrides class. Together these classes enable you
to accomplish exactly what you have just done, but without adding the attributes. This section looks at
an example of how this works.

 For this example, imagine that the Inventory , Product , and derived BookProduct classes are in a
separate DLL and that you don ’ t have the source. The Product and BookProduct classes are the same
as in the previous example, but you should note that there are now no attributes added to the
 Inventory class:

public class Inventory
{
 private Product[] stuff;
 public Inventory() {}
 public Product[] InventoryItems
 {
 get {return stuff;}
 set {stuff=value;}
 }
}

 Next, you deal with the serialization in the button1_Click() event handler:

private void button1_Click(object sender, System.EventArgs e)
{

 The first step in the serialization process is to create an XmlAttributes object and an
 XmlElementAttribute object for each data type that you will be overriding:

 XmlAttributes attrs=new XmlAttributes();
 attrs.XmlElements.Add(new XmlElementAttribute(“Book”,typeof(BookProduct)));
 attrs.XmlElements.Add(new XmlElementAttribute(“Product”,typeof(Product)));

 Here you can see that you are adding new XmlElementAttribute objects to the XmlElements
collection of the XmlAttributes class. The XmlAttributes class has properties that correspond to the
attributes that can be applied; XmlArray and XmlArrayItems , which you looked at in the previous
example, are just a couple of these. You now have an XmlAttributes object with two
 XmlElementAttribute - based objects added to the XmlElements collection.

c28.indd 963c28.indd 963 2/19/08 5:26:28 PM2/19/08 5:26:28 PM

Part IV: Data

964

 The next thing you have to do is create an XmlAttributeOverrides object:

 XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
 attrOver.Add(typeof(Inventory),”InventoryItems”,attrs);

 The Add() method of this class has two overloads. The first one takes the type information of the object
to override and the XmlAttributes object that you created earlier. The other overload, which is the one
you are using, also takes a string value that is the member in the overridden object. In this case, you
want to override the InventoryItems member in the Inventory class.

 When you create the XmlSerializer object, you add the XmlAttributeOverrides object as a
parameter. Now the XmlSerializer knows which types you want to override and what you need to
return for those types:

 //create the Product and Book objects
 Product newProd=new Product();
 BookProduct newBook=new BookProduct();
 newProd.ProductID=100;
 newProd.ProductName=”Product Thing”;
 newProd.SupplierID=10;
 newBook.ProductID=101;
 newBook.ProductName=”How to Use Your New Product Thing”;
 newBook.SupplierID=10;
 newBook.ISBN=”123456789”;
 Product[] addProd={newProd,newBook};

 Inventory inv=new Inventory();
 inv.InventoryItems=addProd;
 TextWriter tr=new StreamWriter(“inventory.xml”);
 XmlSerializer sr=new XmlSerializer(typeof(Inventory),attrOver);
 sr.Serialize(tr,inv);
 tr.Close();
}

 If you execute the Serialize() method, you get this XML output:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Inventory xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < Product Discount=”0” >
 < ProductID > 100 < /ProductID >
 < ProductName > Product Thing < /ProductName >
 < SupplierID > 10 < /SupplierID >
 < CategoryID > 0 < /CategoryID >
 < UnitPrice > 0 < /UnitPrice >
 < UnitsInStock > 0 < /UnitsInStock >
 < UnitsOnOrder > 0 < /UnitsOnOrder >
 < ReorderLevel > 0 < /ReorderLevel >
 < Discontinued > false < /Discontinued >
 < /Product >
 < Book Discount=”0” >
 < ProductID > 101 < /ProductID >
 < ProductName > How to Use Your New Product Thing < /ProductName >
 < SupplierID > 10 < /SupplierID >
 < CategoryID > 0 < /CategoryID >
 < UnitPrice > 0 < /UnitPrice >
 < UnitsInStock > 0 < /UnitsInStock >

c28.indd 964c28.indd 964 2/19/08 5:26:28 PM2/19/08 5:26:28 PM

965

Chapter 28: Manipulating XML

 < UnitsOnOrder > 0 < /UnitsOnOrder >
 < ReorderLevel > 0 < /ReorderLevel >
 < Discontinued > false < /Discontinued >
 < ISBN > 123456789 < /ISBN >
 < /Book >
 < /Inventory >

 As you can see, you get the same XML as you did with the earlier example. To deserialize this object and
recreate the Inventory - based object that you started out with, you need to create all of the same
 XmlAttributes , XmlElementAttribute , and XmlAttributeOverrides objects that you created when
you serialized the object. Once you do that, you can read in the XML and recreate the Inventory object
just as you did before. Here is the code to deserialize the Inventory object:

private void button2_Click(object sender, System.EventArgs e)
{
 //create the new XmlAttributes collection
 XmlAttributes attrs=new XmlAttributes();
 //add the type information to the elements collection
 attrs.XmlElements.Add(new XmlElementAttribute(“Book”,typeof(BookProduct)));
 attrs.XmlElements.Add(new XmlElementAttribute(“Product”,typeof(Product)));

 XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
 //add to the Attributes collection
 attrOver.Add(typeof(Inventory),”InventoryItems”,attrs);

 //need a new Inventory object to deserialize to
 Inventory newInv;

 //deserialize and load data into the listbox from deserialized object
 FileStream f=new FileStream(“..\\..\\..\\inventory.xml”,FileMode.Open);
 XmlSerializer newSr=new XmlSerializer(typeof(Inventory),attrOver);

 newInv=(Inventory)newSr.Deserialize(f);
 if(newInv!=null)
 {
 foreach(Product prod in newInv.InventoryItems)
 {
 listBox1.Items.Add(prod.ProductName);
 }
 }
 f.Close();
}

 Note that the first few lines of code are identical to the code you used to serialize the object.

 The System.Xml.XmlSerialization namespace provides a very powerful tool set for serializing
objects to XML. By serializing and deserializing objects to XML instead of to binary format, you are
given the option of doing something else with this XML, greatly adding to the flexibility of your designs.

 Summary
 In this chapter, you explored many aspects of the System.Xml namespace of the .NET Framework. You
looked at how to read and write XML documents using the very fast XmlReader - and XmlWriter - based
classes. You looked at how the DOM is implemented in .NET and how to use the power of DOM. You
saw that XML and ADO.NET are indeed very closely related. A DataSet and an XML document are just

c28.indd 965c28.indd 965 2/19/08 5:26:28 PM2/19/08 5:26:28 PM

Part IV: Data

966

two different views of the same underlying architecture. And, of course, you visited XPath and XSL
transforms and the debugging features added to Visual Studio .

 Finally, you serialized objects to XML and were able to bring them back with just a couple of method calls.

 XML will be an important part of your application development for years to come. The .NET Framework
has made available a very rich and powerful toolset for working with XML. The next chapter will delve
into using LINQ with XML.

c28.indd 966c28.indd 966 2/19/08 5:26:29 PM2/19/08 5:26:29 PM

 LINQ to XML

 As stated in Chapter 27 , “ LINQ to SQL, ” probably the biggest and most exciting addition to the
.NET Framework 3.5 is the addition of the .NET Language Integrated Query framework (LINQ)
into C# 2008. LINQ comes in many flavors depending on the final data store that you are working
with in querying your data. Chapter 27 took a look at using LINQ to SQL to query SQL Server
databases; this chapter takes a quick look at using LINQ to query your XML data sources instead.

 You read about the following in this chapter:

 What LINQ to XML brings to the table

 The new objects available in the System.Xml.Linq namespace

 How to query your XML documents using LINQ

 Moving around your XML documents using LINQ

 Using LINQ to SQL and LINQ to XML together

 Extensible Markup Language (XML) is now in widespread use. Many applications on the Internet or
residing on individual computers use some form of XML to run or manage the processes of an
application. Earlier books about XML commented that XML was to be the “ next big thing. ” Now,
it is “ the big thing. ” In fact, there really isn ’ t anything bigger.

 Microsoft has been working for years to make using XML in the .NET world as easy as possible.
You can ’ t help but notice the additional capability and the enhancements to XML usage introduced
in each new version of the .NET Framework. In fact, Bill Gates highlighted Microsoft ’ s faith in
XML in his keynote address at the Microsoft Professional Developers Conference in 2005 in Los
Angeles. He stated that XML is being pushed deeper and deeper into the Windows core each year.
If you look around the .NET Framework, you will probably agree.

 For this reason, this chapter focuses on using LINQ to XML to query your XML documents.
Figure 29 - 1 shows LINQ ’ s place in querying XML data.

 Much of what you learned in the chapter on using LINQ to SQL can be applied here when
working with LINQ to XML.

❑

❑

❑

❑

❑

c29.indd 967c29.indd 967 2/19/08 5:26:39 PM2/19/08 5:26:39 PM

Part IV: Data

968

 Figure 29 - 1

 LINQ to XML and .NET 3.5
 With the introduction of LINQ to the .NET Framework 3.5, the focus was on easy access to the data that
you want to work with in your applications. One of the main data stores in the application space is XML
and, therefore, it really was considered a no - brainer to create the LINQ to XML implementation.

 Prior to the LINQ to XML release, working with XML using System.Xml was really not the easiest thing
in the world to achieve. With the inclusion of System.Xml.Linq , you now find a series of capabilities
that make the process of working with XML in your code that much easier.

 New Objects for Creating XML Documents
 In creating XML within application code, many developers turned to the XmlDocument object to do this
job. This object allows you to create XML documents that enable you to append elements, attributes, and
other items in a hierarchical fashion. With LINQ to XML and the inclusion of the new System.Xml.Linq
namespace, you will now find some new objects that make the creation of XML documents a much
simpler process.

 Visual Basic 2008 Ventures Down Another Path
 An interesting side note to the LINQ to XML feature set is that the Visual Basic 2008 team at Microsoft
actually took the LINQ to XML capabilities a little further in some areas. For instance, something you are
unable to accomplish in C# 2008 that you can do in Visual Basic 2008 is include XML as a core part of the
language. XML literals are now a true part of the Visual Basic language and you are able to paste XML
fragments directly in your code for inclusion, and the XML included is not treated as a string.

 Namespaces and Prefixes
 One issue that was somewhat ignored in parts of the .NET Framework 2.0 was how the items in the
framework dealt with the inclusion of XML namespaces and prefixes in documents. LINQ to XML makes
this an important part of the XML story, and you will find the capabilities to work with these types of
objects to be quite simple.

c29.indd 968c29.indd 968 2/19/08 5:26:40 PM2/19/08 5:26:40 PM

969

Chapter 29: LINQ to XML

 New XML Objects from the
.NET Framework 3.5

 Even if the LINQ querying ability wasn ’ t available in this release of the .NET Framework, the new XML
objects provided by the .NET Framework 3.5 to work with the XML that are available in place of
working directly with the DOM in this release are so good, that they even can stand on their own outside
of LINQ. Within the new System.Xml.Linq namespace you will find a series of new LINQ to XML
helper objects that make working with an XML document in memory that much easier.

 The following sections work through the new objects that are available to you within this new namespace.

 Many of the examples in this chapter use a file called Hamlet.xml . This is a file you can find at
 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip that includes all of Shakespeare ’ s
plays as XML files.

 XDocument
 The XDocument is a replacement of the XmlDocument object from the pre - .NET 3.5 world. You will find
the XDocument object easier to work with in dealing with XML documents. The XDocument object works
with the other new objects in this space, such as the XNamespace , XComment , XElement , and
 XAttribute objects.

 One of the more important members of the XDocument object is the Load() method:

XDocument xdoc = XDocument.Load(@”C:\Hamlet.xml”);

 This operation will load up the Hamlet.xml contents as an in - memory XDocument object. You are also
able to pass a TextReader or XmlReader object into the Load() method. From here, you are able to
programmatically work with the XML:

XDocument xdoc = XDocument.Load(@”C:\Hamlet.xml”);
Console.WriteLine(xdoc.Root.Name.ToString());
Console.WriteLine(xdoc.Root.HasAttributes.ToString());

 This produces the following results:

PLAY
False

 Another important member to be aware of is the Save() method, which, similar to the Load() method,
allows you to save to a physical disk location or to a TextWriter or XmlWriter object:

XDocument xdoc = XDocument.Load(@”C:\Hamlet.xml”);

xdoc.Save(@”C:\CopyOfHamlet.xml”);

 XElement
 One of the more common objects that you will work with is the XElement object. With these objects, you
are easily able to create just single - element objects that are XML documents themselves and even just
fragments of XML. For instance, here is an example of writing an XML element with a corresponding
value:

XElement xe = new XElement(“Company”, “Lipper”);
Console.WriteLine(xe.ToString());

c29.indd 969c29.indd 969 2/19/08 5:26:40 PM2/19/08 5:26:40 PM

Part IV: Data

970

 In the creation of a new XElement object, you are able to define the name of the element as well as the
value used in the element. In this case, the name of the element will be < Company > , and the value of the
 < Company > element will be Lipper . Running this in a console application with a System.Xml.Linq
reference produces the following result:

 < Company > Lipper < /Company >

 You are able to create an even more complete XML document using multiple XElement objects, as
illustrated in the following example:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XElement xe = new XElement(“Company”,
 new XElement(“CompanyName”, “Lipper”),
 new XElement(“CompanyAddress”,
 new XElement(“Address”, “123 Main Street”),
 new XElement(“City”, “St. Louis”),
 new XElement(“State”, “MO”),
 new XElement(“Country”, “USA”)));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

 Running this application produces the results illustrated in Figure 29 - 2 .

Figure 29-2

c29.indd 970c29.indd 970 2/19/08 5:26:41 PM2/19/08 5:26:41 PM

971

Chapter 29: LINQ to XML

 XNamespace
 The XNamespace is an object that represents an XML namespace and is easily applied to elements within
your document. For example, you can take the previous example and easily apply a namespace to the
root element:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XNamespace ns = “http://www.lipperweb.com/ns/1”;

 XElement xe = new XElement(ns + “Company”,
 new XElement(“CompanyName”, “Lipper”),
 new XElement(“CompanyAddress”,
 new XElement(“Address”, “123 Main Street”),
 new XElement(“City”, “St. Louis”),
 new XElement(“State”, “MO”),
 new XElement(“Country”, “USA”)));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

 In this case, an XNamespace object is created by assigning it a value of http://www.lipperweb.com/
ns/1 . From there, it is actually used in the root element < Company > with the instantiation of the
 XElement object:

XElement xe = new XElement(ns + “Company”, // ...

 This produces the results illustrated in Figure 29 - 3 .

Figure 29-3

c29.indd 971c29.indd 971 2/19/08 5:26:41 PM2/19/08 5:26:41 PM

Part IV: Data

972

Figure 29-4

 In addition to dealing with only the root element, you can also apply namespaces to all your elements as
shown in the following example:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XNamespace ns1 = “http://www.lipperweb.com/ns/root”;
 XNamespace ns2 = “http://www.lipperweb.com/ns/sub”;

 XElement xe = new XElement(ns1 + “Company”,
 new XElement(ns2 + “CompanyName”, “Lipper”),
 new XElement(ns2 + “CompanyAddress”,
 new XElement(ns2 + “Address”, “123 Main Street”),
 new XElement(ns2 + “City”, “St. Louis”),
 new XElement(ns2 + “State”, “MO”),
 new XElement(ns2 + “Country”, “USA”)));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

 This produces the results shown in Figure 29 - 4 .

 In this case, you can see that the sub - namespace was applied to everything you specified except for the
 < Address > , < City > , < State > , and the < Country > elements because they inherit from their parent,
 < CompanyAddress > , which has the namespace declaration.

c29.indd 972c29.indd 972 2/19/08 5:26:41 PM2/19/08 5:26:41 PM

973

Chapter 29: LINQ to XML

 XComment
 The XComment object allows you to easily add XML comments to your XML documents. The following
example shows adding a comment to the top of the document:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 XDocument xdoc = new XDocument();

 XComment xc = new XComment(“Here is a comment.”);
 xdoc.Add(xc);

 XElement xe = new XElement(“Company”,
 new XElement(“CompanyName”, “Lipper”),
 new XElement(“CompanyAddress”,
 new XComment(“Here is another comment.”),
 new XElement(“Address”, “123 Main Street”),
 new XElement(“City”, “St. Louis”),
 new XElement(“State”, “MO”),
 new XElement(“Country”, “USA”)));
 xdoc.Add(xe);

 Console.WriteLine(xdoc.ToString());

 Console.ReadLine();
 }
 }
}

 Here, an XDocument object that contains two XML comments is written to the console, one at the top of
the document and another within the < CompanyAddress > element. The output of this is presented in
Figure 29 - 5 .

Figure 29-5

c29.indd 973c29.indd 973 2/19/08 5:26:41 PM2/19/08 5:26:41 PM

Part IV: Data

974

 XAttribute
 In addition to elements, another important factor of XML is attributes. Adding and working with
attributes is done through the use of the XAttribute object. The following example shows adding an
attribute to the root < Customers > node:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XElement xe = new XElement(“Company”,
 new XAttribute(“MyAttribute”, “MyAttributeValue”),
 new XElement(“CompanyName”, “Lipper”),
 new XElement(“CompanyAddress”,
 new XElement(“Address”, “123 Main Street”),
 new XElement(“City”, “St. Louis”),
 new XElement(“State”, “MO”),
 new XElement(“Country”, “USA”)));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

 Here, the attribute MyAttribute with a value of MyAttributeValue is added to the root element of the
XML document, producing the results shown in Figure 29 - 6 .

Figure 29-6

 Using LINQ to Query XML Documents
 Now that you can get your XML documents into an XDocument object and work with the various parts
of this document, you can also use LINQ to XML to query your XML documents and work with the
results.

c29.indd 974c29.indd 974 2/19/08 5:26:42 PM2/19/08 5:26:42 PM

975

Chapter 29: LINQ to XML

 Querying Static XML Documents
 You will notice that querying a static XML document using LINQ to XML takes almost no work at all.
The following example makes use of the hamlet.xml file and queries to get all the players (actors) that
appear in the play. Each one of these players is defined in the XML document with the < PERSONA >
element:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 XDocument xdoc = XDocument.Load(@”C:\hamlet.xml”);

 var query = from people in xdoc.Descendants(“PERSONA”)
 select people.Value;

 Console.WriteLine(“{0} Players Found”, query.Count());
 Console.WriteLine();

 foreach (var item in query)
 {
 Console.WriteLine(item);
 }

 Console.ReadLine();
 }
 }
}

 In this case, an XDocument object loads up a physical XML file (hamlet.xml) and then performs a LINQ
query over the contents of the document:

var query = from people in xdoc.Descendants(“PERSONA”)
 select people.Value;

 The people object is an object that is a representation of all the < PERSONA > elements found in the
document. Then the select statement gets at the values of these elements. From there, a Console
.WriteLine() method is used to write out a count of all the players found using query.Count() . Then,
each of the items is written to the screen in a foreach loop. The results you should see are presented here:

26 Players Found

CLAUDIUS, king of Denmark.
HAMLET, son to the late king, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.

(continued)

c29.indd 975c29.indd 975 2/19/08 5:26:42 PM2/19/08 5:26:42 PM

Part IV: Data

976

VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.
A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet’s Father.

 Querying Dynamic XML Documents
 A lot of dynamic XML documents are available on the Internet these days. You will find blog feeds,
podcast feeds, and more that provide an XML document by sending a request to a specific URL
endpoint. These feeds can be viewed either in the browser, through an RSS - aggregator, or as pure XML.

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XDocument xdoc =
 XDocument.Load(@”http://geekswithblogs.net/evjen/Rss.aspx”);

 var query = from rssFeed in xdoc.Descendants(“channel”)
 select new
 {
 Title = rssFeed.Element(“title”).Value,
 Description = rssFeed.Element(“description”).Value,
 Link = rssFeed.Element(“link”).Value,
 };

 foreach (var item in query)
 {
 Console.WriteLine(“TITLE: “ + item.Title);
 Console.WriteLine(“DESCRIPTION: “ + item.Description);
 Console.WriteLine(“LINK: “ + item.Link);
 }

(continued)

c29.indd 976c29.indd 976 2/19/08 5:26:42 PM2/19/08 5:26:42 PM

977

Chapter 29: LINQ to XML

 Console.WriteLine();

 var queryPosts = from myPosts in xdoc.Descendants(“item”)
 select new
 {
 Title = myPosts.Element(“title”).Value,
 Published =
 DateTime.Parse(
 myPosts.Element(“pubDate”).Value),
 Description =
 myPosts.Element(“description”).Value,
 Url = myPosts.Element(“link”).Value,
 Comments = myPosts.Element(“comments”).Value
 };

 foreach (var item in queryPosts)
 {
 Console.WriteLine(item.Title);
 }

 Console.ReadLine();
 }
 }
}

 Looking at this code, you can see that the Load() method off of the XDocument object points to a URL
where the XML is retrieved. The first query pulls out all the main sub - elements of the < channel >
element in the feed and creates new objects called Title , Description , and Link to get at the values of
these sub - elements.

 From there, a foreach statement is run to iterate through all the items found in this query. The results
are as follows:

TITLE: Bill Evjen’s Blog
DESCRIPTION: Code, Life and Community
LINK: http://geekswithblogs.net/evjen/Default.aspx

 The second query works through all the < item > elements and the various sub - elements it has (these are
all the blog entries found in the blog). Though a lot of the items found are rolled up into properties, in
the foreach loop, only the Title property is used. You will see something similar to the following
results from this query:

AJAX Control Toolkit Controls Grayed Out - HOW TO FIX
Welcome .NET 3.5!
Visual Studio 2008 Released
IIS 7.0 Rocks the House!
Word Issue - Couldn’t Select Text
Microsoft Releases XML Schema Designer CTP1
Silverlight Book
Microsoft Tafiti as a beta
ReSharper on Visual Studio 2008
Windows Vista Updates for Performance and Reliability Issues
New Version of ODP.NET for .NET 2.0 Released as Beta Today
First Review of Professional XML
Go to MIX07 for free!

(continued)

c29.indd 977c29.indd 977 2/19/08 5:26:42 PM2/19/08 5:26:42 PM

Part IV: Data

978

Microsoft Surface and the Future of Home Computing?
Alas my friends - I’m *not* TechEd bound
New Book - Professional VB 2005 with .NET 3.0!
An article showing Oracle and .NET working together
My Latest Book - Professional XML
CISCO VPN Client Software on Windows Vista
Server-Side Excel Generation
Scott Guthrie Gives Short Review of Professional ASP.NET 2.0 SE
Windows Forms Additions in the Next Version of .NET
Tag, I’m It

 Working Around the XML Document
 If you have been working with the XML document, hamlet.xml , you will notice that it is quite large.
Querying into the XML document was shown in a couple of ways throughout this chapter, but this next
section takes a look at reading and writing to the XML document.

 Reading from an XML Document
 Earlier you saw just how easy it was to query into an XML document using the LINQ query statements
as shown here:

var query = from people in xdoc.Descendants(“PERSONA”)
 select people.Value;

 This query returned all the players that were found in the document. Using the Element() method of
the XDocument object, you can also get at specific values of the XML document that you are working
with. For instance, continuing to work with the hamlet.xml document, the following XML fragment
shows you how the title is represented in the XML document:

 < ?xml version=”1.0”? >

 < PLAY >
 < TITLE > The Tragedy of Hamlet, Prince of Denmark < /TITLE >

 < !-- XML removed for clarity -- >

 < /PLAY >

 As you can see, the < TITLE > element is a nested element of the < PLAY > element. You can easily get at the
title by using the following bit of code in your console application:

XDocument xdoc = XDocument.Load(@”C:\hamlet.xml”);

Console.WriteLine(xdoc.Element(“PLAY”).Element(“TITLE”).Value);

 This bit of code will write out the title, The Tragedy of Hamlet, Prince of Denmark , to the console
screen. In the code, you were able to work down the hierarchy of the XML document by using two
 Element() method calls — first calling the < PLAY > element and then the < TITLE > element found nested
within the < PLAY > element.

(continued)

c29.indd 978c29.indd 978 2/19/08 5:26:43 PM2/19/08 5:26:43 PM

979

Chapter 29: LINQ to XML

 Looking more at the hamlet.xml document, you will see a large list of players that are defined with the
use of the < PERSONA > element:

 < ?xml version=”1.0”? >

 < PLAY >
 < TITLE > The Tragedy of Hamlet, Prince of Denmark < /TITLE >

 < !-- XML removed for clarity -- >

 < PERSONAE >
 < TITLE > Dramatis Personae < /TITLE >

 < PERSONA > CLAUDIUS, king of Denmark. < /PERSONA >
 < PERSONA > HAMLET, son to the late king,
 and nephew to the present king. < /PERSONA >
 < PERSONA > POLONIUS, lord chamberlain. < /PERSONA >
 < PERSONA > HORATIO, friend to Hamlet. < /PERSONA >
 < PERSONA > LAERTES, son to Polonius. < /PERSONA >
 < PERSONA > LUCIANUS, nephew to the king. < /PERSONA >

 < !-- XML removed for clarity -- >

 < /PERSONAE >

 < /PLAY >

 Using this XML document, review the following bit of C# code ’ s use of this XML:

XDocument xdoc = XDocument.Load(@”C:\hamlet.xml”);

Console.WriteLine(
 xdoc.Element(“PLAY”).Element(“PERSONAE”).Element(“PERSONA”).Value);

 This bit of code starts at < PLAY > , works down to the < PERSONAE > element, and then makes use of the
 < PERSONA > element. However, using this will produce the following results:

CLAUDIUS, king of Denmark

 The reason for this is that, although there is a collection of < PERSONA > elements, you are dealing only
with the first one that is encountered using the Element().Value call.

 Writing to an XML Document
 In addition to reading from an XML document, you can also write to the document just as easily. For
instance, if you wanted to change the name of the first player of the Hamlet play file, you could make
use of the following code to accomplish this task:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()

(continued)

c29.indd 979c29.indd 979 2/19/08 5:26:43 PM2/19/08 5:26:43 PM

Part IV: Data

980

 {
 XDocument xdoc = XDocument.Load(@”C:\hamlet.xml”);

 xdoc.Element(“PLAY”).Element(“PERSONAE”).
 Element(“PERSONA”).SetValue(“Bill Evjen, king of Denmark”);

 Console.WriteLine(xdoc.Element(“PLAY”).
 Element(“PERSONAE”).Element(“PERSONA”).Value);

 Console.ReadLine();
 }
 }
}

 In this case, the first instance of the < PERSONA > element is overwritten with the value of Bill Evjen,
king of Denmark using the SetValue() method of the Element() object. After the SetValue() is
called and the value is applied to the XML document, the value is then retrieved using the same
approach as before. When you run this bit of code, you can indeed see that the value of the first
 < PERSONA > element has been changed.

 Another way to change the document (by adding items to it in this example) is to create the element you
want as XElement objects and then add them to the document:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XDocument xdoc = XDocument.Load(@”C:\hamlet.xml”);

 XElement xe = new XElement(“PERSONA”,
 “Bill Evjen, king of Denmark”);

 xdoc.Element(“PLAY”).Element(“PERSONAE”).Add(xe);

 var query = from people in xdoc.Descendants(“PERSONA”)
 select people.Value;

 Console.WriteLine(“{0} Players Found”, query.Count());
 Console.WriteLine();

 foreach (var item in query)
 {
 Console.WriteLine(item);
 }

 Console.ReadLine();
 }
 }
}

(continued)

c29.indd 980c29.indd 980 2/19/08 5:26:43 PM2/19/08 5:26:43 PM

981

Chapter 29: LINQ to XML

 In this case, an XElement document is created called xe . The construction of xe will give you the
following XML output:

 < PERSONA > Bill Evjen, king of Denmark < /PERSONA >

 Then using the Element().Add() method from the XDocument object, you are able to add the created
element:

xdoc.Element(“PLAY”).Element(“PERSONAE”).Add(xe);

 Now when you query all the players, you will find that instead of 26 as before, you now have 27 with
the new one at the bottom of the list. In addition to Add() , you can also use AddFirst() , which will do
what it says — add it to the beginning of the list instead of the end as is the default.

 Using LINQ to SQL with LINQ to XML
 When working with LINQ to SQL or LINQ to XML, you are limited to working with the specific data
source for which it was designed. In fact, you are able to mix multiple data sources together when
working with LINQ. For an example of this, this section uses LINQ to SQL to query the customers in the
Northwind database and turn the results pulled into an XML document.

 You can find instructions on how to get the Northwind sample database file as well as information on
working with LINQ to SQL in Chapter 27 .

 Setting up the LINQ to SQL Components
 The first step for this to work is to add the Northwind SQL Server Express Edition database file to your
project. From there, right - click the project to add a new LINQ to SQL class file to your project. Name the
file Northwind.dbml .

 This operation will give you a design surface that you are able to work with. From the Server Explorer,
drag and drop tables from the database onto this design surface. You want to drag and drop both the
 Customers and the Orders tables onto the design surface. By doing this, you will notice that there is
then a relationship established between these two tables. Once to this point, your view in the IDE should
look as is illustrated in Figure 29 - 7 .

Figure 29-7

c29.indd 981c29.indd 981 2/19/08 5:26:44 PM2/19/08 5:26:44 PM

Part IV: Data

982

 Now that you have your Northwind.dbml in place, you are ready to query this database structure and
output the results as an XML file.

 Querying the Database and Outputting XML
 The next step in your console application is to put the following code in your Program.cs file:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 NorthwindDataContext dc = new NorthwindDataContext();

 XElement xe = new XElement(“Customer”,
 from c in dc.Customers
 select new XElement(“Customer”,
 new XElement(“CustomerId”, c.CustomerID),
 new XElement(“CompanyName”, c.CompanyName),
 new XElement(“Country”, c.Country),
 new XElement(“OrderNum”, c.Orders.Count)));

 xe.Save(@”C:\myCustomers.xml”);
 Console.WriteLine(“File created”);
 Console.ReadLine();
 }
 }
}

 This example creates a new instance of the NorthwindDataContext object that is created for you
automatically with the LINQ to SQL class you created. Then instead of doing the normal

var query = [query]

you populate the query performed in an XElement object called xe . Within the select statement of the
query, you also create an iteration of Customers objects with the nested elements of < Customer > ,
 < CustomerId > , < CompanyName > , < Country > , and < OrderNum > . Once queried, the xe instance is then
saved to disk using xe.Save() . When you go to disk and look at the myCustomers.xml file, you will
see the following results (shown only partially here):

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Customer >
 < Customer >
 < CustomerId > ALFKI < /CustomerId >
 < CompanyName > Alfreds Futterkiste < /CompanyName >
 < Country > Germany < /Country >
 < OrderNum > 6 < /OrderNum >
 < /Customer >
 < Customer >
 < CustomerId > ANATR < /CustomerId >
 < CompanyName > Ana Trujillo Emparedados y helados < /CompanyName >

c29.indd 982c29.indd 982 2/19/08 5:26:44 PM2/19/08 5:26:44 PM

983

Chapter 29: LINQ to XML

 < Country > Mexico < /Country >
 < OrderNum > 4 < /OrderNum >
 < /Customer >

 < !-- XML removed for clarity -- >

 < Customer >
 < CustomerId > WILMK < /CustomerId >
 < CompanyName > Wilman Kala < /CompanyName >
 < Country > Finland < /Country >
 < OrderNum > 7 < /OrderNum >
 < /Customer >
 < Customer >
 < CustomerId > WOLZA < /CustomerId >
 < CompanyName > Wolski Zajazd < /CompanyName >
 < Country > Poland < /Country >
 < OrderNum > 7 < /OrderNum >
 < /Customer >
 < /Customer >

 From this, you can see just how easy it is to mix the two data sources using LINQ. Using LINQ to SQL,
the customers were pulled from the database, and then using LINQ to XML, an XML file was created
and output to disk.

 Summary
 This chapter focused on using LINQ to XML and some of the options available to you in reading and
writing from XML files and XML sources, whether the source is static or dynamic.

 Using LINQ to XML, you are able to have a strongly typed set of operations for performing CRUD
operations against your XML files and sources. However, with that said, you can still use your
 XmlReader and XmlWriter code along with the new LINQ to XML capabilities.

 This chapter also introduced the new LINQ to XML helper objects of XDocument , XElement ,
 XNamespace , XAttribute , and XComment . You will find these are outstanding new objects that make
working with XML easier than ever before.

 The next chapter looks at programming with Microsoft ’ s SQL Server.

c29.indd 983c29.indd 983 2/19/08 5:26:44 PM2/19/08 5:26:44 PM

c29.indd 984c29.indd 984 2/19/08 5:26:44 PM2/19/08 5:26:44 PM

 .NET Programming with
SQL Server

 SQL Server 2005 was the first version of this database product to host the .NET runtime. In fact, it
was the first new version of Microsoft ’ s SQL Server product in nearly six years. It allows running
.NET assemblies in the SQL Server process. Furthermore, it enables you to create stored
procedures, functions, and data types with .NET programming languages such as C# and
Visual Basic.

 In this chapter, you learn about the following:

 Hosting the .NET runtime with SQL Server

 Classes from the namespace System.Data.SqlServer

 Creating user - defined types

 Creating user - defined aggregates

 Stored procedures

 User - defined functions

 Triggers

 XML data types

 This chapter requires SQL Server 2005 or a later version of this database product.

 SQL Server has many features that are not directly associated with the CLR, such as many
T - SQL improvements, but they are not covered in this book. To get more information about these
features you can read Wrox ’ s SQL Server 2005 Express Edition Starter Kit (Wiley Publishing,
Inc., ISBN 0 - 7645 - 8923 - 7).

 The samples in this chapter make use of a ProCSharp database that you can download with the
code samples, and the AdventureWorks database. The AdventureWorks database is a sample data-
base from Microsoft that you can install as an optional component with SQL Server.

❑

❑

❑

❑

❑

❑

❑

❑

c30.indd 985c30.indd 985 2/19/08 5:26:54 PM2/19/08 5:26:54 PM

Part IV: Data

986

 .NET Runtime Host
 SQL Server is a host of the .NET runtime. In versions prior to CLR 2.0, multiple hosts already existed to
run .NET applications; for example, a host for Windows Forms and a host for ASP.NET. Internet Explorer
is another runtime host that allows running Windows Forms controls.

 SQL Server allows running a .NET assembly inside the SQL Server process, where it is possible to create
stored procedures, functions, data types, and triggers with CLR code.

 Every database that makes use of CLR code creates its own application domain . This guarantees that CLR
code from one database doesn ’ t have any influence on any other database.

 You can read more about application domains in Chapter 17 , “ Assemblies. ”

 .NET 1.0 already had a well - thought - out security environment with evidence - based security. However,
this security environment was not enough for mission - critical databases — .NET needed some
extensions. SQL Server as a .NET runtime host defines additional permission levels: safe , external, and
 unsafe .

 You can read more about evidence - based security in Chapter 20 , “ Security. ”

 Safe — With the safety level safe , only computational CLR classes can be used. The assembly is
able to perform only local data access. The functionality of these classes is similar to a T - SQL
stored procedure. The code access security defines that the only .NET permission is execution
of CLR code.

 External — With the safety level external it is possible to access the network, file system, registry,
or other databases with client - side ADO.NET.

 Unsafe — The safety level unsafe means that everything can happen, because this safety level
allows you to invoke native code. Assemblies with the unsafe permission level can be installed
only by a database administrator.

 To enable custom .NET code to be run within SQL Server, the CLR must be enabled with the
 sp_configure stored procedure:

sp_configure [clr enabled], 1
reconfigure

 With .NET 2.0, the attribute class HostProtectionAttribute in the namespace System.Security
.Permissions was invented for better protection of the hosting environment. With this attribute, it is
possible to define if a method uses shared state, exposes synchronization, or controls the hosting
environment. Because such behavior is usually not needed within SQL Server code (and could influence
the performance of the SQL Server), assemblies that have these settings applied are not allowed to be
loaded in SQL Server with safe and external safety levels.

 For using assemblies with SQL Server, the assembly can be installed with the CREATE ASSEMBLY
command. With this command, the name of the assembly used in SQL Server, the path to the assembly,
and the safety level can be applied:

CREATE ASSEMBLY mylibrary FROM c:/ProCSharp/SqlServer/Demo.dll
 WITH PERMISSION SET = SAFE

 With Visual Studio 2008, the permission level of the generated assembly can be defined with the
Database properties of the project, as shown in Figure 30 - 1 .

❑

❑

❑

c30.indd 986c30.indd 986 2/19/08 5:26:55 PM2/19/08 5:26:55 PM

Chapter 30: .NET Programming with SQL Server

987

 Figure 30 - 1

 Microsoft.SqlServer.Server
 Chapter 26 , “ Data Access, ” discussed classes from the namespace System.Data.SqlClient . This
section discusses another namespace, the Microsoft.SqlServer.Server namespace. The
 Microsoft.SqlServer.Server namespace includes classes, interfaces, and enumerations specific to
the .NET Framework. However, many of the System.Data.SqlClient classes are also needed within
server - side code as you will see.

 The following table lists the major classes from the Microsoft.SqlServer.Serve r namespace and
their functionality.

 Class Description

 SqlContext Like an HTTP context, the SQL context is associated with the request of a
client. With static members of the SqlContext class, SqlPipe ,
 SqlTriggerContext , and WindowsIdentity can be accessed.

 SqlPipe With the SqlPipe class results or information can be sent to the client.
This class offers the methods ExecuteAndSend() , Send() , and
 SendResultsRow() . The Send() method has different overloads to
either send a SqlDataReader , SqlDataRecord , or string .

 SqlDataRecord The SqlDataRecord represents a single row of data. This class is used in
conjunction with SqlPipe to send or receive information from the client.

 SqlTriggerContext The SqlTriggerContext class is used within triggers. This class provides
information about the trigger that was fired.

 This namespace also includes several attribute classes: SqlProcedureAttribute ,
 SqlFunctionAttribute , SqlUserDefinedAttribute , and SqlTriggerAttribute . These classes are
used for deployment of stored procedures, functions, user - defined types, and triggers in SQL Server.
When deploying from Visual Studio, it is required that you apply these attributes. When deploying the
database objects using SQL statements, these attributes are not needed but they help, because some
properties of these attributes influence the characteristics of the database objects.

c30.indd 987c30.indd 987 2/19/08 5:26:55 PM2/19/08 5:26:55 PM

Part IV: Data

988

 You see these classes in action later in this chapter when writing stored procedures and user - defined
functions is discussed, but first, the following section looks into creating user - defined types with C#.

 User - Defined Types
 User - defined types (UDTs) can be used similarly to normal SQL Server data types to define the type of a
column in a table. With older versions of SQL Server, it was already possible to define UDTs. Of course,
these UDTs could be based only on SQL types, such as the ZIP type shown in the following code. The stored
procedure sp_addtype allows you to create user - defined types. Here the user - defined type ZIP is based on
the CHAR data type with a length of 5 . NOT NULL specifies that NULL is not allowed with the ZIP data type.
By using ZIP as a data type, it is no longer necessary to remember that it should be 5 char long and not null:

EXEC sp_addtype ZIP ‘CHAR(5)’, ‘NOT NULL’

 With SQL Server 2005 and later, UDTs can be defined with CLR classes. However, this feature is not
meant to add object orientation to the database; for example, to create a Person class to have a Person
data type. SQL Server is a relational data store, and this is still true with UDTs. You cannot create a class
hierarchy of UDTs, and it is not possible to reference fields or properties of a UDT type with a SELECT
statement. If properties of a person (for example, Firstname or Lastname) must be accessed or a list of
 Person objects must be sorted (for example, by Firstname or Lastname), it is still better to define
columns for first name or last name inside a Persons table or to use the XML data type.

 UDTs are meant for very simple data types. Before .NET, it was also possible to create custom data types;
for example, the ZIP data type. With UDTs it is not possible to create a class hierarchy, and they are not
meant to get complex data types to the database. One requirement of a UDT is that it must be convertible
to a string, because the string representation is used to display the value.

 How the data is stored within SQL Server can be defined: either an automatic mechanism can be used to
store the data in a native format, or you can convert the data to a byte stream to define how the data
should be stored.

 Creating UDTs
 Next, you look at how to create a user - defined type. You create a SqlCoordinate type representing the world
coordinates longitude and latitude for easily defining the location of places, cities, and the like. To create CLR
objects with Visual Studio you can use the Visual Studio 2008 SQL Server Project (in the category Visual
C# Database). Select the Solution Explorer and add a UDT by using the User - Defined Type template. Name
the type SqlCoordinate . With the template, the base functionality of a custom type is already defined:

using System;
using System.Data;
using System.Data.Sql;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)]
public struct SqlCoordinate : INullable
{
 public override string ToString()
 {
 // Replace the following code with your code
 return “”;
 }

 public bool IsNull

c30.indd 988c30.indd 988 2/19/08 5:26:56 PM2/19/08 5:26:56 PM

Chapter 30: .NET Programming with SQL Server

989

 {
 get
 {
 // Put your code here
 return m_Null;
 }
 }

 public static SqlCoordinate Null
 {
 get
 {
 SqlCoordinate h = new SqlCoordinate();
 h.m_Null = true;
 return h;
 }
 }

 public static SqlCoordinate Parse(SqlString s)
 {
 if (s.IsNull)
 return Null;
 SqlCoordinate u = new SqlCoordinate();
 // Put your code here
 return u;
 }

 // This is a place-holder method
 public string Method1()
 {
 //Insert method code here
 return “Hello”;
 }

 // This is a place-holder static method
 public static SqlString Method2()
 {
 // Insert method code here
 return new SqlString(“Hello”);
 }

 // This is a placeholder field member
 public int var1;
 // Private member
 private bool m_Null;
}

 Because this type can also be used directly from client code, it is a good idea to add a namespace, which
is not done automatically.

 The struct SqlCoordinate implements the interface INullable . The interface INullable is required
for UDTs because database types can also be null. The attribute [SqlUserDefinedType] is used for
automatic deployment with Visual Studio for UDTs. The argument Format.Native defines the

c30.indd 989c30.indd 989 2/19/08 5:26:56 PM2/19/08 5:26:56 PM

Part IV: Data

990

serialization format to be used. Two serialization formats are possible: Format.Native and Format
.UserDefined . Format.Native is the simple serialization format where the engine performs
serialization and deserialization of instances. This serialization allows only blittable data types (blittable
data types have the same memory representation in managed and native code) . With the Coordinate
class, the data types to serialize are of type int and bool , which are blittable data types. A string is not
a blittable data type. Using Format.UserDefined requires the interface IBinarySerialize to be
implemented. The IBinarySerialize interface provides custom implementation for user - defined
types. Read() and Write() methods must be implemented for serialization of the data to a
 BinaryReader and a BinaryWriter .

 Blittable data types have the same memory representation in both managed and unmanaged memory.
Conversion is not needed with blittable data types. Blittable data types are byte , sbyte , short ,
ushort , int , uint , long , ulong , and combinations of these data types such as arrays and structs
that contain only these data types.

namespace Wrox.ProCSharp.SqlServer
{

 [Serializable]
 [SqlUserDefinedType(Format.Native)]
 public struct SqlCoordinate : INullable
 {
 private int longitude;
 private int latitude;
 private bool isNull;

 The attribute [SqlUserDefinedType] allows setting several properties, which are shown in the
following table.

 SqlUserDefinedTypeAttribute Property Description

 Format The property Format defines how the data type is
stored within SQL Server. Currently supported formats
are Format.Native and Format.UserDefined .

 IsByteOrdered If the property IsByteOrdered is set to true , it is pos-
sible to create an index for the data type, and it can be
used with GROUP BY and ORDER BY SQL statements.
The disk representation will be used for binary com-
parisons. Each instance can have only one serialized
representation, so binary comparisons can succeed.
The default is false .

 IsFixedLength If the disk representation of all instances is of the same
size, IsFixedLength can be set to true .

 MaxByteSize The maximum number of bytes needed to store the
data is set with MaxByteSize . This property is speci-
fied only with a user - defined serialization.

 Name With the Name property, a different name of the type
can be set. By default the name of the class is used.

 ValidationMethodName With the ValidationMethodName property a method
name can be defined to validate instances when the
deserialization takes place.

c30.indd 990c30.indd 990 2/19/08 5:26:56 PM2/19/08 5:26:56 PM

Chapter 30: .NET Programming with SQL Server

991

 To represent the direction of the coordinate, the enumeration Orientation is defined:

 public enum Orientation
 {
 NorthEast,
 NorthWest,
 SouthEast,
 SouthWest
 }

 This enumeration can be used only within methods of the struct Coordinate , not as a member field
because enumerations are not blittable. Future versions may support enums with the native format in
SQL Server.

 The struct Coordinate specifies some constructors to initialize the longitude , latitude , and isNull
variables. The variable isNull is set to true if no values are assigned to longitude and latitude ,
which is the case in the default constructor. A default constructor is needed with UDTs.

 With the worldwide coordination system, longitude and latitude are defined with degrees, minutes, and
seconds. Vienna, Austria has the coordinates 48 ̊ 14 ' longitude and 16 ̊ 20 ' latitude. The symbols ̊ , ' ,
and “ represent degrees, minutes, and seconds, respectively.

 With the variables longitude and latitude , the longitude and latitude values are stored using
seconds. The constructor with seven integer parameters converts degrees, minutes, and seconds to
seconds, and sets the longitude and latitude to negative values if the coordinate is based in the South
or West:

 public SqlCoordinate(int longitude, int latitude)
 {
 isNull = false;
 this.longitude = longitude;
 this.latitude = latitude;
 }

 public SqlCoordinate(int longitudeDegrees, int longitudeMinutes,
 int longitudeSeconds, int latitudeDegrees, int latitudeMinutes,
 int latitudeSeconds, Orientation orientation)
 {
 isNull = false;
 this.longitude = longitudeSeconds + 60 * longitudeMinutes + 3600 *
 longitudeDegrees;
 this.latitude = latitudeSeconds + 60 * latitudeMinutes + 3600 *
 latitudeDegrees;
 switch (orientation)
 {
 case Orientation.SouthWest:
 longitude = -longitude;
 latitude = -latitude;
 break;
 case Orientation.SouthEast:
 longitude = -longitude;
 break;
 case Orientation.NorthWest:
 latitude = -latitude;
 break;
 }
 }

c30.indd 991c30.indd 991 2/19/08 5:26:57 PM2/19/08 5:26:57 PM

Part IV: Data

992

 The INullable interface defines the property IsNull , which must be implemented to support
nullability. The static property Null is used to create an object that represents a null value. In the get
accessor a Coordinate object is created, and the isNull field is set to true :

 public bool IsNull
 {
 get
 {
 return isNull;
 }
 }

 public static SqlCoordinate Null
 {
 get
 {
 SqlCoordinate c = new SqlCoordinate();
 c.isNull = true;
 return c;
 }
 }

 A UDT must be converted from and to a string. For conversion to a string, the ToString() method of
the Object class must be overridden. The variables longitude and latitude are converted in the
following code for a string representation to show the degrees, minutes, and seconds notation:

 public override string ToString()
 {
 if (this.isNull)
 return null;

 char northSouth = longitude > 0 ? ‘N’ : ‘S’;
 char eastWest = latitude > 0 ? ‘E’ : ‘W’;

 int longitudeDegrees = Math.Abs(longitude) / 3600;
 int remainingSeconds = Math.Abs(longitude) % 3600;
 int longitudeMinutes = remainingSeconds / 60;
 int longitudeSeconds = remainingSeconds % 60;

 int latitudeDegrees = Math.Abs(latitude) / 3600;
 remainingSeconds = Math.Abs(latitude) % 3600;
 int latitudeMinutes = remainingSeconds / 60;
 int latitudeSeconds = remainingSeconds % 60;

 return String.Format(“{0} ̊ {1}’{2}\”{3},{4} ̊ {5}’{6}\”{7}”,
 longitudeDegrees, longitudeMinutes, longitudeSeconds,
 northSouth, latitudeDegrees, latitudeMinutes,
 latitudeSeconds, eastWest);
 }

 The string that is entered from the user is represented in the SqlString parameter of the static method
 Parse() . First, the Parse() method checks if the string represents a null value, in which case the Null
property is invoked to return an empty Coordinate object. If the SqlString s does not represent a
null value, the text of the string is converted to pass the longitude and latitude values to the Coordinate
constructor:

c30.indd 992c30.indd 992 2/19/08 5:26:57 PM2/19/08 5:26:57 PM

Chapter 30: .NET Programming with SQL Server

993

 public static SqlCoordinate Parse(SqlString s)
 {
 if (s.IsNull)
 return SqlCoordinate.Null;

 try
 {
 string[] coordinates = s.Value.Split(‘,’);
 char[] separators = { ‘ ̊ ’, ‘\’’, ‘\”’ };
 string[] longitudeVals = coordinates[0].Split(separators);
 string[] latitudeVals = coordinates[1].Split(separators);

 Orientation orientation;
 if (longitudeVals[3] == “N” & & latitudeVals[3] == “E”)
 orientation = Orientation.NorthEast;
 else if (longitudeVals[3] == “S” & & latitudeVals[3] == “W”)
 orientation = Orientation.SouthWest;
 else if (longitudeVals[3] == “S” & & latitudeVals[3] == “E”)
 orientation = Orientation.SouthEast;
 else
 orientation = Orientation.NorthWest;

 return new SqlCoordinate(
 int.Parse(longitudeVals[0]), int.Parse(longitudeVals[1]),
 int.Parse(longitudeVals[2]),
 int.Parse(latitudeVals[0]), int.Parse(latitudeVals[1]),
 int.Parse(latitudeVals[2]), orientation);
 }
 catch (Exception ex)
 {
 throw new ArgumentException(
 “Argument has a wrong syntax. “ +
 “This syntax is required: 37 ̊ 47\’0\”N,122 ̊ 26\’0\”W”,
 ex.Message);
 }
 }
 }

 Using UDTs
 After building the assembly, it can be deployed with SQL Server. Configuration of the UDT in SQL
Server can either be done with Visual Studio 2008 using the Build Deploy Project menu or using these
SQL commands:

CREATE ASSEMBLY SampleTypes FROM
‘c:\ProCSharp\SqlServer\PropCSharp.SqlTypes.dll’
CREATE TYPE Coordinate EXTERNAL NAME
[ProCSharp.SqlTypes].[ProCSharp.SqlTypes.SqlCoordinate]

 With EXTERNAL NAME , the name of the assembly as well as the name of the class, including the
namespace, must be set.

 Now, it is possible to create a table called Cities that contains the data type SqlCoordinate , as shown
in Figure 30 - 2 . Fill the table with data as shown in Figure 30 - 3 .

c30.indd 993c30.indd 993 2/19/08 5:26:57 PM2/19/08 5:26:57 PM

Part IV: Data

994

 Using UDTs from Client - Side Code
 The assembly of the UDT must be referenced to use the UDT from client - side code. Then it can be used
like any other type on the client.

 Figure 30 - 2

 Figure 30 - 3

 Because the assembly containing the UDTs is used both from the client and from the
SQL Server, it is a good idea to put UDTs in a separate assembly from the other SQL
Server extensions such as stored procedures and functions.

 In the sample code, the SELECT statement of the SqlCommand object references the columns of the
 Cities table that contains the Location column, which is of type SqlCoordinate . Calling the method
 ToString() invokes the ToString() method of the SqlCoordinate class to display the coordinate
value in a string format:

// UDTClient
using System;
using System.Data;
using System.Data.SqlClient;
using Wrox.ProCSharp.SqlServer;

class Program
{
 static void Main()
 {
 string connectionString =
 @”server=(local);database=ProCSharp;trusted_connection=true”;
 SqlConnection connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();

c30.indd 994c30.indd 994 2/19/08 5:26:58 PM2/19/08 5:26:58 PM

Chapter 30: .NET Programming with SQL Server

995

 command.CommandText = “SELECT Id, Name, Location FROM Cities”;
 connection.Open();

 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
 while (reader.Read())
 {

 Console.WriteLine(“{0,-10}: {1}”, reader[1].ToString(),
 reader[2].ToString());
 }
 reader.Close();
 }
}

 Of course, it is also possible to cast the returned object from the SqlDataReader to a SqlCoordinate
type for using any other implemented methods of the Coordinate type:

 SqlCoordinate coordinate = (SqlCoordinate)reader[2];

 Running the application produces the following output:

Vienna 50 ̊ 10’0”N,16 ̊ 20’0”E
Paris 48 ̊ 52’0”N,2 ̊ 20’0”E
Seattle 47 ̊ 36’0”N,122 ̊ 20’0”W
London 51 ̊ 30’0”N,0 ̊ 10’0”W
Oslo 59 ̊ 55’0”N,10 ̊ 45’0”E
Moscow 55 ̊ 46’0”N,37 ̊ 40’0”E
Ulan Bator 47 ̊ 55’0”N,106 ̊ 55’0”E

 With all the great functionality of UDTs, you have to be aware of an important restriction. Before de-
ploying a new version of a UDT, the existing version must be dropped. This is possible only if all
 columns using the type are removed. Don ’ t plan on using UDTs for types that you change frequently.

 User - Defined Aggregates
 An aggregate is a function that returns a single value based on multiple rows. Examples of built - in
aggregates are COUNT , AVG , and SUM . COUNT returns the record count of all selected records, AVG returns
the average of values from a column of selected rows, and SUM returns the sum of all values of a column.
All built - in aggregates work only with built - in value types.

 A simple usage of the built - in aggregate AVG is shown here to return the average unit price of all
products from the AdventureWorks sample database by passing the ListPrice column to the AVG
aggregate in the SELECT statement:

SELECT AVG(ListPrice) AS ‘average list price’
FROM Production.Product

 The result from the SELECT gives the average list price of all products:

average list price
438,6662

 The SELECT statement returns just a single value that represents the average of all ListPrice column
values. Aggregates can also work with groups. In the next example, the AVG aggregate is combined with
the GROUP BY clause to return the average list price of every product line:

SELECT ProductLine, AVG(ListPrice) AS ‘average list price’
FROM Production.Product
GROUP BY ProductLine

c30.indd 995c30.indd 995 2/19/08 5:26:58 PM2/19/08 5:26:58 PM

Part IV: Data

996

 The average list price is now grouped by the product line:

ProductLine average list price
NULL 16,8429
M 827,0639
R 965,3488
S 50,3988
T 840,7621

 For custom value types, and if you want to do a specific calculation based on a selection of rows, you can
create a user - defined aggregate.

 Creating User - Defined Aggregates
 To write a user - defined aggregate with CLR code, a simple class with the methods Init() ,
 Accumulate() , Merge() , and Terminate() must be implemented. The functionality of these
methods is shown in the following table.

 UDT Method Description

 Init() The Init() method is invoked for every group of rows to be processed. In this
method, initialization can be done for calculation of every row group.

 Accumulate() The Accumulate() method is invoked for every value in all groups. The parame-
ter of this method must be of the correct type that is accumulated; this can also be
the class of a user - defined type.

 Merge() The Merge() method is invoked when the result of one aggregation must be com-
bined with another aggregation.

 Terminate() After the last row of every group is processed, the Terminate() method is invoked.
Here, the result of the aggregate must be returned with the correct data type.

 The code sample shows how to implement a simple user - defined aggregate to calculate the sum of all
rows in every group. For deployment with Visual Studio, the attribute [SqlUserDefinedAggregate] is
applied to the class SampleSum . As with the user - defined type, with user - defined aggregates the format
for storing the aggregate must be defined with a value from the Format enumeration. Again, Format
.Native is for using automatic serialization with blittable data types.

 In the code sample the variable sum is used for accumulation of all values of a group. In the Init()
method, the variable sum is initialized for every new group to accumulate. The method Accumulate() ,
which is invoked for every value, adds the value of the parameter to the sum variable. With the Merge()
method, one aggregated group is added to the current group. Finally, the method Terminate() returns
the result of a group:

[Serializable]
[SqlUserDefinedAggregate(Format.Native)]
public struct SampleSum
{
 private int sum;

 public void Init()
 {
 sum = 0;
 }

c30.indd 996c30.indd 996 2/19/08 5:26:58 PM2/19/08 5:26:58 PM

Chapter 30: .NET Programming with SQL Server

997

 public void Accumulate(SqlInt32 Value)
 {
 sum += Value.Value;
 }

 public void Merge(SampleSum Group)
 {
 sum += Group.sum;
 }

 public SqlInt32 Terminate()
 {
 return new SqlInt32(sum);
 }
}

 You can use the Aggregate template from Visual Studio to create the core code for building the user -
defined aggregate. The template from Visual Studio creates a struct that uses the SqlString type as
a parameter and return type with the Accumulate and Terminate methods. You can change the type
to a type that represents the requirement of your aggregate. In the example, the SqlInt32 type is used.

 Using User - Defined Aggregates
 The user - defined aggregate can be deployed either with Visual Studio or with the CREATE AGGREGATE
statement. Following the CREATE AGGREGATE is the name of the aggregate, the parameter (@value
int) , and the return type. EXTERNAL NAME requires the name of the assembly and the .NET type
including the namespace.

CREATE AGGREGATE [SampleSum] (@value int) RETURNS [int] EXTERNAL NAME
[Demo].[SampleSum]

 After the user - defined aggregate has been installed, it can be used as shown in the following SELECT
statement, where the number of ordered products is returned by joining the Product and
 PurchaseOrderDetail tables. For the user - defined aggregate, the OrderQty column of the Order
PurchaseOrderDetail table is defined as an argument:

SELECT Purchasing.PurchaseOrderDetail.ProductID AS Id,
 Production.Product.Name AS Product,
 dbo.SampleSum(Purchasing.PurchaseOrderDetail.OrderQty) AS Sum
FROM Production.Product INNER JOIN
 Purchasing.PurchaseOrderDetail ON
 Purchasing.PurchaseOrderDetail.ProductID = Production.Product.ProductID
GROUP BY Purchasing.PurchaseOrderDetail.ProductID, Production.Product.Name
ORDER BY Id

 An extract of the returned result that shows the number of orders for products by using the aggregate
function SampleSum is presented here:

Id Product Sum
1 Adjustable Race 154
2 Bearing Ball 150
4 Headset Ball Bearings 153
317 LL Crankarm 44000
318 ML Crankarm 44000
319 HL Crankarm 71500
320 Chainring Bolts 375
321 Chainring Nut 375
322 Chainring 7440

c30.indd 997c30.indd 997 2/19/08 5:26:59 PM2/19/08 5:26:59 PM

Part IV: Data

998

 Stored Procedures
 SQL Server allows the creation of stored procedures with C#. A stored procedure is a subroutine, and
they are physically stored in the database. They definitely are not to be considered a replacement for
T - SQL. T - SQL still has an advantage when the procedure is mainly data - driven.

 Take a look at the T - SQL stored procedure GetCustomerOrders , which returns information from
customer orders from the AdventureWorks database. This stored procedure returns orders from the
customer that is specified with the parameter CustomerID :

CREATE PROCEDURE GetCustomerOrders
 (
 @CustomerID int
)
AS
SELECT SalesOrderID, OrderDate, DueDate, ShipDate FROM Sales.SalesOrderHeader
 WHERE (CustomerID = @CustomerID)
 ORDER BY SalesOrderID

 Creating Stored Procedures
 As you can see in the following code listing, implementing the same stored procedure with C# has more
complexity. The attribute [SqlProcedure] is used to mark a stored procedure for deployment. With the
implementation, a SqlCommand object is created. With the constructor of the SqlConnection object,
the string “ Context Connection=true ” is passed to use the connection that was already opened by
the client calling the stored procedure. Very similarly to the code you saw in Chapter 26 , the SQL SELECT
statement is set and one parameter is added. The ExecuteReader() method returns a SqlDataReader
object. This reader object is returned to the client by invoking the Send() method of the SqlPipe :

using System.Data;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;

public partial class StoredProcedures
{
 [SqlProcedure]
 public static void GetCustomerOrdersCLR(int customerId)
 {
 SqlConnection connection = new SqlConnection(“Context Connection=true”);
 connection.Open();
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandText = “SELECT SalesOrderID, OrderDate, DueDate, “ +
 “ShipDate “ +
 “FROM Sales.SalesOrderHeader “ +
 “WHERE (CustomerID = @CustomerID)” +
 “ORDER BY SalesOrderID”;

 command.Parameters.Add(“@CustomerID”, SqlDbType.Int);
 command.Parameters[“@CustomerID”].Value = customerId;

c30.indd 998c30.indd 998 2/19/08 5:26:59 PM2/19/08 5:26:59 PM

Chapter 30: .NET Programming with SQL Server

999

 SqlDataReader reader = command.ExecuteReader();
 SqlPipe pipe = SqlContext.Pipe;
 pipe.Send(reader);
 connection.Close();
 }
};

 CLR stored procedures are deployed to SQL Server either using Visual Studio or with the CREATE
PROCEDURE statement. With this SQL statement the parameters of the stored procedure are defined, as
well as the name of the assembly, class, and method:

CREATE PROCEDURE GetCustomerOrdersCLR
(
 @CustomerID nchar(5)
)
AS EXTERNAL NAME Demo.StoredProcedures.GetCustomerOrdersCLR

 Using Stored Procedures
 The CLR stored procedure can be invoked just like a T - SQL stored procedure by using classes
from the namespace System.Data.SqlClient . First, a SqlConnection object is created. The
 CreateCommand() method returns a SqlCommand object. With the command object, the name of the
stored procedure GetCustomerOrdersCLR is set to the CommandText property. As with all stored
procedures, the CommandType property must be set to CommandType.StoredProcedure . The method
 ExecuteReader() returns a SqlDataReader object to read record by record:

using System;
using System.Data;
using System.Data.SqlClient;

//...

 string connectionString =
 @”server=(local);database=AdventureWorks;trusted_connection=true”;
 SqlConnection connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();
 command.CommandText = “GetCustomerOrdersCLR”;
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter param = new SqlParameter(“@customerId”, 3);
 command.Parameters.Add(param);
 connection.Open();
 SqlDataReader reader =
 command.ExecuteReader(CommandBehavior.CloseConnection);
 while (reader.Read())
 {
 Console.WriteLine(“{0} {1:d}”, reader[“SalesOrderID”],
 reader[“OrderDate”]);
 }
 reader.Close();

 The classes from the namespace System.Data.SqlClient are discussed in Chapter 26 ,
 “ Data Access. ”

c30.indd 999c30.indd 999 2/19/08 5:26:59 PM2/19/08 5:26:59 PM

Part IV: Data

1000

 Invoking the stored procedure written with T - SQL or with C# is not different at all. The code for calling
stored procedures is completely identical; from the caller code you don ’ t know if the stored procedure is
implemented with T - SQL or the CLR. An extract of the result shows the order dates for the customer
with ID 3:

44124 9/1/2001
44791 12/1/2001
45568 3/1/2002
46377 6/1/2002
47439 9/1/2002
48378 12/1/2002

 As you have seen, mainly data - driven stored procedures are better done with T - SQL. The code is a
lot shorter. Writing stored procedures with the CLR has the advantage if you need some specific
data - processing, for example, by using the .NET cryptography classes.

 User - Defined Functions
 User - defined functions are somewhat similar to stored procedures. The big difference is that user -
 defined functions can be invoked within SQL statements.

 Creating User - Defined Functions
 A CLR user - defined function can be defined with the attribute [SqlFunction] . The sample function
 CalcHash() converts the string that is passed to a hashed string. The MD5 algorithm that is used for
hashing the string is implemented with the class MD5CryptoServiceProvider from the namespace
 System.Security.Cryptography . The ComputeHash() method computes the hash from the byte
array input and returns a computed hash byte array. The hashed byte array is converted back to a
 string by using the StringBuilder class:

using System.Data.SqlTypes;
using System.Security.Cryptography;
using System.Text;
using Microsoft.SqlServer.Server;

public partial class UserDefinedFunctions
{
 [SqlFunction]
 public static SqlString CalcHash(SqlString value)
 {
 byte[] source;
 byte[] hash;

 source = ASCIIEncoding.ASCII.GetBytes(value.ToString());
 hash = new MD5CryptoServiceProvider().ComputeHash(source);

 StringBuilder output = new StringBuilder(hash.Length);

 for (int i = 0; i < hash.Length - 1; i++)
 {
 output.Append(hash[i].ToString(“X2”));
 }

 return new SqlString(output.ToString());
 }
}

c30.indd 1000c30.indd 1000 2/19/08 5:27:00 PM2/19/08 5:27:00 PM

Chapter 30: .NET Programming with SQL Server

1001

 Using User - Defined Functions
 A user - defined function can be deployed with SQL Server very similarly to the other .NET extensions:
either with Visual Studio 2008 or with the CREATE FUNCTION statement:

CREATE FUNCTION CalcHash
(
 @value nvarchar
)
RETURNS nvarchar
AS EXTERNAL NAME Demo.UserDefinedFunctions.CalcHash

 A sample usage of the CalcHash() function is shown with this SELECT statement where the credit card
number is accessed from the CreditCard table in the AdventureWorks database by returning just the
hash code from the credit card number:

SELECT Sales.CreditCard.CardType AS [Card Type],
 dbo.CalcHash(Sales.CreditCard.CardNumber) AS [Hashed Card]
FROM Sales.CreditCard INNER JOIN Sales.ContactCreditCard ON
 Sales.CreditCard.CreditCardID = Sales.ContactCreditCard.CreditCardID
WHERE Sales.ContactCreditCard.ContactID = 11

 The result returned shows the hashed credit card number for contact ID 11:

Card Type Hashed Card
ColonialVoice 7482F7B4E613F71144A9B336A3B9F6

 Triggers
 A trigger is a special kind of stored procedure invoked when a table is modified (for example, when a
row is inserted, updated, or deleted). Triggers are associated with tables and the action that should
activate them (for example, on insert/update/delete of rows).

 With triggers, changes of rows can be cascaded through related tables or more complex data integrity
can be enforced.

 Within a trigger you have access to the current data of a row and the original data, so it is possible to
reset the change to the earlier state. Triggers are automatically associated with the same transaction as
the command that fires the trigger, so you get a correct transactional behavior.

 The trigger uCreditCard that follows is part of the AdventureWorks sample database. This trigger is
fired when a row in the CreditCard table is updated. With this trigger the ModifiedDate column of
the CreditCard table is updated to the current date. For accessing the data that is changed, the
temporary table inserted is used.

CREATE TRIGGER [Sales].[uCreditCard] ON [Sales].[CreditCard]
AFTER UPDATE NOT FOR REPLICATION AS
BEGIN
 SET NOCOUNT ON;

 UPDATE [Sales].[CreditCard]
 SET [Sales].[CreditCard].[ModifiedDate] = GETDATE()
 FROM inserted
 WHERE inserted.[CreditCardID] = [Sales].[CreditCard].[CreditCardID];
END;

c30.indd 1001c30.indd 1001 2/19/08 5:27:00 PM2/19/08 5:27:00 PM

Part IV: Data

1002

 Creating Triggers
 The example shown here demonstrates implementing data integrity with triggers when new records are
inserted into the Users table. To create a trigger with the CLR, a simple class must be defined that
includes static methods that have the attribute [SqlTrigger] applied. The attribute [SqlTrigger]
defines the table that is associated with the trigger and the event when the trigger should occur. In the
example, the associated table is Person.Contact , which is indicated by the Target property. The
 Event property defines when the trigger should occur; here, the event string is set to FOR INSERT ,
which means the trigger is started when a new row is inserted in the Users table.

 The property SqlContext.TriggerContext returns the trigger context in an object of type
 SqlTriggerContext . The SqlTriggerContext class offers three properties: ColumnsUpdated returns
a Boolean array to flag every column that was changed, EventData contains the new and the original
data of an update in XML format, and TriggerAction returns an enumeration of type TriggerAction
to mark the reason for the trigger. The example compares whether the TriggerAction of the trigger
context is set to TriggerAction.Insert before continuing.

 Triggers can access temporary tables; for example, in the following code listing the INSERTED table
is accessed. With INSERT , UPDATE , and DELETE SQL statements, temporary tables are created. The
 INSERT statement creates an INSERTED table; the DELETE statement creates a DELETED table. With the
 UPDATE statement both INSERTED and DELETED tables are used. The temporary tables have the same
columns as the table that is associated with the trigger. The SQL statement SELECT Username, Email
FROM INSERTED is used to access username and email, and to check the email address for correct
syntax. SqlCommand.ExecuteRow() returns a row represented in a SqlDataRecord . Username and
email are read from the data record. Using the regular expression class, RegEx , the expression used with
the IsMatch() method checks if the email address conforms to valid email syntax. If it does not conform,
an exception is thrown and the record is not inserted, because a rollback occurs with the transaction:

using System;
using System.Data.SqlClient;
using System.Text.RegularExpressions;
using Microsoft.SqlServer.Server;

public partial class Triggers
{
 [SqlTrigger(Name =”InsertContact”, Target=”Person.Contact”,
 Event=”FOR INSERT”)]
 public static void InsertContact()
 {
 SqlTriggerContext triggerContext = SqlContext.TriggerContext;

 if (triggerContext.TriggerAction == TriggerAction.Insert)
 {
 SqlConnection connection = new SqlConnection(
 “Context Connection=true”);
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandText = “SELECT EmailAddress FROM INSERTED”;
 connection.Open();
 string email = (string)command.ExecuteScalar();
 connection.Close();

 if (!Regex.IsMatch(email,
 @”([\w-]+\.)*?[\w-]+@[\w-]+\.([\w-]+\.)*?[\w]+$”))

c30.indd 1002c30.indd 1002 2/19/08 5:27:00 PM2/19/08 5:27:00 PM

Chapter 30: .NET Programming with SQL Server

1003

 {
 throw new FormatException(“Invalid email”);
 }
 }
 }
}

 Using Triggers
 Using deployment of Visual Studio 2008, the trigger can be deployed to the database. You can use the
 CREATE TRIGGER command to create the trigger manually:

CREATE TRIGGER InsertContact ON Person.Contact
FOR INSERT
AS EXTERNAL NAME Demo.Triggers.InsertContact

 Trying to insert rows into the Users table with an incorrect email throws an exception, and the insert is
not done.

 XML Data Type
 One of the major programming features of SQL Server is the XML data type. With older versions of SQL
Server, XML data is stored inside a string or a blob. Now XML is a supported data type that allows you
to combine SQL queries with XQuery expressions to search within XML data. An XML data type can
be used as a variable, a parameter, a column, or a return value from a UDF.

With Office 2007, it is possible to store Word and Excel documents as XML. Word and Excel also support
using custom XML schemas, where only the content (and not the presentation) is stored with XML. The
output of Office applications can be stored directly in SQL Server, where it is possible to search within
this data. Of course, custom XML data can also be stored in SQL Server.

 Don ’ t use XML types for relational data. If you do a search for some of the elements
and if the schema is clearly defined for the data, storing these elements in a rela-
tional fashion allows the data to be accessed faster. If the data is hierarchical and
some elements are optional and may change over time, storing XML data has many
advantages.

 Tables with XML Data
 Creating tables with XML data is as simple as selecting the Xml data type with a column. The following
 CREATE TABLE SQL command creates the Exams table with a column ID that is also the primary key, the
column Number , and the column Info , which is of type xml :

CREATE TABLE [dbo].[Exams](
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [Number] [nchar] (10) NOT NULL,
 [Info] [xml] NOT NULL,
 CONSTRAINT [PK_Exams] PRIMARY KEY CLUSTERED
 (
 [Id] ASC
) ON [PRIMARY]
) ON [PRIMARY]

c30.indd 1003c30.indd 1003 2/19/08 5:27:01 PM2/19/08 5:27:01 PM

Part IV: Data

1004

 For a simple test, the table is filled with this data:

INSERT INTO Exams values(‘70-536’,
 ‘ < Exam Number=”70-536” >
 < Title > TS: Microsoft .NET Framework 2.0 - Application Development Foundation
 < /Title >
 < Certification Name=”MCTS Windows Applications” Status=”Core” / >
 < Certification Name=”MCTS Web Applications” Status=”Core” / >
 < Certification Name=”MCTS Distributed Applications” Status=”Core” / >
 < Course > 2956 < /Course >
 < Course > 2957 < /Course >
 < Topic > Developing applications that use system types and collections
 < /Topic >
 < Topic > Implementing service processes, threading, and application domains
 < /Topic >
 < Topic > Embedding configuration, diagnostics, management, and installation
features
 < /Topic >
 < Topic > Implementing serialization and input/output functionality < /Topic >
 < Topic > Improving the security < /Topic >
 < Topic > Implementing interoperability, reflection, and mailing functionality
 < /Topic >
 < Topic > Implementing globalization, drawing, and text manipulation functionality
 < /Topic >
 < /Exam > ’)

INSERT INTO Exams values(‘70-528’,
 ‘ < Exam Number=”70-528” >
 < Title > TS: Microsoft .NET Framework - Web-Based Client Development < /Title >
 < Certification Name=”MCTS Web Applications” Status=”Core” / >
 < Course > 2541 < /Course >
 < Course > 2542 < /Course >
 < Course > 2543 < /Course >
 < Course > 2544 < /Course >
 < Topic > Creating and Programming a Web Application < /Topic >
 < Topic > Integrating Data in a Web Application by using ADO.NET, XML, and
 Data-Bound Controls < /Topic >
 < Topic > Creating Custom Web Controls < /Topic >
 < Topic > Tracing, Configuring, and Deploying Applications < /Topic >
 < Topic > Customizing and Personalizing a Web Application < /Topic >
 < Topic > Implementing Authentication and Authorization < /Topic >
 < Topic > Creating ASP.NET Mobile Web Applications < /Topic >
 < /Exam > ’)

INSERT INTO Exams values(‘70-526’,
 ‘ < Exam Number=”70-526” >
 < Title > TS: Microsoft .NET Framework 2.0 - Windows-Based Client Development
 < /Title >
 < Certification Name=”MCTS Windows Applications” Status=”Core” / >
 < Course > 2541 < /Course >
 < Course > 2542 < /Course >
 < Course > 2546 < /Course >
 < Course > 2547 < /Course >
 < Topic > Creating a UI for a Windows Forms Application by Using Standard Controls
 < /Topic >
 < Topic > Integrating Data in a Windows Forms Application < /Topic >

c30.indd 1004c30.indd 1004 2/19/08 5:27:01 PM2/19/08 5:27:01 PM

Chapter 30: .NET Programming with SQL Server

1005

 < Topic > Implementing Printing and Reporting Functionality < /Topic >
 < Topic > Enhancing Usability < /Topic >
 < Topic > Implementing Asynchronous Programming Techniques to Improve the User
 Experience < /Topic >
 < Topic > Developing Windows Forms Controls < /Topic >
 < Topic > Configuring and Deploying Applications < /Topic >
 < /Exam > ’)

 Reading XML Values
 You can read the XML data with ADO.NET using a SqlDataReader object. The SqlDataReader
method GetSqlXml() returns a SqlXml object. The SqlXml class has a property Value that returns the
complete XML representation and a CreateReader() method that returns an XmlReader object.

 The Read() method of the XmlReader is repeated in a while loop to read node by node. With the
output there ’ s interest only in information about the value of the attribute Number , and the values of the
elements Title and Course . The node to which the reader is positioned is compared with the
corresponding XML element names, and the corresponding values are written to the console.

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.Text;
using System.Xml;

 class Program
 {
 static void Main()
 {
 string connectionString =
 @”server=(local);database=ProCSharp;trusted_connection=true”;
 SqlConnection connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();
 command.CommandText = “SELECT Id, Number, Info FROM Exams”;
 connection.Open();
 SqlDataReader reader = command.ExecuteReader(
 CommandBehavior.CloseConnection);
 while (reader.Read())
 {
 SqlXml xml = reader.GetSqlXml(2);

 XmlReader xmlReader = xml.CreateReader();

 StringBuilder courses = new StringBuilder(“Course(s): “, 40);
 while (xmlReader.Read())
 {
 if (xmlReader.Name == “Exam” & & xmlReaderIsStartElement)
 {
 Console.WriteLine(“Exam: {0}”,
 xmlReader.GetAttribute(“Number”));
 }
 else if (xmlReader.Name == “Title” & & xmlReader.IsStartElement)

(continued)

c30.indd 1005c30.indd 1005 2/19/08 5:27:01 PM2/19/08 5:27:01 PM

Part IV: Data

1006

 {
 Console.WriteLine(“Title: {0}”, xmlReader.ReadString());
 }
 else if (xmlReader.Name == “Course” & &
 xmlReader.IsStartElement)
 {
 courses.AppendFormat(“{0} “, xmlReader.ReadString());
 }
 }
 xmlReader.Close();
 Console.WriteLine(courses.ToString());
 Console.WriteLine();
 }
 reader.Close();
 }
 }

 Running the application you will get the output as shown:

Exam: 70-536
Title: TS: Microsoft .NET Framework 2.0 - Application Development Foundation
Course(s): 2956 2957

Exam: 70-528
Title: TS: Microsoft .NET Framework 2.0 - Web-Based Client Development
Course(s): 2541 2542 2543 2544

Exam: 70-526
Title: TS: Microsoft .NET Framework 2.0 - Windows-Based Client Development
Course(s): 2541 2542 2546 2547

 Instead of using the XmlReader class you can read the complete XML content into the XmlDocument
class and parse the elements by using the DOM model. The method SelectSingleNode() requires an
XPath expression and returns an XmlNode object. The XPath expression //Exam looks for the Exam XML
element inside the complete XML tree. The XmlNode object returned can be used to read the children of
the represented element. The value of the Number attribute is accessed to write the exam number to the
console, then the Title element is accessed and the content of the Title element is written to the
console, and the content of all Course elements is written to the console as well.

 string connectionString =
 @”server=(local);database=ProCSharp;trusted_connection=true”;
 SqlConnection connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();
 command.CommandText = “SELECT Id, Number, Info FROM Exams”;
 connection.Open();
 SqlDataReader reader = command.ExecuteReader(
 CommandBehavior.CloseConnection);
 while (reader.Read())
 {
 SqlXml xml = reader.GetSqlXml(2);
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xml.Value);

 XmlNode examNode = doc.SelectSingleNode(“//Exam”);
 Console.WriteLine(“Exam: {0}”,
 examNode.Attributes[“Number”].Value);

c30.indd 1006c30.indd 1006 2/19/08 5:27:02 PM2/19/08 5:27:02 PM

Chapter 30: .NET Programming with SQL Server

1007

 XmlNode titleNode = examNode.SelectSingleNode(“./Title”);
 Console.WriteLine(“Title: {0}”, titleNode.InnerText);
 Console.Write(“Course(s): “);
 foreach (XmlNode courseNode in examNode.SelectNodes(“./Course”))
 {
 Console.Write(“{0} “, courseNode.InnerText);
 }
 Console.WriteLine();

 }
 reader.Close();

 The XmlReader and XmlDocument classes are discussed in Chapter 28 , “ Manipulating XML. ”

 With .NET 3.5 there ’ s another option to access the XML column from the database. You can combine
LINQ to SQL and LINQ to XML, which makes the programming code smaller.

 You can use the LINQ to SQL designer by selecting the LINQ to SQL Classes template from the Data
templates category. Name the file ProCSharp.dbml to create a mapping for the database ProCSharp .
Create the mapping by dragging and dropping the Exams table from the Solution Explorer to the design
surface as shown in Figure 30 - 4 .

 Figure 30 - 4

 The mapping class that is created by the designer has the name ProCSharpDataContext and defines a
property Exams to return all exam rows. Here a foreach statement is used to iterate through all records.
Of course you can also define a LINQ query with a where expression if not all records are required. The
 Exam class defines the properties Id , Number , and Info accordingly to the columns in the database table.
The Info property is of type XDocument and thus can be accessed by using the new LINQ to XML
classes from the namespace System.Xml.Linq . Invoking the method Element() passing the name of
the XML element Exam returns an XElement object that is then used to access the values of the attribute
 Number and the elements Title and Course in a much simpler way, as was done earlier with the
 XmlDocument class.

using System;
using System.Xml.Linq;

namespace Wrox.ProCSharp.SqlServer
{
 class Program
 {
 static void Main()
 {
 ProCSharpDataContext db = new ProCSharpDataContext();

 foreach (Exam item in db.Exams)

(continued)

c30.indd 1007c30.indd 1007 2/19/08 5:27:02 PM2/19/08 5:27:02 PM

Part IV: Data

1008

 {
 XElement exam = item.Info.Element(“Exam”);
 Console.WriteLine(“Exam: {0}”, exam.Attribute(“Number”).Value);
 Console.WriteLine(“Title: {0}”, exam.Element(“Title”).Value);
 Console.Write(“Course(s): “);
 foreach (var course in exam.Elements(“Course”))
 {
 Console.Write(“{0} “, course.Value);
 }
 Console.WriteLine();
 }
 }
 }
}

 LINQ to SQL and LINQ to XML are explained in Chapters 27 and 29 , respectively.

 Query of Data
 Up until now, you haven ’ t seen the really great features of the XML data type. SQL SELECT statements
can be combined with XML XQuery.

 A SELECT statement combined with an XQuery expression to read into the XML value is shown here:

SELECT [Id], [Number], [Info].query(‘/Exam/Course’) AS Course FROM [Exams]

 The XQuery expression /Exam/Course accesses the Course elements that are children of the Exam
element. The result of this query returns the IDs, exam numbers, and courses:

1 70-536 < Course > 2956 < /Course > < Course > 2957 < /Course >
2 70-528 < Course > 2541 < /Course > < Course > 2542 < /Course > < Course > 2543 < /Course >
 < Course > 2544 < /Course >
3 70-526 < Course > 2541 < /Course > < Course > 2542 < /Course > < Course > 2546 < /Course >
 < Course > 2547 < /Course >

 With an XQuery expression, you can create more complex statements to query data within the XML
content of a cell. The next example converts the XML from the exam information to XML that lists
information about courses:

SELECT [Info].query(‘
 for $course in /Exam/Course
 return
 < Course >
 < Exam > { data(/Exam[1]/@Number) } < /Exam >
 < Number > { data($course) } < /Number >
 < /Course > ’)
AS Course
FROM [Exams]
WHERE Id=2

 Here, just a single row is selected with SELECT [Info] ... FROM Exams WHERE Id = 2 . With the
result of this SQL query, the for and return statements of an XQuery expression are used. for
$course in /Exam/Course iterates through all Course elements. $course declares a variable that is
set with every iteration (similar to a C# foreach statement). Following the return statement, the result
of the query for every row is defined. The result for every course element is surrounded by the
 < Course > element. Embedded inside the < Course > element are < Exam > and < Number > . The text within

(continued)

c30.indd 1008c30.indd 1008 2/19/08 5:27:02 PM2/19/08 5:27:02 PM

Chapter 30: .NET Programming with SQL Server

1009

the < Exam > element is defined with data(/Exam[1]/@Number) . data() is an XQuery function that
returns the value of the node specified with the argument. The node /Exam[1] is used to access the first
 < Exam > element; @Number specifies the XML attribute Number . The text within the element < Number > is
defined from the variable $course .

 Contrary to C#, where the first element in a collection is accessed with an index of 0, with XPath the
first element in a collection is accessed with an index of 1.

 The result of this query is shown here:

 < Course >
 < Exam > 70-528 < /Exam >
 < Number > 2541 < /Number >
 < /Course >
 < Course >
 < Exam > 70-528 < /Exam >
 < Number > 2542 < /Number >
 < /Course >
 < Course
 < Exam > 70-528 < /Exam >
 < Number > 2543 < /Number >
 < /Course >
 < Course >
 < Exam > 70-528 < /Exam >
 < Number > 2544 < /Number >
 < /Course >

 You can change the XQuery statement to also include a where clause for filtering XML elements. The
following example only returns courses from the XML column if the course number has a value higher
than 2542:

SELECT [Info].query(‘
 for $course in /Exam/Course
 where ($course > 2542)
 return
 < Course >
 < Exam > { data(/Exam[1]/@Number) } < /Exam >
 < Number > { data($course) } < /Number >
 < /Course > ’)
AS Course
FROM [Exams]
WHERE Id=2

 The result is reduced to just two course numbers:

 < Course >
 < Exam > 70-528 < /Exam >
 < Number > 2543 < /Number >
 < /Course >
 < Course >
 < Exam > 70-528 < /Exam >
 < Number > 2544 < /Number >
 < /Course >

 XQuery in SQL Server allows using several other XQuery functions for getting minimum, maximum, or
summary values, working with strings, numbers, checking for positions within collections, and so on.

c30.indd 1009c30.indd 1009 2/19/08 5:27:03 PM2/19/08 5:27:03 PM

Part IV: Data

1010

 The next example shows the use of the count() function to get the number of /Exam/Course elements:

SELECT [Id], [Number], [Info].query(‘
 count(/Exam/Course)’)
 AS “Course Count”
FROM [Exams]

 The data returned displays the number of courses for the exams:

Id Number Course Count
1 70-536 2
2 70-528 4
3 70-526 4

 XML Data Modification Language (XML DML)
 XQuery as it is defined by the W3C (http://www.w3c.org) allows only querying of data. Because of
this XQuery restriction, Microsoft defined an extension to XQuery that has the name XML Data
Modification Language (XML DML). XML DML makes it possible to modify XML data with the
following XQuery extensions: insert , delete , and replace value of .

 This section looks at some examples to insert, delete, and modify XML contents within a cell.

 You can use the insert keyword to insert some XML content within an XML column without replacing
the complete XML cell. Here, < Course > 2555 < /Course > is inserted as the last child element of the first
 Exam element:

UPDATE [Exams]
SET [Info].modify(‘
 insert < Course > 2555 < /Course > as last into Exam[1]’)
WHERE [Id]=3

 XML content can be deleted with the delete keyword. Within the first Exam element, the last Course
element is deleted. The last element is selected by using the last() function.

UPDATE [Exams]
SET [Info].modify(‘
 delete /Exam[1]/Course[last()]’)
FROM [Exams] WHERE [Id]=3

 It is also possible to change XML content. Here, the keyword replace value of is used. The
expression /Exam/Course[text() = 2543] accesses only the child elements Course where the text
content contains the string 2543 . From these elements, only the text content is accessed for replacement
with the text() function. If only a single element is returned from the query, it is still required that you
specify just one element for replacement. This is why explicitly the first text element returned is specified
with [1] . 2599 specifies that the new course number is 2599 :

UPDATE [Exams]
SET [Info].modify(‘
 replace value of (/Exam/Course[text() = 2543]/text())[1] with 2599’)
FROM [Exams]

 XML Indexes
 If some specific elements are often searched within the XML data, you can specify indexes within the
XML data type. XML indexes must be distinguished as being a primary or a secondary XML index type.
A primary XML index is created for the complete persisted representation of the XML value.

c30.indd 1010c30.indd 1010 2/19/08 5:27:03 PM2/19/08 5:27:03 PM

Chapter 30: .NET Programming with SQL Server

1011

 The following SQL command, CREATE PRIMARY XML INDEX , creates the index idx_exams on the Info
column:

CREATE PRIMARY XML INDEX idx_exams on Exams (Info)

 Primary indexes don ’ t help if the query contains an XPath expression to directly access XML elements of
the XML type. For XPath and XQuery expressions, XML secondary indexes can be used. If an XML
secondary index is created, the primary index must already exist. With secondary indexes, these index
types must be distinguished:

 PATH index

 VALUE index

 PROPERTY index

 A PATH index is used if exists() or query() functions are used and XML elements are accessed with
an XPath expression. Using the XPath expression /Exam/Course , it might be useful to do a PATH index:

CREATE XML INDEX idx_examNumbers on [Exams] (Info)
 USING XML INDEX idx_exams FOR PATH

 The PROPERTY index is used if properties are fetched from elements with the value() function. The FOR
PROPERTY statement with the index creation defines a PROPERTY index:

CREATE XML INDEX idx_examNumbers on [Exams] (Info)
 USING XML INDEX idx_exams FOR PROPERTY

 If elements are searched through the tree with an XPath descendant - or - self axis expression, the best
performance might be achieved with a VALUE index. The XPath expression //Certification searches
all Certification elements with the descendant - or - self axis. The expression [@Name= “ MCTS Web
Applications “] returns only the elements where the attribute Name has the value MCTS
Web Applications :

SELECT [Info].query(‘/Exam/Title/text()’) FROM [Exams]
 WHERE [Info].exist(‘//Certification[@Name=”MCTS Web Applications”]’) = 1

 The result returned lists the titles of the exams that contain the requested certification:

TS: Microsoft .NET Framework 2.0 - Application Development Foundation
TS: Microsoft .NET Framework - Web-Based Client Development

 The VALUE index is created with the FOR VALUE statement:

CREATE XML INDEX idx_examNumbers on [Exams] (Info)
 USING XML INDEX idx_exams FOR VALUE

 Strongly Typed XML
 The XML data type in SQL Server can also be strongly typed with XML schemas. With a strongly typed
XML column, it is verified if the data conforms to the schema when XML data is inserted.

 A XML schema can be created with the CREATE XML SCHEMA COLLECTION statement. The statement
shown here creates a simple XML schema, CourseSchema . The schema defines the type CourseElt that
contains a sequence of Number and Title , which are both of type string , and an element Any , which
can be any type. Number and Title may occur only once. Because Any has the minOccurs attribute set
to 0 , and the maxOccurs attribute set to unbounded , this element is optional. This allows you to add any
additional information to the CourseElt type in future versions, while the schema still remains valid.
Finally, the element name Course is of type CourseElt .

❑

❑

❑

c30.indd 1011c30.indd 1011 2/19/08 5:27:03 PM2/19/08 5:27:03 PM

Part IV: Data

1012

CREATE XML SCHEMA COLLECTION CourseSchema AS
‘ < ?xml version=”1.0” encoding=”UTF-8”? >
 < xs:schema id=”Courses” targetNamespace=”http://thinktecture.com/Courses.xsd”
 elementFormDefault=”qualified” xmlns=”http://thinktecture.com/Courses.xsd”
 xmlns:mstns=”http://thinktecture.com/Courses.xsd”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
 < xs:complexType name=”CourseElt” >
 < xs:sequence >
 < xs:element name=”Number” type=”xs:string” maxOccurs=”1”
 minOccurs=”1” / >
 < xs:element name=”Title” type=”xs:string” maxOccurs=”1”
 minOccurs=”1” / >
 < xs:element name=”Any” type=”xs:anyType”
 maxOccurs=”unbounded” minOccurs=”0” / >
 < /xs:sequence >
 < /xs:complexType >
 < xs:element name=”Course” type=”CourseElt” >
 < /xs:element >
 < /xs:schema > ’

 With this schema, a valid XML looks like this:

 < Course xmlns=”http://thinktecture.com/Courses.xsd” >
 < Number > 2549 < /Number >
 < Title > Advanced Distributed Application Development with Visual Studio 2008 < /
Title >
 < /Course >

 With the Visual Studio Database project type, there ’ s no support to add a schema to the database. This
feature is not available from the GUI by Visual Studio 2008 but must be created manually. To create an
XML schema with Visual Studio 2008, create a new Visual Studio project by using the Empty Project
template. Add a new XML schema to the project. Then copy the XML syntax of the schema into the
 CREATE XML SCHEMA statement.

 Besides using Visual Studio, you can copy the XML syntax into SQL Server Management Studio to create
and view the XML schemas (see Figure 30 - 5). The Object Explorer lists the XML schemas under the
Types entry.

 The XML schema can be assigned to a column by setting it with the xml data type:

CREATE TABLE [Courses]
(
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [Course] [xml]([dbo].[CourseSchema]) NOT NULL
)

 By creating the table with Visual Studio 2008 or with SQL Server Management Studio, the XML schema
can be assigned to a column by setting the property XML schema namespace .

 Now as you add data to the XML column, the schema is verified. If the XML does not satisfy the schema
definition, a SqlException is thrown with an XML Validation error.

c30.indd 1012c30.indd 1012 2/19/08 5:27:04 PM2/19/08 5:27:04 PM

Chapter 30: .NET Programming with SQL Server

1013

 Summary
 This chapter discussed the new features of SQL Server as they relate to CLR functionality. The CLR is
hosted by SQL Server, so it is possible to create user - defined types, aggregates, stored procedures,
functions, and triggers with C#.

 User - defined types have some strict requirements in the .NET class for conversion to and from a string.
How the data is stored internally in SQL Server depends on the format that is defined in the type.
User - defined aggregates make it possible to do a custom accumulation using .NET classes. With stored
procedures and functions, it is possible to make use of CLR classes for server - side code.

 Using CLR with SQL Server doesn ’ t mean that T - SQL is obsolete. You ’ ve seen that T - SQL has advantages
because it requires less code if only data - intensive queries are done. CLR classes can have advantages in
data - processing if .NET features such as cryptography come into play.

 You ’ ve also had a glance into the XML data type of SQL Server to combine XQuery expressions with
T - SQL statements.

 This chapter concludes Part IV, “ Data. ” Part V, “ Presentation, ” gives details about defining the user
interface of applications. With the user interface you have the options of working with Windows Forms,
WPF, and ASP.NET.

 Figure 30 - 5

c30.indd 1013c30.indd 1013 2/19/08 5:27:04 PM2/19/08 5:27:04 PM

c30.indd 1014c30.indd 1014 2/19/08 5:27:04 PM2/19/08 5:27:04 PM

Part V

Presentation

Chapter 31: Windows Forms

Chapter 32: Data Binding

Chapter 33: Graphics with GDI+

Chapter 34: Windows Presentation Foundation

Chapter 35: Advanced WPF

Chapter 36: Add-Ins

Chapter 37: ASP.NET Pages

Chapter 38: ASP.NET Development

Chapter 39: ASP.NET AJAX

Chapter 40: Visual Studio Tools for Offi ce

c31.indd 1015c31.indd 1015 2/19/08 5:27:15 PM2/19/08 5:27:15 PM

c31.indd 1016c31.indd 1016 2/19/08 5:27:15 PM2/19/08 5:27:15 PM

 Windows Forms

 Web - based applications have become very popular over the past several years. The ability to have
all of your application logic reside on a centralized server is very appealing from an administrator ’ s
viewpoint. Deploying client - based software can be very difficult, especially COM - based client
software. The downside of Web - based applications is that they cannot provide that rich user
experience. The .NET Framework has given developers the ability to create rich, smart client
applications and eliminate the deployment problems and “ DLL Hell ” that existed before. Whether
Windows Forms or Windows Presentation Foundation (see Chapter 34 , “ Windows Presentation
Foundation “) is chosen, client applications are no longer difficult to develop or deploy.

 Windows Forms had quite an impact on Windows development. Now when an application is in
the initial design phase, the decision between building a Web - based application or a client
application has become a little more difficult. Windows client applications can be developed
quickly and efficiently, and they can provide users with the rich experience that they expect.

 Windows Forms will seem somewhat familiar if you are a Visual Basic developer. You create new
forms (also known as windows or dialogs) in much the same way that you drag and drop controls
from a toolbox onto the Form Designer. However, if your background is in the classic C style of
Windows programming where you create the message pump and monitor messages, or if you ’ re
an MFC programmer, you will find that you ’ re able to get to the lower - level internals if you need
to. You can override the wndproc and catch those messages, but you might be surprised that you
really won ’ t need to very often.

 This chapter looks at the following aspects of Windows Forms:

 The Form class

 The class hierarchy of Windows Forms

 The controls and components that are part of the System.Windows.Forms namespace

 Menus and toolbars

 Creating controls

 Creating user controls

❑

❑

❑

❑

❑

❑

c31.indd 1017c31.indd 1017 2/19/08 5:27:16 PM2/19/08 5:27:16 PM

1018

Part V: Presentation

 Creating a Windows Form Application
 First, you need to create a Windows Forms application. For the following example, create a blank form
and show it on the screen. This example does not use Visual Studio .NET. It has been entered in a text
editor and compiled using the command - line compiler.

using System;
using System.Windows.Forms;
namespace NotepadForms
{
 public class MyForm : System.Windows.Forms.Form
 {
 public MyForm()
 {
 }
 [STAThread]
 static void Main()
 {
 Application.Run(new MyForm());
 }
 }
}

 When you compile and run this example, you will get a small blank form without a caption. Not real
functional, but it is a Windows Form.

 As you look at the code, two items deserve attention. The first is the fact that you have used inheritance
to create the MyForm class. The following line declares that MyForm is derived from System.Windows
.Forms :

public class MyForm : System.Windows.Forms.Form

 The Form class is one of the main classes in the System.Windows.Forms namespace. The other section
of code that you want to look at is:

[STAThread]
static void Main()
{
 Application.Run(new MyForm());
}

 Main is the default entry point into any C# client application. Typically in larger applications, the Main()
method would not be in a form, but in a class that is responsible for any startup processing that needs to
be done. In this case, you would set the startup class name in the project properties dialog box. Notice
the attribute [STAThread] . This sets the COM threading model to single - threaded apartment (STA). The
STA threading model is required for COM interop and is added by default to a Windows Form project.

 The Application.Run() method is responsible for starting the standard application message
loop. ApplicationRun() has three overloads: the first takes no parameter, the second takes an
 ApplicationContext object as a parameter, and the one you see in the example takes a form object as a
parameter. In the example, the MyForm object will become the main form of the application. This means
that when this form is closed, the application ends. By using the ApplicationContext class, you can
gain a little more control over when the main message loop ends and the application exits.

 The Application class contains some very useful functionality. It provides a handful of static methods
and properties for controlling the application ’ s starting and stopping process and to gain access to the
Windows messages that are being processed by the application. The following table lists some of
the more useful of these methods and properties.

c31.indd 1018c31.indd 1018 2/19/08 5:27:16 PM2/19/08 5:27:16 PM

Chapter 31: Windows Forms

1019

 Now, what does this sample application look like when it is generated in Visual Studio 2005? The first
thing to notice is that two files are created because Visual Studio 2008 takes advantage of the partial class
feature of the framework and separates all of the Designer - generated code into a separate file. Using the
default name of Form1, the two files are Form1.cs and Form1.Designer.cs . Unless you have the Show
All Files option checked on the Project menu you won ’ t see Form1.Designer.cs in Solution Explorer.
Following is the code that Visual Studio generates for the two files. First is Form1.cs :

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace VisualStudioForm
{
public partial class Form1 : Form
{
public Form1()

Method/Property Description

CommonAppDataPath The path for the data that is common for all users of the application.
Typically this is BasePath\Company Name\Product Name\Version,
where BasePath is C:\Documents and Settings\username\
ApplicationData. If it does not exist, the path will be created.

ExecutablePath This is the path and file name of the executable file that starts the
application.

LocalUserAppDataPath Similar to CommonAppDataPath with the exception that this property
supports roaming.

MessageLoop True or false if a message loop exists on the current thread.

StartupPath Similar to ExecutablePath, except that the file name is not returned.

AddMessageFilter Used to preprocess messages. By implementing an IMessageFilter-
based object, the messages can be filtered from the message loop, or
special processing can take place prior to the message being passed to
the loop.

DoEvents Similar to the Visual Basic DoEvents statement. Allows messages in
the queue to be processed.

EnableVisualStyles Enables XP visual styles for the various visual elements of the applica-
tion. There are two overloads that will accept manifest information.
One is a stream of the manifest, and the other is the full name and path
of where the manifest exists.

Exit and ExitThread Exit ends all currently running message loops and exits the applica-
tion. ExitThread ends the message loop and closes all windows on
the current thread.

(continued)

c31.indd 1019c31.indd 1019 2/19/08 5:27:16 PM2/19/08 5:27:16 PM

1020

Part V: Presentation

{
InitializeComponent();
}
}
}
This is pretty simple, a handful of using statements and a simple constructor. Here
is the code in Form1.Designer.cs:
namespace VisualStudioForm
{
partial class Form1
{
/// < summary >
/// Required designer variable.
/// < /summary >
private System.ComponentModel.IContainer components = null;
/// < summary >
/// Clean up any resources being used.
/// < /summary >
/// < param name=”disposing” > true if managed resources should be disposed;
otherwise, false. < /param >
protected override void Dispose(bool disposing)
{
if (disposing & & (components != null))
{
 components.Dispose();
}
base.Dispose(disposing);
}
#region Windows Form Designer generated code
/// < summary >
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// < /summary >
private void InitializeComponent()
{
this.components = new System.ComponentModel.Container();
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.Text = “Form1”;
}
#endregion
}
}

 The Designer file of a form should rarely be edited directly. The only exception would be if there is any
special processing that needs to take place in the Dispose method. The InitializeComponent method
is discussed later in this chapter.

 Looking at the code as a whole for this sample application, you can see it is much longer than the simple
command - line example. There are several using statements at the start of the class; most are not
necessary for this example. There is no penalty for keeping them there. The class Form1 is derived from
 System.Windows.Forms just like the earlier Notepad example, but things start to get different at this
point. First, there is this line in the Form1.Designer file:

(continued)

c31.indd 1020c31.indd 1020 2/19/08 5:27:17 PM2/19/08 5:27:17 PM

Chapter 31: Windows Forms

1021

private System.ComponentModel.IContainer components = null;

 In the example, this line of code doesn ’ t really do anything. When you add a component to a form, you
can also add it to the components object, which is a container. The reason for adding to this container has
to do with disposing of the form. The form class supports the IDisposable interface because it is
implemented in the Component class. When a component is added to the components container, the
container will make sure that the components are tracked properly and disposed of when the form is
disposed of. You can see this if you look at the Dispose method in the code:

protected override void Dispose(bool disposing)
{
 if (disposing & & (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
}

 Here you can see that when the Dispose method is called, the Dispose method of the components
object is also called, and because the component object contains the other components, they are also
disposed of.

 The constructor of the Form1 class, which is in the Form1.cs file, looks like this:

public Form1()
{
 InitializeComponent();
}

 Notice the call to InitializeComponent() . InitializeComponent() is located in Form1.Designer.
cs and does pretty much what it describes, and that is to initialize any controls that might have been
added to the form. It also initializes the form properties. For this example, InitializeComponent()
looks like the following:

private void InitializeComponent()
{
this.components = new System.ComponentModel.Container();
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.Text = “Form1”;
}

 As you can see, it is basic initialization code. This method is tied to the Designer in Visual Studio. When you
make changes to the form by using the Designer, the changes are reflected in InitializeComponent() .
If you make any type of code change in InitializeComponent() , the next time you make a change in
the Designer, your changes will be lost. InitializeComponent() gets regenerated after each change
in the Designer. If you need to add additional initialization code for the form or controls and components on
the form, be sure to add it after InitializeComponent() is called. InitializeComponent() is also
responsible for instantiating the controls so any call that references a control prior to
 InitializeComponent() will fail with a null reference exception.

 To add a control or component to the form, press Ctrl+Alt+X or select Toolbox from the View menu in
Visual Studio .NET. Form1 should be in design mode. Right - click Form1.cs in Solution Explorer and
select View Designer from the context menu. Select the Button control and drag it to the form in the
Designer. You can also double - click the control, and it will be added to the form. Do the same with
the TextBox control.

c31.indd 1021c31.indd 1021 2/19/08 5:27:17 PM2/19/08 5:27:17 PM

1022

Part V: Presentation

 Now that you have added a TextBox control and a Button control to the form,
 InitializeComponent() expands to include the following code:

private void InitializeComponent()
{
 this.button1 = new System.Windows.Forms.Button();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.SuspendLayout();
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(77, 137);
 this.button1.Name = “button1”;
 this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0;
 this.button1.Text = “button1”;
 this.button1.UseVisualStyleBackColor = true;
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(67, 75);
 this.textBox1.Name = “textBox1”;
 this.textBox1.Size = new System.Drawing.Size(100, 20);
 this.textBox1.TabIndex = 1;
 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(284, 264);
 this.Controls.Add(this.textBox1);
 this.Controls.Add(this.button1);
 this.Name = “Form1”;
 this.Text = “Form1”;
 this.ResumeLayout(false);
 this.PerformLayout();
}

 If you look at the first three lines of code in the method, you can see the Button and TextBox controls are
instantiated. Notice the names given to the controls, textBox1 and button1 . By default, the Designer uses
the name of the control and adds an integer value to the name. When you add another button, the Designer
adds the name button2 , and so on. The next line is part of the SuspendLayout and ResumeLayout pair.
 SuspendLayout() temporarily suspends the layout events that take place when a control is first
initialized. At the end of the method the ResumeLayout() method is called to set things back to normal. In
a complex form with many controls, the InitializeComponent() method can get quite large.

 To change a property value of a control, either press F4 or select Properties Window from the View
menu. The properties window enables you to modify most of the properties for a control or component.
When a change is made in the properties window, the InitializeComponent() method is rewritten to
reflect the new property value. For example, if the Text property is changed to My Button in the
properties window, InitializeComponent() will contain this code:

//
// button1
//
this.button1.Location = new System.Drawing.Point(77, 137);
this.button1.Name = “button1”;

c31.indd 1022c31.indd 1022 2/19/08 5:27:17 PM2/19/08 5:27:17 PM

Chapter 31: Windows Forms

1023

this.button1.Size = new System.Drawing.Size(75, 23);
this.button1.TabIndex = 0;
this.button1.Text = “My Button”;
this.button1.UseVisualStyleBackColor = true;

 If you are using an editor other than Visual Studio .NET, you will want to include an
 InitializeComponent() type function in your designs. Keeping all of this initialization code in one
spot will help keep the constructor cleaner, not to mention that if you have multiple constructors you can
make sure that the initialization code is called from each constructor.

 Class Hierarchy
 The importance of understanding the hierarchy becomes apparent during the design and construction of
custom controls. If your custom control is a derivative of a current control — for example, a text box with
some added properties and methods — you will want to inherit from the text box control and then
override and add the properties and methods to suit your needs. However, if you are creating a control
that doesn ’ t match up to any of the controls included with the .NET Framework, you will have to inherit
from one of the three base control classes — Control or ScrollableControl if you need autoscrolling
capabilities, and ContainerControl if your control needs to be a container of other controls.

 The rest of this chapter is devoted to looking at many of these classes — how they work together and
how they can be used to build professional - looking client applications.

 Control Class
 The System.Windows.Forms namespace has one particular class that is the base class for virtually every
control and form that is created. This class is the System.Windows.Forms.Control class. The Control
class implements the core functionality to create the display that the user sees. The Control class is
derived from the System.ComponentModel.Component class. The Component class provides the
 Control class with the necessary infrastructure that is required to be dropped on a design surface and to
be contained by another object. The Control class provides a large list of functionality to the classes that
are derived from it. The list is too long to itemize here, so this section looks at the more important items
that are provided by the Control class. Later in the chapter, when you look at the specific controls based
on the Control class, you will see the properties and methods in some example code. The following
subsections group the methods and properties by functionality, so related items can be looked at
together.

 Size and Location
 The size and location of a control are determined by the properties Height , Width , Top , Bottom , Left ,
and Right along with the complementary properties Size and Location . The difference is that Height ,
 Width , Top , Bottom , Left , and Right all take single integers as their value. Size takes a Size structure
and Location takes a Point structure as their values. The Size and Point structures are a contained
version of X,Y coordinates. Point generally relates to a location and Size is the height and width of an
object. Size and Point are in the System.Drawing namespace. Both are very similar in that they
provide an X,Y coordinate pair but also have overridden operators for easy comparison and conversion.
You can, for example, add two Size structures together. In the case of the Point structure, the Addition
operator is overridden so that you can add a Size structure to a Point and get a new Point in return.
This has the effect of adding distance to a location and getting a new location. This is very handy if you
have to dynamically create forms or controls.

 The Bounds property returns a Rectangle object that represents the area of a control. This area includes
scroll bars and title bars. Rectangle is also part of the System.Drawing namespace. The ClientSize
property is a Size structure that represents the client area of the control, minus the scroll bars and title bar.

c31.indd 1023c31.indd 1023 2/19/08 5:27:18 PM2/19/08 5:27:18 PM

1024

Part V: Presentation

 The PointToClient and PointToScreen methods are handy conversion methods that take a Point
and return a Point . PointToClient takes a Point that represents screen coordinates and translates it to
coordinates based on the current client object. This is handy for drag - and - drop actions. PointToScreen
does just the opposite — it takes coordinates of a client object and translates them to screen coordinates.
The RectangleToScreen and ScreenToRectangle methods perform the same functionality with
 Rectangle structures instead of Point s.

 The Dock property determines which edge of the parent control the control will be docked to. A
 DockStyle enumeration value is used as the property ’ s value. This value can be Top , Bottom , Right ,
 Left , Fill , or None . Fill sets the control ’ s size to match the client area of the parent control.

 The Anchor property anchors an edge of the control to the edge of the parent control. This is different
from docking in that it does not set the edge to the parent control, but sets the current distance from the
edge to be constant. For example, if you anchor the right edge of the control to the right edge of the
parent and the parent is resized, the right edge of the control will maintain the same distance from the
parent ’ s right edge. The Anchor property takes a value of the AnchorStyles enumeration. The values
are Top , Bottom , Left , Right , and None . By setting the values, you can make the control resize
dynamically with the parent as the parent is resized. This way, buttons and text boxes will not be cut off
or hidden as the form is resized by the user.

 The Dock and Anchor properties used in conjunction with the Flow and Table layout controls
(discussed later in this chapter) enable you to create very sophisticated user windows. Window resizing
can be difficult with complex forms with many controls. These tools help make that process much easier.

 Appearance
 Properties that relate to the appearance of the control are BackColor and ForeColor , which take a
 System.Drawing.Color object as a value. The BackGroundImage property takes an Image - based
object as a value. The System.Drawing.Image class is an abstract class that is used as the base for the
 Bitmap and Metafile classes. The BackgroundImageLayout property uses the ImageLayout
enumeration to set how the image is displayed on the control. Valid values are Center , Tile , Stretch ,
 Zoom , and None .

The Font and Text properties deal with displaying the written word. In order to change the Font you will
need to create a Font object. When you create the Font object, you specify the font name, size, and style.

 User Interaction
 User interaction is best described as the various events that a control creates and responds to. Some of
the more common events are Click , DoubleClick , KeyDown , KeyPress , Validating , and Paint .

 The Mouse events — Click , DoubleClick , MouseDown , MouseUp , MouseEnter , MouseLeave , and
 MouseHover — deal with the interaction of the mouse and the control. If you are handling both the
 Click and the DoubleClick events, every time you catch a DoubleClick event, the Click event is
raised as well. This can result in undesired results if not handled properly. Also, Click and
 DoubleClick receive EventArgs as an argument, whereas the MouseDown and MouseUp events receive
 MouseEventArgs . The MouseEventArgs contain several pieces of useful information such as the button
that was clicked, the number of times the button was clicked, the number of mouse wheel detents
(notches in the mouse wheel), and the current X and Y coordinates of the mouse. If you have access to
any of this information, you will have to handle either the MouseDown or MouseUp events, not the Click
or DoubleClick events.

 The keyboard events work in a similar fashion: the amount of information needed determines the event
that is handled. For simple situations, the KeyPress event receives KeyPressEventArgs. This contains
 KeyChar , which is a char value that represents the key pressed. The Handled property is used to

c31.indd 1024c31.indd 1024 2/19/08 5:27:18 PM2/19/08 5:27:18 PM

Chapter 31: Windows Forms

1025

determine whether or not the event was handled. If you set the Handled property to true , the event is
not passed on for default handling by the operating system. If you need more information about the key
that was pressed, the KeyDown or KeyUp event is more appropriate to handle this. They both receive
 KeyEventArgs . Properties in KeyEventArgs include whether the Ctrl, Alt, or Shift key was pressed.
The KeyCode property returns a Keys enumeration value that identifies the key that was pressed.
Unlike the KeyPressEventArgs.KeyChar property, the KeyCode property tells you about every key on
the keyboard, not just the alphanumeric keys. The KeyData property returns a Keys value and will also
set the modifier. The modifiers are OR ’ d with the value. This tells you that the Shift key or the Ctrl key
was pressed as well. The KeyValue property is the int value of the Keys enumeration. The Modifiers
property contains a Keys value that represents the modifier keys that were pressed. If more than one has
been selected, the values are OR ’ d together. The key events are raised in the following order:

 1. KeyDown

 2. KeyPress

 3. KeyUp

 The Validating , Validated , Enter , Leave , GotFocus , and LostFocus events all deal with a control
gaining focus (or becoming active) or losing focus. This happens when the user tabs into a control or
selects the control with the mouse. Enter , Leave , GotFocus , and LostFocus seem to be very similar in
what they do. The GotFocus and LostFocus events are lower - level events that are tied to the
WM_SETFOCUS and the WM_KILLFOCUS Windows messages. Generally, you should use the Enter and
 Leave events if possible. The Validating and Validated events are raised when the control is
validating. These events receive CancelEventArgs . With this, you can cancel the following events by
setting the Cancel property to true . If you have custom validation code, and validation fails, you can
set Cancel to true and the control will not lose focus. Validating occurs during validation;
 Validated occurs after validation. The order in which these events are raised is:

 1. Enter

 2. GotFocus

 3. Leave

 4. Validating

 5. Validated

 6. LostFocus

 Understanding the order of these events is important so that you don ’ t inadvertently create a recursive
situation. For example, trying to set the focus of a control from the control ’ s LostFocus event creates a
message deadlock and the application stops responding.

 Windows Functionality
 The System.Windows.Forms namespace is one of the few namespaces that relies on Windows
functionality. The Control class is a good example of that. If you were to do a disassembly of the
 System.Windows.Forms.dll , you would see a list of references to the UnsafeNativeMethods class.
The .NET Framework uses this class to wrap all of the standard Win32 API calls. By using interop to the
Win32 API, the look and feel of a standard Windows application can still be achieved with the System.
Windows.Forms namespace.

 Functionality that supports the interaction with Windows includes the Handle and IsHandleCreated
properties. Handle returns an IntPtr that contains the HWND (windows handle) for the control.
The window handle is an HWND that uniquely identifies the window. A control can be considered a
window, so it has a corresponding HWND. You can use the Handle property to call any number
of Win32 API calls.

c31.indd 1025c31.indd 1025 2/19/08 5:27:19 PM2/19/08 5:27:19 PM

1026

Part V: Presentation

 To gain access to the Windows messages, you can override the WndProc method. The WndProc method
takes a Message object as a parameter. The Message object is a simple wrapper for a windows message.
It contains the HWnd , LParam , WParam , Msg , and Result properties. If you want to have the message
processed by the system, you must make sure that you pass the message to the base.WndProc(msg)
method. If you want to handle the message, you don ’ t want to pass the message on.

 Miscellaneous Functionality
 Some items that are a little more difficult to classify are the data - binding capabilities. The
 BindingContext property returns a BindingManagerBase object. The DataBindings collection
maintains a ControlBindingsCollection , which is a collection of binding objects for the control. Data
binding is discussed in Chapter 32 , “ Data Binding. ”

 The CompanyName , ProductName , and Product versions provide data on the origination of the control
and its current version.

 The Invalidate method allows you to invalidate a region of the control for repainting. You can
invalidate the entire control or specify a region or rectangle to invalidate. This causes a paint message to be
sent to the control ’ s WndProc . You also have the option to invalidate any child controls at the same time.

 Dozens of other properties, methods, and events make up the Control class. This list represents some of
the more commonly used ones and is meant to give you an idea of the functionality available.

 Standard Controls and Components
 The previous section covered some of the common methods and properties for controls. This section
looks at the various controls that ship with the .NET Framework, and explains what each of them offers
in added functionality. The sample download (www.wrox.com) includes a sample application called
 FormExample . This sample application is an MDI application (discussed later in the chapter) and
includes a form named frmControls that contains many controls with basic functionality enabled.
Figure 31 - 1 shows what frmControls looks like.

 Button
 The Button class represents the simple command button and is derived from the ButtonBase class. The
most common thing to do is to write code to handle the Click event of the button. The following code
snippet implements an event handler for the Click event. When the button is clicked, a message box
pops up that displays the button ’ s name:

private void btnTest_Click(object sender, System.EventArgs e)
{
 MessageBox.Show(((Button)sender).Name + “ was clicked.”);
}

 With the PerformClick method, you can simulate the Click event on a button without the user actually
clicking the button. The NotifyDefault method takes a Boolean value as a parameter and tells the
button to draw itself as the default button. Typically, the default button on a form has a slightly thicker
border. To identify the button as default, you set the AcceptButton property on the form to the button.
Then, when the user presses the Enter key, the button Click event for the default button is raised. Figure
 31 - 2 shows that the button with the caption Default is the default button (notice the dark border).

 Buttons can have images as well as text. Images are supplied by way of an ImageList object or the
 Image property. ImageList objects are exactly what they sound like: a list of images managed by a
component placed on a form. They are explained in detail later in this chapter.

c31.indd 1026c31.indd 1026 2/19/08 5:27:19 PM2/19/08 5:27:19 PM

Chapter 31: Windows Forms

1027

 Both Text and Image have an Align property to align the text or image on the Button . The Align
property takes a ContentAlignment enumeration value. The text or image can be aligned in
combinations of left and right and top and bottom.

Figure 31-1

Figure 31-2

c31.indd 1027c31.indd 1027 2/19/08 5:27:19 PM2/19/08 5:27:19 PM

1028

Part V: Presentation

 CheckBox
 The CheckBox control is also derived from ButtonBase and is used to accept a two - state or three - state
response from the user. If you set the ThreeState property to true , the CheckBox ’ s CheckState
property can be one of the three CheckState enum values in the following table.

Checked The CheckBox has a check mark.

Unchecked The CheckBox does not have a check mark.

Indeterminate In this state the CheckBox becomes gray.

 The Indeterminate value can be set only in code and not by a user. This is useful if you need to convey
to the user that an option has not been set. You can also check the Checked property if you want a
Boolean value.

 The CheckedChanged and CheckStateChanged events occur when the CheckState or Checked
properties change. Catching these events can be useful for setting other values based on the new state of
the CheckBox . In the frmControls form class, the CheckedChanged event for several CheckBoxes is
handled by the following method:

private void checkBoxChanged(object sender, EventArgs e)
{
 CheckBox checkBox = (CheckBox)sender;
 MessageBox.Show(checkBox.Name + “ new value is “ + checkBox.Checked.ToString());
}

 As the checked state of each check box changes, a message box is displayed with the name of the check
box that was changed along with the new value.

 RadioButton
 The last control derived from ButtonBase is the radio button. Radio buttons are generally used as a
group. Sometimes referred to as option buttons, radio buttons allow the user to choose one of several
options. When you have multiple RadioButton controls in the same container, only one at a time may
be selected. So, if you have three options — for example, Red , Green , and Blue — if the Red option is
selected and the user clicks the Blue option, the Red is automatically deselected.

 The Appearance property takes an Appearance enumeration value. This can be either Button or
 Normal . When you choose Normal , the radio button looks like a small circle with a label beside it.
Selecting the button fills the circle; selecting another button deselects the currently selected button and
makes the circle look empty. When you choose Button , the control looks like a standard button, but it
works like a toggle — selected is the in position, and deselected is the normal, or out, position.

 The CheckedAlign property determines where the circle is in relation to the label text. It could be on top
of the label, on either side, or below.

 The CheckedChanged event is raised whenever the value of the Checked property changes. This way,
you can perform other actions based on the new value of the control.

c31.indd 1028c31.indd 1028 2/19/08 5:27:20 PM2/19/08 5:27:20 PM

Chapter 31: Windows Forms

1029

 ComboBox, ListBox, and CheckedListBox
 ComboBox , ListBox , and CheckedListBox are all derived from the ListControl class. This class provides
some of the basic list management functionality. The most important aspects of using list controls are adding
data to and selecting data from the list. Which list is used is generally determined by how the list is used and
the type of data that is going to be in the list. If there is a need to have multiple selections or if the user needs
to be able to see several items in the list at any time, the ListBox or CheckedListBox is going to be the best
choice. If only a single item is ever selected in the list at any time, a ComboBox may be a good choice.

 Data must be added to a list box before it can be useful. This is done by adding objects to the ListBox.
ObjectCollection . This collection is exposed by the list ’ s Items property. Because the collection stores
objects, any valid .NET type can be added to the list. In order to identify the items, two important
properties need to be set. The first is the DisplayMember property. This setting tells the ListControl
what property of your object should be displayed in the list. The other is ValueMember , which is the
property of your object that you want to return as the value. If strings have been added to the list, by
default the string value is used for both of these properties. The frmLists form in the sample
application shows how both objects and strings (which are of course objects) can be loaded into a list
box. The example uses Vendor objects for the list data. The Vendor object contains just two properties:
 Name and PhoneNo . The DisplayMember property is set to the Name property. This tells the list control to
display the value from the Name property in the list to the user.

 You can access the data in the list control in a couple of ways, as shown in the following code example.
The list is loaded with the Vendor objects. The DisplayMember and ValueMember properties are set.
You can find this code in the frmLists form class in the sample application.

 First is the LoadList method. This method loads the list with either Vendor objects or a simple string
containing the vendor name. An option button is checked to see which values should be loaded in the list:

private void LoadList(Control ctrlToLoad)
 {
 ListBox tmpCtrl = null;
 if (ctrlToLoad is ListBox)
 tmpCtrl = (ListBox)ctrlToLoad;
 tmpCtrl.Items.Clear();
 tmpCtrl.DataSource = null;
 if (radioButton1.Checked)
 {
 //load objects
 tmpCtrl.Items.Add(new Vendor(“XYZ Company”, “555-555-1234”));
 tmpCtrl.Items.Add(new Vendor(“ABC Company”, “555-555-2345”));
 tmpCtrl.Items.Add(new Vendor(“Other Company”, “555-555-3456”));
 tmpCtrl.Items.Add(new Vendor(“Another Company”, “555-555-4567”));
 tmpCtrl.Items.Add(new Vendor(“More Company”, “555-555-6789”));
 tmpCtrl.Items.Add(new Vendor(“Last Company”, “555-555-7890”));
 tmpCtrl.DisplayMember = “Name”;
 }
 else
 {
 tmpCtrl.Items.Clear();
 tmpCtrl.Items.Add(“XYZ Company”);
 tmpCtrl.Items.Add(“ABC Company”);
 tmpCtrl.Items.Add(“Other Company”);
 tmpCtrl.Items.Add(“Another Company”);
 tmpCtrl.Items.Add(“More Company”);
 tmpCtrl.Items.Add(“Last Company”);
 }
 }

c31.indd 1029c31.indd 1029 2/19/08 5:27:20 PM2/19/08 5:27:20 PM

1030

Part V: Presentation

 Once the data is loaded in the list the SelectedItem and SelectedIndex properties can be used to get at
the data. The SelectedItem property returns the object that is currently selected. If the list is set to allow
multiple selections, there is no guarantee which of the selected items will be returned. In this case, the
 SelectObject collection should be used. This contains a list of all of the currently selected items in the list.

 If the item at a specific index is needed, the Items property can be used to access the ListBox.
ObjectCollection . Because this is a standard .NET collection class, the items in the collection can be
accessed in the same way as any other collection class.

 If DataBinding is used to populate the list, the SelectedValue property will return the property value
of the selected object that was set to the ValueMember property. If Phone is set to ValueMember , the
 SelectedValue will return the Phone value from the selected item. In order to use ValueMember and
 SelectValue the list must be loaded by way of the DataSource property. An ArrayList or any other
 IList - based collection must be loaded with the objects first, then the list can be assigned to the
 DataSource property. This short example demonstrates this:

listBox1.DataSource = null;
System.Collections.ArrayList lst = new System.Collections.ArrayList();
lst.Add(new Vendor(“XYZ Company”, “555-555-1234”));
lst.Add(new Vendor(“ABC Company”, “555-555-2345”));
lst.Add(new Vendor(“Other Company”, “555-555-3456”));
lst.Add(new Vendor(“Another Company”, “555-555-4567”));
lst.Add(new Vendor(“More Company”, “555-555-6789”));
lst.Add(new Vendor(“Last Company”, “555-555-7890”));
listBox1.Items.Clear();
listBox1.DataSource = lst;
listBox1.DisplayMember = “Name”;
listBox1.ValueMember = “Phone”;

 Using SelectedValue without using DataBinding will result in a NullException error.

 The following lines of code show the syntax of accessing the data in the list:

//obj is set to the selected Vendor object
obj = listBox1.SelectedItem;
//obj is set to the Vendor object with index of 3 (4 th object).
//obj is set to the values of the Phone property of the selected vendor object.
//This example assumes that databinding was used to populate the list.
listBox1.ValuesMember = “Phone”;
obj = listBox1.SelectValue;

 The thing to remember is that all of these methods return object as the type. A cast to the proper data
type will need to be done in order to use the value of obj .

 The Items property of the ComboBox returns ComboBox.ObjectCollection . A ComboBox is a
combination of an edit control and a list box. You set the style of the ComboBox by passing a
 DropDownStyle enumeration value to the DropDownStyle property. The following table lists the
various DropDownStyle values.

value Description

DropDown The text portion of the combo box is editable, and users can enter a value. They
also must click the arrow button to show the list.

DropDownList The text portion is not editable. Users must make a selection from the list.

Simple This is similar to DropDown except that the list is always visible.

c31.indd 1030c31.indd 1030 2/19/08 5:27:21 PM2/19/08 5:27:21 PM

Chapter 31: Windows Forms

1031

 If the values in the list are wide, you can change the width of the drop - down portion of the control with
the DropDownWidth property. The MaxDropDownItems property sets the number of items to show
when the drop - down portion of the list is displayed.

 The FindString and FindStringExact methods are two other useful methods of the list controls.
 FindString finds the first string in the list that starts with the passed - in string. FindStringExact finds
the first string that matches the passed - in string. Both return the index of the value that is found or - 1
if the value is not found. They can also take an integer that is the starting index to search from.

 DateTimePicker
 The DateTimePicker allows users to select a date or time value (or both) in a number of different
formats. You can display the DateTime - based value in any of the standard time and date formats. The
Format property takes a DateTimePickerFormat enumeration that sets the format to Long , Short ,
 Time , or Custom . If the Format property is set to DateTiemePickerFormat.Custom , you can set the
 CustomFormat property to a string that represents the format.

 There is both a Text property and a Value property. The Text property returns a text representation of
the DateTime value, whereas the Value property returns the DateTime object. You can also set the
maximum and minimum allowable date values with the MinDate and MaxDate properties.

 When users click the down arrow, a calendar is displayed allowing the users to select a date in the
calendar. Properties are available that allow you to change the appearance of the calendar by setting the
title and month background colors as well as the foreground colors.

 The ShowUpDown property determines whether an UpDown arrow is displayed on the control. The
currently highlighted value can be changed by clicking the up or down arrow.

 ErrorProvider
 ErrorProvider is actually not a control but a component. When you drag a component to the Designer,
it shows in the component tray under the Designer. The ErrorProvider flashes an icon next to a control
when an error condition or validation failure exists. Suppose that you have a TextBox entry for an age.
Your business rules say that the age value cannot be greater than 65. If users try to enter an age greater
than that, you must inform them that the age is greater than the allowable value and that they need to
change the entered value. The check for a valid value takes place in the Validated event of the text box.
If the validation fails, you call the SetError method, passing in the control that caused the error and a
string that informs the user what the error is. An icon starts flashing, indicating that an error has
occurred, and when the user hovers over the icon the error text is displayed. Figure 31 - 3 shows the icon
that is displayed when an invalid entry is made in the text box.

Figure 31-3

 You can create an ErrorProvider for each control that produces errors on a form, but if you have a
large number of controls this can become unwieldy. Another option is to use one error provider and, in
the validate event, to call the IconLocation method with the control that is causing the validation and
one of the ErrorIconAlignment enumeration values. This value sets where the icon is aligned near the

c31.indd 1031c31.indd 1031 2/19/08 5:27:21 PM2/19/08 5:27:21 PM

1032

Part V: Presentation

control. Then you call the SetError method. If no error condition exists, you can clear the
 ErrorProvider by calling SetError with an empty string as the error string. The following example
shows how this works:

private void txtAge_Validating(object sender,
System.ComponentModel.CancelEventArgs e)
{
 if(txtAge.TextLength > 0 & & Convert.ToInt32(txtAge.Text) > 65)
 {
 errMain.SetIconAlignment((Control)sender,
 ErrorIconAlignment.MiddleRight);
 errMain.SetError((Control)sender, “Value must be less then 65.”);
 e.Cancel = true;
 }
 else
 {
 errMain.SetError((Control)sender, “”);
 }
}
private void txtZipCode_Validating(object sender, CancelEventArgs e)
 {
 if(txtZipCode.Text.Length != 5)
 {
 errMain.SetIconAlignment((Control)sender,
 ErrorIconAlignment.MiddleRight);
 errMain.SetError((Control)sender, “Must be 5 charactors..”);
 e.Cancel = true;
 }
 else
 {
 errMain.SetError((Control)sender, “”);
 }
 }

 If the validation fails (the age is over 65 in txtAge , for example), then the SetIcon method of the
 ErrorProvider errMain is called. It will set the icon next to the control that failed validation. The
error is set next so that when users hover over the icon, the message informs them of what is responsible
for the failed validation.

 HelpProvider
 HelpProvider , like ErrorProvider , is a component and not a control. HelpProvider allows you to
hook up controls to help topics. To associate a control with the help provider, you call the SetShowHelp
method, passing the control and a Boolean value that determines whether help will be shown. The
 HelpNamespace property allows you to set a help file. When the HelpNamespace property is set, the
help file is displayed any time you select F1 and a control that you have registered with the
 HelpProvider is in focus. You can set a keyword to the help file with the SetHelpKeyword method.
 SetHelpNavigator takes a HelpNavigator enumeration value to determine which element in the help
file should be displayed. You can set it for a specific topic, the index, the table of contents, or the search
page. SetHelpString associates a string value of help - related text to a control. If the HelpNamespace
property has not been set, pressing F1 will show this text in a pop - up window. Go ahead and add a
 HelpProvider to the previous example:

helpProvider1.SetHelpString(txtAge,”Enter an age that is less than 65.”
helpProvider1.SetHelpString(txtZipCode,”Enter a 5-digit zip code.”

c31.indd 1032c31.indd 1032 2/19/08 5:27:21 PM2/19/08 5:27:21 PM

Chapter 31: Windows Forms

1033

 ImageList
 An ImageList component is exactly what the name implies — a list of images. Typically, this
component is used for holding a collection of images that are used as toolbar icons or icons in a
 TreeView control. Many controls have an ImageList property. The ImageList property typically
comes with an ImageIndex property. The ImageList property is set to an instance of the ImageList
component, and the ImageIndex property is set to the index in the ImageList that represents the image
that should be displayed on the control. You add images to the ImageList component by using the Add
method of the ImageList.Images property. The Images property returns an ImageCollection .

 The two most commonly used properties are ImageSize and ColorDepth . ImageSize uses a Size
structure as its value. The default value is 16 × 16 but it can be any value from 1 to 256. The ColorDepth
uses a ColorDepth enumeration as its value. The color depth values go from 4 - bit to 32 - bit. For .NET
Framework 1.1, the default is ColorDepth.Depth8Bit .

 Label
 Labels are generally used to provide descriptive text to the user. The text might be related to other
controls or the current system state. You usually see a label together with a text box. The label provides
the user with a description of the type of data to be entered in the text box. The Label control is always
read - only — the user cannot change the string value of the Text property. However, you can change the
 Text property in your code. The UseMnemonic property allows you to enable the access key
functionality. When you precede a character in the Text property with the ampersand (&), that letter will
appear underlined in the label control. Pressing the Alt key in combination with the underlined letter
puts the focus on the next control in the tab order. If the Text property contains an ampersand in the
text, add a second one and it will not underline the next letter. For example, if the label text is “ Nuts &
Bolts, ” set the property to “ Nuts & & Bolts. ” Because the Label control is read - only, it cannot gain focus;
that ’ s why focus is sent to the next control. Because of this, it is important to remember that if you enable
mnemonics, you must be certain to set the tab order properly on your form.

 The AutoSize property is a Boolean value that specifies whether the Label will resize itself based on
the contents of the Label . This can be useful for multi - language applications where the length of the
 Text property can change based on the current language.

 ListView
 The ListView control enables you to display items in one of four different ways. You can display text
with an optional large icon, text with an optional small icon, or text and small icons in a vertical list or in
detail view, which allows you to display the item text plus any subitems in columns. If this sounds
familiar, it should, because this is what the right side of File Explorer uses to display the contents of
folders. ListView contains a collection of ListViewItems . ListViewItems allow you to set a Text
property used for the display. ListViewItem has a property called SubItems that contains the text that
appears in detail view.

 The following example demonstrates how you might use ListView . This example includes a short list of
countries. Each CountryList object contains a property for the country name, country abbreviation, and
currency. Here is the code for the CountryList class:

using System;
namespace FormsSample
{

 public class CountryItem : System.Windows.Forms.ListViewItem
 {

(continued)

c31.indd 1033c31.indd 1033 2/19/08 5:27:22 PM2/19/08 5:27:22 PM

1034

Part V: Presentation

 string _cntryName = “”;
 string _cntryAbbrev = “”;
 public CountryItem(string countryName,
 string countryAbbreviation, string currency)
 {
 _cntryName = countryName;
 _cntryAbbrev = countryAbbreviation;
 base.Text = _cntryName;
 base.SubItems.Add(currency);
 }
 public string CountryName
 {
 get {return _cntryName;}
 }
 public string CountryAbbreviation
 {
 get {return _cntryAbbrev;}
 }
 }
}

 Notice that you are deriving the CountryList class from ListViewItem . This is because you can add
only ListViewItem - based objects to the ListView control. In the constructor, you pass the country
name to the base.Text property and add the currency value to the base.SubItems property. This
displays the country name in the list and the currency in a separate column when in details view.

 Next, you need to add a couple of the CountryItem objects to the ListView control in the code of the form:

lvCountries.Items.Add(new CountryItem(“United States”,”US”,”Dollar”));
lvCountries.Items[0].ImageIndex = 0;
lvCountries.Items.Add(new CountryItem(“Great Britain”, “GB”, “Pound”));
lvCountries.Items[1].ImageIndex = 1;
lvCountries.Items.Add(new CountryItem(“Canada”, “CA”, “Dollar”));
lvCountries.Items[2].ImageIndex = 2;
lvCountries.Items.Add(new CountryItem(“Japan”, “JP”, “Yen”));
lvCountries.Items[3].ImageIndex = 3;
lvCountries.Items.Add(new CountryItem(“Germany”, “GM””, “Deutch Mark”));
lvCountries.Items[4].ImageIndex = 4;

 Here you add a new CountryItem to the Items collection of the ListView control (lvCountries). Notice
that you set the ImageIndex property of the item after you add it to the control. There are two ImageIndex
objects, one for large icons and one for small icons (SmallImageList and LargeImageList properties).
The trick to having two ImageLists with differing image sizes is to make sure you add the items to the
 ImageList in the same order. This way, the index of each ImageList represents the same image, just
different sizes. In the example, the ImageList s contain icons of the flags for each country added.

 On top of the form, there is a ComboBox (cbView) that lists the four different View enumeration values.
You add the items to the cbView like this:

cbView.Items.Add(View.LargeIcon);
cbView.Items.Add(View.SmallIcon);
cbView.Items.Add(View.List);
cbView.Items.Add(View.Details);
cbView.SelectedIndex = 0;

 In the SelectedIndexChanged event of cbView , you add the single line of code:

(continued)

c31.indd 1034c31.indd 1034 2/19/08 5:27:22 PM2/19/08 5:27:22 PM

Chapter 31: Windows Forms

1035

lvCountries.View = (View)cbView.SelectedItem;

 This sets the View property of lvCountries to the new value selected in the ComboBox control. Notice
that you need to cast to the View type because object is returned from the SelectedItem property of
the cbView .

 Last, but hardly least, you have to add columns to the Columns collection. The columns are for details
view. In this case, you are adding two columns: Country Name and Currency. The order of the columns
is as follows: the Text of the ListViewItem , then each item in the ListViewItem.SubItem collection,
in the order it appears in the collection. You can add columns either by creating a ColumnHeader object
and setting the Text property and optionally the Width and Alignment properties. After creating the
 ColumnHeader object, you can add it to the Columns property. The other way to add columns is to use
an override of the Columns.Add method. It allows you to pass in the Text , Width , and Alignment
values. Here is an example:

lvCountries.Columns.Add(“Country”,100, HorizontalAlignment.Left);
lvCountries.Columns.Add(“Currency””,100, HorizontalAlignment.Left);

 If you set the AllowColumnReorder property to true , the user can drag the column headers around
and rearrange the column order.

 The CheckBoxes property on the ListView shows check boxes next to the items in the ListView . This
allows the user to easily select multiple items in the ListView control. You can check which items are
selected by checking the CheckedItems collection.

 The Alignment property sets the alignment of icons in Large and Small icon view. The value can be any
of the ListViewAlignment enumeration values. They are Default , Left , Top , and SnapToGrid . The
 Default value allows users to arrange the icons in any position that they want. When choosing Left or
 Top , the items are aligned with the left or top of the ListView control. When choosing SnapToGrid , the
items snap to an invisible grid on the ListView control. The AutoArrange property can be set to a
 Boolean value and will automatically align the icons based on the Alignment property.

 PictureBox
 The PictureBox control is used to display an image. The image can be a BMP, JPEG, GIF, PNG, metafile,
or icon. The SizeMode property uses the PictureBoxSizeMode enumeration to determine how the
image is sized and positioned in the control. The SizeMode property can be AutoSize , CenterImage ,
 Normal , and StretchImage .

 You can change the size of the display of the PictureBox by setting the ClientSize property. You load
the PictureBox by first creating an Image - based object. For example, to load a JPEG file into a
 PictureBox you would do the following:

Bitmap myJpeg = new Bitmap(“mypic.jpg”);
pictureBox1.Image = (Image)myJpeg;

 Notice that you will need to cast back to an Image type because that is what the Image property expects.

 ProgressBar
 The ProgressBar control is a visual clue to the status of a lengthy operation. It indicates to users that
there is something going on and that they should wait. The ProgressBar control works by setting the
 Minimum and Maximum properties, which correspond to the progress indicator being all the way
to the left (Minimum) or all the way to the right (Maximum). You set the Step property to determine the
number that the value is incremented each time the PerformStep method is called. You can also use
the Increment method and increment the value by the value passed in the method call. The Value
property returns the current value of the ProgressBar .

c31.indd 1035c31.indd 1035 2/19/08 5:27:23 PM2/19/08 5:27:23 PM

1036

Part V: Presentation

 You can use the Text property to inform the user of the percentage of the operation that has been
completed or the number of items left to process. There is also a BackgroundImage property to
customize the look of the progress bar.

 TextBox, RichTextBox, and MaskedTextBox
 The TextBox control is one of the most used controls in the toolbox. The TextBox , RichTextBox , and
 MaskedTextBox controls are all derived from TextBoxBase . TextBoxBase provides properties such as
 MultiLine and Lines . MultiLine is a Boolean value that allows the TextBox control to display text in
more than one line. Each line in a text box is a part of an array of strings. This array is exposed through
the Lines property. The Text property returns the entire text box contents as a single string.
 TextLength is the total length of the string that text would return. The MaxLength property will limit
the length of the text to the specified amount.

 SelectedText , SelectionLength , and SelectionStart all deal with the currently selected text in the
text box. The selected text is highlighted when the control has focus.

 The TextBox control adds a couple of interesting properties. AcceptsReturn is a Boolean value that
will allow the TextBox to accept the Enter key as a new line or whether it activates the default button on
the form. When set to true , pressing the Enter key creates a new line in the TextBox . CharacterCasing
determines the casing of the text in the text box. The CharacterCasing enumeration contains three
values, Lower , Normal , and Upper . Lower lowercases all text regardless of how it is entered, Upper
renders all text in uppercase letters, and Normal displays the text as it is entered. The PasswordChar
property takes a char that represents what is displayed to the users when they type text in the text box.
This is typically used for entering passwords and PINs. The text property will return the actual text
that was entered; only the display is affected by this property.

 The RichTextBox is a text editing control that can handle special formatting features. As the name
implies, the RichTextBox control uses Rich Text Format (RTF) to handle the special formatting. You can
make formatting changes by using the Selection properties: SelectionFont , SelectionColor , and
 SelectionBullet , and paragraph formatting with SelectionIndent , SelectionRightIndent ,
and SelectionHangingIndent . All of the Selection properties work in the same way. If a section of
text is highlighted, a change to a Selection property affects the selected text. If no text is selected, the
change takes effect with any text that is inserted to the right of the current insertion point.

 The text of the control can be retrieved by using the Text property or the Rtf property. The
Text property returns just the text of the control, whereas the Rtf property returns the formatted text.

 The LoadFile method can load text from a file in a couple of different ways. It can use either a string
that represents the path and file name or it can use a stream object. You can also specify the
 RichTextBoxStreamType . The following table lists the values of RichTextBoxStreamType .

Value Description

PlainText No formatting information. In places that contained OLE objects, spaces
are used.

RichNoOleObjs Rich text formatting, but spaces where the OLE objects would have been.

RichText Formatted RTF with OLE objects in place.

TextTextOleObjs Plain text with text replacing the OLE objects.

UnicodePlainText Same as PlainText but Unicode encoded.

c31.indd 1036c31.indd 1036 2/19/08 5:27:23 PM2/19/08 5:27:23 PM

Chapter 31: Windows Forms

1037

 The SaveFile method works with the same parameters, saving the data from the control to a specified
file. If a file by that name already exists, it will be overwritten.

 The MaskedTextBox supplies the ability to limit what the user may input into the control. It also allows
for automatic formatting of the data entered. Several properties are used in order to validate or format
the user ’ s input. Mask is the property that contains the mask string, which is similar to a format string.
The number of characters allowed, the data type of allowed characters, and the format of the data are all
set using the Mask string. A MaskedTextProvider - based class can also provide the formatting and
validation information needed. The MaskedTextProvider can only be set by passing it in on one of the
constrictors.

 Three different properties will return the text of the MaskedTextControl . The Text property returns the
text of the control at the current moment. This could be different depending on whether or not the
control has focus, which depends on the value of the HidePromptOnLeave property. The prompt is a
string that users see to guide them on what should be entered. The InputText property always returns
just the text that the user entered. The OutputText property returns the text - formatted based on the
 IncludeLiterals and IncludePrompt properties. If, for example, the mask is for a phone number, the
 Mask string would possibly include parentheses and a couple of dashes. These would be the literal
characters and would be included in the OutputText property if the IncludeLiteral property were
set to true .

 A couple of extra events also exist for the MaskedTextBox control. OutputTextChanged and
 InputTextChanged are raised when InputText or OutputText changes.

 Panel
 A Panel is simply a control that contains other controls. By grouping controls together and placing them
in a panel, it is a little easier to manage the controls. For example, you can disable all of the controls in
the panel by disabling the panel. Because the Panel control is derived from ScrollableControl , you
also can get the advantage of the AutoScroll property. If you have too many controls to display in the
available area, place them in a Panel and set AutoScroll to true — now you can scroll through all of
the controls.

 Panels do not show a border by default, but by setting the BorderStyle property to something other
than none, you can use the Panel to visually group related controls using borders. This makes the user
interface more user - friendly.

 Panel is the base class for the FlowLayoutPanel , TableLayoutPanel , TabPage , and SplitterPanel .
By using these controls, a very sophisticated and professional - looking form or window can be created.
The FlowLayoutPanel and TableLayoutPanel are especially useful for creating forms that resize
properly.

 FlowLayoutPanel and TableLayoutPanel
 FlowLayoutPanel and TableLayoutPanel are new additions to the .NET Framework. As the names
might suggest, the panels offer the capability to lay out a form using the same paradigm as a Web Form.
 FlowLayoutPanel is a container that allows the contained controls to flow in either the horizontal or
vertical directions. Instead of flowing, it allows for the clipping of the controls. Flow direction is set
using the FlowDirection property and the FlowDirection enumeration. The WrapContents property
determines if controls flow to the next row or column when the form is resized or if the control is
clipped.

 TableLayoutPanel uses a grid structure to control the layout of controls. Any Windows Forms control
can be a child of the TableLayoutPanel , including another TableLayoutPanel . This allows for a very
flexible and dynamic window design. When a control is added to a TableLayoutPanel , four additional

c31.indd 1037c31.indd 1037 2/19/08 5:27:24 PM2/19/08 5:27:24 PM

1038

Part V: Presentation

properties are added to the Layout category of the property page. They are Column , ColumnSpan , Row ,
and RowSpan . Much like an HTML table on a Web page, column and row spans can be set for each
control. By default, the control will be centered in the cell of the table, but this can be changed by using
the Anchor and Dock properties.

 The default style of the rows and columns can be changed using RowStyles and ColumnsStyles
collections. These collections contain RowStyle and ColumnsStyle objects, respectively. The Style
objects have a common property, SizeType . SizeType uses the SizeType enumeration to determine how
the column width or row height should be sized. Values include AutoSize , Absolute , and Percent .
 AutoSize shares the space with other peer controls. Absolute allows a set number of pixels for the size
and Percent tells the control to size the column or width as a percentage of the parent control.

 Rows, columns, and child controls can be added or removed at runtime. The GrowStyle property takes
a TableLayoutPanelGrowStyle enumeration value that sets the table to add a column or a row, or stay
a fixed size when a new control is added to a full table. If the value is FixedSized , an
ArgumentException is thrown when there is an attempt to add another control. If a cell in the table is
empty, the control will be placed in the empty cell. This property has an effect only when the table is full
and a control is added.

 The formPanel form in the sample application has FlowLayoutPanel s and TableLayoutPanel s with
a variety of controls set in them. Experimenting with the controls, especially the Dock and Anchor
properties of the controls placed in the layout panels, is the best way to understand how they work.

 SplitContainer
 The SplitContainer control is really three controls in one. It has two panel controls with a bar or
splitter between them. The user is able to move the bar and resize the panels. As the panels resize, the
controls in the panels also can be resized. The best example of a SplitContainer is File Explorer. The
left panel contains a TreeView of folders and the right side contains a ListView of folder contents.
When the user moves the mouse over the splitter bar, the cursor changes, showing that the bar can be
moved. The SplitContainer can contain any control, including layout panels and other
 SplitContainer s. This allows the creation of very complex and sophisticated forms.

 The movement and position of the splitter bar can be controlled with the SplitterDistance and
 SplitterIncrement properties. The SplitterDistance property determines where the splitter starts
in relation to the left or top of the control. The SplitterIncrement determines the number of pixels the
splitter moves when being dragged. The panels can have their minimum size set with the
 Panel1MinSize and Panel2MinSize properties. These properties are also in pixels.

 The Splitter control raises two events that relate to moving: the SplitterMoving event and the
 SplitterMoved event. One takes place during the move and the other takes place after the move has
happened. They both receive SplitterEventArgs . SplitterEventArgs contains properties for the X
and Y coordinates of the upper - left corner of the Splitter (SplitX and SplitY) and the X and Y
coordinates of the mouse pointer (X and Y).

 TabControl and TabPages
 TabControl allows you to group related controls onto a series of tab pages. TabControl manages the
collection of TabPages . Several properties control the appearance of TabControl . The Appearance
property uses the TabAppearance enumeration to determine what the tabs look like. The values are
 FlatButtons , Buttons , or Normal . The Multiline property is a Boolean that determines if more than
one row of tabs is shown. If the Multiline property is set to false and there are more tabs than can fit
in the display, arrows appear that allow the user to scroll and see the rest of the tabs.

 The TabPage Text property is what is displayed on the tab. The Text property is a parameter in a
constructor override as well.

c31.indd 1038c31.indd 1038 2/19/08 5:27:24 PM2/19/08 5:27:24 PM

Chapter 31: Windows Forms

1039

 Once you create a TabPage control, it is basically a container control for you to place other controls. The
Designer in Visual Studio .NET makes it easy to add TabPage controls to a TabControl control by using
the collection editor. You can set the various properties as you add each page. Then you can drag the
other child controls to each TabPage control.

 You can determine the current tab by looking at the SelectedTab property. The SelectedIndex event
is raised each time a new tab is selected. By listening to the SelectedIndex property and then
confirming the current tab with SelectedTab , you can do special processing based on each tab. You
could, for example, manage the data displayed for each tab.

 ToolStrip
 The ToolStrip control is a container control used to create toolbars, menu structures, and status
bars. The ToolStrip is used directly for toolbars, and serves as the base class for the MenuStrip and
 StatusStrip controls.

 When used as a toolbar, the ToolStrip control uses a set of controls based on the abstract
 ToolStripItem class. ToolStripItem adds the common display and layout functionality as well as
managing most of the events used by the controls. ToolStripItem is derived from the System
.ComponentModel.Component class and not from the Control class. ToolStripItem - based classes
must be contained in a ToolStrip - based container.

 Image and Text are probably the most common properties that will be set. Images can be set with either
the Image property or by using the ImageList control and setting it to the ImageList property of the
 ToolStrip control. The ImageIndex property of the individual controls can then be set.

 Formatting of the text on a ToolStripItem is handled with the Font , TextAlign , and TextDirection
properties. TextAlign sets the alignment of the text in relation to the control. This can be any of the
 ControlAlignment enumeration values. The default is MiddleRight . The TextDirection property
sets the orientation of the text. Values can be any of the ToolStripTextDirection enumeration values,
which include Horizontal , Inherit , Vertical270 , and Vertical90 . Vertical270 rotates the text
270 degrees and Vertical90 rotates the text 90 degrees.

 The DisplayStyle property controls whether text, image, text and image, or nothing is displayed on
the control. When AutoSize is set to true , the ToolStripItem will resize itself so only the minimum
amount of space is used.

 The controls that are derived directly from ToolStripItem are listed in the following table.

 Tool Strip Items Description

 ToolStripButton Represents a button that the user can select.

 ToolStripLabel Displays nonselectable text or images on the ToolStrip . The
 ToolStripLabel can also display one or more hyperlinks.

 ToolStripSeparator Used to separate and group other ToolStripItems . Items can be
grouped according to functionality.

 ToolStripDropDownItem Displays drop - down items. Base class for
 ToolStripDropDownButton , ToolStripMenuItem , and
 ToolStripSplitButton .

 ToolStripControlHost Hosts other non – ToolStripItem - derived controls on a ToolStrip .
Base class for ToolStripComboBox , ToolStripProgressBar , and
 ToolStripTextBox .

c31.indd 1039c31.indd 1039 2/19/08 5:27:25 PM2/19/08 5:27:25 PM

1040

Part V: Presentation

 The first two items in the list, ToolStripDropDownItem and ToolStripControlHost , deserve a little
more discussion. ToolStripDropDownItem is the base class for ToolStripMenuItem s, which are used
to build the menu structure. ToolStripMenuItem s are added to MenuStrip controls. As mentioned
earlier, MenuStrip s are derived from ToolStrip controls. This is important when it comes time to
manipulate or extend menu items. Because toolbars and menus are derived from the same classes,
creating a framework for managing and executing commands becomes much easier.

 ToolStripControlHost can be used to host other controls that do not derive from ToolStripItem .
Remember that the only controls that can be directly hosted by a ToolStrip are those that derive from
 ToolStripItem . The following example shows how to host a DateTimePicker control on a
 ToolStrip :

public mdiParent()
{
 InitializeComponent();
 ToolStripControlHost _dateTimeCtl;
 _dateTimeCtl = new ToolStripControlHost(new DateTimePicker());
 ((DateTimePicker)_dateTimeCtl.Control).ValueChanged +=
 delegate {
 toolStripLabel1.Text =
((DateTimePicker)_dateTimeCtl.Control).Value.Subtract(DateTime.Now).ToString();
 };
 _
 _dateTimeCtl.Width = 200;
 _dateTimeCtl.DisplayStyle = ToolStripItemDisplayStyle.Text;
 toolStrip1.Items.Add(_dateTimeCtl);
}

 This is the constructor from the frmMain form in the code sample. First, a ToolStripControlHost is
declared and instantiated. Notice that when the control is instantiated, the control that is to be hosted
is passed in on the constructor. The next line sets up the ValueChanged event of the DateTimePicker
control. The control can be accessed through the Control property of the ToolStripHostControl . This
returns a Control object, so it will need to be cast back to the proper type of control. Once that is done,
the properties and methods of the hosted control are available to use.

 Another way to do this that would perhaps enforce encapsulation a little better is to create a new class
derived from ToolStripControlHost . The following code is another version of the toolstrip version of
the DateTimePicker called ToolStripDateTimePicker :

namespace FormsSample.SampleControls
{
 public class DTPickerToolStrip : System.Windows.Forms.ToolStripControlHost
 {
 public event EventHandler ValueChanged;
 public DTPickerToolStrip() : base(new DateTimePicker())
 {
 }
 public new DateTimePicker Control
 {
 get{return (DateTimePicker)base.Control;}
 }
 public DateTime Value
 {
 get { return Control.Value; }
 }

 protected override void OnSubscribeControlEvents(Control control)

c31.indd 1040c31.indd 1040 2/19/08 5:27:25 PM2/19/08 5:27:25 PM

Chapter 31: Windows Forms

1041

 {
 base.OnSubscribeControlEvents(control);
 ((DateTimePicker)control).ValueChanged +=
new EventHandler(ValueChangedHandler);
 }

 protected override void OnUnsubscribeControlEvents(Control control)
 {
 base.OnSubscribeControlEvents(control);
 ((DateTimePicker)control).ValueChanged -=
new EventHandler(ValueChanged);
 }

 private void ValueChangedHandler(object sender, EventArgs e)
 {
 if (ValueChanged != null)
 ValueChanged(this, e);
 }
 }
}

 Most of what this class is doing is exposing selected properties, methods, and events of the
 DateTimePicker . This way, a reference to the underlying control doesn ’ t have to be maintained by the
hosting application. The process of exposing events is a bit involved. The OnSubscribeControlEvents
method is used to synchronize the events of the hosted control, in this case DateTimePicker , to the
 ToolStripControlHost - based class, which is DTPickerToolStrip in the example. In this example,
the ValueChanged event is being passed up to the DTPickerToolStrip . What this effectively does is
allow the user of the control to set up the event in the host application as if DTPickerToolStrip were
derived from DateTimePicker instead of ToolStripControlHost . The following code example shows
this. This is the code to use DTPickerToolStrip :

public mdiParent()
{
 DTPickerToolStrip otherDateTimePicker = new DTPickerToolStrip();
 otherDateTimePicker.Width = 200;
 otherDateTimePicker.ValueChanged +=
new EventHandler(otherDateTimePicker_ValueChanged);
 toolStrip1.Items.Add(otherDateTimePicker);
}

 Notice that when the ValueChanged event handler is set up that the reference is to the
 DTPickerToolStrip class and not to the DateTimePicker control as in the previous example. Also
notice how much cleaner the code in this example looks as compared to the first example. In addition,
because the DateTimePicker is wrapped in another class, encapsulation has improved dramatically
and DTPickerToolStrip is now much easier to use in other parts of the application or in other projects.

 MenuStrip
 The MenuStrip control is the container for the menu structure of an application. As mentioned earlier,
 MenuStrip is derived from the ToolStrip class. The menu system is built by adding ToolStripMenu
objects to the MenuStrip . You can do this in code or in the Designer of Visual Studio. Drag a MenuStrip
control onto a form in the Designer and the MenuStrip will allow the entry of the menu text directly on
the menu items.

 The MenuStrip control has only a couple of additional properties. GripStyle uses the
 ToolStripGripStyle enumeration to set the grip as visible or hidden. The MdiWindowListItem

c31.indd 1041c31.indd 1041 2/19/08 5:27:25 PM2/19/08 5:27:25 PM

1042

Part V: Presentation

property takes or returns a ToolStripMenuItem . This ToolStripMenuItem is the menu that shows all
open windows in an MDI application.

 ContextMenuStrip
 To show a context menu, or a menu displayed when the user right - clicks the mouse, the ContextMenuStrip
class is used. Like MenuStrip , ContextMenuStrip is a container for ToolStripMenuItems objects.
However, it is derived from ToolStripDropDownMenu . A ContextMenu is created the same way as
a MenuStrip . ToolStripMenuItem s are added, and the Click event of each item is defined to perform a
specific task. Context menus are assigned to specific controls. This is done by setting the ContextMenuStrip
property of the control. When the user right - clicks the control, the menu is displayed.

 ToolStripMenuItem
 ToolStripMenuItem is the class that builds the menu structures. Each ToolStripMenuItem object
represents a single menu choice on the menu system. Each ToolStripMenuItem has a
 ToolStripItemCollection that maintains the child menus. This functionality is inherited from
 ToolStripDropDownItem .

 Because ToolStripMenuItem is derived from ToolStripItem , all of the same formatting properties
apply. Images appear as small icons to the right of the menu text. Menu items can have check marks
show up next to them with the Checked and CheckState properties.

 Shortcut keys can be assigned to each menu item. They are generally two key chords such as Ctrl+C
(common shortcut for Copy). When a shortcut key is assigned, it can optionally be displayed on the
menu by setting the ShowShortCutKey property to true .

 To be useful, the menu item has to do something when the user clicks it or uses the defined shortcut keys.
The most common way is to handle the Click event. If the Checked property is being used, the
 CheckStateChanged and CheckedChanged events can be used to determine a change in the checked state.

 ToolStripManager
 Menu and toolbar structures can become large and cumbersome to manage. The ToolStripManager
class provides the ability to create smaller, more manageable pieces of a menu or toolbar structure and
then combine them when needed. An example of this is a form that has several different controls on it.
Each control must display a context menu. Several menu choices will be available for all of the controls,
but each control will also have a couple of unique menu choices. The common choices can be defined on
one ContextMenuStrip . Each of the unique menu items can be predefined or created at runtime. For
each control that needs a context menu assigned to it, the common menu is cloned and the unique
choices are merged with the common menu using the ToolStripManager.Merge method. The resulting
menu is assigned to the ContextMenuStrip property of the control.

 ToolStripContainer
 The ToolStripContainer control is used for docking of ToolStrip - based controls. When you add a
 ToolStripContainer and set the Docked property to Fill , a ToolStripPanel is added to each side
of the form, and a ToolStripContainerPanel is added to middle of the form. Any ToolStrip
(ToolStrip , MenuStrip , or StatusStrip) can be added to any of the ToolStripPanel s. The user can
move the ToolStrip s by grabbing the ToolStrip and dragging it to either side or bottom of the form.
If you set the Visible property to false on any of the ToolStripPanel s, a ToolStrip can no longer be
placed in the panel. The ToolStripContainerPanel in the center of the form can be used to place the
other controls the form may need.

c31.indd 1042c31.indd 1042 2/19/08 5:27:26 PM2/19/08 5:27:26 PM

Chapter 31: Windows Forms

1043

 Forms
 Earlier in this chapter, you learned how to create a simple Windows application. The example contained
one class derived from the System.Windows.Forms.Form class. According to the .NET Framework
documentation, “ a Form is a representation of any window in your application. ” If you come from a Visual
Basic background, the term “ form ” will seem familiar. If your background is C++ using MFC, you ’ re
probably used to calling a form a window, dialog box, or maybe a frame. Regardless, the form is the basic
means of interacting with the user. Earlier, the chapter covered some of the more common and useful
properties, methods, and events of the Control class, and because the Form class is a descendant of the
 Control class , all of the same properties, methods, and events exist in the Form class. The Form class
adds considerable functionality to what the Control class provides, and that ’ s what this section discusses.

 Form Class
 A Windows client application can contain one form or hundreds of forms. The forms can be an SDI -
 based (Single Document Interface) or MDI - based (Multiple Document Interface) application. Regardless,
the System.Windows.Forms.Form class is the heart of the Windows client. The Form class is derived
from ContainerControl , which is derived from ScrollableControl , which is derived from Control .
Because of this, you can assume that a form is capable of being a container for other controls, capable of
scrolling when the contained controls do not fit the client area, and has many of the same properties,
methods, and events that other controls have. This also makes the Form class rather complex. This
section looks at much of that functionality.

 Form Instantiation and Destruction
 The process of form creation is important to understand. What you want to do depends on where you
write the initialization code. For instantiation, the events occur in the following order:

 Constructor

 Load

 Activated

 Closing

 Closed

 Deactivate

 The first three events are of concern during initialization. The type of initialization you want to do could
determine which event you hook into. The constructor of a class occurs during the object instantiation.
The Load event occurs after object instantiation, but just before the form becomes visible. The difference
between this and the constructor is the viability of the form. When the Load event is raised, the form
exists but isn ’ t visible. During constructor execution, the form is in the process of coming into existence.
The Activated event occurs when the form becomes visible and current.

 This order can be altered slightly in one particular situation. If during the constructor execution of the
form, the Visible property is set to true or the Show method is called (which sets the Visible
property to true), the Load event fires immediately. Because this also makes the form visible and
current, the Activate event is also raised. If there is code after the Visible property has been set, it will
execute. So, the startup event might look something like this:

 Constructor , up to Visible = true

 Load

 Activate

 Constructor , after Visible = true

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c31.indd 1043c31.indd 1043 2/19/08 5:27:26 PM2/19/08 5:27:26 PM

1044

Part V: Presentation

 This could potentially lead to some unexpected results. From a best practices standpoint, it would seem
that doing as much initialization as possible in the constructor might be a good idea.

 Now what happens when the form is closed? The Closing event gives you the opportunity to cancel the
process. The Closing event receives CancelEventArgs as a parameter. This has a Cancel property
that, if set to true , cancels the event and the form remains open. The Closing event happens as the
form is being closed, whereas the Closed event happens after the form has been closed. Both allow you
to do any cleanup that might have to be done. Notice that the Deactivate event occurs after the form
has been closed. This is another potential source of difficult - to - find bugs. Be sure that you don ’ t have
anything in Deactivate that could keep the form from being properly garbage collected. For example,
setting a reference to another object would cause the form to remain alive.

 If you call the Application.Exit() method and you have one or more forms currently open, the
 Closing and Closed events will not be raised. This is an important consideration if you have open files
or database connections that you were going to clean up. The Dispose method is called, so perhaps
another best practice would be to put most of your cleanup code in the Dispose method.

 Some properties that relate to the startup of a form are StartPosition , ShowInTaskbar , and TopMost .
 StartPosition can be any of the FormStartPosition enumeration values. They are:

 CenterParent — The form is centered in the client area of the parent form.

 CenterScreen — The form is centered in the current display.

 Manual — The form ’ s location is based on the values in the Location property.

 WindowsDefaultBounds — The form is located at the default Windows position and uses the
default size.

 WindowsDefaultLocation — The Windows default location is used, but the size is based on
the Size property.

 The ShowInTaskbar property determines if the form should be available in the taskbar. This is relevant
only if the form is a child form and you only want the parent form to show in the taskbar. The TopMost
property tells the form to start in the topmost position in the Z - order of the application. This is true even
if the form does not immediately have focus.

 In order for users to interact with the application, they must be able to see the form. The Show and
 ShowDialog methods accomplish this. The Show method just makes the form visible to the user. The
following code segment demonstrates how to create a form and show it to the user. Assume that
the form you want to display is called MyFormClass .

MyFormClass myForm = new MyFormClass();
myForm.Show();

 That ’ s the simple way. The one drawback to this is that there isn ’ t any notification back to the calling
code that myForm is finished and has been exited. Sometimes this isn ’ t a big deal, and the Show method
will work fine. If you do need some type of notification, ShowDialog is a better option.

 When the Show method is called, the code that follows the Show method is executed immediately. When
 ShowDialog is called, the calling code is blocked and will wait until the form that ShowDialog called is
closed. Not only will the calling code be blocked, but the form will optionally return a DialogResult value.
The DialogResult enumeration is a list of identifiers that describe the reason the dialog is closed. These
include OK , Cancel , Yes , No , and several others. In order for the form to return a DialogResult , the form ’ s
 DialogResult property must be set or the DialogResult property on one of the form ’ s buttons must be set.

 For example, suppose that part of application asks for the phone number of a client. The form has a text
box for the phone number and two buttons; one is labeled OK and the other is labeled Cancel . If you set
the DialogResult of the OK button to DialogResult.OK and the DialogResult property on the
 Cancel button to DialogResult.Cancel , then when either of these buttons is selected, the form

❑

❑

❑

❑

❑

c31.indd 1044c31.indd 1044 2/19/08 5:27:27 PM2/19/08 5:27:27 PM

Chapter 31: Windows Forms

1045

becomes invisible and returns to the calling form the appropriate DialogResult value. Now notice that
the form is not destroyed; the Visible property is just set to false . That ’ s because you still must get
values from the form. For this example, you need to get a phone number. By creating a property on the
form for the phone number, the parent form can now get the value and call the Close method on the
form. This is what the code for the child form looks like:

namespace FormsSample.DialogSample
{
 partial class Phone : Form
 {
 public Phone()
 {
 InitializeComponent();
 btnOK.DialogResult = DialogResult.OK;
 btnCancel.DialogResult = DialogResult.Cancel;
 }

 public string PhoneNumber
 {
 get { return textBox1.Text; }
 set { textBox1.Text = value; }
 }
 }
}

 The first thing to notice is that there is no code to handle the click events of the buttons. Because the
 DialogResult property is set for each of the buttons, the form disappears after either the OK or Cancel
button is clicked. The only property added is the PhoneNumber property. The following code shows the
method in the parent form that calls the Phone dialog:

Phone frm = new Phone();
frm.ShowDialog();
if (frm.DialogResult == DialogResult.OK)
{
 label1.Text = “Phone number is “ + frm.PhoneNumber;
}
else if (frm.DialogResult == DialogResult.Cancel)
{
 label1.Text = “Form was canceled. “;
}
frm.Close();

 This looks simple enough. Create the new Phone object (frm). When the frm.ShowDialog() method is
called, the code in this method will stop and wait for the Phone form to return. You can then check the
 DialogResult property of the Phone form. Because it has not been destroyed yet, just made invisible,
you can still access the public properties, one of them being the PhoneNumber property. Once you get the
data you need, you can call the Close method on the form.

 This works well, but what if the returned phone number is not formatted correctly? If you put the
 ShowDialog inside of the loop, you can just recall it and have the user reenter the value. This way, you
get a proper value. Remember that you must also handle the DialogResult.Cancel if the user clicks
the Cancel button.

Phone frm = new Phone();
while (true)
{
 frm.ShowDialog();

(continued)

c31.indd 1045c31.indd 1045 2/19/08 5:27:27 PM2/19/08 5:27:27 PM

1046

Part V: Presentation

 if (frm.DialogResult == DialogResult.OK)
 {
 label1.Text = “Phone number is “ + frm.PhoneNumber;
 if (frm.PhoneNumber.Length == 8 || frm.PhoneNumber.Length == 12)
 {
 break;
 }
 else
 {
 MessageBox.Show(“Phone number was not formatted correctly.
 Please correct entry. “);
 }
 }
 else if (frm.DialogResult == DialogResult.Cancel)
 {
 label1.Text = “Form was canceled. “;
 break;
 }
}
frm.Close();

 Now if the phone number does not pass a simple test for length, the Phone form appears so the user can
correct the error. The ShowDialog box does not create a new instance of the form. Any text entered on
the form will still be there, so if the form has to be reset, it will be up to you to do that.

 Appearance
 The first thing that the user sees is the form for the application. It should be first and foremost functional.
If the application doesn ’ t solve a business problem, it really doesn ’ t matter how it looks. This is not to say
that the form and application ’ s overall GUI design should not be pleasing to the eye. Simple things like
color combinations, font sizing, and window sizing can make an application much easier for the user.

 Sometimes you don ’ t want the user to have access to the system menu. This is the menu that appears
when you click the icon on the top - left corner of a window. Generally, it has such items as Restore ,
 Minimize , Maximize , and Close . The ControlBox property allows you to set the visibility of the
system menu. You can also set the visibility of the Maximize and Minimize buttons with the
 MaximizeBox and MinimizeBox properties. If you remove all of the buttons and then set the Text
property to an empty string (“ “), the title bar disappears completely.

 If you set the Icon property of a form and you don ’ t set the ControlBox property to false , the icon
will appear in the top - left corner of the form. It ’ s common to set this to the app.ico . This makes each
form ’ s icon the same as the application icon.

 The FormBorderStyle property sets the type of border that appears around the form. This uses the
 FormBorderStyle enumeration. The values can be as follows:

 Fixed3D

 FixedDialog

 FixedSingle

 FixedToolWindow

 None

 Sizable

 SizableToolWindow

❑

❑

❑

❑

❑

❑

❑

(continued)

c31.indd 1046c31.indd 1046 2/19/08 5:27:27 PM2/19/08 5:27:27 PM

Chapter 31: Windows Forms

1047

 Most of these are self - explanatory, with the exception of the two tool window borders. A Tool window
will not appear in the taskbar, regardless of how ShowInTaskBar is set. Also a Tool window will not
show in the list of windows when the user presses Alt+Tab. The default setting is Sizable .

 Unless a requirement dictates otherwise, colors for most GUI elements should be set to system colors
and not to specific colors. This way, if some users like to have all of their buttons green with purple text,
the application will follow along with the same colors. To set a control to use a specific system color, you
must call the FromKnownColor method of the System.Drawing.Color class. The FromKnownColor
method takes a KnownColor enumeration value. Many colors are defined in the enumeration, as well as
the various GUI element colors, such as Control , ActiveBorder , and Desktop . So, for example, if the
 Background color of the form should always match the Desktop color, the code would look like this:

myForm.BackColor = Color.FromKnownColor(KnownColor.Desktop);

 Now if users change the color of their desktops, the background of the form changes as well. This is a
nice, friendly touch to add to an application. Users might pick out some strange color combinations for
their desktops, but it is their choice.

 Windows XP introduced a feature called visual styles. Visual styles change the way buttons, text boxes,
menus, and other controls look and react when the mouse pointer is either hovering or clicking. You can
enable visual styles for your application by calling the Application.EnableVisualStyles method.
This method has to be called before any type of GUI is instantiated. Because of this, it is generally called
in the Main method, as demonstrated in this example:

 [STAThread]
static void Main()
{
 Application.EnableVisualStyles();
 Application.Run(new Form1());
}

 This code allows the various controls that support visual styles to take advantage of them. Because of an
issue with the EnableVisualStyles method, you might have to add an Application.DoEvents()
method right after the call to EnableVisualStyles . This should resolve the problem if icons on toolbars
begin to disappear at runtime. Also, EnableVisualStyles is available in .NET Framework 1.1 only.

 You have to accomplish one more task pertaining to the controls. Most controls expose the FlatStyle
property, which takes a FlatStyle enumeration as its value. This property can take one of four different
values:

 Flat — Similar to flat, except that when the mouse pointer hovers over the control, it appears in 3D.

 Standard — The control appears in 3D.

 System — The look of the control is controlled by the operating system.

 To enable visual styles, the control ’ s FlatStyle property should be set to FlatStyle.System . The
application will now take on the XP look and feel and will support XP themes.

 Multiple Document Interface
 MDI - type applications are used when you have an application that can show either multiple instances of
the same type of form or different forms that must be contained in some way — for example, a text
editor that can show multiple edit windows at the same time or Microsoft Access, respectively. You can
have query windows, design windows, and table windows all open at the same time. The windows
never leave the boundaries of the main Access application.

❑

❑

❑

c31.indd 1047c31.indd 1047 2/19/08 5:27:28 PM2/19/08 5:27:28 PM

1048

Part V: Presentation

 The project that contains the examples for this chapter is an MDI application. The form mdiParent
in the project is the MDI parent form. Setting the IsMdiContainer to true will make any form an MDI
parent form. If you have the form in the Designer you ’ ll notice that the background turns a dark gray
color. This is to let you know that this is an MDI parent form. You can still add controls to the form, but it
is generally not recommended.

 For the child forms to behave like MDI children, the child form needs to know what form the parent is.
This is done by setting the MdiParent property to the parent form. In the example, all children forms are
created using the ShowMdiChild method. It takes a reference to the child form that is to be shown. After
setting the MdiParent property to this, which is referencing the mdiParent form, the form is shown.
Here is the code for the ShowMdiParent method:

private void ShowMdiChild(Form childForm)
{
 childForm.MdiParent = this;
 childForm.Show();
}

 One of the issues with MDI applications is that there may be several child forms open at any given time.
A reference to the current active child can be retrieved by using the ActiveMdiChild property on the
parent form. This is demonstrated on the Current Active menu choice on the Window menu. This
choice will show a message box with the form ’ s name and text value.

 The child forms can be arranged by calling the LayoutMdi method. The LayoutMdi method takes an
 MdiLayout enumeration value as a parameter. The possible values include Cascade , TileHorizontal ,
and TileVertical .

 Custom Controls
 Using controls and components is a big part of what makes developing with a forms package such as
Windows Forms so productive. The ability to create your own controls, components, and user controls
makes it even more productive. By creating controls, functionality can be encapsulated into packages
that can be reused over and over.

 You can create a control in a number of ways. You can start from scratch, deriving your class from either
 Control , ScrollableControl , or ContainerControl . You will have to override the Paint event and
do all of your drawing, not to mention adding the functionality that your control is supposed to provide.
If the control is supposed to be an enhanced version of a current control, the thing to do is to derive from
the control that is being enhanced. For example, if a TextBox control is needed that changes background
color if the ReadOnly property is set, creating a completely new TextBox control would be a waste of
time. Derive from the TextBox control and override the ReadOnly property. Because the ReadOnly
property of the TextBox control is not marked override, you have to use the new clause. The following
code shows the new ReadOnly property:

public new bool ReadOnly
{
 get { return base.ReadOnly;}
 set {
 if(value)
 this.BackgroundColor = Color.Red;
 else
 this.BackgroundColor = Color.FromKnowColor(KnownColor.Window);

 base.ReadOnly = value;
 }
}

c31.indd 1048c31.indd 1048 2/19/08 5:27:28 PM2/19/08 5:27:28 PM

Chapter 31: Windows Forms

1049

 For the property get , you return what the base object is set to. The way that the property handles the
process of making a text box read - only is not relevant here, so you just pass that functionality to the base
object. In the property set, check to see if the passed - in value is true or false . If it is true , change the
color to the read - only color (Red in this case); if it is false , set the BackgroundColor to the default.
Finally, pass the value down to the base object so that the text box actually does become read - only. As
you can see, you can add new functionality to a control by overriding one simple property.

 Control Attributes
 You can add attributes to the custom control that will enhance the design - time capabilities of the control.
The following table describes some of the more useful attributes.

 Attribute Name Description

 BindableAttribute Used at design time to determine if the property supports two -
 way data binding.

 BrowsableAttribute Determines if the property is shown in the visual Designer.

 CategoryAttribute Determines under what category the property is displayed in the
Property window. Use on predefined categories or create new
ones. Default is Misc .

 DefaultEventAttribute Specifies the default event for a class.

 DefaultPropertyAttribute Specifies the default property for a class.

 DefaultValueAttribute Specifies the default value for a property. Typically, this is the ini-
tial value.

 DecriptionAttribute This is the text that appears at the bottom of the Designer win-
dow when the property is selected.

 DesignOnlyAttribute This marks the property as being editable in design mode only.

 Other attributes are available that relate to the editor that the property uses in design time and other
advanced design - time capabilities. The Category and Description attributes should almost always be
added. This helps other developers who use the control to better understand the property ’ s purpose.
To add IntelliSense support, you should add XML comments for each property, method, and event.
When the control is compiled with the /doc option, the XML file of comments that is generated will
provide IntelliSense for the control.

 TreeView - Based Custom Control
 This section shows you how to develop a custom control based on the TreeView control. This control
displays the file structure of a drive. You ’ ll add properties that set the base or root folder and determine
whether files and folders will be displayed. You also use the various attributes discussed in the previous
section.

 As with any new project, requirements for the control have to be defined. Here is a list of basic
requirements that have to be implemented:

 Read folders and files and display to user.

 Display folder structure in a treelike hierarchical view.

 Optionally hide files from view.

❑

❑

❑

c31.indd 1049c31.indd 1049 2/19/08 5:27:29 PM2/19/08 5:27:29 PM

1050

Part V: Presentation

 Define what folder should be the base or root folder.

 Return the currently selected folder.

 Provide the ability to delay loading of the file structure.

 This should be a good starting point. One requirement has been satisfied by the fact that the TreeView
control will be the base of the new control.

 The TreeView control displays data in a hierarchical format. It displays text describing the object in the
list and optionally an icon. This list can be expanded and contracted by clicking an object or using
the arrow keys.

 Create a new Windows Control Library project in Visual Studio .NET named FolderTree , and delete
the class UserControl1 . Add a new class and call it FolderTree . Because FolderTree will be derived
from TreeView , change the class declaration from:

public class FolderTree

to:

public class FolderTree : System.Windows.Forms.TreeView

 At this point, you actually have a fully functional and working FolderTree control. It will do
everything that the TreeView can do, and nothing more.

 The TreeView control maintains a collection of TreeNode objects. You can ’ t load files and folders
directly into the control. You have a couple of ways to map the TreeNode that is loaded into the Nodes
collection of the TreeView and the file or folder that it represents.

 For example, when each folder is processed, a new TreeNode object is created, and the text property is
set to the name of the file or folder. If at some point additional information about the file or folder is
needed, you have to make another trip to the disk to gather that information or store additional data
regarding the file or folder in the Tag property.

 Another method is to create a new class that is derived from TreeNode . New properties and methods
can be added and the base functionality of the TreeNode is still there. This is the path that you use in
this example. It allows for a more flexible design. If you need new properties, you can add them easily
without breaking the existing code.

 You must load two types of objects into the control: folders and files. Each has its own characteristics. For
example, folders have a DirectoryInfo object that contains additional information, and files have a
 FileInfo object. Because of these differences, you use two separate classes to load the TreeView
control: FileNode and FolderNode . You add these two classes to the project; each is derived from
 TreeNode . This is the listing for FileNode :

namespace FormsSample.SampleControls
{
 public class FileNode : System.Windows.Forms.TreeNode
 {
 string _fileName = “”;
 FileInfo _info;
 public FileNode(string fileName)
 {
 _fileName = fileName;
 _info = new FileInfo(_fileName);
 base.Text = _info.Name;
 if (_info.Extension.ToLower() == “.exe”)
 this.ForeColor = System.Drawing.Color.Red;
 }
 public string FileName

❑

❑

❑

c31.indd 1050c31.indd 1050 2/19/08 5:27:29 PM2/19/08 5:27:29 PM

Chapter 31: Windows Forms

1051

 {
 get { return _fileName; }
 set { _fileName = value; }
 }

 public FileInfo FileNodeInfo
 {
 get { return _info; }
 }
 }
}

 The name of the file being processed is passed into the constructor of FileNode . In the constructor, the
 FileInfo object for the file is created and set to the member variable _info . The base.Text property is
set to the name of the file. Because you are deriving from TreeNode , this sets the TreeNode ’ s Text
property. This is the text displayed in the TreeView control.

 Two properties are added to retrieve the data. FileName returns the name of the file and FileNodeInfo
returns the FileInfo object for the file.

 The following is the code for the FolderNode class. It is very similar in structure to the FileNode class,
but you have a DirectoryInfo property instead of FileInfo , and instead of FileName you have
 FolderPath :

namespace FormsSample.SampleControls
{
 public class FolderNode : System.Windows.Forms.TreeNode
 {
 string _folderPath = “”;
 DirectoryInfo _info;
 public FolderNode(string folderPath)
 {
 _folderPath = folderPath;
 _info = new DirectoryInfo(folderPath);
 this.Text = _info.Name;
 }
 public string FolderPath
 {
 get { return _folderPath; }
 set { _folderPath = value; }
 }
 public DirectoryInfo FolderNodeInfo
 {
 get { return _info; }
 }
 }
}

 Now you can construct the FolderTree control. Based on the requirements, you need a property to read
and set the RootFolder . You also need a ShowFiles property for determining if files should be shown
in the tree. A SelectedFolder property returns the currently highlighted folder in the tree. This is what
the code looks like so far for the FolderTree control:

using System;
using System.Windows.Forms;
using System.IO;
using System.ComponentModel;

(continued)

c31.indd 1051c31.indd 1051 2/19/08 5:27:29 PM2/19/08 5:27:29 PM

1052

Part V: Presentation

namespace FolderTree
{
 /// < summary >
 /// Summary description for FolderTreeCtrl.
 /// < /summary >
 public class FolderTree : System.Windows.Forms.TreeView
 {
 string _rootFolder = “”;
 bool _showFiles = true;
 bool _inInit = false;
 public FolderTree()
 {

 }

 [Category(“Behavior”),
 Description(“Gets or sets the base or root folder of the tree”),
 DefaultValue(“C:\\ “)]
 public string RootFolder
 {
 get {return _rootFolder;}
 set
 {
 _rootFolder = value;
 if(!_inInit)
 InitializeTree();

 }
 }

 [Category(“Behavior”),
 Description(“Indicates whether files will be seen in the list. “),
 DefaultValue(true)]
 public bool ShowFiles
 {
 get {return _showFiles;}
 set {_showFiles = value;}
 }

 [Browsable(false)]
 public string SelectedFolder
 {
 get
 {
 if(this.SelectedNode is FolderNode)
 return ((FolderNode)this.SelectedNode).FolderPath;

 return “”;
 }
 }
 }
}

 Three properties were added: ShowFiles , SelectedFolder , and RootFolder . Notice the attributes
that have been added. You set Category , Description , and DefaultValues for the ShowFiles and

(continued)

c31.indd 1052c31.indd 1052 2/19/08 5:27:30 PM2/19/08 5:27:30 PM

Chapter 31: Windows Forms

1053

 RootFolder . These two properties will appear in the property browser in design mode. The
 SelectedFolder really has no meaning at design time, so you select the Browsable=false
attribute. SelectedFolder does not appear in the property browser. However, because it is a public
property, it will appear in IntelliSense and is accessible in code.

 Next, you have to initialize the loading of the file system. Initializing a control can be tricky. Both design -
 time and runtime initializing must be well thought out. When a control is sitting on a Designer, it is
actually running. If there is a call to a database in the constructor, for example, this call will execute when
you drop the control on the Designer. In the case of the FolderTree control, this can be an issue.

 Here ’ s a look at the method that is actually going to load the files:

private void LoadTree(FolderNode folder)
{
 string[] dirs = Directory.GetDirectories(folder.FolderPath);
 foreach(string dir in dirs)
 {
 FolderNode tmpfolder = new FolderNode(dir);
 folder.Nodes.Add(tmpfolder);
 LoadTree(tmpfolder);
 }
 if(_showFiles)
 {
 string[] files = Directory.GetFiles(folder.FolderPath);
 foreach(string file in files)
 {
 FileNode fnode = new FileNode(file);
 folder.Nodes.Add(fnode);
 }
 }
}

 showFiles is a Boolean member variable that is set from the ShowFiles property. If true , files are also
shown in the tree. The only question now is when LoadTree should be called. You have several options.
It can be called when the RootFolder property is set. That is desirable in some situations, but not at
design time. Remember that the control is “ live ” on the Designer, so when the RootNode property is set,
the control will attempt to load the file system.

 To solve this, check the DesignMode property, which returns true if the control is in the Designer. Now
you can write the code to initialize the control:

private void InitializeTree()
{
 if (!this.DesignMode)
 {
 FolderNode rootNode = new FolderNode(_rootFolder);
 LoadTree(rootNode);
 this.Nodes.Clear();
 this.Nodes.Add(rootNode);
 }
}

 If the control is not in design mode and _rootFolder is not an empty string, the loading of the tree will
begin. The Root node is created first and this is passed into the LoadTree method.

 Another option is to implement a public Init method. In the Init method, the call to LoadTree can
happen. The problem with this option is that the developer who uses your control is required to make
the Init call. Depending on the situation, this might be an acceptable solution.

c31.indd 1053c31.indd 1053 2/19/08 5:27:30 PM2/19/08 5:27:30 PM

1054

Part V: Presentation

 For added flexibility, implement the ISupportInitialize interface. ISupportInitialize has two
methods, BeginInit and EndInit . When a control implements ISupportInitialize , the BeginInit
and EndInit methods are called automatically in the generated code in InitializeComponent . This
allows the initialization process to be delayed until all of the properties are set. ISupportInitialize allows
the code in the parent form to delay initialization as well. If the RootNode property is being set in code, a call
to BeginInit first will allow the RootNode property as well as other properties to be set or actions to be
performed before the control loads the file system. When EndInit is called, the control initializes. This is
what BeginInit and EndInit code looks like:

#region ISupportInitialize Members
public void ISupportInitialize.BeginInit()
{
 _inInit = true;
}
public void ISupportInitialize.EndInit()
{

 if(_rootFolder != “”)
 {
 InitializeTree();
 }

 _inInit = false;
}
#endregion

 In the BeginInit method, all that is done is that a member variable _inInit is set to true . This flag is
used to determine if the control is in the initialization process and is used in the RootFolder property. If
the RootFolder property is set outside of the InitializeComponent class, the tree will need to be
reinitialized. In the RootFolder property you check to see if _inInit is true or false . If it is true ,
then you don ’ t want to go through the initialization process. If inInit is false , you call
 InitializeTree . You can also have a public Init method and accomplish the same task.

 In the EndInit method, you check to see if the control is in design mode and if _rootFolder has a valid
path assigned to it. Only then is InitializeTree called.

 To add a final professional - looking touch, you have to add a bitmap image. This is the icon that shows up
in the Toolbox when the control is added to a project. The bitmap image should be 16 × 6 pixels and 16
colors. You can create this image file with any graphics editor as long as the size and color depth are set
properly. You can even create this file in Visual Studio .NET: Right - click the project and select Add New
Item. From the list, select Bitmap File to open the graphics editor. After you have created the bitmap file,
add it to the project, making sure that it is in the same namespace and has the same name as the control.
Finally, set the Build Action of the bitmap to Embedded Resource: Right - click the bitmap file in the
Solution Explorer and select Properties. Select Embedded Resource from the Build Action property.

 To test the control, create a TestHarness project in the same solution. The TestHarness is a simple
Windows Forms application with a single form. In the references section, add a reference to the
 FolderTreeCtl project. In the Toolbox window, add a reference to the FolderTreeCtl.DLL
. FolderTreeCtl should now show up in the toolbox with the bitmap added as the icon. Click the icon
and drag it to the TestHarness form. Set the RootFolder to an available folder and run the solution.

 This is by no means a complete control. Several things could be enhanced to make this a full - featured,
production - ready control. For example, you could add the following:

 Exceptions — If the control tries to load a folder that the user does not have access to, an
exception is raised.

❑

c31.indd 1054c31.indd 1054 2/19/08 5:27:30 PM2/19/08 5:27:30 PM

Chapter 31: Windows Forms

1055

 Background loading — Loading a large folder tree can take a long time. Enhancing the
initialization process to take advantage of a background thread for loading is a good idea.

 Color codes — You can make the text of certain file types a different color.

 Icons — You can add an ImageList control and add an icon to each file or folder as it is loaded.

 User Control
 User controls are one of the more powerful features of Windows Forms. They enable you to encapsulate user
interface designs into nice reusable packages that can be plugged into project after project. It is not
uncommon for an organization to have a couple of libraries of frequently used user controls. Not only
can user interface functionality be contained in user controls, but common data validation can be
incorporated in them as well, such as formatting phone numbers or ID numbers. A predefined list of items
can be in the user control for fast loading of a list box or combo box. State codes or country codes fit into this
category. Incorporating as much functionality that does not depend on the current application as possible
into a user control makes the control that much more useful in the organization.

 In this section, you create a simple address user control. You also will add the various events that make
the control ready for data binding. The address control will have text entry for two address lines: city,
state, and zip code.

 To create a user control in a current project, just right - click the project in Solution Explorer and select
Add; then select Add New User Control. You can also create a new Control Library project and add user
controls to it. After a new user control has been started, you will see a form without any borders on the
Designer. This is where you drop the controls that make up the user control. Remember that a user
control is actually one or more controls added to a container control, so it is somewhat like creating a
form. For the address control there are five TextBox controls and three Label controls. The controls can
be arranged any way that seems appropriate (see Figure 31 - 4).

❑

❑

❑

Figure 31-4

c31.indd 1055c31.indd 1055 2/19/08 5:27:31 PM2/19/08 5:27:31 PM

1056

Part V: Presentation

 The TextBox controls in this example are named as follows:

 txtAddress1

 txtAddress2

 txtCity

 txtState

 txtZip

 After the TextBox controls are in place and have valid names, add the public properties. You might be
tempted to set the visibility of the TextBox controls to public instead of private. However, this is not a
good idea because it defeats the purpose of encapsulating the functionality that you might want to add
to the properties. The following is a listing of the properties that must be added:

public string AddressLine1
{
 get{return txtAddress1.Text;}
 set{
 if(txtAddress1.Text != value)
 {
 txtAddress1.Text = value;
 if(AddressLine1Changed != null)
 AddressLine1Changed(this, EventArgs.Empty);
 }
 }
}

public string AddressLine2
{
 get{return txtAddress2.Text;}
 set{
 if(txtAddress2.Text != value)
 {
 txtAddress2.Text = value;
 if(AddressLine2Changed != null)
 AddressLine2Changed(this, EventArgs.Empty);
 }
 }
}

public string City
{
 get{return txtCity.Text;}
 set{
 if(txtCity.Text != value)
 {
 txtCity.Text = value;
 if(CityChanged != null)
 CityChanged(this, EventArgs.Empty);
 }
 }
}

public string State

❑

❑

❑

❑

❑

c31.indd 1056c31.indd 1056 2/19/08 5:27:31 PM2/19/08 5:27:31 PM

Chapter 31: Windows Forms

1057

{
 get{return txtState.Text;}
 set{
 if(txtState.Text != value)
 {
 txtState.Text = value;
 if(StateChanged != null)
 StateChanged(this, EventArgs.Empty);
 }
 }
}

public string Zip
{
 get{return txtZip.Text;}
 set{
 if(txtZip.Text != value)
 {
 txtZip.Text = value;
 if(ZipChanged != null)
 ZipChanged(this, EventArgs.Empty);
 }
 }
}

 The instances of the get property are fairly straightforward. They return the value of the corresponding
 TextBox control ’ s text property. The instances of the set property, however, are doing a bit more work.
All of the set s work the same way. A check is made to see whether or not the value of the property is
actually changing. If the new value is the same as the current value, then a quick escape can be made. If
there is a new value sent in, set the text property of the TextBox to the new value and test to see if an
event has been instantiated. The event to look for is the changed event for the property. It has a specific
naming format, propertynameChanged , where propertyname is the name of the property. In the case
of the AddressLine1 property, this event is called AddressLine1Changed . The properties are declared
as follows:

public event EventHandler AddressLine1Changed;
public event EventHandler AddressLine2Changed;
public event EventHandler CityChanged;
public event EventHandler StateChanged;
public event EventHandler ZipChanged;

 The purpose of the events is to notify binding that the property has changed. Once validation occurs,
binding will make sure that the new value makes its way back to the object that the control is bound to.
One other step should be done to support binding. A change to the text box by the user will not set the
property directly. So, the propertynameChanged event must be raised when the text box changes as
well. The easiest way to do this is to monitor the TextChanged event of the TextBox control. This
example has only one TextChanged event handler and all of the text boxes use it. The control name is
checked to see which control raised the event and the appropriate propertynameChanged event is
raised. The following is the code for the event handler:

private void controls_TextChanged (object sender, System.EventArgs e)
{
 switch(((TextBox)sender).Name)
 {
 case “txtAddress1” :
 if(AddressLine1Changed != null)

(continued)

c31.indd 1057c31.indd 1057 2/19/08 5:27:31 PM2/19/08 5:27:31 PM

1058

Part V: Presentation

 AddressLine1Changed(this, EventArgs.Empty);
 break;

 case “txtAddress2” :
 if(AddressLine2Changed != null)
 AddressLine2Changed(this, EventArgs.Empty);
 break;
 case “txtCity” :
 if(CityChanged != null)
 CityChanged(this, EventArgs.Empty);
 break;
 case “txtState” :
 if(StateChanged != null)
 StateChanged(this, EventArgs.Empty);
 break;
 case “txtZip” :
 if(ZipChanged != null)
 ZipChanged(this, EventArgs.Empty);
 break;
 }
}

 This example uses a simple switch statement to determine which text box raised the TextChanged event.
Then a check is made to verify that the event is valid and not equal to null. Then the Changed event is
raised. One thing to note is that an empty EventArgs is sent (EventArgs.Empty). The fact that these
events have been added to the properties to support data binding does not mean that the only way to
use the control is with data binding. The properties can be set in and read from code without using data
binding. They have been added so that the user control is able to use binding if it is available. This is
just one way of making the user control as flexible as possible so that it might be used in as many
situations as possible.

 Because a user control is essentially a control with some added features, all of the design - time issues
discussed in the previous section apply here as well. Initializing user controls can bring on the same
issues that you saw in the FolderTree example. Care must be taken in the design of user controls so
that you avoid giving access to data stores that might not be available to other developers using your
control.

 Also similar to the control creation are the attributes that can be applied to user controls. The public
properties and methods of the user control are displayed in the properties window when the control is
placed on the Designer. In the example of the address user control it is a good idea to add Category ,
 Description , and DefaultValue attributes to the address properties. A new AddressData category
can be created and the default values would all be “ ” . The following is an example of these attributes
applied to the AddressLine1 property:

 [Category(“AddressData”),
 Description(“Gets or sets the AddressLine1 value”),
 DefaultValue(“”)]
public string AddressLine1
{
 get{return txtAddress1.Text;}
 set{
 if(txtAddress1.Text != value)
 {

(continued)

c31.indd 1058c31.indd 1058 2/19/08 5:27:32 PM2/19/08 5:27:32 PM

Chapter 31: Windows Forms

1059

 txtAddress1.Text = value;
 if(AddressLine1Changed != null)
 AddressLine1Changed(this, EventArgs.Empty);
 }
 }
}

 As you can see, all that needs to be done to add a new category is to set the text in the Category
attribute. The new category is automatically added.

 There is still a lot of room for improvement. For example, you could include a list of state names and
abbreviations in the control. Instead of just the state property, the user control could expose both the
state name and state abbreviation properties. Exception handling should also be added. You could also
add validation for the address lines. Making sure that the casing is correct, you might ask yourself
whether AddressLine1 could be optional or whether apartment and suite numbers should be entered
on AddressLine2 and not on AddressLine1 .

 Summary
 This chapter has given you the basics for building Windows client - based applications. It explained each
of the basic controls by discussing the hierarchy of the Windows.Forms namespace and examining the
various properties and methods of the controls.

 The chapter also showed you how to create a basic custom control as well as a basic user control. The
power and flexibility of creating your own controls cannot be emphasized enough. By creating your own
toolbox of custom controls, Windows - based client applications will become easier to develop and to test
because you will be reusing the same tested components over and over again.

 The next chapter, “ Data Binding, ” covers how to link a data source to controls on a form. This will allow
you to create forms that automatically update the data and keep the data on the form in sync.

c31.indd 1059c31.indd 1059 2/19/08 5:27:32 PM2/19/08 5:27:32 PM

c31.indd 1060c31.indd 1060 2/19/08 5:27:32 PM2/19/08 5:27:32 PM

 Data Binding

 This chapter builds on the content of Chapter 26 , “ Data Access, ” which covered various ways of
selecting and changing data, by showing you how to present data to the user by binding to various
Windows controls. More specifically, this chapter discusses:

 Displaying data using the DataGridView control

 The .NET data - binding capabilities and how they work

 How to use the Server Explorer to create a connection and generate a DataSet class (all
without writing a line of code)

 How to use hit testing and reflection on rows in the DataGrid

 You can download the source code for the examples in this chapter from the Wrox Web site at
www.wrox.com .

 The DataGridView Control
 The DataGrid control that has been available from the initial release of .NET was functional, but
had many areas that made it unsuitable for use in a commercial application — such as an inability
to display images, drop - down controls, or lock columns, to name but a few. The control always felt
half - completed, so many control vendors provided custom grid controls that overcame these
deficiencies and also provided much more functionality.

 .NET 2.0 introduced an additional Grid control — the DataGridView . This addresses many of the
deficiencies of the original control, and adds significant functionality that previously was available
only with add - on products.

 The DataGridView control has binding capabilities similar to the old DataGrid , so it can bind to
an Array , DataTable , DataView , or DataSet class, or a component that implements either the
 IListSource or IList interface. It gives you a variety of views of the same data. In its simplest
guise, data can be displayed (as in a DataSet class) by setting the DataSource and DataMember
properties — note that this control is not a plugin replacement for the DataGrid , so the
programmatic interface to it is entirely different from that of the DataGrid . This control also
provides more complex capabilities, which are discussed in the course of this chapter.

❑

❑

❑

❑

c32.indd 1061c32.indd 1061 2/19/08 5:27:43 PM2/19/08 5:27:43 PM

Part V: Presentation

1062

 Displaying Tabular Data
 Chapter 19 , “ Threading and Synchronization, ” introduced numerous ways of selecting data and reading
it into a data table, although the data was displayed in a very basic fashion using Console.WriteLine() .

 The following example demonstrates how to retrieve some data and display it in a DataGridView
control. For this purpose, you will build a new application, DisplayTabularData , shown in Figure 32 - 1 .

 Figure 32 - 1

 This simple application selects every record from the Customer table in the Northwind database and
displays these records to the user in the DataGridView control. The following snippet shows the code
for this example (excluding the form and control definition code):

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;
using System.Windows.Forms;

namespace DisplayTabularData
{
 partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void getData_Click(object sender, EventArgs e)
 {
 string customers = “SELECT * FROM Customers”;

 using (SqlConnection con =
 new SqlConnection (ConfigurationManager.
 ConnectionStrings[“northwind”].ConnectionString))
 {
 DataSet ds = new DataSet();

 SqlDataAdapter da = new SqlDataAdapter(customers, con);

c32.indd 1062c32.indd 1062 2/19/08 5:27:44 PM2/19/08 5:27:44 PM

1063

Chapter 32: Data Binding

 da.Fill(ds, “Customers”);

 dataGridView.AutoGenerateColumns = true;
 dataGridView.DataSource = ds;
 dataGridView.DataMember = “Customers”;
 }
 }
 }
}

 The form consists of the getData button, which when clicked calls the getData _ Click() method
shown in the example code.

 This constructs a SqlConnection object, using the ConnectionStrings property of the
 ConfigurationManager class. Subsequently a data set is constructed and filled from the database table,
using a DataAdapter object. The data is then displayed by the DataGridView control by setting the
 DataSource and DataMember properties. Note that the AutoGenerateColumns property is also set to
 true because this ensures that something is displayed to the user. If this flag is not specified, you need to
create all columns yourself.

 Data Sources
 The DataGridView control provides a flexible way to display data; in addition to setting the
 DataSource to a DataSet and the DataMember to the name of the table to display, the DataSource
property can be set to any of the following sources:

 An array (the grid can bind to any one - dimensional array)

 DataTable

 DataView

 DataSet or DataViewManager

 Components that implement the IListSource interface

 Components that implement the IList interface

 Any generic collection class or object derived from a generic collection class

 The following sections give an example of each of these data sources.

 Displaying Data from an Array
 At first glance this seems to be easy. Create an array, fill it with some data, and set the DataSource
property on the DataGridView control. Here ’ s some example code:

string[] stuff = new string[] {“One”, “Two”, “Three”};
dataGridView.DataSource = stuff;

 If the data source contains multiple possible candidate tables (such as when using a DataSet or
 DataViewManager), you need to also set the DataMember property.

 You could replace the code in the previous example ’ s getData_Click event handler with the preceding
array code. The problem with this code is the resulting display (see Figure 32 - 2).

 Instead of displaying the strings defined within the array, the grid displays the length of those strings.
That ’ s because when using an array as the source of data for a DataGridView control, the grid looks for
the first public property of the object within the array and displays this value rather than the string
value. The first (and only) public property of a string is its length, so that is what is displayed. The list of
properties for any class can be obtained by using the GetProperties method of the TypeDescriptor

❑

❑

❑

❑

❑

❑

❑

c32.indd 1063c32.indd 1063 2/19/08 5:27:45 PM2/19/08 5:27:45 PM

Part V: Presentation

1064

 Figure 32 - 2

 One way to rectify the problem with displaying strings in the DataGridView is to create a wrapper class:

protected class Item
{
 public Item(string text)
 {
 _text = text;
 }
 public string Text
 {
 get{return _text;}
 }
 private string _text;
}

 Figure 32 - 3 shows the output when an array of this Item class (which could just as well be a struct for
all the processing that it does) is added to your data source array code.

Figure 32-3

class. This returns a collection of PropertyDescriptor objects, which can then be used when
displaying data. The .NET PropertyGrid control uses this method when displaying arbitrary objects.

c32.indd 1064c32.indd 1064 2/19/08 5:27:45 PM2/19/08 5:27:45 PM

1065

Chapter 32: Data Binding

 DataTable
 You can display a DataTable within a DataGridView control in two ways:

 If you have a standalone DataTable , simply set the DataSource property of the control to
the table.

 If your DataTable is contained within a DataSet , you need to set the DataSource to the
data set and the DataMember property should be set to the name of the DataTable within
the data set.

 Figure 32 - 4 shows the result of running the DataSourceDataTable sample code.

❑

❑

Figure 32-4

 Note the display of the last column; it shows a check box instead of the more common edit control. The
 DataGridView control, in the absence of any other information, will read the schema from the data
source (which in this case is the Products table), and infer from the column types what control is to be
displayed. Unlike the original DataGrid control, the DataGridView control has built - in support for
image columns, buttons, and combo boxes.

 The data in the database does not change when fields are altered in the data grid because the data is
stored only locally on the client computer — there is no active connection to the database. Updating data
in the database is discussed later in this chapter.

 Displaying Data from a DataView
 A DataView provides a means to filter and sort data within a DataTable . When data has been selected
from the database, it is common to permit the user to sort that data, for example, by clicking on column
headings. In addition, the user might want to filter the data to show only certain rows, such as all those
that have been altered. A DataView can be filtered so that only selected rows are shown to the user;
however, you cannot filter the columns from the DataTable .

A DataView does not permit the filtering of columns, only rows.

 To create a DataView based on an existing DataTable , use the following code:

DataView dv = new DataView(dataTable);

c32.indd 1065c32.indd 1065 2/19/08 5:27:45 PM2/19/08 5:27:45 PM

Part V: Presentation

1066

 Once created, further settings can be altered on the DataView , which affect the data and operations
permitted on that data when it is displayed within the data grid. For example:

 Setting AllowEdit = false disables all column edit functionality for rows.

 Setting AllowNew = false disables the new row functionality.

 Setting AllowDelete = false disables the delete row capability.

 Setting the RowStateFilter displays only rows of a given state.

 Setting the RowFilter enables you to filter rows.

 The next section explains how to use the RowStateFilter setting; the other options are fairly
self - explanatory.

Filtering Rows by Data
 After the DataView has been created, the data displayed by that view can be altered by setting the
 RowFilter property. This property, typed as a string, is used as a means of filtering based on certain
criteria defined by the value of the string. Its syntax is similar to a WHERE clause in regular SQL, but it is
issued against data already selected from the database.

 The following table shows some examples of filter clauses.

❑

❑

❑

❑

❑

Clause Description

UnitsInStock > 50 Shows only those rows where the UnitsInStock column is greater
than 50.

Client = ‘Smith’ Returns only the records for a given client.

County LIKE ‘C*’ Returns all records where the County field begins with a C — in this
example, the rows for Cornwall, Cumbria, Cheshire, and Cambridgeshire
would be returned. The % character can be used as a single-character
 wildcard, whereas the * denotes a general wildcard that will match zero
or more characters.

DataViewRowState Description

Added Lists all rows that have been newly created.

CurrentRows Lists all rows except those that have been deleted.

Deleted Lists all rows that were originally selected and have been deleted; does not
show newly created rows that have been deleted.

 The runtime will do its best to coerce the data types used within the filter expression into the appropriate
types for the source columns. For instance, it is perfectly legal to write “ UnitsInStock > ‘ 50 ’ “ in the
earlier example, even though the column is an integer. If an invalid filter string is provided, an
 EvaluateException will be thrown.

Filtering Rows on State
 Each row within a DataView has a defined row state, which has one of the values shown in the
following table. This state can also be used to filter the rows viewed by the user.

c32.indd 1066c32.indd 1066 2/19/08 5:27:46 PM2/19/08 5:27:46 PM

1067

Chapter 32: Data Binding

 The filter not only applies to the visible rows but also to the state of the columns within those rows. This
is evident when choosing the ModifiedOriginal or ModifiedCurrent selections. These states are
described in Chapter 20 , “ Security, ” and are based on the DataRowVersion enumeration. For example,
when the user has updated a column in the row, the row will be displayed when either
 ModifiedOriginal or ModifiedCurrent is chosen; however, the actual value will be either the
 Original value selected from the database (if ModifiedOriginal is chosen) or the current value in
the DataColumn (if ModifiedCurrent is chosen).

 Figure 32 - 5 shows a grid that can have rows added, deleted, or amended, and a second grid that lists
rows in one of the preceding states.

Figure 32-5

DataViewRowState Description

ModifiedCurrent Lists all rows that have been modified and shows the current value of each
column.

ModifiedOriginal Lists all rows that have been modified but shows the original value of the
column and not the current value.

OriginalRows Lists all rows that were originally selected from a data source. Does not
include new rows. Shows the original values of the columns (that is, not the
current values if changes have been made).

Unchanged Lists all rows that have not changed in any way.

c32.indd 1067c32.indd 1067 2/19/08 5:27:46 PM2/19/08 5:27:46 PM

Part V: Presentation

1068

Sorting Rows
 Apart from filtering data, you might also have to sort the data within a DataView . To sort data in
ascending or descending order, simply click the column header in the DataGridView control
(see Figure 32 - 6). The only trouble is that the control can sort by only one column, whereas the
underlying DataView control can sort by multiple columns.

Figure 32-6

 When a column is sorted, either by clicking the header (as shown on the ProductName column)
or in code, the DataGrid displays an arrow bitmap to indicate which column the sort has been
applied to.

 To set the sort order on a column programmatically, use the Sort property of the DataView :

dataView.Sort = “ProductName”;
dataView.Sort = “ProductName ASC, ProductID DESC”;

 The first line sorts the data based on the ProductName column, as shown in Figure 32 - 6 . The second line
sorts the data in ascending order, based on the ProductName column, then in descending order of
 ProductID .

 The DataView supports both ascending (default) and descending sort orders on columns. If more
than one column is sorted in code in the DataView , the DataGridView will cease to display any sort
arrows.

 Each column in the grid can be strongly typed, so its sort order is not based on the string representation
of the column but instead is based on the data within that column. The upshot is that if there is a date
column in the DataGrid , the user can sort numerically on the date rather than on the date string
representation.

 Displaying Data from a DataSet Class
 There is one feature of DataSet s that the DataGridView cannot match the DataGrid in — this is
when a DataSet is defined that includes relationships between tables. As with the preceding
 DataGridView examples, the DataGrid can display only a single DataTable at a time. However,
as shown in the following example, DataSourceDataSet , it is possible to navigate relationships
within the DataSet onscreen. The following code can be used to generate such a DataSet based
on the Customers and Orders tables in the Northwind database. This example loads data from
these two DataTable s and then creates a relationship between these tables called
CustomerOrders :

c32.indd 1068c32.indd 1068 2/19/08 5:27:47 PM2/19/08 5:27:47 PM

1069

Chapter 32: Data Binding

string orders = “SELECT * FROM Orders”;
string customers = “SELECT * FROM Customers”;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(orders, conn);
DataSet ds = new DataSet();
da.Fill(ds, “Orders”);
da = new SqlDataAdapter(customers , conn);
da.Fill(ds, “Customers”);
ds.Relations.Add(“CustomerOrders”,
 ds.Tables[“Customers”].Columns[“CustomerID”],
 ds.Tables[“Orders”].Columns[“CustomerID”]);

 Once created, the data in the DataSet is bound to the DataGrid simply by calling SetDataBinding() :

dataGrid1.SetDataBinding(ds, “Customers”);

 This produces the output shown in Figure 32 - 7 .

Figure 32-7

 Unlike the DataGridView examples shown in this chapter, there is now a + sign to the left of each
record. This reflects the fact that the DataSet has a navigable relationship between customers and
orders. Any number of such relationships can be defined in code.

 When the user clicks the + sign, the list of relationships is shown (or hidden if already visible). Clicking
the name of the relationship enables you to navigate to the linked records (see Figure 32 - 8), in this
example, listing all orders placed by the selected customer.

 The DataGrid control also includes a couple of new icons in the top - right corner. The arrow permits the
user to navigate to the parent row, and will change the display to that on the previous page. The header
row showing details of the parent record can be shown or hidden by clicking the other button.

c32.indd 1069c32.indd 1069 2/19/08 5:27:47 PM2/19/08 5:27:47 PM

Part V: Presentation

1070

 Displaying Data in a DataViewManager
 The display of data in a DataViewManager is the same as that for the DataSet shown in the previous
section. However, when a DataViewManager is created for a DataSet , an individual DataView is
created for each DataTable , which then permits the code to alter the displayed rows based on a filter or
the row state, as shown in the DataView example. Even if the code doesn ’ t need to filter data, it is good
practice to wrap the DataSet in a DataViewManager for display because it provides more options when
revising the source code.

 The following creates a DataViewManager based on the DataSet from the previous example and then
alters the DataView for the Customer table to show only customers from the United Kingdom:

DataViewManager dvm = new DataViewManager(ds);
dvm.DataViewSettings[“Customers”].RowFilter = “Country=’UK’”;
dataGrid.SetDataBinding(dvm, “Customers”);

 Figure 32 - 9 shows the output of the DataSourceDataViewManager sample code.

Figure 32-8

Figure 32-9

c32.indd 1070c32.indd 1070 2/19/08 5:27:47 PM2/19/08 5:27:47 PM

1071

Chapter 32: Data Binding

 IListSource and IList Interfaces
 The DataGridView also supports any object that exposes one of the interfaces IListSource or IList .
 IListSource has only one method, GetList() , which returns an IList interface. IList , however, is
somewhat more interesting and is implemented by a large number of classes in the runtime. Some of the
classes that implement this interface are Array , ArrayList , and StringCollection .

 When using IList , the same caveat for the object within the collection holds true as for the Array
implementation shown earlier — if a StringCollection is used as the data source for the DataGrid ,
the length of the strings is displayed within the grid, not within the text of the item as expected.

 Displaying Generic Collections
 In addition to the types already described, the DataGridView also supports binding to generic
collections. The syntax is just as in the other examples already provided in this chapter — simply set the
 DataSource property to the collection, and the control will generate an appropriate display.

 Once again, the columns displayed are based on the properties of the object — all public readable fields are
displayed in the DataGridView . The following example shows the display for a list class defined as follows:

class PersonList : List < Person >
{
}

class Person
{
 public Person(string name, Sex sex, DateTime dob)
 {
 _name = name;
 _sex = sex;
 _dateOfBirth = dob;
 }

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 public Sex Sex
 {
 get { return _sex; }
 set { _sex = value; }
 }

 public DateTime DateOfBirth
 {
 get { return _dateOfBirth; }
 set { _dateOfBirth = value; }
 }

 private string _name;
 private Sex _sex;
 private DateTime _dateOfBirth;
}

enum Sex

(continued)

c32.indd 1071c32.indd 1071 2/19/08 5:27:48 PM2/19/08 5:27:48 PM

Part V: Presentation

1072

{
 Male,
 Female
}

 The display shows several instances of the Person class that were constructed within the PersonList
class. See Figure 32 - 10 .

 In some circumstances, it might be necessary to hide certain properties from the grid display — for this
you can use the Browsable attribute as shown in the following code snippet. Any properties marked as
non - browsable are not displayed in the property grid.

 [Browsable(false)]
public bool IsEmployed
{
 ...
}

Figure 32-10

 The DataGridView uses this property to determine whether to display the property or hide it. In the
absence of the attribute, the default is to display the property. If a property is read - only, the grid control
will display the values from the object, but it will be read - only within the grid.

 Any changes made in the grid view are reflected in the underlying objects — so, for example, if in the
previous code the name of a person was changed within the user interface, the setter method for that
property would be called.

 DataGridView Class Hierarchy
 The class hierarchy for the main parts of the DataGridView control is shown in Figure 32 - 11 .

 The control uses objects derived from DataGridViewColumn when displaying data. As you can see from
Figure 32 - 11 , there are now far more options for displaying data than there were with the original
 DataGrid . One major omission was the display of drop - down columns within the DataGrid — this
functionality is now provided for the DataGridView in the form of the
 DataGridViewComboBoxColumn .

(continued)

c32.indd 1072c32.indd 1072 2/19/08 5:27:48 PM2/19/08 5:27:48 PM

1073

Chapter 32: Data Binding

 The following example shows how to construct columns and includes an image and a ComboBox
column. The code uses a DataSet and retrieves data into two data tables. The first DataTable contains
the employee information from the Northwind database. The second table consists of the EmployeeID
column and a generated Name column, which is used when rendering the ComboBox :

using (SqlConnection con =
 new SqlConnection (
 ConfigurationSettings.ConnectionStrings[“northwind”].ConnectionString))
{
 string select = “SELECT EmployeeID, FirstName, LastName, Photo,
 IsNull(ReportsTo,0) as ReportsTo FROM Employees”;

 SqlDataAdapter da = new SqlDataAdapter(select, con);

 DataSet ds = new DataSet();

 da.Fill(ds, “Employees”);

 select = “SELECT EmployeeID, FirstName + ‘ ‘ + LastName as Name
 FROM Employees UNION SELECT 0,’(None)’”;

 da = new SqlDataAdapter(select, con);
 da.Fill(ds, “Managers”);

 // Construct the columns in the grid view
 SetupColumns(ds);

Windows.Forms.DataGridViewComboBoxColumn

Object

MarshalByRefObject Windows.Forms.DataGridViewElement

ComponentModel.Component

Windows.Forms.Control

Windows.Forms.DataGridView

Windows.Forms.DataGridViewBand

Windows.Forms.DataGridViewCell

Windows.Forms.DataGridViewColumn

Windows.Forms.DataGridViewCheckBoxColumn

Windows.Forms.DataGridViewButtonColumn

Windows.Forms.DataGridViewImageColumn

Windows.Forms.DataGridViewLinkColumn

Windows.Forms.DataGridViewTextBoxColumn

Figure 32-11

(continued)

 When you specify a data source for the DataGridView , by default it will construct columns for you
automatically. These will be created based on the data types in the data source, so, for example, any
Boolean field will be mapped to the DataGridViewCheckBoxColumn . If you would rather handle the
creation of columns yourself, you can set the AutoGenerateColumns property to false and construct
the columns yourself.

c32.indd 1073c32.indd 1073 2/19/08 5:27:48 PM2/19/08 5:27:48 PM

Part V: Presentation

1074

 // Set the default height for a row
 dataGridView.RowTemplate.Height = 100 ;

 // Then set up the datasource
 dataGridView.AutoGenerateColumns = false;
 dataGridView.DataSource = ds.Tables[“Employees”];

}

 Here there are two things to note. The first select statement replaces null values in the ReportsTo
column with the value zero. There is one row in the database that contains a null value in this field,
indicating that the individual has no manager. However, when data binding, the ComboBox needs a
value in this column; otherwise, an exception will be raised when the grid is displayed. In the example,
the value zero is chosen because it does not exist within the table — this is commonly termed a sentinel
value because it has special meaning to the application.

 The second SQL clause selects data for the ComboBox and includes a manufactured row where the values
 Zero and (None) are created. In Figure 32 - 12 , the second row displays the (None) entry.

Figure 32-12

(continued)

 The custom columns are created by the following function:

private void SetupColumns(DataSet ds)
{
 DataGridViewTextBoxColumn forenameColumn = new DataGridViewTextBoxColumn();
 forenameColumn.DataPropertyName = “FirstName”;
 forenameColumn.HeaderText = “Forename”;
 forenameColumn.ValueType = typeof(string);
 forenameColumn.Frozen = true;
 dataGridView.Columns.Add(forenameColumn);

 DataGridViewTextBoxColumn surnameColumn = new DataGridViewTextBoxColumn();
 surnameColumn.DataPropertyName = “LastName”;
 surnameColumn.HeaderText = “Surname”;

c32.indd 1074c32.indd 1074 2/19/08 5:27:49 PM2/19/08 5:27:49 PM

1075

Chapter 32: Data Binding

 surnameColumn.Frozen = true;
 surnameColumn.ValueType = typeof(string);
 dataGridView.Columns.Add(surnameColumn);

 DataGridViewImageColumn photoColumn = new DataGridViewImageColumn();
 photoColumn.DataPropertyName = “Photo”;
 photoColumn.Width = 100;
 photoColumn.HeaderText = “Image”;
 photoColumn.ReadOnly = true;
 photoColumn.ImageLayout = DataGridViewImageCellLayout.Normal;
 dataGridView.Columns.Add(photoColumn);

 DataGridViewComboBoxColumn reportsToColumn = new DataGridViewComboBoxColumn();
 reportsToColumn.HeaderText = “Reports To”;
 reportsToColumn.DataSource = ds.Tables[“Managers”];
 reportsToColumn.DisplayMember = “Name”;
 reportsToColumn.ValueMember = “EmployeeID”;
 reportsToColumn.DataPropertyName = “ReportsTo”;
 dataGridView.Columns.Add(reportsToColumn);
}

 The ComboBox is created last in this example — and uses the Managers table in the passed data set as its
data source. This contains Name and EmployeeID columns, and these are assigned to the
 DisplayMember and ValueMember properties, respectively. These properties define where the data is
coming from for the ComboBox .

 The DataPropertyName is set to the column in the main data table that the combo box links to — this
provides the initial value for the column, and if the user chooses another entry from the combo box, this
value is updated.

 The only other thing this example needs to do is handle null values correctly when updating the
database. At present, it will attempt to write the value zero into any row if you choose the (None) item
onscreen. This will cause an exception from SQL Server because this violates the foreign key constraint
on the ReportsTo column. To overcome this, you need to preprocess the data before sending it back to
SQL Server, and set to null the ReportsTo column for any rows where this value was zero.

 Data Binding
 The previous examples have used the DataGrid and DataGridView controls, which form only a small
part of the controls in the .NET runtime that can be used to display data. The process of linking a control
to a data source is called data binding .

 In the Microsoft Foundation Class library, the process of linking data from class variables to a set of
controls was termed Dialog Data Exchange (DDX). The facilities available within .NET for binding data
to controls are substantially easier to use and also more capable. For example, in .NET you can bind
data to most properties of a control, not just the text property. You can also bind data in a similar manner
to ASP.NET controls (see Chapter 37 , “ ASP.NET Pages ”).

 Simple Binding
 A control that supports single binding typically displays only a single value at once, such as a text box or
radio button. The following example shows how to bind a column from a DataTable to a TextBox :

DataSet ds = CreateDataSet();
textBox.DataBindings.Add(“Text”, ds , “Products.ProductName”);

c32.indd 1075c32.indd 1075 2/19/08 5:27:49 PM2/19/08 5:27:49 PM

Part V: Presentation

1076

 After retrieving some data from the Products table and storing it in the returned DataSet with the
 CreateDataSet() method as shown here, the second line binds the Text property of the control
(textBox1) to the Products.ProductName column. Figure 32 - 13 shows the result of this type of data
binding.

Figure 32-13

Figure 32-14

 The text box displays a string from the database. Figure 32 - 14 shows how the SQL Server Management
Studio tool could be used to verify the contents of the Products table to check that it is the right column
and value.

 Having a single text box onscreen with no way to scroll to the next or the previous record and no way to
update the database is not very useful. The following section shows a more realistic example and
introduces the other objects that are necessary for data binding to work.

 Data - Binding Objects
 Figure 32 - 15 shows a class hierarchy for the objects that are used in data binding. This section discusses
the BindingContext , CurrencyManager , and PropertyManager classes of the System.Windows
.Forms namespace and shows how they interact when data is bound to one or more controls on a form.
The shaded objects are those used in binding.

 In the previous example, the DataBindings property of the TextBox control was used to bind a column
from a DataSet to the Text property of the control. The DataBindings property is an instance of the
 ControlBindingsCollection shown in Figure 32 - 15 :

textBox1.DataBindings.Add(“Text”, ds, “Products.ProductName”);

 This line adds a Binding object to the ControlBindingsCollection .

c32.indd 1076c32.indd 1076 2/19/08 5:27:50 PM2/19/08 5:27:50 PM

1077

Chapter 32: Data Binding

 BindingContext
 Each Windows Form has a BindingContext property. Incidentally, Form is derived from Control ,
which is where this property is actually defined, so most controls have this property. A BindingContext
object has a collection of BindingManagerBase instances (see Figure 32 - 16). These instances are created
and added to the binding manager object when a control is data - bound.

 The BindingContext might contain several data sources, wrapped in either a CurrencyManager or a
 PropertyManager . The decision of which class is used is based on the data source itself.

 If the data source contains a list of items, such as a DataTable , DataView , or any object that implements
the IList interface, a CurrencyManager will be used. A CurrencyManager can maintain the current
position within that data source. If the data source returns only a single value, a PropertyManager will
be stored within the BindingContext .

BindingManagerBase

MarshalByRefObject

BaseCollection

BindingCollection

ControlBindingCollection

Object

BindingContext

Binding

CurrencyManager

PropertyManager

Figure 32-15

BindingContext

CurrencyManager

DataSource

CurrencyManager

DataSource

Current Position

Figure 32-16

 A CurrencyManager or PropertyManager is created only once for a given data source. If two text
boxes are bound to a row from a DataTable , only one CurrencyManager will be created within the
binding context.

 Each control added to a form is linked to the form ’ s binding manager, so all controls share the same
instance. When a control is initially created, its BindingContext property is null . When the control is
added to the Controls collection of the form, the BindingContext is set to that of the form.

c32.indd 1077c32.indd 1077 2/19/08 5:27:50 PM2/19/08 5:27:50 PM

Part V: Presentation

1078

 To bind a control to a form, an entry needs to be added to its DataBindings property, which is an
instance of ControlBindingsCollection . The following code creates a new binding:

textBox.DataBindings.Add(“Text”, ds, “Products.ProductName”);

 Internally, the Add() method of ControlBindingsCollection creates a new instance of a Binding
object from the parameters passed to this method and adds this to the bindings collection represented in
Figure 32 - 17 .

 Figure 32 - 17 illustrates roughly what is going on when a Binding object is added to a Control . The
binding links the control to a data source, which is maintained within the BindingContext of the Form
(or control itself). Changes within the data source are reflected into the control, as are changes in the
control.

 Binding
 This class links a property of the control to a member of the data source. When that member changes, the
control ’ s property is updated to reflect this change. The opposite is also true — if the text in the text box
is updated, this change is reflected in the data source.

 Bindings can be set up from any column to any property of the control. For example, you can bind not
only the text of a text box but also the color of that text box. It is possible to bind properties of a control
to completely different data sources; for example, the color of the cell might be defined in a colors table,
and the actual data might be defined in another table.

 CurrencyManager and PropertyManager
 When a Binding object is created, a corresponding CurrencyManager or PropertyManager object is
also created, provided that this is the first time that data from the given source has been bound. The
purpose of this class is to define the position of the current record within the data source and to

Control

DataBindingCollection

Binding
 Property
 DataSource
 DataMember

Binding
 Property
 DataSource
 DataMember

BindingContext

CurrencyManager

DataSource

Figure 32-17

c32.indd 1078c32.indd 1078 2/19/08 5:27:50 PM2/19/08 5:27:50 PM

1079

Chapter 32: Data Binding

coordinate all list bindings when the current record is changed. Figure 32 - 18 displays two fields from the
 Products table and includes a way to move between records by means of a TrackBar control.

 The following example shows the main ScrollingDataBinding code:

namespace ScrollingDataBinding
{
 partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private DataSet CreateDataSet()
 {
 string customers = “SELECT * FROM Products”;
 DataSet ds = new DataSet();

 using (SqlConnection con = new SqlConnection (
 ConfigurationSettings.
 ConnectionStrings[“northwind”].ConnectionString))
 {
 SqlDataAdapter da = new SqlDataAdapter(customers, con);

 da.Fill(ds, “Products”);
 }

 return ds;
 }

 private void trackBar_Scroll(object sender, EventArgs e)
 {
 this.BindingContext[ds, “Products”].Position = trackBar.Value;
 }

 private void retrieveButton_Click(object sender, EventArgs e)
 {

Figure 32-18

(continued)

c32.indd 1079c32.indd 1079 2/19/08 5:27:51 PM2/19/08 5:27:51 PM

Part V: Presentation

1080

 retrieveButton.Enabled = false;

 ds = CreateDataSet();

 textName.DataBindings.Add(“Text”, ds, “Products.ProductName”);
 textQuan.DataBindings.Add(“Text”, ds, “Products.QuantityPerUnit”);

 trackBar.Minimum = 0;
 trackBar.Maximum = this.BindingContext[ds, “Products”].Count - 1;

 textName.Enabled = true;
 textQuan.Enabled = true;
 trackBar.Enabled = true;

 }

 private DataSet ds;
 }
}

 The scrolling mechanism is provided by the trackBar_Scroll event handler, which sets the position
of the BindingContext to the current position of the track bar thumb. Altering the binding context here
updates the data displayed on the screen.

 Data is bound to the two text boxes in the retrieveButton_Click event by adding a data binding
expression. Here the Text properties of the controls are set to fields from the data source. It is possible to
bind any simple property of a control to an item from the data source; for example, you could bind the
text color, enabled, or other properties as appropriate.

 When the data is originally retrieved, the maximum position on the track bar is set to be the number of
records. Then, in the scroll method, the position of the BindingContext for the products DataTable is
set to the position of the scroll bar thumb. This changes the current record from the DataTable , so all
controls bound to the current row (in this example, the two text boxes) are updated.

 Now that you know how to bind to various data sources, such as arrays, data tables, data views, and
various other containers of data, and how to sort and filter that data, the next section discusses how
Visual Studio has been extended to permit data access to be better integrated with the application.

 Visual Studio . NET and Data Access
 This section discusses some of the ways that Visual Studio allows data to be integrated into the GUI,
including how to create a connection, select some data, generate a DataSet , and use all of the generated
objects to produce a simple application. The available tools enable you to create a database connection
with the OleDbConnection or SqlConnection classes. The class you use depends on the type of
database you are using. After a connection has been defined, you can create a DataSet and populate it
from within Visual Studio .NET. This generates an XSD file for the DataSet and the .cs code. The result
is a type - safe DataSet .

 Creating a Connection
 First, create a new Windows application, and then create a new database connection. Using the Server
Explorer (see Figure 32 - 19), you can manage various aspects of data access.

(continued)

c32.indd 1080c32.indd 1080 2/19/08 5:27:51 PM2/19/08 5:27:51 PM

1081

Chapter 32: Data Binding

 Depending on your .NET Framework installation, the sample databases might be located in SQL Server,
MSDE (Microsoft SQL Server Data Engine), or both.

 To connect to the local MSDE database, if it exists, type (local)\\sqlexpress for the name of the server. To
connect to a regular SQL Server instance, type (local) or ‘ . ’ to select a database on the current machine, or
the name of the desired server on the network. You may need to enter a user name and password to
access the database.

 Select the Northwind database from the drop - down list of databases, and to ensure that everything is set
up correctly, click the Test Connection button. If everything is set up properly, you should see a message
box with a confirmation message.

 For this example, create a connection to the Northwind database. Select the Add Connection option from
the context menu available on the Data Connections item to launch a wizard that enables you to choose a
database provider. Select the .NET Framework Provider for SQL Server. Figure 32 - 20 shows the Add
Connection dialog box.

Figure 32-19

Figure 32-20

c32.indd 1081c32.indd 1081 2/19/08 5:27:51 PM2/19/08 5:27:51 PM

Part V: Presentation

1082

 Visual Studio 2005 had numerous changes when accessing data, and these are available from several
places in the user interface. The Data menu is a good choice because it permits you to view any data
sources already added to the project, add a new data source, and preview data from the underlying
database (or other data source).

 The following example uses the Northwind database connection to generate a user interface for selecting
data from the Employees table. The first step is to choose Add New Data Source from the Data menu, which
begins a wizard that walks you through the process. The dialog shown in Figure 32 - 21 shows part of the
Data Source Configuration Wizard, in this case where you can select appropriate tables for the data source.

 As you progress through the wizard, you can choose the data source, which can be a database, local
database file (such as an .mdb file), a Web service, or an object. You will then be prompted for further
information based on the type of data source you choose. For a database connection, this includes the
name of the connection (which is subsequently stored in the application configuration file shown in
the following code), and you can then select the table, view, or stored procedure that supplies the data.
Ultimately, this generates a strongly typed DataSet within your application.

 < ?xml version=”1.0” encoding=”utf-8”? >
 < configuration >
 < connectionStrings >
 < add name=”SimpleApp.Properties.Settings.NorthwindConnection”
 connectionString=”Data Source=.;Integrated Security=True;Initial
Catalog=Northwind”
 providerName=”System.Data.SqlClient” / >
 < /connectionStrings >
 < /configuration >

Figure 32-21

 This includes the name of the connection, the connection string itself, and a provider name, which is
used when generating the connection object. You can manually edit this information as necessary. To

c32.indd 1082c32.indd 1082 2/19/08 5:27:52 PM2/19/08 5:27:52 PM

1083

Chapter 32: Data Binding

display a user interface for the employee data, you can simply drag the chosen data from the Data
Sources window onto your form. This will generate one of two styles of user interface for you — a grid -
 style UI that utilizes the DataGridView control described earlier or a details view that presents just the
data for a single record at a time. Figure 32 - 22 shows the details view.

 Dragging the data source onto the form generates a number of objects, both visual and nonvisual. The
nonvisual objects are created within the tray area of the form and comprise a DataConnector , a strongly
typed DataSet , and a TableAdapter , which contains the SQL used to select/update the data. The visual
objects created depend on whether you have chosen the DataGridView or the details view. Both include
a DataNavigator control that can be used to page through the data. Figure 32 - 23 shows the user interface
generated using the DataGridView control — one of the goals of Visual Studio 2005 was to simplify data
access to the point where you could generate functional forms without writing a single line of code.

Figure 32-22

Figure 32-23

c32.indd 1083c32.indd 1083 2/19/08 5:27:52 PM2/19/08 5:27:52 PM

Part V: Presentation

1084

 When the data source is created, it adds a number of files to your solution. To view these, click the Show
All Files button in the Solution Explorer. You will then be able to expand the data set node and view the
extra files added. The main one of interest is the .Designer.cs file, which includes the C# source code
used to populate the data set.

 You will find several classes defined within the .Designer.cs file. The classes represent the strongly
typed data set, which acts in a similar way to the standard DataAdapter class. This class internally uses
the DataAdapter to fill the DataSet .

 Selecting Data
 The table adapter generated contains commands for SELECT , INSERT , UPDATE , and DELETE . Needless to
say, these can (and probably should) be tailored to call stored procedures rather than using straight SQL.
The wizard - generated code will do for now, however. Visual Studio .NET adds the following code to the
 .Designer file:

private System.Data.SqlClient.SqlCommand m_DeleteCommand;
private System.Data.SqlClient.SqlCommand m_InsertCommand;
private System.Data.SqlClient.SqlCommand m_UpdateCommand;
private System.Data.SqlClient.SqlDataAdapter m_adapter;

 An object is defined for each of the SQL commands, with the exception of the Select command, and
also a SqlDataAdapter . Further down the file, in the InitializeComponent() method, the wizard
has generated code to create each one of these commands as well as the data adapter.

 In previous versions of Visual Studio .NET, the commands generated for Insert and Update also
included a select clause — this was used as a way to resynchronize the data with that on the server,
just in case any fields within the database were calculated (such as identity columns and/or computed
fields).

 The wizard - generated code works but is less than optimal. For a production system, all the generated SQL
should probably be replaced with calls to stored procedures. If the INSERT or UPDATE clauses didn ’ t have
to resynchronize the data, the removal of the redundant SQL clause would speed up the application a
little.

 Updating the Data Source
 So far, the applications have selected data from the database. This section discusses how to persist
changes to the database. If you followed the steps in the previous section, you should have an
application that contains everything needed for a rudimentary application. The one change necessary is
to enable the Save button on the generated toolbar and write an event handler that will update the
database.

 From the IDE, select the Save button from the data navigator control, and change the Enabled property
to true . Then, double - click the button to generate an event handler. Within this handler, save the
changes made onscreen to the database:

private void dataNavigatorSaveItem_Click(object sender, EventArgs e)
{
 employeesTableAdapter.Update(employeesDataset.Employees);
}

 Because Visual Studio has done the hard work for you, all that ’ s needed is to use the Update method of
the table adapter class that was generated. Six Update methods are available on the table adapter — this
example uses the override that takes a DataTable as the parameter.

c32.indd 1084c32.indd 1084 2/19/08 5:27:52 PM2/19/08 5:27:52 PM

1085

Chapter 32: Data Binding

 Other Common Requirements
 A common requirement when displaying data is to provide a pop - up menu for a given row. You can do
this in numerous ways. The example in this section focuses on one approach that can simplify the code
required, especially if the display context is a DataGrid , where a DataSet with some relations is
displayed. The problem here is that the context menu depends on the row that is selected, and that row
could be part of any source DataTable in the DataSet .

 Because the context menu functionality is likely to be general - purpose in nature, the implementation
here uses a base class (ContextDataRow) that supports the menu - building code, and each data row class
that supports a pop - up menu derives from this base class.

 When the user right - clicks any part of a row in the DataGrid , the row is looked up to check if it derives
from ContextDataRow , and if so, PopupMenu() can be called. This could be implemented using an
interface; however, in this instance, a base class provides a simpler solution.

 This example demonstrates how to generate DataRow and DataTable classes that can be used to
provide type - safe access to data in much the same way as the previous XSD sample. However, this time
you write the code yourself to show how to use custom attributes and reflection in this context.

 Figure 32 - 24 illustrates the class hierarchy for this example.

Figure 32-24

 Here is the code for this example:

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;
using System.Reflection;

public class ContextDataRow : DataRow
{
 public ContextDataRow(DataRowBuilder builder) : base(builder)
 {
 }

(continued)

c32.indd 1085c32.indd 1085 2/19/08 5:27:53 PM2/19/08 5:27:53 PM

Part V: Presentation

1086

 public void PopupMenu(System.Windows.Forms.Control parent, int x, int y)
 {

 // Use reflection to get the list of popup menu commands.
 MemberInfo[] members = this.GetType().FindMembers (MemberTypes.Method,
 BindingFlags.Public | BindingFlags.Instance ,
 new System.Reflection.MemberFilter(Filter),
 null);
 if (members.Length > 0)
 {

 // Create a context menu

 ContextMenu menu = new ContextMenu();

 // Now loop through those members and generate the popup menu.
 // Note the cast to MethodInfo in the foreach
 foreach (MethodInfo meth in members)
 {

 // Get the caption for the operation from the
 // ContextMenuAttribute

 ContextMenuAttribute[] ctx = (ContextMenuAttribute[])
 meth.GetCustomAttributes(typeof(ContextMenuAttribute), true);
 MenuCommand callback = new MenuCommand(this, meth);
 MenuItem item = new MenuItem(ctx[0].Caption, new
 EventHandler(callback.Execute));
 item.DefaultItem = ctx[0].Default;
 menu.MenuItems.Add(item);
 }
 System.Drawing.Point pt = new System.Drawing.Point(x,y);
 menu.Show(parent, pt);
 }
 }

 private bool Filter(MemberInfo member, object criteria)
 {
 bool bInclude = false;

 // Cast MemberInfo to MethodInfo

 MethodInfo meth = member as MethodInfo;
 if (meth != null)
 {
 if (meth.ReturnType == typeof(void))
 {
 ParameterInfo[] parms = meth.GetParameters();
 if (parms.Length == 0)
 {

 // Lastly check if there is a ContextMenuAttribute on the

(continued)

c32.indd 1086c32.indd 1086 2/19/08 5:27:53 PM2/19/08 5:27:53 PM

1087

Chapter 32: Data Binding

 // method...

 object[] atts = meth.GetCustomAttributes
 (typeof(ContextMenuAttribute), true);
 bInclude = (atts.Length == 1);
 }
 }
 }
 return bInclude;
 }
}

 The ContextDataRow class is derived from DataRow and contains just two member functions:
 PopupMenu and Filter() . PopupMenu uses reflection to look for methods that correspond to a
particular signature, and it displays a pop - up menu of these options to the user. Filter() is used as a
delegate by PopupMenu when enumerating methods. It simply returns true if the member function does
correspond to the appropriate calling convention:

 MemberInfo[] members = this.GetType().FindMembers(MemberTypes.Method,
 BindingFlags.Public | BindingFlags.Instance,
 new System.Reflection.MemberFilter(Filter),
 null);

 This single statement is used to filter all methods on the current object and return only those that match
the following criteria:

 The member must be a method.

 The member must be a public instance method.

 The member must return void .

 The member must accept zero parameters.

 The member must include the ContextMenuAttribute .

 The last of these criteria refers to a custom attribute, written specifically for this example. (It ’ s discussed
after discussing the PopupMenu method.)

ContextMenu menu = new ContextMenu();
foreach (MethodInfo meth in members)
{
 // ... Add the menu item
}
System.Drawing.Point pt = new System.Drawing.Point(x,y);
menu.Show(parent, pt);

 A context menu instance is created, and a pop - up menu item is added for each method that matches the
preceding criteria. The menu is subsequently displayed as shown in Figure 32 - 25 .

 The main area of difficulty with this example is the following section of code, repeated once for each
member function to be displayed on the pop - up menu:

System.Type ctxtype = typeof(ContextMenuAttribute);
ContextMenuAttribute[] ctx = (ContextMenuAttribute[])
 meth.GetCustomAttributes(ctxtype, true);
MenuCommand callback = new MenuCommand(this, meth);
MenuItem item = new MenuItem(ctx[0].Caption,
 new EventHandler(callback.Execute));
item.DefaultItem = ctx[0].Default;
menu.MenuItems.Add(item);

❑

❑

❑

❑

❑

c32.indd 1087c32.indd 1087 2/19/08 5:27:53 PM2/19/08 5:27:53 PM

Part V: Presentation

1088

 Each method that should be displayed on the context menu is attributed with the ContextMenuAttribute .
This defines a user - friendly name for the menu option because a C# method name cannot include spaces,
and it ’ s wise to use real English on pop - up menus rather than some internal code. The attribute is retrieved
from the method, and a new menu item is created and added to the menu items collection of the
pop - up menu.

 This sample code also shows the use of a simplified Command class (a common design pattern).
The MenuCommand class used in this instance is triggered by the user choosing an item on the context
menu, and it forwards the call to the receiver of the method — in this case, the object and method that
was attributed. This also helps keep the code in the receiver object more isolated from the user interface
code. This code is explained in the following sections.

 Manufactured Tables and Rows
 The XSD example earlier in the chapter showed the code produced when the Visual Studio .NET editor
is used to generate a set of data access classes. The following class shows the required methods for a
 DataTable , which are fairly minimal (and they all have been generated manually):

public class CustomerTable : DataTable
{
 public CustomerTable() : base(“Customers”)
 {
 this.Columns.Add(“CustomerID”, typeof(string));
 this.Columns.Add(“CompanyName”, typeof(string));
 this.Columns.Add(“ContactName”, typeof(string));
 }
 protected override System.Type GetRowType()
 {
 return typeof(CustomerRow);
 }
 protected override DataRow NewRowFromBuilder(DataRowBuilder builder)
 {
 return(DataRow) new CustomerRow(builder);
 }
}

 The first prerequisite of a DataTable is to override the GetRowType() method. This is used by the .NET
internals when generating new rows for the table. The type used to represent each row should be
returned from this method.

Figure 32-25

c32.indd 1088c32.indd 1088 2/19/08 5:27:54 PM2/19/08 5:27:54 PM

1089

Chapter 32: Data Binding

 The next prerequisite is to implement NewRowFromBuilder() , which is called by the runtime when
creating new rows for the table. That ’ s enough for a minimal implementation. The corresponding
 CustomerRow class is fairly simple. It implements properties for each of the columns within the row and
then implements the methods that ultimately are displayed on the context menu:

public class CustomerRow : ContextDataRow
{
 public CustomerRow(DataRowBuilder builder) : base(builder)
 {
 }
 public string CustomerID
 {
 get { return (string)this[“CustomerID”];}
 set { this[“CustomerID”] = value;}
 }

 // Other properties omitted for clarity

 [ContextMenu(“Blacklist Customer”)]
 public void Blacklist()
 {
 // Do something
 }
 [ContextMenu(“Get Contact”,Default=true)]
 public void GetContact()
 {
 // Do something else
 }
}

 The class simply derives from ContextDataRow , including the appropriate getter/setter methods on
properties that are named the same as each field, and then a set of methods may be added that are used
when reflecting on the class:

 [ContextMenu(“Blacklist Customer”)]
 public void Blacklist()
 {

 // Do something
 }

Each method that is to be displayed on the context menu has the same signature and includes the custom
ContextMenu attribute.

 Using an Attribute
 The idea behind writing the ContextMenu attribute is to be able to supply a free text name for a given
menu option. The following example also adds a Default flag, which is used to indicate the default
menu choice. The entire attribute class is presented here:

 [AttributeUsage(AttributeTargets.Method,AllowMultiple=false,Inherited=true)]
public class ContextMenuAttribute : System.Attribute
{
 public ContextMenuAttribute(string caption)
 {
 Caption = caption;

(continued)

c32.indd 1089c32.indd 1089 2/19/08 5:27:54 PM2/19/08 5:27:54 PM

Part V: Presentation

1090

 Default = false;
 }
 public readonly string Caption;
}

 The AttributeUsage attribute on the class marks ContextMenuAttribute as being usable on only
a method, and it also defines that there can only be one instance of this object on any given method.
The Inherited=true clause defines whether the attribute can be placed on a superclass method and
still reflected on by a subclass.

 A number of other members could be added to this attribute, including the following:

 A hotkey for the menu option

 An image to be displayed

 Some text to be displayed in the toolbar as the mouse pointer rolls over the menu option

 A help context ID

 Dispatching Methods
 When a menu is displayed in .NET, each menu option is linked to the processing code for that option by
means of a delegate. In implementing the mechanism for connecting menu choices to code, you have
two options:

 Implement a method with the same signature as the System.EventHandler . This is defined as
shown in this snippet:

public delegate void EventHandler(object sender, EventArgs e);

 Define a proxy class, which implements the preceding delegate and forwards calls to the
received class. This is known as the Command pattern and is what has been chosen for this
example.

 The Command pattern separates the sender and the receiver of the call by means of a simple
intermediate class. This may be overkill for such an example, but it makes the methods on each DataRow
simpler (because they don ’ t need the parameters passed to the delegate), and it is more extensible:

public class MenuCommand
{
 public MenuCommand(object receiver, MethodInfo method)
 {
 Receiver = receiver;
 Method = method;
 }
 public void Execute(object sender, EventArgs e)
 {
 Method.Invoke(Receiver, new object[] {});
 }
 public readonly object Receiver;
 public readonly MethodInfo Method;
}

 The class simply provides an EventHandler delegate (the Execute method), which invokes the desired
method on the receiver object. This example handles two different types of row: rows from the
 Customers table and rows from the Orders table. Naturally, the processing options for each of these
types of data are likely to differ. Figure 32 - 25 showed the operations available for a Customer row,
whereas Figure 32 - 26 shows the options available for an Order row.

❑

❑

❑

❑

❑

❑

(continued)

c32.indd 1090c32.indd 1090 2/19/08 5:27:54 PM2/19/08 5:27:54 PM

1091

Chapter 32: Data Binding

 Getting the Selected Row
 The last piece of the puzzle for this example is how to work out which row within the DataSet the user
has selected. You might think that it must be a property on the DataGrid . However, this control is not
available in this context. The hit test information obtained from within the MouseUp() event handler
might also be a likely candidate to look at, but that only helps if the data displayed is from a single
 DataTable .

 Remember how the grid is filled:

dataGrid.SetDataBinding(ds,”Customers”);

 This method adds a new CurrencyManager to the BindingContext , which represents the current
 DataTable and the DataSet . Now, the DataGrid has two properties, DataSource and DataMember ,
which are set when the SetDataBinding() is called. DataSource in this instance refers to a DataSet
and the DataMember property refers to Customers .

 Given the data source, a data member, and the binding context of the form, the current row can be
located with the following code:

 protected void dataGrid_MouseUp(object sender, MouseEventArgs e)
 {
 // Perform a hit test
 if(e.Button == MouseButtons.Right)
 {
 // Find which row the user clicked on, if any
 DataGrid.HitTestInfo hti = dataGrid.HitTest(e.X, e.Y);

 // Check if the user hit a cell
 if(hti.Type == DataGrid.HitTestType.Cell)
 {
 // Find the DataRow that corresponds to the cell
 //the user has clicked upon

 After calling dataGrid.HitTest() to calculate where the user has clicked the mouse, the
 BindingManagerBase instance for the data grid is retrieved:

 BindingManagerBase bmb = this.BindingContext[dataGrid.DataSource,
 dataGrid.DataMember];

Figure 32-26

c32.indd 1091c32.indd 1091 2/19/08 5:27:55 PM2/19/08 5:27:55 PM

Part V: Presentation

1092

 This uses the DataGrid ’ s DataSource and DataMember to name the object to be returned. All that is left
now is to find the row the user clicked and display the context menu. With a right - click on a row, the
current row indicator doesn ’ t normally move, but that ’ s not good enough. The row indicator should be
moved and then the pop - up menu should be displayed. The HitTestInfo object includes the row
number, so the BindingManagerBase object ’ s current position can be changed as follows:

 bmb.Position = hti.Row;

 This changes the cell indicator, and at the same time means that when a call is made into the class to get
the Row , the current row is returned, not the previous one selected:

 DataRowView drv = bmb.Current as DataRowView;
 if(drv != null)
 {
 ContextDataRow ctx = drv.Row as ContextDataRow;
 if(ctx != null) ctx.PopupMenu(dataGrid,e.X,e.Y);
 }
 }
 }
 }

 Because the DataGrid is displaying items from a DataSet , the Current object within the
 BindingManagerBase collection is a DataRowView , which is tested by an explicit cast in the previous
code. If this succeeds, the actual row that the DataRowView wraps can be retrieved by performing
another cast to check if it is indeed a ContextDataRow , and finally pop up a menu.

 In this example, you will notice that two data tables, Customers and Orders , have been created, and a
relationship has been defined between these tables, so that when users click CustomerOrders they see a
filtered list of orders. When the user clicks, the DataGrid changes the DataMember from Customers to
 Customers.CustomerOrders , which just so happens to be the correct object that the BindingContext
indexer uses to retrieve the data being shown.

 Summary
 This chapter introduced some of the methods of displaying data under .NET. System.Windows.Forms
includes a large number of classes to be explored, and this chapter used the DataGridView and
 DataGrid controls to display data from many different data sources, such as an Array , DataTable ,
or DataSet .

 Because it is not always appropriate to display data in a grid, this chapter also discussed how to link a
column of data to a single control in the user interface. The binding capabilities of .NET make this type
of user interface very easy to support because it ’ s generally just a case of binding a control to a column
and letting .NET do the rest of the work.

 Moving on, the next chapter covers presentation in the form of Graphics with GDI+.

c32.indd 1092c32.indd 1092 2/19/08 5:27:55 PM2/19/08 5:27:55 PM

 Graphics with GDI+

 This is the third of the eight chapters that deal with user interaction and the .NET Framework.
Chapter 31 , “ Windows Forms, ” focused on how to display a dialog box or SDI or MDI window,
and how to place various controls such as buttons, text boxes, and list boxes. Chapter 32 , “ Data
Binding, ” looked at how to work with data in Windows Forms using a number of the Windows
Forms controls that work with the disparate data sources that you might encounter.

 Although these standard controls are powerful and, by themselves, quite adequate for the
complete user interface for many applications, some situations require more flexibility. For
example, you might want to draw text in a given font in a precise position in a window, or display
images without using a picture box control, or draw simple shapes or other graphics. None
of this can be done with the controls discussed in Chapter 31 . To display that kind of output, the
application must instruct the operating system what to display and where in its window to
display it.

 Therefore, this chapter shows you how to draw a variety of items including:

 Principles of drawing

 Lines and simple shapes

 BMP images and other image files

 Text

 Dealing with printing

 In the process, you will need to use a variety of helper objects, including pens (to define the
characteristics of lines), brushes (to define how areas are filled in), and fonts (to define the shape
of the characters of text). This chapter also goes into some detail on how devices interpret and
display different colors.

 The chapter starts, however, by discussing a technology called GDI+ . GDI+ consists of the set of
.NET base classes that are available to control custom drawing on the screen. These classes arrange
for the appropriate instructions to be sent to graphics device drivers to ensure the correct output is
placed on the screen (or printed to a hard copy).

❑

❑

❑

❑

❑

c33.indd 1093c33.indd 1093 2/19/08 5:28:09 PM2/19/08 5:28:09 PM

1094

Part V: Presentation

 Understanding Drawing Principles
 This section examines the basic principles that you need to understand to start drawing to the
screen. It starts by giving an overview of GDI and the underlying technology on which GDI+ is
based. It also shows how GDI and GDI+ are related. Then, we will move on to a couple of simple
examples.

 GDI and GDI+
 In general, one of the strengths of Windows — and indeed of modern operating systems in general —
 lies in its ability to abstract the details of particular devices without input from the developer.
For example, you do not need to understand anything about your hard drive device driver to
programmatically read and write files to and from disk. You simply call the appropriate methods in the
relevant .NET classes (or in pre - .NET days, the equivalent Windows API functions). This principle is also
true when it comes to drawing. When the computer draws anything to the screen, it does so by sending
instructions to the video card. However, many hundreds of different video cards are on the market, most
of which have different instruction sets and capabilities. If you had to take that into account and write
specific code for each video driver, writing any such application would be an almost impossible task.
The Windows graphical device interface (GDI) has been around since the earliest versions of Windows
because of these reasons.

 GDI provides a layer of abstraction, hiding the differences between the different video cards. You simply
call the Windows API function to do the specific task, and internally the GDI figures out how to get the
client ’ s particular video card to do whatever it is you want when the client runs your particular piece
of code. Not only does GDI accomplish this, but if the client has several display devices — for example,
monitors and printers — GDI achieves the remarkable feat of making the printer look the same as the
screen, as far as the application is concerned. If the client wants to print something instead of displaying
it, your application will simply inform the system that the output device is the printer, and then call the
same API functions in exactly the same way.

 As you can see, the device - context (DC) object (covered shortly) is a very powerful object, and you won ’ t
be surprised to learn that under GDI all drawing had to be done through a device context. The DC was
even used for operations that do not involve drawing to the screen or to any hardware device, such as
modifying images in memory.

 Although GDI exposes a relatively high - level API to developers, it is still an API that is based on the old
Windows API, with C - style functions. GDI+, to a large extent, sits as a layer between GDI and your
application, providing a more intuitive, inheritance - based object model. Although GDI+ is basically a
wrapper around GDI, Microsoft has been able, through GDI+, to provide new features and performance
improvements to some of the older features of GDI as well.

 The GDI+ part of the .NET base class library is huge, and this chapter barely scratches the surface of its
features because trying to cover more than a tiny fraction of the library would have turned this chapter
into a huge reference guide that simply listed classes and methods. It is more important to understand
the fundamental principles involved in drawing so that you are in a good position to explore the
available classes. Full lists of all the classes and methods available in GDI+ are, of course, available in the
SDK documentation.

 Visual Basic 6 developers are likely to find the concepts involved in drawing quite unfamiliar because
Visual Basic 6 focuses on controls that handle their own painting. C++/MFC developers are likely to be
in more familiar territory because MFC does require developers to take control of more of the drawing
process, using GDI. However, even if you have a strong background in the classic GDI, you will find
that a lot of the material presented in this chapter is new.

c33.indd 1094c33.indd 1094 2/19/08 5:28:10 PM2/19/08 5:28:10 PM

Chapter 33: Graphics with GDI+

1095

 GDI+ Namespaces
 The following table provides an overview of the main namespaces you will need to explore to find the
GDI+ base classes.

 You should note that almost all of the classes and structs used in this chapter are taken from the System
.Drawing namespace.

Namespace Description

System.Drawing Contains most of the classes, structs, enums, and delegates
concerned with the basic functionality of drawing

System.Drawing.Drawing2D Provides most of the support for advanced 2D and vector
drawing, including anti-aliasing, geometric transformations,
and graphics paths

System.Drawing.Imaging Contains various classes that assist in the manipulation of
images (bitmaps, GIF files, and so on)

System.Drawing.Printing Contains classes to assist when specifically targeting a printer
or print preview window as the “output device”

System.Drawing.Design Contains some predefined dialog boxes, property sheets, and
other user interface elements concerned with extending the
design-time user interface

System.Drawing.Text Contains classes to perform more advanced manipulation of
fonts and font families

 Device Contexts and the Graphics Object
 In GDI, you identify which device you want your output to go to through an object known as the
 device context (DC). The DC stores information about a particular device and is able to translate
calls to the GDI API functions into whatever instructions need to be sent to that device. You can
also query the device context to find out what the capabilities of the corresponding device are (for
example, whether a printer prints in color or only in black and white), so the output can be adjusted
accordingly. If you ask the device to do something it is not capable of, the DC will normally detect
this and take appropriate action (which, depending on the situation, might mean throwing an
exception or modifying the request to get the closest match that the device is actually capable
of using).

 However, the DC does not deal only with the hardware device. It acts as a bridge to Windows and is able
to take account of any requirements or restrictions placed on the drawing by Windows. For example, if
Windows knows that only a portion of your application ’ s window needs to be redrawn, the DC can trap
and nullify attempts to draw outside that area. Because of the DC ’ s relationship with Windows, working
through the device context can simplify your code in other ways.

c33.indd 1095c33.indd 1095 2/19/08 5:28:10 PM2/19/08 5:28:10 PM

1096

Part V: Presentation

 For example, hardware devices need to be told where to draw objects, and they usually want coordinates
relative to the top - left corner of the screen (or output device). Usually, however, your application will be
thinking of drawing something at a certain position within the client area (the area reserved for drawing)
of its own window, possibly using its own coordinate system. Because the window might be positioned
anywhere on the screen, and a user might move it at any time, translating between the two coordinate
systems is potentially a difficult task. However, the DC always knows where your window is and is able
to perform this translation automatically.

 With GDI+, the device context is wrapped up in the .NET base class System.Drawing.Graphics . Most
drawing is done by calling methods on an instance of Graphics . In fact, because the Graphics class is
the class that is responsible for handling most drawing operations, very little gets done in GDI+ that
does not involve a Graphics instance somewhere, so understanding how to manipulate this object is the
key to understanding how to draw to display devices with GDI+.

 Drawing Shapes
 This section starts with a short example, DisplayAtStartup , to illustrate drawing to an application ’ s
main window. The examples in this chapter are all created in Visual Studio 2008 as C# Windows
Applications. Recall that for this type of project the code wizard gives you a class called Form1 , derived
from System.Windows.Form , which represents the application ’ s main window. Also generated for you
is a class called Program (found in the Program.cs file), which represents the application ’ s main
starting point. Unless otherwise stated, in all code samples, new or modified code means code that you
have added to the wizard - generated code. (You can download the sample code from the Wrox Web site
at www.wrox.com .)

 In .NET usage, when we are talking about applications that display various controls, the terminology
 “ form ” has largely replaced “ window ” to represent the rectangular object that occupies an area of the
screen on behalf of an application. In this chapter, we have tended to stick to the term window because in
the context of manually drawing items it is more meaningful. We will also talk about the form when we
are referring to the .NET class used to instantiate the form/window. Finally, we will use the terms
 “ drawing ” and “ painting ” interchangeably to describe the process of displaying some item on the screen
or other display device.

 The first example simply creates a form and draws to it in the constructor when the form starts up. Note
that this is not actually the best or the correct way to draw to the screen — you will quickly find that this
example has a problem because it is unable to redraw anything after starting up. However, this example
illustrates quite a few points about drawing without your having to do very much work.

 For this example, start Visual Studio 2008 and create a Windows Application. First, set the background
color of the form to white. In the example, this line comes after the InitializeComponent() method
so that Visual Studio 2008 recognizes the line and is able to alter the design view appearance of the form.
You can find the InitializeComponent() method by first clicking the Show All Files button in the
Visual Studio Solution Explorer and then clicking the plus sign next to the Form1.cs file. Here, you will
find the Form1.Designer.cs file. It is in this file that you will find the InitializeComponent()
method. You could have used the design view to set the background color, but this would have resulted
in pretty much the same line being added automatically:

 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.Text = “Form1”;
 this.BackColor = System.Drawing.Color.White;
 }

c33.indd 1096c33.indd 1096 2/19/08 5:28:10 PM2/19/08 5:28:10 PM

Chapter 33: Graphics with GDI+

1097

 Then you add code to the Form1 constructor. You create a Graphics object using the form ’ s
 CreateGraphics() method. This Graphics object contains the Windows DC that you need
to draw with. The device context created is associated with the display device and also with this
window:

 public Form1()
 {
 InitializeComponent();
 Graphics dc = CreateGraphics();
 Show();
 Pen bluePen = new Pen(Color.Blue, 3);
 dc.DrawRectangle(bluePen, 0,0,50,50);
 Pen redPen = new Pen(Color.Red, 2);
 dc.DrawEllipse(redPen, 0, 50, 80, 60);
 }

 As you can see, you then call the Show() method to display the window. This is really done to force the
window to display immediately because you cannot actually do any drawing until the window has been
displayed. If the window is not displayed, there ’ s nothing for you to draw onto.

 Finally, you display a rectangle at coordinates (0,0) and with width and height 50, and an ellipse with
coordinates (0,50) and with width 80 and height 50. Note that coordinates (x,y) translate to x pixels to the
right and y pixels down from the top - left corner of the client area of the window — and these
coordinates start from the top - left corner of the shape to be displayed.

 The overloads that you are using of the DrawRectangle() and DrawEllipse() methods each take five
parameters. The first parameter of each is an instance of the class System.Drawing.Pen . A Pen is one of
a number of supporting objects to help with drawing — it contains information about how lines are to be
drawn. Your first pen instructs the system that lines should be the color blue with a width of 3 pixels; the
second pen instructs the system that the lines should be red and have a width of 2 pixels. The final four
parameters are coordinates and size. For the rectangle, they represent the (x,y) coordinates of the top - left
corner of the rectangle in addition to its width and height. For the ellipse, these numbers represent the
same thing, except that you are talking about a hypothetical rectangle that the ellipse just fits into, rather
than the ellipse itself. Figure 33 - 1 shows the result of running this code. Of course, because this book is
not in color, you cannot see the colors.

 Figure 33 - 1

c33.indd 1097c33.indd 1097 2/19/08 5:28:11 PM2/19/08 5:28:11 PM

1098

Part V: Presentation

 Figure 33 - 1 demonstrates a couple of points. First, you can see clearly where the client area of the
window is located. It ’ s the white area — the area that has been affected by setting the BackColor
property. Notice that the rectangle nestles up in the corner of this area, as you would expect when you
specify the coordinates of (0,0) for it. Second, notice that the top of the ellipse overlaps the rectangle
slightly, which you would not expect from the coordinates given in the code. The culprit here is
Windows itself and where it places the lines that border the rectangle and ellipse. By default, Windows
will try to center the line on the border of the shape — that is not always possible to do exactly because
the line has to be drawn on pixels (obviously). Normally, the border of each shape theoretically lies
between two pixels. The result is that lines that are 1 pixel thick will get drawn just inside the top
and left sides of a shape, but just outside the bottom and right sides — which means that shapes
that are next to each other have their borders overlapping by one pixel. You have specified wider lines;
therefore, the overlap is greater. It is possible to change the default behavior by setting the Pen.
Alignment property, as detailed in the SDK documentation, but for these purposes, the default behavior
is adequate.

 Unfortunately, if you actually run the sample, you will notice that the form behaves a bit strangely.
It is fine if you just leave it there. It is also fine if you drag it around the screen with the mouse.
However, if you try minimizing the window and then restoring it, then your carefully drawn shapes
just vanish! The same thing happens if you drag another window across the sample so that it only
obscures a portion of your shapes. When you drag the other window away again, you will find
that the temporarily obscured portion has disappeared and you are left with half an ellipse or half a
rectangle!

 So what ’ s going on? The problem arises when part of a window is hidden because Windows usually
discards immediately all the information concerning exactly what has been displayed. This is something
Windows has to do or else the memory usage for storing screen data would be astronomical. A typical
computer might be running with the video card set to display 1024 × 768 pixels, perhaps in a 24 - bit color
mode, which implies that each pixel on the screen occupies 3 bytes — 2.25MB to display the screen.
(24 - bit color is covered later in this chapter.) However, it is not uncommon for a user to work with 10 or 20
minimized windows in the taskbar. In a worst - case scenario, you might have 20 windows, each of
which would occupy the whole screen if it was not minimized. If Windows actually stored the visual
information those windows contained, ready for when the user restored them, then that would amount to
some 45MB! These days, a good graphics card might have 64MB of memory and be able to cope with that,
but it was only a few years ago that 4MB was considered generous in a graphics card — and the excess
would need to be stored in the computer ’ s main memory. Many people still have old machines, some of
them with only 4MB graphic cards. Clearly, it would not be practical for Windows to manage its user
interface like that.

 The moment any part of a window is hidden, the “ hidden ” pixels get lost because Windows frees the
memory that was holding those pixels. It does, however, note that a portion of the window is hidden,
and when it detects that it is no longer hidden, it asks the application that owns the window to redraw
its contents. There are a couple of exceptions to this rule — generally for cases in which a small portion
of a window is hidden very temporarily (a good example is when you select an item from the main
menu and that menu item drops down, temporarily obscuring part of the window below). In general,
however, you can expect that if part of your window is hidden, your application will need to redraw
it later.

 That is the source of the problem for the sample application. You placed your drawing code in the Form1
constructor, which is called just once when the application starts up, and you cannot call the constructor
again to redraw the shapes when required later on.

c33.indd 1098c33.indd 1098 2/19/08 5:28:11 PM2/19/08 5:28:11 PM

Chapter 33: Graphics with GDI+

1099

 When working with Windows Forms server controls, there is no need to know anything about how to
accomplish this task. This is because the standard controls are pretty sophisticated, and they are able to
redraw themselves correctly whenever Windows asks them to. That is one reason why, when
programming controls, you do not need to worry about the actual drawing process at all. If you are
taking responsibility for drawing to the screen in your application, you also need to make sure that your
application will respond correctly whenever Windows asks it to redraw all or part of its window. In the
next section, you modify the sample to do just that.

 Painting Shapes Using OnPaint()
 If the preceding explanation has made you worried that drawing your own user interface is going to be
terribly complicated, do not worry. Getting your application to redraw itself when necessary is actually
quite easy.

 Windows notifies an application that some repainting needs to be done by raising a Paint event.
Interestingly, the Form class has already implemented a handler for this event, so you do not need to add
one yourself. The Form1 handler for the Paint event will at some point in its processing call up a virtual
method, OnPaint() , passing to it a single PaintEventArgs parameter. This means that all you need to
do is override OnPaint() to perform your painting.

 Although for this example you work by overriding OnPaint() , it is equally possible to achieve
the same results by simply adding your own event handler for the Paint event (a Form1_Paint()
method, say) — in much the same way as you would for any other Windows Forms event. This
other approach is arguably more convenient because you can add a new event handler through the
Visual Studio 2008 properties window, saving yourself from typing some code. However, the
approach of overriding OnPaint() is slightly more flexible in terms of letting you control when
the call to the base class window processing occurs, and it is the approach recommended in the
documentation.

 In this section, you create a new Windows Application called DrawShapes to do this. As before,
you set the background color to white, using the properties window. You will also change the
form ’ s text to DrawShapes Sample . Then you add the following code to the generated code for the
 Form1 class:

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 Pen bluePen = new Pen(Color.Blue, 3);
 dc.DrawRectangle(bluePen, 0,0,50,50);
 Pen redPen = new Pen(Color.Red, 2);
 dc.DrawEllipse(redPen, 0, 50, 80, 60);
 }

 Notice that OnPaint() is declared as protected , because it is normally used internally within the class,
so there is no reason for any other code outside the class to know about its existence.

 PaintEventArgs is a class that is derived from the EventArgs class normally used to pass in
information about events. PaintEventArgs has two additional properties, of which the more important

c33.indd 1099c33.indd 1099 2/19/08 5:28:11 PM2/19/08 5:28:11 PM

1100

Part V: Presentation

one is a Graphics instance, already primed and optimized to paint the required portion of the window.
This means that you do not have to call CreateGraphics() to get a DC in the OnPaint() method —
 you have already been provided with one. You will look at the other additional property soon.
This property contains more detailed information about which area of the window actually needs
repainting.

 In your implementation of OnPaint() , you first get a reference to the Graphics object from
 PaintEventArgs , and then you draw your shapes exactly as you did before. When you start this, you
call the base class ’ s OnPaint() method. This step is important. You have overridden OnPaint() to do
your own painting, but it is possible that Windows may have some additional work of its own to do in
the painting process — any such work will be dealt with in an OnPaint() method in one of the .NET
base classes.

 For this example, you will find that removing the call to base.OnPaint() does not seem to have any
effect. Do not, however, be tempted to leave this call out. You might be stopping Windows from doing its
work properly, and the results could be unpredictable.

 OnPaint() will also be called when the application first starts up and your window is displayed for the
first time. Thus, there is no need to duplicate the drawing code in the constructor.

 Running this code gives the same results initially as in the previous example, except that now your
application behaves properly when you minimize it or hide parts of the window.

 Using the Clipping Region
 The DrawShapes sample from the previous section illustrates the main principles involved with drawing
to a window, although the sample is not very efficient. The reason is that it attempts to draw everything
in the window, regardless of how much needs to be drawn. Figure 33 - 2 shows the result of running the
 DrawShapes example and opening another window and moving it over the DrawShapes form so part of
it is hidden.

 However, when you move the overlapping window so that the DrawShapes window is fully visible
again, Windows will, as usual, send a Paint event to the form, asking it to repaint itself. The rectangle
and ellipse both lie in the top - left corner of the client area, and so were visible all the time. Therefore,
there is actually nothing that needs to be done in this case apart from repainting the white background
area. However, Windows does not know that, so it thinks it should raise the Paint event, resulting in
your OnPaint() implementation being called. OnPaint() will then unnecessarily attempt to redraw the
rectangle and ellipse.

 Actually, in this case, the shapes will not be repainted because of the device context. Windows has
preinitialized the device context with information concerning what area actually needed repainting.
In the days of GDI, the region marked for repainting was known as the invalidated region , but
with GDI+ the terminology has largely changed to clipping region . The device context recognizes this
region. Therefore, it will intercept any attempts to draw outside this region and not pass the
relevant drawing commands on to the graphics card. That sounds good, but there is still a
potential performance hit here. You do not know how much processing the device context had
to do before it figured out that the drawing was outside the invalidated region. In some cases, it
might be quite a lot because calculating which pixels need to be changed to what color can be very
processor - intensive (although a good graphics card will provide hardware acceleration to help with
some of this).

c33.indd 1100c33.indd 1100 2/19/08 5:28:12 PM2/19/08 5:28:12 PM

Chapter 33: Graphics with GDI+

1101

Figure 33-2

 The bottom line to this is that asking the Graphics instance to do some drawing outside the invalidated
region is almost certainly wasting processor time and slowing your application down. In a well - designed
application, your code will help the device context by carrying out a few simple checks to see if the
proposed drawing work is likely to be needed before it calls the relevant Graphics instance methods. In
this section, you code a new example, DrawShapesWithClipping , by modifying the DisplayShapes
example to do just that. In your OnPaint() code, you will do a simple test to see whether the invalidated
region intersects the area you need to draw in, and you will call the drawing methods only if it does.

 First, you need to obtain the details of the clipping region. This is where an extra property,
 ClipRectangle , on PaintEventArgs comes in. ClipRectangle contains the coordinates of the region
to be repainted, wrapped up in an instance of a struct, System.Drawing.Rectangle . Rectangle is
quite a simple struct — it contains four properties of interest: Top , Bottom , Left , and Right . These
respectively contain the vertical coordinates of the top and bottom of the rectangle and the horizontal
coordinates of the left and right edges.

 Next, you need to decide what test you will use to determine whether drawing should take place. You
will go for a simple test here. Notice that in your drawing, the rectangle and ellipse are both entirely
contained within the rectangle that stretches from point (0,0) to point (80,130) of the client area. Actually,
use point (82,132) to be on the safe side because you know that the lines might stray a pixel or so outside
this area. So, you will check whether the top - left corner of the clipping region is inside this rectangle. If it
is, then you will go ahead and redraw. If it is not, then you won ’ t bother.

 The following is the code to do this:

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 if (e.ClipRectangle.Top < 132 & & e.ClipRectangle.Left < 82)
 {
 Pen bluePen = new Pen(Color.Blue, 3);
 dc.DrawRectangle(bluePen, 0,0,50,50);
 Pen redPen = new Pen(Color.Red, 2);
 dc.DrawEllipse(redPen, 0, 50, 80, 60);
 }
 }

c33.indd 1101c33.indd 1101 2/19/08 5:28:12 PM2/19/08 5:28:12 PM

1102

Part V: Presentation

 Note that what is displayed is exactly the same as before. However, performance is improved now by the
early detection of some cases in which nothing needs to be drawn. Notice also that the example uses a
fairly crude test for whether to proceed with the drawing. A more refined test might be to check
separately whether the rectangle or the ellipse needs to be redrawn. However, there is a balance here.
You can make your tests in OnPaint() more sophisticated, improving performance, but you will also
make your own OnPaint() code more complex. It is almost always worth putting some test in —
 because you have written the code, you understand far more about what is being drawn than the
 Graphics instance, which just blindly follows drawing commands.

 Measuring Coordinates and Areas
 In the previous example, you encountered the base struct, Rectangle , which is used to represent the
coordinates of a rectangle. GDI+ actually uses several similar structures to represent coordinates or areas.
The following table lists the structs that are defined in the System.Drawing namespace.

Struct Main Public Properties

Point and PointF X, Y

Size and SizeF Width, Height

Rectangle and RectangleF Left, Right, Top, Bottom, Width, Height, X, Y, Location, Size

Point A

Point B

20 units

10 units

Y

X

Figure 33-3

 Note that many of these objects have a number of other properties, methods, or operator overloads not
listed here. This section just discusses some of the most important ones.

 Point and PointF
 Point is conceptually the simplest of these structs. Mathematically, it is equivalent to a 2D vector.
It contains two public integer properties, which represent how far you move horizontally and vertically
from a particular location (perhaps on the screen), as shown in Figure 33 - 3 .

 To get from point A to point B, you move 20 units across and 10 units down, marked as x and y on the
diagram because this is how they are commonly referred to. The following Point struct represents that line:

Point ab = new Point(20, 10);
Console.WriteLine(“Moved {0} across, {1} down”, ab.X, ab.Y);

c33.indd 1102c33.indd 1102 2/19/08 5:28:13 PM2/19/08 5:28:13 PM

Chapter 33: Graphics with GDI+

1103

 X and Y are read - write properties, which means that you can also set the values in a Point , like this:

Point ab = new Point();
ab.X = 20;
ab.Y = 10;
Console.WriteLine(“Moved {0} across, {1} down”, ab.X, ab.Y);

 Note that although conventionally horizontal and vertical coordinates are referred to as x and y
coordinates (lowercase), the corresponding Point properties are X and Y (uppercase) because the usual
convention in C# is for public properties to have names that start with an uppercase letter.

 PointF is essentially identical to Point , except that X and Y are of type float instead of int . PointF is
used when the coordinates are not necessarily integer values. A cast has been defined so that you can
implicitly convert from Point to PointF . (Note that because Point and PointF are structs, this cast
involves actually making a copy of the data.) There is no corresponding reverse case — to convert from
 PointF to Point you have to copy the values across, or use one of three conversion methods, Round() ,
 Truncate() , and Ceiling() :

 PointF abFloat = new PointF(20.5F, 10.9F);
 // converting to Point
 Point ab = new Point();
 ab.X = (int)abFloat.X;
 ab.Y = (int)abFloat.Y;
 Point ab1 = Point.Round(abFloat);
 Point ab2 = Point.Truncate(abFloat);
 Point ab3 = Point.Ceiling(abFloat);
 // but conversion back to PointF is implicit
 PointF abFloat2 = ab;

 You might be wondering what a unit is measured in. By default, GDI+ interprets units as pixels along
the screen (or printer, whatever the graphics device is); that is how the Graphics object methods will
view any coordinates that they are passed as parameters. For example, the point new Point(20,10)
represents 20 pixels across the screen and 10 pixels down. Usually these pixels are measured from the
top - left corner of the client area of the window, as has been the case in the previous examples.
However, that will not always be the case. For example, on some occasions you might want to draw
relative to the top - left corner of the whole window (including its border), or even to the top - left corner
of the screen. In most cases, however, unless the documentation tells you otherwise, you can assume that
you are talking about pixels relative to the top - left corner of the client area.

 You will learn more on this subject later, after scrolling is examined, when we discuss the three different
coordinate systems in use — world, page, and device coordinates.

 Size and SizeF
 As with Point and PointF , sizes come in two varieties. The Size struct is for int types. SizeF is
available if you need to use float types. Otherwise, Size and SizeF are identical. This section focuses
on the Size struct.

 In many ways, the Size struct is identical to the Point struct. It has two integer properties that represent
a distance horizontally and a distance vertically. The main difference is that instead of X and Y , these
properties are named Width and Height . You can represent the earlier diagram using this code:

Size ab = new Size(20,10);
Console.WriteLine(“Moved {0} across, {1} down”, ab.Width, ab.Height);

 Although Size mathematically represents exactly the same thing as Point , conceptually, it is intended
to be used in a slightly different way. Point is used when you are talking about where something is, and

c33.indd 1103c33.indd 1103 2/19/08 5:28:13 PM2/19/08 5:28:13 PM

1104

Part V: Presentation

 Size is used when you are talking about how big it is. However, because Size and Point are so closely
related, there are even supported conversions between these two:

 Point point = new Point(20, 10);
 Size size = (Size) point;
 Point anotherPoint = (Point) size;

 As an example, think about the rectangle you drew earlier, with top - left coordinate (0,0) and size (50,50).
The size of this rectangle is (50,50) and might be represented by a Size instance. The bottom - right corner
is also at (50,50), but that would be represented by a Point instance. To see the difference, suppose that
you draw the rectangle in a different location, so that its top - left coordinate is at (10,10):

dc.DrawRectangle(bluePen, 10,10,50,50);

 Now the bottom - right corner is at coordinate (60,60), but the size is unchanged at (50,50).

 The addition operator has been overloaded for Point and Size structs so that it is possible to add a
 Size to a Point struct, resulting in another Point struct:

static void Main(string[] args)
{
 Point topLeft = new Point(10,10);
 Size rectangleSize = new Size(50,50);
 Point bottomRight = topLeft + rectangleSize;
 Console.WriteLine(“topLeft = “ + topLeft);
 Console.WriteLine(“bottomRight = “ + bottomRight);
 Console.WriteLine(“Size = “ + rectangleSize);
}

 This code, running as a simple console application called PointsAndSizes , produces the output shown
in Figure 33 - 4 .

Figure 33-4

 Note that this output also shows how the ToString() method has been overridden in both Point and
 Size to display the value in {X,Y} format.

 It is also possible to subtract a Size from a Point struct to produce a Point struct, and you can add two
 Size structs together, producing another Size . It is not possible, however, to add a Point struct to
another Point . Microsoft decided that adding Point structs does not conceptually make sense, and so it
chose not to supply any overload to the + operator that would have allowed that.

 You can also explicitly cast a Point to a Size struct and vice versa:

Point topLeft = new Point(10,10);
Size s1 = (Size)topLeft;
Point p1 = (Point)s1;

 With this cast, s1.Width is assigned the value of topLeft.X , and s1.Height is assigned the value of
 topLeft.Y . Hence, s1 contains (10,10). p1 will end up storing the same values as topLeft .

c33.indd 1104c33.indd 1104 2/19/08 5:28:13 PM2/19/08 5:28:13 PM

Chapter 33: Graphics with GDI+

1105

 Rectangle and RectangleF
 These structures represent a rectangular region (usually of the screen). Just as with Point and Size , only
the Rectangle struct is considered here. RectangleF is basically identical except that its properties that
represent dimensions all use float , whereas those of Rectangle use int .

 A Rectangle struct can be thought of as composed of a point, representing the top - left corner of the
rectangle, and a Size struct, representing how large it is. One of its constructors actually takes a Point
struct and a Size struct as its parameters. You can see this by rewriting the earlier code from the
 DrawShapes sample that draws a rectangle:

Graphics dc = e.Graphics;
Pen bluePen = new Pen(Color.Blue, 3);
Point topLeft = new Point(0,0);
Size howBig = new Size(50,50);
Rectangle rectangleArea = new Rectangle(topLeft, howBig);
dc.DrawRectangle(bluePen, rectangleArea);

 This code also uses an alternative override of Graphics.DrawRectangle() , which takes a Pen and a
 Rectangle struct as its parameters.

 You can also construct a Rectangle struct by supplying the top - left horizontal coordinate, top - left
vertical coordinate, width, and height separately, and in that order, as individual numbers:

Rectangle rectangleArea = new Rectangle(0, 0, 50, 50)

 Rectangle makes quite a few read - write properties available to set or extract its dimensions in different
combinations. See the following table for details.

 Note that these properties are not all independent. For example, setting Width also affects the value
of Right .

Property Description

int Left x-coordinate of left-hand edge

int Right x-coordinate of right-hand edge

int Top y-coordinate of top

int Bottom y-coordinate of bottom

int X Same as Left

int Y Same as Top

int Width Width of rectangle

int Height Height of rectangle

Point Location Top-left corner

Size Size Size of rectangle

c33.indd 1105c33.indd 1105 2/19/08 5:28:14 PM2/19/08 5:28:14 PM

1106

Part V: Presentation

 Region
 Region represents an area of the screen that has some complex shape. For example, the shaded area in
Figure 33 - 5 could be represented by Region .

Figure 33-5

 As you can imagine, the process of initializing a Region instance is itself quite complex. Broadly
speaking, you can do it by indicating either what component simple shapes make up the region or what
path you take as you trace around the edge of the region. If you do need to start working with areas like
this, it is worth looking up the Region class in the SDK documentation.

 A Note About Debugging
 You are just about ready to do some more advanced types of drawing now. First, however, we just
want to say a few things about debugging. If you have tried setting break points in the examples of this
chapter, then you have noticed that debugging drawing routines is not quite as simple as debugging
other parts of your program because entering and leaving the debugger often causes Paint messages to
be sent to your application. As a result, setting a break point in your OnPaint() override can simply
cause your application to keep painting itself over and over again, so it is basically unable to do
anything else.

 A typical scenario is as follows: You want to find out why your application is displaying something
incorrectly, so you set a break point within the OnPaint() event. As expected, the application hits your
break point and the debugger comes in, at which point your developer environment MDI window
comes to the foreground. You more than likely have the developer environments set to full - screen
display so that you can more easily view all the debugging information, which means it always
completely hides the application you are debugging.

 Moving on, you examine the values of some variables and hopefully discover something useful. Then
you press F5 to tell the application to continue, so that you can go on to see what happens when the
application displays something else after some processing. Unfortunately, the first thing that happens is
that the application comes to the foreground, and Windows efficiently detects that the form is visible
again and promptly sends it a Paint event. This means, of course, that your break point is hit again.
If that is what you want, fine. More commonly, what you really want is to hit the break point later , when
the application is drawing something more interesting, perhaps after you have selected some menu
option to read in a file or in some other way changed what gets displayed. It looks like you are stuck.
Either you do not have a break point in OnPaint() at all, or your application can never get beyond the
point where it is displaying its initial startup window.

c33.indd 1106c33.indd 1106 2/19/08 5:28:14 PM2/19/08 5:28:14 PM

Chapter 33: Graphics with GDI+

1107

 There is a workaround to this problem.

 With a big screen, the easiest way is simply to keep your developer environment window tiled rather
than maximized. Also, you want to keep it well away from your application window, so that your
application is never hidden in the first place. Unfortunately, in most cases that is not a practical solution
because that would make your developer environment window too small (you can also get a second
monitor). An alternative that uses the same principle is to have your application declare itself as the
topmost application while you are debugging. You do this by setting a property in the Form class,
 TopMost , which you can easily do in the InitializeComponent() method:

 private void InitializeComponent()
 {
 this.TopMost = true;

 You can also set this property through the properties window in Visual Studio 2008.

 Being a TopMost window means your application can never be hidden by other windows (except other
topmost windows). It always remains above other windows even when another application has the
focus. This is how the Task Manager behaves.

 Even with this technique, you have to be careful because you can never be certain when Windows might
decide for some reason to raise a Paint event. If you really want to trap some problem that occurs in
 OnPaint() in some specific circumstance (for example, the application draws something after you select
a certain menu option, and something goes wrong at that point), then the best way to do this is to place
some dummy code in OnPaint() that tests some condition, which will only be true in the specified
circumstances. Then place the break point inside the if block, like this:

 protected override void OnPaint(PaintEventArgs e)
 {
 // Condition() evaluates to true when we want to break
 if (Condition())
 {
 int ii = 0; // < -- SET BREAKPOINT HERE!!!
 }

 This is a quick - and - easy way of setting a conditional break point.

 Drawing Scrollable Windows
 The earlier DrawShapes example worked very well because everything you needed to draw fit into
the initial window size. This section covers what you need to do if that is not the case.

 For this example, you expand the DrawShapes sample to demonstrate scrolling. To make things a bit
more realistic, you start by creating an example, BigShapes , in which you make the rectangle and
ellipse a bit bigger. Also, while you are at it, you will see how to use the Point , Size , and Rectangle
structs by using them to assist in defining the drawing areas. With these changes, the relevant part of the
 Form1 class looks like this:

 // member fields
 private readonly Point rectangleTopLeft = new Point(0, 0);
 private readonly Size rectangleSize = new Size(200,200);
 private readonly Point ellipseTopLeft = new Point(50, 200);
 private readonly Size ellipseSize = new Size(200, 150);
 private readonly Pen bluePen = new Pen(Color.Blue, 3);
 private readonly Pen redPen = new Pen(Color.Red, 2);

(continued)

c33.indd 1107c33.indd 1107 2/19/08 5:28:14 PM2/19/08 5:28:14 PM

1108

Part V: Presentation

Figure 33-6

 You can see a problem instantly. The shapes do not fit in your 300 × 300 pixel drawing area.

 Normally, if a document is too large to display, an application will add scroll bars to let you scroll the
window and look at a chosen part of it. This is another area in which if you were building Windows
Forms using standard controls, you would simply allow the .NET runtime and the base classes to
handle everything for you. If your form has various controls attached to it, then the Form instance
will normally know where these controls are, and it will therefore know if its window becomes so
small that scroll bars are necessary. The Form instance automatically adds the scroll bars for you.
It is also able to draw correctly the portion of the screen you have scrolled to. In that case, there is
nothing you need to do in your code. In this chapter, however, you are taking responsibility

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 if (e.ClipRectangle.Top < 350 || e.ClipRectangle.Left < 250)
 {
 Rectangle rectangleArea =
 new Rectangle (rectangleTopLeft, rectangleSize);
 Rectangle ellipseArea =
 new Rectangle (ellipseTopLeft, ellipseSize);
 dc.DrawRectangle(bluePen, rectangleArea);
 dc.DrawEllipse(redPen, ellipseArea);
 }
 }

 Note that you have also turned the Pen , Size , and Point objects into member fields. This is
more efficient than creating a new Pen every time you need to draw anything, as you have been
doing so far.

 The result of running this example looks like Figure 33 - 6 .

(continued)

c33.indd 1108c33.indd 1108 2/19/08 5:28:15 PM2/19/08 5:28:15 PM

Chapter 33: Graphics with GDI+

1109

for drawing to the screen. Therefore, you need to help the Form instance out when it comes to
scrolling.

 Adding the scroll bars is actually very easy. The Form can still handle all that for you because the Form
does not know how big an area you will want to draw in. (The reason it didn ’ t do so in the earlier
 BigShapes example is that Windows does not know they are needed.) You need to determine whether
the size of a rectangle that stretches from the top - left corner of the document (or equivalently, the top - left
corner of the client area before you have done any scrolling) is big enough to contain the entire
document. In this chapter, this area is called the document area. As shown in Figure 33 - 7 , the document
area for this example is (250 × 350) pixels.

200

200

200

150
50

(250, 350)

Figure 33-7

 It is easy to tell the form how big the document is. You use the relevant property, Form
.AutoScrollMinSize . Therefore, you can add this code to either the InitializeComponent()
method or the Form1 constructor:

 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.Text = “Form1”;
 this.BackColor = System.Drawing.Color.White;
 this.AutoScrollMinSize = new Size(250, 350);
 }

 Alternatively, the AutoScrollMinSize property can be set using the Visual Studio 2008
properties window. Note that to gain access to the Size class, you need to add the following
 using statement:

using System.Drawing;

 Setting the minimum size at application startup and leaving it thereafter is fine in this particular example
because you know that is how big the screen area will always be. Your document never changes size
while this particular application is running. Keep in mind, however, that if your application does things

c33.indd 1109c33.indd 1109 2/19/08 5:28:15 PM2/19/08 5:28:15 PM

1110

Part V: Presentation

like display contents of files or something else for which the area of the screen might change, you will
need to set this property at other times (and in that case you will have to sort out the code manually —
 the Visual Studio 2008 properties window can help you only with the initial value that a property has
when the form is constructed).

 Setting AutoScrollMinSize is a start, but it is not yet quite enough. Figure 33 - 8 shows what the sample
application looks like now — initially you get the screen that correctly displays the shapes.

Figure 33-9

Figure 33-8

 Notice that not only has the form correctly set the scroll bars, but also it has correctly sized them to
indicate what proportion of the document is currently displayed. You can try resizing the window while
the sample is running — you will find the scroll bars respond properly, and even disappear if you
make the window big enough so that they are no longer needed.

 However, look at what happens when you actually use one of the scroll bars to scroll down a bit
(see Figure 33 - 9). Clearly, something has gone wrong!

c33.indd 1110c33.indd 1110 2/19/08 5:28:15 PM2/19/08 5:28:15 PM

Chapter 33: Graphics with GDI+

1111

 What ’ s wrong is that you haven ’ t taken into account the position of the scroll bars in the code in your
 OnPaint() override. You can see this very clearly if you force the window to repaint itself completely by
minimizing and restoring it (see Figure 33 - 10).

Figure 33-10

 The shapes have been painted, just as before, with the top - left corner of the rectangle nestled into the
top - left corner of the client area — as if you hadn ’ t moved the scroll bars at all.

 Before you see how to correct this problem, take a closer look at precisely what is happening in these
screenshots.

 Start with the BigShapes sample, shown in Figure 33 - 8 . In this example, the entire window has
just been repainted. Reviewing your code, you learn that it instructs the graphics instance to draw a
rectangle with top - left coordinates (0,0) — relative to the top - left corner of the client area of the
window — which is what has been drawn. The problem is that the graphics instance by default
interprets coordinates as relative to the client window and is unaware of the scroll bars. Your code,
as yet, does not attempt to adjust the coordinates for the scroll bar positions. The same goes for the
ellipse.

 Now, you can tackle the screenshot in Figure 33 - 9 . After you scroll down, you notice that the top
half of the window looks fine because it was drawn when the application first started up. When you
scroll windows, Windows does not ask the application to redraw what was already on the screen.
Windows is smart enough to determine which currently displayed bits can be smoothly moved
around to match where the scroll bars now are located. This is a much more efficient process
because it may be able to use some hardware acceleration to do that, too. The bit in this screenshot
that is wrong is the bottom third of the window. This part of the window was not drawn when the
application first appeared because before you started scrolling, it was outside the client area.This
means that Windows asks your BigShapes application to draw this area. It will raise a Paint
event passing in just this area as the clipping rectangle. And that is exactly what your OnPaint()
override has done.

 One way to look at the problem is that you are, at the moment, expressing your coordinates relative to
the top - left corner of the start of the document — you need to convert them to express them relative
to the top - left corner of the client area instead (see Figure 33 - 11).

c33.indd 1111c33.indd 1111 2/19/08 5:28:16 PM2/19/08 5:28:16 PM

1112

Part V: Presentation

 To make the diagram clearer, the document is actually extended further downward and to the right,
beyond the boundaries of the screen, but this does not change our reasoning. It also assumes a small
horizontal scroll as well as a vertical one.

 In Figure 33 - 11 , the thin rectangles mark the borders of the screen area and of the entire document. The
thick lines mark the rectangle and ellipse that you are trying to draw. P marks some arbitrary point that
you are drawing and that is being used as an example. When calling the drawing methods, the graphics
instance was supplied with the vector from point B to (say) point P, expressed as a Point instance. You
actually need to give it the vector from point A to point P.

 The problem is that you do not know what the vector from A to P is. You know what B to P is; that is just
the coordinates of P relative to the top - left corner of the document — the position where you want to
draw point P in the document. You also know that the vector from B to A is just the amount you have
scrolled by. This is stored in a property of the Form class called AutoScrollPosition . However, you do
not know the vector from A to P.

 To solve this problem, you subtract the one vector from the other. Say, for example, to get from B to P
you move 150 pixels across and 200 pixels down, whereas to get from B to A you move 10 pixels across
and 57 pixels down. That means to get from A to P you have to move 140 (150 minus 10) pixels
across and 143 (200 minus 57) pixels down. To make it even simpler, the Graphics class actually
implements a method that will do these calculations for you. It is called TranslateTransform() . You
pass it the horizontal and vertical coordinates that say where the top left of the client area is relative to
the top - left corner of the document (your AutoScrollPosition property, that is, the vector from B to A
in the diagram). The Graphics device will now work out all its coordinates, taking into account where
the client area is relative to the document.

 If we translate this long explanation into code, all you typically need to do is add the following line to
your drawing code:

dc.TranslateTransform(this.AutoScrollPosition.X, this.AutoScrollPosition.Y);

 However, in this example, it is a little more complicated because you are also separately testing whether
you need to do any drawing by looking at the clipping region. You need to adjust this test to take the
scroll position into account, too. When you have done that, the full drawing code for the sample looks
like this:

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);

Document
B

A

P

Client Area
(Screen)

Figure 33-11

c33.indd 1112c33.indd 1112 2/19/08 5:28:16 PM2/19/08 5:28:16 PM

Chapter 33: Graphics with GDI+

1113

 Graphics dc = e.Graphics;
 Size scrollOffset = new Size(this.AutoScrollPosition);
 if (e.ClipRectangle.Top+scrollOffset.Width < 350 ||
 e.ClipRectangle.Left+scrollOffset.Height < 250)
 {
 Rectangle rectangleArea = new Rectangle
 (rectangleTopLeft+scrollOffset, rectangleSize);
 Rectangle ellipseArea = new Rectangle
 (ellipseTopLeft+scrollOffset, ellipseSize);
 dc.DrawRectangle(bluePen, rectangleArea);
 dc.DrawEllipse(redPen, ellipseArea);
 }
 }

 Now you have your scroll code working perfectly. You can at last obtain a correctly scrolled screenshot
(see Figure 33 - 12).

Figure 33-12

 World, Page, and Device Coordinates
 The distinction between measuring position relative to the top - left corner of the document and
measuring it relative to the top - left corner of the screen (desktop) is so important that GDI+ has special
names for these coordinate systems:

 World coordinates specify the position of a point measured in pixels from the top - left corner
of the document.

 Page coordinates specify the position of a point measured in pixels from the top - left corner
of the client area.

 Developers familiar with GDI will note that world coordinates correspond to what in GDI were known
as logical coordinates. Page coordinates correspond to what were known as device coordinates. As a de-
veloper familiar with GDI, you should also note that the way you code conversion between logical and
device coordinates has changed in GDI+. In GDI, conversions took place via the device context, using
the LPtoDP() and DPtoLP() Windows API functions. In GDI+, it is the Control class, from which
both Form and all the various Windows Forms controls derive, that maintains the information needed
to carry out the conversion.

❑

❑

c33.indd 1113c33.indd 1113 2/19/08 5:28:16 PM2/19/08 5:28:16 PM

1114

Part V: Presentation

 GDI+ also distinguishes a third coordinate system, which is now known as device coordinates . Device
coordinates are similar to page coordinates, except that you do not use pixels as the unit of measurement.
Instead, you use some other unit that can be specified by the user by calling the Graphics.PageUnit
property. Possible units, besides the default of pixels, include inches and millimeters. Although you will
not use the PageUnit property in this chapter, you might find it useful as a way of getting around the
different pixel densities of devices. For example, 100 pixels on most monitors will occupy approximately
an inch. However, laser printers can have 1,200 or more dpi (dots per inch), which means that a shape
specified to be 100 pixels wide will look a lot smaller when printed. By setting the units to, say, inches
and specifying that the shape should be 1 inch wide, you can ensure that the shape will look the same
size on the different devices. This is illustrated in the following:

Graphics dc = this.CreateGraphics();
dc.PageUnit = GraphicsUnit.Inch;

 Possible units available via the GraphicsUnit enumeration include the following:

 Display — Defines the display ’ s unit measure

 Document — Defines the document unit (1/300 inch) as the unit of measure

 Inch — Defines the inch measurement as the unit of measure

 Millimeter — Defines the millimeter measurement as the unit of measure

 Pixel — Defines the pixel measurement as the unit of measure

 Point — Defines the printer point (1/72 inch) as the unit of measure

 World — Defines the world coordinate system as the unit of measure

 Colors
 This section discusses the ways that you can specify what color you want something to be drawn in.

 Colors in GDI+ are represented by instances of the System.Drawing.Color struct. Generally, once you
have instantiated this struct, you won ’ t do much with the corresponding Color instance — you just pass
it to whatever other method you are calling that requires a Color . You have encountered this struct
before, when you set the background color of the client area of the window in each of the examples, as
well as when you set the colors of the various shapes you were displaying. The Form.BackColor
property actually returns a Color instance. This section looks at this struct in more detail. In particular, it
examines several different ways that you can construct a Color .

 Red - Green - Blue Values
 The total number of colors that can be displayed by a monitor is huge — more than 16 million. To be exact,
the number is 2 to the power 24, which works out to 16,777,216. Obviously, you need some way of indexing
those colors so that you can indicate which one is the color you want to display at any given pixel.

 The most common way of indexing colors is by dividing them into the red, green, and blue components.
This idea is based on the theory that any color that the human eye can distinguish can be constructed
from a certain amount of red light, a certain amount of green light, and a certain amount of blue light.
These colors are known as components . In practice, dividing the amount of each component light into 256
possible intensities yields a sufficiently fine gradation to be able to display images that are perceived
by the human eye to be of photographic quality. You, therefore, specify colors by giving the amounts of
these components on a scale of 0 to 255 where 0 means that the component is not present and 255 means
that it is at its maximum intensity.

❑

❑

❑

❑

❑

❑

❑

c33.indd 1114c33.indd 1114 2/19/08 5:28:17 PM2/19/08 5:28:17 PM

Chapter 33: Graphics with GDI+

1115

 This gives you your first way of telling GDI+ about a color. You can indicate a color ’ s red, green, and
blue values by calling the static function Color.FromArgb() . Microsoft has chosen not to supply a
constructor to do this task. The reason is that there are other ways, besides the usual RGB components, to
indicate a color. Because of this, Microsoft felt that the meaning of parameters passed to any constructor
they defined would be open to misinterpretation:

Color redColor = Color.FromArgb(255,0,0);
Color funnyOrangyBrownColor = Color.FromArgb(255,155,100);
Color blackColor = Color.FromArgb(0,0,0);
Color whiteColor = Color.FromArgb(255,255,255);

 The three parameters are, respectively, the quantities of red, green, and blue. This function has a number
of other overloads, some of which also allow you to specify something called an alpha - blend (that is the
 A in the name of the method, FromArgb()). Alpha blending is beyond the scope of this chapter, but it
allows you to paint a color semitransparently by combining it with whatever color was already on the
screen. This can give some beautiful effects and is often used in games.

 The Named Colors
 Constructing a Color using FromArgb() is the most flexible technique because it literally means you can
specify any color that the human eye can see. However, if you want a simple, standard, well - known color
such as red or blue, it is a lot easier to just be able to name the color you want. Hence, Microsoft has also
provided a large number of static properties in Color , each of which returns a named color. It was one of
these properties that you used when you set the background color of your windows to white in the examples:

 this.BackColor = Color.White;
 // has the same effect as:
 // this.BackColor = Color.FromArgb(255, 255 , 255);

 Several hundred such colors exist. The full list is given in the SDK documentation. They include
all the simple colors: Red , White , Blue , Green , Black , and so on, as well as such delights as
 MediumAquamarine , LightCoral , and DarkOrchid . There is also a KnownColor enumeration, which
lists the named colors.

 Each of these named colors represents a precise set of RGB values. They were originally chosen many
years ago for use on the Internet. The idea was to provide a useful set of colors right across the spectrum
whose names would be recognized by Web browsers, thus saving you from having to write explicit RGB
values in your HTML code. A few years ago, these colors were also important because early browsers
could not necessarily display very many colors accurately, and the named colors were supposed to
provide a set of colors that would be displayed correctly by most browsers. These days, that aspect is less
important because modern Web browsers are quite capable of displaying any RGB value correctly.
Web - safe color palettes are also available that provide developers with a comprehensive list of colors that
work with most browsers.

 Graphics Display Modes and the Safety Palette
 Although in principle monitors can display any of the more than 16 million RGB colors, in practice this
depends on how you have set the display properties on your computer. In Windows, there are
traditionally three main color options (although some machines might provide other options depending
on the hardware): true color (24 bit), high color (16 bit), and 256 colors. (On some graphics cards these
days, true color is actually marked as 32 bit. This has to do with optimizing the hardware, though in that
case only 24 bits of the 32 bits are used for the color itself.)

 Only true color mode allows you to display all of the RGB colors simultaneously. This sounds like the best
option, but it comes at a cost: 3 bytes are needed to hold a full RGB value, which means that 3 bytes of

c33.indd 1115c33.indd 1115 2/19/08 5:28:17 PM2/19/08 5:28:17 PM

1116

Part V: Presentation

graphics card memory are needed to hold each pixel that is displayed. If graphics card memory is at a
premium (a restriction that is less common now than it used to be), then you might want to choose one of
the other modes. High color mode gives you 2 bytes per pixel, which is enough to give 5 bits for each RGB
component. Therefore, instead of 256 gradations of red intensity, you get just 32 gradations. The same
applies to blue and green,which produce a total of 65,536 colors. That is just about enough to give apparent
photographic quality on a casual inspection, although areas of subtle shading tend to be broken up a bit.

 The 256 - color mode gives you even fewer colors. However, in this mode, you get to choose the colors.
The system sets up something known as a palette . This is a list of 256 colors chosen from the 16 million
RGB colors. Once you have specified the colors in the palette, the graphics device will be able to display
just those colors. The palette can be changed at any time, but the graphics device can only display 256
different colors on the screen at any one time. The 256 - color mode is used only when high performance
is necessary and video memory is at a premium. Most computer games use this mode. They can still
achieve decent - looking graphics because of a very careful choice of palette.

 In general, if a display device is in high - color or 256 - color mode and a particular RGB color is requested,
then it will pick the nearest mathematical match from the pool of colors that it is able to display. It is
for this reason that it is important to be aware of the color modes. If you are drawing something that
involves subtle shading or photographic - quality images, and the user does not have 24 - bit color mode
selected, she might not see the image the same way you intended it. So if you are doing that kind of
work with GDI+, then you should test your application in different color modes. (It is also possible for
your application to programmatically set a given color mode, although that is not discussed in this
chapter for lack of space.)

 The Safety Palette
 For reference, this section quickly mentions the safety palette, which is a very commonly used default
palette. To use the safety palette, you set six equally spaced possible values for each color component: 0,
51, 102, 153, 204, and 255. In other words, the red component can have any of these values. The green
component can have any of these values and so can the blue component. Possible colors from the safety
palette include (0,0,0), black; (153,0,0), a fairly dark shade of red; (0, 255,102), green with a smattering of
blue added; and so on. This gives you a total of 6 cubed = 216 colors. The idea is that this provides an
easy way of creating a palette that contains colors from right across the spectrum and of all degrees of
brightness. In practice, however, this does not actually work that well because equal mathematical
spacing of color components does not mean equal perception of color differences by the human eye.

 If you set Windows to 256 - color mode, you will find that the default palette is the safety palette, with 20
Windows - standard colors added to it, and 20 spare colors.

 Pens and Brushes
 This section reviews two helper classes that are needed to draw shapes. You have already encountered
the Pen class, which you used to instruct the graphics instance how to draw lines. A related class is
 System.Drawing.Brush , which instructs the graphics instance how to fill regions. For example, the Pen
is needed to draw the outlines of the rectangle and ellipse in the previous examples. If you had needed
to draw these shapes as solid, you would have used a brush to specify how to fill them. One aspect of
both of these classes is that you will hardly ever call any methods on them. You simply construct a Pen
or Brush instance with the required color and other properties, and then pass it to drawing methods that
require a Pen or Brush .

 If you have programmed using GDI before, you may have noticed from the first few examples that pens
are used in a different way in GDI+. In GDI, the normal practice was to call a Windows API function,
 SelectObject() , which actually associated a pen with the device context. That pen was then used in

c33.indd 1116c33.indd 1116 2/19/08 5:28:17 PM2/19/08 5:28:17 PM

Chapter 33: Graphics with GDI+

1117

all drawing operations that required a pen until you informed the device context otherwise, by calling
 SelectObject() again. The same principle held for brushes and other objects such as fonts or bit-
maps. With GDI+, Microsoft has opted for a stateless model in which there is no default pen or other
helper object. Rather, you simply specify with each method call the appropriate helper object to be used
for that particular method.

 Brushes
 GDI+ has several different kinds of brushes — more than there is space to go into in this chapter, so this
section just explains the simpler ones to give you an idea of the principles. Each type of brush is
represented by an instance of a class derived from the abstract class System.Drawing.Brush . The
simplest brush, System.Drawing.SolidBrush , indicates that a region is to be filled with solid color:

Brush solidBeigeBrush = new SolidBrush(Color.Beige);
Brush solidFunnyOrangyBrownBrush = new SolidBrush(Color.FromArgb(255,155,100));

 Alternatively, if the brush is one of the Web - safe colors, then you can construct the brush using another
class, System.Drawing.Brushes . Brushes is one of those classes that you never actually instantiate
(it has a private constructor to stop you from doing that). It simply has a large number of static
properties, each of which returns a brush of a specified color. You can use Brushes like this:

Brush solidAzureBrush = Brushes.Azure;
Brush solidChocolateBrush = Brushes.Chocolate;

 The next level of complexity is a hatch brush, which fills a region by drawing a pattern. This type of
brush is considered more advanced, so it is in the Drawing2D namespace, represented by the class
 System.Drawing.Drawing2D.HatchBrush . The Brushes class cannot help you with hatch brushes;
you will need to construct one explicitly by supplying the hatch style and two colors — the foreground
color followed by the background color. (Note, you can omit the background color, in which case it
defaults to black). The hatch style comes from an enumeration, System.Drawing.Drawing2D
.HatchStyle . You can choose from a large number of HatchStyle values (see the SDK documentation
for the full list). To give you an idea, typical styles include ForwardDiagonal , Cross , DiagonalCross ,
 SmallConfetti , and ZigZag . Examples of constructing a hatch brush include:

Brush crossBrush = new HatchBrush(HatchStyle.Cross, Color.Azure);
// background color of CrossBrush is black
Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,
 Color.DarkGoldenrod, Color.Cyan);

 Solid and hatch brushes are the only brushes available under GDI. GDI+ has added a couple of new
styles of brushes:

 System.Drawing.Drawing2D.LinearGradientBrush fills in an area with a color that varies
across the screen.

 System.Drawing.Drawing2D.PathGradientBrush is similar, but in this case, the color varies
along a path around the region to be filled.

 Note that both brushes can render some spectacular effects if used carefully.

 Pens
 Unlike brushes, pens are represented by just one class: System.Drawing.Pen . However, the pen is
slightly more complex than the brush because it needs to indicate how thick lines should be (how many
pixels wide) and, for a wide line, how to fill the area inside the line. Pens can also specify a number of
other properties, which are beyond the scope of this chapter, but which include the Alignment property

❑

❑

c33.indd 1117c33.indd 1117 2/19/08 5:28:18 PM2/19/08 5:28:18 PM

1118

Part V: Presentation

mentioned earlier. This property indicates where in relation to the border of a shape a line should be
drawn, as well as what shape to draw at the end of a line (whether to round off the shape).

 The area inside a thick line can be filled with solid color or by using a brush. Hence, a Pen instance might
contain a reference to a Brush instance. This is quite powerful because it means that you can draw lines
that are colored in by using, say, hatching or linear shading. There are four different ways to construct a
 Pen instance that you have designed yourself. One is by passing a color; a second is by passing in a
brush. Both of these constructors will produce a pen with a width of one pixel. Alternatively, a third way
is to pass in a color or a brush, and additionally a float , which represents the width of the pen. (It needs
to be a float in case you are using non - default units such as millimeters or inches for the Graphics
object that will do the drawing, so you can, for example, specify fractions of an inch.) For example, you
can construct pens like this:

Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,
 Color.DarkGoldenrod, Color.Cyan);
Pen solidBluePen = new Pen(Color.FromArgb(0,0,255));
Pen solidWideBluePen = new Pen(Color.Blue, 4);
Pen brickPen = new Pen(brickBrush);
Pen brickWidePen = new Pen(brickBrush, 10);

 Additionally, a fourth way offers the quick construction of pens by using the class System.Drawing
.Pens , which, like the Brushes class, contains a number of stock pens. These pens all have a 1 - pixel
width and come in the usual sets of Web - safe colors. This allows you to construct pens in this way:

Pen solidYellowPen = Pens.Yellow;

 Drawing Shapes and Lines
 You have almost finished the first part of the chapter, and you have seen all the basic classes and objects
required to draw specified shapes and so on to the screen. This section starts by reviewing some of the
drawing methods the Graphics class makes available and presents a short example that illustrates the
use of several brushes and pens.

 System.Drawing.Graphics has a large number of methods that allow you to draw various lines, outline
shapes, and solid shapes. Once again, there are too many to provide a comprehensive list here, but the
following table lists the main ones and should give you some idea of the variety of shapes you can draw.

Method Typical Parameters What It Draws

DrawLine Pen, start and end points A single straight line

DrawRectangle Pen, position, and size Outline of a rectangle

DrawEllipse Pen, position, and size Outline of an ellipse

FillRectangle Brush, position, and size Solid rectangle

FillEllipse Brush, position, and size Solid ellipse

DrawLines Pen, array of points Series of lines, connecting each point to the
next one in the array

DrawBezier Pen, four points A smooth curve through the two end
points, with the remaining two points used
to control the shape of the curve

c33.indd 1118c33.indd 1118 2/19/08 5:28:18 PM2/19/08 5:28:18 PM

Chapter 33: Graphics with GDI+

1119

 Before we leave the subject of drawing simple objects, this section rounds off with a simple example
that demonstrates the kinds of visual effects you can achieve using brushes. The example is called
 ScrollMoreShapes , and it is essentially a revision of ScrollShapes . Besides the rectangle and ellipse,
you will add a thick line and fill in the shapes with various custom brushes. You have already learned
the principles of drawing, so the code speaks for itself. First, because of your new brushes, you need to
indicate that you are using the System.Drawing.Drawing2D namespace:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Text;
using System.Windows.Forms;

 Next are some extra fields in your Form1 class, which contain details of the locations where the shapes
are to be drawn, as well as various pens and brushes you will use:

private Rectangle rectangleBounds = new Rectangle(new Point(0,0),
 new Size(200,200));
private Rectangle ellipseBounds = new Rectangle(new Point(50,200),
 new Size(200,150));
private readonly Pen bluePen = new Pen(Color.Blue, 3);
private readonly Pen redPen = new Pen(Color.Red, 2);
private readonly Brush solidAzureBrush = Brushes.Azure;
private readonly Brush solidYellowBrush = new SolidBrush(Color.Yellow);
private static readonly Brush brickBrush = new
 HatchBrush(HatchStyle.DiagonalBrick, Color.DarkGoldenrod, Color.Cyan);
private readonly Pen brickWidePen = new Pen(brickBrush, 10);

 The brickBrush field has been declared as static so that you can use its value to initialize the
 brickWidePen field. C# will not let you use one instance field to initialize another instance field because
it has not defined which one will be initialized first. However, declaring the field as static solves the
problem. Because only one instance of the Form1 class will be instantiated, it is immaterial whether the
fields are static or instance fields.

Method Typical Parameters What It Draws

DrawCurve Pen, array of points A smooth curve through the points

DrawArc Pen, rectangle, two angles Portion of circle within the rectangle
defined by the angles

DrawClosedCurve Pen, array of points Like DrawCurve but also draws a straight
line to close the curve

DrawPie Pen, rectangle, two angles Wedge-shaped outline within the rectangle

FillPie Brush, rectangle, two angles Solid wedge-shaped area within the
 rectangle

DrawPolygon Pen, array of points Like DrawLines but also connects first and
last points to close the figure drawn

c33.indd 1119c33.indd 1119 2/19/08 5:28:19 PM2/19/08 5:28:19 PM

1120

Part V: Presentation

 The following is the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 Point scrollOffset = AutoScrollPosition;
 dc.TranslateTransform(scrollOffset.X, scrollOffset.Y);
 if (e.ClipRectangle.Top+scrollOffset.X < 350 ||
 e.ClipRectangle.Left+scrollOffset.Y < 250)
 {
 dc.DrawRectangle(bluePen, rectangleBounds);
 dc.FillRectangle(solidYellowBrush, rectangleBounds);
 dc.DrawEllipse(redPen, ellipseBounds);
 dc.FillEllipse(solidAzureBrush, ellipseBounds);
 dc.DrawLine(brickWidePen, rectangleBounds.Location,
 ellipseBounds.Location+ellipseBounds.Size);
 }
}

 As before, you also set the AutoScrollMinSize to (250,350). Figure 33 - 13 shows the new results.

 Notice that the thick diagonal line has been drawn on top of the rectangle and ellipse because it was the
last item to be painted.

Figure 33-13

 Displaying Images
 One of the most common things you might want to do with GDI+ is display an image that already exists
in a file. This is actually a lot simpler than drawing your own user interface because the image is already
pre - drawn. Effectively, all you have to do is load the file and instruct GDI+ to display it. The image can
be a simple line drawing, an icon, or a complex image such as a photograph. You can also manipulate
the image by stretching or rotating it, or simply displaying only a portion of it.

c33.indd 1120c33.indd 1120 2/19/08 5:28:19 PM2/19/08 5:28:19 PM

Chapter 33: Graphics with GDI+

1121

 This section, just for a change, presents the sample first. Then it discusses some of the issues you need to
be aware of when displaying images. Presenting it this way is possible because the code needed to
display an image is so simple.

 The class you need is the .NET base class, System.Drawing.Image . An instance of Image represents
one image. Reading in an image simply takes one line of code:

Image myImage = Image.FromFile(“FileName”);

 FromFile() is a static member of Image and is the usual way of instantiating an image. The file can be
any of the commonly supported graphics file formats, including .bmp , .jpg , .gif , and .png .

 Displaying an image is also very simple, assuming that you have a suitable Graphics instance at hand —
 a call to either Graphics.DrawImageUnscaled() or Graphics.DrawImage() suffices. There are quite a
few overloads of these methods, allowing you a lot of flexibility in the information you supply in terms of
where the image is located and how big it is to be drawn. But this example uses DrawImage() , like this:

dc.DrawImage(myImage, points);

 In this line of code, dc is assumed to be a Graphics instance, and myImage is the Image to be displayed.
 points is an array of Point structs, where points[0] , points[1] , and points[2] are the coordinates
of the top - left, top - right, and bottom - left corner of the image.

 Images are probably the area in which developers familiar with GDI will notice the biggest difference
 between GDI and GDI+. In GDI, displaying an image involved several nontrivial steps. If the image
was a bitmap, then loading it was reasonably simple. Nevertheless, if it was any other file type, then
loading it would involve a sequence of calls to OLE objects. Actually, getting a loaded image onto the
screen required getting a handle to it, selecting it into a memory device context, and then performing a
block transfer between device contexts. Although the device contexts and handles are still there behind
the scenes and will be needed if you want to start doing sophisticated editing of the images from your
code, simple tasks have now been extremely well wrapped up in the GDI+ object model.

 The process of displaying an image is illustrated with an example called DisplayImage . The example
simply displays a .jpg file in the application ’ s main window. To keep things simple, the path of the .jpg
file is hard - coded into the application (so if you run the example, then you will need to change it to reflect
the location of the file in your system). The .jpg file you will display is a sunset picture in St. Petersburg.

 As with the other examples, the DisplayImage project is a standard C# Visual Studio 2008 – generated
Windows application. You add the following fields to your Form1 class:

readonly Image piccy;
private readonly Point [] piccyBounds;

 You then load the file in the Form1() constructor:

public Form1()
{
 InitializeComponent();
 piccy =
 Image.FromFile(@”C:\ProCSharp\GdiPlus\Images\London.jpg”);
 AutoScrollMinSize = piccy.Size;
 piccyBounds = new Point[3];
 piccyBounds[0] = new Point(0,0); // top left
 piccyBounds[1] = new Point(piccy.Width,0); // top right
 piccyBounds[2] = new Point(0,piccy.Height); // bottom left
}

 Note that the size in pixels of the image is obtained as its Size property, which you use to set the
document area. You also set up the piccyBounds array, which is used to identify the position of the

c33.indd 1121c33.indd 1121 2/19/08 5:28:19 PM2/19/08 5:28:19 PM

1122

Part V: Presentation

image on the screen. You have chosen the coordinates of the three corners to draw the image in its actual
size and shape here, but if you had wanted the image to be resized, stretched, or even sheared into a
nonrectangular parallelogram, then you could do so simply by changing the values of the Points in the
 piccyBounds array.

 The image is displayed in the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 dc.ScaleTransform(1.0f, 1.0f);
 dc.TranslateTransform(AutoScrollPosition.X, AutoScrollPosition.Y);
 dc.DrawImage(piccy, piccyBounds);
}

 Finally, note the modification made to the IDE - generated Form1.Dispose() method:

 protected override void Dispose(bool disposing)
 {
 piccy.Dispose();
 if (disposing & & (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 Disposing of the image as soon as possible when it is no longer needed is important because images
generally take up a lot of memory while in use. After Image.Dispose() has been called, the Image instance
no longer refers to any actual image, and so it can no longer be displayed (unless you load a new image).

 Figure 33 - 14 shows the result of running this code.

Figure 33-14

c33.indd 1122c33.indd 1122 2/19/08 5:28:20 PM2/19/08 5:28:20 PM

Chapter 33: Graphics with GDI+

1123

 Issues When Manipulating Images
 Although displaying images is very simple, it still pays to have some understanding of what is going on
behind the scenes.

 The most important point to understand about images is that they are always rectangular. That is not just
a convenience; it is because of the underlying technology. All modern graphics cards have hardware
built in that can efficiently copy blocks of pixels from one area of memory to another area of memory,
provided that the block of pixels represents a rectangular region. This hardware - accelerated operation
can occur virtually as one single operation, and as such, is extremely fast. Indeed, it is the key to modern
high - performance graphics. This operation is known as a bitmap block transfer (or BitBlt). Graphics
.DrawImageUnscaled() internally uses a BitBlt , which is why you can see a huge image, perhaps
containing as many as a million pixels, appearing almost instantly. If the computer had to copy the
image to the screen pixel by pixel, you would see the image gradually being drawn over a period of up
to several seconds.

 BitBlt s are very efficient; therefore, almost all drawing and manipulation of images is carried out using
them. Even some editing of images will be done by manipulating portions of images with BitBlts
between DCs that represent areas of memory. In the days of GDI, the Windows 32 API function
 BitBlt() was arguably the most important and widely used function for image manipulation, although
with GDI+, the BitBlt operations are largely hidden by the GDI+ object model.

 It ’ s not possible to BitBlt areas of images that are not rectangular, although similar effects can be easily
simulated. One way is to mark a certain color as transparent for the purposes of a BitBlt , so that areas of
that color in the source image will not overwrite the existing color of the corresponding pixel in the
destination device. It is also possible to specify that in the process of a BitBlt , each pixel of the resultant
image will be formed by some logical operation (such as a bitwise AND) on the colors of that pixel in the
source image and in the destination device before the BitBlt . Such operations are supported by hardware
acceleration and can be used to give a variety of subtle effects. Note that the Graphics object implements
another method, DrawImage() . This is similar to DrawImageUnscaled() but comes in a large number of
overloads that allow you to specify more complex forms of BitBlt to be used in the drawing process.
 DrawImage() also allows you to draw (using BitBlt) only a specified part of the image, or to perform
certain other operations on it such as scaling it (expanding or reducing it in size) as it is drawn.

 Drawing Text
 We have chosen to cover the very important topic of displaying text late in this chapter because drawing
text to the screen is (in general) more complex than drawing simple graphics. Although displaying a line
or two of text when you don ’ t care about the appearance is extremely easy (it takes one single call to the
 Graphics.DrawString() method), if you are trying to display a document that has a fair amount of
text in it, then you will rapidly find that things become a lot more complex. This is for two reasons:

 If you are concerned about getting the appearance just right, then you must understand fonts.
Whereas shape drawing requires brushes and pens as helper objects, the process of drawing text
requires fonts as helper objects. Moreover, understanding fonts is not a trivial undertaking.

 Text needs to be very carefully laid out in the window. Users generally expect words to follow
naturally from one word to another and to be lined up with clear spaces in between. Doing that
is harder than you might think. For starters, you do not usually know in advance how much
space on the screen a word is going to take up. That has to be calculated (using the Graphics
.MeasureString() method). In addition, the space a word occupies on the screen affects where
in the document every subsequent word is placed. If your application does any line wrapping,
then it will need to assess word sizes carefully before deciding where to place the line break. The

❑

❑

c33.indd 1123c33.indd 1123 2/19/08 5:28:22 PM2/19/08 5:28:22 PM

1124

Part V: Presentation

next time you run Microsoft Word, look carefully at the way Word is continually repositioning
text as you do your work; there is a lot of complex processing going on there. Chances are that
any GDI+ application you work on will not be nearly as complex as Word. However, if you need
to display any text, many of the same considerations apply.

 In short, high - quality text processing is tricky to get right. However, putting a line of text on the screen,
assuming that you know the font and where you want it to go, is actually very simple. Therefore, the
next section presents a quick example that shows you how to display some text, followed by a short
review of the principles of fonts and font families and a more realistic (and involved) text - processing
example, CapsEditor .

 Simple Text Example
 This example, DisplayText , is your usual Windows Forms effort. This time you override OnPaint()
and add member fields as follows:

private readonly Brush blackBrush = Brushes.Black;
private readonly Brush blueBrush = Brushes.Blue;
private readonly Font haettenschweilerFont = new Font(“Haettenschweiler”, 12);
private readonly Font boldTimesFont = new Font(“Times New Roman”, 10,
 FontStyle.Bold);
private readonly Font italicCourierFont = new Font(“Courier”, 11,
 FontStyle.Italic | FontStyle.Underline);
protected override void OnPaint(PaintEventArgs e)
{
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 dc.DrawString(“This is a groovy string”, haettenschweilerFont, blackBrush,
 10, 10);
 dc.DrawString(“This is a groovy string “ +
 “with some very long text that will never fit in the box”,
 boldTimesFont, blueBrush,
 new Rectangle(new Point(10, 40), new Size(100, 40)));
 dc.DrawString(“This is a groovy string”, italicCourierFont, blackBrush,
 new Point(10, 100));
}

 Figure 33 - 15 shows the result of running this example.

Figure 33-15

c33.indd 1124c33.indd 1124 2/19/08 5:28:22 PM2/19/08 5:28:22 PM

Chapter 33: Graphics with GDI+

1125

 The example demonstrates the use of the Graphics.DrawString() method to draw items of text.
The method DrawString() comes in a number of overloads, three of which are demonstrated
here. The different overloads require parameters that indicate the text to be displayed, the font
that the string should be drawn in, and the brush that should be used to construct the various
lines and curves that make up each character of text. A few alternatives exist for the remaining
parameters. In general, however, it is possible to specify either a Point (or equivalently, two
numbers) or a Rectangle .

 If you specify a Point , then the text will start with its top - left corner at that Point and simply stretch
out to the right. If you specify a Rectangle , then the Graphics instance will lay out the string inside
that rectangle. If the text does not fit within the boundaries of the rectangle, it will be cut off (see the
fourth line of text in Figure 33 - 15). Passing a rectangle to DrawString() means that the drawing process
will take longer because DrawString() will need to figure out where to put line breaks, but the result
may look nicer — provided the string fits in the rectangle!

 This example also shows a few ways to construct fonts. You always need to include the name of the font
and its size (height). You can also optionally pass in various styles that modify how the text is to be
drawn (bold, underline, and so on).

 Fonts and Font Families
 A font describes exactly how each letter should be displayed. Selection of the appropriate font and
providing a reasonable variety of fonts within a document are important factors in improving
readability.

 Most people, if asked to name a font, might mention Arial or Times New Roman (if they are Windows
users) or Times or Helvetica (if they are Mac OS users). In fact, these are not fonts at all — they are font
families . The font family tells you, in generic terms, the visual style of the text and is a key factor in the
overall appearance of your application. Most of us recognize the styles of the most common font
families, even if we are not consciously aware of it.

 An actual font would be something like Arial 9 - point italic. In other words, the size and other
modifications to the text are specified as well as the font family. These modifications might include
whether text is bold , italic , underlined , or displayed in SMALL CAPS or as a subscript

 ; this is technically
referred to as the style , although in some ways, the term is misleading because the visual appearance is
determined as much by the font family.

 The size of the text is measured by specifying its height. The height is measured in points — a traditional
unit that represents ¹⁄7² of an inch (0.351 mm). So letters in a 10 - point font are roughly ¹⁄7", or 3.5 mm
high. However, you will not get seven lines of 10 - point text into one inch of vertical screen or paper
space, as you need to allow for the spacing between the lines as well.

 Strictly speaking, measuring the height is not quite as simple as that because there are several different
heights that you must consider. For example, there is the height of tall letters such as the A or F (this is
the measurement that we are referring to when we talk about the height), the additional height occupied
by any accents on letters such as Å or Ñ (the internal leading), and the extra height below the baseline
needed for the tails of letters such as y and g (the descent). However, for this chapter we will not worry
about that. Once you specify the font family and the main height, these subsidiary heights are deter-
mined automatically.

 When you are dealing with fonts, you might also encounter some other terms commonly used to
describe certain font families:

 Serif font families have feet at the ends of many of the lines that make up the characters
(these ticks are known as serifs). Times New Roman is a classic example of this.

❑

c33.indd 1125c33.indd 1125 2/19/08 5:28:23 PM2/19/08 5:28:23 PM

1126

Part V: Presentation

 Sans serif font families, by contrast, do not have these feet. Good examples of sans serif fonts
are Arial and Verdana. The lack of feet often gives text a blunt, in - your - face appearance, so sans
serif fonts are often used for important text.

 A True Type font family is one that is defined by expressing the shapes of the curves that make
up the characters in a precise mathematical manner. This means that the same definition can
be used to calculate how to draw fonts of any size within the family. These days, virtually all the
fonts you might use are TrueType fonts. Some older font families from the days of Windows 3.1
were defined by individually specifying the bitmap for each character separately for each font
size, but the use of these fonts is now discouraged.

 Microsoft has provided two main classes that you need to deal with when selecting or
manipulating fonts:

 System.Drawing.Font

 System.Drawing.FontFamily

 You have already seen the main use of the Font class. When you want to draw text, you instantiate an
instance of Font and pass it to the DrawString() method to indicate how the text should be drawn.
A FontFamily instance is used to represent a family of fonts.

 You can use the FontFamily class, for example, if you know you want a font of a particular type
(serif, sans serif, or true type), but do not have a preference for which font. The static properties
 GenericSerif , GenericSansSerif , and GenericMonospace return default fonts that satisfy these
criteria:

FontFamily sansSerifFont = FontFamily.GenericSansSerif;

 However, if you are writing a professional application, then you will want to choose your font in a more
sophisticated way. Most likely, you will implement your drawing code so that it checks the font families
available and selects the appropriate one, perhaps by taking the first available one on a list of preferred
fonts. Moreover, if you want your application to be very user - friendly, then the first choice on the list will
probably be the one that users selected the last time they ran your software. Usually, if you are dealing
with the most popular font families, such as Arial and Times New Roman, you will be safe. However, if
you do try to display text using a font that does not exist, the results aren ’ t always predictable. You are
quite likely to find that Windows just substitutes the standard system font, which is very easy for the
system to draw, but that it does not look very pleasant — and if it does appear in your document, then it
is likely to give the impression of software that is of poor quality.

 You can find out what fonts are available on your system using a class called
 InstalledFontCollection , which is in the System.Drawing.Text namespace. This class implements
a property, Families , which is an array of all the fonts that are available to use on your system:

InstalledFontCollection insFont = new InstalledFontCollection();
FontFamily [] families = insFont.Families;
foreach (FontFamily family in families)
{
 // do processing with this font family
}

 Example: Enumerating Font Families
 In this section, you work through a quick example, EnumFontFamilies , which lists all the font families
available on the system and illustrates them by displaying the name of each family using an appropriate
font (the 12 - point regular version of that font family). Figure 33 - 16 shows the result of running
 EnumFontFamilies .

❑

❑

❑

❑

c33.indd 1126c33.indd 1126 2/19/08 5:28:23 PM2/19/08 5:28:23 PM

Chapter 33: Graphics with GDI+

1127

 Of course, the results that you get will depend on the fonts you have installed on your computer.

 For this example, you create a standard C# Windows application, EnumFontFamilies . You start by
adding an extra namespace to be searched. You will be using the InstalledFontCollection class,
which is defined in System.Drawing.Text .

using System.Drawing;
using System.Drawing.Text;
using System.Windows.Forms;

 You then add the following constant to the Form1 class:

private const int margin = 10;

 margin is the size of the left and top margin between the text and the edge of the document — it stops
the text from appearing right at the edge of the client area.

 This is designed as a quick - and - easy way of showing off font families; therefore, the code is crude and in
many instances does not do things the way you ought to in a real application. For example, here you
hard - code an estimated value for the document size of (200, 1500) and set the AutoScrollMinSize
property to this value using the Visual Studio 2008 properties window. Typically, you would have to
examine the text to be displayed to work out the document size. You do that in the next section.

Figure 33-16

c33.indd 1127c33.indd 1127 2/19/08 5:28:24 PM2/19/08 5:28:24 PM

1128

Part V: Presentation

 Here is the OnPaint() method:

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 int verticalCoordinate = margin;
 InstalledFontCollection insFont = new InstalledFontCollection();
 FontFamily [] families = insFont.Families;
 e.Graphics.TranslateTransform(AutoScrollPosition.X,
 AutoScrollPosition.Y);
 foreach (FontFamily family in families)
 {
 if (family.IsStyleAvailable(FontStyle.Regular))
 {
 Font f = new Font(family.Name, 12);
 Point topLeftCorner = new Point(margin, verticalCoordinate);
 verticalCoordinate += f.Height;
 e.Graphics.DrawString (family.Name, f,
 Brushes.Black,topLeftCorner);
 f.Dispose();
 }
 }
 }

 In this code, you start by using an InstalledFontCollection object to obtain an array that contains
details of all the available font families. For each family, you instantiate a 12 - point Font . You use a
simple constructor for Font — there are many more that allow additional options to be specified.
The constructor takes two parameters, the name of the family and the size of the font:

 Font f = new Font(family.Name, 12);

 This constructor builds a font that has the regular style. To be on the safe side, however, you first check
that this style is available for each font family before attempting to display anything using that font. This
is done using the FontFamily.IsStyleAvailable() method. This check is important because not all
fonts are available in all styles:

 if (family.IsStyleAvailable(FontStyle.Regular))

 FontFamily.IsStyleAvailable() takes one parameter, a FontStyle enumeration. This enumeration
contains a number of flags that might be combined with the bitwise OR operator. The possible flags are
 Bold , Italic , Regular , Strikeout , and Underline .

 Finally, note that you use a property of the Font class, Height , which returns the height needed to
display text of that font, to work out the line spacing:

 Font f = new Font(family.Name, 12);
 Point topLeftCorner = new Point(margin, verticalCoordinate);
 verticalCoordinate += f.Height;

 Again, to keep things simple, this version of OnPaint() reveals some bad programming practices. For
example, you have not bothered to check what area of the document actually needs drawing — you just
tried to display everything. Also, instantiating a Font is, as remarked earlier, a computationally
intensive process, so you really ought to save the fonts rather than instantiating new copies every time
 OnPaint() is called. Because of the way the code has been designed, you might note that this example
actually takes a noticeable amount of time to paint itself. To try to conserve memory and help the
garbage collector you do, however, call Dispose() on each font instance after you have finished with
it. If you did not, after 10 or 20 paint operations, there would be a lot of wasted memory storing fonts
that are no longer needed.

c33.indd 1128c33.indd 1128 2/19/08 5:28:24 PM2/19/08 5:28:24 PM

Chapter 33: Graphics with GDI+

1129

 Editing a Text Document:
The CapsEditor Sample

 You now come to the extended example in this chapter. The CapsEditor example is designed to
demonstrate how the principles of drawing that you have learned so far have to be applied in a more
realistic context. The CapsEditor example does not require any new material, apart from responding to
user input via the mouse, but it shows how to manage the drawing of text so that the application
maintains performance while ensuring that the contents of the client area of the main window are
always kept up - to - date.

 The CapsEditor program allows the user to read in a text file, which is then displayed line by line in the
client area. If the user double - clicks any line, then that line will be changed to all uppercase. That is
literally all the example does. Even with this limited set of features, you will find that the work involved
in making sure everything is displayed in the right place while considering performance issues is quite
complex. In particular, you have a new element here: The contents of the document can change — either
when the user selects the menu option to read a new file, or when she double - clicks to capitalize a line.
In the first case, you need to update the document size so the scroll bars still work correctly, and you
have to redisplay everything. In the second case, you need to check carefully whether the document size
has changed, and what text needs to be redisplayed.

 This section starts by reviewing the appearance of CapsEditor . When the application is first run, it has
no document loaded and resembles Figure 33 - 17 .

Figure 33-17

 The File menu has two options: Open, which evokes OpenFileDialog when selected and reads in
whatever file the user clicks, and Exit, which closes the application when clicked. Figure 33 - 18 shows
 CapsEditor displaying its own source file, Form1.cs . (A few lines have been double - clicked in this
image to convert them to uppercase.)

c33.indd 1129c33.indd 1129 2/19/08 5:28:25 PM2/19/08 5:28:25 PM

1130

Part V: Presentation

 The sizes of the horizontal and vertical scroll bars are correct. The client area will scroll just enough to
view the entire document. CapsEditor does not try to wrap lines of text — the example is already
complicated enough as is. It just displays each line of the file exactly as it is read in. There are no limits to
the size of the file, but you are assuming that it is a text file and does not contain any nonprintable
characters.

 Begin by adding a using command:

using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.IO;
using System.Windows.Forms;

 You will be using the StreamReader class, which is in the System.IO namespace. Next, you add some
fields to the Form1 class:

 #region Constant fields
 private const string standardTitle = “CapsEditor”;
 // default text in titlebar
 private const uint margin = 10;
 // horizontal and vertical margin in client area
 #endregion
 #region Member fields
 // The ‘document’
 private readonly List < TextLineInformation > documentLines =
 new List < TextLineInformation > ();
 private uint lineHeight; // height in pixels of one line
 private Size documentSize; // how big a client area is needed to
 // display document
 private uint nLines; // number of lines in document
 private Font mainFont; // font used to display all lines
 private Font emptyDocumentFont; // font used to display empty message

Figure 33-18

c33.indd 1130c33.indd 1130 2/19/08 5:28:25 PM2/19/08 5:28:25 PM

Chapter 33: Graphics with GDI+

1131

 private readonly Brush mainBrush = Brushes.Blue;
 // brush used to display document text
 private readonly Brush emptyDocumentBrush = Brushes.Red;
 // brush used to display empty document message
 private Point mouseDoubleClickPosition;
 // location mouse is pointing to when double-clicked
 private readonly OpenFileDialog fileOpenDialog = new OpenFileDialog();
 // standard open file dialog
 private bool documentHasData = false;
 // set to true if document has some data in it
 #endregion

 Most of these fields should be self - explanatory. The documentLines field is a List < TextLineInformat
ion > that contains the actual text of the file that has been read in. Actually, this is the field that contains
the data in the document. Each element of documentLines contains information for one line of text that
has been read in. Because it is a List < TextLineInformation > rather than a plain array, you can
dynamically add elements to it as you read in a file.

 As previously mentioned, each documentLines element contains information about a line of text. This
information is actually an instance of another class, TextLineInformation :

 class TextLineInformation
 {
 public string Text;
 public uint Width;
 }

 TextLineInformation looks like a classic case where you would normally use a struct rather than
a class because it is just there to group a couple of fields. However, its instances are always accessed as
elements of a List < TextLineInformation > , which expects its elements to be stored as reference
types.

 Each TextLineInformation instance stores a line of text — and that can be thought of as the smallest
item that is displayed as a single item. In general, for each similar item in a GDI+ application, you would
probably want to store the text of the item, as well as the world coordinates of where it should be
displayed and its size. (The page coordinates will change frequently, whenever the user scrolls, whereas
world coordinates will normally change only when other parts of the document are modified in some
way.) In this case, you have stored only the Width of the item because the height in this case is just the
height of whatever your selected font is. It is the same for all lines of text so there is no point storing
the height separately for each one; you store it once, in the Form1.lineHeight field. As for the position,
well, in this case, the x coordinate is just equal to the margin, and the y coordinate is easily calculated as:

margin + lineHeight*(however many lines are above this one)

 If you had been trying to display and manipulate, say, individual words instead of complete lines, then
the x position of each word would have to be calculated using the widths of all the previous words on
that line of text, but the intent is to keep it simple here, which is why you are treating each line of text as
one single item.

 Let ’ s turn to the main menu now. This part of the application is more the realm of Windows Forms (see
Chapter 31 , “ Windows Forms ”) than of GDI+. Add the menu options using the design view in Visual
Studio 2008, but rename them menuFile , menuFileOpen , and menuFileExit . Next, add event
handlers for the File Open and File Exit menu options using the Visual Studio 2008 properties window.
The event handlers have their Visual Studio 2008 – generated names of menuFileOpen_Click() and
 menuFileExit_Click() .

c33.indd 1131c33.indd 1131 2/19/08 5:28:25 PM2/19/08 5:28:25 PM

1132

Part V: Presentation

 Add some extra initialization code in the Form1() constructor:

public Form1()
{
 InitializeComponent();
 CreateFonts();
 fileOpenDialog.FileOk += delegate { LoadFile(fileOpenDialog.FileName); };
 fileOpenDialog.Filter =
 “Text files (*.txt)|*.txt|C# source files (*.cs)|*.cs”;

}

 You add the event handler here for instances when the user clicks OK in the File Open dialog box. You
have also set the filter for the Open File dialog box, so that you can load text files only. The example in
this case only uses .txt files, in addition to the C# source files, so you can use the application to examine
the source code for the samples.

 CreateFonts() is a helper method that sorts out the fonts you intend to use:

private void CreateFonts()
{
 mainFont = new Font(“Arial”, 10);
 lineHeight = (uint)mainFont.Height;
 emptyDocumentFont = new Font(“Verdana”, 13, FontStyle.Bold);
}

 The actual definitions of the handlers are pretty standard:

protected void OpenFileDialog_FileOk(object Sender, CancelEventArgs e)
{
 LoadFile(fileOpenDialog.FileName);
}
protected void menuFileOpen_Click(object sender, EventArgs e)
{
 fileOpenDialog.ShowDialog();
}
protected void menuFileExit_Click(object sender, EventArgs e)
{
 Close();
}

 Next, take a look at the LoadFile() method. It handles the opening and reading of a file (as well as
ensuring a Paint event is raised to force a repaint with the new file):

private void LoadFile(string FileName)
{
 StreamReader sr = new StreamReader(FileName);
 string nextLine;
 documentLines.Clear();
 nLines = 0;
 TextLineInformation nextLineInfo;
 while ((nextLine = sr.ReadLine()) != null)
 {
 nextLineInfo = new TextLineInformation();
 nextLineInfo.Text = nextLine;
 documentLines.Add(nextLineInfo);
 ++nLines;
 }

c33.indd 1132c33.indd 1132 2/19/08 5:28:26 PM2/19/08 5:28:26 PM

Chapter 33: Graphics with GDI+

1133

 sr.Close();
 documentHasData = (nLines > 0) ? true : false;
 CalculateLineWidths();
 CalculateDocumentSize();
 Text = standardTitle + “ - “ + FileName;
 Invalidate();
}

 Most of this function is just standard file - reading (see Chapter 25 , “ Manipulating Files and the
Registry ”). Note that as the file is read, you progressively add lines to documentLines ArrayList , so
this array ends up containing information for each of the lines in order. After you have read in the file,
you set the documentHasData flag, which indicates whether there is actually anything to display. Your
next task is to work out where everything is to be displayed, and, having done that, how much client
area you need to display the file as well as the document size that will be used to set the scroll bars.
Finally, you set the title bar text and call Invalidate() . Invalidate() is an important method
supplied by Microsoft, so the next section discusses its use first, before examining the code for the
 CalculateLineWidths() and CalculateDocumentSize() methods.

 The Invalidate() Method
 Invalidate() is a member of System.Windows.Forms.Form . It marks an area of the client window as
invalid and, therefore, in need of repainting, and then makes sure a Paint event is raised.
 Invalidate() has a couple of overrides: You can pass it a rectangle that specifies (in page coordinates)
precisely which area of the window needs repainting. If you do not pass any parameters, it will just
mark the entire client area as invalid.

 If you know that something needs painting, why don ’ t you just call OnPaint() or some other method to
do the painting directly? The answer is that, in general, calling painting routines directly is regarded as
bad programming practice — if your code decides it wants some painting done, you should call
 Invalidate() . Here is why:

 Drawing is almost always the most processor - intensive task a GDI+ application will carry out,
so doing it in the middle of other work holds up the other work. With the example, if you had
directly called a method to do the drawing from the LoadFile() method, then the LoadFile()
method would not return until that drawing task was complete. During that time, your
application cannot respond to any other events. However, by calling Invalidate() , you are
simply getting Windows to raise a Paint event before immediately returning from LoadFile() .
Windows is then free to examine the events that are in line to be handled. How this works
internally is that the events sit as what are known as messages in a message queue . Windows
periodically examines the queue, and if there are events in it, then it picks one and calls the
corresponding event handler. Although the Paint event might be the only one sitting in the
queue (so OnPaint() is called immediately anyway), in a more complex application there might
be other events that ought to get priority over your Paint event. In particular, when the user
has decided to quit the application, this will be marked by a message known as WM_QUIT .

 If you have a more complicated, multithreaded application, then you will probably want just
one thread to handle all the drawing. Using Invalidate() to route all drawing through the
message queue provides a good way of ensuring that the same thread does all the drawing, no
matter what other thread requested the drawing operation. (Whatever thread is responsible for
the message queue will be the thread that called Application.Run() .)

 There is an additional performance - related reason. Suppose that a couple of different requests to
draw part of the screen come in at about the same time. Maybe your code has just modified the
document and wants to ensure the updated document is displayed, while at the same time
the user has just moved another window that was covering part of the client area out of the way.

❑

❑

❑

c33.indd 1133c33.indd 1133 2/19/08 5:28:26 PM2/19/08 5:28:26 PM

1134

Part V: Presentation

By calling Invalidate() , you are giving Windows a chance to notice that this has occurred.
Windows can then merge the Paint events if appropriate, combining the invalidated areas, so
that the painting is only done once.

 The code to do the painting is probably going to be one of the most complex parts of the code in
your application, especially if you have a very sophisticated user interface. The people who
have to maintain your code in a couple of years time will thank you for having kept your
painting code all in one place and as simple as you reasonably can — something that is easier to
do if you do not have too many pathways into it from other parts of the program.

 The bottom line from all of this is that it is good practice to keep all of your painting in the OnPaint()
routine, or in other methods called from that method. However, you have to strike a balance; if you want
to replace just one character on the screen and you know perfectly well that it won ’ t affect anything else
that you have drawn, then you might decide that it ’ s not worth the overhead of going through
 Invalidate() and just write a separate drawing routine.

 In a very complicated application, you might even write a full class that takes responsibility for drawing
to the screen. A few years ago when MFC was the standard technology for GDI - intensive applications,
MFC followed this model, with a C++ class, C < ApplicationName > View , that was responsible for
painting. However, even in this case, this class had one member function, OnDraw() , which was
 designed to be the entry point for most drawing requests.

 Calculating Item Sizes and Document Size
 This section returns to the CapsEditor example and examines the CalculateLineWidths() and
 CalculateDocumentSize() methods called from LoadFile() :

private void CalculateLineWidths()
{
 Graphics dc = this.CreateGraphics();
 foreach (TextLineInformation nextLine in documentLines)
 {
 nextLine.Width = (uint)dc.MeasureString(nextLine.Text,
 mainFont).Width;
 }
}

 This method simply runs through each line that has been read in and uses the Graphics
.MeasureString() method to work out and store how much horizontal screen space the string requires.
You store the value because MeasureString() is computationally intensive. If the CapsEditor sample had
not been simple enough to easily work out the height and location of each item, then this method would
almost certainly have needed to be implemented in such a way as to compute all those quantities, too.

 Now that you know how big each item on the screen is and you can calculate where each item goes, you
are in a position to work out the actual document size. The height is the number of lines multiplied by
the height of each line. The width will need to be worked out by iterating through the lines to find the
longest. For both height and width, you will also want to make an allowance for a small margin around
the displayed document to make the application look more attractive.

 The following is the method that calculates the document size:

 private void CalculateDocumentSize()
 {
 if (!documentHasData)

❑

c33.indd 1134c33.indd 1134 2/19/08 5:28:26 PM2/19/08 5:28:26 PM

Chapter 33: Graphics with GDI+

1135

 {
 documentSize = new Size(100, 200);
 }
 else
 {
 documentSize.Height = (int)(nLines*lineHeight) + 2*(int)margin;
 uint maxLineLength = 0;
 foreach (TextLineInformation nextWord in documentLines)
 {
 uint tempLineLength = nextWord.Width;
 if (tempLineLength > maxLineLength)
 {
 maxLineLength = tempLineLength;
 }
 }
 maxLineLength += 2*margin;
 documentSize.Width = (int)maxLineLength;
 }
 AutoScrollMinSize = documentSize;
 }

 This method first checks whether there is any data to be displayed. If there is not, then you cheat a bit
and use a hard - coded document size, which is big enough to display the big red < Empty Document >
warning. If you had wanted to really do it properly, you would have used MeasureString() to check
how big that warning actually is.

 Once you have worked out the document size, you tell the Form instance what the size is by setting the
 Form.AutoScrollMinSize property. When you do this, something interesting happens behind the
scenes. In the process of setting this property, the client area is invalidated and a Paint event is raised,
for the very sensible reason that changing the size of the document means scroll bars will need to be
added or modified and the entire client area will almost certainly be repainted. Why is that interesting?
If you look back at the code for LoadFile() , you will realize that the call to Invalidate() in that
method is actually redundant. The client area will be invalidated anyway when you set the document
size. The explicit call to Invalidate() was left in the LoadFile() implementation to illustrate how
you should normally do things. In fact, in this case, calling Invalidate() again will only needlessly
request a duplicate Paint event. However, this in turn illustrates how Invalidate() gives Windows
the chance to optimize performance. The second Paint event will not, in fact, get raised: Windows will
see that there is a Paint event already sitting in the queue and will compare the requested invalidated
regions to see if it needs to do anything to merge them. In this case, both Paint events will specify the
entire client area, so nothing needs to be done, and Windows will quietly drop the second Paint request.
Of course, going through that process will take up a little bit of processor time, but it will be a negligible
amount of time compared to how long it takes to actually do some painting.

 OnPaint()
 Now that you have seen how CapsEditor loads the file, it ’ s time to look at how the painting is done:

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 Graphics dc = e.Graphics;
 int scrollPositionX = AutoScrollPosition.X;
 int scrollPositionY = AutoScrollPosition.Y;
 dc.TranslateTransform(scrollPositionX, scrollPositionY); (continued)

c33.indd 1135c33.indd 1135 2/19/08 5:28:27 PM2/19/08 5:28:27 PM

1136

Part V: Presentation

 if (!documentHasData)
 {
 dc.DrawString(“ < Empty document > ”, emptyDocumentFont,
 emptyDocumentBrush, new Point(20,20));
 base.OnPaint(e);
 return;
 }
 // work out which lines are in clipping rectangle
 int minLineInClipRegion =
 WorldYCoordinateToLineIndex(e.ClipRectangle.Top -
 scrollPositionY);
 if (minLineInClipRegion == -1)
 {
 minLineInClipRegion = 0;
 }
 int maxLineInClipRegion =
 WorldYCoordinateToLineIndex(e.ClipRectangle.Bottom -
 scrollPositionY);
 if (maxLineInClipRegion > = documentLines.Count ||
 maxLineInClipRegion == -1)
 {
 maxLineInClipRegion = documentLines.Count-1;
 }
 TextLineInformation nextLine;
 for (int i=minLineInClipRegion; i < =maxLineInClipRegion ; i++)
 {
 nextLine = (TextLineInformation)documentLines[i];
 dc.DrawString(nextLine.Text, mainFont, mainBrush,
 LineIndexToWorldCoordinates(i));
 }
 }

 At the heart of this OnPaint() override is a loop that goes through each line of the document, calling
 Graphics.DrawString() to paint each one. The rest of this code is mostly concerned with optimizing
the painting — figuring out what exactly needs painting instead of rushing in and telling the graphics
instance to redraw everything.

 You begin by checking if there is any data in the document. If there is not, then you draw a quick
message saying so, call the base class ’ s OnPaint() implementation, and exit. If there is data, then you
start looking at the clipping rectangle by calling another method, WorldYCoordinateToLineIndex() .
This method is examined next, but essentially it takes a given y position relative to the top of the
document, and works out what line of the document is being displayed at that point.

 The first time you call the WorldYCoordinateToLineIndex() method, you pass it the coordinate value
 (e.ClipRectangle.Top - scrollPositionY) . This is just the top of the clipping region, converted
to world coordinates. If the return value is – 1 , you play it safe and assume that you need to start at the
beginning of the document (this is the case if the top of the clipping region is within the top margin).

 Once you have done all that, you essentially repeat the same process for the bottom of the clipping
rectangle to find the last line of the document that is inside the clipping region. The indices of the
first and last lines are respectively stored in minLineInClipRegion and maxLineInClipRegion ,
so then you can just run a for loop between these values to do your painting. Inside the painting
loop, you actually need to do roughly the reverse transformation to the one performed by
 WorldYCoordinateToLineIndex() . You are given the index of a line of text, and you need to check

(continued)

c33.indd 1136c33.indd 1136 2/19/08 5:28:27 PM2/19/08 5:28:27 PM

Chapter 33: Graphics with GDI+

1137

where it should be drawn. This calculation is actually quite simple, but you have wrapped it up in
another method, LineIndexToWorldCoordinates() , which returns the required coordinates of the
top - left corner of the item. The returned coordinates are world coordinates, but that is fine because you
have already called TranslateTransform() on the Graphics object so that you need to pass it world,
rather than page, coordinates when asking it to display items.

 Coordinate Transforms
 This section examines the implementation of the helper methods that are written in the CapsEditor
sample to help you with coordinate transforms. These are the WorldYCoordinateToLineIndex() and
 LineIndexToWorldCoordinates() methods referred to in the previous section, as well as a couple of
other methods.

 First, LineIndexToWorldCoordinates() takes a given line index, and works out the world coordinates
of the top - left corner of that line, using the known margin and line height:

 private Point LineIndexToWorldCoordinates(int index)
 {
 Point TopLeftCorner = new Point(
 (int)margin, (int)(lineHeight*index + margin));
 return TopLeftCorner;
 }

 You also use a method that roughly does the reverse transform in OnPaint() .
 WorldYCoordinateToLineIndex() works out the line index, but it takes into account only a vertical
world coordinate because it is used to work out the line index corresponding to the top and bottom of
the clip region:

 private int WorldYCoordinateToLineIndex(int y)
 {
 if (y < margin)
 {
 return -1;
 }
 return (int)((y-margin)/lineHeight);
 }

 There are three more methods, which will be called from the handler routine that responds to the user
double - clicking the mouse. First, you have a method that works out the index of the line being displayed at
given world coordinates. Unlike WorldYCoordinateToLineIndex() , this method takes into account the x
and y positions of the coordinates. It returns – 1 if there is no line of text covering the coordinates passed in:

 private int WorldCoordinatesToLineIndex(Point position)
 {
 if (!documentHasData)
 {
 return -1;
 }
 if (position.Y < margin || position.X < margin)
 {
 return -1;
 }
 int index = (int)(position.Y-margin)/(int)this.lineHeight;
 // check position is not below document

(continued)

c33.indd 1137c33.indd 1137 2/19/08 5:28:27 PM2/19/08 5:28:27 PM

1138

Part V: Presentation

 if (index > = documentLines.Count)
 {
 return -1;
 }
 // now check that horizontal position is within this line
 TextLineInformation theLine =
 (TextLineInformation)documentLines[index];
 if (position.X > margin + theLine.Width)
 {
 return -1;
 }
 // all is OK. We can return answer
 return index;
 }

 Finally, on occasion, you also need to convert between line index and page, rather than world,
coordinates. The following methods achieve this:

 private Point LineIndexToPageCoordinates(int index)
 {
 return LineIndexToWorldCoordinates(index) +
 new Size(AutoScrollPosition);
 }
 private int PageCoordinatesToLineIndex(Point position)
 {
 return WorldCoordinatesToLineIndex(position - new
 Size(AutoScrollPosition));
 }

 Note that when converting to page coordinates, you add the AutoScrollPosition , which is negative.

 Although these methods by themselves do not look particularly interesting, they do illustrate a general
technique that you will probably need to use often. With GDI+, you will often find yourself in a situation
where you have been given specific coordinates (for example the coordinates of where the user has
clicked the mouse), and you will need to figure out what item is being displayed at that point. Or it
could happen the other way around — given a particular display item, where should it be displayed?
Hence, if you are writing a GDI+ application, you will probably find it useful to write methods that do
the equivalent of the coordinate transformation methods illustrated here.

 Responding to User Input
 So far, with the exception of the File menu in the CapsEditor sample, everything you have done in this
chapter has been one way: The application has talked to the user by displaying information on the
screen. Almost all software of course works both ways: the user can talk to the software as well. You are
now going to add that functionality to CapsEditor .

 Getting a GDI+ application to respond to user input is actually a lot simpler than writing the code to
draw to the screen. (Chapter 31 , “ Windows Forms, ” covers how to handle user input.) Essentially, you
override methods from the Form class that are called from the relevant event handler, in much the same
way that OnPaint() is called when a Paint event is raised.

 The following table lists the methods you might want to override when the user clicks or moves the
mouse.

(continued)

c33.indd 1138c33.indd 1138 2/19/08 5:28:28 PM2/19/08 5:28:28 PM

Chapter 33: Graphics with GDI+

1139

 If you want to detect when the user types in any text, then you will probably want to override the
methods listed in the following table.

Method Called When . . .

OnClick(EventArgs e) Mouse is clicked.

OnDoubleClick(EventArgs e) Mouse is double-clicked.

OnMouseDown(MouseEventArgs e) Left mouse button is pressed.

OnMouseHover(MouseEventArgs e) Mouse stays still somewhere after moving.

OnMouseMove(MouseEventArgs e) Mouse is moved.

OnMouseUp(MouseEventArgs e) Left mouse button is released.

Method Called When . . .

OnKeyDown(KeyEventArgs e) A key is pressed.

OnKeyPress(KeyPressEventArgs e) A key is pressed and released.

OnKeyUp(KeyEventArgs e) A pressed key is released.

 Note that some of these events overlap. For example, when the user presses a mouse button, the
 MouseDown event is raised. If the button is immediately released again, then this will raise the MouseUp
event and the Click event. In addition, some of these methods take an argument that is derived from
 EventArgs rather than an instance of EventArgs itself. These instances of derived classes can be used
to give more information about a particular event. MouseEventArgs has two properties, X and Y , which
give the device coordinates of the mouse at the time it was pressed. Both KeyEventArgs and
 KeyPressEventArgs have properties that indicate which key or keys the event concerns.

 That is all there is to it. It is up to you to think about the logic of precisely what you want to do. The only
point to note is that you will probably find yourself doing a bit more logic work with a GDI+ application
than you would have with a Windows.Forms application. That is because in a Windows.Forms
application you are typically responding to high - level events (TextChanged for a text box, for example).
By contrast, with GDI+, the events tend to be more elementary — user clicks the mouse or presses the
H key. The action your application takes is likely to depend on a sequence of events rather than on a single
event. For example, say your application works like Microsoft Word for Windows: to select some text, the
user clicks the left mouse button, and then moves the mouse and releases the left mouse button. Your
application receives the MouseDown event, but there is not much you can do with this event except record
that the mouse was clicked with the cursor in a certain position. Then, when the MouseMove event is
received, you will want to check from the record whether the left button is currently down, and if so,
highlight text as the user selects it. When the user releases the left mouse button, your corresponding
action (in the OnMouseUp() method) will need to check whether any dragging took place while the mouse
button was down and act accordingly within the method. Only at this point is the sequence complete.

 Another point to consider is that, because certain events overlap, you will often have a choice of which
event you want your code to respond to.

 The golden rule is to think carefully about the logic of every combination of mouse movement or click
and keyboard event that the user might initiate, and ensure that your application responds in a way that

c33.indd 1139c33.indd 1139 2/19/08 5:28:28 PM2/19/08 5:28:28 PM

1140

Part V: Presentation

is intuitive and in accordance with the expected behavior of applications in every case. Most of your
work here will be in thinking rather than in coding, although the coding you do will be tricky because
you might need to take into account many combinations of user input. For example, what should your
application do if the user starts typing in text while one of the mouse buttons is held down? It might
sound like an improbable combination, but eventually some user is going to try it!

 The CapsEditor example keeps things very simple, so you do not really have any combinations to think
about. The only thing you are going to respond to in the example is when the user double - clicks, in
which case you capitalize whatever line of text the mouse pointer is hovering over.

 This should be a simple task, but there is one snag. You need to trap the DoubleClick event, but the
previous table shows that this event takes an EventArgs parameter, not a MouseEventArgs parameter.
The trouble is that you need to know where the mouse is when the user double - clicks if you are to
identify correctly the line of text to be capitalized — and you need a MouseEventArgs parameter to do
that. There are two workarounds. One is to use a static method implemented by the Form1 object
 Control.MousePosition to find the mouse position:

protected override void OnDoubleClick(EventArgs e)
{
 Point MouseLocation = Control.MousePosition;
 // handle double click
}

 In most cases, this will work. However, there could be a problem if your application (or even some other
application with a high priority) is doing some computationally intensive work at the moment the user
double - clicks. It just might happen in that case that the OnDoubleClick() event handler does not get
called until perhaps half a second or so after the user has double - clicked. You do not want such delays
because they usually annoy users intensely, but even so, occasionally it does happen and sometimes for
reasons beyond the control of your application (a slow computer, for instance). The trouble is that half a
second is easily enough time for the mouse to be moved halfway across the screen, in which case your
call to Control.MousePosition will return the completely wrong location!

 A better approach here is to rely on one of the many overlaps between mouse event meanings.
The first part of double - clicking a mouse involves pressing the left button down. This means that if
 OnDoubleClick() is called, you know that OnMouseDown() has also just been called, with the mouse at
the same location. You can use the OnMouseDown() override to record the position of the mouse, ready
for OnDoubleClick() . This is the approach taken in CapsEditor :

 protected override void OnMouseDown(MouseEventArgs e)
 {
 base.OnMouseDown(e);
 mouseDoubleClickPosition = new Point(e.X, e.Y);
 }

 Now look at the OnDoubleClick() override. There is quite a bit more work to do here:

 protected override void OnDoubleClick(EventArgs e)
 {
 int i = PageCoordinatesToLineIndex(mouseDoubleClickPosition);
 if (i > = 0)
 {
 TextLineInformation lineToBeChanged =
 (TextLineInformation)documentLines[i];
 lineToBeChanged.Text = lineToBeChanged.Text.ToUpper();
 Graphics dc = this.CreateGraphics();
 uint newWidth =(uint)dc.MeasureString(lineToBeChanged.Text,
 mainFont).Width;

c33.indd 1140c33.indd 1140 2/19/08 5:28:29 PM2/19/08 5:28:29 PM

Chapter 33: Graphics with GDI+

1141

 if (newWidth > lineToBeChanged.Width)
 lineToBeChanged.Width = newWidth;
 if (newWidth+2*margin > this.documentSize.Width)
 {
 documentSize.Width = (int)newWidth;
 AutoScrollMinSize = this.documentSize;
 }
 Rectangle changedRectangle = new Rectangle(
 LineIndexToPageCoordinates(i),
 new Size((int)newWidth,
 (int)this.lineHeight));
 Invalidate(changedRectangle);
 }
 base.OnDoubleClick(e);
 }

 You start off by calling PageCoordinatesToLineIndex() to work out which line of text the mouse
pointer was hovering over when the user double - clicked. If this call returns – 1 , then you weren ’ t over
any text, so there is nothing to do — except, of course, call the base class version of OnDoubleClick() to
let Windows do any default processing.

 Assuming that you have identified a line of text, you can use the string.ToUpper() method to convert
it to uppercase. That was the easy part. The hard part is figuring out what needs to be redrawn where.
Fortunately, because this example is simple, there are not too many combinations. You can assume that
converting to uppercase will always either leave the width of the line on the screen unchanged or
increase it. Capital letters are bigger than lowercase letters; therefore, the width will never go down.
You also know that because you are not wrapping lines, your line of text will not overflow to the next
line and push out other text below. Your action of converting the line to uppercase will not, therefore,
actually change the locations of any of the other items being displayed. That is a big simplification!

 The next thing the code does is use Graphics.MeasureString() to work out the new width of the text.
There are now just two possibilities:

 The new width might make your line the longest line and cause the width of the entire
document to increase. If that is the case, then you will need to set AutoScrollMinSize to the
new size so that the scroll bars are correctly placed.

 The size of the document might be unchanged.

 In either case, you need to get the screen redrawn by calling Invalidate() . Only one line has changed;
therefore, you do not want to have the entire document repainted. Rather, you need to work out the
bounds of a rectangle that contains just the modified line, so that you can pass this rectangle to
 Invalidate() , ensuring that just that line of text will be repainted. That is precisely what the previous
code does. Your call to Invalidate() initiates a call to OnPaint() when the mouse event handler
finally returns. Keeping in mind the earlier comments about the difficulty in setting a break point in
 OnPaint() , if you run the sample and set a break point in OnPaint() to trap the resultant painting
action, then you will find that the PaintEventArgs parameter to OnPaint() does indeed contain a
clipping region that matches the specified rectangle. And because you have overloaded OnPaint() to
take careful account of the clipping region, only the one required line of text will be repainted.

 Printing
 So far, the chapter has focused exclusively on drawing to the screen. However, at some point you will
probably also want to be able to produce a hard copy of the data. That is the topic of this section.
You are going to extend the CapsEditor sample so that it is able to print preview and print the
document that is being edited.

❑

❑

c33.indd 1141c33.indd 1141 2/19/08 5:28:29 PM2/19/08 5:28:29 PM

1142

Part V: Presentation

 Unfortunately, there is not enough space to go into too much detail about printing here, so the printing
functionality you will implement is very basic. Typically, when you are implementing the ability for an
application to print data, you will need to add three items to the application ’ s main File menu:

 Page Setup , which allows the user to choose options such as which pages to print, which printer
to use, and so on.

 Print Preview , which opens a new Form that displays a mock - up of what the printed copy
should look like.

 Print , which prints the document.

 In this case, to keep things simple, you will not implement a Page Setup menu option. Printing will only
be possible using default settings. Note, however, that if you do want to implement Page Setup,
Microsoft has already written a page setup dialog class for you to use System.Windows.Forms
.PrintDialog . You will normally want to write an event handler that displays this form and saves the
settings chosen by the user.

 In many ways, printing is just the same as displaying to a screen. You will be supplied with a device
context (Graphics instance) and call all the usual display commands against that instance. Microsoft has
written a number of classes to assist you in doing this; the two main ones that you need to use are System
.Drawing.Printing.PrintDocument and System.Drawing.Printing.PrintPreviewDialog . These
two classes handle the process of making sure that drawing instructions passed to a device context are
handled appropriately for printing, leaving you to think about the logic of what to print where.

 Some important differences exist between printing or print previewing on the one hand, and displaying
to the screen on the other hand. Printers cannot scroll; instead, they turn out pages. Therefore, you will
need to make sure that you find a sensible way of dividing your document into pages and draw each
page as requested. Among other things, that means calculating how much of your document will fit onto
a single page and, therefore, how many pages you will need and which page each part of the document
needs to be written to.

 Despite these complications, the process of printing is quite simple. Programmatically, the steps you
need to go through look roughly like this:

 Printing — You instantiate a PrintDocument object and call its Print() method. This method
signals the PrintPage event to print the first page. PrintPage takes a PrintPageEventArgs
parameter, which supplies information concerning paper size and setup, as well as a Graphics
object used for the drawing commands. You should therefore have written an event handler for
this event, and have implemented this handler to print a page. This event handler should also
set a Boolean property of the PrintPageEventArgs called HasMorePages to either true or
 false to indicate whether there are more pages to be printed. The PrintDocument.Print()
method will repeatedly raise the PrintPage event until it sees that HasMorePages has been
set to false .

 Print Previewing — In this case, you instantiate both a PrintDocument object and a
 PrintPreviewDialog object. You attach the PrintDocument to the PrintPreviewDialog
(using the property PrintPreviewDialog.Document) and then call the dialog ’ s
 ShowDialog() method. This method modally displays the dialog, which turns out to be a
standard Windows print preview form and which displays pages of the document. Internally,
the pages are displayed once again by repeatedly raising the PrintPage event until the
 HasMorePages property is false . There is no need to write a separate event handler for this;
you can use the same event handler as used for printing each page because the drawing code
ought to be identical in both cases. (After all, whatever is print previewed ought to look
identical to the printed version!)

❑

❑

❑

❑

❑

c33.indd 1142c33.indd 1142 2/19/08 5:28:29 PM2/19/08 5:28:29 PM

Chapter 33: Graphics with GDI+

1143

 Implementing Print and Print Preview
 Now that this process has been outlined in broad strokes, in this section you see how this works in code
terms. You can download the code as the PrintingCapsEdit project at www.wrox.com ; it consists of the
 CapsEditor project with the changes displayed in the following snippet.

 You begin by using the Visual Studio 2008 design view to add two new items to the File menu: Print and
Print Preview. You also use the properties window to name these items menuFilePrint and
 menuFilePrintPreview , and to set them to be disabled when the application starts up (you cannot
print anything until a document has been opened!). You arrange for these menu items to be enabled by
adding the following code to the main form ’ s LoadFile() method, which is responsible for loading a
file into the CapsEditor application:

private void LoadFile(string FileName)
{
 StreamReader sr = new StreamReader(FileName);
 string nextLine;
 documentLines.Clear();
 nLines = 0;
 TextLineInformation nextLineInfo;
 while ((nextLine = sr.ReadLine()) != null)
 {
 nextLineInfo = new TextLineInformation();
 nextLineInfo.Text = nextLine;
 documentLines.Add(nextLineInfo);
 ++nLines;
 }
 sr.Close();
 if (nLines > 0)
 {
 documentHasData = true;
 menuFilePrint.Enabled = true;
 menuFilePrintPreview.Enabled = true;
 }
 else
 {
 documentHasData = false;
 menuFilePrint.Enabled = false;
 menuFilePrintPreview.Enabled = false;
 }
 CalculateLineWidths();
 CalculateDocumentSize();
 Text = standardTitle + “ - “ + FileName;
 Invalidate();
}

 The above code is the new code added to this method. Next, you add a member field to the Form1 class:

 public partial class Form1 : Form
 {
 private int pagesPrinted = 0;

 This field will be used to indicate which page you are currently printing. You are making it a member
field because you will need to remember this information between calls to the PrintPage event
handler.

c33.indd 1143c33.indd 1143 2/19/08 5:28:30 PM2/19/08 5:28:30 PM

1144

Part V: Presentation

 Next, you will find the event handlers that handle the selection of the Print or Print Preview menu
options:

private void menuFilePrintPreview_Click(object sender, System.EventArgs e)
{
 this.pagesPrinted = 0;
 PrintPreviewDialog ppd = new PrintPreviewDialog();
 PrintDocument pd = new PrintDocument();
 pd.PrintPage += this.pd_PrintPage;
 ppd.Document = pd;
 ppd.ShowDialog();
}
private void menuFilePrint_Click(object sender, System.EventArgs e)
{
 this.pagesPrinted = 0;
 PrintDocument pd = new PrintDocument();
 pd.PrintPage += new PrintPageEventHandler
 (this.pd_PrintPage);
 pd.Print();
}

 You have already seen the steps involved in printing, and you can see that these event handlers
are simply implementing that procedure. In both cases, you are instantiating a PrintDocument
object and attaching an event handler to its PrintPage event. In the case of printing, you call
 PrintDocument.Print() , whereas for print previewing, you attach the PrintDocument object to
a PrintPreviewDialog and call the preview dialog box object ’ s ShowDialog() method. The real work
to the PrintPage event is done in the event handler. Here is what this handler looks like:

private void pd_PrintPage(object sender, PrintPageEventArgs e)
{
 float yPos = 0;
 float leftMargin = e.MarginBounds.Left;
 float topMargin = e.MarginBounds.Top;
 string line = null;
 // Calculate the number of lines per page.
 int linesPerPage = (int)(e.MarginBounds.Height /
 mainFont.GetHeight(e.Graphics));
 int lineNo = pagesPrinted * linesPerPage;
 // Print each line of the file.
 int count = 0;
 while(count < linesPerPage & & lineNo < this.nLines)
 {
 line = ((TextLineInformation)this.documentLines[lineNo]).Text;
 yPos = topMargin + (count * mainFont.GetHeight(e.Graphics));
 e.Graphics.DrawString(line, mainFont, Brushes.Blue,
 leftMargin, yPos, new StringFormat());
 lineNo++;
 count++;
 }
 // If more lines exist, print another page.
 if(this.nLines > lineNo)
 e.HasMorePages = true;
 else
 e.HasMorePages = false;
 pagesPrinted++;
}

c33.indd 1144c33.indd 1144 2/19/08 5:28:30 PM2/19/08 5:28:30 PM

Chapter 33: Graphics with GDI+

1145

 After declaring a couple of local variables, the first thing you do is work out how many lines of text can
be displayed on one page, which will be the height of a page divided by the height of a line and rounded
down. The height of the page can be obtained from the PrintPageEventArgs.MarginBounds property.
This property is a RectangleF struct that has been initialized to give the bounds of the page. The height
of a line is obtained from the Form1.mainFont field, which is the font used for displaying the text. There
is no reason here for not using the same font for printing too. Note that for the PrintingCapsEditor
sample, the number of lines per page is always the same, so you arguably could have cached the value
the first time you calculated it. However, the calculation is not too hard, and in a more sophisticated
application the value might change, so it is not bad practice to recalculate it every time you print a page.

 You also initialize a variable called lineNo . This gives the zero - based index of the line of the document
that will be the first line of this page. This information is important because, in principle, the
pd_PrintPage() method could have been called to print any page, not just the first page. lineNo
is computed as the number of lines per page times the number of pages that have so far been printed.

 Next, you run through a loop, printing each line. This loop will terminate either when you find that you
have printed all the lines of text in the document, or when you find that you have printed all the lines
that will fit on this page, whichever condition occurs first. Finally, you check whether there is any more
of the document to be printed, and set the HasMorePages property of your PrintPageEventArgs
accordingly. You also increment the pagesPrinted field so that you know to print the correct page the
next time the PrintPage event handler is invoked.

 One point to note about this event handler is that you do not worry about where the drawing commands
are being sent. You simply use the Graphics object that was supplied with the PrintPageEventArgs .
The PrintDocument class that Microsoft has written will internally take care of making sure that, if you
are printing, the Graphics object has been hooked up to the printer; if you are print previewing, then
the Graphics object has been hooked up to the print preview form on the screen.

 Finally, you need to ensure that the System.Drawing.Printing namespace is searched for type
definitions:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Printing;
using System.Text;
using System.Windows.Forms;
using System.IO;

 All that remains is to compile the project and check that the code works. Figure 33 - 19 shows what
happens when you run CapsEdit , load a text document (as before, you have picked the C# source file
for the project), and select Print Preview.

 In Figure 33 - 19 , the document is scrolled to page 5 and the preview is set to display normal size. The
 PrintPreviewDialog has supplied quite a lot of features, as you can see by looking at the toolbar at the
top of the form. The options available include printing the document, zooming in or out, and displaying
two, three, four, or six pages together. These options are all fully functional, without your having to do
any work. Figure 33 - 20 shows the result of changing the zoom to auto and clicking to display four pages
(third toolbar button from the right).

c33.indd 1145c33.indd 1145 2/19/08 5:28:30 PM2/19/08 5:28:30 PM

1146

Figure 33-20

Figure 33-19

Part V: Presentation

c33.indd 1146c33.indd 1146 2/19/08 5:28:31 PM2/19/08 5:28:31 PM

Chapter 33: Graphics with GDI+

1147

 Summary
 This chapter covered the realm of GDI+ — the area of drawing to a display device, where the drawing is
done by your code rather than by some predefined control or dialog box. GDI+ is a powerful tool, and
there are many .NET base classes available to help you draw to a device. You have seen that the process
of drawing is actually relatively simple. In most cases you can draw text or sophisticated figures or
display images with just a couple of C# statements. However, managing your drawing — the behind -
 the - scenes work involving working out what to draw, where to draw it, and what does or does not need
repainting in any given situation — is far more complex and requires careful algorithm design. For this
reason, it is also important to have a good understanding of how GDI+ works and what actions
Windows takes to get something drawn. In particular, because of the architecture of Windows, it is
important that, where possible, drawing should be done by invalidating areas of the window and
relying on Windows to respond by issuing a Paint event.

 Many more .NET classes can be used for drawing than there is space to cover in this chapter. However, if
you have worked through it and understood the principles involved in drawing, then you will be in an
excellent position to explore these classes by looking at their lists of methods in the SDK documentation
and instantiating instances of them to see what they do. In the end, drawing, as with almost any other
aspect of programming, requires logic, careful thought, and clear algorithms if you want to go beyond
the standard controls. Your software will benefit in both user - friendliness and visual appearance if it is
well thought out. Many applications out there rely entirely on controls for their user interface. Although
this can be effective, such applications very quickly end up resembling each other. By adding some GDI+
code to do some custom drawing you can mark out your software as distinct and make it appear more
original, which can only help increase your sales!

 The next chapter takes a look at the latest thick - client presentation technology — Windows Presentation
Foundation (WPF).

c33.indd 1147c33.indd 1147 2/19/08 5:28:31 PM2/19/08 5:28:31 PM

c33.indd 1148c33.indd 1148 2/19/08 5:28:31 PM2/19/08 5:28:31 PM

 Windows Presentation
Foundation

 Windows Presentation Foundation (WPF) is one of the major extensions of .NET Framework 3.0.
WPF is a new library to create the UI for smart client applications. While the Windows Forms
controls are native Windows controls that use Window handles that are based on screen pixels,
WPF is based on DirectX. The application does not use Window handles. It is easy to resize the UI,
and it supports sound and video.

 The main topics of this chapter are, as follows:

❑ An overview of WPF

❑ Shapes as the base drawing elements

❑ Scaling, rotating, and skewing with transformations

❑ Different kind of brushes to fill elements

❑ WPF controls and their features

❑ How to define a layout with WPF panels

❑ The WPF event-handling mechanism

❑ Styles, templates, and resources

 Overview
 One of the big features of WPF is that work can be easily separated between designers and
developers. The outcome from the designer’s work can directly be used by the developer. To make
this possible, you need to understand XAML. The first topic of this chapter gives you an overview
of WPF, including enough information to understand the principles of XAML. It also covers
information on how designers and developers can cooperate. WPF consists of several assemblies
containing thousands of classes. So that you can navigate within this vast number of classes and
find what you need, the overview explains the class hierarchy and namespaces in WPF.

c34.indd 1149c34.indd 1149 2/19/08 5:28:45 PM2/19/08 5:28:45 PM

1150

Part V: Presentation

 XAML
 XML for Applications Markup Language (XAML) is an XML syntax used to define the hierarchical
structure of the user interface. In the following line, you can see the declaration of a button named
 button1 with the content Click Me! . The <Button> element specifies the use of the Button class:

 <Button Name=”button1”>Click Me!</Button>

 There’s always a .NET class behind an XAML element. With attributes and child elements, you set the
value of properties and define handler methods for events.

 To test simple XAML code, you can start the utility XAMLPad.exe (see Figure 34-1) and enter the XAML
code in the edit field. You can write the <Button> element within the <Page> and <Grid> elements that
are already prepared from XAMLPad. With XAMLPad, you can see the XAML outcome immediately.

Figure 34-1

 XAML code can be interpreted by the WPF runtime, but it can also be compiled to BAML (Binary
Application Markup Language), which is done by default by Visual Studio WPF projects. BAML is
added as a resource to the executable.

 Instead of writing XAML, you can also create a button with C# code. You can create a normal
C# console application, add references to the assemblies WindowsBase , PresentationCore , and
 PresentationFramework , and write the following code. In the Main() method, a Window object from
the namespace System.Windows is created, and the property Title is set. Then a Button object
from the namespace System.Windows.Controls is created, the Content is set, and the Content of
the window is set to the button. The Run() method of the Application class is responsible for
processing Windows messages:

 using System;
using System.Windows;
using System.Windows.Controls;
namespace Wrox.ProCSharp.WPF

c34.indd 1150c34.indd 1150 2/19/08 5:28:46 PM2/19/08 5:28:46 PM

1151

Chapter 34: Windows Presentation Foundation

{
 class Program
 {
 [STAThread]
 static void Main()
 {
 Window mainWindow = new Window();
 mainWindow.Title = “WPF Application”;
 Button button1 = new Button();
 button1.Content = “Click Me!”;
 mainWindow.Content = button1;
 button1.Click +=
 (sender, e) => MessageBox.Show(“Button clicked”);
 Application app = new Application();
 app.Run(mainWindow);
 }
 }
}

 The Application class can also be defined by using XAML. With a Visual Studio WPF project, open
the file App.xaml that includes the properties and StartupUri of the Application class.

 Running the application, you get a Window containing the button, as shown in Figure 34-2 .

Figure 34-2

 As you can see, programming WPF is very similar to Windows Forms programming — with the small
difference that the Button has a Content instead of a Text property. However, compared to creating the
UI forms with code, XAML has some great advantages. With XAML, the designer and developer can
cooperate much better. The designer can work on the XAML code and design a stylish UI, while the
developer adds functionality from the code behind using C#. It’s much easier to separate the UI from the
functionality by using XAML.

 You can directly interact with the elements that are defined with XAML from the C# code using code
behind and XAML. You just need to define a name for the element and use the same name as a variable
to change properties and invoke methods.

c34.indd 1151c34.indd 1151 2/19/08 5:28:47 PM2/19/08 5:28:47 PM

1152

Part V: Presentation

 The button has a Content property instead of a Text property because the button can show anything.
You can add text to the content, but also a graphic, a list box, a video — whatever you can think of.

 Properties as Attributes
 Before working with XAML, you need to know important characteristics of the XAML syntax. You can
use XML attributes to specify the properties of classes. The example shows the setting of the Content
and Background properties of the Button class:

 <Button Content=”Click Me!” Background=”LightGreen” />

 Properties as Elements
 Instead of using XML attributes, the properties can also be specified as child elements. The value for the
content can be directly set by specifying the child elements of the Button element. For all other
properties of the Button , the name of the child element is defined by the name of the outer element,
followed by the property name:

 <Button>
 <Button.Background>
 LightGreen
 </Button.Background>
 Click Me!
</Button>

 In the previous example, it is not necessary to use child elements. By using XML attributes, the same
result was achieved. However, using attributes is no longer possible if the value is more complex than a
string. For example, the background can be set to not only a simple color but also to a brush. For
example, you can define the following linear gradient brush:

 <Button>
 <Button.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”>
 <GradientStop Color=”Yellow” Offset=”0.0” />
 <GradientStop Color=”Orange” Offset=”0.25” />
 <GradientStop Color=”Red” Offset=”0.75” />
 <GradientStop Color=”Violet” Offset=”1.0” />
 </LinearGradientBrush>
 </Button.Background>
 Click Me!
</Button>

 Dependency Property
 When programming WPF, you often come across the term dependency property . WPF elements are classes
with methods, properties, and events. Nearly every property of a WPF element is a dependency property.
What does this mean? A dependency property can be dependent on other inputs; for example, themes
and user preferences. Dependency properties are used with data binding, animation, resources, and
styles.

 From the programmatic viewpoint, a dependency property can be read and written not only by invoking
the strongly typed property but also by methods passing a dependency property object.

 Only a class that derives from the base class DependencyObject can include dependency properties.
The following class, MyDependencyObject , defines the dependency property SomeState .
 SomeStateProperty is a static field of type DependencyProperty that backs the dependency property.
The dependency property is registered with the WPF dependency property system using the
 Register() method. The Register() method gets the name of the dependency property, the type of

c34.indd 1152c34.indd 1152 2/19/08 5:28:47 PM2/19/08 5:28:47 PM

1153

Chapter 34: Windows Presentation Foundation

the dependency property, and the owner type. You can set the value of the dependency property by
using the SetValue() method of the DependencyObject base class, and get the value by using the
method GetValue() . Dependency properties usually have a strongly typed access as well. Instead of
using the methods of the DependencyObject base class, the class MyDependencyObject includes the
property SomeState , which invokes the methods of the base class from the implementation of the set
and get accessors. You shouldn’t do something else in the implementation of the set and get accessors as
these property accessors might not be invoked.

 public class MyDependencyObject : DependencyObject
{
 public static readonly DependencyProperty SomeStateProperty =
 DependencyProperty.Register(“SomeState”, typeof(String),
 typeof(MyDependencyObject));

 public string SomeState
 {
 get { return (string)this.GetValue(SomeStateProperty); }
 set { this.SetValue(SomeStateProperty, value); }
 }
}

 With WPF, the class DependencyObject is very high in the hierarchy. Every WPF element is derived
from this base class.

 Attached Property
 A WPF element can also get features from the parent element. For example, if the Button element is
located inside a Canvas element, the button has Top and Left properties that are prefixed with the
parent element’s name. Such a property is known as attached property :

 <Canvas>
 <Button Canvas.Top=”30” Canvas.Left=”40”>
 Click Me!
 </Button>
</Canvas>

 Writing the same functionality from the code behind is a bit different because the Button class doesn’t
have a Canvas.Top and Canvas.Left property, even if it is contained within the Canvas class. There is
a naming pattern for setting attached properties that is common with all classes. The class supporting
attached properties has static methods with the names Set<Property> and Get<Property> , where the
first parameter is the object that the property value is applied to. The Canvas class defines the static
methods SetLeft() and SetTop() to get the same result as in the XAML code shown earlier.

 [STAThread]
 static void Main()
 {
 Window mainWindow = new Window();
 Canvas canvas = new Canvas();
 mainWindow.Content = canvas;
 Button button1 = new Button();
 canvas.Children.Add(button1);
 button1.Content = “Click Me!”;
 Canvas.SetLeft(button1, 40);
 Canvas.SetTop(button1, 30);
 Application app = new Application();
 app.Run(mainWindow);
 }

c34.indd 1153c34.indd 1153 2/19/08 5:28:47 PM2/19/08 5:28:47 PM

1154

Part V: Presentation

 An attached property can be implemented as a dependency object. The method DependencyProperty
.RegisterAttached() registers an attached property.

 Markup Extensions
 When setting values for elements, you can set the value directly. However, sometimes markup
extensions are very helpful. Markup extensions consist of curly brackets followed by a string token
that defines the type of the markup extension. Here is an example of a StaticResource markup
extension:

 <Button Name=”button1” Style=”{StaticResource key}” Content=”Click Me” />

 Instead of using the markup extension, you can write the same thing using child elements:

 <Button Name=”button1”>
 <Button.Style>
 <StaticResource ResourceKey=”key” />
 </Button.Style>
 Click Me!
</Button>

 Markup extensions are mainly used for accessing resources and for data binding. Both of these topics are
discussed later in this chapter.

 Cooperation of Designers and Developers
 Very often, developers not only implement Windows applications, but are also responsible for the
design. This is especially true if the application was built just for in-house use. If someone with
UI design skills was hired to design the UI, usually the developer is given a JPG file of the designer’s
vision of how the UI should look. The developer then has the problem of trying to match the designer’s
plans. Even simple changes by the designer, such as a different look for list boxes or buttons, can lead to
a huge investment using owner-drawn controls. As a result, the UI done by the developer looks very
different from the UI that was originally designed.

 With WPF, this changes. The designer and developer can work on the same XAML code. The designer
can use a tool such as Expression Blend, while the developer uses Visual Studio 2008. Both can work
using the same project files. In the typical progression of this cooperative process, the designer starts a
project with Expression Blend, using the same project files as in Visual Studio. Then the developer takes
over to work on the code behind, while the designer enhances the UI. As the developer enhances the
functionality, the designer can also add new UI features that take advantage of the functionality
provided by the developer.

 Of course, it is also possible to start the application with Visual Studio and enhance the UI later with
Expression Blend. You just need to be careful not to do a UI as you used to do with Windows Forms
because this doesn’t take full advantage of WPF.

 Figure 34-3 shows Expression Blend that was created by using WPF.

 Comparing Expression Blend to Visual Studio extensions, the Expression Blend has great features for
defining styles, creating animations, using graphics, and the like. To work cooperatively, the Expression
Blend can use code-behind classes done by the developer, and the designer can specify the data binding
from the WPF elements to the .NET classes. The designer can also test the complete application by start-
ing it from Expression Blend. Because Expression Blend uses the same MS-Build files as Visual Studio
does, the code-behind C# code is compiled to run the application.

c34.indd 1154c34.indd 1154 2/19/08 5:28:48 PM2/19/08 5:28:48 PM

1155

Chapter 34: Windows Presentation Foundation

 Class Hierarchy
 WPF consists of thousands of classes with a deep hierarchy. To help in understanding the relationship
among the classes, Figure 34-4 shows some of the WPF classes in a class diagram. Some classes and their
functionality are described in the following table.

Figure 34-3

Class Description

DispatcherObject DispatcherObject is an abstract base class for classes that are bound to
one thread. Similar to Windows Forms, WPF requires that methods and
properties be invoked only from the creator thread. Classes that are derived
from DispatcherObject have an associated Dispatcher object that can
be used to switch the thread.

Application In a WPF application, one instance of the Application class is created.
This class implements a Singleton pattern for access to the windows of the
application, resources, and properties.

DependencyObject DependencyObject is the base class for all classes that support
 dependency properties. Dependency properties were discussed earlier.

c34.indd 1155c34.indd 1155 2/19/08 5:28:48 PM2/19/08 5:28:48 PM

1156

Part V: Presentation

 As you can see, WPF classes have a really deep hierarchy. In this and the next chapter, you will see
classes of the core functionality, but it is not possible to cover all the features of WPF with two chapters.

 Namespaces
 Classes from Windows Forms and WPF can easily be confused. The Windows Forms classes are located
in the namespace System.Windows.Forms , while the WPF classes are located inside the namespace
 System.Windows and subnamespaces thereof, with the exception of System.Windows.Forms . The
 Button class for Windows Forms has the full name System.Windows.Forms.Button , and the Button
class for WPF has the full name System.Windows.Controls.Button . Windows Forms is covered in
Chapters 31 and 32 .

Class Description

Visual The base class for all visual elements is Visual. This class includes features
for hit testing and transformation.

UIElement The abstract base class for all WPF elements that need basic presentation
features is UIElement. This class provides tunneling and bubbling events
for mouse moves, drag and drop, and key clicks. It exposes virtual methods
for rendering that can be overridden by derived classes, and it
 provides methods for layout. You already know that WPF no longer uses
Window handles. You can consider this class equivalent to a Windows
 handle.

FrameworkElement FrameworkElement is derived from the base class UIElement and imple-
ments the default behavior of the methods defined by the base class.

Shape Shape is the base class for all shape elements, for example, Line, Ellipse,
Polygon, Rectangle.

Control Control derives from FrameworkElement and is the base class for all
user-interactive elements.

Panel The class Panel derives from FrameworkElement and is the abstract base
class for all panels. This class has a Children property for all UI elements
within the panel and defines methods for arranging the child controls.
Classes that are derived from Panel define different behavior for how the
children are organized, for example, WrapPanel, StackPanel, Canvas,
Grid.

ContentControl ContentControl is the base class for all controls that have a single content
(for example, Label, Button). The default style of a content control may be
limited, but it is possible to change the look by using templates.

c34.indd 1156c34.indd 1156 2/19/08 5:28:53 PM2/19/08 5:28:53 PM

1157

Chapter 34: Windows Presentation Foundation

Namespace Description

System.Windows This is the core namespace of WPF. Here you can find core
classes from WPF such as the Application class; classes for
dependency objects, DependencyObject and
DependencyProperty; and the base class for all WPF
 elements, FrameworkElement.

System.Windows.Annotations The classes from this namespace are used for user-created
annotations and notes on application data that are stored
separately from the document. The namespace
System.Windows.Annotations.Storage contains
classes for storing annotations.

Dispatcher Object

Button Base

Application

Visual

Ul Element

Framework Element

Shape

Ellipse Line

Content Control

User Control Window Stack Panel Grid

List Box ItemLabel

Button

Radio Button

Toggle Button

Check Box

Wrap Panel Canvas

Control Text BlockPanel

Dependency Object

Figure 34-4

 Namespaces and their functionality with WPF are described in the following table.

c34.indd 1157c34.indd 1157 2/19/08 5:28:53 PM2/19/08 5:28:53 PM

1158

Part V: Presentation

Namespace Description

System.Windows.Automation This namespace can be used for automation of WPF applica-
tions. Several subnamespaces are available.
System.Windows.Automation.Peers exposes
WPF elements to automation — for example,
ButtonAutomationPeer and CheckBoxAutomationPeer.
The namespace System.Windows.Automation.Provider
is needed if you create a custom automation provider.

System.Windows.Controls This is the namespace where you can find all the WPF controls,
such as Button, Border, Canvas, ComboBox, Expander,
Slider, ToolTip, TreeView, and the like. In the namespace
System.Windows.Controls.Primitives, you can find
classes to be used within complex controls — for example,
Popup, ScrollBar, StatusBar, TabPanel, and so on.

System.Windows.Converters This namespace contains classes for data conversion. Don’t
expect to find all converter classes in this namespace; core
converter classes are defined in the namespace
System.Windows.

System.Windows.Data This namespace is used by WPF data binding. An important
class in this namespace is the Binding class, which is used to
define the binding between a WPF target element and a CLR
source.

System.Windows.Documents When working with documents, you can find many helpful
classes in this namespace. FixedDocument and
FlowDocument are content elements that can contain other
elements from this namespace. With classes from the
namespace System.Windows.Documents.Serialization
you can write documents to disk.

System.Windows.Ink The Windows Tablet PC and Ultra Mobile PCs are being used
more and more. With these PCs, ink can be used for user
input. The namespace System.Windows.Ink contains
classes to deal with ink input.

System.Windows.Input This namespace contains several classes for command han-
dling, keyboard inputs, working with a stylus, and so on.

System.Windows.Interop For integration with Win32 and WPF, you can find classes in
this namespace.

System.Windows.Markup Helper classes for XAML markup code are located in this
namespace.

System.Windows.Media To work with images, audio, and video content, you can use
classes in this namespace.

System.Windows.Navigation This namespace contains classes for navigation between
 windows.

System.Windows.Resources This namespace contains supporting classes for resources.

c34.indd 1158c34.indd 1158 2/19/08 5:28:53 PM2/19/08 5:28:53 PM

1159

Chapter 34: Windows Presentation Foundation

Namespace Description

System.Windows.Shapes The core classes for the UI are located in the namespace
System.Windows.Shapes: Line, Ellipse, Rectangle, and
the like.

System.Windows.Threading WPF elements are similar to Windows Forms controls bound
to a single thread. In the namespace System.Windows.
Threading, you can find classes to deal with multiple
threads — for example, the Dispatcher class belongs to this
namespace.

System.Windows.Xps XML Paper Specification (XPS) is a new document specifi-
cation that is also supported by Microsoft Word. In the
namespaces System.Windows.Xps, System.Windows.
Xps.Packaging, and System.Windows.Xps.
Serialization, you can find classes to create and stream
XPS documents.

 Shapes
 Shapes are the core elements of WPF. With shapes you can draw 2D graphics using rectangles, lines,
ellipses, paths, polygons, and polylines that are represented by classes derived from the abstract base
class Shape . Shapes are defined in the namespace System.Windows.Shapes .

 The following XAML example draws a yellow face with blue legs, consisting of an ellipse for the face,
two ellipses for the eyes, a path for the mouth, and four lines for the legs:

 <Window x:Class=”ProCSharp.WPF.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”WPF Samples” Height=”260” Width=”230”>
 <Canvas>
 <Ellipse Canvas.Left=”50” Canvas.Top=”50” Width=”100” Height=”100”
 Stroke=”Blue” StrokeThickness=”4” Fill=”Yellow” />
 <Ellipse Canvas.Left=”60” Canvas.Top=”65” Width=”25” Height=”25”
 Stroke=”Blue” StrokeThickness=”3” Fill=”White” />
 <Ellipse Canvas.Left=”70” Canvas.Top=”75” Width=”5” Height=”5”
 Fill=”Black” />
 <Path Stroke=”Blue” StrokeThickness=”4”
 Data=”M 62,125 Q 95,122 102,108” />
 <Line X1=”124” X2=”132” Y1=”144” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”114” X2=”133” Y1=”169” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”92” X2=”82” Y1=”146” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”68” X2=”83” Y1=”160” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” />
 </Canvas>
</Window>

 Figure 34-5 shows the result from the XAML code.

c34.indd 1159c34.indd 1159 2/19/08 5:28:54 PM2/19/08 5:28:54 PM

1160

Part V: Presentation

 All of these WPF elements can be accessed programmatically, even if they are buttons or shapes such as
lines or rectangles. Setting the Name property with the Path element to mouth allows you to access this
element programmatically with the variable name mouth :

 <Path Name=”mouth” Stroke=”Blue” StrokeThickness=”4”
 Data=”M 62,125 Q 95,122 102,108” />

 In the code-behind Data property of the Path element, mouth is set to a new geometry. For setting the
path, the Path class supports PathGeometry with path markup syntax. The letter M defines the starting
point for the path; the letter Q specifies a control point and an endpoint for a quadratic Bézier curve.
Running the application, you see the window shown in Figure 34-6 .

 public Window1()
 {
 InitializeComponent();
 mouth.Data = Geometry.Parse(
 “M 62,125 Q 95,122 102,128”);
 }

Figure 34-5

Figure 34-6

c34.indd 1160c34.indd 1160 2/19/08 5:28:54 PM2/19/08 5:28:54 PM

1161

Chapter 34: Windows Presentation Foundation

 Earlier in this chapter, you learned that a button can have content. Making a small change to the XAML
code and adding the Button element as content to the window causes the graphic to be displayed inside
a button (see Figure 34-7).

 <Window x:Class=”ShapesDemo.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”ShapesDemo” Height=”260” Width=”230”>
 <Button Margin=”5”>
 <Canvas Height=”250” Width=”220”>
 <Ellipse Canvas.Left=”50” Canvas.Top=”50” Width=”100”
 Height=”100” Stroke=”Blue” StrokeThickness=”4”
 Fill=”Yellow” />
 <Ellipse Canvas.Left=”60” Canvas.Top=”65” Width=”25”
 Height=”25” Stroke=”Blue” StrokeThickness=”3”
 Fill=”White” />
 <Ellipse Canvas.Left=”70” Canvas.Top=”75” Width=”5”
 Height=”5” Fill=”Black” />
 <Path Name=”mouth” Stroke=”Blue” StrokeThickness=”4”
 Data=”M 62,125 Q 95,122 102,108” />
 <Line X1=”124” X2=”132” Y1=”144” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”114” X2=”133” Y1=”169” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”92” X2=”82” Y1=”146” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” />
 <Line X1=”68” X2=”83” Y1=”160” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” />
 </Canvas>
 </Button>
</Window>

Figure 34-7

 Following are the shapes available in the namespace System.Windows.Shapes .

c34.indd 1161c34.indd 1161 2/19/08 5:28:54 PM2/19/08 5:28:54 PM

1162

Part V: Presentation

 Transformation
 Because WPF is based on DirectX, which is vector-based, you can resize every element. The vector-based
graphics are now scaled, rotated, and skewed. Hit testing (for example with mouse moves and mouse
clicks) is still working without the need for manual position calculation.

 Adding the ScaleTransform element to the LayoutTransform property of the Canvas element, as
shown, resizes the content of the complete canvas by 2 in X and Y direction.

 <Canvas.LayoutTransform>
 <ScaleTransform ScaleX=”2” ScaleY=”2” />
 </Canvas.LayoutTransform>

 Rotation can be done in a similar way as scaling. Using the RotateTransform element you can define
the Angle for the rotation.

 <Canvas.LayoutTransform>
 <RotateTransform Angle=”40” />
 </Canvas.LayoutTransform>

 For skewing, you can use the SkewTransform element. With skewing you can assign angles for the
X and the Y direction.

 <Canvas.LayoutTransform>
 <SkewTransform AngleX=”20” AngleY=”25” />
 </Canvas.LayoutTransform>

 Figure 34-8 shows the results of all the transformations. The figures are placed inside a StackPanel .
Starting from the left side, the first figure is resized, the second figure rotated, and the third figure
skewed. To more easily see the difference, the Background property of the Canvas elements are set to
different colors.

Shape Class Description

Line You can draw a line from the coordinates X1.Y1 to X2.Y2.

Rectangle With the Rectangle class, you can draw a rectangle by specifying Width and
Height.

Ellipse With the Ellipse class, you can draw an ellipse.

Path You can use the Path class to draw a series of lines and curves. The Data property
is of type Geometry. You can do the drawing by using classes that derive from the
base class Geometry, or you can use the path markup syntax to define geometry.

Polygon You can draw a closed shape formed by connected lines with the Polygon class.
The polygon is defined by a series of Point objects assigned to the Points
 property.

Polyline Similarly to the Polygon class, you can draw connected lines with the Polyline.
The difference is that the poly-line does not need to be a closed shape.

c34.indd 1162c34.indd 1162 2/19/08 5:28:55 PM2/19/08 5:28:55 PM

1163

Chapter 34: Windows Presentation Foundation

 Brushes
 This section illustrates how to use the brushes that WPF offers for drawing backgrounds and
foregrounds. Throughout this section, we will reference Figure 34-9 , which shows the effects of using
various brushes within the Background of Button elements.

Figure 34-8

Figure 34-9

 SolidColorBrush
 The first button in Figure 34-9 uses the SolidColorBrush , which, by name, uses a solid color. The
complete area is drawn with the same color.

c34.indd 1163c34.indd 1163 2/19/08 5:28:55 PM2/19/08 5:28:55 PM

1164

Part V: Presentation

 You can define a solid color just by setting the Background attribute to a string that defines a solid color.
The string is converted to a SolidColorBrush element.

 <Button Height=”30” Background=”Purple”>Solid Color</Button>

 Of course, you will get the same effect by setting the Background child element and adding a
 SolidColorBrush element as its content. The second button in the application is using the solid color
 Yellow for the background.

 <Button Height=”30” >
 <Button.Background>
 <SolidColorBrush>Yellow</SolidColorBrush>
 </Button.Background>
 Solid Color
 </Button>

 LinearGradientBrush
 For a smooth color change, you can use the LinearGradientBrush , as shown with the third button.
This brush defines the StartPoint and EndPoint properties. With this, you can assign two-
dimensional coordinates for the linear gradient. The default gradient is diagonal linear from 0,0 to 1,1 .
By defining different values, the gradient can take different directions. For example, with a StartPoint
of 0,0 and an EndPoint of 0,1 you get a vertical gradient. The same StartPoint and an EndPoint
value of 1,0 creates a horizontal gradient.

 With the content of this brush, you can define the color values at the specified offsets with the
 GradientStop element. Between the stops, the colors are smoothed.

 <Button Height=”60”>
 <Button.Background>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0.5,1.2”>
 <GradientStop Color=”Red” Offset=”0”></GradientStop>
 <GradientStop Color=”Blue” Offset=”0.2”>
 </GradientStop>
 <GradientStop Color=”BlanchedAlmond” Offset=”0.7”>
 </GradientStop>
 <GradientStop Color=”DarkOrange” Offset=”1”>
 </GradientStop>
 </LinearGradientBrush>
 </Button.Background>
 Linear Gradient Brush
 </Button>

 RadialGradientBrush
 With the RadialGradientBrush you can smooth the color in a radiant way. In Figure 34-9 , the fourth
button is using the RadialGradientBrush . This brush defines the color start with the GradientOrigin
point.

 <Button Height=”70” >
 <Button.Background>
 <RadialGradientBrush Center=”0.5,0.5”
 GradientOrigin=”0.5,0.5”
 RadiusX=”0.5” RadiusY=”0.5” SpreadMethod=”Pad”>

c34.indd 1164c34.indd 1164 2/19/08 5:28:56 PM2/19/08 5:28:56 PM

1165

Chapter 34: Windows Presentation Foundation

 <GradientStop Color=”White” Offset=”0” />
 <GradientStop Color=”LightBlue” Offset=”0.4” />
 <GradientStop Color=”DarkBlue” Offset=”1” />
 </RadialGradientBrush>
 </Button.Background>
 Radial Gradient Brush
 </Button>

 DrawingBrush
 The DrawingBrush allows you to define a drawing that is painted with the brush. The drawing that is
shown with the brush is defined within a GeometryDrawing element. The GeometryGroup , which you
can see within the Geometry property, consists of Geometry elements such as EllipseGeometry ,
 LineGeometry , RectangleGeometry , and CombinedGeometry .

 <Button Height=”80”>
 <Button.Background>
 <DrawingBrush>
 <DrawingBrush.Drawing>
 <GeometryDrawing Brush=”LightBlue”>
 <GeometryDrawing.Geometry>
 <GeometryGroup>
 <EllipseGeometry RadiusX=”30” RadiusY=”30”
 Center=”20,20” />
 <EllipseGeometry RadiusX=”4” RadiusY=”4”
 Center=”10,10” />
 </GeometryGroup>
 </GeometryDrawing.Geometry>
 <GeometryDrawing.Pen>
 <Pen>
 <Pen.Brush>Red
 </Pen.Brush>
 </Pen>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Button.Background>
 Drawing Brush
 </Button>

 ImageBrush
 To load an image into a brush, you can use the ImageBrush element. With this element, the image
defined by the ImageSource property is displayed.

 <Button Height=”100”>
 <Button.Background>
 <ImageBrush
 ImageSource=” C:\Windows\Web\Wallpaper\img21.bmp”
 />
 </Button.Background>
 <Button.Foreground>White</Button.Foreground>
 Image Brush
 </Button>

c34.indd 1165c34.indd 1165 2/19/08 5:28:56 PM2/19/08 5:28:56 PM

1166

Part V: Presentation

 VisualBrush
 The VisualBrush allows you to use other WPF elements in a brush. Here, you can add a WPF element to
the Visual property. The seventh button in Figure 34-9 contains a Rectangle , an Ellipse , and a Button .

 <Button Height=”100”>
 <Button.Background>
 <VisualBrush >
 <VisualBrush.Visual>
 <StackPanel Background=”White”>
 <Rectangle Width=”25” Height=”25”
 Fill=”LightCoral” Margin=”2” />
 <Ellipse Width=”65” Height=”20”
 Fill=”Aqua” Margin=”5” />
 <Button Margin=”2”>A Button</Button>
 </StackPanel>
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
 Visual Brush
 </Button>

 With the VisualBrush , you can also create effects such as reflection. The button shown here contains a
 StackPanel that itself contains a Border and a Rectangle . The Border contains a StackPanel with
a Label and a Rectangle . But that’s not the real point here. The second Rectangle is filled with a
 VisualBrush . This brush defines an opacity value and a transformation. The Visual property is bound
to the Border element. The transformation is done by setting the RelativeTransform property of the
 VisualBrush . This transformation is using relative coordinates. By setting ScaleY to -1, a reflection in
Y direction is done. TranslateTransform moves the transformation in Y direction so that the reflection
is below the original object. You can see the result in the eighth button (“Visual Brush 2“) in Figure 34-9 .

 Data Binding and the Binding element that is used here are explained in detail in the next chapter,
“Advanced WPF.”

 <Button Height=”120”>
 <StackPanel>
 <Border x:Name=”reflected”>
 <Border.Background>Yellow</Border.Background>
 <StackPanel>
 <Label>Visual Brush 2</Label>
 <Rectangle Width=”70” Height=”15” Margin=”2”
 Fill=”BlueViolet” />
 </StackPanel>
 </Border>
 <Rectangle Height=”30”>
 <Rectangle.Fill>
 <VisualBrush Opacity=”0.35” Stretch=”None”
 Visual=”{Binding ElementName=reflected}”>
 <VisualBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform ScaleX=”1” ScaleY=”-1”
 />
 <TranslateTransform Y=”1” />
 </TransformGroup>
 </VisualBrush.RelativeTransform>
 </VisualBrush>
 </Rectangle.Fill>

c34.indd 1166c34.indd 1166 2/19/08 5:28:56 PM2/19/08 5:28:56 PM

1167

Chapter 34: Windows Presentation Foundation

 </Rectangle>
 </StackPanel>
 </Button>

 You can also use the VisualBrush to display a video, simply by setting the Visual property to a
 MediaElement . With the MediaControl , the Source property is set to a WMV file. In Figure 34-9 , the
ninth button showing the three women meant to serve as an example of displaying a video. However, in
a print media it is difficult to show a video. You can try that on your own — and if you’ve the Ultimate
edition of Windows Vista you will find the same video on your hard disk. Otherwise just select a
different video file.

 <Button Height=”120”>
 <Button.Background>
 <VisualBrush>
 <VisualBrush.Visual>
 <MediaElement x:Name=”video”
 Source=”C:\Windows\ehome\ColorTint.wmv” />
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
 </Button>

 Controls
 You can use hundreds of controls with WPF. For a better understanding, the controls are categorized into
these groups:

❑ Simple controls

❑ Content controls

❑ Headered content controls

❑ Items controls

❑ Headered items controls

 Simple Controls
 Simple controls are controls that don’t have a Content property. With the Button class, you have seen
that the Button can contain any shape, or any element you like. This is not possible with simple
controls. The following table shows simple controls and their functionality.

Simple Control Description

PasswordBox This control is used to enter a password and has specific properties for pass-
word input, for example, PasswordChar to define the character that should
show up as the user enters the password, or Password to access the password
entered. The PasswordChanged event is invoked as soon as
the password is changed.

ScrollBar This control contains a Thumb where the user can select a value. A scroll bar can
be used, for example, if a document doesn’t fit on the screen. Some controls
contain scroll bars that show up if the content is too big.

c34.indd 1167c34.indd 1167 2/19/08 5:28:57 PM2/19/08 5:28:57 PM

1168

Part V: Presentation

 Although simple controls do not have a Content property, you can completely customize the look of the
control by defining a template. Templates are discussed later in this chapter.

 Content Controls
 A ContentControl has a Content property, with which you can add any content to the control. The
 Button class derives from the base class ContentControl , so you can add any content to this control. In
a previous example, you saw a Canvas control within the Button . Content controls are described in the
following table.

Simple Control Description

ProgressBar With this control, you can indicate the progress of a lengthy operation.

Slider With this control, the user can select a range of values by moving a Thumb.
ScrollBar, ProgressBar, and Slider are derived from the same base class,
RangeBase.

TextBox Used to display simple unformatted text.

RichTextBox Supports rich text with the help of the FlowDocument class. RichTextBox and
TextBox are derived from the same base class, TextBoxBase.

ContentControl Controls Description

Button
RepeatButton
ToggleButton
CheckBox
RadioButton

The classes Button, RepeatButton, ToggleButton, and
GridViewColumnHeader are derived from the same base class,
ButtonBase. All buttons react to the Click event. The RepeatButton
raises the Click event repeatedly until the button is released.
ToggleButton is the base class for CheckBox and RadioButton.
These buttons have an on and off state. The CheckBox can be selected
and cleared by the user; the RadioButton can be selected by the user.
Clearing the RadioButton must be done programmatically.

Label The Label class represents the text label for a control. This class also
has support for access keys, for example, a menu command.

Frame The Frame control supports navigation. You can navigate to a page
content with the Navigate() method. If the content is a Web page,
then a browser control is used for display.

ListBoxItem ListBoxItem is an item inside a ListBox control.

StatusBarItem StatusBarItem is an item inside a StatusBar control.

ScrollViewer The ScrollViewer control is a content control that includes scroll
bars. You can put any content in this control; the scroll bars will show
up as needed.

ToolTip ToolTip creates a pop-up Window to display additional information
for a control.

c34.indd 1168c34.indd 1168 2/19/08 5:28:57 PM2/19/08 5:28:57 PM

1169

Chapter 34: Windows Presentation Foundation

 Only a Frame control is contained within the Window of the following XAML code. The Source property
is set to http://www.wrox.com , so the Frame control navigates to this Web site, as you can see in
Figure 34-10 .

 <Window x:Class=”FrameSample.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Frame Sample” Height=”400” Width=”400”>
 <Frame Source=”http://www.wrox.com” />
</Window>

ContentControl Controls Description

UserControl Using the class UserControl as a base class provides a simple way to
create custom controls. However, the base class UserControl does
not support templates.

Window The Window class allows you to create windows and dialog boxes. With
the Window class, you get a frame with minimize/maximize/close but-
tons and a system menu. When showing a dialog box, you can use the
method ShowDialog(); the method Show() opens a window.

NavigationWindow The class NavigationWindow derives from the Window class and sup-
ports content navigation.

Figure 34-10

c34.indd 1169c34.indd 1169 2/19/08 5:28:57 PM2/19/08 5:28:57 PM

1170

Part V: Presentation

 Headered Content Controls
 Content controls with a header are derived from the base class HeaderedContentControl , which itself
is derived from the base class ContentControl . The class HeaderedContentControl has a property
 Header to define the content of the header and HeaderTemplate for complete customization of the
header. The controls that are derived from the base class HeaderedContentControl are listed in
the following table.

HeaderedContentControl Description

Expander With the Expander control, you can create an “advanced” mode with
a dialog box that, by default, does not show all information but that
can be expanded by the user to show more information. In the unex-
panded mode, header information is shown. In expanded mode, the
content is visible.

GroupBox The GroupBox control provides a border and a header to group con-
trols.

TabItem TabItem controls are items within the class TabControl. The Header
property of the TabItem defines the content of the header shown with
the tabs of the TabControl.

 A simple use of the Expander control is shown in the next example. The Expander control has the
property Header set to Click for more . This text is displayed for expansion. The content of this control
is shown only if the control is expanded. Figure 34-11 shows the sample application with a collapsed
 Expander control. Figure 34-12 shows the same application with an expanded Expander control.

 <Window x:Class=”ExpanderSample.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Expander Sample” Height=”300” Width=”300”>
 <StackPanel>
 <TextBlock>Short information</TextBlock>
 <Expander Header=”Click for more”>
 <Border Height=”200” Width=”200” Background=”Yellow”>
 <TextBlock HorizontalAlignment=”Center”
 VerticalAlignment=”Center”>
 More information here!
 </TextBlock>
 </Border>
 </Expander>
 </StackPanel>
</Window>

 To make the header text of the Expander control change when the control is expanded, you can create a
trigger. Triggers are explained later in this chapter.

c34.indd 1170c34.indd 1170 2/19/08 5:28:58 PM2/19/08 5:28:58 PM

1171

Chapter 34: Windows Presentation Foundation

Figure 34-11 Figure 34-12

 Items Controls
 The class ItemsControl contains a list of items that can be accessed with the Items property. Classes
that are derived from ItemsControl are shown in the following table.

ItemsControl Description

Menu
ContextMenu

The classes Menu and ContextMenu are derived from the
abstract base class MenuBase. You can offer menus to the user by
placing MenuItem elements in the items list and associating
commands.

StatusBar The StatusBar control is usually shown at the bottom of an
application to give status information to the user. You can put
StatusBarItem elements inside a StatusBar list.

TreeView For a hierarchical display of items, you can use the TreeView
control.

ListBox
ComboBox
TabControl

ListBox, ComboBox, and TabControl have the same abstract
base class, Selector. This base class makes it possible to select
items from a list. The ListBox displays the items from a list. The
ComboBox has an additional Button control to display the items
only if the button is clicked. With the TabControl, content can
be arranged in tabular form.

 Headered Items Controls
 HeaderedItemsControl is the base class of controls that include items but also has a header.
The class HeaderedItemsControl is derived from ItemsControl .

 Classes that are derived from HeaderedItemsControl are listed in the following table.

c34.indd 1171c34.indd 1171 2/19/08 5:28:59 PM2/19/08 5:28:59 PM

1172

Part V: Presentation

HeaderedItemsControl Description

MenuItem The menu classes Menu and ContextMenu include items of
type MenuItem. Menu items can be connected to commands, as the
MenuItem class implements the interface ICommandSource.

TreeViewItem The TreeView class can include items of type TreeViewItem.

ToolBar The ToolBar control is a container for a group of controls, usually
Button and Separator elements. You can place the ToolBar inside a
ToolBarTray that handles rearranging of ToolBar controls.

 Layout
 To define the layout of the application, you can use a class that derives from the Panel base class.
Several layout containers are available that are discussed here. A layout container needs to do two main
tasks: measure and arrange. With measuring, the container asks its children for the preferred sizes.
Because the complete size answered by the controls might not be available, the container next decides
and arranges the size and positions of its children.

 StackPanel
 The Window can contain just a single element as content. If you want to have more than one element
inside there, then you can use a StackPanel as a child of the Window , and add elements to the content of
the StackPanel . The StackPanel is a simple container control that just shows one element after the
other. The orientation of the StackPanel can be horizontal or vertical. The class ToolBarPanel is
derived from StackPanel .

 <Window x:Class=”LayoutSamples.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Layout Samples” Height=”300” Width=”283”>
 <StackPanel Orientation=”Vertical”>
 <Label>Label</Label>
 <TextBox>TextBox</TextBox>
 <CheckBox>Checkbox</CheckBox>
 <CheckBox>Checkbox</CheckBox>
 <ListBox>
 <ListBoxItem>ListBoxItem One</ListBoxItem>
 <ListBoxItem>ListBoxItem Two</ListBoxItem>
 </ListBox>
 <Button>Button</Button>
 </StackPanel>
</Window>

 You can see the child controls of the StackPanel organized vertically in Figure 34-13 .

 For data-binding items to a StackPanel , if there is not enough space for all items to
display, then you can use the VirtualizingStackPanel instead. With this panel,
only the items shown are generated.

c34.indd 1172c34.indd 1172 2/19/08 5:28:59 PM2/19/08 5:28:59 PM

1173

Chapter 34: Windows Presentation Foundation

 WrapPanel
 The Wrap Panel positions the children from left to right, one after the other, as long as they fit into the
line, and then continues with the next line. The orientation of the panel can be horizontal or vertical.

 <Window x:Class=”LayoutSamples.WrapPanelDemo”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Layout Samples” Height=”160” Width=”250”>
 <WrapPanel>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 <Button Width=”100”>Button</Button>
 </WrapPanel>
</Window>

 Figure 34-14 shows the output of the panel. If you resize the application, then the buttons will be
rearranged so that they fit into a line.

Figure 34-13

Figure 34-14

 Canvas
 Canvas is a panel that allows you to explicitly position controls. Canvas defines the attached properties
 Left , Right , Top , and Bottom that can be used by the children for positioning within the panel.

c34.indd 1173c34.indd 1173 2/19/08 5:28:59 PM2/19/08 5:28:59 PM

1174

Part V: Presentation

 <Window x:Class=”LayoutSamples.CanvasDemo”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Layout Samples” Height=”300” Width=”300”>
 <Canvas Background=”LightBlue”>
 <Label Canvas.Top=”30” Canvas.Left=”20”>Enter here:</Label>
 <TextBox Canvas.Top=”30” Canvas.Left=”130” Width=”100”></TextBox>
 <Button Canvas.Top=”70” Canvas.Left=”130”>Click Me!</Button>
 </Canvas>
</Window>

 Figure 34-15 shows the output of the Canvas panel with the positioned children Label , TextBox , and
 Button .

Figure 34-15

 DockPanel
 The DockPanel is very similar to the Windows Forms docking functionality. Here, you can specify the
area where child controls should be arranged. DockPanel defines the attached property Dock , which
you can set in the children of the controls to the values Left , Right , Top , and Bottom . Figure 34-16
shows the outcome of text blocks with borders that are arranged in the dock panel. For easier
differentiation, different colors are specified for the various areas.

 <Window x:Class=”LayoutSamples.DockPanelDemo”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Layout Samples” Height=”300” Width=”300”>
 <DockPanel Background=”LightBlue”>
 <Border Height=”25” Background=”AliceBlue” DockPanel.Dock=”Top”>
 <TextBlock>Menu</TextBlock>
 </Border>
 <Border Height=”25” Background=”Aqua” DockPanel.Dock=”Top”>
 <TextBlock>Toolbar</TextBlock>
 </Border>
 <Border Height=”30” Background=”LightSteelBlue” DockPanel.Dock=”Bottom”>
 <TextBlock>Status</TextBlock>
 </Border>
 <Border Width=”80” Background=”Azure” DockPanel.Dock=”Left”>
 <TextBlock>Left Side</TextBlock>
 </Border>
 <Border Background=”HotPink”>
 <TextBlock>Remaining Part</TextBlock>
 </Border>
 </DockPanel>
</Window>

c34.indd 1174c34.indd 1174 2/19/08 5:29:00 PM2/19/08 5:29:00 PM

1175

Chapter 34: Windows Presentation Foundation

Figure 34-16

 Grid
 Using the Grid , you can arrange your controls with rows and columns. For every column, you can specify a
 ColumnDefinition . For every row, you can specify a RowDefinition . The sample code lists two columns
and three rows. With each column and row, you can specify the width or height. ColumnDefinition has
a Width dependency property; RowDefinition has a Height dependency property. You can define the
height and width in pixels, centimeters, inches, or points, or by setting it to Auto to determine the size
depending on the content. The grid also allows star sizing, whereby the space for the rows and columns is
calculated according to the available space and relative to other rows and columns. When providing the
available space for a column, you can set the Width property to * . To have the size doubled for another
column, you specify 2* . The sample code, which defines two columns and three rows, doesn’t define
additional settings with the column and row definitions; the default is the star setting.

 The grid contains several Label and TextBox controls. Because the parent of these controls is a grid, you
can set the attached properties Column , ColumnSpan , Row , and RowSpan .

 <Window x:Class=”LayoutSamples.GridDemo”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Layout Samples” Height=”300” Width=”283”>
 <Grid ShowGridLines=”True”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column=”0” Grid.ColumnSpan=”2” Grid.Row=”0”
 VerticalAlignment=”Center” HorizontalAlignment=”Center”>Title</Label>
 <Label Grid.Column=”0” Grid.Row =”1” VerticalAlignment=”Center”>
 Firstname:</Label>
 <TextBox Grid.Column=”1” Grid.Row=”1” Width=”100” Height=”30”></TextBox>

(continued)

c34.indd 1175c34.indd 1175 2/19/08 5:29:00 PM2/19/08 5:29:00 PM

1176

Part V: Presentation

 <Label Grid.Column=”0” Grid.Row =”2” VerticalAlignment=”Center”>
 Lastname:</Label>
 <TextBox Grid.Column=”1” Grid.Row=”2” Width=”100” Height=”30”></TextBox>
 </Grid>
</Window>

 The outcome arranging controls in a grid is shown in Figure 34-17 . For easier viewing of the columns
and rows, the property ShowGridLines is set to true .

(continued)

Figure 34-17

 For a grid where every cell has the same size, you can use the UniformGrid class.

 Event Handling
 WPF classes define events where you can add your handlers. For example, you can add MouseEnter ,
 MouseLeave , MouseMove , Click , and the like. This is based on the events and delegates mechanism on
.NET. Chapter 7 , “Delegates and Events,” covers the event and delegate architecture of .NET.

 With WPF, you can assign the event handler either with XAML or in the code behind. With button1 , the
XML attribute Click is used to assign the method button_Click to the click event. button2 has no
event handler assigned in XAML:

 <Button Name=”button1” Click=”button_Click”>Button 1</Button>
 <Button Name=”button2”> Button 2</Button>

 The Click event for button2 is assigned in the code behind by creating an instance of the delegate
 RoutedEventHandler and passing the method button_Click to the delegate. The method button_
Click() that is invoked from both buttons has arguments as defined by the RoutedEventHandler
delegate:

 public Window1()
 {
 InitializeComponent();
 button2.Click += button_Click;
 }
 void button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(“Click Event”);
 }

c34.indd 1176c34.indd 1176 2/19/08 5:29:00 PM2/19/08 5:29:00 PM

1177

Chapter 34: Windows Presentation Foundation

 The event-handling mechanism for WPF is based on .NET events but extended with bubbling and
tunneling features. As you have already learned, a Button can contain graphics, list boxes, another
button, and so on. What happens if a CheckBox is contained inside a Button and you click the
 CheckBox ? Where should the event arrive? The answer is that the event is bubbled. First, the Click
event arrives with the CheckBox , and then it bubbles up to the Button . This way, you can handle the
 Click event for all elements that are inside the Button with the Button .

 Some events are tunneling events; others are bubbling events. A tunneling event first arrives with the
outer element and tunnels to the inner elements. Bubbling events start with the inner element and
bubble to the outer elements. Tunneling and bubbling events are usually paired. Tunneling events are
prefixed with Preview , for example, PreviewMouseMove . This event tunnels from the outer controls to
the inner controls. After the PreviewMouseMove event, the MouseMove event occurs. This event is a
bubbling event that goes from the inner to the outer controls.

 You can stop tunneling and bubbling by setting the Handled property of the event argument to true .
The Handled property is a member of the RoutedEventArgs class. All event handlers that participate
with the tunneling and bubbling facility have an event argument of type RoutedEventArgs or a type
that derives from RoutedEventArgs .

 If you stop the tunneling of an event by setting the Handled property to true , then the bubbling event
that follows the tunneling event will not happen anymore.

 Styles, Templates, and Resources
 You can define the look and feel of the WPF elements by setting properties, such as FontSize and
 Background, with the Button element as shown:

 <StackPanel>
 <Button Name=”button1” Width=”150” FontSize=”12” Background=”AliceBlue”>
 Click Me!
 </Button>
</StackPanel>

 Instead of defining the look and feel with every element, you can define styles that are stored with resources.
To completely customize the look for controls, you can use templates and store them into resources.

 Styles
 To define styles, you can use a Style element containing Setter elements. With the Setter , you
specify the Property and the Value of the style, for example, the property Button.Background and
the value AliceBlue .

 To assign the styles to specific elements, you can assign a style to all elements of a type or use a key for
the style. To assign a style to all elements of a type, use the TargetType property of the Style and
assign it to a Button by specifying the x:Type markup extension {x:Type Button} .

 <Window.Resources>
 <Style TargetType=”{x:Type Button}”>
 <Setter Property=”Button.Background” Value=”LemonChiffon”
 />
 <Setter Property=”Button.FontSize” Value=”18” />
 </Style>
 <Style x:Key=”ButtonStyle”>
 <Setter Property=”Button.Background” Value=”AliceBlue” />

(continued)

c34.indd 1177c34.indd 1177 2/19/08 5:29:01 PM2/19/08 5:29:01 PM

1178

Part V: Presentation

 <Setter Property=”Button.FontSize” Value=”18” />
 </Style>
 </Window.Resources>

 In the following XAML code, button2 , which doesn’t have a style defined with the element properties,
gets the style that is defined for the Button type. For button3 , the Style property is set with the
 StaticResource markup extension to {StaticResource ButtonStyle} , whereas ButtonStyle
specifies the key value of the style resource defined earlier, so button3 has an aliceblue background.

 <Button Name=”button2” Width=”150”>Click Me!</Button>
<Button Name=”button3” Width=”150” Style=”{StaticResource ButtonStyle}”>
 Click Me, Too!
</Button>

 Instead of setting the Background of a button to just a single value, you can also do more. You can set
the Background property to a LinearGradientBrush with a gradient color definition as shown:

 <Style x:Key=”FancyButtonStyle”>
 <Setter Property=”Button.FontSize” Value=”22” />
 <Setter Property=”Button.Foreground” Value=”White” />
 <Setter Property=”Button.Background”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0.5,0”
 EndPoint=”0.5,1”>
 <GradientStop Offset=”0.0” Color=”LightCyan” />
 <GradientStop Offset=”0.14” Color=”Cyan” />
 <GradientStop Offset=”0.7” Color=”DarkCyan” />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>

 button4 has the fancy style with the linear gradient cyan color applied:

 <Button Name=”button4” Width=”200” Style=”{StaticResource FancyButtonStyle}”>
 Fancy!
</Button>

 You can see the results of all these buttons styled in Figure 34-18 .

Figure 34-18

(continued)

 Resources
 As you have seen with the styles sample, usually styles are stored within resources. You can define any
element within a resource. For example, the brush created earlier for the background style of the button
can itself be defined as a resource, so you can use it everywhere a brush is required.

c34.indd 1178c34.indd 1178 2/19/08 5:29:01 PM2/19/08 5:29:01 PM

1179

Chapter 34: Windows Presentation Foundation

 The following example defines a LinearGradientBrush with the key name MyGradientBrush inside the
 StackPanel resources. button1 assigns the Background property by using a StaticResource markup
extension to the resource MyGradientBrush . Figure 34-19 shows the output from this XAML code:

 <Window x:Class=”ResourcesSample.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Resources” Height=”100” Width=”300”>
 <Window.Resources>
 </Window.Resources>
 <StackPanel>
 <StackPanel.Resources>
 <LinearGradientBrush x:Key=”MyGradientBrush”
 StartPoint=”0.5,0” EndPoint=”0.5,1”>
 <GradientStop Offset=”0.0” Color=”LightCyan” />
 <GradientStop Offset=”0.14” Color=”Cyan” />
 <GradientStop Offset=”0.7” Color=”DarkCyan” />
 </LinearGradientBrush>
 </StackPanel.Resources>
 <Button Name=”button1” Width=”200” Height=”50”
 Foreground=”White”
 Background=”{StaticResource MyGradientBrush}”>
 Click Me!
 </Button>
 </StackPanel>
</Window>

Figure 34-19

 Here, the resources have been defined with the StackPanel . In the previous example, the resources
were defined with the Window element. The base class FrameworkElement defines the property
 Resources of type ResourceDictionary . That’s why resources can be defined with every class that is
derived from the FrameworkElement —any WPF element.

 Resources are searched hierarchically. If you define the resource with the window, it applies to every
child element of the window. If the Window contains a Grid , and the Grid contains a StackPanel , and if
you define the resource with the StackPanel , then the resource applies to every control within the
 StackPanel . If the StackPanel contains a Button , and you define the resource just with the Button ,
then this style is valid just for the button.

 In regard to hierarchies, you need to pay attention if you use the TargetType without a Key for styles.
If you define a resource with the Canvas element and set the TargetType for the style to apply to
 TextBox elements, then the style applies to all TextBox elements within the Canvas . The style even
applies to TextBox elements that are contained in a ListBox when the ListBox is in the Canvas .

 If you need the same style for more than one Window, then you can define the style with the application.
In a Visual Studio WPF project, the file App.xaml is created for defining global resources of the
application. The application styles are valid for every window of the application. Every element can
access resources that are defined with the application. If resources are not found with the parent
window, then the search for resources continues with the Application .

c34.indd 1179c34.indd 1179 2/19/08 5:29:02 PM2/19/08 5:29:02 PM

1180

Part V: Presentation

 <Application x:Class=”ResourcesSample.App”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 StartupUri=”Window1.xaml”>
 <Application.Resources>

 </Application.Resources>
</Application>

 System Resources
 There are also some system-wide resources for colors and fonts that are available for all applications.
These resources are defined with the classes SystemColors , SystemFonts , and SystemParameters :

❑ With SystemColors you get the color settings for borders, controls, the desktop, and windows,
such as ActiveBorderColor , ControlBrush , DesktopColor , WindowColor , WindowBrush ,
and so on.

❑ The class SystemFonts returns the settings for the fonts of the menu, status bar, and message
box. These include CaptionFont , DialogFont , MenuFont , MessageBoxFont , StatusFont ,
and so on.

❑ The class SystemParameters gives you settings for sizes of menu buttons, cursors, icons, borders,
captions, timing information, and keyboard settings, such as BorderWidth , CaptionHeight ,
 CaptionWidth , MenuButtonWidth , MenuPopupAnimation , MenuShowDelay , SmallIcon-
Height , SmallIconWidth , and so on.

 Figure 34-20 shows the dialog box where the user can configure these settings. You can find the
Appearance dialog box with the Personalization settings in the Control Panel.

Figure 34-20

 Accessing Resources from Code
 To access resources from code behind, the base class FrameworkElement implements the method
 FindResource() , so you can invoke the FindResource() method with every WPF object.

c34.indd 1180c34.indd 1180 2/19/08 5:29:02 PM2/19/08 5:29:02 PM

1181

Chapter 34: Windows Presentation Foundation

 To do this, button1 doesn’t have a background specified, but the Click event is assigned to the method
 button1_Click .

 <StackPanel Name=”myContainer”>
 <StackPanel.Resources>
 <LinearGradientBrush x:Key=”MyGradientBrush”
 StartPoint=”0.5,0” EndPoint=”0.5,1”>
 <GradientStop Offset=”0.0” Color=”LightCyan” />
 <GradientStop Offset=”0.14” Color=”Cyan” />
 <GradientStop Offset=”0.7” Color=”DarkCyan” />
 </LinearGradientBrush>
 </StackPanel.Resources>
 <Button Name=”button1” Width=”200” Height=”50”
 Click=”button1_Click”>
 Apply Resource Programmatically
 </Button>

 With the implementation of button1_Click() , the FindResource() method is used on the Button
that was clicked. Then a search for the resource MyGradientBrush happens hierarchically, and the brush
is applied to the Background property of the control.

 public void button1_Click(object sender, RoutedEventArgs e)
 {
 Control ctrl = sender as Control;
 ctrl.Background =
 ctrl.FindResource(“MyGradientBrush”) as Brush;
 }

If FindResource() does not find the resource key, then an exception is thrown. If
you don’t know for sure if the resource is available, then you can use the method
TryFindResource() instead. TryFindResource() returns null if the resource is
not found.

 Dynamic Resources
 With the StaticResource markup extension, resources are searched at load time. If the resource changes
while the program is running, then you should use the DynamicResource markup extension instead.

 The next example is using the same resource as defined previously. button1 uses the resource as a
 StaticResource , and button3 uses the resource as a DynamicResource with the DynamicResource
markup extension. button2 is used to change the resource programmatically. It has the Click event
handler method button2_Click assigned.

 <Button Name=”button1” Width=”200” Height=”50”
 Background=”{StaticResource MyGradientBrush}”>
 Static Resource
 </Button>
 <Button Name=”button2” Width=”200” Height=”50”
 Click=”button2_Click”>
 Change Resource
 </Button>
 <Button Name=”button3” Width=”200” Height=”50”
 Background=”{DynamicResource MyGradientBrush}”>
 Dynamic Resource
 </Button>

c34.indd 1181c34.indd 1181 2/19/08 5:29:03 PM2/19/08 5:29:03 PM

1182

Part V: Presentation

 The implementation of button2_Click() clears the resources of the StackPanel and adds a new
resource with the same name, MyGradientBrush . This new resource is very similar to the resource that
is defined in XAML code; it just defines different colors.

 public void button2_Click(object sender, RoutedEventArgs e)
 {
 myContainer.Resources.Clear();
 LinearGradientBrush brush = new LinearGradientBrush();
 brush.StartPoint = new Point(0.5, 0);
 brush.EndPoint = new Point(0.5, 1);
 GradientStopCollection stops =
 new GradientStopCollection();
 stops.Add(new GradientStop(Colors.White, 0.0));
 stops.Add(new GradientStop(Colors.Yellow, 0.14));
 stops.Add(new GradientStop(Colors.YellowGreen, 0.7));
 brush.GradientStops = stops;
 myContainer.Resources.Add(“MyGradientBrush”, brush);
 }

 If you run the application and change the resource dynamically by clicking the third button, then
 button4 immediately gets the new resource. button1 , which was defined with the StaticResource ,
keeps the old resource that was loaded.

The DynamicResource requires more performance than the StaticResource
because the resource is always loaded when needed. Use DynamicResource only
with resources where you expect changes during runtime.

 Triggers
 With triggers you can change the look and feel of your controls dynamically because of some events or
some property value changes. For example, when the user moves with the mouse over a button, the
button can change its look. Usually, you need to do this with the C# code. With WPF, you can also do this
with XAML, as long as only the UI is influenced.

 The Style class has a Triggers property where you can assign property triggers. The following
example includes two TextBox elements inside a Canvas panel. With the Window resources, a style
 TextBoxStyle is defined that is referenced by the TextBox elements using the Style property.
The TextBoxStyle specifies that the Background is set to LightBlue and the FontSize to 17 . This
is the style of the TextBox elements when the application is started. Using triggers, the style of the controls
change. The triggers are defined within the Style.Triggers element, using the Trigger element.
One trigger is assigned to the property IsMouseOver ; the other trigger is assigned to the property
 IsKeyboardFocused . Both of these properties are defined with the TextBox class that the style applies
to. If IsMouseOver has a value of true , then the trigger fires and sets the Background property to Red
and the FontSize property to 22 . If the TextBox has a keyboard focus, then the property
 IsKeyboardFocused is true , and the second trigger fires and sets the Background property of the
 TextBox to Yellow .

 <Window x:Class=”TriggerSample.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Triggers” Height=”200” Width=”400”>
 <Window.Resources>
 <Style x:Key=”TextBoxStyle” TargetType=”{x:Type TextBox}”>

c34.indd 1182c34.indd 1182 2/19/08 5:29:03 PM2/19/08 5:29:03 PM

1183

Chapter 34: Windows Presentation Foundation

 <Setter Property=”Background” Value=”LightBlue” />
 <Setter Property=”FontSize” Value=”17” />
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Background” Value=”Red” />
 <Setter Property=”FontSize” Value=”22” />
 </Trigger>
 <Trigger Property=”IsKeyboardFocused” Value=”True”>
 <Setter Property=”Background” Value=”Yellow” />
 <Setter Property=”FontSize” Value=”22” />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Canvas>
 <TextBox Canvas.Top=”80” Canvas.Left=”30” Width=”300”
 Style=”{StaticResource TextBoxStyle}” />
 <TextBox Canvas.Top=”120” Canvas.Left=”30” Width=”300”
 Style=”{StaticResource TextBoxStyle}” />
 </Canvas>
</Window>

 You don’t need to reset the property values to the original values when the reason for the trigger is not
valid anymore. For example, you don’t need to define a trigger for IsMouseOver=true and
 IsMouseOver=false . As soon as the reason for the trigger is no longer valid, the changes made by the
trigger action are reset to the original values automatically.

 Figure 34-21 shows the trigger sample application, where the first text box has the keyboard input focus,
and the second text box has the default values of the style for the background and font size.

Figure 34-21

When using property triggers, it is extremely easy to change the look of controls,
fonts, colors, opacity, and the like. When the mouse moves over them, the keyboard
sets the focus — not a single line of programming code is required.

 The Trigger class defines the following properties to specify the trigger action.

c34.indd 1183c34.indd 1183 2/19/08 5:29:03 PM2/19/08 5:29:03 PM

1184

Part V: Presentation

Trigger Property Description

PropertyValue With property triggers, the Property and Value properties are used to specify when
the trigger should fire, for example, Property=“IsMouseOver” Value=“True”.

Setters As soon as the trigger fires, you can use Setters to define a collection of Setter
elements to change values for properties. The Setter class defines the properties
Property, TargetName, and Value for the object properties to change.

EnterActions
ExitActions

Instead of defining setters, you can define EnterActions and ExitActions.
With both of these properties, you can define a collection of TriggerAction ele-
ments. EnterActions fires when the trigger starts (with a property trigger, when
the Property/Value combination applies); ExitActions fires before it ends (just
at the moment when the Property/Value combination no longer applies).
Trigger actions that you can specify with these actions are derived from the base
class TriggerAction, such as, SoundPlayerAction and BeginStoryboard.
With SoundPlayerAction, you can start the playing of sound. BeginStoryboard
is used with animation, which will be shown later in this chapter.

 Property triggers are just one type of trigger possible in WPF. Another trigger type is event triggers.
Event triggers are discussed later in this chapter along with animations.

 Templates
 In this chapter, you have already seen that a Button control can have any content. The content can be a
simple text, but you can also add a Canvas element, which can contain shapes. You can add a Grid , or a
video to the button. However, there is even more than that you can do with a button!

 In WPF, the functionality of controls is completely separate from their look and feel. A button has a
default look, but you can completely customize that look as you like with templates.

 WPF gives you several template types that derive from the base class FrameworkTemplate .

Template Type Description

ControlTemplate With a ControlTemplate you can specify the visual structure of a control
and override the look.

ItemsPanelTemplate For an ItemsControl you can specify the layout of its items by assigning
an ItemsPanelTemplate. Each ItemsControl has a default
ItemsPanelTemplate. For the MenuItem, it is a WrapPanel. The
StatusBar uses a DockPanel, and the ListBox uses a
VirtualizingStackPanel.

DataTemplate DataTemplates are very useful for graphical representations of objects.
Styling a ListBox, you will see that, by default, the items of the ListBox
are shown according to the output of the ToString() method. By apply-
ing a DataTemplate you can override this behavior and define a custom
presentation of the items.

HierarchicalData
Template

The HierarchicalDataTemplate is used for arranging a tree of objects.
This control supports HeaderedItemsControls, such as TreeViewItem
and MenuItem.

c34.indd 1184c34.indd 1184 2/19/08 5:29:04 PM2/19/08 5:29:04 PM

1185

Chapter 34: Windows Presentation Foundation

 The next sample shows several buttons, and later, list boxes are customized step by step, so you can
see the intermediate results of the changes. First, start with two very simple buttons, in which the first
button doesn’t have a style at all. The second button references the style ButtonStyle1 with changes to
the Background and the FontSize . You can see this first result in Figure 34-22 .

 <Window x:Class=”TemplateSample.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Template” Height=”300” Width=”300”>
 <Window.Resources>
 <Style x:Key=”ButtonStyle1” TargetType=”{x:Type Button}”>
 <Setter Property=”Background” Value=”Yellow” />
 <Setter Property=”FontSize” Value=”18” />
 </Style>
 </Window.Resources>
 <StackPanel>
 <Button Name=”button1” Height=”50” Width=”150”>Default Button</Button>
 <Button Name=”button2” Height=”50” Width=”150”
 Style=”{StaticResource ButtonStyle1}”>Styled Button
 </Button>
 </StackPanel>
</Window>

Figure 34-22

 Now, add the new style ButtonStyle2 to the resources. This style again sets the TargetType to the
 Button type. The Setter now specifies the Template property. By specifying the Template property,
you can replace the look of the button completely. The value for the Template property is defined by a
 ControlTemplate element. A ControlTemplate defines the content of a control and allows the
accessing of content from the control itself, as you will see soon. Here, the ControlTemplate defines a
 Grid with two rows. The rows use star sizing where the height of the first row is twice the height of the
second row. Then two Rectangle elements are defined. The first rectangle spans both rows, and sets the
 Stroke property to Green for a green outline, and RadiusX and RadiusY values for rounded corners.
The second rectangle, which is only within the first row, has its Fill property set to a linear gradient
brush. button3 , with the content Template Button , references style ButtonStyle2 . Figure 34-23
shows button3 with the new style, but the content is missing.

 <Window x:Class=”TemplateSample.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Template” Height=”300” Width=”300”
 >
 <Window.Resources>
 <!-- other styles -->
 <Style x:Key=”ButtonStyle2” TargetType=”{x:Type Button}”>

(continued)

c34.indd 1185c34.indd 1185 2/19/08 5:29:04 PM2/19/08 5:29:04 PM

1186

Part V: Presentation

 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”2*” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Rectangle Grid.RowSpan=”2” RadiusX=”4” RadiusY=”8”
 Stroke=”Green” />
 <Rectangle RadiusX=”4” RadiusY=”8” Margin=”2”>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”LightBlue” />
 <GradientStop Offset=”0.5” Color=”#afff” />
 <GradientStop Offset=”1” Color=”#6faa” />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>
 <StackPanel>
 <!-- other buttons -->
 <Button Name=”button3” Background=”Yellow” Height=”100”
 Width=”220” FontSize=”24”
 Style=”{StaticResource ButtonStyle2}”>
 Template Button
 </Button>
 </StackPanel>
</Window>

Figure 34-23

(continued)

c34.indd 1186c34.indd 1186 2/19/08 5:29:05 PM2/19/08 5:29:05 PM

1187

Chapter 34: Windows Presentation Foundation

 The button now has a completely different look. However, the content that is defined with the button
itself is missing in Figure 34-23 . The template created previously must be extended. The first rectangle in
the template now has its Fill property set to {TemplateBinding Background} . The
 TemplateBinding markup extension enables a control template to use content from the templated
control. Here, the rectangle is filled with the background that is defined with the button. button3
defines a yellow background, which is combined with the background from the second rectangle of the
control template. After the definition of the second rectangle, the element ContentPresenter is used.
This element takes the content from the templated control and places it as defined — here on both rows,
as Grid.RowSpan is set to 2 . If a ContentPresenter is defined, then the TargetType with the
 ControlTemplate must also be set. The content is positioned by setting the HorizontalAlignment ,
 VerticalAlignment , and Margin properties to values defined by the button itself by using
 TemplateBinding markup extensions. With the ControlTemplate you can also define triggers, as
previously shown within resources. Figure 34-24 shows the new outcome of the button, including the
content and the background combined with the template.

 <Style x:Key=”ButtonStyle2” TargetType=”{x:Type Button}”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”{x:Type Button}” >
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”2*” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Rectangle Grid.RowSpan=”2” RadiusX=”4” RadiusY=”8”
 Stroke=”Green”
 Fill=”{TemplateBinding Background}” />
 <Rectangle RadiusX=”4” RadiusY=”8” Margin=”2”>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”LightBlue” />
 <GradientStop Offset=”0.5” Color=”#afff” />
 <GradientStop Offset=”1” Color=”#6faa” />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <ContentPresenter Grid.RowSpan=”2”
 HorizontalAlignment=”{TemplateBinding
 HorizontalContentAlignment}”
 VerticalAlignment=”{TemplateBinding
 VerticalContentAlignment}”
 Margin=”{TemplateBinding Padding}” />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Foreground” Value=”Aqua” />
 </Trigger>
 <Trigger Property=”IsPressed” Value=”True”>
 <Setter Property=”Foreground” Value=”Black” />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>

(continued)

c34.indd 1187c34.indd 1187 2/19/08 5:29:05 PM2/19/08 5:29:05 PM

1188

Part V: Presentation

 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>

(continued)

Figure 34-24

 Let’s make an even fancier button by using transparent features. The style GelButton sets the properties
 Background , Height , Foreground and Margin , and the Template . The template is the most interesting
aspect with this style. The template specifies a Grid with just one row and one column.

 Inside this cell, you can find a rectangle with the name GelBackground . This rectangle has rounded
corners and a linear gradient brush for the stroke. The rounded corners are defined by the RadiusX and
 RadiusY settings. The stroke that surrounds the rectangle is very thin because the StrokeThickness is
set to 0.35.

 The second rectangle, GelShine , is just a small rectangle with a height of 15 pixels, and because of the
 Margin settings, it is visible within the first rectangle. The stroke is transparent, so there is no line
surrounding the rectangle. This rectangle just uses a linear gradient fill brush, which goes from a light,
partly transparent color to full transparency. This gives the rectangle a shimmering effect.

 After the two rectangles, there is a ContentPresenter element that defines alignment for the content
and takes the content from the button to display.

 Such a styled button now looks very fancy on the screen. However, there is no action if the mouse is
clicked or the mouse moves over the button. With a template-styled button, you must have triggers for
the button to appear differently in response to mouse clicks. The property trigger, IsMouseOver,
defines a new value for the Rectangle.Fill property with a different color for the radial gradient
brush. The rectangle that gets the new fill is referenced with the TargetName property. The property
trigger, IsPressed, is very similar; here, simply other radial gradient brush colors are used to fill the
rectangle. You can see a button that references the style GelButton in Figure 34-25 . Figure 34-26 shows
the same button while the mouse moved over it where you can see the effect of the radial gradient brush.

c34.indd 1188c34.indd 1188 2/19/08 5:29:05 PM2/19/08 5:29:05 PM

1189

Chapter 34: Windows Presentation Foundation

 <Style x:Key=”GelButton” TargetType=”{x:Type Button}”>
 <Setter Property=”Background” Value=”Black” />
 <Setter Property=”Height” Value=”40” />
 <Setter Property=”Foreground” Value=”White” />
 <Setter Property=”Margin” Value=”3” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”{x:Type Button}”>
 <Grid>
 <Rectangle Name=”GelBackground” RadiusX=”9”
 RadiusY=”9”
 Fill=”{TemplateBinding Background}”
 StrokeThickness=”0.35”>
 <Rectangle.Stroke>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”White” />
 <GradientStop Offset=”1” Color=”#666666” />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>
 <Rectangle Name=”GelShine” Margin=”2,2,2,0”
 VerticalAlignment=”Top” RadiusX=”6” RadiusY=”6”
 Stroke=”Transparent” Height=”15px”>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”#ccffffff” />
 <GradientStop Offset=”1” Color=”Transparent”
 />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <ContentPresenter Name=”GelButtonContent”
 VerticalAlignment=”Center”
 HorizontalAlignment=”Center”
 Content=”{TemplateBinding Content}” />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Rectangle.Fill”
 TargetName=”GelBackground”>
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”Lime” />
 <GradientStop Offset=”1” Color=”DarkGreen”
 />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Foreground” Value=”Black” />
 </Trigger>
 <Trigger Property=”IsPressed” Value=”True”>
 <Setter Property=”Rectangle.Fill”

(continued)

c34.indd 1189c34.indd 1189 2/19/08 5:29:06 PM2/19/08 5:29:06 PM

1190

Part V: Presentation

 TargetName=”GelBackground”>
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”#ffcc34” />
 <GradientStop Offset=”1” Color=”#cc9900” />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

(continued)

Figure 34-25 Figure 34-26

 Instead of having a rectangular button, an ellipse can be used as a button. In the next example, you can
also see how one style can be based on another style.

 The style RoundedGelButton can be based on the style GelButton by setting the BasedOn property
with the Style element. If one style is based on another style, then the new style gets all settings from
the base style unless the settings are redefined. For example, the RoundedGelButtonStyle gets the
 Foreground and Margin settings from the GelButton because these settings are not redefined. If you
change a setting in a base style, then all styles that are based on the style automatically get the new values.

 The Height and Template properties are redefined with the new style. Here, the template defines two
 Ellipse elements instead of rectangles. The outer ellipse GelBackground defines a black ellipse with a
gradient stroke around it. The second ellipse is smaller with a small margin (5) at the top and a large
margin (50) at the bottom. This ellipse again has a linear gradient brush that goes from a light color to
transparent and specifies the shine effect. Again, there are triggers for IsMouseOver and IsPressed that
change the value of the Fill property for the first ellipse.

 You can see the new button based on the RoundedGelButton style — and it is still a button — in
Figure 34-27 .

 <Style x:Key=”RoundedGelButton”
 BasedOn=”{StaticResource GelButton}”
 TargetType=”Button”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”100” />
 <Setter Property=”Grid.Row” Value=”2” />
 <Setter Property=”Template”>
 <Setter.Value>

c34.indd 1190c34.indd 1190 2/19/08 5:29:06 PM2/19/08 5:29:06 PM

1191

Chapter 34: Windows Presentation Foundation

 <ControlTemplate TargetType=”{x:Type Button}”>
 <Grid>
 <Ellipse Name=”GelBackground” StrokeThickness=”0.5”
 Fill=”Black”>
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”#ff7e7e7e” />
 <GradientStop Offset=”1” Color=”Black” />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin=”15,5,15,50”>
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”#aaffffff” />
 <GradientStop Offset=”1” Color=”Transparent”
 />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Name=”GelButtonContent”
 VerticalAlignment=”Center”
 HorizontalAlignment=”Center”
 Content=”{TemplateBinding Content}” />
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Rectangle.Fill”
 TargetName=”GelBackground”>
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”Lime” />
 <GradientStop Offset=”1” Color=”DarkGreen”
 />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Foreground” Value=”Black” />
 </Trigger>
 <Trigger Property=”IsPressed” Value=”True”>
 <Setter Property=”Rectangle.Fill”
 TargetName=”GelBackground”>
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”#ffcc34” />
 <GradientStop Offset=”1” Color=”#cc9900” />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Foreground” Value=”Black” />

(continued)

c34.indd 1191c34.indd 1191 2/19/08 5:29:07 PM2/19/08 5:29:07 PM

1192

Part V: Presentation

 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>

 </Setter.Value>
 </Setter>
 </Style>

(continued)

Figure 34-27

 Styling a ListBox
 Changing a style of a button or a label is a simple task. How about changing the style of an element that
contains a list of elements. For example, how about changing a ListBox ? Again, a list box has behavior
and a look. It can display a list of elements, and you can select one or more elements from the list. For the
behavior, the ListBox class defines methods, properties, and events. The look of the ListBox is separate
from its behavior. The ListBox element has a default look, but you can change this look by creating a
template.

 To display some items in the list, the Country class has been created to represent the name and flag with
a path to an image. The class Country defines the Name and ImagePath properties, and it has an
overridden ToString() method for a default string representation:

 public class Country
 {
 public Country(string name)
 : this(name, null)
 {
 }
 public Country(string name, string imagePath)
 {
 this.Name = name;
 this.ImagePath = imagePath;
 }
 public string Name { get; set; }
 public string ImagePath { get; set; }
 public override string ToString()
 {
 return Name;
 }
 }

c34.indd 1192c34.indd 1192 2/19/08 5:29:07 PM2/19/08 5:29:07 PM

1193

Chapter 34: Windows Presentation Foundation

 The static class Countries returns a list of a few countries that will be displayed:

 public static class Countries
 {
 public static IEnumerable<Country> GetCountries()
 {
 List<Country> countries = new List<Country>();
 countries.Add(new Country(“Austria”,
 “Images/Austria.bmp”));
 countries.Add(new Country(“Germany”,
 “Images/Germany.bmp”));
 countries.Add(new Country(“Norway”,
 “Images/Norway.bmp”));
 countries.Add(new Country(“USA”, “Images/USA.bmp”));
 return countries;
 }
 }

 Inside the code-behind file in the constructor of the Window1 class, the DataContext property of
the Window1 instance is set to the list of countries that is returned from the method Countries
.GetCountries() . (The DataContext property is a feature for data binding that we will discuss in
the next chapter.)

 public partial class Window1 : System.Windows.Window
 {
 public Window1()
 {
 InitializeComponent();
 this.DataContext = Countries.GetCountries();
 }
 }

 Within the XAML code, the ListBox named countryList1 is defined. countryList1 doesn’t have a
different style. It uses the default look from the ListBox element. The property ItemsSource is set to
the Binding markup extension, which is used by data binding. From the code behind, you have seen
that the binding is done to an array of Country objects. Figure 34-28 shows the default look of the
 ListBox . By default, just the names of the countries returned by the ToString() method are displayed
in a simple list.

 <Window x:Class=”ListboxStyling.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”ListBox Styling” Height=”300” Width=”300”>
 <StackPanel>
 <ListBox Name=”countryList1” ItemsSource=”{Binding}” />
 </StackPanel>
</Window>

Figure 34-28

c34.indd 1193c34.indd 1193 2/19/08 5:29:07 PM2/19/08 5:29:07 PM

1194

Part V: Presentation

 The Country objects do have both the name and the flag in the object. Of course, you can also display
both values in the list box. To do this, you need to define a template.

 The ListBox element contains ListBoxItem elements. You can define the content for an item with the
 ItemTemplate . The style listBoxStyle1 defines an ItemTemplate with a value of a DataTemplate .
A DataTemplate is used to bind data to elements. You can use the Binding markup extension with
 DataTemplate elements.

 The DataTemplate contains a grid with three columns. The first column contains the string
Country: . The second column contains the name of the country. The third column contains the flag
for the country. Because the country names have different lengths, but the view should be the same size for
every country name, the SharedSizeGroup property is set with the second column definition. This
shared size information for the column is used only because the property Grid.IsSharedSizeScope is
also set.

 After the column and row definitions, you can see two TextBlock elements. The first TextBlock
element contains the text Country: . The second TextBlock element binds to the Name property that is
defined in the Country class.

 The content for the third column is a Border element containing a Grid . The Grid contains a
 Rectangle with a linear gradient brush and an Image element that is bound to the ImagePath property
of the Country class. Figure 34-29 shows the countries in a ListBox with completely different output
than before.

 <Window.Resources>
 <Style x:Key=”listBoxStyle1” TargetType=”{x:Type ListBox}” >
 <Setter Property=”ItemTemplate”>
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*”
 SharedSizeGroup=”MiddleColumn” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”60” />
 </Grid.RowDefinitions>
 <TextBlock FontSize=”16” VerticalAlignment=”Center”
 Margin=”5” FontStyle=”Italic”
 Grid.Column=”0”>Country:</TextBlock>
 <TextBlock FontSize=”16” VerticalAlignment=”Center”
 Margin=”5” Text=”{Binding Name}”
 FontWeight=”Bold” Grid.Column=”1” />
 <Border Margin=”4,0” Grid.Column=”2”
 BorderThickness=”2” CornerRadius=”4”>
 <Border.BorderBrush>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”#aaa” />
 <GradientStop Offset=”1” Color=”#222” />
 </LinearGradientBrush>
 </Border.BorderBrush>
 <Grid>
 <Rectangle>

c34.indd 1194c34.indd 1194 2/19/08 5:29:08 PM2/19/08 5:29:08 PM

1195

Chapter 34: Windows Presentation Foundation

 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0,0”
 EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”#444” />
 <GradientStop Offset=”1” Color=”#fff” />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Image Width=”48” Margin=”2,2,2,1”
 Source=”{Binding ImagePath}” />
 </Grid>
 </Border>
 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property=”Grid.IsSharedSizeScope” Value=”True” />
 </Style>
 </Window.Resources>

Figure 34-29

 It is not necessary that a ListBox have items that follow vertically, one after the other. You can give the
user a different view with the same functionality. The next style, listBoxStyle2 , defines a template in
which the items are shown horizontally with a scroll bar.

 In the previous example, only an ItemTemplate was created to define how the items should look in
the default ListBox . Now, a template is created to define a different ListBox . The template contains
a ControlTemplate element to define the elements of the ListBox . The element is now a
ScrollViewer — a view with a scroll bar — that contains a StackPanel . As the items should now
be listed horizontally, the Orientation of the StackPanel is set to Horizontal . The stack panel will
contain the items that are defined with the ItemsTemplate . As a result, the IsItemsHost of the
 StackPanel element is set to true . IsItemsHost is a property that is available with every Panel
element that can contain a list of items.

 The ItemTemplate defines the look for the items in the stack panel. Here, a grid with two rows is
created. The first row contains Image elements that are bound to the ImagePath property. The second
row contains TextBlock elements that are bound to the Name property.

c34.indd 1195c34.indd 1195 2/19/08 5:29:08 PM2/19/08 5:29:08 PM

1196

Part V: Presentation

 Figure 34-30 shows the ListBox styled with listBoxStyle2 where the scroll bar appears automatically
when the view is too small to display all items in the list.

 <Style x:Key=”listBoxStyle2” TargetType=”{x:Type ListBox}”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”{x:Type ListBox}”>
 <ScrollViewer HorizontalScrollBarVisibility=”Auto”>
 <StackPanel Name=”StackPanel1” IsItemsHost=”True”
 Orientation=”Horizontal” />
 </ScrollViewer>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property=”VerticalAlignment” Value=”Center” />
 <Setter Property=”ItemTemplate”>
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />

 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”60” />
 <RowDefinition Height=”30” />
 </Grid.RowDefinitions>
 <Image Grid.Row=”0” Width=”48” Margin=”2,2,2,1”
 Source=”{Binding ImagePath}” />
 <TextBlock Grid.Row=”1” FontSize=”14”
 HorizontalAlignment=”Center” Margin=”5”
 Text=”{Binding Name}” FontWeight=”Bold” />
 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>

Figure 34-30

c34.indd 1196c34.indd 1196 2/19/08 5:29:08 PM2/19/08 5:29:08 PM

1197

Chapter 34: Windows Presentation Foundation

 Certainly you see the advantages of separating the look of the controls from their behavior. You may
already have many ideas about how you can display your items in a list that best fits the requirements of
your application. Perhaps you just want to display as many items as will fit in the window, position
them horizontally, and then continue to the next line vertically. That’s where a WrapPanel comes in.
And, of course, you can have a WrapPanel inside a template for a ListBox , as shown in
 listBoxStyle3 . Figure 34-31 shows the result of using the WrapPanel .

 <Style x:Key=”listBoxStyle3” TargetType=”{x:Type ListBox}”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”{x:Type ListBox}”>
 <ScrollViewer VerticalScrollBarVisibility=”Auto”
 HorizontalScrollBarVisibility=”Disabled”>
 <WrapPanel IsItemsHost=”True” />
 </ScrollViewer>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property=”ItemTemplate”>
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”140” />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”60” />
 <RowDefinition Height=”30” />
 </Grid.RowDefinitions>
 <Image Grid.Row=”0” Width=”48” Margin=”2,2,2,1”
 Source=”{Binding ImagePath}” />
 <TextBlock Grid.Row=”1” FontSize=”14”
 HorizontalAlignment=”Center”
 Margin=”5” Text=”{Binding Name}” />

 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>

Figure 34-31

c34.indd 1197c34.indd 1197 2/19/08 5:29:09 PM2/19/08 5:29:09 PM

1198

Part V: Presentation

 In the next chapter, you can read more about the DataTemplate with data binding functionality.

 Summary
 In this chapter, you have taken a first tour through the many features of WPF. WPF makes it easy to
separate work between developers and designers. Both Microsoft Expression Blend and Visual Studio
make it possible to work with XAML code. Compared to prior Windows Forms applications, XAML
code does a better separation of the UI from the functionality behind it. All UI features can be created
with XAML, and the functionality by using code behind.

 You have seen many controls and containers that are all based on vector-graphics. Because of the vector-
graphics, WPF elements can be scaled, sheared, and rotated. Because of the content flexibility of content
controls, the event handling mechanism is based on bubbling and tunneling events.

 Different kinds of brushes are available to paint background and foreground of elements. You can use
solid brushes, linear or radial gradient brushes, but also visual brushes to do reflections or show videos.

 Styling and templates allow you to customize the look of controls. Triggers allow you to change
properties of WPF elements dynamically. Animations can be done easily by animating a property value
from a WPF control.

 The next chapter continues with WPF showing animations, 3D, data binding, and several more features.

c34.indd 1198c34.indd 1198 2/19/08 5:29:09 PM2/19/08 5:29:09 PM

 Advanced WPF

 In the previous chapter you read about some of the core functionality of WPF. In this chapter
programming with WPF continues. Here you read about some important aspects for creating
complete applications such as data binding and command handling, and you also get an
introduction to animations and 3 - D programming.

 The main topics of this chapter are:

 Data binding

 Commands

 Animations

 3 - D

 Windows Forms integration

 Data Binding
 In the previous chapter you saw a few features of data binding when styling the ListBox . But
of course there is a lot more. WPF data binding takes another huge step forward compared to
Windows Forms. This section gives you a good start in data binding with WPF and discusses
these topics:

 Overview

 Binding with XAML

 Simple object binding

 Object data provider

 List binding

 Binding to XML

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c35.indd 1199c35.indd 1199 2/19/08 5:29:21 PM2/19/08 5:29:21 PM

Part V: Presentation

1200

 Overview
 With WPF data binding, the target can be any dependency property of a WPF element, and every
property of a CLR object can be the source. Because a WPF element is implemented as a .NET class,
every WPF element can be the source as well. See Figure 35 - 1 for the connection between the source and
the target. The Binding object defines the connection.

Dependency Object

Dependency
Property

Target

CLR Object

PropertyBinding

Source

 Figure 35 - 1

 Binding supports several binding modes between the target and source. Binding can be one - way , where
the source information goes to the target, but if the user changes information in the user interface, the
source does not get updated. For updates to the source, two - way binding is required.

 The following table shows the binding modes and their requirements.

 Binding Mode Description

 One - time Binding goes from the source to the target and occurs only once when the
application is started or the data context changes. Here, you get a snapshot
of the data.

 One - way Binding goes from the source to the target. This is useful for read - only data,
because it is not possible to change the data from the user interface. To get
updates to the user interface, the source must implement the interface
 INotifyPropertyChanged .

 Two - way With a two - way binding, the user can make changes to the data from the UI.
Binding occurs in both directions — from the source to the target and from
the target to the source. The source needs to implement read/write
 properties so that changes can be updated from the UI to the source.

 One - way - to - source With one - way - to - source binding, if the target property changes, the source
object gets updated.

 Binding with XAML
 A WPF element can not only be the target for data binding, it can also be the source. You can bind the
source property of one WPF element to the target of another WPF element.

c35.indd 1200c35.indd 1200 2/19/08 5:29:22 PM2/19/08 5:29:22 PM

Chapter 35: Advanced WPF

1201

 The following code example uses the funny face created earlier, which is built up from WPF shapes and
binds it to a slider, so you can move it across the window. The Slider is the source element with the
name slider . The property Value gives the actual value of the slider position. The target for data
binding is the inner Canvas element. The inner Canvas element with the name FunnyFace contains all
the shapes needed to draw the funny face. This canvas is contained within an outer Canvas element, so
it is possible to position this canvas within the outer canvas by setting the attached properties. The
attached property Canvas.Left is set to the Binding markup extension. In the Binding markup
extension, the ElementName is set to slider to reference the WPF slider element, and the Path is set to
 Value to get the value from the Value property.

 < Window x:Class=”DataBindingSample.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Data Binding” Height=”345” Width=”310” >
 < StackPanel >
 < Canvas Height=”210” Width=”280” >
 < Canvas Canvas.Top=”0”

 Canvas.Left=”{Binding Path=Value, ElementName=slider}”

 Name=”FunnyFace” Height=”210” Width=”230” >
 < Ellipse Canvas.Left=”20” Canvas.Top=”50” Width=”100” Height=”100”
 Stroke=”Blue” StrokeThickness=”4” Fill=”Yellow” / >
 < Ellipse Canvas.Left=”40” Canvas.Top=”65” Width=”25” Height=”25”
 Stroke=”Blue” StrokeThickness=”3” Fill=”White” / >
 < Ellipse Canvas.Left=”50” Canvas.Top=”75” Width=”5” Height=”5”
 Fill=”Black” / >
 < Path Name=”mouth” Stroke=”Blue” StrokeThickness=”4”
 Data=”M 32,125 Q 65,122 72,108” / >

 < Line X1=”94” X2=”102” Y1=”144” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” / >
 < Line X1=”84” X2=”103” Y1=”169” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” / >

 < Line X1=”62” X2=”52” Y1=”146” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” / >
 < Line X1=”38” X2=”53” Y1=”160” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” / >
 < /Canvas >
 < /Canvas >

 < Slider Name=”slider” Orientation=”Horizontal” Value=”10”
 Maximum=”100” / >

 < /StackPanel >
 < /Window >

 When running the application, you can move the slider and make the funny face move, as you can see in
Figures 35 - 2 and 35 - 3 .

 Instead of defining the binding information with XAML code, as was done in the preceding code with
the Binding metadata extension, you can do it with code behind. Have one more look at the XAML
version of binding:

 < Canvas Canvas.Top=”0”
 Canvas.Left=”{Binding Path=Value, ElementName=slider}”
 Name=”FunnyFace” Height=”210” Width=”230” >

c35.indd 1201c35.indd 1201 2/19/08 5:29:22 PM2/19/08 5:29:22 PM

Part V: Presentation

1202

 With code behind you have to create a new Binding object and set the Path and Source properties. The
 Source property must be set to the source object; here, it is the WPF object slider . The Path is set to a
 PropertyPath instance that is initialized with the name of the property of the source object, Value .

 Figure 35 - 2 Figure 35 - 3

With the target, you can invoke the method SetBinding() to define the binding. Here, the target is the
 Canvas object with the name FunnyFace . The method SetBinding() requires two parameters: the first
one is a dependency property and the second one is the binding object. The Canvas.Left property
should be bound, so the dependency property of type DependencyProperty can be accessed with the
 Canvas.LeftProperty field:

 Binding binding = new Binding();
 binding.Path = new PropertyPath(“Value”);
 binding.Source = slider;

 FunnyFace.SetBinding(Canvas.LeftProperty, binding);

 You can configure a number of binding options with the Binding class, as described in the
following table.

 Binding Class Members Description

 Source With the Source property, you define the source object for data
 binding.

 RelativeSource With RelativeSource , you can specify the source in relation to the
 target object. This is useful to display error messages when the source
of the error comes from the same control.

 ElementName If the source is a WPF element, you can specify the source with the
 ElementName property.

 Path With the Path property, you specify the path to the source object. This
can be the property of the source object, but indexers and properties of
child elements are also supported.

c35.indd 1202c35.indd 1202 2/19/08 5:29:23 PM2/19/08 5:29:23 PM

Chapter 35: Advanced WPF

1203

 Binding Class Members Description

 XPath With an XML data source, you can define an XPath query expression to
get the data for binding.

 Mode The mode defines the direction for the binding. The Mode property is of
type BindingMode . BindingMode is an enumeration with the follow-
ing values: Default , OneTime , OneWay , TwoWay , OneWayToSource .
The default mode depends on the target: with a TextBox , two - way
binding is the default; with a Label that is read - only, the default is one -
 way. OneTime means that the data is only init loaded from the source;
 OneWay also does updates from the source to the target. With TwoWay
binding changes from the WPF elements are written back to the source.
 OneWayToSource means that the data is never read but always written
from the target to the source.

 Converter With the Converter property, you can specify a converter class that
converts the data for the UI and back. The converter class must imple-
ment the interface IValueConverter , which defines the methods
 Convert() and ConvertBack() . You can pass parameters to the con-
verter methods with the ConverterParameter property. The converter
can be culture - sensitive; the culture can be set with the
 ConverterCulture property.

 FallbackValue With the FallbackValue property, you can define a default value that
is used if binding doesn ’ t return a value.

 ValidationRules With the ValidationRules property, you can define a collection of
 ValiationRule objects that are checked before the source is updated
from the WPF target elements. The class ExceptionValidationRule
is derived from the class ValidationRule and checks for exceptions.

 Simple Object Binding
 For binding to CLR objects, with the .NET classes you just have to define properties, as shown in this
example with the class Book and the properties Title , Publisher , Isbn , and Authors :

 public class Book
 {
 public Book(string title, string publisher, string isbn,
 params string[] authors)
 {
 this.Title = title;
 this.Publisher = publisher;
 this.Isbn = isbn;
 foreach (string author in authors)
 {
 this.authors.Add(author);
 }
 }

(continued)

c35.indd 1203c35.indd 1203 2/19/08 5:29:24 PM2/19/08 5:29:24 PM

Part V: Presentation

1204

 public Book()
 : this(“unknown”, “unknown”, “unknown”)
 {
 }

 public string Title { get; set; }
 public string Publisher { get; set; }
 public string Isbn { get; set; }

 public override string ToString()
 {
 return Title;
 }

 private readonly List < string > authors = new List < string > ();
 public string[] Authors
 {
 get { return authors.ToArray(); }
 }
 }

 In the user interface, several labels and TextBox controls are defined to display book information. Using
 Binding markup extensions, the TextBox controls are bound to the properties of the Book class. With
the Binding markup extension nothing more than the Path property is defined to bind it to the property
of the Book class. There ’ s no need to define a source because the source is defined by assigning the
 DataContext , as you can see in the code behind that follows. The mode is defined by its default with
the TextBox element, and this is two - way binding.

 < Window x:Class=”ObjectBindingSample.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Object Binding Sample” Height=”300” Width=”340”
 >
 < Grid Name=”bookGrid” Margin=”5” >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”30*” / >
 < ColumnDefinition Width=”70*” / >
 < /Grid.ColumnDefinitions >
 < Grid.RowDefinitions >
 < RowDefinition Height=”50” / >
 < RowDefinition Height=”50” / >
 < RowDefinition Height=”50” / >
 < RowDefinition Height=”50” / >
 < RowDefinition Height=”50” / >
 < /Grid.RowDefinitions >
 < Label Grid.Column=”0” Grid.Row=”0” > Title: < /Label >

 < TextBox Margin=”5” Height=”30” Grid.Column=”1” Grid.Row=”0”
 Text=”{Binding Title}” / >

 < Label Grid.Column=”0” Grid.Row=”1” > Publisher: < /Label >

 < TextBox Margin=”5” Height=”30” Grid.Column=”1” Grid.Row=”1”
 Text=”{Binding Publisher}” / >

 < Label Grid.Column=”0” Grid.Row=”2” > ISBN: < /Label >

(continued)

c35.indd 1204c35.indd 1204 2/19/08 5:29:25 PM2/19/08 5:29:25 PM

Chapter 35: Advanced WPF

1205

 < TextBox Margin=”5” Height=”30” Grid.Column=”1” Grid.Row=”2”
 Text=”{Binding Isbn}” / >

 < Button Margin=”5” Grid.Column=”1” Grid.Row=”4”
 Click=”bookButton_Click” Name=”bookButton” > Open Dialog < /Button >

 < /Grid >
 < /Window >

 With the code behind, a new Book object is created, and the book is assigned to the DataContext
property of the Grid control. DataContext is a dependency property that is defined with the base class
 FrameworkElement . Assigning the DataContext with the Grid control means that every element in the
 Grid control has a default binding to the same data context.

 public partial class Window1 : System.Windows.Window
 {
 private Book book1 = new Book();

 public Window1()
 {
 InitializeComponent();

 book1.Title = “Professional C# 2005 with .NET 3.0”;
 book1.Publisher = “Wrox Press”;
 book1.Isbn = “978-0470124727”;

 bookGrid.DataContext = book1;

 }
 }

 After starting the application, you can see the bound data, as shown in Figure 35 - 4 .

 Figure 35 - 4

 To demonstrate the two - way binding (changes to the input of the WPF element are reflected inside the
CLR object), the OnOpenBookDialog() method is implemented. This method is assigned to the Click
event of the bookButton , as you can see in the XAML code. When implemented a message box pops up
to show the current title and ISBN number of the book1 object. Figure 35 - 5 shows the output from the
message box after a change to the input was made during runtime.

c35.indd 1205c35.indd 1205 2/19/08 5:29:25 PM2/19/08 5:29:25 PM

Part V: Presentation

1206

 Figure 35 - 5

 void bookButton_Click(object sender, RoutedEventArgs e)
 {
 string message = book1.Title;
 string caption = book1.Isbn;
 MessageBox.Show(message, caption);
 }

 Object Data Provider
 Instead of defining the object in code behind, you can define an object instance with XAML. To make
this possible, you have to reference the namespace with the namespace declarations in the XML root
element. The XML attribute xmlns:src= “ clr - namespace:Wrox.ProCsharp.WPF ” assigns the .NET
namespace Wrox.ProCSharp.WPF to the XML namespace alias src .

 One object of the Book class is now defined with the Book element inside the Window resources. By
assigning values to the XML attributes Title and Publisher , you set the values of the properties from
the Book class. x:Key= “ theBook ” defines the identifier for the resource so that you can reference the
book object. In the TextBox element, now the Source is defined with the Binding markup extension to
reference the theBook resource.

 XAML markup extensions can be combined. In the following sample, the StaticResource markup
extension used to reference the book resource is contained within the Binding markup extension.

 < Window x:Class=”Wrox.ProCSharp.WPF.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:src=”clr-namespace:Wrox.ProCSharp.WPF”
 Title=”Object Binding Sample” Height=”300” Width=”340” >
 < Window.Resources >
 < src:Book x:Key=”theBook” Title=”Professional C# 2008”
 Publisher=”Wrox Press” / >
 < /Window.Resources >

 < !-- ... -- >

 < TextBox Margin=”5” Height=”30” Grid.Column=”1” Grid.Row=”0”
 Text=”{Binding Source={StaticResource theBook}, Path=Title}” / >

 < !-- ... -- >

 If the .NET namespace to reference is in a different assembly, you have to add the assembly as well to the
XML declaration:

xmlns:system=”clr-namespace:System;assembly=mscorlib”

c35.indd 1206c35.indd 1206 2/19/08 5:29:25 PM2/19/08 5:29:25 PM

Chapter 35: Advanced WPF

1207

 Instead of defining the object instance directly within XAML code, you can define an object data
provider that references a class to invoke a method. For use by the ObjectDataProvider , it ’ s best to
create a factory class that returns the object to display, as shown with the BookFactory class:

 public class BookFactory
 {
 private List < Book > books = new List < Book > ();

 public BookFactory()
 {
 books.Add(new Book(“Professional C# 2008”,
 “Wrox Press”, “978-0470191378”));
 }

 public Book GetTheBook()
 {
 return books[0];
 }
 }

 The ObjectDataProvider element can be defined in the resources section. The XML attribute
 ObjectType defines the name of the class; with MethodName you specify the name of the method that is
invoked to get the book object:

 < Window.Resources >

 < ObjectDataProvider ObjectType=”src:BookFactory” MethodName=”GetTheBook”
 x:Key=”theBook” >
 < /ObjectDataProvider >

 < /Window.Resources >

 The properties you can specify with the ObjectDataProvider class are listed in the following table.

 ObjectDataProvider Description

 ObjectType The ObjectType property defines the type to create an instance of.

 ConstructorParameters Using the ConstructorParameters collection, you can add parame-
ters to the class to create an instance.

 MethodName The MethodName property defines the name of the method that is
invoked by the object data provider.

 MethodParameters With the MethodParameters property, you can assign parameters to
the method defined with the MethodName property.

 ObjectInstance With the ObjectInstance property, you can get and set the object
that is used by the ObjectDataProvider class. For example, you can
assign an existing object programmatically instead of defining the
 ObjectType so that an object is instantiated by the
 ObjectDataProvider .

 Data With the Data property you can access the underlying object that
is used for data binding. If the MethodName is defined, with the Data
property you can access the object that is returned from the method
defined.

c35.indd 1207c35.indd 1207 2/19/08 5:29:26 PM2/19/08 5:29:26 PM

Part V: Presentation

1208

 List Binding
 Binding to a list is more frequently done than binding to simple objects. Binding to a list is very similar
to binding to a simple object. You can assign the complete list to the DataContext from code behind, or
you can use an ObjectDataProvider that accesses an object factory that returns a list. With elements
that support binding to a list (for example, a ListBox), the complete list is bound. With elements that
support binding to just one object (for example, a TextBox), the current item is bound.

 With the BookFactory class, now a list of Book objects is returned:

 public class BookFactory
 {
 private List < Book > books = new List < Book > ();

 public BookFactory()
 {
 books.Add(new Book(“Professional C# 2008”, “Wrox Press”,
 “978-0470191378”, “Christian Nagel”, “Bill Evjen”,
 “Jay Glynn”, “Karli Watson”, “Morgan Skinner”));
 books.Add(new Book(“Professional C# 2005 with .NET 3.0”,
 “Wrox Press”, “978-0-470-12472-7”, “Christian Nagel”,
 “Bill Evjen”, “Jay Glynn”, “Karli Watson”, “Morgan Skinner”));
 books.Add(new Book(“Professional C# 2005”,
 “Wrox Press”, “978-0-7645-7534-1”, “Christian Nagel”,
 “Bill Evjen”,”Jay Glynn”, “Karli Watson”, “Morgan Skinner”,
 “Allen Jones”));
 books.Add(new Book(“Beginning Visual C#”,
 “Wrox Press”, “978-0-7645-4382-1”, “Karli Watson”,
 “David Espinosa”, “Zach Greenvoss”, “Jacob Hammer Pedersen”,
 “Christian Nagel”, “John D. Reid”, “Matthew Reynolds”,
 “Morgan Skinner”, “Eric White”));
 books.Add(new Book(“ASP.NET Professional Secrets”,
 “Wiley”, “978-0-7645-2628-2”, “Bill Evjen”,
 “Thiru Thangarathinam”, “Bill Hatfield”, “Doug Seven”,
 “S. Srinivasa Sivakumar”, “Dave Wanta”, “Jason T. Roff”));
 books.Add(new Book(“Design and Analysis of Distributed Algorithms”,
 “Wiley”, “978-0-471-71997-7”, “Nicolo Santoro”));
 }

 public IEnumerable < Book > GetBooks()
 {
 return books;
 }
 }

 In the WPF code - behind constructor of the class Window1 a BookFactory is instantiated and the method
 GetBooks() is invoked to assign the Book array with the DataContext of the Window1 instance:

 public partial class Window1 : System.Windows.Window
 {
 private BookFactory factory = new BookFactory();

 public Window1()

c35.indd 1208c35.indd 1208 2/19/08 5:29:26 PM2/19/08 5:29:26 PM

Chapter 35: Advanced WPF

1209

 {
 InitializeComponent();

 this.DataContext = factory.GetBooks();

 }
 }

 In XAML you just need a control that supports lists, such as the ListBox , and to bind the ItemsSource
property as shown:

 < Window x:Class=” Wrox.ProCSharp.WPF.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”List Binding Sample” Height=”300” Width=”518”
 >
 < DockPanel >
 < Grid >
 < Grid.ColumnDefinitions >
 < ColumnDefinition / >
 < /Grid.ColumnDefinitions >
 < Grid.RowDefinitions >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < /Grid.RowDefinitions >

 < ListBox HorizontalAlignment=”Left” Margin=”5” Grid.RowSpan=”4”
 Grid.Row=”0” Grid.Column=”0” Name=”booksList”
 ItemsSource=”{Binding}” / >

 < /Grid >
 < /DockPanel >
 < /Window >

 Because the Window has the Book array assigned to the DataContext , and the ListBox is placed within
the Window , the ListBox shows all books with the default template, as illustrated in Figure 35 - 6 .

 Figure 35 - 6

 For a more flexible layout of the ListBox , you have to define a template, as was discussed in the
previous chapter for ListBox styling. The ItemTemplate contained in the style listBoxStyle defines
a DataTemplate with a Label element. The content of the label is bound to the Title . The item
template is repeated for every item in the list.

c35.indd 1209c35.indd 1209 2/19/08 5:29:26 PM2/19/08 5:29:26 PM

Part V: Presentation

1210

 The ListBox element has the Style property assigned. ItemsSource is, as before, set to the default
binding. Figure 35 - 7 shows the output of the application with the new ListBox style.

 < Window.Resources >
 < Style x:Key=”listBoxStyle” TargetType=”{x:Type ListBox}” >
 < Setter Property=”ItemTemplate” >
 < Setter.Value >

 < DataTemplate >
 < Label Content=”{Binding Title}” / >
 < /DataTemplate >

 < /Setter.Value >
 < /Setter >
 < /Style >
 < /Window.Resources >

 < !-- ... -- >

 < ListBox HorizontalAlignment=”Left” Margin=”5”
 Style=”{StaticResource listBoxStyle}” Grid.RowSpan=”4”
 ItemsSource=”{Binding}” / >

 Figure 35 - 7

 Master - Details Binding
 Instead of just showing all the elements inside a list, you might want or need to show detail information
about the selected item. It doesn ’ t require a lot of work to do this. You just have to define the elements
to display the current selection. In the sample application, three Label elements are defined with the
 Binding markup extension set to the Book properties Title , Publisher , and Isbn . There ’ s one
important change you have to make to the ListBox . By default, the labels are bound to just the first
element of the list. By setting the ListBox property IsSynchronizedWithCurrentItem= “ True ” , the
selection of the list box is set to the current item. In Figure 35 - 8 you can see the result; the selected item is
shown in the detail section labels.

 < Window x:Class=” Wrox.ProCSharp.WPF.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”List Binding Sample” Height=”300” Width=”518”
 >

c35.indd 1210c35.indd 1210 2/19/08 5:29:27 PM2/19/08 5:29:27 PM

Chapter 35: Advanced WPF

1211

 < Window.Resources >
 < Style x:Key=”listBoxStyle” TargetType=”{x:Type ListBox}” >
 < Setter Property=”ItemTemplate” >
 < Setter.Value >
 < DataTemplate >
 < Label Content=”{Binding Title}” / >
 < /DataTemplate >
 < /Setter.Value >
 < /Setter >
 < /Style >
 < Style x:Key=”labelStyle” TargetType=”{x:Type Label}” >
 < Setter Property=”Width” Value=”190” / >
 < Setter Property=”Height” Value=”40” / >
 < Setter Property=”Margin” Value=”5,5,5,5” / >
 < /Style >
 < /Window.Resources >
 < DockPanel >
 < Grid >
 < Grid.ColumnDefinitions >
 < ColumnDefinition / >
 < ColumnDefinition / >
 < /Grid.ColumnDefinitions >
 < Grid.RowDefinitions >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < /Grid.RowDefinitions >

 < ListBox IsSynchronizedWithCurrentItem=”True” HorizontalAlignment=”Left”
 Margin=”5” Style=”{StaticResource listBoxStyle}”
 Grid.RowSpan=”4” ItemsSource=”{Binding}” / >

 < Label Style=”{StaticResource labelStyle}” Content=”{Binding Title}”
 Grid.Row=”0” Grid.Column=”1” / >
 < Label Style=”{StaticResource labelStyle}” Content=”{Binding Publisher}”
 Grid.Row=”1” Grid.Column=”1” / >
 < Label Style=”{StaticResource labelStyle}” Content=”{Binding Isbn}”
 Grid.Row=”2” Grid.Column=”1” / >

 < /Grid >
 < /DockPanel >
 < /Window >

 Figure 35 - 8

c35.indd 1211c35.indd 1211 2/19/08 5:29:27 PM2/19/08 5:29:27 PM

Part V: Presentation

1212

 Value Conversion
 The authors of the book are still missing in the output. If you bind the Authors property to a Label
element, the ToString() method of the Array class is invoked, which just returns the name of the type.
One solution to this is to bind the Authors property to a ListBox . For the ListBox , you can define a
template for a specific view. Another solution is to convert the string array returned by the Authors
property to a string and use the string for binding.

 The class StringArrayConverter converts a string array to a string. WPF converter classes must
implement the interface IValueConverter from the namespace System.Windows.Data . This interface
defines the methods Convert() and ConvertBack() . With the StringArrayConverter , the
 Convert() method converts the string array from the variable value to a string by using the
String.Join() method. The separator parameter of the Join() is taken from the variable parameter
received with the Convert() method.

 You can read more about the methods of the String classes in Chapter 8 , “ Strings and Regular
Expressions. ”

 public class StringArrayConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 string[] stringCollection = (string[])value;
 string separator = (string)parameter;

 return String.Join(separator, stringCollection);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string s = (string)value;
 char separator = (char)parameter;

 return s.Split(separator);
 }
 }

 In the XAML code, the StringArrayConverter class can be declared as a resource for referencing it
from the Binding markup extension:

 < Window x:Class=” Wrox.ProCSharp.WPF.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:src=”clr-namespace:Wrox.ProCSharp.WPF”
 Title=”List Binding Sample” Height=”300” Width=”518”
 >
 < Window.Resources >
 < src:StringArrayConverter x:Key=”stringArrayConverter” / >
 < !-- ... -- >

 For multiline output, a TextBlock element is declared with the TextWrapping property set to Wrap to
make it possible to display multiple authors. In the Binding markup extension the Path is set to
 Authors , which is defined as a property returning a string array. The string array is converted from the

c35.indd 1212c35.indd 1212 2/19/08 5:29:27 PM2/19/08 5:29:27 PM

Chapter 35: Advanced WPF

1213

resource stringArrayConverter as defined by the Converter property. The Convert method of
the converter implementation receives the ConverterParameter ‘ , ‘ as input to separate the authors:

 < TextBlock Width=”190” Height=”50” Margin=”5” TextWrapping=”Wrap”
 Text=”{Binding Path=Authors,
 Converter={StaticResource stringArrayConverter},
 ConverterParameter=’, ‘ }”
 Grid.Row=”3” Grid.Column=”1” / >

 Figure 35 - 9 shows the book details, including authors.

 Adding List Items Dynamically
 What if list items are added dynamically? The WPF element must be notified of elements added to
the list.

 In the XAML code of the WPF application, a Button element is added inside a StackPanel . The Click
event is assigned to the method OnAddBook() :

 < !-- ... -- >
 < DockPanel >
 < StackPanel Orientation=”Horizontal” DockPanel.Dock=”Bottom” Height=”60” >
 < Button Click=”addBookButton_Click” Name=”addBookButton” Margin=”5”
 Width=”80” Height=”40” > Add Book < /Button >
 < /StackPanel >
 < Grid >
 < !-- ... -- >

 In the method OnAddBook() , which implements the event handler code for the addBookButton , a new
 Book object is added to the list. If you test the application with the BookFactory as it is implemented
now, there ’ s no notification to the WPF elements that a new object has been added to the list.

 void addBookButton_Click(object sender, RoutedEventArgs e)
 {
 factory.AddBook(new Book(“.NET 2.0 Wrox Box”, “Wrox Press”,
 “978-0-470-04840-5”));
 }

 The object that is assigned to the DataContext must implement the interface
 INotifyCollectionChanged . This interface defines the CollectionChanged event that is
used by the WPF application. Instead of implementing this interface on your own with a custom

Figure 35-9

c35.indd 1213c35.indd 1213 2/19/08 5:29:28 PM2/19/08 5:29:28 PM

Part V: Presentation

1214

collection class, you can use the generic collection class ObservableCollection < T > that is defined
with the namespace System.Collections.ObjectModel in the assembly WindowsBase . Now,
as a new item is added to the collection, the new item immediately shows up in the ListBox :

 public class BookFactory
 {
 private ObservableCollection < Book > books =
 new ObservableCollection < Book > ();

 // ...

 public void AddBook(Book book)
 {
 books.Add(book);
 }

 public IEnumerable < Book > GetBooks()
 {
 return books;
 }
 }

 Data Templates
 In the previous chapter, you saw how controls can be customized with templates. You can also define a
template for a data type, for example, the Book class. No matter where the Book class is used, the
template defines the default look.

 In the example, the DataTemplate is defined within the Window resources. The DataType property
references the class Book from the namespace Wrox.ProCSharp.WPF . The template defines a border
with two label elements contained in a stack panel. With the ListBox element you can see there ’ s no
template referenced. The only property that is defined by the ListBox is ItemsSource with a value
for the default Binding markup extension. Because the DataTemplate does not define a key, it is
used by all lists containing Book objects. Figure 35 - 10 shows the output of the application with the
data template.

 < Window x:Class=” Wrox.ProCSharp.WPF.DataTemplateDemo”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:src=”clr-namespace:Wrox.ProCSharp.WPF”
 Title=”Data Binding” Height=”300” Width=”300”
 >
 < Window.Resources >
 < DataTemplate DataType=”{x:Type src:Book}” >
 < Border BorderBrush=”Blue” BorderThickness=”2” Background=”LightBlue”
 Margin=”10” Padding=”15” >
 < StackPanel >
 < Label Content=”{Binding Path=Title}” / >
 < Label Content=”{Binding Path=Publisher}” / >
 < /StackPanel >
 < /Border >
 < /DataTemplate >
 < /Window.Resources >
 < Grid >
 < ListBox ItemsSource=”{Binding}” / >
 < /Grid >
 < /Window >

c35.indd 1214c35.indd 1214 2/19/08 5:29:28 PM2/19/08 5:29:28 PM

Chapter 35: Advanced WPF

1215

 In case you want to use a different data template with the same data type, you can create a data template
selector. A data template selector is implemented in a class that derives from the base class
 DataTemplateSelector .

 Here a data template selector is implemented by selecting a different template based on the publisher.
Within the Window resources these templates are defined. One template can be accessed by the key name
 WroxBookTemplate ; the other template has the key name WileyBookTemplate :

 < DataTemplate x:Key=”WroxBookTemplate” DataType=”{x:Type src:Book}” >
 < Border BorderBrush=”Blue” BorderThickness=”2” Background=”LightBlue”
 Margin=”10” Padding=”15” >
 < StackPanel >
 < Label Content=”{Binding Path=Title}” / >
 < Label Content=”{Binding Path=Publisher}” / >
 < /StackPanel >
 < /Border >
 < /DataTemplate >

 < DataTemplate x:Key=”WileyBookTemplate” DataType=”{x:Type src:Book}” >
 < Border BorderBrush=”Yellow” BorderThickness=”2”
 Background=”LightGreen” Margin=”10” Padding=”15” >
 < StackPanel >
 < Label Content=”{Binding Path=Title}” / >
 < Label Content=”{Binding Path=Publisher}” / >
 < /StackPanel >
 < /Border >
 < /DataTemplate >

Figure 35-10

c35.indd 1215c35.indd 1215 2/19/08 5:29:28 PM2/19/08 5:29:28 PM

Part V: Presentation

1216

 For selecting the template the class BookDataTemplateSelector overrides the method
 SelectTemplate from the base class DataTemplateSelector . The implementation selects the
template based on the Publisher property from the Book class:

using System.Windows;
using System.Windows.Controls;

namespace Wrox.ProCSharp.WPF
{
 public class BookDataTemplateSelector : DataTemplateSelector
 {
 public override DataTemplate SelectTemplate(object item,
 DependencyObject container)
 {
 if (item != null & & item is Book)
 {
 Window window = Application.Current.MainWindow;

 Book book = item as Book;
 switch (book.Publisher)
 {
 case “Wrox Press”:
 return window.FindResource(“WroxBookTemplate”)
 as DataTemplate;
 case “Wiley”:
 return window.FindResource(“WileyBookTemplate”)
 as DataTemplate;
 default:
 return window.FindResource(“BookTemplate”) as DataTemplate;
 }
 }
 return null;
 }
 }
}

 For accessing the class BookDataTemplateSelector from XAML code, the class is defined within the
 Window resources:

 < src:BookDataTemplateSelector x:Key=”bookTemplateSelector” / >

 Now the selector class can be assigned to the ItemTemplateSelector property of the ListBox :

 < ListBox ItemsSource=”{Binding}”
 ItemTemplateSelector=”{StaticResource bookTemplateSelector}” / >

 When running the application, you can see different data templates based on the publisher, as shown
in Figure 35 - 11 .

c35.indd 1216c35.indd 1216 2/19/08 5:29:29 PM2/19/08 5:29:29 PM

Chapter 35: Advanced WPF

1217

 Binding to XML
 WPF data binding has special support for binding to XML data. You can use XmlDataProvider as a
data source and bind the elements by using XPath expressions. For a hierarchical display, you can use
the TreeView control and create the view for the items by using the HierarchicalDataTemplate .

 The following XML file containing Book elements is used as a source in the next examples:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Books >
 < Book isbn=”978-0-470-12472-7” >
 < Title > Professional C# 2008 < /Title >
 < Publisher > Wrox Press < /Publisher >
 < Author > Christian Nagel < /Author >
 < Author > Bill Evjen < /Author >
 < Author > Jay Glynn < /Author >
 < Author > Karli Watson < /Author >
 < Author > Morgan Skinner < /Author >
 < /Book >
 < Book isbn=”978-0-7645-4382-1” >
 < Title > Beginning Visual C# 2008 < /Title >
 < Publisher > Wrox Press < /Publisher >
 < Author > Karli Watson < /Author >
 < Author > David Espinosa < /Author >
 < Author > Zach Greenvoss < /Author >
 < Author > Jacob Hammer Pedersen < /Author >
 < Author > Christian Nagel < /Author >
 < Author > John D. Reid < /Author >
 < Author > Matthew Reynolds < /Author >
 < Author > Morgan Skinner < /Author >
 < Author > Eric White < /Author >
 < /Book >
 < /Books >

 Similarly to defining an object data provider, you can define an XML data provider. Both
 ObjectDataProvider and XmlDataProvider are derived from the same base class,
 DataSourceProvider . With the XmlDataProvider in the example, the Source property is set to
reference the XML file books.xml . The XPath property defines an XPath expression to reference the

Figure 35-11

c35.indd 1217c35.indd 1217 2/19/08 5:29:29 PM2/19/08 5:29:29 PM

Part V: Presentation

1218

XML root element Books . The Grid element references the XML data source with the DataContext
property. With the data context for the grid, all Book elements are required for a list binding, so the
XPath expression is set to Book . Inside the grid, you can find the ListBox element that binds to the
default data context and uses the DataTemplate to include the title in TextBlock elements as items of
the ListBox . Inside the grid, you can also see three Label elements with data binding set to XPath
expressions to display the title, publisher, and ISBN numbers.

 < Window x:Class=”Wrox.ProCSharp.WPF.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”XML Binding” Height=”348” Width=”498”
 >
 < Window.Resources >
 < XmlDataProvider x:Key=”books” Source=”Books.xml” XPath=”Books” / >

 < DataTemplate x:Key=”listTemplate” >
 < TextBlock Text=”{Binding XPath=Title}” / >
 < /DataTemplate >

 < Style x:Key=”labelStyle” TargetType=”{x:Type Label}” >
 < Setter Property=”Width” Value=”190” / >
 < Setter Property=”Height” Value=”40” / >
 < Setter Property=”Margin” Value=”5” / >
 < /Style >

 < /Window.Resources >
 < Grid DataContext=”{Binding Source={StaticResource books}, XPath=Book}” >
 < Grid.ColumnDefinitions >
 < ColumnDefinition / >
 < ColumnDefinition / >
 < /Grid.ColumnDefinitions >
 < Grid.RowDefinitions >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < RowDefinition / >
 < /Grid.RowDefinitions >
 < ListBox IsSynchronizedWithCurrentItem=”True” Margin=”5”
 Grid.Column=”0” Grid.RowSpan=”4” ItemsSource=”{Binding}”
 ItemTemplate=”{StaticResource listTemplate}” / >

 < Label Style=”{StaticResource labelStyle}”
 Content=”{Binding XPath=Title}”
 Grid.Row=”0” Grid.Column=”1” / >
 < Label Style=”{StaticResource labelStyle}”
 Content=”{Binding XPath=Publisher}”
 Grid.Row=”1” Grid.Column=”1” / >
 < Label Style=”{StaticResource labelStyle}”
 Content=”{Binding XPath=@isbn}”
 Grid.Row=”2” Grid.Column=”1” / >
 < /Grid >
 < /Window >

c35.indd 1218c35.indd 1218 2/19/08 5:29:30 PM2/19/08 5:29:30 PM

Chapter 35: Advanced WPF

1219

 Binding Validation
 Several options are available to validate data from the user before it is used with the .NET objects. These
options are:

 Handling exceptions

 Data error information

 Custom validation rules

 Handling Exceptions
 One of the options demonstrated here is that the .NET class throws an exception if an invalid value is set
as shown in the class SomeData . The property Value1 accepts only values larger or equal to 5 and
smaller than 12:

 public class SomeData
 {
 private int value1;
 public int Value1 {
 get
 {
 return value1;
 }
 set
 {
 if (value < 5 || value > 12)
 throw new ArgumentException(
 “value must not be less than 5 or greater than 12”);
 value1 = value;
 }
 }
 }

❑

❑

❑

Figure 35-12

If XML data should be shown hierarchically, you can use the TreeView control.

 Figure 35 - 12 shows the result of the XML binding.

c35.indd 1219c35.indd 1219 2/19/08 5:29:30 PM2/19/08 5:29:30 PM

Part V: Presentation

1220

 In the constructor of the Window1 class, a new object of the class SomeData is initialized and passed to
the DataContext for data binding:

 public partial class Window1 : Window
 {
 SomeData p1 = new SomeData() { Value1 = 11 };

 public Window1()
 {
 InitializeComponent();
 this.DataContext = p1;

 }

 The event handler method buttonSubmit_Click displays a message box to show the actual value of
the SomeData instance:

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(p1.Value1.ToString());
 }
 }

 With simple data binding, here the Text property of a TextBox is bound to the Value1 property. If you
run the application now and try to change the value to one that is not valid, you can verify that the value
never changed by clicking the Submit button. WPF catches and ignores the exception thrown by the set
accessor of the property Value1 .

 < Label Margin=”5” Grid.Row=”0” Grid.Column=”0” > Value1: < /Label >
 < TextBox Margin=”5” Grid.Row=”0” Grid.Column=”1”
 Text=”{Binding Path=Value1}” / >

 To display an error as soon as the context of the input field changes, you can set the
 ValidatesOnException property of the Binding markup extension to True . With an invalid value (as
soon as the exception is thrown when the value should be set), the TextBox is surrounded by a red
colored line as shown in Figure 35 - 13 .

 < Label Margin=”5” Grid.Row=”0” Grid.Column=”0” > Value1: < /Label >
 < TextBox Margin=”5” Grid.Row=”0” Grid.Column=”1”
 Text=”{Binding Path=Value1, ValidatesOnExceptions=True}” / >

Figure 35-13

 To return the error information in a different way to the user, you can assign the attached property
 ErrorTemplate that is defined by the Validation class to a template defining the UI for errors. The
new template to mark the error is shown here with the key validationTemplate . The
 ControlTemplate puts a red exclamation point in front of the existing control content.

c35.indd 1220c35.indd 1220 2/19/08 5:29:30 PM2/19/08 5:29:30 PM

Chapter 35: Advanced WPF

1221

 < ControlTemplate x:Key=”validationTemplate” >
 < DockPanel >
 < TextBlock Foreground=”Red” FontSize=”20” > ! < /TextBlock >
 < AdornedElementPlaceholder/ >
 < /DockPanel >
 < /ControlTemplate >

 Setting the validationTemplate with the Validation.ErrorTemplate attached property activates
the template with the TextBox :

 < Label Margin=”5” Grid.Row=”0” Grid.Column=”0” > Value1: < /Label >
 < TextBox Margin=”5” Grid.Row=”0” Grid.Column=”1”
 Text=”{Binding Path=Value1, ValidatesOnExceptions=True}”
 Validation.ErrorTemplate=”{StaticResource validationTemplate}” / >

 The new look of the application is shown in Figure 35 - 14 .

 Another option for a custom error message is to register to the Error event of the Validation class.
Here the property NotifyOnValidationError must be set to true.

 The error information itself can be accessed from the Errors collection of the Validation class. To
display the error information in the ToolTip of the TextBox you can create a property trigger as shown.
The trigger is activated as soon as the HasError property of the Validation class is set to True . The
trigger sets the ToolTip property of the TextBox .

 < Style TargetType=”{x:Type TextBox}” >
 < Style.Triggers >
 < Trigger Property=”Validation.HasError” Value=”True” >
 < Setter Property=”ToolTip”
 Value=”{Binding RelativeSource=
 {x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}” / >
 < /Trigger >
 < /Style.Triggers >
 < /Style >

 Data Error Information
 Another way to deal with errors is if the .NET object implements the interface IDataErrorInfo .

 The class SomeData is now changed to implement the interface IDataErrorInfo . This interface defines the
property Error and an indexer with a string argument. With WPF validation during data binding, the
indexer is called and the name of the property to validate is passed as the columnName argument. With the
implementation the value is verified if it is valid, and an error string is passed otherwise.

Figure 35-14

c35.indd 1221c35.indd 1221 2/19/08 5:29:31 PM2/19/08 5:29:31 PM

Part V: Presentation

1222

Here the validation is done on the property Value2 that is implemented by using the C# 3.0 simple
property notation:

 public class SomeData : IDataErrorInfo
 {
 private int value1;
 public int Value1 {
 get
 {
 return value1;
 }
 set
 {
 if (value < 5 || value > 12)
 throw new ArgumentException(
 “value must not be less than 5 or greater than 12”);
 value1 = value;
 }
 }

 public int Value2 { get; set; }

 string IDataErrorInfo.Error
 {
 get
 {
 return null;
 }
 }

 string IDataErrorInfo.this[string columnName]
 {
 get
 {
 if (columnName == “Value2”)
 {
 if (this.Value2 < 0 || this.Value2 > 80)
 return “age must not be less than 0 or greater than 80”;

 }
 return null;
 }
 }
 }

 With a .NET entity class it would not be clear what an indexer would return; for example, what would
you expect from an object of type Person calling an indexer? That ’ s why it is best to do an explicit im-
plementation of the interface IDataErrorInfo . This way this indexer can be accessed only by using
the interface, and the .NET class could do a different implementation for other purposes.

 If you set the property ValidatesOnDataErrors of the Binding class to true, the interface
 IDataErrorInfo is used during binding. Here, when the TextBox is changed, the binding mechanism
invokes the indexer of the interface and passes Value2 to the columnName variable:

 < Label Margin=”5” Grid.Row=”1” Grid.Column=”0” > Value2: < /Label >
 < TextBox Margin=”5” Grid.Row=”1” Grid.Column=”1”
 Text=”{Binding Path=Value2, ValidatesOnDataErrors=True}” / >

c35.indd 1222c35.indd 1222 2/19/08 5:29:32 PM2/19/08 5:29:32 PM

Chapter 35: Advanced WPF

1223

 Custom Validation Rules
 To get more control of the validation you can implement a custom validation rule. A class implementing
a custom validation rule needs to derive from the base class ValidationRule . With the previous
two examples, validation rules have been used as well. Two classes that derive from the abstract
base class ValidationRule are DataErrorValidationRule and ExceptionValidationRule .
 DataErrorValidationRule is activated by setting the property ValidatesOnDataErrors and uses
the interface IDataErrorInfo ; ExceptionValidationRule deals with exceptions and is activated by
setting the property ValidatesOnException .

 Here a validation rule is implemented to verify for a regular expression. The class
 RegularExpressionValidationRule derives from the base class ValidationRule and overrides
the abstract method Validate() that is defined by the base class. With the implementation, the
 RegEx class from the namespace System.Text.RegularExpressions is used to validate
the expression defined by the Expression property.

 public class RegularExpressionValidationRule : ValidationRule
 {
 public string Expression { get; set; }
 public string ErrorMessage { get; set; }

 public override ValidationResult Validate(object value,
 CultureInfo cultureInfo)
 {
 ValidationResult result = null;
 if (value != null)
 {
 Regex regEx = new Regex(Expression);
 bool isMatch = regEx.IsMatch(value.ToString());
 result = new ValidationResult(isMatch, isMatch ?
 null : ErrorMessage);
 }
 return result;
 }
 }

 Instead of using the Binding markup extension, now the binding is done as a child of the
TextBox.Text element. The bound object now defines an Email property that is implemented with the
simple property syntax. The UpdateSourceTrigger property defines when the source should be
updated. Possible options for updating the source are:

 When the property value changes, which would be every character that is typed by the user

 When the focus is lost

 Explicitly

 ValidationRules is a property of the Binding class that contains ValidationRule elements. Here the
validation rule used is the custom class RegularExpressionValidationRule , where the
 Expression property is set to a regular expression that verifies if the input is a valid e-mail, and the
 ErrorMessage property that gives the error message in case the data entered to the TextBox is not valid:

 < Label Margin=”5” Grid.Row=”2” Grid.Column=”0” > Email: < /Label >
 < TextBox Margin=”5” Grid.Row=”2” Grid.Column=”1” >
 < TextBox.Text >
 < Binding Path=”Email” UpdateSourceTrigger=”LostFocus” >
 < Binding.ValidationRules >

❑

❑

❑

(continued)

c35.indd 1223c35.indd 1223 2/19/08 5:29:33 PM2/19/08 5:29:33 PM

Part V: Presentation

1224

 < src:RegularExpressionValidationRule
 Expression=”^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)
|(([\w-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$”
 ErrorMessage=”Email is not valid” / >
 < /Binding.ValidationRules >
 < /Binding >
 < /TextBox.Text >
 < /TextBox >

 Command Bindings
 WPF has Menu and ToolBar controls that serve the same purpose as the controls you know from
Windows Forms: to start commands. With these controls you could add event handlers to fulfill the
functionality of the commands. However, you can start commands by selecting menus, clicking toolbar
buttons, or by pressing some special keys on the keyboard. To handle all these different input gestures,
WPF supplies another feature: commands.

 Some of the WPF controls offer an implementation for predefined commands that make it extremely
easy to get to some functionality.

 WPF offers some predefined commands with the commands classes ApplicationCommands ,
 EditingCommands , ComponentCommands , and NavigationCommands . All these commands classes are
static classes with static properties that return RoutedUICommand objects. For example, some of the
 ApplicationCommands properties are New , Open , Save , SaveAs , Print , and Close — commands you
know from many applications.

 To get started with commands, create a simple WPF project and add a Menu control with items for undo
and redo and cut, copy, and paste. The TextBox named textContent takes the remaining space of the
 Window and allows for multiline user input. Within the window a DockPanel is created to define the
layout. Docked on top you can find the Menu control with MenuItem elements. The header is set to
define the text of the menu. The _ (underscore) defines the letter that can be accessed directly with the
keyboard without using the mouse. When you press the Alt key, the underscore is shown below
the letter that follows in the header text. The Command property defines the command associated
with the menu item.

 < Window x:Class=”Wrox.ProCSharp.WPF.WPFEditorWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”WPF Editor” Height=”300” Width=”300” >

 < DockPanel >
 < Menu DockPanel.Dock=”Top” >
 < MenuItem Header=”_Edit” >
 < MenuItem Name=”editUndoMenu” Header=”_Undo”
 Command=”ApplicationCommands.Undo” / >
 < MenuItem Name=”editRedoMenu” Header=”_Redo”
 Command=”ApplicationCommands.Redo” / >
 < Separator / >
 < MenuItem Name=”editCutMenu” Header=”Cu_t”
 Command=”ApplicationCommands.Cut” / >
 < MenuItem Name=”editCopyMenu” Header=”_Copy”

(continued)

c35.indd 1224c35.indd 1224 2/19/08 5:29:33 PM2/19/08 5:29:33 PM

Chapter 35: Advanced WPF

1225

 Command=”ApplicationCommands.Copy” / >
 < MenuItem Name=”editPasteMenu” Header=”_Paste”
 Command=”ApplicationCommands.Paste” / >
 < /MenuItem >
 < /Menu >

 < TextBox Name=”textContent” TextWrapping=”Wrap” AcceptsReturn=”True”
 AcceptsTab=”True” / >
 < /DockPanel >

 < /Window >

 That ’ s all you need to do for clipboard functionality. The TextBox class already includes functionality
for these predefined command bindings. Starting the application, when you enter text in the text box you
can see possible menu items enabled. Selecting text in the text box makes the cut and copy menu items
available. Figure 35 - 15 shows the running application.

 Now the application is going to be changed to add command bindings that are not previously defined
with the controls. Commands to open and save a file are added to the editor.

 To make the commands accessible, more MenuItem elements are added to the Menu element as shown:

 < MenuItem Header=”_File” >
 < MenuItem Name=”fileNewMenu” Header=”_New”
 Command=”ApplicationCommands.New” / >
 < MenuItem Name=”fileOpenMenu” Header=”_Open”
 Command=”ApplicationCommands.Open” / >
 < Separator / >
 < MenuItem Name=”fileSave” Header=”_Save”
 Command=”ApplicationCommands.Save” / >
 < MenuItem Name=”fileSaveAs” Header=”Save _As”
 Command=”ApplicationCommands.SaveAs” / >
 < /MenuItem >

Figure 35-15

c35.indd 1225c35.indd 1225 2/19/08 5:29:33 PM2/19/08 5:29:33 PM

Part V: Presentation

1226

 The commands can also be accessed from a toolbar. With the ToolBar element the same commands that
are available from the menu are defined. For arranging the toolbar, the ToolBar element is placed within
a ToolBarTray :

 < ToolBarTray DockPanel.Dock=”Top” >
 < ToolBar >
 < Button Command=”ApplicationCommands.New” >
 < Image Source=”toolbargraphics/New.bmp” / >
 < /Button >
 < Button Command=”ApplicationCommands.Open” >
 < Image Source=”toolbargraphics/Open.bmp” / >
 < /Button >
 < Button Command=”ApplicationCommands.Save” >
 < Image Source=”toolbargraphics/Save.bmp” / >
 < /Button >
 < /ToolBar >
 < /ToolBarTray >

 Now command bindings must be defined to associate the commands to event handlers. Command
bindings can be assigned to any WPF class that derives from the base class UIElement that is very high
in the hierarchy. Command bindings are added to the CommandBindings property by defining
 CommandBinding elements. The CommandBinding class has the property Command where you can
specify an object implementing the ICommand interface, and the events CanExecute and Executed to
specify event handlers. Here the command bindings are assigned to the Window class. The Executed
event is set to the event handler methods that implement the functionality behind the commands. If a
command should not be available at all times, you can set the CanExecute event to a handler that
decides if the command should be available.

 < Window.CommandBindings >
 < CommandBinding Command=”ApplicationCommands.New”
 Executed=”NewFileExecuted” / >
 < CommandBinding Command=”ApplicationCommands.Open”
 Executed=”OpenFileExecuted” / >
 < CommandBinding Command=”ApplicationCommands.Save”
 Executed=”SaveFileExecuted”
 CanExecute=”SaveFileCanExecute” / >
 < CommandBinding Command=”ApplicationCommands.SaveAs”
 Executed=”SaveAsFileExecuted” CanExecute=”SaveFileCanExecute” / >
 < /Window.CommandBindings >

 In the code behind the handler method, NewFileExecuted() empties the text box and writes the file
name untitled.txt to the Title property of the Window class. In OpenFileExecuted() the
 Microsoft.Win32.OpenFileDialog is created and shown as a dialog. With a successful exit of the
dialog, the selected file is opened and its content is written to the TextBox control.

A dialog for opening a file is not predefined in WPF. You can either create a custom
window for selecting files and folders, or you can use the OpenFileDialog class
from the Microsoft.Win32 namespace that is a wrapper around the new
Windows dialog.

c35.indd 1226c35.indd 1226 2/19/08 5:29:34 PM2/19/08 5:29:34 PM

Chapter 35: Advanced WPF

1227

 public partial class Window1 : System.Windows.Window

 {
 private string fileName;
 private readonly string defaultFileName;
 private const string appName = “WPF Editor”;
 private bool isChanged = false;

 public Window1()
 {
 defaultFileName = System.IO.Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments),
 @”untitled.txt”);
 InitializeComponent();
 NewFile();
 }

 private void NewFileExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 NewFile();
 }

 private void NewFile()
 {
 textContent.Clear();
 filename = defaultFilename;
 SetTitle();
 isChanged = false;
 }

 private void SetTitle()
 {
 Title = String.Format(“{0} {1}”,
 System.IO.Path.GetFileName(filename), appName;
 }

 private void OpenFileExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 try
 {
 OpenFileDialog dlg = new OpenFileDialog();
 bool? dialogResult = dlg.ShowDialog();
 if (dialogResult == true)
 {
 filename = dlg.FileName;
 SetTitle();
 textContent.Text = File.ReadAllText(filename);
 }
 }
 catch (IOException ex)
 {
 MessageBox.Show(ex.Message, “Error WPF Editor”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

c35.indd 1227c35.indd 1227 2/19/08 5:29:34 PM2/19/08 5:29:34 PM

Part V: Presentation

1228

 The handler SaveFileCanExecute() returns the decision as to whether the command to save the file
should be available depending on if the content has been changed:

 private void SaveFileCanExecute(object sender,
 CanExecuteRoutedEventArgs e)
 {
 if (isChanged)
 {
 e.CanExecute = true;
 }
 else
 {
 e.CanExecute = false;
 }
 }

 The application with the opened file sample.txt is shown in Figure 35 - 16 .

Figure 35-16

 Animations
 With animations you can make a smooth transition using moving elements, color changes, transforms,
and so on. WPF makes it easy to create animations. You can animate the value of any dependency
property. Different animation classes exist to animate the values of different properties, depending on
their type.

 The major elements of animations are as follows:

 Timeline — The timeline defines how a value changes over time. Different kinds of timelines
are available for changing different types of values. The base class for all timelines is Timeline .
To animate a double , the class DoubleAnimation can be used. Int32Animation is the
animation class for int values.

❑

c35.indd 1228c35.indd 1228 2/19/08 5:29:34 PM2/19/08 5:29:34 PM

Chapter 35: Advanced WPF

1229

 Storyboard — A storyboard is used to combine animations. The Storyboard class itself is
derived from the base class TimelineGroup , which derives from Timeline . With
 DoubleAnimation you can animate a double value; with a Storyboard you combine all the
animations that belong together.

 Triggers — With triggers you can start and stop animations. You ’ ve seen property triggers
previously. Property triggers fire when a property value changes. You can also create an event
trigger. An event trigger fires when an event occurs.

 The namespace for animation classes is System.Windows.Media.Animation .

 Timeline
 A Timeline defines how a value changes over time. The first sample animates the size of an ellipse.
Here a DoubleAnimation that is a timeline that changes a double value is used. The Triggers
property of the Ellipse class is set to an EventTrigger . The event trigger is fired when the ellipse is
loaded as defined with the RoutedEvent property of the EventTrigger . BeginStoryboard is a trigger
action that begins the Storyboard . With the storyboard, a DoubleAnimation element is used to
animate the Width property of the Ellipse class. The animation changes the width of the ellipse from
100 to 300 within 3 seconds, and reverses the animation after the 3 seconds.

 < Window x:Class=”EllipseAnimation.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Ellipse Animation” Height=”300” Width=”300” >
 < Grid >
 < Ellipse Height=”50” Width=”100” Fill=”SteelBlue” >
 < Ellipse.Triggers >
 < EventTrigger RoutedEvent=”Ellipse.Loaded” >
 < EventTrigger.Actions >
 < BeginStoryboard >
 < Storyboard Duration=”00:00:06” RepeatBehavior=”Forever” >

 < DoubleAnimation
 Storyboard.TargetProperty=”(Ellipse.Width)”
 Duration=”0:0:3” AutoReverse=”True”
 FillBehavior=”Stop” RepeatBehavior=”Forever”
 AccelerationRatio=”0.9” DecelerationRatio=”0.1”
 From=”100” To=”300” / >

 < /Storyboard >
 < /BeginStoryboard >
 < /EventTrigger.Actions >
 < /EventTrigger >
 < /Ellipse.Triggers >
 < /Ellipse >
 < /Grid >
 < /Window >

❑

❑

c35.indd 1229c35.indd 1229 2/19/08 5:29:35 PM2/19/08 5:29:35 PM

Part V: Presentation

1230

 Animations are far more than typical window - dressing animation that appears onscreen constantly and
immediately. You can add animation to business applications that make the user interface more
responsive.

 The following example demonstrates a decent animation and also shows how the animation can be
defined in a style. Within the Window resources you can see the style AnimatedButtonStyle for
buttons. In the template a rectangle named outline is defined. This template has a thin stroke with the
thickness set to 0.4 .

 The template has a property trigger for the IsMouseOver property defined. The EnterActions
property of this trigger applies as soon as the mouse is moved over the button. The action to start is
 BeginStoryboard . BeginStoryboard is a trigger action that can contain and thus start Storyboard
elements. The Storyboard element defines a DoubleAnimation to animate a double value. The
property value that is changed in this animation is the Rectangle.StrokeThickness of the Rectangle
element with the name outline . The value is changed in a smooth way by 1.2 , as the By property
specifies, for a time length of 0.3 seconds as specified by the Duration property. At the end of the
animation, the stroke thickness is reset to its original value because AutoReverse= “ True ” . To
summarize: as soon as the mouse moves over the button, the thickness of the outline is incremented by
1.2 for 0.3 seconds. Figure 35 - 19 shows the button without animation, and Figure 35 - 20 shows the button
at the moment 0.3 seconds after the mouse moved over it. It ’ s just not possible to show the smooth
animation and intermediate looks in a print medium.

 < Window x:Class=”AnimationSample.ButtonAnimation”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Button Animation” Height=”300” Width=”300” >
 < Window.Resources >
 < Style x:Key=”AnimatedButtonStyle” TargetType=”{x:Type Button}” >
 < Setter Property=”Template” >
 < Setter.Value >
 < ControlTemplate TargetType=”{x:Type Button}” >
 < Grid >

 < Rectangle Name=”outline” RadiusX=”9” RadiusY=”9” Stroke=”Black”
 Fill=”{TemplateBinding Background}” StrokeThickness=”0.4” >
 < /Rectangle >

Figure 35-17 Figure 35-18

 Figures 35 - 17 and 35 - 18 show two states from the animated ellipse.

c35.indd 1230c35.indd 1230 2/19/08 5:29:35 PM2/19/08 5:29:35 PM

Chapter 35: Advanced WPF

1231

 < ContentPresenter VerticalAlignment=”Center”
 HorizontalAlignment=”Center”
 / >
 < /Grid >
 < ControlTemplate.Triggers >
 < Trigger Property=”IsMouseOver” Value=”True” >
 < Trigger.EnterActions >
 < BeginStoryboard >
 < Storyboard >

 < DoubleAnimation Duration=”0:0:0.3” AutoReverse=”True”
 Storyboard.TargetProperty=
 “(Rectangle.StrokeThickness)”
 Storyboard.TargetName=”outline” By=”1.2” / >

 < /Storyboard >
 < /BeginStoryboard >
 < /Trigger.EnterActions >
 < /Trigger >
 < /ControlTemplate.Triggers >

 < /ControlTemplate >
 < /Setter.Value >
 < /Setter >
 < /Style >
 < /Window.Resources >
 < Grid >

 < Button Style=”{StaticResource AnimatedButtonStyle}” Width=”200”
 Height=”100” >
 Click Me!
 < /Button >
 < /Grid >
 < /Window >

Figure 35-19 Figure 35-20

c35.indd 1231c35.indd 1231 2/19/08 5:29:36 PM2/19/08 5:29:36 PM

Part V: Presentation

1232

 Things you can do with a Timeline are listed in the following table.

 Timeline Properties Description

 AutoReverse With the AutoReverse property, you can specify if the value that is
animated should return to the original value after the animation.

 SpeedRatio With SpeedRatio , you can transform the speed at which an anima-
tion moves. With this property, you can define the relation in regard
to the parent. The default value is 1 ; setting the ratio to a smaller val-
ue makes the animation move slower; setting the value to a value
higher than 1 makes it move faster.

 BeginTime With BeginTime you can specify the time span from the start of the
trigger event until the moment the animation should start. You can
specify days, hours, minutes, seconds, and fractions of seconds. This
might not be the real time, depending on the speed ratio. For exam-
ple, if the speed ratio is set to 2, and the beginning time is set to
6 seconds, the animation will start after 3 seconds.

 AccelerationRatio
DecelerationRatio

 With an animation the values need not be changed in a linear way.
You can specify an AccelerationRatio and DecelerationRatio to
define the impact of acceleration and deceleration. The sum of both
values set must not be greater than 1 .

 Duration With the Duration property, you specify the time length for one itera-
tion of the animation.

 RepeatBehavior Assigning a RepeatBehavior struct to the RepeatBehavior prop-
erty lets you define how many times or how long the animation
should be repeated.

 FillBehavior The FillBehavior property is important if the parent timeline has a
different duration. For example, if the parent timeline is shorter than
the duration of the actual animation, setting the FillBehavior to
 Stop means that the actual animation stops. If the parent timeline is
longer than the duration of the actual animation, HoldEnd keeps the
actual animation active before resetting it to its original value (if
 AutoReverse is set).

 Depending on the type of the Timeline class, some more properties may be available. For example,
with DoubleAnimation you can specify the following additional properties.

 DoubleAnimation Properties Description

 From
To

 By setting the From and To properties, you can specify the values
to start and end the animation.

 By Instead of defining the start value for the animation, by setting
the By property the animation starts with the current value of the
bound property and is incremented with the value specified by
the By property for the animation ’ s end.

c35.indd 1232c35.indd 1232 2/19/08 5:29:36 PM2/19/08 5:29:36 PM

Chapter 35: Advanced WPF

1233

 Triggers
 Instead of having a property trigger, you can define an event trigger to start the animation. The next
example creates an animation for the funny face you know from the previous chapter, where the eye
moves as soon as a Click event from a button is fired. This example also demonstrates that you can start
the animation both from XAML and code behind.

 Figure 35 - 21 shows the running application of the animated face example.

Figure 35-21

 Inside the Window element a DockPanel element is defined to arrange the funny face and the buttons.
A Grid containing the Canvas element is docked on top. Bottom - docking is configured with a
 StackPanel element that contains four buttons. The first two buttons are used to animate the eye from
code behind; the last two buttons are used to animate the eye from XAML.

 The animation is defined within the < DockPanel.Triggers > section. Instead of a property trigger, an
event trigger is used. The first event trigger is fired as soon as the Click event occurs with the button
 startButtonXAML defined by the RoutedEvent and SourceName properties. The trigger action is
defined by the BeginStoryboard element that starts the containing Storyboard . BeginStoryboard
has a name defined, because this is needed to control the storyboard with pause, continue, and stop
actions. The Storyboard element contains two animations. The first animation changes the
Canvas.Left position value of the eye; the second animation changes the Canvas.Top value. Both
animations have different time values that make the eye movement very interesting using the defined
repeated behavior.

 The second event trigger is fired as soon as the Click event of the stopButtonXAML button occurs.
Here, the storyboard is stopped with the StopStoryboard element, which references the started
storyboard beginMoveEye :

 < Window x:Class=”AnimatedFace.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Face Animation” Height=”300” Width=”406” >
 < DockPanel >

 < Grid DockPanel.Dock=”Top” >
 < !-- Funny Face -- >

(continued)

c35.indd 1233c35.indd 1233 2/19/08 5:29:37 PM2/19/08 5:29:37 PM

Part V: Presentation

1234

 < Canvas Width=”200” Height=”200” >
 < Ellipse Canvas.Left=”50” Canvas.Top=”50” Width=”100” Height=”100”
 Stroke=”Blue” StrokeThickness=”4” Fill=”Yellow” / >
 < Ellipse Canvas.Left=”60” Canvas.Top=”65” Width=”25” Height=”25”
 Stroke=”Blue” StrokeThickness=”3” Fill=”White” / >
 < Ellipse Name=”eye” Canvas.Left=”67” Canvas.Top=”72” Width=”5”
 Height=”5” Fill=”Black” / >
 < Path Name=”mouth” Stroke=”Blue” StrokeThickness=”4”
 Data=”M 62,125 Q 95,122 102,108” / >

 < Line Name=”LeftLeg” X1=”92” X2=”82” Y1=”146” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” / >
 < Line Name=”LeftFoot” X1=”68” X2=”83” Y1=”160” Y2=”169” Stroke=”Blue”
 StrokeThickness=”4” / >

 < Line Name=”RightLeg” X1=”124” X2=”132” Y1=”144” Y2=”166”
 Stroke=”Blue” StrokeThickness=”4” / >
 < Line Name=”RightFoot” X1=”114” X2=”133” Y1=”169” Y2=”166”
 Stroke=”Blue” StrokeThickness=”4” / >
 < /Canvas >
 < /Grid >

 < StackPanel DockPanel.Dock=”Bottom” Orientation=”Horizontal” >
 < Button Width=”80” Height=”40” Margin=”20,5,5,5”
 Name=”startAnimationButton” > Start < /Button >
 < Button Width=”80” Height=”40” Margin=”5,5,5,5”
 Name=”stopAnimationButton” > Stop < /Button >
 < Button Width=”80” Height=”40” Margin=”5,5,5,5”
 Name=”startButtonXAML” > Start < /Button >
 < Button Width=”80” Height=”40” Margin=”5,5,5,5”
 Name=”stopButtonXAML” > Stop
 < /Button >
 < /StackPanel >

 < DockPanel.Triggers >

 < EventTrigger RoutedEvent=”Button.Click” SourceName=”startButtonXAML” >

 < BeginStoryboard Name=”beginMoveEye” >
 < Storyboard Name=”moveEye” >
 < DoubleAnimation RepeatBehavior=”Forever” DecelerationRatio=”.8”
 AutoReverse=”True” By=”8” Duration=”0:0:1”
 Storyboard.TargetName=”eye”
 Storyboard.TargetProperty=”(Canvas.Left)” / >
 < DoubleAnimation RepeatBehavior=”Forever” AutoReverse=”True”
 By=”8” Duration=”0:0:5” Storyboard.TargetName=”eye”
 Storyboard.TargetProperty=”(Canvas.Top)” / >
 < /Storyboard >
 < /BeginStoryboard >

 < /EventTrigger >

 < EventTrigger RoutedEvent=”Button.Click” SourceName=”stopButtonXAML” >

(continued)

c35.indd 1234c35.indd 1234 2/19/08 5:29:37 PM2/19/08 5:29:37 PM

Chapter 35: Advanced WPF

1235

 < StopStoryboard BeginStoryboardName=”beginMoveEye” / >
 < /EventTrigger >

 < /DockPanel.Triggers >
 < /DockPanel >

 < /Window >

 Instead of starting and stopping the animation directly from event triggers in XAML, you can
easily control the animation from code behind. The buttons startAnimationButton and
 stopAnimationButton have the event handlers OnStartAnimation and OnStopAnimation
associated with them. Within the event handlers, the animation is started with the Begin() method and
stopped with the Stop() method. With the Begin() method the second parameter is set to true
to allow you to control the animation with a stop request.

 public partial class Window1 : System.Windows.Window
 {
 public Window1()
 {
 InitializeComponent();
 startAnimationButton.Click += OnStartAnimation;
 stopAnimationButton.Click += OnStopAnimation;
 }

 void OnStartAnimation(object sender, RoutedEventArgs e)
 {
 moveEye.Begin(eye, true);
 }
 void OnStopAnimation(object sender, RoutedEventArgs e)
 {
 moveEye.Stop(eye);
 }
 }

 Now, you can start the application and watch the eye move as soon as one of the Start buttons is clicked.

 Storyboard
 The Storyboard class inherits from the base class Timeline but can contain multiple timelines. The
 Storyboard class can be used to control timelines. The following table describes the methods of
the Storyboard class.

 Storyboard Methods Description

 Begin() The Begin() method starts the animations associated with the story-
board.

 BeginAnimation() With BeginAnimation() , you can start a single animation for a depen-
dency property.

 CreateClock() The CreateClock() method returns a Clock object that you can use to
control the animations.

c35.indd 1235c35.indd 1235 2/19/08 5:29:37 PM2/19/08 5:29:37 PM

Part V: Presentation

1236

 Storyboard Methods Description

 Pause()Resume() With Pause() and Resume() , you can pause and resume animations.

 Seek() With the Seek() method, you can jump in time and move the animation
to a specified time interval.

 Stop() The Stop() method halts the clock and stops the animation.

 The EventTrigger class makes it possible to define actions when events occur. The following table
describes the properties of this class.

 EventTrigger Properties Description

 RoutedEvent With the RoutedEvent property, you can define the event when the trig-
ger should start; for example, a Click event of a Button .

 SourceName The SourceName property defines to what WPF element the event
should connect.

 Trigger actions that you can put within an EventTrigger are listed in the following table. You ’ ve seen
the BeginStoryboard and StopStoryboard actions in the example, but the following table shows
some others.

 TriggerAction Classes Description

 SoundPlayerAction With SoundPlayerAction , you can play a .wav file.

 BeginStoryboard BeginStoryboard starts an animation defined by a Storyboard .

 PauseStoryboard PauseStoryboard pauses an animation.

 ResumeStoryboard ResumeStoryboard resumes an animation that was paused.

 StopStoryboard StopStoryboard stops a running animation.

 SeekStoryboard With SeekStoryboard , you can change the current time of an ani-
mation.

 SkipStoryboardToFill SkipStoryboardToFill advances an animation to the fill period
at the end.

 SetStoryboardSpeedRatio With SetStoryboardSpeedRatio , you can change the speed of an
animation.

c35.indd 1236c35.indd 1236 2/19/08 5:29:38 PM2/19/08 5:29:38 PM

Chapter 35: Advanced WPF

1237

 Adding 3 - D Features in WPF
 This section gives you an introduction to the 3 - D features of WPF. Here you’ll find the information to
get started.

 The namespace for 3 - D with WPF is System.Windows.Media.Media3D .

 To understand 3 - D with WPF it is important to know the difference of the coordination system. Figure
 35 - 22 shows the coordination system of WPF 3 - D. The origin is placed in the center. The x - axis has
positive values to the right and negative values to the left. The y - axis is vertical with positive values up
and negative values down. The z - axis defines positive values in direction to the viewer.

�y

�y

�x�x

�z

�z

Figure 35-22

 The most important classes and their functionality are described in the following table.

 Class Description

 ViewPort3D ViewPort3D defines the rendering surface for 3 - D objects. This element
contains all the visual elements for 3 - D drawing.

 ModelVisual3D ModelVisual3D is contained in a ViewPort3D and contains all the visual
elements. You can assign a transformation to a complete model.

 GeometryModel3D GeometryModel3D is contained within a ModelVisual3D and consists of
a mesh and a material.

 Geometry3D Geometry3D is an abstract base class to define geometric shapes. The con-
crete class that derives from Geometry3D is MeshGeometry3D .
With MeshGeometry3D you can define positions of triangles to build a
3 - D model.

c35.indd 1237c35.indd 1237 2/19/08 5:29:38 PM2/19/08 5:29:38 PM

Part V: Presentation

1238

 Class Description

 Material Material is an abstract base class to define the front and back side from
the triangles defined with the MeshGeometry3D . Material is contained
within a GeometryModel3D . .NET 3.5 defines several material classes,
such as DiffuseMaterial , EmissiveMaterial , and
 SpecularMaterial . Depending on the material type, the light calculates
differently. EmissiveMaterial behaves with lighting calculations that
the material emits the light equal to the color of the brush.
 DiffuseMaterial lights with a diffuse light, and SpecularMaterial
defines a specularly lit model. With the MaterialGroup class you can cre-
ate a combination consisting of other materials.

 Light Light is the abstract base class for lighting. Concrete implementations are
 AmbientLight , DirectionalLight , PointLight and SpotLight .
 AmbientLight is an unnatural light that lights the complete scene simi-
larly. You will not see edges using that light. DirectionalLight defines
a directed light. Sunlight is a example of directed light. The light comes
from one side and here you can see edges and shadows. PointLight is a
light with a specified position and lights in all directions. SpotLight
lights in a specified direction. This light defines a cone so you can get a
very intensive illuminated area.

 Camera Camera is the abstract base class for the camera that is used to map the 3 - D
scene to a 2 - D display. Concrete implementations are PerspectiveCamera ,
 OrthographicCamera , and MatrixCamera . With the
 PerspectiveCamera the 3 - D objects are smaller the further away they are.
This is different with the OrthographicCamera . Here the distance of the
camera doesn ’ t influence the size. With the MatrixCamera you can define
the view and transformation in a matrix.

 Transform3D Transform3D is the abstract base class for 3 - D transformations. Concrete
implementations are RotateTransform3D , ScaleTransform3D ,
 TranslateTransform3D , MatrixTransform3D , and
 Transform3DGroup . TranslateTransform3D allows transforming an
object in the x, y, and z direction. ScaleTransform3D allows for an object
resize. With the RotateTransform3D class you can rotate the object
defined by an angle in the x, y, and z direction. With Transform3DGroup
you can combine other transformations.

 Triangle
 This section starts with a simple 3 - D sample. A 3 - D model is made up of triangles, so a simple model
is just one triangle. The triangle is defined by the Positions property of the MeshGeometry3D .
The three points all use the same z coordinate, – 4, and x/y coordinates – 1 – 1, 1 – 1, and 0 1. The property
 TriangleIndices indicates the order of the positions in a counterclockwise way. With this property
you define which side of the triangle is visible. One side of the triangle shows the color defined with
the Material property of the GeometryModel3D class, and the other side shows the BackMaterial
property.

c35.indd 1238c35.indd 1238 2/19/08 5:29:38 PM2/19/08 5:29:38 PM

Chapter 35: Advanced WPF

1239

 The camera that is used to show the scenario is positioned at the coordinates 0, 0, 0, and looks into the
direction 0, 0, – 8. Changing the camera position to the left side, the rectangle moves to the right and vice
versa. Changing the y position of the camera, the rectangle appears larger or smaller.

 The light that is used in this scene is an AmbientLight to light up the complete scene with a white light.
Figure 35 - 23 shows the result of the triangle.

 < Window x:Class=”Triangle3D.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”3D” Height=”300” Width=”300” >
 < Grid >
 < Viewport3D >
 < Viewport3D.Camera >
 < PerspectiveCamera Position=”0 0 0” LookDirection=”0 0 -8” / >
 < /Viewport3D.Camera >

 < ModelVisual3D >
 < ModelVisual3D.Content >
 < AmbientLight Color=”White” / >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >

 < ModelVisual3D >
 < ModelVisual3D.Content >
 < GeometryModel3D >
 < GeometryModel3D.Geometry >
 < MeshGeometry3D
 Positions=”-1 -1 -4, 1 -1 -4, 0 1 -4”
 TriangleIndices=”0, 1, 2” / >
 < /GeometryModel3D.Geometry >
 < GeometryModel3D.Material >
 < MaterialGroup >
 < DiffuseMaterial >
 < DiffuseMaterial.Brush >
 < SolidColorBrush Color=”Red” / >
 < /DiffuseMaterial.Brush >
 < /DiffuseMaterial >
 < /MaterialGroup >
 < /GeometryModel3D.Material >
 < /GeometryModel3D >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >
 < /Viewport3D >
 < /Grid >
 < /Window >

c35.indd 1239c35.indd 1239 2/19/08 5:29:39 PM2/19/08 5:29:39 PM

Part V: Presentation

1240

 Changing Lights
 Figure 35 - 23 just shows a simple triangle where you can get the same result with less effort using 2 - D.
However, from here you can continue getting into 3 - D features. For example, by changing the light from
an ambient light to a spotlight with the element SpotLight you can immediately see a different
appearance of the triangle. With the spotlight you define a position where the light is placed, and the
position to which the light is directed. Specifying - 1 1 2 for the position, the light is placed at the left
corner of the triangle and the y coordinate to the height of the triangle. From there the light is directed
down and to the left. You can see the new appearance of the triangle in Figure 35 - 24 .

 < ModelVisual3D >
 < ModelVisual3D.Content >
 < SpotLight Position=”-1 1 -2” Color=”White”
 Direction=”-1.5, -1, -5” / >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >

Figure 35-23

Figure 35-24

c35.indd 1240c35.indd 1240 2/19/08 5:29:39 PM2/19/08 5:29:39 PM

Chapter 35: Advanced WPF

1241

 Adding Textures
 Instead of using a solid color brush with the materials of the triangle, you can use a different brush such
as the LinearGradientBrush as shown with the following XAML code. The LinearGradientBrush
element defined with DiffuseMaterial defines gradient stops with the colors yellow, orange, red, blue,
and violet. To map a 2 - D surface from an object such as the brush to a 3 - D geometry, the
 TextCoordinates property must be set. TextCoordinates defines a collection of 2 - D points that map
to the 3 - D positions. Figure 35 - 25 shows the 2 - D coordinates of the brush from the sample application.
The first position in the triangle, – 1 – 1, maps to the brush coordinates 0 1; the position 1 – 1, which is the
lower corner on the right, maps to 1 1 of the brush, which is violet; and 0 1 maps to 0.5 0. Figure 35 - 26
shows the triangle with the material of the gradient brush, again with the ambient light.

 < ModelVisual3D >
 < ModelVisual3D.Content >
 < GeometryModel3D >
 < GeometryModel3D.Geometry >
 < MeshGeometry3D
 Positions=”-1 -1 -4, 1 -1 -4, 0 1 -4”
 TriangleIndices=”0, 1, 2”

 TextureCoordinates=”0 1, 1 1, 0.5 0” / >

 < /GeometryModel3D.Geometry >

 < GeometryModel3D.Material >
 < MaterialGroup >
 < DiffuseMaterial >
 < DiffuseMaterial.Brush >
 < LinearGradientBrush StartPoint=”0,0”
 EndPoint=”1,1” >
 < GradientStop Color=”Yellow” Offset=”0” / >
 < GradientStop Color=”Orange” Offset=”0.25” / >
 < GradientStop Color=”Red” Offset=”0.50” / >
 < GradientStop Color=”Blue” Offset=”0.75” / >

y

x

1

10/0

Figure 35-25

(continued)

c35.indd 1241c35.indd 1241 2/19/08 5:29:40 PM2/19/08 5:29:40 PM

Part V: Presentation

1242

 < GradientStop Color=”Violet” Offset=”1” / >
 < /LinearGradientBrush >
 < /DiffuseMaterial.Brush >
 < /DiffuseMaterial >
 < /MaterialGroup >
 < /GeometryModel3D.Material >
 < /GeometryModel3D >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >

(continued)

Figure 35-26

 You can add text or other controls in a similar way to the materials. To do this you just need to create
a VisualBrush with the elements that should be painted. The VisualBrush is discussed in
 Chapter 34 , “ Windows Presentation Foundation. ”

 3 - Dimensional Object
 Now let ’ s get into a real three - dimensional object: a box. The box is made up of five rectangles: the back,
front, left, right, and bottom sides. Each rectangle is made up of two triangles because this is the core of a
mesh. With WPF and 3 - D the term mesh is used to describe the triangle primitive for building 3 - D
shapes.

 Here is the code of the rectangle for the front side of the box that consists of two triangles. The positions
of the triangles are set in a counterclockwise order as defined by the TriangleIndices . The front
side of the rectangle is done with a red brush; the back side with a gray brush. Both of these brushes
are of type SolidColorBrush and defined with the resources of the Window .

 < !-- Front -- >
 < GeometryModel3D >
 < GeometryModel3D.Geometry >

 < MeshGeometry3D
 Positions=”-1 -1 1, 1 -1 1, 1 1 1, 1 1 1,
 -1 1 1, -1 -1 1”
 TriangleIndices=”0 1 2, 3 4 5” / >

 < /GeometryModel3D.Geometry >
 < GeometryModel3D.Material >
 < DiffuseMaterial Brush=”{StaticResource redBrush}” / >

c35.indd 1242c35.indd 1242 2/19/08 5:29:40 PM2/19/08 5:29:40 PM

Chapter 35: Advanced WPF

1243

 < /GeometryModel3D.Material >
 < GeometryModel3D.BackMaterial >
 < DiffuseMaterial Brush=”{StaticResource grayBrush}” / >
 < /GeometryModel3D.BackMaterial >
 < /GeometryModel3D >

 The other rectangles look very similar, just with different positions. Here you can see the XAML code
of the left side of the box:

 < !-- Left side -- >
 < GeometryModel3D >
 < GeometryModel3D.Geometry >
 < MeshGeometry3D
 Positions=”-1 -1 1, -1 1 1, -1 -1 -1, -1 -1 -1, -1 1 1,
 -1 1 -1”
 TriangleIndices=”0 1 2, 3 4 5” / >
 < /GeometryModel3D.Geometry >
 < GeometryModel3D.Material >
 < DiffuseMaterial Brush=”{StaticResource redBrush}” / >
 < /GeometryModel3D.Material >
 < GeometryModel3D.BackMaterial >
 < DiffuseMaterial Brush=”{StaticResource grayBrush}” / >
 < /GeometryModel3D.BackMaterial >
 < /GeometryModel3D >

 The sample code defines a separate GeometryModel3D with every side of the box. This is just for better
understanding of the code. As long as the same material is used with every side, it ’ s also possible to de-
fine a mesh containing all 10 triangles from all sides of the box.

 All the rectangles are combined within a Model3DGroup , so one transformation can be done with all the
sides of the box:

 < !-- the model -- >
 < ModelVisual3D >
 < ModelVisual3D.Content >
 < Model3DGroup >

 < ! — GeometryModel3D elements for every side of the box -- >

 < /Model3DGroup >

 With the Transform property of the Model3DGroup element, all the geometries inside this group can be
transformed. Here a RotateTransform3D is used that defines an AxisAngleRotation3D . To rotate
the box during runtime, the Angle property is bound to the value of a Slider control.

 < !-- Transformation of the complete model -- >
 < Model3DGroup.Transform >
 < RotateTransform3D CenterX=”0” CenterY=”0” CenterZ=”0” >
 < RotateTransform3D.Rotation >
 < AxisAngleRotation3D x:Name=”axisRotation”
 Axis=”0, 0, 0”
 Angle=”{Binding Path=Value,
 ElementName=axisAngle}” / >
 < /RotateTransform3D.Rotation >
 < /RotateTransform3D >
 < /Model3DGroup.Transform >

c35.indd 1243c35.indd 1243 2/19/08 5:29:41 PM2/19/08 5:29:41 PM

Part V: Presentation

1244

 To see the box, a camera is needed. Here the PerspectiveCamera is used so that the box gets smaller
the further the camera is. The position and direction of the camera can be set during runtime.

 < !-- Camera -- >
 < Viewport3D.Camera >
 < PerspectiveCamera x:Name=”camera”
 Position=”{Binding Path=Text,
 ElementName=textCameraPosition}”
 LookDirection=”{Binding Path=Text,
 ElementName=textCameraDirection}” / >
 < /Viewport3D.Camera >

 The application uses two different light sources. One light source is a DirectionalLight :

 < !-- directional light -- >
 < ModelVisual3D >
 < ModelVisual3D.Content >
 < DirectionalLight Color=”White” x:Name=”directionalLight” >
 < DirectionalLight.Direction >
 < Vector3D X=”1” Y=”2” Z=”3” / >
 < /DirectionalLight.Direction >
 < /DirectionalLight >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >

 The other light source is a SpotLight . With this light source it is possible to highlight a specific area
on the box. The SpotLight defines the properties InnerConeAngle and OuterConeAngle to define the
area of the full illumination:

 < !-- spot light -- >
 < ModelVisual3D >
 < ModelVisual3D.Content >
 < SpotLight x:Name=”spotLight”
 InnerConeAngle=”{Binding Path=Value,
 ElementName=spotInnerCone}”
 OuterConeAngle=”{Binding Path=Value,
 ElementName=spotOuterCone}”
 Color=”#FFFFFF”
 Direction=”{Binding Path=Text, ElementName=spotDirection}”
 Position=”{Binding Path=Text, ElementName=spotPosition}”
 Range=”{Binding Path=Value, ElementName=spotRange}” / >
 < /ModelVisual3D.Content >
 < /ModelVisual3D >

 When running the application you can change the rotation of the box, the camera, and lights as shown in
Figure 35 - 27 .

 Creating a 3 - D model that consists of just rectangles or triangles is easy to do. You would not manually
create more complex models; instead you would use one of several tools. You can find 3 - D tools for WPF
at www.codeplex/3DTools .

c35.indd 1244c35.indd 1244 2/19/08 5:29:41 PM2/19/08 5:29:41 PM

Chapter 35: Advanced WPF

1245

 Windows Forms Integration
 Instead of rewriting your user interface completely from scratch for WPF, you can use existing Windows
Forms controls within WPF applications, and create new WPF controls to be used within Windows Forms
applications. The best way of integrating Windows Forms and WPF is by creating controls and
integrating the controls in the application types of the other technology.

 The integration of Windows Forms and WPF has a big drawback. If you integrate Windows Forms with
WPF, the Windows Forms controls still look like they looked in the old days. Windows Forms controls
and applications don ’ t get the new look of WPF. From a user interface standpoint, it would be better to
rewrite the UI completely.

To integrate Windows Forms and WPF, you need classes from the namespace System.
Windows.Forms.Integration in the assembly WindowsFormsIntegration.

 WPF Controls Within Windows Forms
 You can use WPF controls within a Windows Forms application. A WPF element is a normal .NET class.
However, you cannot use it directly from the Windows Forms code; a WPF control is not a Windows
Forms control. The integration can be done by the wrapper class ElementHost from the namespace
 System.Windows.Forms.Integration . ElementHost is a Windows Forms control, because it derives
from System.Windows.Forms.Control , and can be used like any other Windows Forms control in a
Windows Forms application. ElementHost hosts and manages WPF controls.

Figure 35-27

c35.indd 1245c35.indd 1245 2/19/08 5:29:41 PM2/19/08 5:29:41 PM

Part V: Presentation

1246

 Let ’ s start with a simple WPF control. With Visual Studio 2008, you can create a WPF User Control
Library. The sample control is derived from the base class UserControl and contains a grid and a
button with a custom content:

 < UserControl x:Class=”WPFControl.UserControl1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < Grid >
 < Button >
 < Canvas Height=”230” Width=”230” >
 < Ellipse Canvas.Left=”50” Canvas.Top=”50” Width=”100” Height=”100”
 Stroke=”Blue” StrokeThickness=”4” Fill=”Yellow” / >
 < Ellipse Canvas.Left=”60” Canvas.Top=”65” Width=”25” Height=”25”
 Stroke=”Blue” StrokeThickness=”3” Fill=”White” / >
 < Ellipse Canvas.Left=”70” Canvas.Top=”75” Width=”5” Height=”5”
 Fill=”Black” / >
 < Path Name=”mouth” Stroke=”Blue” StrokeThickness=”4”
 Data=”M 62,125 Q 95,122 102,108” / >

 < Line X1=”124” X2=”132” Y1=”144” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” / >
 < Line X1=”114” X2=”133” Y1=”169” Y2=”166” Stroke=”Blue”
 StrokeThickness=”4” / >

 < Line X1=”92” X2=”82” Y1=”146” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” / >
 < Line X1=”68” X2=”83” Y1=”160” Y2=”168” Stroke=”Blue”
 StrokeThickness=”4” / >
 < /Canvas >
 < /Button >
 < /Grid >
 < /UserControl >

 You can create a Windows Forms application by selecting the Windows Forms Application
template. Because the WPF user control project is in the same solution as the Windows Forms
application, you can drag and drop the WPF user control from the toolbox to the designer surface of
the Windows Forms application. This adds references to the assemblies PresentationCore ,
 PresentationFramework , WindowsBase , WindowsFormsIntegration , and of course, the assembly
containing the WPF control.

 Within the designer - generated code you will find a variable referencing the WPF user control and an
object of type ElementHost that wraps the control:

 private System.Windows.Forms.Integration.ElementHost elementHost1;
 private WPFControl.UserControl1 userControl11;

 In the method InitializeComponent you can see object initializations and the assigning of the WPF
control instance to the Child property of the ElementHost class:

 private void InitializeComponent()
 {
 this.elementHost1 = new
 System.Windows.Forms.Integration.ElementHost();
 this.userControl11 = new WPFControl.UserControl1();
 this.SuspendLayout();
 //
 // elementHost1
 //

c35.indd 1246c35.indd 1246 2/19/08 5:29:42 PM2/19/08 5:29:42 PM

Chapter 35: Advanced WPF

1247

 this.elementHost1.Location = new System.Drawing.Point(39, 44);
 this.elementHost1.Name = “elementHost1”;
 this.elementHost1.Size = new System.Drawing.Size(259, 229);
 this.elementHost1.TabIndex = 0;
 this.elementHost1.Text = “elementHost1”;
 this.elementHost1.Child = this.userControl11;

 //...
 }

 Starting the Windows Forms application, you can see both the WPF control as well the Windows Forms
control inside one form, as shown in Figure 35 - 28 .

 Of course, you can add methods, properties, and events to the WPF control and use them the same way
as other controls.

 Windows Forms Controls Within WPF Applications
 You can integrate Windows Forms and WPF in the other direction as well by placing a Windows Forms
control within a WPF application. As with the ElementHost class used to host a WPF control inside
Windows Forms, now you need a wrapper that is a WPF control to host a Windows Forms control. This
class has the name WindowsFormsHost and is in the same assembly, WindowsFormsIntegration .
The class WindowsFormsHost is derived from the base classes HwndHost and FrameworkElement , and
thus can be used as a WPF element.

 For this integration, a Windows Control Library is created first. Add a TextBox and Button control to
the form by using the Designer. To change the Text property of the button, the property ButtonText is
added to the code behind:

 public partial class UserControl1 : UserControl
 {
 public UserControl1()
 {
 InitializeComponent();
 }

Figure 35-28

(continued)

c35.indd 1247c35.indd 1247 2/19/08 5:29:42 PM2/19/08 5:29:42 PM

Part V: Presentation

1248

 public string ButtonText
 {
 get { return button1.Text; }
 set { button1.Text = value; }
 }
 }

 In the WPF application, you can add a WindowsFormsHost object from the toolbox to the Designer. This
adds a reference to the assemblies WindowsFormsIntegration , System.Windows.Forms , and the
assembly of the Windows Forms control. To use the Windows Forms control from XAML, you must add
an XML namespace alias to reference the .NET namespace. Because the assembly containing the
Windows Forms control is in a different assembly than the WPF application, you also must add the
assembly name to the namespace alias. The Windows Forms control can now be contained within the
 WindowsFormsHost element as shown. You can assign a value for the property ButtonText directly
from XAML similarly to .NET Framework elements.

 < Window x:Class=”WPFApplication.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:winforms=
 “clr-namespace:Wrox.ProCSharp.WPF;assembly=WindowsFormsControl”
 Title=”WPF Interop Application” Height=”300” Width=”300”
 >
 < Grid >
 < Grid.RowDefinitions >
 < RowDefinition / >
 < RowDefinition / >
 < /Grid.RowDefinitions >
 < WindowsFormsHost Grid.Row=”0” Height=”180” >
 < winforms:UserControl1 x:Name=”myControl” ButtonText=”Click Me!” / >
 < /WindowsFormsHost >
 < StackPanel Grid.Row=”1” >
 < TextBox Margin=”5,5,5,5” Width=”140” Height=”30” > < /TextBox >
 < Button Margin=”5,5,5,5” Width=”80” Height=”40” > WPF Button < /Button >
 < /StackPanel >
 < /Grid >
 < /Window >

 You can see a view of the WPF application in Figure 35 - 29 . Of course, the Windows Forms control still
looks like a Windows Forms control and does not have all the resizing and styling features you get
with WPF.

(continued)

Figure 35-29

c35.indd 1248c35.indd 1248 2/19/08 5:29:42 PM2/19/08 5:29:42 PM

Chapter 35: Advanced WPF

1249

 WPF Browser Application
 Visual Studio 2008 has another WPF project template: a WPF Browser Application. Such an application
can run within Internet Explorer, but still the .NET Framework version that you use must be installed
with the client system. Here you get the features of the rich client to the browser. However, with WPF
Browser Applications, the .NET Framework is required to be available on the client system, and only
Internet Explorer is supported.

 Creating such a project type, an XBAP (XAML Browser Application) file is created. XBAP is an XML file
that defines the application and the assemblies it consists of for ClickOnce deployment.

 An XBAP application is a partial - trust application. You can use only .NET code that is available with the
Internet permissions.

 ClickOnce is explained in Chapter 16 , “ Deployment. ”

 WPF Browser Applications are different from Silverlight. Silverlight defines a subset of WPF that does
not require the .NET Framework to be installed with the client system. Silverlight requires an add - in
with the browser but supports different browsers and different operating systems. Silverlight 1.0 cannot
be programmed using .NET; you can use only JavaScript for accessing the XAML elements program-
matically. Silverlight 1.1 will support the .NET Microframework.

 Summary
 This chapter covered some more features of WPF.

 WPF data binding gives a leap forward compared to Windows Forms. You can bind any property of a
.NET class to a property of a WPF element. The binding mode defines the direction of the binding. You
can bind .NET objects and lists, and define a data template to create a default look for a .NET class with a
data template.

 Command binding makes it possible to map handler code to menus and toolbars. You ’ ve also seen how
easy it is to do copy and paste with WPF because a command handler for this technology is already
included in the TextBox control.

 Animation allows the user to dynamically change every property of a WPF element. Animations can be
very decent and not annoying and make the UI more responsive and attractive for the user.

 WPF also allows for an easy 3 - D mapping to the 2 - D surface of a screen. You ’ ve seen how to create a 3 - D
model and view it with the help of different light sources and cameras.

 This and the previous chapter gave you an overview of WPF and enough information to get started with
this technology. For more information on WPF, you should read a book that focuses on WPF; for exam-
ple, Professional WPF Programming: .NET Development with the Windows Presentation
Foundation by Chris Andrade et al. (Wiley Publishing, 2007).

c35.indd 1249c35.indd 1249 2/19/08 5:29:43 PM2/19/08 5:29:43 PM

c35.indd 1250c35.indd 1250 2/19/08 5:29:43 PM2/19/08 5:29:43 PM

 Add - Ins

 Add - ins allow you to add functionality to an application at a later time. You can create a hosting
application that gains more and more functionality over time — functionality that might be
written by your developer team but also different vendors can extend your application by creating
add - ins.

 Today, add - ins are used with many different applications, such as Internet Explorer and Visual
Studio. Internet Explorer is a hosting application that offers an add - in framework that is used by
many companies to offer extensions when viewing Web pages. The Shockwave Flash Object allows
you to view Web pages with Flash content. The Google toolbar offers specific Google features that
can be accessed quickly from Internet Explorer. Visual Studio also has an add - in model that allows
you to extend Visual Studio with different levels of extensions.

 For your custom applications it has always been possible to create an add - in model to dynamically
load and use functionality from assemblies. With an add - in model many issues need to be thought
about. How can new assemblies be detected? How can versioning issues be resolved? Can the
add - in change the stability of the hosting application?

 The .NET Framework 3.5 offers a framework for hosting and creating add - ins with the assembly
System.AddIn. This framework is also known by the name Managed AddIn Framework (MAF).

 Add - ins are also known by different terms such as “ add - on ” or “ plug - in. ”

 Topics covered in this chapter are

 System.AddIn architecture

 Creating a simple add - in

 System.AddIn Architecture
 When you create an application that allows you to add add - ins during runtime, you will need to
deal with certain issues — for example, how to find the add - ins, and how to solve versioning issues
so that the hosting application and the add - in can progress independently. There are several ways

❑

❑

c36.indd 1251c36.indd 1251 2/19/08 5:29:54 PM2/19/08 5:29:54 PM

Part V: Presentation

1252

to resolve these issues. In this section, you read about the issues of add - ins and how the architecture of
MAF solves them:

 Issues with add - ins

 Pipeline architecture

 Discovery

 Activation

 Isolation

 Lifetime

 Versioning

 Issues with Add - ins
 Creating a hosted application that dynamically loads assemblies that are added at a later time has
several issues that must be dealt with, as shown in the table that follows.

❑

❑

❑

❑

❑

❑

❑

Add-Ins Issues Description

Discovery How can new add-ins be found for the hosting application? There are several
different options. One way is to add information about add-ins to a configura-
tion file. This has the disadvantage that the installation of new add-ins needs to
change an existing configuration file. Another option is to just copy the assem-
bly containing the add-in to a predefined directory and read information about
the assembly with reflection.

You can read more about reflection in Chapter 13, “Reflection.”

Activation With assemblies that are dynamically loaded it is not possible to just use
the new operator to create an instance. You can create such assemblies with the
Activator class. Also, different activation options might apply if the add-in is
loaded within a different application domain or a new process.Assemblies and
application domains are described in Chapter 17, “Assemblies.”

Isolation An add-in can break the hosting application as you’ve probably already seen
with Internet Explorer crashes caused by various add-ins. Depending on the
type of the hosting application and how the add-ins are integrated, the add-in
can be loaded within a different application domain or also within a different
process.

Lifetime Cleaning up objects is a job of the garbage collector. However, the garbage
 collector cannot help here because add-ins might be active in a different
 application domain or a different process. Other ways to keep the object in
memory are reference count or leasing and sponsoring mechanisms.

Versioning Versioning is a big issue with add-ins. Usually it should be possible that a new
version of the host still can load old add-ins, and an old host should have the
option to load newer add-ins.

c36.indd 1252c36.indd 1252 2/19/08 5:29:55 PM2/19/08 5:29:55 PM

1253

Chapter 36: Add-Ins

 Now let ’ s look at the architecture of MAF and how this framework solves these issues. The design of
MAF was influenced by these goals:

 It should be easy to develop add - ins.

 Finding add - ins during runtime should be performant.

 Developing hosts should be an easy process as well, but not as easy as developing add - ins.

 The add - in and the host application should progress independently.

 Pipeline Architecture
 The MAF architecture is based on a pipeline of seven assemblies. This pipeline solves the versioning
issues with add - ins. Because the assemblies from the pipeline have a very light dependency, it is possible
that the contract, the hosting, and the add - in applications progress with new versions completely
independent of one another.

 Figure 36 - 1 shows the pipeline of the MAF architecture. In the center is the contract assembly. This
assembly contains a contract interface that lists methods and properties that must be implemented by the
add - in and can be called by the host. Left of the contract is the host side, and on the right, the add - in side.
In the figure you can see the dependencies between the assemblies. The host assembly shown leftmost
does not have a real dependency to the contract assembly; the same is true of the add - in assembly. Both
do not really implement the interface that is defined by the contract. Instead, they just have a reference to
a view assembly. The host application references the host view; the add - in references the add - in view.
The views contain abstract view classes that define methods and properties as defined by the contract.

❑

❑

❑

❑

Host Host
View

Host
Adapter Contract Add-In

Adapter
Add-In
View Add-In

Figure 36-1

 Figure 36 - 2 shows the relationship of the classes from the pipeline. The host class has an association with
the abstract host view class and invokes its methods. The abstract host view class is implemented by the
host adapter. Adapters make the connection between the views and the contract. The add - in adapter
implements the methods and properties of the contract. This adapter contains a reference to the add - in
view and forwards calls from the host side to the add - in view. The host adapter class defines a concrete
class that derives from the abstract base class of the host view to implement the methods and properties.
This adapter includes a reference to the contract to forward calls from the view to the contract.

Figure 36-2

c36.indd 1253c36.indd 1253 2/19/08 5:29:55 PM2/19/08 5:29:55 PM

Part V: Presentation

1254

 With this model it is possible that the add - in side and the host side emerge completely independent. Just the
mapping layer needs to adapt. For example, if a new version of the host is done that uses completely new
methods and properties, the contract can still stay the same and only the adapter needs to change. It is also
possible that a new contract is defined. Adapters can change, or several contracts can be used in parallel.

 Discovery
 How can new add - ins be found for the hosting application? The MAF architecture uses a predefined
directory structure to find add - ins and the other assemblies of the pipeline. The components of the
pipeline must be stored in these subdirectories:

 HostSideAdapters

 Contracts

 AddInSideAdapters

 AddInViews

 AddIns

 All these directories with the exception of the AddIns directory directly contain the assembly of the
specific part of the pipeline. The AddIns directory contains subdirectories for every add - in assembly.
With add - ins, it is also possible to store them in directories that are completely independent of the other
pipeline components.

 The assemblies of the pipeline are not just loaded dynamically to get all the information about the add - in
using reflection. With many add - ins, this would increase the startup time of the hosting application.
Instead, MAF uses a cache with information about the pipeline components. The cache is created by the
program installing the add - in or by the hosting application if the hosting application has write access to
the directory of the pipeline.

 The cache information about the pipeline components is created by invoking methods of the
 AddInStore class. The method Update() finds new add - ins that are not already listed with the store
files. The Rebuild() method rebuilds the complete binary store file with information about the add - ins.

 The following table lists the members of the AddInStore class.

❑

❑

❑

❑

❑

AddInStore Members Description

Rebuild()
RebuildAddIns()

The Rebuild() method rebuilds the cache for all components of the
pipeline. If the add-ins are stored in a different directory, the method
RebuildAddIns() can be used to rebuild the cache of the add-ins.

Update()
UpdateAddIns()

While the Rebuild() method rebuilds the complete cache of the pipe-
line, the Update method just updates the cache with information about
new pipeline components. The UpdateAddIns() method updates the
cache of the add-ins only.

FindAddIn()
FindAddIns()

These methods are used to find add-ins by using the cache. The method
FindAddIns() returns a collection of all add-ins that match the host
view. The FindAddIn() method returns a specific add-in.

c36.indd 1254c36.indd 1254 2/19/08 5:29:56 PM2/19/08 5:29:56 PM

1255

Chapter 36: Add-Ins

 Activation and Isolation
 The FindAddIns() method of the AddInStore class returns a collection of AddInToken objects that
represent an add - in. With the AddInToken class, you can access information about the add - in such as
name, description, publisher, and version. You can activate the add - in by using the Activate() method.
The following table lists properties and methods of the AddInToken class.

AddInToken Members Description

Name
Publisher
Version
Description

The Name, Publisher, Version and Description properties of the
AddInToken class return information about an add-in that was assigned
to the add-in with the attribute AddInAttribute.

AssemblyName AssemblyName returns the name of the assembly that contains the add-in.

EnableDirectConnect With the property EnableDirectConnect you can set a value that the
host should directly connect to the add-in instead of using the compo-
nents of the pipeline. This is only possible if the add-in and the host are
running in the same application domain, and the types of the add-in
view and the host view are the same. With this it is still required that all
components of the pipeline exist.

QualificationData The add-in can mark appdomain and security requirements with the
attribute QualificationDataAttribute. The add-in can list require-
ments for security and isolation requirements. For example,
[QualificationData(“Isolation”, “NewAppDomain“)] means that
the add-in requires to be hosted in a new process. You can read this
information from the AddInToken to activate the add-in with the speci-
fied requirements. In addition to appdomain and security requirements,
you can use this attribute to pass custom information through the
 pipeline.

Activate() The add-in is activated with the Activate() method. With parameters
of this method, you can define if the add-in should be loaded inside a
new application domain or a new process. You can also define what
 permissions the add-in gets.

 One add - in can break the complete application. You may have seen Internet Explorer crash because of a
failing add - in. Depending on the application type and the add - in type, you can avoid this by letting the
add - in run within a different application domain or within a different process. MAF gives you several
options here. You can activate the add - in in a new application domain or a new process. The new
application domain might also have restricted permissions.

 The Activate() method of the AddInToken class has several overloads where you can pass the
environment into which the add - in should be loaded. The different options are listed in the following table.

c36.indd 1255c36.indd 1255 2/19/08 5:29:56 PM2/19/08 5:29:56 PM

Part V: Presentation

1256

Parameters of
AddInToken.Activate()

Description

AppDomain You can pass a new application domain into which the add-in should
be loaded. This way you can make it independent of the host
 application, and it can also be unloaded with the application domain.

AddInSecurityLevel If the add-in should run with different security levels you can pass a
value of the AddInSecurityLevel enumeration. Possible values are
Internet, Intranet, FullTrust, and Host.

PermissionSet If the predefined security levels are not specific enough, you can also
assign a PermissionSet to the appdomain of the add-in.

AddInProcess Add-ins can also run within a different process from the hosting appli-
cation. You can pass a new AddInProcess to the Activate() method.
The new process can shut down if all add-ins are unloaded, or it can
keep running. This is an option that can be set with the property
KeepAlive.

AddInEnvironment Passing an AddInEnvironment object is another option to define the
application domain where the add-in should be loaded. With the
 constructor of AddInEnvironment, you can pass an AppDomain object.
You can also get an existing AddInEnvironment of an add-in with the
AddInEnvironment property of the AddInController class.

 Application domains are explained in Chapter 17 , “ Assemblies. ”

 The type of application may restrict the choices you have. WPF add - ins currently do not support
crossing processes. With Windows Forms, it is not possible to have Windows controls connected across
different application domains.

 Let ’ s get into the steps of the pipeline when the Activate() method of an AddInToken is invoked:

 1. The application domain is created with the permissions specified.

 2. The assembly of the add - in is loaded into the new application domain with the Assembly
.LoadFrom() method

 3. The default constructor of the add - in is invoked by using reflection. Because the add - in derives
from the base class that is defined with the add - in view, the assembly of the view is loaded as well.

 4. Next, an instance of the add - in side adapter is constructed. The instance of the add - in is passed
to the constructor of the adapter, so the adapter can connect the contract to the add - in. The
add - in adapter derives from the base class MarshalByRefObject , so it can be invoked across
application domains.

 5. The activation code returns a proxy to the add - in side adapter to the application domain of the
hosting application. Because the add - in adapter implements the contract interface, the proxy
contains methods and properties of the contract interface.

 6. An instance of the host side adapter is constructed in the application domain of the hosting
application. The proxy of the add - in side adapter is passed to the constructor. The activation
finds the type of the host - side adapter from the add - in token.

 The host side adapter is returned to the hosting application.

c36.indd 1256c36.indd 1256 2/19/08 5:29:57 PM2/19/08 5:29:57 PM

1257

Chapter 36: Add-Ins

 Contracts
 Contracts define the boundary between the host side and the add - in side. Contracts are defined with an
interface that needs to derive from the base interface IContract . The contract should be well - thought in
that it supports flexible add - in scenarios as needed.

 Contracts are not versionable and may not be changed so that previous add - in implementations can still
run in newer hosts. New versions are created by defining a new contract.

 There ’ s some restriction on the types you can use with the contract. The restriction exists because of
versioning issues and also because application domains are crossed from the hosting application to the
add - in. The types need to be safe and versionable, and able to pass it across the boundaries (application
domain or cross - process) to pass it between hosts and add - ins.

 Possible types that can be passed with a contract are:

 Primitive types

 Other contracts

 Serializable system types

 Simple serializable custom types that consists of primitive types, contracts, and do not have an
implementation

 The members of the IContract interface are explained in the following table.

❑

❑

❑

❑

IContract Members Description

QueryContract() With QueryContract() it is possible to query a contract to verify
if another contract is implemented as well. An add-in can support
several contracts.

RemoteToString() The parameter of QueryContract() requires a string representa-
tion of the contract. RemoteToString() returns a string
 representation of the current contract.

AcquireLifetimeToken()
RevokeLifetimeToken()

The client invokes AcquireLifetimeToken() to keep a refer-
ence to the contract. AcquireLifetimeToken() increments a
 reference count. RevokeLifetimeToken() decrements a reference
count.

RemoteEquals() RemoteEquals() can be used to compare two contract references.

 Contract interfaces are defined in the namespaces System.AddIn.Contract , System.AddIn
.Contract.Collections , and System.AddIn.Contract.Automation . The following table lists
contract interfaces that you can use with a contract:

c36.indd 1257c36.indd 1257 2/19/08 5:29:57 PM2/19/08 5:29:57 PM

Part V: Presentation

1258

Contract Description

IListContract<T> The IListContract<T> can be used to return a list of contracts.

IEnumeratorContract<T> IEnumeratorContract<T> is used to enumerate the elements of
a IListContract<T>.

IServiceProviderContract An add-in can offer services for other add-ins. Add-ins that offer
services are known as service provider and implement the
 interface IServiceProviderContract. With the method
QueryService() an add-in implementing this interface can be
queried for services offered.

IProfferServiceContract IProfferServiceContract is the interface offered by a service
provider in conjunction with IServiceProviderContract.
IProfferServiceContract defines the methods
ProfferService() and RevokeService(). ProfferService()
adds an IServiceProviderContract to the services offered,
RevokeService() removes it.

INativeHandleContract This interface provides access to native Window handles with the
GetHandle() method. This contract is used with WPF hosts to
use WPF add-ins.

 Lifetime
 How long does an add - in need to be loaded? How long is it used? When is it possible to unload the
application domain? There are several options to resolve this. One option is to use reference counts.
Every use of the add - in increments the reference count. If the reference count decrements to zero, the
add - in can be unloaded. Another option is to use the garbage collector. If the garbage collector runs, and
there ’ s no more reference to an object, the object is the target of garbage collection. .NET Remoting is
using a leasing mechanism and a sponsor to keep objects alive. As soon as the leasing time ends,
sponsors are asked if the object should stay alive.

 With add - ins, there ’ s a specific issue for unloading add - ins because they can run in different application
domains and also in different processes. The garbage collector cannot work across different processes.
MAF is using a mixed model for lifetime management. Within a single application domain, garbage
collection is used. Within the pipeline an implicit sponsorship is used, but reference counting is available
from the outside to control the sponsor.

 Let ’ s consider a scenario where the add - in is loaded into a different application domain. Within the host
application, the garbage collector cleans up the host view and the host side adapter when the reference is
not needed anymore. For the add - in side, the contract defines the methods AcquireLifetimeToken()
and RevokeLifetimeToken() to increment and decrement the reference count of the sponsor. These
methods do not just increment and decrement a value which could lead to release an object too early if
one party would call the revoke method too often. Instead, AcquireLifetimeToken() returns an
identifier for the lifetime token, and this identifier must be used to invoke the RevokeLifetimeToken()
method. So these methods are always called in pairs.

c36.indd 1258c36.indd 1258 2/19/08 5:29:58 PM2/19/08 5:29:58 PM

1259

Chapter 36: Add-Ins

 Usually you do not have to deal with invoking the AcquireLifetimeToken() and
 RevokeLifetimeToken() methods. Instead you can use the ContractHandle class that invokes
 AcquireLifetimeToken() in the constructor and RevokeLifetimeToken() in the finalizer.

 The finalizer is explained in Chapter 12 , “ Memory Management and Pointers. ”

 In scenarios where the add - in is loaded in a new application domain, it is possible to get rid of the
loaded code when the add - in is not needed anymore. MAF uses a simple model to define one add - in
as the owner of the application domain to unload the application domain if this add - in is not needed
anymore. An add - in is the owner of the application domain if the application domain is created when
the add - in is activated. The application domain is not unloaded automatically if it was created
previously.

 The class ContractHandle is used in the host side adapter to add a reference count to the
add - in. The members of this class are explained in the following table.

ContractHandle Members Description

Contract In the construction of the ContractHandle class, an object imple-
menting IContract can be assigned to keep a reference to it. The
Contract property returns this object.

Dispose() The Dispose() method can be called instead of waiting for the gar-
bage collector to do the finalization to revoke the lifetime token.

AppDomainOwner() AppDomainOwner() is a static method of the ContractHandle
class that returns the add-in adapter if it owns the application
domain that is passed with the method.

ContractOwnsAppDomain() With the static method ContractOwnsAppDomain() you can verify
if the specified contract is an owner of the application domain.
Thus, the application domain gets unloaded when the contract is
disposed.

 Versioning
 Versioning is a very big issue with add - ins. The host application is developed further as are the add - ins.
One requirement for an add - in is that it should be possible that a new version of the host application can
still load old versions of add - ins. The other direction should work as well: older hosts should run newer
versions of add - ins. But what if the contract changes?

 System.AddIn is completely independent from the implementation of the host application and add - ins.
This is done with a pipeline concept that consists of seven parts.

 Add - In Sample
 Let ’ s start a simple sample of a hosting application that can load calculator add-ins. The add - ins can
support different calculation operations that are offered by add - ins.

 You need to create a solution with six library projects and one console application. The projects of the
sample application are listed in the following table. The table lists the assemblies that need to be
referenced. With the references to the other projects within the solution you need to set the property

c36.indd 1259c36.indd 1259 2/19/08 5:29:58 PM2/19/08 5:29:58 PM

Part V: Presentation

1260

Copy Local to False, so that the assembly does not get copied. One exception is the HostApp console
project that needs a reference to the HostView project. This assembly needs to be copied so it can be
found from the host application. Also you need to change the output path of the generated assemblies so
that the assemblies are copied to the correct directories of the pipeline.

Project References Output Path Description

CalcContract System.AddIn.Contract ..\Pipeline\
Contracts\

This assembly contains
the contract for communi-
cation with the add-in.
The contract is defined
with an interface.

CalcView System.AddIn ..\Pipeline\
AddInViews\

The CalcView assembly
contains an abstract class
that is referenced by the
add-in. This is the add-in
side of the contract.

CalcAddIn System.AddIn
CalcView

..\Pipeline\
AddIns\CalcAddIn\

CalcAddIn is the add-in
project that references the
add-in view assembly.
This assembly contains
the implementation of the
add-in.

CalcAddIn
Adapter

System.AddIn
System.AddIn.Contract
CalcView
CalcContract

..\Pipeline\
AddInSideAdapters\

CalcAddInAdapter con-
nects the add-in view and
the contract assembly and
maps the contract to the
add-in view.

HostView The assembly containing
the abstract class of the
host view does not need to
reference any Add-In
assembly and also does
not have a reference to
another project in the
solution.

HostAdapter System.AddIn
System.AddIn.Contract
HostView
CalcContract

..\Pipeline\
HostSideAdapters\

The host adapter maps the
host view to the contract.
Thus, it needs to reference
both of these projects.

HostApp System.AddIn
HostView

The hosting application
activates the add-in.

c36.indd 1260c36.indd 1260 2/19/08 5:29:58 PM2/19/08 5:29:58 PM

1261

Chapter 36: Add-Ins

 Calculator Contract
 Let ’ s start by implementing the contract assembly. Contract assemblies contain a contract interface that
defines the protocol for communication between the host and the add - in.

 With the following code you can see the contract defined for the calculator sample application. The
application defines a contract with the methods GetOperations() and Operate() . GetOperations()
returns a list of mathematical operations supported by the calculator add - in. An operation is defined by
the interface IOperationContract that is a contract by itself. IOperationContract defines the
read - only properties Name and NumberOperands .

 The Operate() method invokes the operation within the add - in and requires an operation defined by
the IOperation interface and the operands with a double array.

 With this contract it is possible that the add - in supports any operations that require any number of
 double operands and returns one double.

 The attribute AddInContract is used by the AddInStore to build the cache. The AddInContract
attribute marks the class as an add - in contract interface.

using System.AddIn.Contract;
using System.AddIn.Pipeline;
namespace Wrox.ProCSharp.AddIns
{
 [AddInContract]
 public interface ICalculatorContract : IContract
 {
 IListContract < IOperationContract > GetOperations();
 double Operate(IOperationContract operation, double[] operands);
 }
 public interface IOperationContract : IContract
 {
 string Name { get; }
 int NumberOperands { get; }
 }
}

 Calculator Add - In View
 The add - in view redefines the contract as it is seen by the add - in. The contract defined the interfaces
 ICalculatorContract and IOperationContract . For this, the add - in view defines the abstract class
 Calculator and the concrete class Operation .

 With Operation there ’ s not a specific implementation required by every add - in. Instead, the class is
already implemented with the add - in view assembly. This class describes an operation for mathematical
calculations with the Name and NumberOperands properties.

 The abstract class Calculator defines the methods that need to be implemented by the add - ins. While
the contract defines parameters and return types that need to be passed across appdomain - and process -
 boundaries, that ’ s not the case with the add - in view. Here you can use types, which make it easy to write
add - ins for the add - in developer. The GetOperations() method returns IList < Operation > instead of
 IListOperation < IOperationContract > , as you ’ ve seen with the contract assembly.

 The AddInBase attribute identifies the class as an add - in view for the store.

using System.AddIn.Pipeline;
using System.Collections.Generic;

(continued)

c36.indd 1261c36.indd 1261 2/19/08 5:29:59 PM2/19/08 5:29:59 PM

Part V: Presentation

1262

namespace Wrox.ProCSharp.AddIns
{
 [AddInBase]
 public abstract class Calculator
 {
 public abstract IList < Operation > GetOperations();
 public abstract double Operate(Operation operation, double[] operand);
 }
 public class Operation
 {
 public string Name { get; set; }
 public int NumberOperands { get; set; }
 }
}

 Calculator Add - In Adapter
 The add - in adapter maps the contract to the add - in view. This assembly has references to both the
contract and the add - in view assemblies. The implementation of the adapter needs to map the method
IListContract < IOperationContract > GetOperations() from the contract to the view
method IList < Operation > GetOperations() .

 The assembly includes the classes OperationViewToContractAddInAdapter and
 CalculatorViewToContractAddInAdapter . These classes implement the interfaces
 IOperationContract and ICalculatorContract . The methods of the base interface IContract can be
implemented by deriving from the base class ContractBase . This class offers a default implementation.
 OperationViewToContractAddInAdapter implements the other members of the IOperationContract
interface and just forwards the calls to the Operation view that is assigned in the constructor.

 The class OperationViewToContractAddInAdapter also contains static helper methods
 ViewToContractAdapter() and ContractToViewAdapter() that map Operation to
 IOperationContract and the other way around.

using System.AddIn.Pipeline;
namespace Wrox.ProCSharp.AddIns
{
 internal class OperationViewToContractAddInAdapter : ContractBase,
 IOperationContract
 {
 private Operation view;
 public OperationViewToContractAddInAdapter(Operation view)
 {
 this.view = view;
 }
 public string Name
 {
 get { return view.Name; }
 }
 public int NumberOperands
 {
 get { return view.NumberOperands; }
 }
 public static IOperationContract ViewToContractAdapter(Operation view)

(continued)

c36.indd 1262c36.indd 1262 2/19/08 5:29:59 PM2/19/08 5:29:59 PM

1263

Chapter 36: Add-Ins

 {
 return new OperationViewToContractAddInAdapter(view);
 }
 public static Operation ContractToViewAdapter(
 IOperationContract contract)
 {
 return (contract as OperationViewToContractAddInAdapter).view;
 }
 }
}

 The class CalculatorViewToContractAddInAdapter is very similar to
 OperationViewToContractAddInAdapter : It derives from ContractBase to inherit a default
implementation of the IContract interface, and it implements a contract interface. This time the
 ICalculatorContract interface is implemented with the GetOperations() and Operate() methods.

 The Operate() method of the adapter invokes the Operate() method of the view class
 Calculator where IOperationContract needs to be converted to Operation . This is done with the
static helper method ContractToViewAdapter() that is defined with the
 OperationViewToContractAddInAdapter class.

 The implementation of the GetOperations method needs to convert the collection
IListContract < IOperationContract > to IList < Operation > . For such collection conversions, the
class CollectionAdapters defines conversion methods ToIList() and ToIListContract() .
Here, the method ToIListContract() is used for the conversion.

 The attribute AddInAdapter identifies the class as an add - in side adapter for the add - in store.

using System.AddIn.Contract;
using System.AddIn.Pipeline;
namespace Wrox.ProCSharp.AddIns
{
 [AddInAdapter]
 internal class CalculatorViewToContractAddInAdapter : ContractBase,
 ICalculatorContract
 {
 private Calculator view;
 public CalculatorViewToContractAddInAdapter(Calculator view)
 {
 this.view = view;
 }
 public IListContract < IOperationContract > GetOperations()
 {
 return CollectionAdapters.ToIListContract < Operation,
 IOperationContract > (view.GetOperations(),
 OperationViewToContractAddInAdapter.ViewToContractAdapter,
 OperationViewToContractAddInAdapter.ContractToViewAdapter);
 }
 public double Operate(IOperationContract operation, double[] operands)
 {
 return view.Operate(
 OperationViewToContractAddInAdapter.ContractToViewAdapter(
 operation), operands);
 }
 }
}

c36.indd 1263c36.indd 1263 2/19/08 5:29:59 PM2/19/08 5:29:59 PM

Part V: Presentation

1264

 Calculator Add - In
 The add - in now contains the real implementation of the add - in. The add - in is implemented by the class
 CalculatorV1 . The add - in assembly has a dependency on the add - in view assembly as it needs to
implement the abstract Calculator class.

 The attribute AddIn marks the class as an add - in for the add - in store, and adds publisher, version, and
description information. On the host side, this information can be accessed from the AddInToken .

 CalculatorV1 returns a list of supported operations in the method GetOperations() . Operate()
calculates the operands based on the operation.

using System;
using System.AddIn;
using System.Collections.Generic;
namespace Wrox.ProCSharp.AddIns
{
 [AddIn(“CalculatorAddIn”, Publisher=”Wrox Press”, Version=”1.0.0.0”,
 Description=”Sample AddIn”)]
 public class CalculatorV1 : Calculator
 {
 private List < Operation > operations;
 public CalculatorV1()
 {
 operations = new List < Operation > ();
 operations.Add(new Operation() { Name = “+”, NumberOperands = 2 });
 operations.Add(new Operation() { Name = “-”, NumberOperands = 2 });
 operations.Add(new Operation() { Name = “/”, NumberOperands = 2 });
 operations.Add(new Operation() { Name = “*”, NumberOperands = 2 });
 }
 public override IList < Operation > GetOperations()
 {
 return operations;
 }
 public override double Operate(Operation operation, double[] operand)
 {
 switch (operation.Name)
 {
 case “+”:
 return operand[0] + operand[1];
 case “-”:
 return operand[0] - operand[1];
 case “/”:
 return operand[0] / operand[1];
 case “*”:
 return operand[0] * operand[1];

Because the adapter classes are invoked by .NET reflection, it is possible that the
internal access modifier is used with these classes. As these classes are an
implementation detail, it’s a good idea to use the internal access modifier.

c36.indd 1264c36.indd 1264 2/19/08 5:30:00 PM2/19/08 5:30:00 PM

1265

Chapter 36: Add-Ins

 default:
 throw new InvalidOperationException(
 String.Format(“invalid operation {0}”, operation.Name));
 }
 }
 }
}

 Calculator Host View
 Let ’ s continue with the host view of the host side. Similar to the add - in view, the host view defines an
abstract class with methods similar to the contract. However, the methods defined here are invoked by
the host application.

 Both the class Calculator and Operation are abstract as the members are implemented by the host
adapter. The classes here just need to define the interface to be used by the host application.

using System.Collections.Generic;
namespace Wrox.ProCSharp.AddIns
{
 public abstract class Calculator
 {
 public abstract IList < Operation > GetOperations();
 public abstract double Operate(Operation operation,
 params double[] operand);
 }
 public abstract class Operation
 {
 public abstract string Name { get; }
 public abstract int NumberOperands { get; }
 }
}

 Calculator Host Adapter
 The host adapter assembly references the host view and the contract to map the view to the contract.
The class OperationContractToViewHostAdapter implements the members of the abstract
 Operation class. The class CalculatorContractToViewHostAdapter implements the members of the
abstract Calculator class.

 With OperationContractToViewHostAdapter , the reference to the contract is assigned in the
constructor. The adapter class also contains a ContractHandle instance that adds a lifetime reference to
the contract , so that add - in stays loaded as long it is needed by the hosting application.

using System.AddIn.Pipeline;
namespace Wrox.ProCSharp.AddIns
{
 internal class OperationContractToViewHostAdapter : Operation
 {
 private ContractHandle handle;
 public IOperationContract Contract { get; private set; }
 public OperationContractToViewHostAdapter(IOperationContract contract)

(continued)

c36.indd 1265c36.indd 1265 2/19/08 5:30:00 PM2/19/08 5:30:00 PM

Part V: Presentation

1266

 {
 this.Contract = contract;
 handle = new ContractHandle(contract);
 }
 public override string Name
 {
 get
 {
 return Contract.Name;
 }
 }
 public override int NumberOperands
 {
 get
 {
 return Contract.NumberOperands;
 }
 }
 }
 internal static class OperationHostAdapters
 {
 internal static IOperationContract ViewToContractAdapter(Operation view)
 {
 return ((OperationContractToViewHostAdapter)view).Contract;
 }
 internal static Operation ContractToViewAdapter(
 IOperationContract contract)
 {
 return new OperationContractToViewHostAdapter(contract);
 }
 }
}

 The class CalculatorContractToViewHostAdapter implements the methods of the abstract host view
 Calculator class and forwards the call to the contract. Again, you can see the ContractHandle
holding the reference to the contract, which is similar to the adapter from the add - in side type
conversions. This time the type conversions are just in the other direction from the add - in adapters.

 The attribute HostAdapter marks the class as an adapter that needs to be installed in the
HostSideAdapters directory.

using System.Collections.Generic;
using System.AddIn.Pipeline;
namespace Wrox.ProCSharp.AddIns
{
 [HostAdapter]
 internal class CalculatorContractToViewHostAdapter : Calculator
 {
 private ICalculatorContract contract;
 private ContractHandle handle;
 public CalculatorContractToViewHostAdapter(ICalculatorContract contract)

(continued)

c36.indd 1266c36.indd 1266 2/19/08 5:30:00 PM2/19/08 5:30:00 PM

1267

Chapter 36: Add-Ins

 {
 this.contract = contract;
 handle = new ContractHandle(contract);
 }
 public override IList < Operation > GetOperations()
 {
 return CollectionAdapters.ToIList < IOperationContract, Operation > (
 contract.GetOperations(),
 OperationHostAdapters.ContractToViewAdapter,
 OperationHostAdapters.ViewToContractAdapter);
 }
 public override double Operate(Operation operation, double[] operands)
 {
 return contract.Operate(OperationHostAdapters.ViewToContractAdapter(
 operation), operands);
 }
 }
}

 Calculator Host
 The sample host application uses the WPF technology. You can see the user interface of this application
in Figure 36 - 3 . On top is the list of available add - ins. On the left, the operations of the active add - in are
shown. As you select the operation that should be invoked, operands are shown. After entering the
values for the operands, the operation of the add - in can be invoked.

 The buttons on the bottom row are used to rebuild and update the add - in store, and to exit the
application.

Figure 36-3

c36.indd 1267c36.indd 1267 2/19/08 5:30:00 PM2/19/08 5:30:00 PM

Part V: Presentation

1268

 The XAML code that follows shows the tree of the user interface. With the ListBox elements, different
styles with item templates are used to give a specific representation of the list of add - ins, the list of
operations, and the list of operands.

 You can read information about item templates in Chapter 35 , “ Advanced WPF. ”

 < DockPanel >
 < GroupBox Header=”AddIn Store” DockPanel.Dock=”Bottom” >
 < UniformGrid Columns=”4” >
 < Button x:Name=”rebuildStore” Click=”RebuildStore”
 Margin=”5” > Rebuild < /Button >
 < Button x:Name=”updateStore” Click=”UpdateStore”
 Margin=”5” > Update < /Button >
 < Button x:Name=”refresh” Click=”RefreshAddIns”
 Margin=”5” > Refresh < /Button >
 < Button x:Name=”exit” Click=”App_Exit” Margin=”5” > Exit < /Button >
 < /UniformGrid >
 < /GroupBox >
 < GroupBox Header=”AddIns” DockPanel.Dock=”Top” >
 < ListBox x:Name=”listAddIns” ItemsSource=”{Binding}”
 Style=”{StaticResource listAddInsStyle}” / >
 < /GroupBox >
 < GroupBox DockPanel.Dock=”Left” Header=”Operations” >
 < ListBox x:Name=”listOperations” ItemsSource=”{Binding}”
 Style=”{StaticResource listOperationsStyle}” / >
 < /GroupBox >
 < StackPanel DockPanel.Dock=”Right” Orientation=”Vertical” >
 < GroupBox Header=”Operands” >
 < ListBox x:Name=”listOperands” ItemsSource=”{Binding}”
 Style=”{StaticResource listOperandsStyle}” >
 < /ListBox >
 < /GroupBox >
 < Button x:Name=”buttonCalculate” Click=”Calculate” IsEnabled=”False”
 Margin=”5” > Calculate < /Button >
 < GroupBox DockPanel.Dock=”Bottom” Header=”Result” >
 < Label x:Name=”labelResult” / >
 < /GroupBox >
 < /StackPanel >
 < /DockPanel >

 In the code behind, the FindAddIns() method is invoked in the constructor of the Window.
 FindAddIns() uses the AddInStore class to get a collection of AddInToken objects and pass them to
the DataContext property of the ListBox listAddIns for display. The first parameter of the
 AddInStore.FindAddIns() method passes the abstract Calculator class that is defined by the host
view to find all add - ins from the store that apply to the contract. The second parameter passes the
directory of the pipeline that is read from the application configuration file. When you run the sample
application from the Wrox download site you have to change the directory in the application
configuration file to match your directory structure.

using System;
using System.AddIn.Hosting;
using System.AddIn.Pipeline;
using System.IO;
using System.Linq;
using System.Windows;

c36.indd 1268c36.indd 1268 2/19/08 5:30:03 PM2/19/08 5:30:03 PM

1269

Chapter 36: Add-Ins

using System.Windows.Controls;
using Wrox.ProCSharp.AddIns.Properties;
namespace Wrox.ProCSharp.AddIns
{
 public partial class CalculatorHostWindow : Window
 {
 private Calculator activeAddIn = null;
 private Operation currentOperation = null;
 public CalculatorHostWindow()
 {
 InitializeComponent();
 FindAddIns();
 }
 void FindAddIns()
 {
 try
 {
 this.listAddIns.DataContext =
 AddInStore.FindAddIns(typeof(Calculator),
 Settings.Default.PipelinePath);
 }
 catch (DirectoryNotFoundException ex)
 {
 MessageBox.Show(“Verify the pipeline directory in the “ +
 “config file”);
 Application.Current.Shutdown();
 }
 }
 //...

 To update the cache of the Add - In store, the UpdateStore() and RebuildStore() methods are
mapped to the Click events of the Update and Rebuild buttons. Within the implementation of these
methods, the Rebuild() or Update() methods of the AddInStore class are used. These methods return
a string array of warnings if assemblies are stored in the wrong directories. Because of the complexity of
the pipeline structure, there ’ s a good chance that the first time you may not get the project configuration
completely right for copying the assemblies to the correct directories. Reading the returned information
from these methods, you will get a clear explanation about what ’ s wrong. For example, the message
 ” No usable AddInAdapter parts could be found in assembly Pipeline\AddInSideAdapters\CalcView
.dll ” gives a hint that the assembly CalcView is stored inside the wrong directory.

 private void UpdateStore(object sender, RoutedEventArgs e)
 {
 string[] messages = AddInStore.Update(Settings.Default.PipelinePath);
 if (messages.Length != 0)
 {
 MessageBox.Show(string.Join(“\n”, messages),
 “AddInStore Warnings”, MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }
 private void RebuildStore(object sender, RoutedEventArgs e)

(continued)

c36.indd 1269c36.indd 1269 2/19/08 5:30:03 PM2/19/08 5:30:03 PM

Part V: Presentation

1270

 {
 string[] messages =
 AddInStore.Rebuild(Settings.Default.PipelinePath);
 if (messages.Length != 0)
 {
 MessageBox.Show(string.Join(“\n”, messages),
 “AddInStore Warnings”, MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }

 In Figure 36 - 2 you can see an Activate button beside the available add - in. Clicking this button invokes
the handler method ActivateAddIn() . With this implementation, the add - in is activated by using the
 Activate() method of the AddInToken class. Here the add - in is loaded inside a new process that is
created with the AddInProcess class. This class starts the process AddInProcess32.exe. Setting the
 KeepAlive property of the process to false , the process is stopped as soon as the last add - in reference
is garbage collected. The parameter AddInSecurityLevel.Internet leads to an add - in running with
restricted permissions. The last statement of ActivateAddIn() invokes the ListOperations()
method, which in turn invokes the GetOperations() method of the add - in. GetOperations() assigns
the returned list to the data context of the ListBox listOperations for displaying all operations.

 private void ActivateAddIn(object sender, RoutedEventArgs e)
 {
 FrameworkElement el = sender as FrameworkElement;
 Trace.Assert(el != null, “ActivateAddIn invoked from the wrong “ +
 “control type”);

 AddInToken addIn = el.Tag as AddInToken;
 Trace.Assert(el.Tag != null, String.Format(
 “An AddInToken must be assigned to the Tag property “ +
 “of the control {0}”, el.Name);
 AddInProcess process = new AddInProcess();
 process.KeepAlive = false;

 activeAddIn = addIn.Activate < Calculator > (process,
 AddInSecurityLevel.Internet);
 ListOperations();
 }
 void ListOperations()
 {
 this.listOperations.DataContext = activeAddIn.GetOperations();
 }

 After the add - in is activated and the list of operations displays in the UI, the user can select an operation.
The Click event of the Button shown in the Operations category is assigned to the handler method
 OperationSelected() . In the implementation, the Operation object that is assigned to the Tag
property of the Button is retrieved to get the number of operands needed with the operation. To allow
the user adding values to the operands, an array of OperandUI objects is bound to the ListBox
listOperands .

 private void OperationSelected(object sender, RoutedEventArgs e)
 {
 FrameworkElement el = sender as FrameworkElement;
 Trace.Assert(el != null, “OperationSelected invoked from “ +
 “the wrong control type”);

(continued)

c36.indd 1270c36.indd 1270 2/19/08 5:30:03 PM2/19/08 5:30:03 PM

1271

Chapter 36: Add-Ins

 Operation op = el.Tag as Operation;
 Trace.Assert(el.Tag != null, String.Format(
 “An AddInToken must be assigned to the Tag property “ +
 “of the control {0}”, el.Name);
 currentOperation = op;
 ListOperands(new double[op.NumberOperands]);
 }
 private class OperandUI
 {
 public int Index { get; set; }
 public double Value { get; set; }
 }
 void ListOperands(double[] operands)
 {
 this.listOperands.DataContext =
 operands.Select((operand, index) = >
 new OperandUI()
 { Index = index + 1, Value = operand }).ToArray();
 }

 The Calculate() method is invoked with the Click event of the Calculate button. Here, the operands
are retrieved from the UI, the operation and operands are passed to the Operate() method of the
add - in, and the result is shown with the content of a label.

 private void Calculate(object sender, RoutedEventArgs e)
 {
 OperandUI[] operandsUI = (OperandUI[])this.listOperands.DataContext;
 double[] operands = operandsUI.Select(opui = > opui.Value).ToArray();
 labelResult.Content = activeAddIn.Operate(currentOperation,
 operands);
 }

 Additional Add - Ins
 The hard work is now done. The pipeline components and the host application are created. The pipeline
is now working, yet it ’ s an easy task to add other add - ins such as the Advanced Calculator add - in shown
in the following code segment into the host application.

 [AddIn(“Advanced Calc”, Publisher = “Wrox Press”, Version = “1.1.0.0”,
 Description = “Another AddIn Sample”)]
 public class AdvancedCalculatorV1 : Calculator

 Summary
 In this chapter you ’ ve learned the concepts of a new .NET 3.5 technology: the Managed Add - In
Framework.

 MAF uses a pipeline concept to create a complete independence between the hosting and add - in
assemblies. A clearly defined contract separates the host view from the add - in view. Adapters make it
possible for both sides to change independently of each other.

 The next chapter starts a sequence of three chapters for developing the UI with ASP.NET.

c36.indd 1271c36.indd 1271 2/19/08 5:30:04 PM2/19/08 5:30:04 PM

c36.indd 1272c36.indd 1272 2/19/08 5:30:04 PM2/19/08 5:30:04 PM

 ASP . NET Pages

 If you are new to the world of C# and .NET, you might wonder why a chapter on ASP.NET has
been included in this book. It ’ s a whole new language, right? Well, not really. In fact, as you will
see, you can use C# to create ASP.NET pages.

 ASP.NET is part of the .NET Framework and is a technology that allows for the dynamic creation
of documents on a Web server when they are requested via HTTP. This mostly means HTML and
XHTML documents, although it is equally possible to create XML documents, CSS files, images,
PDF documents, or anything else that supports MIME types.

 In some ways, ASP.NET is similar to many other technologies — such as PHP, ASP, or ColdFusion.
There is, however, one key difference: ASP.NET, as its name suggests, has been designed to be fully
integrated with the .NET Framework, part of which includes support for C#.

 Perhaps you are familiar with Active Server Pages (ASP) technology, which enables you to create
dynamic content. If you are, you will probably know that programming in this technology used
scripting languages such as VBScript or JScript. The result was not always perfect, at least not for
those of us used to “ proper, ” compiled programming languages, and it certainly resulted in a loss
of performance.

 One major difference related to the use of more advanced programming languages is the provision
of a complete server - side object model for use at runtime. ASP.NET provides access to all of the
controls on a page as objects, in a rich environment. On the server side, you also have access to
other .NET classes, allowing for the integration of many useful services. Controls used on a page
expose a lot of functionality; in fact, you can do almost as much as with Windows Forms classes,
which provide plenty of flexibility. For this reason, ASP.NET pages that generate HTML content
are often called Web Forms .

 This chapter takes a more detailed look at ASP.NET, including how it works, what you can do with
it, and how C# fits in. The following is a brief outline of what is covered:

 An introduction to ASP.NET

 How to create ASP.NET Web Forms with server controls

 How to bind data to ASP.NET controls with ADO.NET

 Application configuration

❑

❑

❑

❑

c37.indd 1273c37.indd 1273 2/19/08 5:30:15 PM2/19/08 5:30:15 PM

Part V: Presentation

1274

 ASP . NET Introduction
 ASP.NET works with Internet Information Server (IIS) to deliver content in response to HTTP requests.
ASP.NET pages are found in .aspx files. Figure 37 - 1 illustrates the technology ’ s basic architecture.

HTTP Request for .aspx
Resource

ASP.NET Generated
resource in HTTP Response

Server Processing
of .aspx Resource

Result of .aspx
Processing

ASP.NET page in .aspx
Resource

Database

Other Resources

.NET FrameworkOS

IIS Web Server

 Figure 37 - 1

 During ASP.NET processing, you have access to all .NET classes, custom components created in C# or
other languages, databases, and so on. In fact, you have as much power as you would have running a C#
application; using C# in ASP.NET is, in effect, running a C# application.

 An ASP.NET file can contain any of the following:

 Processing instructions for the server

 Code in C#, Visual Basic .NET, JScript .NET, or any other language that the .NET Framework
supports

 Content in whatever form is appropriate for the generated resource, such as HTML

 Client - side script code, such as JavaScript

 Embedded ASP.NET server controls

 So, in fact, you could have an ASP.NET file as simple as this:

Hello!

 This would simply result in an HTML page being returned (as HTML is the default output of ASP.NET
pages) containing just this text.

 As you will see later in this chapter, it is also possible to split certain portions of the code into other files,
which can provide a more logical structure.

 State Management in ASP . NET
 One of the key properties of ASP.NET pages is that they are effectively stateless. By default, no
information is stored on the server between user requests (although there are methods for doing this, as
you will see later in this chapter). At first glance, this seems a little strange because state management

❑

❑

❑

❑

❑

c37.indd 1274c37.indd 1274 2/19/08 5:30:16 PM2/19/08 5:30:16 PM

Chapter 37: ASP . NET Pages

1275

is something that seems essential for user - friendly interactive sessions. However, ASP.NET provides a
workaround to this problem, such that session management becomes almost transparent.

 In short, information such as the state of controls on a Web Form (including data entered in text boxes or
selections from drop - down lists) is stored in a hidden viewstate field that is part of the page generated by
the server and passed to the user. Subsequent actions, such as triggering events that require server - side
processing, like submitting form data, result in this information being sent back to the server; this is
known as a postback operation. On the server, this information is used to repopulate the page object
model allowing you to operate on it as if the changes had been made locally.

 You will see this in action shortly and examine the details.

 ASP . NET Web Forms
 As mentioned earlier, much of the functionality in ASP.NET is achieved using Web Forms. Before long,
you will dive in and create a simple Web Form to give you a starting point to explore this technology.
First, however, this section reviews some key points pertinent to Web Form design. Note that some
ASP.NET developers simply use a text editor such as Notepad to create files. We wouldn ’ t advocate this
ourselves because the benefits you get via an IDE such as Visual Studio or Web Developer Express are
substantial, but it ’ s worth mentioning because it is a possibility. If you do take this route, you have a
great deal of flexibility as to which parts of a Web application you put where. This enables you, for
example, to combine all of your code in one file. You can achieve this by enclosing code in < script >
elements, using two attributes on the opening < script > tag:

 < script language=”c#” runat=”server” >
 // Server-side code goes here.
 < /script >

 The runat= “ server ” attribute here is crucial because it instructs the ASP.NET engine to execute this
code on the server rather than sending it to the client, thus giving you access to the rich environment
hinted at earlier. You can place your functions, event handlers, and so on in server - side script blocks.

 If you omit the runat= “ server ” attribute, you are effectively providing client - side code, which will
fail if it uses any of the server - side style coding that is discussed in this chapter. You can, however, use
 < script > elements to supply client - side script in languages such as JavaScript. For example:

 < script language=”JavaScript” type=”text/JavaScript” >
 // Client-side code goes here; you can also use “vbscript”.
 < /script >

 Note that the type attribute here is optional, but necessary if you want XHTML compliance.

 It may seem strange that the facility to add JavaScript code to your pages is included with ASP.NET.
However, JavaScript allows you to add dynamic client - side behavior to your Web pages and can be very
useful. This is especially true for Ajax programming, as you will see in Chapter 39 , “ ASP.NET AJAX. ”

 It is possible to create ASP.NET files in Visual Studio, which is great for you, as you are already familiar
with this environment for C# programming. However, the default project setup for Web applications in
this environment has a slightly more complex structure than a single .aspx file. This isn ’ t a problem for
you, however, and does make things a bit more logical (more programmer - like and less Web developer –
 like). For this reason, you will use Visual Studio throughout this chapter for your ASP.NET programming
(instead of Notepad).

 The .aspx files can also include code in blocks enclosed by < % and % > tags. However, function
definitions and variable declarations cannot go here. Instead, you can insert code that is executed as
soon as the block is reached, which is useful when outputting simple HTML content. This behavior is

c37.indd 1275c37.indd 1275 2/19/08 5:30:16 PM2/19/08 5:30:16 PM

Part V: Presentation

1276

similar to that of old - style ASP pages, with one important difference: The code is compiled, not
interpreted. This results in far better performance.

 Now it ’ s time for an example. In Visual Studio, you create a new Web application by using the File
 New Web Site menu option. From the dialog box that appears, select the Visual C# language type and
the ASP.NET Web Site template. At this point, you have a choice to make. Visual Studio can create Web
sites in a number of different locations:

 On your local IIS Web server

 On your local disk, configured to use the built - in Visual Web Developer Web server

 At any location accessible via FTP

 On a remote Web server that supports Front Page Server Extensions

 The latter two choices use remote servers so you are left with the first two choices. In general, IIS is the
best place to install ASP.NET Web sites because it is likely to be closest to the configuration required
when you deploy a Web site. The alternative, using the built - in Web server, is fine for testing but has
certain limitations:

 Only the local computer can see the Web site.

 Access to services such as SMTP is restricted.

 The security model is different from IIS — the application runs in the context of the current user
rather than in an ASP.NET - specific account.

 This last point requires clarification because security is very important when it comes to accessing
databases or anything else that requires authentication. By default, Web applications running on IIS do
so in an account called ASPNET on Windows XP, 2000, and Vista Web servers, or in an account called
NETWORK SERVICES on Windows Server 2003. This is configurable if you are using IIS, but not if you
use the built - in Web server.

 For the purposes of illustration, however, and because you may not have IIS installed on your computer,
you can use the built - in Web server. You aren ’ t worried about security at this stage, so you can go with
simplicity.

 Create a new ASP.NET Web site called PCSWebApp1 using the File System option, at C:\ProCSharp\
Chapter37 , as shown in Figure 37 - 2 .

❑

❑

❑

❑

❑

❑

❑

 Figure 37 - 2

c37.indd 1276c37.indd 1276 2/19/08 5:30:16 PM2/19/08 5:30:16 PM

Chapter 37: ASP . NET Pages

1277

 After a few moments, Visual Studio .NET should have set up the following:

 PCSWebApp1 , a new solution containing the C# Web application PCSWebApp1

 A reserved folder called App_Data for containing data files, such as XML files or database files

 Default.aspx , the first ASP.NET page in the Web application

 Default.aspx.cs , a “ code - behind ” class file for Default.aspx

 Web.config , a configuration file for the Web application

 You can see all of this in the Solution Explorer, as shown in Figure 37 - 3 .

❑

❑

❑

❑

❑

 Figure 37 - 3

 You can view .aspx files in design or source (HTML) view. This is the same as for Windows Forms
(as discussed in Chapter 31 , “ Windows Forms “). The initial view in Visual Studio is either the design or
source view for Default.aspx (you can toggle between the views or view them together in a split view
using the buttons in the bottom left). The design view is shown in Figure 37 - 4 .

 Figure 37 - 4

 Underneath the (currently empty) form, you can see where in the HTML for the form the cursor is
currently positioned. Here the cursor is in a < div > element inside a < form > element inside the < body >
element of the page. The < form > element is displayed as < form#form1 > to identify the element by its id
attribute, which you will see shortly. The < div > element is also labeled in the design view.

 The source view for the page shows you the code generated inside the .aspx file:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >

(continued)

c37.indd 1277c37.indd 1277 2/19/08 5:30:17 PM2/19/08 5:30:17 PM

Part V: Presentation

1278

 < title > Untitled Page < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < /div >
 < /form >
 < /body >
 < /html >

 If you know any HTML syntax, then this will look familiar to you. You are presented with the basic code
required for an HTML page following the XHTML schema, with a few extra bits of code. The most
important extra is the < form > element, which has an id attribute of form1 . This element will contain
your ASP.NET code. The most important thing to note here is the runat attribute. Just as with the server -
 side code blocks you saw at the start of this section, this is set to server , meaning that the processing of
the form will take place on the server. If you don ’ t include this reference, then no server - side processing
will be performed, and the form won ’ t do anything. There can be only one server - side < form > element
in an ASP.NET page.

 The other interesting thing about this code is the < % @ Page % > tag at the top. This tag defines page
characteristics that are important to you as a C# Web application developer. There is a Language
attribute that specifies that you will use C# throughout your page, as you saw earlier with
 < script > blocks. (The default for Web applications is Visual Basic .NET, although this can be
changed using a Web.config file, which you will see later in this chapter.) The other three attributes —
 AutoEventWireup , CodeFile , and Inherits — are used to associate the Web Form with a class in a
code - behind code file, in this case the partial class _Default in the file Default.aspx.cs . This leads
straight into a necessary discussion about the ASP.NET code model.

 The ASP . NET Code Model
 In ASP.NET, a combination of layout (HTML) code, ASP.NET controls, and C# code is used to generate
the HTML that users see. The layout and ASP.NET code are stored in an .aspx file, such as the one you
looked at in the preceding section. The C# code that you add to customize the behavior of the form is
contained either in the .aspx file or, as in the preceding example, in a separate .aspx.cs file, which is
usually referred to as the “ code - behind ” file.

 When an ASP.NET Web Form is processed — typically when a user requests the page, although sites can
be precompiled — several things happen:

 The ASP.NET process examines the page, and determines what objects must be created to
instantiate the page object model.

 A base class for the page is dynamically created, including members for the controls on the page
as well as event handlers for these controls (such as button click events).

 Additional code contained in the .aspx page is combined with this base class to complete the
object model.

 The complete code is compiled and cached ready to process subsequent requests.

 HTML is generated and returned to the user.

 The code - behind file generated for you in the PCSWebApp1 Web site for Default.aspx is initially
very sparse. First, you see the default set of namespace references that you are likely to use in ASP.NET
Web pages:

❑

❑

❑

❑

❑

(continued)

c37.indd 1278c37.indd 1278 2/19/08 5:30:17 PM2/19/08 5:30:17 PM

Chapter 37: ASP . NET Pages

1279

using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Xml.Linq;

 Below these references, you see an almost completely empty partial class definition for Default_aspx :

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
}

 Here, the Page_Load() event handler can be used to add any code that is required when the page is
loaded. As you add more event handlers, and so on, this class file will become increasingly full of code.
Note that you don ’ t see the code that wires up this event handler to the page — event handlers are
inferred by the ASP.NET runtime, as noted earlier. This is due to the AutoEventWireUp attribute —
 setting this to false will mean that you will need to associate the event handlers in your code with
events on your own.

 This class is a partial class definition because the process outlined earlier requires it. When the page is
precompiled, a separate partial class definition is created from the ASP.NET code for your page. This
includes all the controls you have added to the page. At design time, the compiler infers this partial class
definition, which allows you to use IntelliSense in your code behind to reference controls on your page.

 ASP . NET Server Controls
 Your generated code doesn ’ t do very much yet, so next you need to add some content. You can do this in
Visual Studio using the Web Form designer, which supports drag - and - drop in just the same way as the
Windows Forms designer.

 You can add three types of controls to your ASP.NET pages:

 HTML server controls — These controls mimic HTML elements, which will be familiar to
HTML developers.

 Web server controls — This is a new set of controls, some of which have the same functionality
as HTML controls. These controls have a common naming scheme for properties and other
elements to ease development, and provide consistency with analogous Windows Forms
controls. There are also some completely new and very powerful controls, as you will see later.
Several types of Web server controls exist, including the standard ones such as buttons,
validation controls for validating user input, login controls to simplify user management, and
more complicated controls for dealing with data sources.

 Custom and user controls — These controls are defined by the developer and can be created in
a number of ways, as discussed in Chapter 38 , “ ASP.NET Development. ”

 The next section provides a list of many of the frequently used Web server controls, along with usage
notes. Some additional controls are examined in the next chapter. HTML controls will not be covered in

❑

❑

❑

c37.indd 1279c37.indd 1279 2/19/08 5:30:18 PM2/19/08 5:30:18 PM

Part V: Presentation

1280

this book. These controls don ’ t do anything more than the Web server controls, and the Web server
 controls provide a richer environment for developers more familiar with programming than with HTML
design. If you learn how to use the Web server controls, then you will have all the information you re-
quire to use HTML server controls. For more information, check out Professional ASP.NET 2.0 (Wiley
Publishing, Inc., ISBN 0 - 7645 - 7610 - 0).

 Now you add a couple of Web server controls to the PCSWebApp1 Web site you created in the last
section. All Web server controls are used in the following XML element - type form:

 < asp:controlName runat=”server” attribute=”value” > Contents < /asp:controlName >

 In the preceding code, controlName is the name of the ASP.NET server control, attribute= “ value ” is
one or more attribute specifications, and Contents specifies the control content, if any. Some controls
allow properties to be set using attributes and control element content, such as Label (used for simple
text display), where Text can be specified in either way. Other controls might use an element
containment scheme to define their hierarchy — for example Table (which defines a table), which can
contain TableRow elements in order to specify table rows declaratively.

 Because the syntax for controls is based on XML (although the controls may be used embedded in non - XML
code such as HTML), it is an error to omit the closing tags and / > for empty elements, or to overlap controls.

 Finally, you once again see the runat= “ server ” attribute on the Web server controls. It is just as
essential here as it is elsewhere, and it is a common mistake to skip this attribute. If you do, your Web
Forms won ’ t work.

 This first example is simple. Change the HTML design view for Default.aspx as follows:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
Inherits=”_Default” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Untitled Page < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:Label runat=”server” ID=”resultLabel” / > < br / >
 < asp:Button runat=”server” ID=”triggerButton” Text=”Click Me” / >
 < /div >
 < /form >
 < /body >
 < /html >

 Here you have added two Web Form controls: a label and a button.

 Note that as you do this, Visual Studio .NET IntelliSense predicts your code entry, just as in the C#
code editor. Also, if you edit your code in split view and synchronize the views, the element that you are
editing in the source pane will be highlighted in the design pane.

 Going back to the design screen, you can see that your controls have been added, and named using their
 ID attributes (the ID attribute is often known as the identifier of a control). As with Windows Forms, you
have full access to properties, events, and so on through the Properties window and get instant feedback
in code or design whenever you make changes.

 You can also use the CSS Properties window and other style windows to style your controls. However,
unless you are familiar with CSS, you will probably want to leave this technique alone for now and con-
centrate on the functionality of the controls.

c37.indd 1280c37.indd 1280 2/19/08 5:30:18 PM2/19/08 5:30:18 PM

Chapter 37: ASP . NET Pages

1281

 Any server controls you add will automatically become part of the object model for the form that you are
building. This is an instant bonus for Windows Forms developers — the similarities are beginning to
emerge!

 To make this application do something, you can add an event handler for clicking the button. Here you
can either enter a method name in the Properties window for the button or just double - click the button
to get the default event handler. If you double - click the button, you will automatically add an event -
 handling method as follows:

 protected void triggerButton_Click(object sender, EventArgs e)
 {
 }

 This is hooked up to the button by some code added to the source of Default.aspx :

 < div >
 < asp:Label Runat=”server” ID=”resultLabel” / > < br / >
 < asp:Button Runat=”server” ID=”triggerButton” Text=”Click Me”
 onclick=”triggerButton_Click” / >
 < /div >

 Here, the onclick attribute lets the ASP.NET runtime know to wire up the click event of the button to
the triggerButton_Click() method when it generates the code model for the form.

 Modify the code in triggerButton_Click() as follows (note that the label control type is inferred
from the ASP.NET code so that you can use it directly from the code behind):

 void triggerButton_Click(object sender, EventArgs e)
 {
 resultLabel.Text = “Button clicked!”;
 }

 Now you ’ re ready to make it go. There is no need to build the project; you simply need to make sure
everything is saved and then point a Web browser at the location of the Web site. If you had used IIS, this
would be simple because you would know the URL to point at. However, because you are using the
built - in Web server for this example, you need to start things running. The quickest way to do this is to
press Ctrl+F5, which will start the server and open a browser pointing at the required URL.

 When the built - in Web server is running, an icon will appear in your system tray. By double - clicking this
icon, you can see what the Web server is doing, and stop it if required (see Figure 37 - 5).

 In Figure 37 - 5 , you can see the port that the Web server is running on and the URL required to see the
Web site you have created.

 Figure 37 - 5

c37.indd 1281c37.indd 1281 2/19/08 5:30:18 PM2/19/08 5:30:18 PM

Part V: Presentation

1282

 The browser that has opened should display the Click Me button on a Web page. Before you press the
button, take a quick look at the code received by the browser by selecting Page View Source (in IE7).
The < form > section should look something like this:

 < form method=”post” action=”Default.aspx” id=”form1” >
 < div >
 < input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
 value=”/wEPDwUKLTE2MjY5MTY1NWRkzNjRYstd1OK5KcJ9a8/X3pYTHvM=” / >
 < /div >
 < div >
 < span id=”resultLabel” > < /span > < br / >
 < input type=”submit” name=”triggerButton” value=”Click Me”
 id=”triggerButton” / >
 < /div >
 < div >
 < input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION”
 value=”/wEWAgK39qTFBwLHpP+yC4rCCl22/GGMaFwD0l7nokvyFZ8Q” / >
 < /div >
 < /form >

 The Web server controls have generated straight HTML: < span > and < input > for < asp:Label > and
 < asp:Button > , respectively. There is also an < input type= “ hidden “ > field with the name
 VIEWSTATE . This encapsulates the state of the form, as mentioned earlier. This information is used when
the form is posted back to the server to re - create the user interface, so that the server can keep track of
changes and so on. Note that the < form > element has been configured for this; it will post data back to
 Default.aspx (specified in action) via an HTTP POST operation (specified in method). It has also
been assigned the name form1 .

 After clicking the button and seeing the text appear, check out the source HTML again (spacing has been
added for clarity):

 < form method=”post” action=”Default.aspx” id=”form1” >
 < div >
 < input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
 value=”/wEPDwUKLTE2MjY5MTY1NQ9kFgICAw9kFgICAQ8PFgIeBFRleHQFD0J1dHR
 vbiBjbGlja2VkIWRkZExUtMwuSlVTrzMtG7wrmj98tVn7” / >
 < /div >
 < div >
 < span id=”resultLabel” > Button clicked! < /span > < br / >
 < input type=”submit” name=”triggerButton” value=”Click Me”
 id=”triggerButton” / >
 < /div >
 < div >
 < input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION”
 value=”/wEWAgKTpL7LBALHpP+yC0Ymqe9SgScfB2yHTGjnlQKtbudV” / >
 < /div >
 < /form >

 This time, the value of the view state contains more information because the HTML result relies on more
than the default output from the ASP.NET page. In complex forms this can be a very long string indeed,
but you shouldn ’ t complain because so much is done for you behind the scenes. You can almost forget
about state management, keeping field values between posts, and so on. Where the length of the
view state string becomes a problem, you can disable the view state for controls that do not need to
retain state information. You can also do this for entire pages if you want, which can be useful if the
page does not ever need to retain state between postbacks to improve performance.

c37.indd 1282c37.indd 1282 2/19/08 5:30:19 PM2/19/08 5:30:19 PM

Chapter 37: ASP . NET Pages

1283

 For more on view state, see Chapter 38 , “ ASP.NET Development. ”

 To convince yourself that you don ’ t need to perform any compilation manually, try changing the text
 “ Button clicked! ” in Default.aspx.cs to something else, saving the file, and clicking the button again.
The text on the Web page should change appropriately.

 The Control Palette
 This section takes a quick look at some of the available controls before you put more of them together
into a full, and more interesting, application. Figure 37 - 6 shows the toolbox that you see when editing
ASP.NET pages.

 Figure 37 - 6

 Note that the following control descriptions discuss properties — in all cases, the corresponding
attribute for use in ASP.NET code is identically named. This section isn ’ t an attempt to provide a
complete reference, so instead, we will focus on only the most frequently used controls and properties.
The controls you will see in this chapter are in the Standard, Data, and Validation categories. The
Navigation and Login and WebParts categories are covered in Chapter 38 , “ ASP.NET Development, ”
and the AJAX Extensions controls in Chapter 39 , “ ASP.NET AJAX. ” The Reporting controls to be
presented on Web pages, which enable reporting information, including Crystal Reports, are not
covered in this book.

Standard Web Server Controls
 Almost all the Web server controls (in this and other categories) inherit from System.Web.UI
.WebControls.WebControl , which in turn inherits from System.Web.UI.Control . Those that don ’ t
use this inheritance instead derive either directly from Control or from a more specialized base class
that derives (eventually) from Control . As a result, the Web server controls have many common
properties and events that you can use as required. There are quite a few of these, so we won ’ t attempt
to cover them all, just as with the properties and events of the Web server controls themselves.

 Many of the frequently used inherited properties are those that deal with display style. This can
be controlled simply, using properties such as ForeColor , BackColor , Font , and so on, but can also be
controlled using cascading style sheet (CSS) classes. To use CSS styling you set the string property
 CssClass to the name of a CSS class in a separate file. You can use the CSS Properties window along
with the style management windows to assist you with CSS control styling. Other notable properties
include Width and Height to size a control, AccessKey and TabIndex to ease user interaction, and
 Enabled to set whether the control ’ s functionality is activated in the Web Form.

 Some controls can contain other controls, building up a control hierarchy on a page. You can get access to
the controls contained by a given control using its Controls property, or to the container of a control
via the Parent property.

c37.indd 1283c37.indd 1283 2/19/08 5:30:19 PM2/19/08 5:30:19 PM

Part V: Presentation

1284

 You are likely to use the inherited Load event most often, to perform initialization on a control, and
 PreRender to perform last - minute modifications before HTML is output by the control.

 Plenty more events and properties exist, and you will see many of these in more detail in the next
chapter. In particular, the next chapter deals with more advanced styling and skinning techniques.
The following table describes the standard Web server controls in more detail.

 Control Description

 Label Simple text display; use the Text property to set and programmatically
 modify displayed text.

 TextBox Provides a text box that users can edit. Use the Text property to access the
entered data, and the TextChanged event to act on selection changes on
 postback. If automatic postback is required (as opposed to using a button),
then set the AutoPostBack property to true .

 Button Adds a standard button for the user to click. Use the Text property for text on
the button, and the Click event to respond to clicks (server postback is auto-
matic). You can also use the Command event to respond to clicks, which gives
access to additional CommandName and CommandArgument properties on
receipt.

 LinkButton Is identical to Button , but displays button as a hyperlink.

 ImageButton Displays an image that doubles as a clickable button. Properties and events
are inherited from Button and Image .

 HyperLink Adds an HTML hyperlink. Set the destination with NavigateUrl and the text
to display with Text . You can also use ImageUrl to specify an image for the
link and Target to specify the browser window to use. This control has no
nonstandard events, so use a LinkButton instead if additional processing is
required when the link is followed.

 DropDownList Allows the user to select one of a list of choices, either by choosing it directly
from a list or by typing the first letter or two. Use the Items property to set
the item list (this is a ListItemCollection class containing ListItem
objects) and the SelectedItem and SelectedIndex properties to determine
what is selected. The SelectedIndexChanged event can be used to deter-
mine whether the selection has changed, and this control also has an
 AutoPostBack property so that this selection change will trigger a postback
operation.

 ListBox Allows the user to make one or more selections from a list. Set
 SelectionMode to Multiple or Single to specify if only one, or multiple
items can be selected at the same time, and Rows to determine how
many items to display. Other properties and events are the same as for
 DropDownList .

 CheckBox Displays a box that can be checked or unchecked. The state is stored in the
Boolean property Checked , and the text associated with the check box in
 Text . The AutoPostBack property can be used to initiate automatic postback
and the CheckedChanged event to act on changes.

c37.indd 1284c37.indd 1284 2/19/08 5:30:20 PM2/19/08 5:30:20 PM

Chapter 37: ASP . NET Pages

1285

 Control Description

 CheckBoxList Creates a group of check boxes. Properties and events are identical to other
list controls, such as DropDownList .

 RadioButton Displays a button that can be turned on or off. Generally, these are grouped
such that only one in the group is active at any time. Use the GroupName
property to link RadioButton controls into a group. Other properties and
events are as per CheckBox .

 RadioButtonList Creates a group of radio buttons where only one button in the group can be
selected at a time. Properties and events are the same for other list controls,
such as DropDownList.

 Image Displays an image. Use ImageUrl for the image reference, and
 AlternateText to provide text if the image fails to load.

 ImageMap Like Image , but it allows you to specify specific actions to trigger if users click
one or more hotspots in the image. The action to take can either be a postback
or a redirection to another URL. Hotspots are supplied by embedded controls
that derive from HotSpot , such as RectangleHotSpot and CircleHotSpot .

 Table Specifies a table. Use this in conjunction with TableRow and TableCell at
design time, or programmatically assign rows using the Rows property of type
 TableRowCollection . You can also use this property for runtime modifica-
tions. This control has several styling properties unique to tables, as do
 TableRow and TableCell .

 BulletedList Formats a list of items as a bulleted list. Unlike the other list controls, this one
has a Click event that you can use to determine what item a user has clicked
during a postback. Other properties and events are the same as for
 DropDownList .

 HiddenField Used to provide a hidden field, to store nondisplayed values for any reason.
These can be very useful to store settings that would otherwise need an alter-
native storage mechanism to function. Use the Value property to access the
stored value.

 Literal Performs the same function as Label , but has no styling properties because it
derives from Control , not WebControl . You set the text to display for this
control with the Text property.

 Calendar Allows the user to select a date from a graphical calendar display. This control
has many style - related properties, but essential functionality can be achieved
using the SelectedDate and VisibleDate properties (of type
 System.DateTime) to get access to the date selected by the user and the
month to display (which will always contain VisibleDate). The key event to
hook up to is SelectionChanged . Postback from this control is automatic.

c37.indd 1285c37.indd 1285 2/19/08 5:30:20 PM2/19/08 5:30:20 PM

Part V: Presentation

1286

 Control Description

 AdRotator Displays several images in succession, with a different one displayed after
each server round trip. Use the AdvertisementFile property to specify the
XML file describing the possible images, and the AdCreated event to perform
processing before each image is sent back. You can also use the Target prop-
erty to name a window to open when an image is clicked.

 FileUpload This control presents the user with a text box and a Browse button, such that a
file to be uploaded can be selected. Once the user has done this, you can look
at the HasFile property to determine if a file has been selected, and then use
the SaveAs() method from code behind to perform the file upload.

 Wizard An advanced control used to simplify the common task of getting several
pages of user input in one go. You can add multiple steps to a wizard, which
can be presented to a user sequentially or nonsequentially, and rely on this
control to maintain state and so on.

 Xml A more complicated text display control, used for displaying XML content,
which may be transformed using an XSLT style sheet. The XML content is set
using one of the Document , DocumentContent , or DocumentSource proper-
ties (depending on the format of the original XML), and the XSLT style sheet
(optional) using either Transform or TransformSource .

 MultiView A control that contains one or more View controls, where only one View is
rendered at a time. The currently displayed view is specified using
 ActiveViewIndex , and you can detect if the view changes (perhaps because
a Next link on the currently displayed view is clicked) with the
 ActiveViewChanged event.

 Panel Adds a container for other controls. You can use HorizontalAlign and Wrap
to specify how the contents are arranged.

 PlaceHolder This control doesn ’ t render any output but can be handy for grouping other
controls together, or for adding controls programmatically to a given location.
Contained controls can be accessed using the Controls property.

 View A container for controls, much like PlaceHolder , but designed for use as a
child of MultiView . You can tell if a given View is being displayed using
 Visible , or use the Activate and Deactivate events to detect changes in
activation state.

 Substitution Specifies a section of a Web page that isn ’ t cached along with other output.
This is an advanced topic related to ASP.NET caching behavior, which you
won ’ t be looking at in this book.

 Localize Exactly like Literal , but enables text to be localized by using project
resources to specify the text to display for various locales.

c37.indd 1286c37.indd 1286 2/19/08 5:30:20 PM2/19/08 5:30:20 PM

Chapter 37: ASP . NET Pages

1287

 Data Web Server Controls
 The data Web server controls are divided into two types:

 Data source controls (SqlDataSource , AccessDataSource , LinqDataSource ,
 ObjectDataSource , XmlDataSource , and SiteMapDataSource)

 Data display controls (GridView , DataList , DetailsView , FormView , ListView , Repeater ,
and DataPager)

 In general, you will place one of the (nonvisual) data source controls on a page to link to a data source;
then you will add a data display control that binds to a data source control to display that data. Some of
the more advanced data display controls, such as GridView , also allow you to edit data.

 All the data source controls derive from either System.Web.UI.DataSource or
 System.Web.UI.HierarchicalDataSource . These classes expose methods such as GetView()
(or GetHierarchicalView()) to give access to internal data views and skinning capabilities.

 The following table describes the various data source controls. Note that there is less detail about
properties in this section than in others — mainly because configuration of these controls is best done
graphically or through wizards. Later in this chapter, you will see some of these controls in action.

 Control Description

 SqlDataSource Acts as a conduit for data stored in an SQL Server database. By placing
this control on a page, you can manipulate SQL Server data using a data
display control. You will see this control in action later in the chapter.

 AccessDataSource Like SqlDataSource , but it works with data stored in a Microsoft Access
database.

 LinqDataSource This control allows you to manipulate objects in a LINQ - enabled
data model.

 ObjectDataSource This control allows you to manipulate data stored in objects that you have
created, which may be grouped in a collection class. This can be a very
quick way to expose custom object models to an ASP.NET page.

 XmlDataSource Enables you to bind to XML data. This works well in binding to, for
example, a TreeView control (one of the Navigation controls). You can
also transform XML data using an XSL style sheet using this control if
desired.

 SiteMapDataSource Allows binding to hierarchical site map data. See the section on naviga-
tion Web server controls in Chapter 38 for more information.

 Next, you have the data display controls, shown in the following table. Several of these are available to
suit various needs. Some are more fully functional than others, but often you can go with simplicity (for
example, when you don ’ t need to be able to edit data items).

❑

❑

c37.indd 1287c37.indd 1287 2/19/08 5:30:21 PM2/19/08 5:30:21 PM

Part V: Presentation

1288

 Control Description

 GridView Displays multiple data items (such as rows in a database) in the form of rows,
where each row has columns reflecting data fields. By manipulating the properties
of this control, you can select, sort, and edit data items.

 DataList Displays multiple data items where you can supply templates for each item to dis-
play data fields in any way you choose. As with GridView , you can select, sort, and
edit data items.

 DetailsView Displays a single data item in tabular form, with each row of the table relating to a
data field. This control enables you to add, edit, and delete data items.

 FormView Displays a single data item using a template. As with DetailsView , this control
enables you to add, edit, and delete data items.

 ListView Like DataList , but with support for pagination using DataPager and more tem-
plate capabilities.

 Repeater Like DataList , but without selecting or editing capabilities.

 DataPager Allows pagination of ListView controls.

 Validation Web Server Controls
 Validation controls provide a method of validating user input without (in most cases) your having to
write any code at all. Whenever postback is initiated, each validation control checks the control it is
validating and changes its IsValid property accordingly. If this property is false , then the user input
for the validated control has failed validation. The page containing all the controls also has an IsValid
property — if any of the validation controls has its version of this property set to false , then this will be
 false also. You can check this property from your server - side code and act on it.

 Validation controls also have another function. Not only do they validate controls at runtime; they can
also output helpful hints to users. Simply setting the ErrorMessage property to the text you want
means users will see it when they attempt to postback invalid data.

 The text stored in ErrorMessage may be output at the point where the validation control is located, or
at a separate point, along with the messages from all other validation controls on a page. This latter
behavior is achieved using the ValidationSummary control, which displays all error messages along
with additional text as required.

 On browsers that support it, these controls even generate client - side JavaScript functions to streamline
their validation behavior. This means that in some cases postback won ’ t even occur, because the
validation controls can prevent this under certain circumstances and output error messages without
involving the server.

 All validation controls inherit from BaseValidator and thus share several important properties.
Perhaps the most important is the ErrorMessage property discussed earlier, with the
 ControlToValidate property coming in a close second. This property specifies the programmatic ID
of the control that is being validated. Another important property is Display , which determines
whether to place text at the validation summary position (if set to none), or at the validator position.
You also have the choice to make space for the error message even when it is not being displayed (set
 Display to Static) or to dynamically allocate space when required, which might shift page contents
around slightly (set Display to Dynamic). The following table describes the validation controls.

c37.indd 1288c37.indd 1288 2/19/08 5:30:21 PM2/19/08 5:30:21 PM

Chapter 37: ASP . NET Pages

1289

 Control Description

 RequiredFieldValidator Used to check if the user has entered data in a control such as
 TextBox .

 CompareValidator Used to check that data entered fulfills simple requirements, by
use of an operator set using the Operator property and a
 ValueToCompare property to validate against. Operator can
be Equal , GreaterThan , GreaterThanEqual , LessThan ,
 LessThanEqual , NotEqual , and DataTypeCheck .
 DataTypeCheck simply compares the data type of
 ValueToCompare with the data in the control to be validated.
 ValueToCompare is a string property but is interpreted as dif-
ferent data types based on its contents. To further control the
comparison, you can set the Type property to Currency , Date ,
 Double , Integer , or String .

 RangeValidator Validates that data in the control falls between MaximumValue
and MinimumValue property values. Has a Type property like
that of CompareValidator .

 RegularExpressionValidator Validates the contents of a field based on a regular expression
stored in ValidationExpression . This can be useful for
known sequences such as zip codes, phone numbers, IP num-
bers, and so on.

 CustomValidator Used to validate data in a control using a custom function.
 ClientValidationFunction is used to specify a client - side
function used to validate a control (which means, unfortunately,
that you can ’ t use C#). This function should return a Boolean
value indicating whether validation was successful.
Alternatively, you can use the ServerValidate event to specify
a server - side function to use for validation. This function is a
 bool type event handler that receives a string containing the
data to validate, instead of an EventArgs parameter. Returns
 true if validation succeeds, otherwise false .

 ValidationSummary Displays validation errors for all validation controls that have an
 ErrorMessage set. The display can be formatted by setting the
 DisplayMode (BulletList , List , or SingleParagraph) and
 HeaderText properties. The display can be disabled by setting
 ShowSummary to false , and displayed in a pop - up message box
by setting ShowMessageBox to true .

 Server Control Example
 In this example, you create the framework for a Web application, a meeting room booking tool. (As with
the other examples in this book, you can download the sample application and code from the Wrox Web
site at www.wrox.com .) At first, you will include only the front end and simple event processing; later,
you will extend this example with ADO.NET and data binding to include server - side business logic.

 The Web Form you are going to create contains fields for user name, event name, meeting room, and
attendees, along with a calendar to select a date (you are assuming for the purposes of this example

c37.indd 1289c37.indd 1289 2/19/08 5:30:22 PM2/19/08 5:30:22 PM

Part V: Presentation

1290

that you are dealing with all - day events). You will include validation controls for all fields except the
 calendar, which you will validate on the server side, and provide a default date in case none has
been entered.

 For user interface (UI) testing, you will also have a Label control on the form that you can use to display
submission results.

 For starters, create a new Web site in Visual Studio .NET in the C:\ProCSharp\Chapter37\ directory,
and call it PCSWebApp2. Next, modify the code in Default.aspx as follows:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Meeting Room Booker < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < h1 style=”text-align: center;” >
 Enter details and set a day to initiate an event.
 < /h1 >
 < /div >

 After the title of the page (which is enclosed in HTML < h1 > tags to get large, title - style text), the main
body of the form is enclosed in an HTML < table > . You could use a Web server control table, but this
introduces unnecessary complexity because you are using a table purely for formatting the display, not
to be a dynamic UI element. This is an important point to bear in mind when designing Web Forms —
 don ’ t add Web server controls unnecessarily. The table is divided into three columns: the first column
holds simple text labels; the second column holds UI fields corresponding to the text labels (along with
validation controls for these); and the third column contains a calendar control for date selection, which
spans four rows. The fifth row contains a submission button spanning all columns, and the sixth row
contains a ValidationSummary control to display error messages, when required (all the other
validation controls have Display= “ None ” , because they will use this summary for display). Beneath the
table is a simple label that you can use to display results for now, before you add database access later:

 < div style=”text-align: center;” >
 < table style=”text-align: left; border-color: #000000;
 border-width: 2px; background-color: #fff99e;” cellspacing=”0”
 cellpadding=”8” rules=”none” width=”540” >
 < tr >
 < td valign=”top” >
 Your Name: < /td >
 < td valign=”top” >
 < asp:TextBox ID=”nameBox” Runat=”server” Width=”160px” / >
 < asp:RequiredFieldValidator ID=”validateName” Runat=”server”
 ErrorMessage=”You must enter a name.”
 ControlToValidate=”nameBox” Display=”None” / >
 < /td >
 < td valign=”middle” rowspan=”4” >
 < asp:Calendar ID=”calendar” Runat=”server” BackColor=”White” / >
 < /td >
 < /tr >

c37.indd 1290c37.indd 1290 2/19/08 5:30:22 PM2/19/08 5:30:22 PM

Chapter 37: ASP . NET Pages

1291

 < tr >
 < td valign=”top” >
 Event Name: < /td >
 < td valign=”top” >
 < asp:TextBox ID=”eventBox” Runat=”server” Width=”160px” / >
 < asp:RequiredFieldValidator ID=”validateEvent” Runat=”server”
 ErrorMessage=”You must enter an event name.”
 ControlToValidate=”eventBox” Display=”None” / >
 < /td >
 < /tr >

 Most of the ASP.NET code in this file is remarkably simple, and much can be learned simply by reading
through it. Of particular note in this code is the way in which list items are attached to the controls for
selecting a meeting room and multiple attendees for the event:

 < tr >
 < td valign=”top” >
 Meeting Room: < /td >
 < td valign=”top” >
 < asp:DropDownList ID=”roomList” Runat=”server” Width=”160px” >
 < asp:ListItem Value=”1” > The Happy Room < /asp:ListItem >
 < asp:ListItem Value=”2” > The Angry Room < /asp:ListItem >
 < asp:ListItem Value=”3” > The Depressing
 Room < /asp:ListItem >
 < asp:ListItem Value=”4” > The Funked Out
 Room < /asp:ListItem >
 < /asp:DropDownList >
 < asp:RequiredFieldValidator ID=”validateRoom” Runat=”server”
 ErrorMessage=”You must select a room.”
 ControlToValidate=”roomList” Display=”None” / >
 < /td >
 < /tr >
 < tr >
 < td valign=”top” >
 Attendees: < /td >
 < td valign=”top” >
 < asp:ListBox ID=”attendeeList” Runat=”server” Width=”160px”
 SelectionMode=”Multiple” Rows=”6” >
 < asp:ListItem Value=”1” > Bill Gates < /asp:ListItem >
 < asp:ListItem Value=”2” > Monica Lewinsky < /asp:ListItem >
 < asp:ListItem Value=”3” > Vincent Price < /asp:ListItem >
 < asp:ListItem Value=”4” > Vlad the Impaler < /asp:ListItem >
 < asp:ListItem Value=”5” > Iggy Pop < /asp:ListItem >
 < asp:ListItem Value=”6” > William
 Shakespeare < /asp:ListItem >
 < /asp:ListBox >

 Here you are associating ListItem objects with the two Web server controls. These objects are not Web
server controls in their own right (they simply inherit from System.Object), which is why you don ’ t
need to use Runat= “ server ” on them. When the page is processed, the < asp:ListItem > entries are
used to create ListItem objects, which are added to the Items collection of their parent list control. This
makes it easier for you to initialize lists than to write code for this yourself (you would need to create a
 ListItemCollection object, add ListItem objects, and then pass the collection to the list control).
Of course, you can still do all of this programmatically if you want.

c37.indd 1291c37.indd 1291 2/19/08 5:30:23 PM2/19/08 5:30:23 PM

Part V: Presentation

1292

 < asp:RequiredFieldValidator ID=”validateAttendees” Runat=”server”
 ErrorMessage=”You must have at least one attendee.”
 ControlToValidate=”attendeeList” Display=”None” / >
 < /td >
 < /tr >
 < tr >
 < td align=”center” colspan=”3” >
 < asp:Button ID=”submitButton” Runat=”server” Width=”100%”
 Text=”Submit meeting room request” / >
 < /td >
 < /tr >
 < tr >
 < td align=”center” colspan=”3” >
 < asp:ValidationSummary ID=”validationSummary” Runat=”server”
 HeaderText=”Before submitting your request:” / >
 < /td >
 < /tr >
 < /table >
 < /div >
 < div >
 < p >
 Results:
 < asp:Label Runat=”server” ID=”resultLabel” Text=”None.” / >
 < /p >
 < /div >
 < /form >
 < /body >
 < /html >

 In design view, the form you have created looks like Figure 37 - 7 . This is a fully functioning UI, which
maintains its own state between server requests, and validates user input. Considering the brevity of the
preceding code, this is quite something. In fact, it leaves you with very little to do, at least for this
example; you just need to specify the button click event for the submission button.

 Actually, that ’ s not quite true. So far, you have no validation for the calendar control. All you need to do
is give it an initial value. You can do this in the Page_Load() event handler for your page in the code -
 behind file:

 private void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 calendar.SelectedDate = DateTime.Now;
 }
 }

 Here you just select today ’ s date as a starting point. Note that you first check to see if Page_Load() is
being called as the result of a postback operation, by checking the IsPostBack property of the page. If a
postback is in progress, this property will be true and you leave the selected date alone (you don ’ t want
to lose the user ’ s selection, after all).

 To add the button click handler, simply double - click the button and add the following code:

 private void submitButton_Click(object sender, EventArgs e)
 {
 if (this.IsValid)

c37.indd 1292c37.indd 1292 2/19/08 5:30:23 PM2/19/08 5:30:23 PM

Chapter 37: ASP . NET Pages

1293

 Here you just set the resultLabel control Text property to a result string, which will then appear
below the main table. In IE, the result of such a submission might look something like Figure 37 - 8 , unless
there are errors, in which case the ValidationSummary will activate instead, as shown in Figure 37 - 9 .

 Figure 37 - 7

 {
 resultLabel.Text = roomList.SelectedItem.Text +
 “ has been booked on “ +
 calendar.SelectedDate.ToLongDateString() +
 “ by “ + nameBox.Text + “ for “ +
 eventBox.Text + “ event. “;
 foreach (ListItem attendee in attendeeList.Items)
 {
 if (attendee.Selected)
 {
 resultLabel.Text += attendee.Text + “, “;
 }
 }
 resultLabel.Text += “ and “ + nameBox.Text +
 “ will be attending.”;
 }
 }

c37.indd 1293c37.indd 1293 2/19/08 5:30:23 PM2/19/08 5:30:23 PM

1294

 Figure 37 - 8

 Figure 37 - 9

c37.indd 1294c37.indd 1294 2/19/08 5:30:26 PM2/19/08 5:30:26 PM

Chapter 37: ASP . NET Pages

1295

 ADO . NET and Data Binding
 The Web Form application you created in the previous section is perfectly functional, but it contains only
static data. In addition, the event - booking process does not include persisting event data. To solve both
of these problems, you can make use of ADO.NET to access data stored in a database, so that you can
store and retrieve event data along with the lists of rooms and attendees.

 Data binding makes the process of retrieving data even easier. Controls such as list boxes (and some of
the more specialized controls you ’ ll look at a bit later) come enabled for this technique. They can be
bound to any object that exposes an IEnumerable , ICollection , or IListSource interface, as well as
any of the data source Web server controls.

 In this section, you start by updating your event - booking application to be data - aware, and then move
on to take a look at some of the other results you can achieve with data binding, using some of the other
data - aware Web controls.

 Updating the Event - Booking Application
 To keep things separate from the last example, create a new Web site called PCSWebApp3 in the directory
 C:\ProCSharp\Chapter37\ and copy the code from the PCSWebApp2 application created earlier into
the new application. Before you start on your new code, take a look at the database you will be accessing.

 The Database
 For the purposes of this example, you will use a Microsoft SQL Server Express database called
 MeetingRoomBooker.mdf , which is part of the downloadable code for this book. For an enterprise - scale
application, it makes more sense to use a full SQL Server database, but the techniques involved are
practically identical, and SQL Server Express makes life a bit easier for testing. The code will also be identical.

 If you are adding your own version of this database, you will need to add a new database to the
App_Data folder in the Solution Explorer. You can do this by right - clicking on the App_Data folder, se-
lecting Add New Item, selecting a database, naming it MeetingRoomBooker, and clicking Add. This will
also configure a data connection in the Server Explorer window ready for you to use. Next, you can add
the tables required as shown in the next sections and supply your own data. Alternatively, to use the
downloadable database with your own code, simply copy it to the App_Data directory for your Web site.

 The database provided contains three tables:

 Attendees , which contains a list of possible event attendees

 Rooms , which contains a list of possible rooms for events

 Events , which contains a list of booked events

 Attendees
 The Attendees table contains the columns shown in the following table.

 Column Type Notes

 ID Identity, primary key Attendee identification number

 Name varchar, required, 50 chars Name of attendee

 Email varchar, optional, 50 chars E - mail address of attendee

❑

❑

❑

c37.indd 1295c37.indd 1295 2/19/08 5:30:27 PM2/19/08 5:30:27 PM

Part V: Presentation

1296

 The supplied database includes entries for 20 attendees, all with their own (fictional) e - mail addresses.
You can envision that in a more developed application, e - mails could automatically be sent to attendees
when a booking is made, but this is left to you as an optional exercise using techniques found elsewhere
in this book.

Rooms
 The Rooms table contains the columns shown in the following table.

 Column Type Notes

 ID Identity, primary key Room identification number

 Room varchar, required, 50 chars Name of room

 Twenty records are supplied in the database.

Events
 The Events table contains the columns shown in the following table.

 Column Type Notes

 ID Identity, primary key Event identification number

 Name varchar, required, 255 chars Name of event

 Room int, required ID of room for event

 AttendeeList text, required List of attendee names

 EventDate datetime, required Date of event

 A few events are supplied in the downloadable database.

 Binding to the Database
 The two controls you are going to bind to data are attendeeList and roomList . Before you do this,
you need to add SqlDataSource Web server controls that map to the tables you want to access in the
 MeetingRoomBooker.mdf database. The quickest way to do this is to drag them from the toolbox onto
the Default.aspx Web Form and configure them via the Configuration Wizard. Figure 37 - 10 shows
how to access this wizard for a SqlDataSource control.

 Figure 37 - 10

c37.indd 1296c37.indd 1296 2/19/08 5:30:27 PM2/19/08 5:30:27 PM

Chapter 37: ASP . NET Pages

1297

 From the first page of the data source Configuration Wizard, you need to select the connection to the
database created earlier. Next, choose to save the connection string as MRBConnectionString ; then
choose to select * (all fields) from the Attendees table in the database.

 After completing the wizard, change the ID of the SqlDataSource control to MRBAttendeeData .
You also need to add and configure two more SqlDataSource controls to obtain data from the Rooms
and Events tables, with ID values of MRBRoomData and MRBEventData respectively. For these
subsequent controls, you can use the saved MRBConnectionString for your connection.

 Once you ’ ve added these data sources, you will see in the code for the form that the syntax is
very simple:

 < asp:SqlDataSource ID=”MRBAttendeeData” runat=”server”
 ConnectionString=” < %$ ConnectionStrings:MRBConnectionString % > ”
 SelectCommand=”SELECT * FROM [Attendees]” > < /asp:SqlDataSource >
 < asp:SqlDataSource ID=”MRBRoomData” runat=”server”
 ConnectionString=” < %$ ConnectionStrings:MRBConnectionString % > ”
 SelectCommand=”SELECT * FROM [Rooms]” > < /asp:SqlDataSource >
 < asp:SqlDataSource ID=”MRBEventData” runat=”server”
 ConnectionString=” < %$ ConnectionStrings:MRBConnectionString % > ”
 SelectCommand=”SELECT * FROM [Events]” > < /asp:SqlDataSource >

 The definition of the connection string in use is found in the web.config file, which we will look at in
more detail later in this chapter.

 Next, you need to set the data - binding properties of the roomList and attendeeList controls. For
 roomList the settings required are as follows:

 DataSourceID — MRBRoomData

 DataTextField — Room

 DataValueField — ID

 And, similarly, for attendeeList :

 DataSourceID — MRBAttendeeData

 DataTextField — Name

 DataValueField — ID

 You can also remove the existing hard - coded list items from the code for these controls.

 Running the application now will result in the full attendee and room data being available from your
data - bound controls. You will use the MRBEventData control shortly.

 Customizing the Calendar Control
 Before adding events to the database, you need to modify your calendar display. It would be nice to
display all days where a booking has previously been made in a different color, and prevent such days
from being selectable. This requires that you modify the way you set dates in the calendar and the way
day cells are displayed.

 You will start with date selection. You need to check three places for dates where events are booked and
modify the selection accordingly: when you set the initial date in Page_Load() , when the user attempts
to select a date from the calendar, and when an event is booked and you want to set a new date to
prevent the user from booking two events on the same day before selecting a new date. Because this is
going to be a common feature, you might as well create a private method to perform this calculation.
This method should accept a trial date as a parameter and return the date to use, which will either be the
same date as the trial date, or the next available day after the trial date.

❑

❑

❑

❑

❑

❑

c37.indd 1297c37.indd 1297 2/19/08 5:30:28 PM2/19/08 5:30:28 PM

Part V: Presentation

1298

 Before adding this method, you need to give your code access to data in the Events table. You can use
the MRBEventData control to do this because this control is capable of populating a DataView . To
facilitate this, add the following private member and property:

 private DataView eventData;
 private DataView EventData
 {
 get
 {
 if (eventData == null)
 {
 eventData =
 MRBEventData.Select(new DataSourceSelectArguments())
 as DataView;
 }
 return eventData;
 }
 set
 {
 eventData = value;
 }
 }

 The EventData property populated the eventData member with data as it is required, with the results
cached for subsequent use. Here you use the SqlDataSource.Select() method to obtain a DataView .

 Next, add this method, GetFreeDate() , to the code - behind file:

 private DateTime GetFreeDate(DateTime trialDate)
 {
 if (EventData.Count > 0)
 {
 DateTime testDate;
 bool trialDateOK = false;
 while (!trialDateOK)
 {
 trialDateOK = true;
 foreach (DataRowView testRow in EventData)
 {
 testDate = (DateTime)testRow[“EventDate”];
 if (testDate.Date == trialDate.Date)
 {
 trialDateOK = false;
 trialDate = trialDate.AddDays(1);
 }
 }
 }
 }
 return trialDate;
 }

 This simple code uses the EventData DataView to extract event data. First, you check for the trivial
case where no events have been booked, in which case you can just confirm the trial date by returning it.
Next, you iterate through the dates in the Event table, comparing them with the trial date. If you find a
match, add one day to the trial date and perform another search.

c37.indd 1298c37.indd 1298 2/19/08 5:30:28 PM2/19/08 5:30:28 PM

Chapter 37: ASP . NET Pages

1299

 Extracting the date from the DataTable is remarkably simple:

 testDate = (System.DateTime)testRow[“EventDate”];

 Casting the column data into System.DateTime works fine.

 The first place you will use getFreeDate() , then, is back in Page_Load() . This simply means making a
minor modification to the code that sets the calendar SelectedDate property:

 if (!this.IsPostBack)
 {
 DateTime trialDate = DateTime.Now;
 calendar.SelectedDate = GetFreeDate(trialDate);
 }

 Next, you need to respond to date selection on the calendar. To do this, simply add an event handler for
the SelectionChanged event of the calendar, and force the date to be checked against existing events.
Double - click the calendar in the Designer and add this code:

 void calendar_SelectionChanged(object sender, EventArgs e)
 {
 DateTime trialDate = calendar.SelectedDate;
 calendar.SelectedDate = GetFreeDate(trialDate);
 }

 The code here is practically identical to that in Page_Load() .

 The third place that you must perform this check is in response to the pressed booking button. We will
come back to this shortly, as you have several changes to make here.

 Next, you need to color the day cells of the calendar to signify existing events. To do this, you add an
event handler for the DayRender event of the calendar object. This event is raised each time an
individual day is rendered, and gives you access to the cell object being displayed and the date of this
cell through the Cell and Date properties of the DayRenderEventArgs parameter you receive in the
handler function. You simply compare the date of the cell being rendered to the dates in the eventTable
object and color the cell using the Cell.BackColor property if there is a match:

 void calendar_DayRender(object sender, DayRenderEventArgs e)
 {
 if (EventData.Count > 0)
 {
 DateTime testDate;
 foreach (DataRowView testRow in EventData)
 {
 testDate = (DateTime)testRow[“EventDate”];
 if (testDate.Date == e.Day.Date)
 {
 e.Cell.BackColor = System.Drawing.Color.Red;
 }
 }
 }
 }

 Here you are using red, which will give you a display along the lines of Figure 37 - 11 , in which June 12,
15, and 22 (2008) all contain events, and the user has selected June 24.

 With the addition of the date - selection logic, it is now impossible to select a day that is shown in red. If
you attempt it, a later date is selected instead (for example, selecting June 15 results in the selection of
June 16).

c37.indd 1299c37.indd 1299 2/19/08 5:30:28 PM2/19/08 5:30:28 PM

Part V: Presentation

1300

 Adding Events to the Database
 The submitButton_Click() event handler currently assembles a string from the event characteristics
and displays it in the resultLabel control. To add an event to the database, you simply reformat the
string created into a SQL INSERT query and execute it.

 Note that in the development environment that you are using you don ’ t have to worry too much about
security. Adding a SQL Server 2005 Express database via a Web site solution and configuring
 SqlDataSource controls to use it will automatically give you a connection string that you can use
to write to the database. In more advanced situations, you might want to access resources using other
accounts — for example, a domain account used to access a SQL Server instance elsewhere on a
network. The capability to do this (via impersonation, COM+ Services, or other means) exists in
ASP.NET, but is beyond the scope of this chapter. In most cases, configuring the connection string ap-
propriately is as complicated as things need to get.

 Much of the following code will therefore look familiar:

 void submitButton_Click(object sender, EventArgs e)
 {
 if (this.IsValid)
 {
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 foreach (ListItem attendee in attendeeList.Items)
 {
 if (attendee.Selected)
 {
 sb.AppendFormat(“{0} ({1}), “, attendee.Text, attendee.Value);
 }
 }
 sb.AppendFormat(“ and {0}”, nameBox.Text);
 string attendees = sb.ToString();
 try
 {
 System.Data.SqlClient.SqlConnection conn =
 new System.Data.SqlClient.SqlConnection(
 ConfigurationManager.ConnectionStrings[
 “MRBConnectionString”].ConnectionString);
 System.Data.SqlClient.SqlCommand insertCommand =
 new System.Data.SqlClient.SqlCommand(“INSERT INTO [Events] “
 + “(Name, Room, AttendeeList, EventDate) VALUES (@Name, “
 + “@Room, @AttendeeList, @EventDate)”, conn);
 insertCommand.Parameters.Add(
 “Name”, SqlDbType.VarChar, 255).Value = eventBox.Text;
 insertCommand.Parameters.Add(

 Figure 37 - 11

c37.indd 1300c37.indd 1300 2/19/08 5:30:28 PM2/19/08 5:30:28 PM

Chapter 37: ASP . NET Pages

1301

 “Room”, SqlDbType.Int, 4).Value = roomList.SelectedValue;
 insertCommand.Parameters.Add(
 “AttendeeList”, SqlDbType.Text, 16).Value = attendees;
 insertCommand.Parameters.Add(
 “EventDate”, SqlDbType.DateTime, 8).Value =
 calendar.SelectedDate;

 The most interesting thing here is how you access the connection string you created earlier, using the
following syntax:

ConfigurationManager.ConnectionStrings[“MRBConnectionString”].ConnectionString

 The ConfigurationManager class gives you access to all assorted configuration information, all
stored in the Web.config configuration file for your Web application. You will look at this in more
detail later in this chapter.

 After you have created your SQL command, you can use it to insert the new event:

 conn.Open();
 int queryResult = insertCommand.ExecuteNonQuery();
 conn.Close();

 ExecuteNonQuery() returns an integer representing how many table rows were affected by the query.
If this is equal to 1, your insertion was successful. If so, put a success message in resultLabel , clear
 EventData because it is now out of date, and change the calendar selection to a new, free date. Because
 GetFreeDate() involves using EventData , and the EventData property automatically refreshes itself
if it has no data, the stored event data will be refreshed:

 if (queryResult == 1)
 {
 resultLabel.Text = “Event Added.”;
 EventData = null;
 calendar.SelectedDate =
 GetFreeDate(calendar.SelectedDate.AddDays(1));
 }

 If ExecuteNonQuery() returns a number other than 1, you know that there has been a problem. The
code in this example throws an exception if a number other than 1 is returned. This exception is caught
by the general catch block for the database access code.

 This catch block simply displays a general failure notification in resultLabel :

 else
 {
 throw new System.Data.DataException(“Unknown data error.”);
 }
 }
 catch
 {
 resultLabel.Text = “Event not added due to DB access “
 + “problem.”;
 }
 }
 }

 This completes your data - aware version of the event - booking application.

c37.indd 1301c37.indd 1301 2/19/08 5:30:29 PM2/19/08 5:30:29 PM

Part V: Presentation

1302

 More on Data Binding
 As mentioned earlier in this chapter, the available Web server controls include several that deal with data
display (GridView , DataList , DetailsView , FormView , and Repeater). These are all extremely useful
when it comes to outputting data to a Web page because they perform many tasks automatically that
would otherwise require a fair amount of coding.

 First, you will look at how easy using these controls can be, by adding an event list display to the bottom
of the display of PCSWebApp3 .

 Drag a GridView control from the toolbox to the bottom of Default.aspx , and select the
 MRBEventData data source you added earlier for it, as shown in Figure 37 - 12 .

 Figure 37 - 12

 Next, click Refresh Schema, and that ’ s all you need to do to display a list of events under the form — try
viewing the Web site now and you should see the events, as shown in Figure 37 - 13 .

 Figure 37 - 13

c37.indd 1302c37.indd 1302 2/19/08 5:30:29 PM2/19/08 5:30:29 PM

Chapter 37: ASP . NET Pages

1303

 You can also make one further modification in submitButton_Click() to ensure that this data is
updated when new records are added:

 if (queryResult == 1)
 {
 resultLabel.Text = “Event Added.”;
 EventData = null;
 calendar.SelectedDate =
 GetFreeDate(calendar.SelectedDate.AddDays(1));
 GridView1.DataBind();
 }

 All data - bindable controls support this method, which is normally called by the form if you call the
top - level (this) DataBind() method.

 You probably noticed in Figure 37 - 13 that the date/time display for the EventDate field is a little messy.
Because you are looking at dates only, the time is always 12:00:00 AM — information that it isn ’ t really
necessary to display. In the next sections, you will see how this date information can be displayed in a
more user - friendly fashion in the context of a ListView control. As you might expect, the DataGrid
control contains many properties that you can use to format the displayed data, but I ’ ll leave these for
you to discover.

 Data Display with Templates
 Many of the data display controls allow you to use templates to format data for display. Templates, in
an ASP.NET sense, are parameterized sections of HTML that are used as elements of output in certain
controls. They enable you to customize exactly how data is output to the browser, and can result in
professional - looking displays without too much effort.

 Several templates are available to customize various aspects of list behavior. One of the most important
templates is < ItemTemplate > , which is used in the display of each data item in a list for Repeater ,
 DataList , and ListView controls. You declare this template (and all the others) inside the control
declaration. For example:

 < asp:DataList Runat=”server” ... >
 < ItemTemplate >
 ...
 < /ItemTemplate >
 < /asp:DataList >

 Within template declarations, you will normally want to output sections of HTML along with
parameters from the data that is bound to the control. You can use a special syntax to output
such parameters:

 < %# expression % >

 The expression placeholder might be simply an expression binding the parameter to a page or control
property, but is more likely to consist of an Eval() or Bind() expression. These functions can be used to
output data from a table bound to a control simply by specifying the column. The following syntax is
used for Eval() :

 < %# Eval(“ColumnName”) % >

 An optional second parameter allows you to format the data returned, which has syntax identical to
string formatting expressions used elsewhere. This can be used, for example, to format date strings into a
more readable format — something that was lacking in the earlier example.

 The Bind() expression is identical but allows you to insert data into attributes of server controls. For
example:

 < asp:Label RunAt=”server” ID=”ColumnDisplay” Text=’ < %# Bind(“ColumnName”) % > ’ / >

c37.indd 1303c37.indd 1303 2/19/08 5:30:29 PM2/19/08 5:30:29 PM

Part V: Presentation

1304

 Note that because double quotes are used in the Bind() parameter, single quotes are required to enclose
the attribute value.

 The following table provides a list of available templates and when they are used.

 Template Applies To Description

 < ItemTemplate > DataList , Repeater ,
 ListView

 Used for list items

 < HeaderTemplate > DataList , DetailsView ,
 FormView , Repeater

 Used for output before item(s)

 < FooterTemplate > DataList , DetailsView ,
 FormView , Repeater

 Used for output after item(s)

 < LayoutTemplate > ListView Used to specify output surround-
ing items

 < SeparatorTemplate > DataList , Repeater Used between items in list

 < ItemSeparatorTemplate > ListView Used between items in list

 < AlternatingItemTemplate > DataList , ListView Used for alternate items; can aid
visibility

 < SelectedItemTemplate > DataList , ListView Used for selected items in the list

 < EditItemTemplate > DataList , FormView ,
 ListView

 Used for items being edited

 < InsertItemTemplate > FormView , ListView Used for items being inserted

 < EmptyDataTemplate > GridView , DetailsView ,
 FormView , ListView

 Used to display empty items — for
example, when no records are
available in a GridView

 < PagerTemplate > GridView , DetailsView ,
 FormView

 Used to format pagination

 < GroupTemplate > ListView Used to specify the output sur-
rounding groups of items

 < GroupSeparatorTemplate > ListView Used between groups of items

 < EmptyItemTemplate > ListView When using item groups, used to
supply output for empty items in a
group. This template is used when
there are not enough items in a
group to fill the group.

 The easiest way to understand how to use these is through an example.

c37.indd 1304c37.indd 1304 2/19/08 5:30:30 PM2/19/08 5:30:30 PM

Chapter 37: ASP . NET Pages

1305

 Using Templates
 You will extend the table at the top of the Default.aspx page of PCSWebApp3 to contain a ListView
displaying each of the events stored in the database. You will make these events selectable such that
details of any event can be displayed by clicking on its name, in a FormView control.

 First, you need to create new data sources for the data - bound controls. It is good practice (and strongly
recommended) to have a separate data source for each data - bound control.

 The SqlDataSource control required for the ListView control, MRBEventData2 , is much like
 MRBEventData , except that it needs to return only Name and ID data. The required code is as follows:

 < asp:SqlDataSource ID=”MRBEventData2” Runat=”server”
 SelectCommand=”SELECT [ID], [Name] FROM [Events]”
 ConnectionString=” < %$ ConnectionStrings:MRBConnectionString % > ” >
 < /asp:SqlDataSource >

 The data source for the FormView control, MRBEventDetailData , is more complicated, although you
can build it easily enough through the data source Configuration Wizard. This data source uses the
selected item of the ListView control, which you will call EventList , to get only the selected item data.
This is achieved using a parameter in the SQL query, as follows:

 < asp:SqlDataSource ID=”MRBEventDetailData” Runat=”server”
 SelectCommand=”SELECT dbo.Events.Name, dbo.Rooms.Room,
 dbo.Events.AttendeeList, dbo.Events.EventDate
 FROM dbo.Events INNER JOIN dbo.Rooms
 ON dbo.Events.ID = dbo.Rooms.ID WHERE dbo.Events.ID = @ID”
 ConnectionString=” < %$ ConnectionStrings:MRBConnectionString % > ” >
 < SelectParameters >
 < asp:ControlParameter Name=”ID” DefaultValue=”-1” ControlID=”EventList”
 PropertyName=”SelectedValue” / >
 < /SelectParameters >
 < /asp:SqlDataSource >

 Here, the ID parameter results in a value being inserted in place of @ID in the select query. The
 ControlParameter entry takes this value from the SelectedValue property of EventList , or uses – 1
if there is no selected item. At first glance, this syntax seems a little odd, but it is very flexible, and once
you ’ ve generated a few of these using the wizard, you won ’ t have any trouble assembling your own.

 Next, you need to add the ListView and FormView controls. The changes to the code in Default.aspx
in the PCSWebApp3 project are shown in the following code:

 < tr >
 < td align=”center” colspan=”3” >
 < asp:ValidationSummary ID=”validationSummary” Runat=”server”
 HeaderText=”Before submitting your request:” / >
 < /td >
 < /tr >
 < tr >
 < td align=”left” colspan=”3” style=”width: 40%;” >
 < table cellspacing=”4” style=”width: 100%;” >
 < tr >
 < td colspan=”2” style=”text-align: center;” >
 < h2 > Event details < /h2 >
 < /td >

(continued)

c37.indd 1305c37.indd 1305 2/19/08 5:30:30 PM2/19/08 5:30:30 PM

Part V: Presentation

1306

 < /tr >
 < tr >
 < td style=”width: 40%; background-color: #ccffcc;”
 valign=”top” >
 < asp:ListView ID=”EventList” runat=”server”
 DataSourceID=”MRBEventData2” DataKeyNames=”ID”
 OnSelectedIndexChanged=”EventList_SelectedIndexChanged” >
 < LayoutTemplate >
 < ul >
 < asp:PlaceHolder ID=”itemPlaceholder”
 runat=”server” / >
 < /ul >
 < /LayoutTemplate >
 < ItemTemplate >
 < li >
 < asp:LinkButton Text=’ < %# Bind(“Name”) % > ’
 runat=”server” ID=”NameLink” CommandName=”Select”
 CommandArgument=’ < %# Bind(“ID”) % > ’
 CausesValidation=”false” / >
 < /li >
 < /ItemTemplate >
 < SelectedItemTemplate >
 < li >
 < b > < %# Eval(“Name”) % > < /b >
 < /li >
 < /SelectedItemTemplate >
 < /asp:ListView >
 < /td >
 < td valign=”top” >
 < asp:FormView ID=”FormView1” Runat=”server”
 DataSourceID=”MRBEventDetailData” >
 < ItemTemplate >
 < h3 > < %# Eval(“Name”) % > < /h3 >
 < b > Date: < /b >
 < %# Eval(“EventDate”, “{0:D}”) % >
 < br / >
 < b > Room: < /b >
 < %# Eval(“Room”) % >
 < br / >
 < b > Attendees: < /b >
 < %# Eval(“AttendeeList”) % >
 < /ItemTemplate >
 < /asp:FormView >
 < /td >
 < /tr >
 < /table >
 < /td >
 < /tr >
 < /table >

 Here you have added a new table row containing a table with a ListView control in one column and a
 FormView control in the other.

(continued)

c37.indd 1306c37.indd 1306 2/19/08 5:30:31 PM2/19/08 5:30:31 PM

Chapter 37: ASP . NET Pages

1307

 The ListView uses < LayoutTemplate > to output a bulleted list and < ItemTemplate > and
 < SelectedItemTemplate > to display event details as list items. In < LayoutTemplate > , a container
element for items is specified with a PlaceHolder control that has the ID= “ itemPlaceholder ”
attribute. To facilitate selection, you raise a Select command from the event name link rendered
in < ItemTemplate > , which automatically changes the selection. You also use the
 OnSelectedIndexChanged event, triggered when the Select command changes the selection,
to ensure that the list display updates itself to display the selected item in a different style. The
event handler for this is shown in the following code:

 protected void EventList_SelectedIndexChanged(object sender, EventArgs e)
 {
 EventList.DataBind();
 }

 You also need to ensure new events are added to the list:

 if (queryResult == 1)
 {
 resultLabel.Text = “Event Added.”;
 EventData = null;
 calendar.SelectedDate =
 GetFreeDate(calendar.SelectedDate.AddDays(1));
 GridView1.DataBind();
 EventList.DataBind();
 }

 Now selectable event details are available in the table, as shown in Figure 37 - 14 .

 There is much more that you can do with templates and data - bound controls in general, enough in fact to
fill a whole book. However, this should be enough to get you started with your experimentation.

 Figure 37 - 14

c37.indd 1307c37.indd 1307 2/19/08 5:30:31 PM2/19/08 5:30:31 PM

Part V: Presentation

1308

 Application Configuration
 Throughout this chapter, we have alluded to the existence of a conceptual application containing Web
pages and configuration settings. This is an important concept to grasp, especially when configuring
your Web site for multiple concurrent users.

 A few notes on terminology and application lifetime are necessary here. An application is defined as all
files in your project, and is configured by the Web.config file. An Application object is created when
an application is started for the first time, which will be when the first HTTP request arrives. Also at this
time, the Application_Start event is triggered and a pool of HttpApplication instances is created.
Each incoming request receives one of these instances, which performs request processing. Note that this
means HttpApplication objects do not need to cope with concurrent access, unlike the global
 Application object. When all HttpApplication instances finish their work, the Application_End
event fires and the application terminates, destroying the Application object.

 The event handlers for the events mentioned earlier (along with handlers for all other events discussed
in this chapter) can be defined in a Global.asax file, which you can add to any Web site project. The
generated file contains blanks for you to fill in; for example:

 protected void Application_Start(Object sender, EventArgs e)
 {
 }

 When an individual user accesses the Web application, a session is started. Similar to the application, this
involves the creation of a user - specific Session object, along with the triggering of a Session_Start
event. Within a session, individual requests trigger Application_BeginRequest and Application_
EndRequest events. These can occur several times over the scope of a session as different resources
within the application are accessed. Individual sessions can be terminated manually, or will time out if
no further requests are received. Session termination triggers a Session_End event and the destruction
of the Session object.

 Against the background of this process, you can do several things to streamline your application. If all
instances of your application use a single, resource - heavy object, for example, then you might consider
instantiating it at the application level. This can improve performance and reduce memory usage with
multiple users because in most requests no such instantiation will be required.

 Another technique you can use is to store session - level information for use by individual users across
requests. This might include user - specific information that is extracted from a data store when the user
first connects (in the Session_Start() event handler), and is made available until the session is
terminated (through a timeout or user request).

 These techniques are beyond the scope of this book — and you might want to consult Professional ASP.
NET 2.0 (Wiley Publishing, Inc., ISBN 0 - 7645 - 7610 - 0) for details — but it helps to have a broad
understanding of the processes.

 Finally, you need to look at Web.config files. A Web site will usually have one of these in its root
directory (although it is not created for you by default), and may have additional ones in subdirectories
to configure directory - specific settings (such as security). The PCSWebApp3 Web site developed in this
chapter received an auto - generated Web.config file when you added a stored database connection
string, which you can see in the file:

 < connectionStrings >
 < add name=”MRBConnectionString”
 connectionString=”Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\MeetingRoomBooker.mdf;
 Integrated Security=True;User Instance=True”
 providerName=”System.Data.SqlClient” / >
 < /connectionStrings >

c37.indd 1308c37.indd 1308 2/19/08 5:30:31 PM2/19/08 5:30:31 PM

Chapter 37: ASP . NET Pages

1309

 If you ran the project in debug mode, then you will also see some additional settings in the
Web.config file.

 You can edit Web.config files manually, but you can also configure Web sites (and their underlying
configuration files) using a tool that is accessible on the Web site menu in Visual Studio, under
ASP.NET Configuration. The display for this tool is shown in Figure 37 - 15 .

 As you can see from the text, this tool lets you configure a number of settings, including security. You
will see much more of this tool in the next chapter.

 Figure 37 - 15

 Summary
 This chapter has provided an overview of Web application creation with ASP.NET. You have seen
how you can use C# in combination with Web server controls to provide a truly rich development
environment. You have developed an event - booking sample application to which illustrates many of
the techniques available, such as the variety of server controls that exist, and data binding with
ADO.NET.

 Specifically, you have seen the following:

 An introduction to ASP.NET and how it fits in with .NET development in general

 How the basic syntax of ASP.NET works, how state management is achieved, and how to
integrate C# code with ASP.NET pages

 How to create an ASP.NET Web application using Visual Studio, and what options exist for
hosting and testing of Web sites

 A summary of the Web controls available to ASP.NET developers, and how they work together
to deliver dynamic and/or data - driven content

❑

❑

❑

❑

c37.indd 1309c37.indd 1309 2/19/08 5:30:32 PM2/19/08 5:30:32 PM

Part V: Presentation

1310

 How to work with event handlers to both detect and act on user interaction with controls and
customize controls via page and rendering events

 How to bind data to Web controls, and format the data displayed using templates and data
binding expressions

 How to put all this together to build a meeting room booker application

 With this information, you are already at a point where you could assemble powerful Web applications
of your own. However, we ’ ve only scratched the surface of what ’ s possible. So, before you put down this
book and dive into your own Web development, we recommend that you keep reading. In Chapter 38 ,
you will expand your knowledge of ASP.NET by looking at some more important Web topics, including
master pages, skinning, and personalization. And trust us — the results are worth it!

❑

❑

❑

c37.indd 1310c37.indd 1310 2/19/08 5:30:32 PM2/19/08 5:30:32 PM

 ASP . NET Development

 Sometimes the tools available for Web development, however powerful, don ’ t quite match up with
your requirements for a specific project. Perhaps a given control doesn ’ t quite work as you would
like it to, or perhaps one section of code, intended for reuse on several pages, is too complex in the
hands of multiple developers. In such cases, there is a strong argument for building your own
controls. Such controls can, at their simplest, wrap multiple existing controls together, perhaps
with additional properties specifying layout. They can also be completely unlike any existing
control. Using a control you have built yourself can be as simple as using any other control in
ASP.NET (if you have written it well), which can certainly ease Web site coding.

 In the first part of this chapter, you examine the options available to control developers, and
assemble some simple user controls of your own. You also look at the basics of more advanced
control construction, although you won ’ t see these in any great depth; whole books are devoted
to the subject.

 Next, you look at master pages, a technique new to ASP.NET 2.0 that enables you to provide
templates for your Web sites. Using master pages, you can implement complex layouts on Web
pages throughout a Web site with a great deal of code reuse. You also see how you can use the
navigation Web server controls in combination with a master page to provide consistent
navigation across a Web site.

 Site navigation can be made user - specific, such that only certain users (those that are registered
with the site, or site administrators, say) can access certain sections. You also look at site security
and how to log in to Web sites — something that is made extremely easy via the login Web server
controls.

 After that, you look at some more advanced styling techniques, namely, providing and choosing
themes for Web sites, which separate the presentation of your Web pages from their functionality.
You can supply alternative cascading style sheets for your sites, as well as different skins for Web
server controls.

 Finally, you will see how to use Web Parts to enable your users to dynamically personalize Web
pages by positioning and customizing controls on a page.

c38.indd 1311c38.indd 1311 2/19/08 5:30:45 PM2/19/08 5:30:45 PM

Part V: Presentation

1312

 To summarize, in this chapter you look at:

 User and custom controls

 Master pages

 Site navigation

 Security

 Themes

 Web Parts

 Throughout this chapter, you will refer to one large example application that includes all the techniques
that you have seen in this and the previous chapter. This application, PCSDemoSite , is available in the
downloadable code for this chapter. It is a little too large to include all the code here, but you don ’ t need
to have it running in front of you to learn about the techniques it illustrates. The relevant sections of code
are examined as and when necessary, and the additional code (mostly dummy content or simple code
you have already seen) is left for you to examine at your convenience.

 User and Custom Controls
 In the past, implementing custom - built controls was tricky, especially on large - scale systems where
complex registration procedures might be required to use them. Even on simple systems, the coding
required to create a custom control could become a very involved process. The scripting capabilities of
older Web languages also suffered by not giving you complete access to your cunningly crafted object
models, which resulted in poor performance.

 The .NET Framework provides an ideal setting for the creation of custom controls, using simple
programming techniques. Every aspect of ASP.NET server controls is exposed for you to customize,
including such capabilities as templating and client - side scripting. However, there is no need to write
code for all of these eventualities; simpler controls can be a lot easier to create.

 In addition, the dynamic discovery of assemblies that is inherent in a .NET system makes installation of
Web applications on a new Web server as simple as copying the directory structure containing your
code. To make use of the controls you have created, you simply copy the assemblies containing those
controls along with the rest of the code. You can even place frequently used controls in an assembly
located in the global assembly cache (GAC) on the Web server, so that all Web applications on the server
have access to them.

 This chapter discusses two different kinds of controls:

 User controls (and how to convert existing ASP.NET pages into controls)

 Custom controls (and how to group the functionality of several controls, extend existing
controls, and create new controls from scratch)

 User controls are illustrated with a simple control that displays a card suit (club, diamond, heart, or
spade), so that you can embed it in other ASP.NET pages with ease. We won ’ t go into too much depth for
custom controls, although we will show you the basic principles and direct you to more information
beyond this book.

 User Controls
 User controls are controls that you create using ASP.NET code, just as you use in standard ASP.NET
Web pages. The difference is that after you have created a user control you can reuse it in multiple
ASP.NET pages.

❑

❑

❑

❑

❑

❑

❑

❑

c38.indd 1312c38.indd 1312 2/19/08 5:30:46 PM2/19/08 5:30:46 PM

1313

Chapter 38: ASP .NET Development

 For example, say that you have created a page that displays some information from a database, perhaps
information about an order. Instead of creating a fixed page that does this, it is possible to place the relevant
code into a user control, and then insert that control into as many different Web pages as you want.

 In addition, it is possible to define properties and methods for user controls. For example, you can
specify a property for the background color for displaying your database table in a Web page, or a
method to re - run a database query to check for changes.

 To start, you create a simple user control. As is the case with the other chapters, you can download the
code for the sample projects in this chapter from the Wrox Web site at www.wrox.com .

 A Simple User Control
 In Visual Studio .NET, create a new Web site called PCSUserCWebApp1 in the directory C:\ProCSharp\
Chapter38 . After the standard files have been generated, select the Website Add New Item . . . menu
option and add a Web User Control called PCSUserC1.ascx , as shown in Figure 38 - 1 .

 Figure 38 - 1

 The files added to your project, with the extensions .ascx and .ascx.cs , work in a very similar way
to the .aspx files that you have seen already. The .ascx file contains your ASP.NET code and looks very
similar to a normal .aspx file. The .ascx.cs file is your code - behind file, which defines custom code
for the user control, much in the same way that forms are extended by .aspx.cs files.

 The .ascx files can be viewed in Design or Source view, just like .aspx files. Looking at the file in
Source view reveals an important difference: there is no HTML code present, and in particular no
 < form > element. This is because user controls are inserted inside ASP.NET forms in other files and so
don ’ t need a < form > tag of their own. The generated code is as follows:

 < %@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”PCSUserC1.ascx.cs”
 Inherits=”PCSUserC1” % >

 This is very similar to the < % @ Page % > directive generated in .aspx files, except that Control is
specified rather than Page . The CodeFile attribute specifies the code - behind file and Inherits
specifies the class defined in the code - behind file from which the page inherits. The code in the
.ascx.cs file contains, as in auto - generated .aspx.cs files, a class definition that is empty apart from
a Page_Load() event handler method.

c38.indd 1313c38.indd 1313 2/19/08 5:30:46 PM2/19/08 5:30:46 PM

Part V: Presentation

1314

 Your simple control will be one that displays a graphic corresponding to one of the four standard suits in
cards (club, diamond, heart, or spade). The graphics required for this were shipped as part of a previous
version of Visual Studio .NET; you can find them in the downloadable code for this chapter, in the
 CardSuitImages directory, with the file names CLUB.BMP , DIAMOND.BMP , HEART.BMP , and SPADE.BMP .
Copy these files into a new Images subdirectory of your project ’ s directory, so that you can use them in a
moment. If you do not have access to this download, you can use any images you like for this example
because they are not important to the functionality of the code.

 Note that unlike earlier versions of Visual Studio, changes you make to the Web site structure outside of
Visual Studio are automatically reflected in the IDE. You have to hit the refresh button in the Solution
Explorer window, but you should see the new Images directory and bitmap files appear automatically.

 Now add some code to your new control. In the HTML view of PCSUserC1.ascx , add the following:

 < %@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”PCSUserC1.ascx.cs”
 Inherits=”PCSUserC1” % >
 < table cellspacing=”4” >
 < tr valign=”middle” >
 < td >
 < asp:Image Runat=”server” ID=”suitPic” ImageURL=”~/Images/club.bmp”/ >
 < /td >
 < td >
 < asp:Label Runat=”server” ID=”suitLabel” > Club < /asp:Label >
 < /td >
 < /tr >
 < /table >

 This defines a default state for your control, which is a picture of a club along with a label. The ~ in the
path to the image means “ start at the root directory of the Web site. ” Before you add functionality, you
will test this default by adding this control to your project Web page webForm1.aspx .

 To use a custom control in an .aspx file, you first need to specify how you will refer to it, that is, the
name of the tag that will represent the control in your HTML. To do this, you use the < % @ Register % >
directive at the top of the code in Default.aspx , as follows:

 < %@ Register TagPrefix=”pcs” TagName=”UserC1” Src=”PCSUserC1.ascx” % >

 The TagPrefix and TagName attributes specify the tag name to use (in the form < TagPrefix:
TagName >), and you use the Src attribute to point to the file containing your user control. Now you can
use the control by adding the following element:

 < form id=”Form1” method=”post” runat=”server” >
 < div >
 < pcs:UserC1 Runat=”server” ID=”myUserControl”/ >
 < /div >
 < /form >

 This is all you need to do to test your user control. Figure 38 - 2 shows the results of running this code.

Figure 38-2

c38.indd 1314c38.indd 1314 2/19/08 5:30:47 PM2/19/08 5:30:47 PM

1315

Chapter 38: ASP .NET Development

 As it stands, this control groups two existing controls, an image and a label, in a table layout. Therefore,
it falls into the category of a composite control.

 To gain control over the displayed suit, you can use an attribute on the < PCS:UserC1 > element.
Attributes on user control elements are automatically mapped to properties on user controls, so all you
have to do to make this work is add a property to the code behind your control, PCSUserC1.ascx.cs .
Call this property Suit , and let it take any suit value. To make it easier for you to represent the state of
the control, you define an enumeration to hold the four suit names. The best way to do this is to add an
 App_Code directory to your Web site, and then add a .cs file called Suit.cs in this directory. App_Code
is another “ special ” directory, like App_Data , whose functionality is defined for you — in this case it
holds additional code files for your Web application. You can add this directory by right - clicking the
Web site in Solution Explorer and clicking Add ASP.NET Folder App_Code. When you have done
this, add Suit.cs with code as follows:

using System;

public enum suit
{
 club, diamond, heart, spade
}

 The PCSUserC1 class needs a member variable to hold the suit type, currentSuit :

public partial class PCSUserC1 : System.Web.UI.UserControl
{
 protected suit currentSuit;

 And a property to access this member variable, Suit :

 public suit Suit
 {
 get
 {
 return currentSuit;
 }
 set
 {
 currentSuit = value;
 suitPic.ImageUrl = “~/Images/” + currentSuit.ToString() + “.bmp”;
 suitLabel.Text = currentSuit.ToString();
 }
 }

 The set accessor here sets the URL of the image to one of the files you copied earlier, and the text
displayed to the suit name.

 Next, you must add code to Default.aspx so that you can access this new property. You could simply
specify the suit using the property you have just added:

 < PCS:UserC1 Runat=”server” id=”myUserControl” Suit=”diamond”/ >

 The ASP.NET processor is intelligent enough to get the correct enumeration item from the string
provided. To make things a bit more interesting and interactive, though, you will use a radio button list
to select a suit:

 < form id=”form1” runat=”server” >
 < div >
 < pcs:UserC1 id=”myUserControl” runat=”server” / >
 < asp:RadioButtonList Runat=”server” ID=”suitList” AutoPostBack=”True” >

(continued)

c38.indd 1315c38.indd 1315 2/19/08 5:30:47 PM2/19/08 5:30:47 PM

Part V: Presentation

1316

 < asp:ListItem Value=”club” Selected=”True” > Club < /asp:ListItem >
 < asp:ListItem Value=”diamond” > Diamond < /asp:ListItem >
 < asp:ListItem Value=”heart” > Heart < /asp:ListItem >
 < asp:ListItem Value=”spade” > Spade < /asp:ListItem >
 < /asp:RadioButtonList >
 < /div >
 < /form >

 You also need to add an event handler for the SelectedIndexChanged event of the list, which you can
do simply by double - clicking the radio button list control in Design view.

 Note that you have set the AutoPostBack property of this list to True , because the
suitList_SelectedIndexChanged() event handler won ’ t be executed on the server unless a
postback is in operation, and this control doesn ’ t trigger a postback by default.

 The suitList_SelectedIndexChanged() method requires the following code in Default.aspx.cs :

public partial class Default
{
 protected void suitList_SelectedIndexChanged(object sender, EventArgs e)
 {
 myUserControl.Suit = (suit)Enum.Parse(typeof(suit),
 suitList.SelectedItem.Value);
 }
}

 You know that the Value attributes on the < ListItem > elements represent valid values for the suit
enumeration you defined earlier, so you simply parse these as enumeration types and use them as values
of the Suit property of your user control. You cast the returned object type to suit using simple casing
syntax, because this cannot be achieved implicitly.

 Now you can change the suit when you run your Web application (see Figure 38 - 3).

Figure 38-3

(continued)

 Next, you give your control some methods. Again, this is very simple; you just add methods to the
 PCSUserC1 class:

 public void Club()
 {
 Suit = suit.club;
 }

 public void Diamond()

c38.indd 1316c38.indd 1316 2/19/08 5:30:47 PM2/19/08 5:30:47 PM

1317

Chapter 38: ASP .NET Development

 {
 Suit = suit.diamond;
 }

 public void Heart()
 {
 Suit = suit.heart;
 }

 public void Spade()
 {
 Suit = suit.spade;
 }

 These four methods — Club() , Diamond() , Heart() , and Spade() — change the suit displayed on the
screen to the respective suit clicked.

 You call these functions from four ImageButton controls in your .aspx page:

 < /asp:RadioButtonList >
 < asp:ImageButton Runat=”server” ID=”clubButton”
 ImageUrl=”~/Images/CLUB.BMP” OnClick=”clubButton_Click” / >
 < asp:ImageButton Runat=”server” ID=”diamondButton”
 ImageUrl=”~/Images/DIAMOND.BMP” OnClick=”diamondButton_Click” / >
 < asp:ImageButton Runat=”server” ID=”heartButton”
 ImageUrl=”~/Images/HEART.BMP” OnClick=”heartButton_Click” / >
 < asp:ImageButton Runat=”server” ID=”spadeButton”
 ImageUrl=”~/Images/SPADE.BMP” OnClick=”spadeButton_Click” / >
 < /div >
 < /form >

 You use the following event handlers:

 protected void clubButton_Click(object sender, ImageClickEventArgs e)
 {
 myUserControl.Club();
 suitList.SelectedIndex = 0;
 }

 protected void diamondButton_Click(object sender, ImageClickEventArgs e)
 {
 myUserControl.Diamond();
 suitList.SelectedIndex = 1;
 }

 protected void heartButton_Click(object sender, ImageClickEventArgs e)
 {
 myUserControl.Heart();
 suitList.SelectedIndex = 2;
 }

 protected void spadeButton_Click(object sender, ImageClickEventArgs e)
 {
 myUserControl.Spade();
 suitList.SelectedIndex = 3;
 }

c38.indd 1317c38.indd 1317 2/19/08 5:30:48 PM2/19/08 5:30:48 PM

Part V: Presentation

1318

 Note that you could use a single event handler for all four buttons, because they have identical method
signatures. You could detect which button has been pressed by the value passed to sender , and thus de-
termine which method of myUserControl to call and which index to set dynamically. In this case,
though, there wouldn ’ t be a huge difference in the amount of code required, so, for simplicity, things are
kept separate.

 Now you have four new buttons you can use to change the suit, as shown in Figure 38 - 4 .

Figure 38-4

 Now that you have created your user control, you can use it in any other Web page simply by using the
 < % @ Register % > directive and the two source code files (PCSUserC1.ascx and PCSUserC1.ascx.cs)
you have created for the control.

 User Controls in PCSDemoSite
 In the PCSDemoSite, the meeting room booker application from the previous chapter has been converted
into a user control for ease of reuse. To see the control, you have to log in to the site as User1, with
password User1!!, and navigate to the Meeting Room Booker page, as shown in Figure 38 - 5 . (You learn
how the logging - in system works later in the chapter.)

 Apart from the obvious change in style, which is achieved by themes, as you see later in this chapter, the
major modifications are as follows:

 The username is automatically taken from user details.

 There is no extra data display at the bottom of the page, and corresponding DataBind() calls
are removed from the code behind.

 There is no result label beneath the control — the user gets enough feedback by seeing events
added to the calendar and event list, without being told that event addition was successful.

 The page containing the user control uses a master page.

 The code modifications to achieve all of this are remarkably simple. You won ’ t look at them here, but
you will come back to this control later in the chapter, when you look at logging in.

 Custom Controls
 Custom controls go a step beyond user controls in that they are entirely self - contained in C# assemblies,
requiring no separate ASP.NET code. This means that you don ’ t need to go through the process of
assembling a user interface (UI) in an .ascx file. Instead, you have complete control over what is written
to the output stream, that is, the exact HTML generated by your control.

❑

❑

❑

❑

c38.indd 1318c38.indd 1318 2/19/08 5:30:48 PM2/19/08 5:30:48 PM

1319

Chapter 38: ASP .NET Development

Figure 38-5

 In general, it will take longer to develop custom controls than user controls because the syntax is more
complex, and you often have to write significantly more code to get results. A user control may be as
simple as a few other controls grouped together, as you have seen, whereas a custom control can do just
about anything short of making you a cup of coffee.

 To get the most customizable behavior for your custom controls, you can derive a class from System
.Web.UI.WebControls.WebControl . If you do this, you are creating a full custom control. Alternatively,
you can extend the functionality of an existing control, creating a derived custom control. Finally, you can
group existing controls together, much as you did in the last section but with a more logical structure, to
create a composite custom control.

 Whatever you create can be used in ASP.NET pages in pretty much the same way. All you need to do is
place the generated assembly in a location where the Web application that will use it can find it, and
register the element names to use with the < % @ Register % > directive. For this location, you have two
options: you can either put the assembly in the bin directory of the Web application, or place it in the
GAC if you want all Web applications on the server to have access to it. Alternatively, if you are just
using a user control on a single Web site, you can just put the .cs file for the control in the App_Code
directory for the site.

 The < % @ Register % > directive takes a slightly different syntax for custom controls:

 < %@ Register TagPrefix=”PCS” Namespace=”PCSCustomWebControls”
 Assembly=”PCSCustomWebControls”% >

c38.indd 1319c38.indd 1319 2/19/08 5:30:48 PM2/19/08 5:30:48 PM

Part V: Presentation

1320

 You use the TagPrefix option in the same way as before, but you don ’ t use the TagName or Src
attributes. This is because the custom control assembly you use may contain several custom controls,
and each of these will be named by its class, so TagName is redundant. In addition, because you can use
the dynamic discovery capabilities of the .NET Framework to find your assembly, you simply have to
name it and the namespace in it that contains your controls.

 In the previous line of code, you are instructing the program to use an assembly called
 PCSCustomWebControls.dll with controls in the PCSCustomWebControls namespace, and use the tag
prefix PCS . If you have a control called Control1 in this namespace, you could use it with the ASP.NET
code:

 < PCS:Control1 Runat=”server” ID=”MyControl1”/ >

 The Assembly attribute of the < % @ Register % > directive is optional — if you have custom controls
in the App_Code directory of your site, you can omit this, and the Web site will look at code here for
controls. One thing though — the Namespace attribute is not optional. You must include a namespace in
code files for custom controls, or the ASP.NET runtime will not be able to find them.

 With custom controls, it is also possible to reproduce some of the control nesting behavior that exists in
list controls, for example the way that you can nest < asp:ListItem > controls inside a list control to
populate the list control:

 < asp:DropDownList ID=”roomList” Runat=”server” Width=”160px” >
 < asp:ListItem Value=”1” > The Happy Room < /asp:ListItem >
 < asp:ListItem Value=”2” > The Angry Room < /asp:ListItem >
 < asp:ListItem Value=”3” > The Depressing Room < /asp:ListItem >
 < asp:ListItem Value=”4” > The Funked Out Room < /asp:ListItem >
 < /asp:DropDownList >

 You can create controls that should be interpreted as being children of other controls in a very similar
way to this. This is one of the more advanced techniques that you won ’ t be looking at in this book.

 Custom Control Sample
 Now it ’ s time to put some of this theory into practice. You will use a single Web site called
 PCSCustomCWebApp1 in the C:\ProCSharp\Chapter38\ directory, with a custom control in its App_
Code directory to illustrate a simple custom control. The control here will be a multicolored version of
the existing Label control, with the ability to cycle through a set of colors for each letter in its text.

 The code for the control, RainbowLabel , in the file App_Code\Rainbow.cs , starts with the following
 using statements:

using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Xml.Linq;
using System.Drawing;

 Apart from System.Drawing , these are the default namespaces that are added when you add a class file
to a Web site. The System.Drawing namespace is required for the Color enumeration. The class
maintains an array of colors to use for letters in its text in a private Color array called colors :

c38.indd 1320c38.indd 1320 2/19/08 5:30:49 PM2/19/08 5:30:49 PM

1321

Chapter 38: ASP .NET Development

namespace PCSCustomWebControls
{
 public class RainbowLabel : Label
 {
 private Color[] colors = new Color[] {Color.Red,
 Color.Orange,
 Color.Yellow,
 Color.GreenYellow,
 Color.Blue,
 Color.Indigo,
 Color.Violet};

 Also notice that the namespace PCSCustomWebControls is used to contain the control. As discussed
earlier, this is necessary so that Web pages can reference the control correctly.

 To enable color cycling, you also store an integer offset value in a private offset property:

 private int offset
 {
 get
 {
 object rawOffset = ViewState[“_offset”];
 if (rawOffset != null)
 {
 return (int)rawOffset;
 }
 else
 {
 ViewState[“_offset”] = 0;
 return 0;
 }
 }
 set
 {
 ViewState[“_offset”] = value;
 }
 }

 Note that this property isn ’ t as simple as just storing a value in a member field. This is due to the way
ASP.NET maintains state, as discussed in the previous chapter. Controls are instantiated on each
postback operation, so to store values you must make use of view state. This is easy to access — you
simply use the ViewState collection, which can store any object that is serializable. Otherwise, offset
would revert to its initial value between each postback.

 To modify offset , you use a method called Cycle() :

 public void Cycle()
 {
 offset = ++offset;
 }

 This simply increments the value stored in the view state for offset .

 Finally, you come to perhaps the most important method override for any custom control — Render() .
This is where you output HTML, and as such it can be a very complicated method to implement. If you

c38.indd 1321c38.indd 1321 2/19/08 5:30:49 PM2/19/08 5:30:49 PM

Part V: Presentation

1322

were to take into account all the browsers that may view your controls, and all the variables that could
affect rendering, this method could get very big. Fortunately, for this example, it ’ s quite simple:

 protected override void Render(HtmlTextWriter output)
 {
 string text = Text;
 for (int pos = 0; pos < text.Length; pos++)
 {
 int rgb = colors[(pos + offset) % colors.Length].ToArgb()
 & 0xFFFFFF;
 output.Write(string.Format(
 “ < font color=\”#{0:X6}\” > {1} < /font > ”, rgb, text[pos]));
 }
 }
 }
}

 This method gives you access to the output stream to display your control content. There are only two
cases where you don ’ t need to implement this method:

 When you are designing a control that has no visual representation (usually known as a
component)

 When you are deriving from an existing control and don ’ t need to change its display
characteristics

 Custom controls can also expose custom methods, raise custom events, and respond to child controls
(if any). In the case of RainbowLabel , you don ’ t have to worry about any of this.

 Next, you need to modify Default.aspx to view the control and provide access to Cycle() , as follows:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” % >

 < %@ Register TagPrefix=”pcs” Namespace=”PCSCustomWebControls” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Untitled Page < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < pcs:RainbowLabel runat=”server” ID=”rainbowLabel1”
 Text=”Multicolored label!” / >
 < asp:Button Runat=”server” ID=”cycleButton” Text=”Cycle colors”
 OnClick=”cycleButton_Click” / >
 < /div >
 < /form >
 < /body >
 < /html >

 The required code in Default.aspx.cs is simply:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)

❑

❑

c38.indd 1322c38.indd 1322 2/19/08 5:30:49 PM2/19/08 5:30:49 PM

1323

Chapter 38: ASP .NET Development

 {

 }

 protected void cycleButton_Click(object sender, EventArgs e)
 {
 rainbowLabel1.Cycle();
 }
}

 Now you can view the sample and cycle the colors in the sample text, as shown in Figure 38 - 6 .

Figure 38-6

 You can do a lot more with custom controls; indeed, the possibilities are practically limitless, but you
will have to experiment with these possibilities on your own.

 Master Pages
 Master pages provide an excellent way to make your Web sites easier to design. Putting all (or at least
most) of your page layout in a single file allows you to concentrate on the more important things for the
individual Web pages of your site.

 Master pages are created in files with the extension .master , and can be added via the Web site Add
New Item . . . menu item, like any other site content. At first glance, the code generated for a master page
is much like that for a standard .aspx page:

 < %@ Master Language=”C#” AutoEventWireup=”true”
 CodeFile=”MyMasterPage.master.cs” Inherits=”MyMasterPage” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Untitled Page < /title >
 < asp:ContentPlaceHolder id=”head” runat=”server” >
 < /asp:ContentPlaceHolder >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server” >
 < /asp:ContentPlaceHolder >
 < /div >
 < /form >
 < /body >
 < /html >

c38.indd 1323c38.indd 1323 2/19/08 5:30:50 PM2/19/08 5:30:50 PM

Part V: Presentation

1324

 The differences are:

 A < % @ Master % > directive is used instead of a < % @ Page % > directive, although the attributes
are the same.

 A ContentPlaceHolder control with an ID of head is placed in the page header.

 A ContentPlaceHolder control with an ID of ContentPlaceHolder1 is placed in the
page body.

 The ContentPlaceHolder controls are what make master pages so useful. You can have any number of
these on a page, and they are used by .aspx pages using the master page to “ plug in ” content. You can
put default content inside a ContentPlaceHolder control, but .aspx pages can override this content.

 For an .aspx page to use a master page, you need to modify the < % @ Page % > directive as follows:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” MasterPageFile=”~/MyMasterPage.master”
 Title=”Page Title” % >

 Here you have added two new attributes: a MasterPageFile attribute saying which master page to use
and a Title attribute that sets the content of the < title > element in the master page.

 When you add an .aspx page to a Web site, you can choose to select a master page, as shown in
Figure 38 - 7 .

❑

❑

❑

Figure 38-7

 If you do this, you can navigate through your site structure to find the master page you want, as shown
in Figure 38 - 8 .

c38.indd 1324c38.indd 1324 2/19/08 5:30:50 PM2/19/08 5:30:50 PM

1325

Chapter 38: ASP .NET Development

Figure 38-8

 The .aspx page doesn ’ t have to contain any other code, if you want to use the default master page
content. In fact, it is an error to include a Form control, because a page may only have one of these and
there is one in the master page.

 .aspx pages that use a master page can contain no root - level content other than directives, script
elements, and Content controls. You can have as many Content controls as you like, where each one
inserts content into one of the ContentPlaceHolder controls in the master page. The only thing to look
out for is to make sure that the ContentPlaceHolderID attribute of the Content control matches the ID
of the ContentPlaceHolder control where you want to insert content. So, to add content into the
master page shown earlier, you would simply need the following in the .aspx file:

 < %@ Page Language=”C#” MasterPageFile=”~/MyMasterPage.master”
 AutoEventWireup=”true” CodeFile=”Default2.aspx.cs” Inherits=”Default2”
 Title=”Untitled Page” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”head” Runat=”Server” >
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
 runat=”Server” >
 Custom content!
 < /asp:Content >

 The true power of master pages comes when you surround the ContentPlaceHolder controls in your
master pages with other content, such as navigation controls, site logos, and HTML. You can supply
multiple ContentPlaceHolder controls for main content, sidebar content, footer text, and so on.

 You can omit Content controls on a page if you do not wish to supply content for a specific
 ContentPlaceHolder . For example, you could remove the Content1 control from the preceding code
without affecting the resultant display.

 Accessing Master Page Content from Web Pages
 When you add a master page to a Web page, you will sometimes need to access the master page from code
in your Web page. To do this, you can use the Page.Master property, which will return a reference to the
master page in the form of a MasterPage object. You can cast this to the type of the master page as defined
by the master page file (for the example in the previous section, this class would be called MyMasterPage).
Once you have this reference, you can access any public members of the master page class.

c38.indd 1325c38.indd 1325 2/19/08 5:30:50 PM2/19/08 5:30:50 PM

Part V: Presentation

1326

 Also, you can use the MasterPage.FindControl() method to locate controls on the master page by their
identifier. This enables you to manipulate content on the master page that is outside of content placeholders.

 One typical use of this might be if you define a master page that is used for a standard form, with
a submit button. You can locate the submit button in the child page and add an event handler for the
submit button in the master page. In this way, you can provide, for example, custom validation logic in
response to a form submission.

 Nested Master Pages
 The Select master page option is also available when you create a new master page. By using this option,
you can create a nested master page that is based on a parent master page. For example, you can create a
master page called MyNestedMasterPage that uses MyMasterPage as follows:

 < %@ Master Language=”C#” MasterPageFile=”~/MyMasterPage.master”
 AutoEventWireup=”false” CodeFile=”MyNestedMasterPage.master.cs”
 Inherits=”MyNestedMasterPage” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”head” Runat=”Server” >
 < !-- Disabled for child controls. -- >
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
 Runat=”Server” >
 First nested place holder:
 < asp:ContentPlaceHolder ID=”NestedContentPlaceHolder1” runat=”server” >

 < /asp:ContentPlaceHolder >
 < br / >
 < br / >
 Second nested place holder:
 < asp:ContentPlaceHolder ID=”NestedContentPlaceHolder2” runat=”server” >

 < /asp:ContentPlaceHolder >
 < /asp:Content >

 Pages that use this master page would supply content for NestedContentPlaceHolder1 and
 NestedContentPlaceHolder2 , but would not have direct access to the ContentPlaceHolder controls
specified in MyMasterPage . In this example, MyNestedMasterPage fixes the content for the head
control and supplies a template for the ContentPlaceHolder1 control.

 By creating a family of nested master pages, you can provide alternate layouts for pages while leaving
some aspects of the base master pages untouched. For example, the root master page might include
navigation and basic layout, and nested master pages could provide layouts with different amounts of
columns. You could then use the nested master pages in the pages of your site and quickly switch
between these alternate layouts on different pages.

 Master Pages in PCSDemoSite
 In PCSDemoSite, the single master page MasterPage.master (the default name for a master page) is
used, with code as follows:

 < %@ Master Language=”C#” AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
 Inherits=”MasterPage” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd” >

c38.indd 1326c38.indd 1326 2/19/08 5:30:51 PM2/19/08 5:30:51 PM

1327

Chapter 38: ASP .NET Development

(continued)

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < link rel=”stylesheet” href=”StyleSheet.css” type=”text/css” / >
 < title > < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div id=”header” >
 < h1 > < asp:literal ID=”Literal1” runat=”server”
 text=” < %$ AppSettings:SiteTitle % > ” / > < /h1 >
 < asp:SiteMapPath ID=”SiteMapPath1” Runat=”server”
 CssClass=”breadcrumb” / >
 < /div >
 < div id=”nav” >
 < div class=”navTree” >
 < asp:TreeView ID=”TreeView1” runat=”server”
 DataSourceID=”SiteMapDataSource1” ShowLines=”True” / >
 < /div >
 < br / >
 < br / >
 < asp:LoginView ID=”LoginView1” Runat=”server” >
 < LoggedInTemplate >
 You are currently logged in as
 < b > < asp:LoginName ID=”LoginName1” Runat=”server” / > < /b > .
 < asp:LoginStatus ID=”LoginStatus1” Runat=”server” / >
 < /LoggedInTemplate >
 < /asp:LoginView >
 < /div >
 < div id=”body” >
 < asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server” / >
 < /div >
 < /form >
 < asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” / >
 < /body >
 < /html >

 Many of the controls here are ones that you haven ’ t looked at yet, and you will come back to those
shortly. The important things to note here are the < div > elements that hold the various content sections
(header, navigation bar, and body), and the use of < % $ AppSettings:SiteTitle % > to obtain the site
title from the Web.config file:

 < appSettings >
 < add key=”SiteTitle” value=”Professional C# Demo Site”/ >
 < /appSettings >

 There is also a style sheet link to StyleSheet.css :

 < link rel=”stylesheet” href=”StyleSheet.css” type=”text/css” / >

 This CSS style sheet contains the basic layout information for the < div > elements on this page, as well as
for a section of the meeting room booker control:

div#header
{
 position: absolute;
 top: 0px;
 left: 0px;

c38.indd 1327c38.indd 1327 2/19/08 5:30:51 PM2/19/08 5:30:51 PM

Part V: Presentation

1328

 height: 80px;
 width: 780px;
 padding: 10px;
}

div#nav
{
 position: absolute;
 left: 0px;
 top: 100px;
 width: 180px;
 height: 580px;
 padding: 10px;
}

div#body
{
 position: absolute;
 left: 200px;
 top: 100px;
 width: 580px;
 height: 580px;
 padding: 10px;
}

.mrbEventList
{
 width: 40%;
}

 Note that none of this style information includes colors, fonts, and so on. This is achieved by style sheets
within themes, which you will see later in this chapter. The only information here is layout information,
such as < div > sizes.

 Note that Web site best practices have been adhered to in this chapter whenever possible. Using CSS for
layout rather than tables is fast becoming the industry standard for Web site layout and is well worth
learning about. In the preceding code, # symbols are used to format < div > elements with specific id
attributes, whereas .mrbEventList will format an HTML element with a specific class attribute.

 Site Navigation
 The three navigation Web server controls, SiteMapPath , Menu , and TreeView , can work with an XML
site map that you provide for your Web site, or a site map provided in a different format if you
implement an alternative site map provider. Once you have created such a data source, these navigation
Web server controls are able to automatically generate location and navigation information for users.

 You see an example XML site map shortly.

 You can also use a TreeView control to display other structured data, but it really comes into its own
with site maps, and gives you an alternative view of navigation information.

 The navigation Web server controls are shown in the following table.

(continued)

c38.indd 1328c38.indd 1328 2/19/08 5:30:51 PM2/19/08 5:30:51 PM

1329

Chapter 38: ASP .NET Development

Control Description

SiteMapPath Displays breadcrumb-style information, allowing users to see where they are in
the structure of a site and navigate to parent areas. You can supply various tem-
plates, such as NodeStyle and CurrentNodeStyle to customize the appearance
of the breadcrumb trail.

Menu Links to site map information via a SiteMapDataSource control, and enables a
view of the complete site structure. The appearance of this control can be custom-
ized by templates.

TreeView Allows the display of hierarchical data, such as a table of contents, in a tree struc-
ture. Tree nodes are stored in a Nodes property, with the selected node stored in
SelectedNode. Several events allow for server-side processing of user interaction,
including SelectedNodeChanged and TreeNodeCollapsed. This control is typi-
cally data-bound.

 To provide a site map XML file for your site, you can add a site map file (.sitemap) using the Web site
Add New Item . . . menu item. You link to site maps via providers. The default XML provider looks for a
file called Web.sitemap in the root of your site, so unless you are going to use a different provider, you
should accept the default file name supplied.

 A site map XML file contains a root < siteMap > element containing a single < siteMapNode > element,
which in turn can contain any number of nested < siteMapNode > elements.

 Each < siteMapNode > element uses the attributes shown in the following table.

Attribute Description

Title Page title, used as the text for links in site map displays

url Page location, used as the hyperlink location in site map displays

Roles The user roles that are allowed to see this site map entry in menus and so on

description Optional text used for tooltip pop-ups for site map displays

 Once a site has a Web.sitemap file, adding a breadcrumb trail is as simple as putting the following code
on your page:

 < asp:SiteMapPath ID=”SiteMapPath1” Runat=”server” / >

 This will use the default provider and the current URL location to format a list of links to parent pages.

 Adding a menu or tree view menu requires a SiteMapDataSource control, but again this can be very
simple:

 < asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” / >

 When using a custom provider, the only difference is that you can supply the provider ID via a
 SiteMapProvider attribute. You can also remove upper levels of the menu data (such as the root Home
item) using StartingNodeOffset ; remove just the top - level link using ShowStartingNode= “ False “ ;

c38.indd 1329c38.indd 1329 2/19/08 5:30:52 PM2/19/08 5:30:52 PM

Part V: Presentation

1330

start from the current location using StartFromCurrentNode= “ True “ ; and override the root node
using StartingNodeUrl .

 The data from this data source is consumed by Menu and TreeView controls simply by setting their
 DataSourceID to the ID of the SiteMapDataSource . Both controls include numerous styling properties
and can be themed, as you see later in this chapter.

 Navigation in PCSDemoSite
 The site map for PCSDemoSite is as follows:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < siteMap >
 < siteMapNode url=”~/Default.aspx” title=”Home” >
 < siteMapNode url=”~/About/Default.aspx” title=”About” / >
 < siteMapNode url=”~/MRB/Default.aspx” title=”Meeting Room Booker”
 roles=”RegisteredUser,SiteAdministrator” / >
 < siteMapNode url=”~/Configuration/Default.aspx” title=”Configuration”
 roles=”RegisteredUser,SiteAdministrator” >
 < siteMapNode url=”~/Configuration/Themes/Default.aspx” title=”Themes”
 roles=”RegisteredUser,SiteAdministrator”/ >
 < /siteMapNode >
 < siteMapNode url=”~/Users/Default.aspx” title=”User Area”
 roles=”SiteAdministrator” / >
 < siteMapNode url=”~/Login.aspx” title=”Login Details” / >
 < /siteMapNode >
 < /siteMap >

 The PCSDemoSite Web site uses a custom provider to obtain information from Web.sitemap — which is
necessary because the default provider ignores the roles attributes. The provider is defined in the Web.
config file for the Web site as follows:

 < configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0” >
 ...
 < system.Web >
 ...
 < siteMap defaultProvider=”CustomProvider” >
 < providers >
 < add name=”CustomProvider”
 description=”SiteMap provider which reads in .sitemap XML files.”
 type=”System.Web.XmlSiteMapProvider, System.Web, Version=2.0.3600.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 siteMapFile=”Web.sitemap” securityTrimmingEnabled=”true” / >
 < /providers >
 < /siteMap >
 ...

 The only difference between this and the default provider is the addition of securityTrimmingEnabled=
“ true ” , which instructs the provider to supply data for just those nodes that this current user is allowed
to see. This visibility is determined by the role membership of the user, as you see in the next section.

 The MasterPage.master page in PCSDemoSite includes SiteMapPath and TreeView navigation
displays along with a data source, as follows:

 < div id=”header” >
 < h1 > < asp:literal ID=”Literal1” runat=”server”
 text=” < %$ AppSettings:SiteTitle % > ” / > < /h1 >

c38.indd 1330c38.indd 1330 2/19/08 5:30:52 PM2/19/08 5:30:52 PM

1331

Chapter 38: ASP .NET Development

 < asp:SiteMapPath ID=”SiteMapPath1” Runat=”server”
 CssClass=”breadcrumb” / >
 < /div >
 < div id=”nav” >
 < div class=”navTree” >
 < asp:TreeView ID=”TreeView1” runat=”server”
 DataSourceID=”SiteMapDataSource1” ShowLines=”True” / >
 < /div >
 < br / >
 < br / >
 < asp:LoginView ID=”LoginView1” Runat=”server” >
 < LoggedInTemplate >
 You are currently logged in as
 < b > < asp:LoginName ID=”LoginName1” Runat=”server” / > < /b > .
 < asp:LoginStatus ID=”LoginStatus1” Runat=”server” / >
 < /LoggedInTemplate >
 < /asp:LoginView >
 < /div >
 < div id=”body” >
 < asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server” / >
 < /div >
 < /form >
 < asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” / >

 The only point to note here is that CSS classes are supplied for both SiteMapPath and TreeView , to
facilitate theming (discussed later in this chapter).

 Security
 Security and user management have often been seen as quite complicated to implement in Web sites,
and with good reason. You have to consider a number of factors, including:

 What sort of user management system will I implement? Will users map to Windows user
accounts, or will I implement something independent?

 How do I implement a login system?

 Do I let users register on the site, and if so, how?

 How do I let some users see and do only some things, while supplying other users with
additional privileges?

 What happens in the case of forgotten passwords?

 With ASP.NET 2.0, you have a whole suite of tools at your disposal for dealing with questions such as
these, and it can in fact take only a matter of minutes to implement a user system on your site. You have
three types of authentication at your disposal:

 Windows Authentication, whereby users have Windows accounts, typically used with intranet
sites or WAN portals

 Forms Authentication, whereby the Web site maintains its own list of users and handles its own
authentication

 Passport Authentication, whereby Microsoft provides a centralized authentication service for
you to use

❑

❑

❑

❑

❑

❑

❑

❑

c38.indd 1331c38.indd 1331 2/19/08 5:30:52 PM2/19/08 5:30:52 PM

Part V: Presentation

1332

 A full discussion of security in ASP.NET would take up at least a full chapter, but we provide a brief look
in this section to give you an idea of how things work. You will concentrate on Forms Authentication
here, because it is the most versatile system and very quick to get up and running.

 The quickest way to implement Forms Authentication is via the Website ASP.NET Configuration tool,
which you saw briefly in the previous chapter. This tool has a Security tab, and on it a security wizard.
This wizard lets you choose an authentication type, add roles, add users, and secure areas of your site.

 Adding Forms Authentication Using the Security Wizard
 For the purposes of this explanation, create a new Web site called PCSAuthenticationDemo in the
directory C:\ProCSharp\Chapter38\ . Once you create the site, open the Web site ASP.NET
Configuration tool. Navigate to the Security tab and click the “ Use the security Setup Wizard to
configure security step by step. ” link. Click Next on the first step after reading the information there.
On the second step, select “ From the internet, ” as shown in Figure 38 - 9 .

 Click Next, and then Next again after confirming that you will be using the default “ Advanced provider
settings ” provider to store security information. This provider information is configurable via the
Provider tab, where you can choose to store information elsewhere, such as in an SQL Server database,
but an Access database is fine for illustrative purposes.

 Check the “ Enable roles for this Web site. ” option, as shown in Figure 38 - 10 , and click Next.

Figure 38-9

c38.indd 1332c38.indd 1332 2/19/08 5:30:53 PM2/19/08 5:30:53 PM

1333

Chapter 38: ASP .NET Development

Figure 38-10

 Then, add some roles, as shown in Figure 38 - 11 .

Figure 38-11

c38.indd 1333c38.indd 1333 2/19/08 5:30:53 PM2/19/08 5:30:53 PM

Part V: Presentation

1334

 Click Next and then add some users, as shown in Figure 38 - 12 . Note that the default security rules for
passwords (defined in machine.config) are quite strong; there is a seven - character minimum,
including at least one symbol character and a mix of uppercase and lowercase.

 In the downloadable code for this chapter, two users are added in this example. The usernames are User
and Administrator, and the password for both users is Pa $ $ w0rd.

 After clicking Next again, you can define access rules for your site. By default, all users and roles
will have access to all areas of your site. From this dialog you can restrict areas by role, by user, or for
anonymous users. You can do this for each directory in your site because this is achieved via Web.config
files in directories, as you see shortly. For now, skip this step, and complete authentication setup.

 The last step is to assign users to roles, which you can do via the “ Manage users ” link on the Security
tab. From here you can edit user roles, as shown in Figure 38 - 13 .

 Once you have done all this, you are pretty much there. You have a user system in place, as well as roles
and users.

 Now you have to add a few controls to your Web site to make things work.

Figure 38-12

 Implementing a Login System
 If you open Web.config after running the security wizard you will see that it has been modified with
the following content:

 < roleManager enabled=”true” / >

 and:

 < authentication mode=”Forms” / >

c38.indd 1334c38.indd 1334 2/19/08 5:30:54 PM2/19/08 5:30:54 PM

1335

Chapter 38: ASP .NET Development

Figure 38-13

 This doesn ’ t seem like a lot for the work that you have put in, but remember that a lot of information is
stored in an SQL Express database, which you can see in the App_Data directory, called ASPNETDB.MDF .
You can inspect the data that has been stored in this file using any standard database management tool,
including Visual Studio. You can even add users and roles directly to this database, if you are careful.

 By default, logging in is achieved via a page called Login.aspx in the root of your Web site. If users
attempt to navigate to a location that they don ’ t have permission to access, they will automatically be
redirected to this page and returned to the desired location after successfully logging in.

 Add a Web Form called Login.aspx to the PCSAuthenticationDemo site and drag a Login control onto
the form from the toolbox.

 This is all you need to do to enable users to log in to your Web site. Open the site in a browser, and navigate
to Login.aspx ; then enter the details for a user you added in the wizard, as shown in Figure 38 - 14 .

Figure 38-14

c38.indd 1335c38.indd 1335 2/19/08 5:30:54 PM2/19/08 5:30:54 PM

Part V: Presentation

1336

 Once you have logged in, you will be sent back to Default.aspx , currently a blank page.

 Login Web Server Controls
 The Login section of the toolbox contains several controls, as shown in the following table.

Control Description

Login As you have seen, this control allows users to log in to your Web site. Most
of the properties of this control are for styling the supplied template. You
can also use DestinationPageUrl to force redirection to a specific loca-
tion on logging in, and VisibleWhenLoggedIn to determine whether the
control is visible to logged-in users. And, you can use various text proper-
ties such as CreateUserText to output helpful messages to users.

LoginView This control enables you to display content that varies depending on
whether users are logged in, or what roles users are in. You can put con-
tent in <AnonymousTemplate> and <LoggedInTemplate>, as well as
<RoleGroups> to control the output of this control.

PasswordRecovery This control enables users to have their password mailed to them, and it
can use the password recovery question defined for a user. Again, most
properties are for display formatting, but there are properties such as
MailDefinition-Subject for configuring the email to be sent to the
user’s address, and SuccessPageUrl to redirect the users after they have
requested a password.

LoginStatus This control displays a Login or Logout link, with customizable text and
images, to users depending on whether they are logged in.

LoginName This control outputs the username for the currently logged-in user.

CreateUserWizard This control displays a form that users can use to register with your site
and to be added to the user list. As with other login controls, there are a
large number of properties relating to layout formatting, but the default is
perfectly serviceable.

ChangePassword This control enables users to change their passwords. There are three
fields, for the old password, the new password, and the confirmation.
There are many styling properties.

 You see some of these in action in PCSDemoSite shortly.

 Securing Directories
 One final thing to discuss is how to restrict access to directories. You can do this via the Site
Configuration tool, as noted earlier, but it ’ s actually quite easy to do this yourself.

 Add a directory to PCSAuthenticationDemo called SecureDirectory , as well as a Default.aspx Web
page in this directory, and a new Web.config file. Replace the contents of Web.config with the
following:

c38.indd 1336c38.indd 1336 2/19/08 5:30:55 PM2/19/08 5:30:55 PM

1337

Chapter 38: ASP .NET Development

 < ?xml version=”1.0” ? >
 < configuration >
 < system.web >
 < authorization >
 < deny users=”?” / >
 < allow roles=”Administrator” / >
 < deny roles=”User” / >
 < /authorization >
 < /system.web >
 < /configuration >

 The < authorization > element can contain one or more < deny > or < allow > elements representing
permission rules, each of which can have a users or roles attribute saying what the rule applies to. The
rules are applied from top to bottom, so more specific rules should generally be near the top if the
membership of rules overlaps. In this example, ? refers to anonymous users, who will be denied access
to this directory, along with users in the User role. Note that users in both the User and Administrator
roles will be allowed access only if the < allow > rule shown here comes before the < deny > rule for the
 User role — all of a user ’ s roles are taken into account, but the rule order still applies.

 Now when you log in to the Web site and try to navigate to SecureDirectory/Default.aspx , you
will be permitted only if you are in the Admin role. Other users, or users that are not authenticated, will
be redirected to the login page.

 Security in PCSDemoSite
 The PCSDemoSite site uses the Login control that you have already seen, as well as a LoginView
control, a LoginStatus control, a LoginName control, a PasswordRecovery control, and a
 ChangePassword control.

 One difference is that a Guest role is included, and one consequence of this is that guest users should
not be able to change their password — an ideal use for LoginView , as illustrated by Login.aspx :

 < asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
 Runat=”server” >
 < h2 > Login Page < /h2 >
 < asp:LoginView ID=”LoginView1” Runat=”server” >
 < RoleGroups >
 < asp:RoleGroup Roles=”Guest” >
 < ContentTemplate >
 You are currently logged in as < b >
 < asp:LoginName ID=”LoginName1” Runat=”server” / > < /b > .
 < br / >
 < br / >
 < asp:LoginStatus ID=”LoginStatus1” Runat=”server” / >
 < /ContentTemplate >
 < /asp:RoleGroup >
 < asp:RoleGroup Roles=”RegisteredUser,SiteAdministrator” >
 < ContentTemplate >
 You are currently logged in as < b >
 < asp:LoginName ID=”LoginName2” Runat=”server” / > < /b > .
 < br / >
 < br / >
 < asp:ChangePassword ID=”ChangePassword1” Runat=”server” >
 < /asp:ChangePassword >
 < br / >

(continued)

c38.indd 1337c38.indd 1337 2/19/08 5:30:55 PM2/19/08 5:30:55 PM

Part V: Presentation

1338

 < br / >
 < asp:LoginStatus ID=”LoginStatus2” Runat=”server” / >
 < /ContentTemplate >
 < /asp:RoleGroup >
 < /RoleGroups >
 < AnonymousTemplate >
 < asp:Login ID=”Login1” Runat=”server” >
 < /asp:Login >
 < asp:PasswordRecovery ID=”PasswordRecovery1” Runat=”Server” / >
 < /AnonymousTemplate >
 < /asp:LoginView >
 < /asp:Content >

 The view here displays one of several pages:

 For anonymous users a Login and a PasswordRecovery control are shown.

 For Guest users LoginName and LoginStatus controls are shown, giving the logged - in
username and the facility to log out if required.

 For RegisteredUser and SiteAdministrator users LoginName , LoginStatus , and
 ChangePassword controls are shown.

 The site also includes various Web.config files in various directories to limit access, and the navigation
is also restricted by role.

 Note that the configured users for the site are shown on the About page, or you can add your own.
The users in the base site (and their passwords) are User1 (User1!!), Admin (Admin!!), and Guest
(Guest!!).

 One point to note here is that while the root of the site denies anonymous users, the Themes directory
(described in the next section) overrides this setting by permitting anonymous users. This is necessary
because without this, anonymous users would see a themeless site, because the theme files would not be
accessible. In addition, the full security specification in the root Web.config file is as follows:

 < configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0” >
 ...
 < location path=”StyleSheet.css” >
 < system.web >
 < authorization >
 < allow users=”?”/ >
 < /authorization >
 < /system.web >
 < /location >
 < system.web >
 < authorization >
 < deny users=”?” / >
 < /authorization >
 ...
 < /system.web >
 < /configuration >

 Here a < location > element is used to override the default setting for a specific file specified using a
 path attribute, in this case for the file StyleSheet.css . < location > elements can be used to apply any
 < system.web > settings to specific files or directories, and can be used to centralize all directory - specific
settings in one place, if desired (as an alternative to multiple Web.config files). In the preceding code,
permission is given for anonymous users to access the root style sheet for the Web site, which is

❑

❑

❑

(continued)

c38.indd 1338c38.indd 1338 2/19/08 5:30:55 PM2/19/08 5:30:55 PM

1339

Chapter 38: ASP .NET Development

necessary because this file defines the layout of the < div > elements in the master page. Without this, the
HTML shown on the login page for anonymous users would be difficult to read.

 Another point to note is in the code - behind file for the meeting room booker user control, in the
Page_Load() event handler:

 void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 nameBox.Text = Context.User.Identity.Name;
 DateTime trialDate = DateTime.Now;
 calendar.SelectedDate = GetFreeDate(trialDate);
 }
 }

 Here the username is extracted from the current context. Note that in your code - behind files you will
probably also use Context.User.IsInRole() frequently to check access.

 Themes
 By combining ASP.NET pages with master pages and CSS style sheets, you can go a long way in
separating form and function, whereby the look and feel of your pages are defined separately from their
operation. With themes you can take this a step further and dynamically apply this look and feel from
one of several themes that you supply yourself.

 A theme consists of the following:

 A name for the theme

 An optional CSS style sheet

 Skin (.skin) files allowing individual control types to be styled

 These can be applied to pages in two different ways — as a Theme or as a StyleSheetTheme :

 Theme — All skin properties are applied to controls, overriding any properties that the controls
on the page may already have.

 StyleSheetTheme — Existing control properties take precedence over properties defined in
skin files.

 CSS style sheets work in the same way whichever method is used because they are applied in the
standard CSS way.

 Applying Themes to Pages
 You can apply a theme to a page in several ways, declaratively or programmatically. The simplest
declarative way to apply a theme is via the < % @ Page % > directive, using the Theme or
 StyleSheetTheme attribute:

 < %@ Page Theme=”myTheme” ... % >

 or:

 < %@ Page StyleSheetTheme=”myTheme” ... % >

 Here myTheme is the name defined for the theme.

❑

❑

❑

❑

❑

c38.indd 1339c38.indd 1339 2/19/08 5:30:56 PM2/19/08 5:30:56 PM

Part V: Presentation

1340

 Alternatively, you can specify a theme to use for all pages in a site, using an entry in the Web.config file
for your Web site:

 < configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0” >
 < system.web >
 < pages Theme=”myTheme” / >
 < /system.web >
 < /configuration >

 Again, you can use Theme or StyleSheetTheme here. You can also be more specific by using
 < location > elements to override this setting for individual pages or directories, in the same way as this
element was used in the previous section for security information.

 Programmatically, you can apply themes in the code - behind file for a page. There is only one place
where you are allowed to do this — in the Page_PreInit() event handler, which is triggered very
early on in the life cycle of the page. In this event, you simply have to set the Page.Theme or Page
.StyleSheetTheme property to the name of the theme you want to apply, for example:

 protected override void OnPreInit(EventArgs e)
 {
 Page.Theme = “myTheme”;
 }

 Because you are using code to do this, you can dynamically apply a theme file from a selection of
themes. This technique is used in PCSDemoSite, as you see shortly.

 Defining Themes
 Themes are defined in yet another of the “ special ” directories in ASP.NET — in this case App_Themes .
The App_Themes directory can contain any number of subdirectories, one per theme, where the name
of the subdirectory defines the name of the theme.

 Defining a theme involves putting the required files for the theme in the theme subdirectory. For CSS style
sheets, you don ’ t have to worry about the file name; the theme system simply looks for a file with a .css
extension. Similarly, .skin files can have any file name, although it is recommended that you use
multiple .skin files, one for each control type you want to skin, and each named after the control it skins.

 Skin files contain server control definitions in exactly the same format as you would use in standard
ASP.NET pages. The difference is that the controls in skin files are never added to your page; they are
simply used to extract properties. A definition for a button skin, typically placed in a file called Button
.skin , might be as follows:

 < asp:Button Runat=”server” BackColor=”#444499” BorderColor=”#000000”
 ForeColor=”#ccccff” / >

 This skin is actually taken from the DefaultTheme theme in PCSDemoSite, and is responsible for the
look of the button on the Meeting Room Booker page you saw earlier in this chapter.

 When you create a skin for a control type in this way you don ’ t use an ID property.

 Themes in PCSDemoSite
 The PCSDemoSite Web site includes three themes that you can select on the /Configuration/Themes/
Default.aspx page — as long as you are logged in as a member of the RegisteredUser or
 SiteAdministrator role. This page is shown in Figure 38 - 15 .

c38.indd 1340c38.indd 1340 2/19/08 5:30:56 PM2/19/08 5:30:56 PM

1341

Chapter 38: ASP .NET Development

Figure 38-15

 The theme in use here is DefaultTheme , but you can select from the other options on this page.
Figure 38 - 16 shows the BareTheme theme.

Figure 38-16

c38.indd 1341c38.indd 1341 2/19/08 5:30:57 PM2/19/08 5:30:57 PM

Part V: Presentation

1342

 This sort of theme is useful in, for example, printable versions of Web pages. The BareTheme directory
actually consists of no files at all — the only file in use here is the root StyleSheet.css style sheet.

 Figure 38 - 17 shows the LuridTheme theme.

Figure 38-17

 This brightly colored and difficult to read theme is just a bit of fun, really, but it does show how the look
of a site can be dramatically changed using themes. On a more serious note, themes similar to this can be
used to provide high - contrast or large - text versions of Web sites for accessibility purposes.

 In PCSDemoSite, the currently selected theme is stored in session state, so the theme is maintained when
you navigate around the site. The code - behind file for /Configuration/Themes/Default.aspx is as
follows:

public partial class _Default : MyPageBase
{
 private void ApplyTheme(string themeName)
 {
 if (Session[“SessionTheme”] != null)
 {
 Session.Remove(“SessionTheme”);
 }
 Session.Add(“SessionTheme”, themeName);
 Response.Redirect(“~/Configuration/Themes”, true);
 }

 void applyDefaultTheme_Click(object sender, EventArgs e)

c38.indd 1342c38.indd 1342 2/19/08 5:30:57 PM2/19/08 5:30:57 PM

1343

Chapter 38: ASP .NET Development

 {
 ApplyTheme(“DefaultTheme”);
 }

 void applyBareTheme_Click(object sender, EventArgs e)
 {
 ApplyTheme(“BareTheme”);
 }

 void applyLuridTheme_Click(object sender, EventArgs e)
 {
 ApplyTheme(“LuridTheme”);
 }
}

 The key functionality here is in ApplyTheme() , which puts the name of the selected theme into session
state, using the key SessionTheme . It also checks to see if there is already an entry here, and if so,
removes it.

 As mentioned earlier, themes must be applied in the Page_PreInit() event handler. This isn ’ t
accessible from the master page that all pages use, so if you want to apply a selected theme to all pages,
you are left with two options:

 Override the Page_PreInit() event handler in all pages where you want themes to be applied.

 Provide a common base class for all pages where you want themes to be applied, and override
the Page_PreInit() event handler in this base class.

 PCSDemoSite uses the second option, with a common page base class provided in Code/MyPageBase.cs :

public class MyPageBase : Page
{
 protected override void OnPreInit(EventArgs e)
 {
 // theming
 if (Session[“SessionTheme”] != null)
 {
 Page.Theme = Session[“SessionTheme”] as string;
 }
 else
 {
 Page.Theme = “DefaultTheme”;
 }

 // base call
 base.OnPreInit(e);
 }
}

 This event handler checks the session state for an entry in SessionTheme and applies the selected theme
if there is one; otherwise DefaultTheme is used.

 Note also that this class inherits from the usual page base class Page . This is necessary because,
otherwise, the page wouldn ’ t function as an ASP.NET Web page.

❑

❑

c38.indd 1343c38.indd 1343 2/19/08 5:30:58 PM2/19/08 5:30:58 PM

Part V: Presentation

1344

 For this to work, it is also necessary to specify this base class for all Web pages. There are several ways of
doing this, the most obvious being either in the < @ Page % > directive for a page or in the code behind
a page. The former strategy is fine for simple pages but precludes the use of custom code behind for a
page, as the page will no longer use the code in its own code - behind file. The other alternative is to
change the class that the page inherits from in the code - behind file. By default, new pages inherit from
 Page , but you can change this. In the code - behind file for the theme selection page shown earlier, you
may have noticed the following code:

public partial class _Default : MyPageBase
{
 ...
}

 Here MyPageBase is specified as the base of the Default class, and thus the method override in
 MyPageBase.cs is used.

 Web Parts
 ASP.NET contains a group of server controls known as Web Parts, which are designed to enable users to
personalize Web pages. You may have seen this in action in, for example, SharePoint - based Web sites
and the MSN home page http://www.msn.com/ . When you use Web Parts, the resultant functionality
is as follows:

 Users are presented with a default page layout that you supply. This layout consists of a number
of component Web Parts, each of which has a title and content.

 Users can change the position of the Web Parts on a page.

 Users can customize the appearance of Web Parts on a page or remove them from the page
completely.

 Users can be supplied with a catalog of Web Parts that they can add to the page.

 Users can export Web Parts from a page, and then import them on a different page or site.

 Connections can exist between Web Parts. For example, the content displayed in a Web Part
could be a graphical representation of the content displayed in another Web Part.

 Any changes that users make persist between site visits.

 ASP.NET supplies a complete framework for implanting Web Parts functionality, including management
and editing controls.

 The use of Web Parts is a complex topic, and this section does not describe all available functionality or
list all of the properties and methods that the Web Part components supply. However, you do see enough
to get a flavor of Web Parts and to understand the basic functionality that is possible.

 Web Parts Application Components
 The Web Parts section of the toolbox contains 13 controls, as shown in Figure 38 - 18 (note that Pointer is
not a control).

 These controls are described in the following table. The table also introduces some of the key concepts
for Web Parts pages.

❑

❑

❑

❑

❑

❑

❑

c38.indd 1344c38.indd 1344 2/19/08 5:30:58 PM2/19/08 5:30:58 PM

1345

Chapter 38: ASP .NET Development

Figure 38-18

Control Description

WebPartManager Every page that uses Web Parts must have one (and only one)
instance of the WebPartManager control. You can place it on
a master page if you wish, although if you do you should use the
master page only when you want to use Web Parts on a page. This
control is responsible for the majority of Web Parts functionality,
which it supplies without much intervention. You may not need to
do much more than place it on a Web page, depending on the func-
tionality you require. For more advanced functionality, you can use
the large number of properties and events that this control exposes.

ProxyWebPartManager If you place the WebPartManager control on a master page, it can
be difficult to configure it on individual pages — and impossible to
do so declaratively. This is particularly relevant for the definition of
static connections between Web Parts. The ProxyWebPartManager
control enables you to define static connections declaratively on a
Web page, which circumvents the problem of not being able to
have two WebPartManager controls on the same page.

WebPartZone The WebPartZone control is used to define a region of a page that
can contain Web Parts. You will typically use more than one of
these controls on a page. For example, you might use three of
them in a three-column layout on a page. Users can move Web
Parts between WebPartZone regions or reposition them within a
single WebPartZone.

CatalogZone The CatalogZone control enables users to add Web Parts to a
page. This control contains controls that derive from
CatalogPart, of which three are supplied for you — the next
three entries in this table describe these controls. Whether the
CatalogZone control and the controls it contains are visible
depends on the current display mode set by WebPartManager.

c38.indd 1345c38.indd 1345 2/19/08 5:30:59 PM2/19/08 5:30:59 PM

Part V: Presentation

1346

Control Description

DeclarativeCatalogPart The DeclarativeCatalogPart control enables you to define
Web Part controls inline. These controls will then be available to
the user through the CatalogZone control.

PageCatalogPart Users can remove (close) Web Parts that are displayed on a page.
To retrieve them, the PageCatalogPart control provides a list of
closed Web Parts that can be replaced on the page.

ImportCatalogPart The ImportCatalogPart control enables Web Parts that have
been exported from a page to be imported to another page
through the CatalogPart interface.

EditorZone The EditorZone control contains controls that enable users to
edit various aspects of Web Part display and behavior, depending
on what controls it contains. It can contain controls that derive
from EditorPart, including the four that are listed in the next
four rows of this table. As with CatalogZone, the display of this
control depends on the current display mode.

AppearanceEditorPart This control enables users to modify the look and size of Web
Part controls, as well as to hide them.

BehaviorEditorPart This control enables users to configure the behavior of Web Parts
by using a variety of properties that control, for example, whether a
Web Part can be closed or what URL the title of a Web Part links to.

LayoutEditorPart This control enables users to change layout properties of a Web
Part, such as what zone it is contained in and whether it is dis-
played in a minimized state.

PropertyGridEditorPart This is the most general Web Part editor control and enables
you to define properties that can be edited for custom Web Part
controls. Users can then edit these properties.

ConnectionsZone This control enables users to create connections between Web
Parts that expose connection functionality. Unlike CatalogZone
and EditorZone, there are no controls to place inside this con-
trol. The user interface that this control generates depends on
the controls on the page that are available for connections. The
visibility of this control is dependant on the display mode.

 You may notice that this list of controls does not include any Web Parts. This is because you create
these yourself. Any control that you put into a WebPartZone region automatically becomes a
Web Part — including (most important) user controls. By using user controls, you can group together
other controls to provide the user interface and functionality of a Web Part control.

 Web Parts Example
 To illustrate the functionality of Web Parts, you can look at the example in the downloadable code for
this chapter, PCSWebParts. This example uses the same security database as the PCSAuthenticationDemo
example. It has two users with usernames of User and Administrator and a password of Pa $ $ w0rd for

c38.indd 1346c38.indd 1346 2/19/08 5:30:59 PM2/19/08 5:30:59 PM

1347

Chapter 38: ASP .NET Development

both. You can log in as a user, manipulate the Web Parts on the page, log out, log in as the other user, and
manipulate the Web Parts in a completely different way. The personalization for both users is retained
between site visits.

 Once you have logged in to the site, the initial display (with User logged in) is as shown in Figure 38 - 19 .

Figure 38-19

 This page contains the following controls:

 A WebPartManager control (which doesn ’ t have a visual component).

 Three WebPartZone controls.

 Three Web Parts (Date, Events, and User Info), one in each WebPartZone . Two of the Web Parts
are connected by a static connection — if you change the date in Date, the date displayed in
Events updates.

 A drop - down list for changing the display mode. This list doesn ’ t contain all of the possible
display modes, just the available ones. The available modes are obtained from the
 WebPartManager control, as you see shortly. The modes listed are:

 Browse — This mode is the default and allows you to view and use Web Parts. In this
mode, each Web Part can be minimized or closed by using the drop - down menu accessible
in the top right of each Web Part.

 Design — In this mode, you can reposition Web Parts.

 Edit — In this mode, you can edit Web Part properties. An additional item in the drop -
 down menu for each Web Part becomes available: Edit.

 Catalog — In this mode, you can add new Web Parts to the page.

 A link to reset the Web Part layout to the default (for the current user only).

❑

❑

❑

❑

❑

❑

❑

❑

❑

c38.indd 1347c38.indd 1347 2/19/08 5:31:00 PM2/19/08 5:31:00 PM

Part V: Presentation

1348

 An EditorZone control (visible only in Edit mode).

 A CatalogZone control (visible only in Catalog mode).

 One additional Web Part in the catalog that you can add to the page.

 Each of the Web Parts is defined in a user control.

 To illustrate how layout can be changed, use the drop - down list to change the display mode to Design.
You will notice that each WebPartZone is then labeled with an ID value (LeftZone , CenterZone , and
 RightZone , respectively). You will also be able to move Web Parts simply by dragging their titles — and
will even see visual feedback as you drag. This is illustrated in Figure 38 - 20 , which shows the Date Web
Part being moved.

❑

❑

❑

Figure 38-20

 Next, try adding a new Web Part from the catalog. Change the display mode to Catalog, and you will
notice that the CatalogZone control becomes visible at the bottom of the page. Click the Declarative
Catalog link, and you will be able to add a Links control to the page, as shown in Figure 38 - 21 .

 Notice that there is also a Page Catalog link here. If you close a Web Part by using the drop - down menu
for the part, you will find it here — it ’ s not completely deleted, merely hidden.

 Next, change the display mode to Edit and select the Edit item from the drop - down list for a Web Part, as
shown in Figure 38 - 22 .

 When you select this menu option, you will open the EditorZone control. In the example, this control
contains an AppearanceEditorPart control, as shown in Figure 38 - 23 .

c38.indd 1348c38.indd 1348 2/19/08 5:31:00 PM2/19/08 5:31:00 PM

1349

Chapter 38: ASP .NET Development

Figure 38-21

Figure 38-22

c38.indd 1349c38.indd 1349 2/19/08 5:31:01 PM2/19/08 5:31:01 PM

Part V: Presentation

1350

Figure 38-23

 You can edit and apply property values for Web Parts by using this interface.

 After making changes, confirm that they are stored for the user by logging off and logging in as a
different user, and then switching back to the first user.

 Now, you might think that this functionality requires quite a lot of code. In fact, the code in this example
is remarkably simple. Look at the code for the Web Parts page. The < form > element starts with a
 WebPartManager control:

 < form id=”form1” runat=”server” >
 < asp:WebPartManager ID=”WebPartManager1” runat=”server”
 OnDisplayModeChanged=”WebPartManager1_DisplayModeChanged” >
 < StaticConnections >
 < asp:WebPartConnection ID=”dateConnection”
 ConsumerConnectionPointID=”DateConsumer”
 ConsumerID=”EventListControl1”
 ProviderConnectionPointID=”DateProvider”
 ProviderID=”DateSelectorControl1” / >
 < /StaticConnections >
 < /asp:WebPartManager >

 There is an event handler for the DisplayModeChanged event of this control, which is used to show or
hide the editor < div > at the bottom of the page. There is also a specification for a static connection
between the Date and Events Web Parts. This is achieved by defining named endpoints for the
connection in the two user controls for these Web Parts and referring to those endpoints here. You see the
code for this shortly.

 Next, the title, display mode changer, and reset link are defined:

 < div class=”mainDiv” >
 < h1 > Web Parts Page < /h1 >
 Display mode:

c38.indd 1350c38.indd 1350 2/19/08 5:31:01 PM2/19/08 5:31:01 PM

1351

Chapter 38: ASP .NET Development

 < asp:DropDownList ID=”displayMode” runat=”server” AutoPostBack=”True”
 OnSelectedIndexChanged=”displayMode_SelectedIndexChanged” / >
 < br / >
 < asp:LinkButton runat=”server” ID=”resetButton” Text=”Reset Layout”
 OnClick=”resetButton_Click” / >
 < br / >
 < br / >

 The display mode drop - down list is populated in the Page_Load() event handler, by using the
 WebPartManager1.SupportedDisplayModes property. The reset button uses the WebPartManager1
.Personalization.ResetPersonalizationState() method to reset the personalization state for the
current user.

 Next come the three WebPartZone controls, each of which contains a user control that is loaded as a
Web Part:

 < div class=”innerDiv” >
 < div class=”zoneDiv” >
 < asp:WebPartZone ID=”LeftZone” runat=”server” >
 < ZoneTemplate >
 < uc1:DateSelectorControl ID=”DateSelectorControl1” runat=”server”
 title=”Date” / >
 < /ZoneTemplate >
 < /asp:WebPartZone >
 < /div >
 < div class=”zoneDiv” >
 < asp:WebPartZone ID=”CenterZone” runat=”server” >
 < ZoneTemplate >
 < uc2:EventListControl ID=”EventListControl1” runat=”server”
 title=”Events” / >
 < /ZoneTemplate >
 < /asp:WebPartZone >
 < /div >
 < div class=”zoneDiv” >
 < asp:WebPartZone ID=”RightZone” runat=”server” >
 < ZoneTemplate >
 < uc4:UserInfo ID=”UserInfo1” runat=”server” title=”User Info” / >
 < /ZoneTemplate >
 < /asp:WebPartZone >
 < /div >

 And, finally you have the EditorZone and CatalogZone controls, containing an AppearanceEditor
control and PageCatalogPart and DeclarativeCatalogPart controls, respectively:

 < asp:PlaceHolder runat=”server” ID=”editorPH” Visible=”false” >
 < div class=”footerDiv” >
 < asp:EditorZone ID=”EditorZone1” runat=”server” >
 < ZoneTemplate >
 < asp:AppearanceEditorPart ID=”AppearanceEditorPart1”
 runat=”server” / >
 < /ZoneTemplate >
 < /asp:EditorZone >
 < asp:CatalogZone ID=”CatalogZone1” runat=”server” >
 < ZoneTemplate >
 < asp:PageCatalogPart ID=”PageCatalogPart1” runat=”server” / >

(continued)

c38.indd 1351c38.indd 1351 2/19/08 5:31:02 PM2/19/08 5:31:02 PM

Part V: Presentation

1352

 < asp:DeclarativeCatalogPart ID=”DeclarativeCatalogPart1”
 runat=”server” >
 < WebPartsTemplate >
 < uc3:LinksControl ID=”LinksControl1” runat=”server”
 title=”Links” / >
 < /WebPartsTemplate >
 < /asp:DeclarativeCatalogPart >
 < /ZoneTemplate >
 < /asp:CatalogZone >
 < /div >
 < /asp:PlaceHolder >
 < /div >
 < /div >
 < /form >

 The DeclarativeCatalogPart control contains a fourth user control, which is the Links control that
users can add to the page.

 The code for the Web Parts is equally simple. The Links Web part, for example, simply contains the
following code:

 < %@ Control Language=”C#” AutoEventWireup=”true”
CodeFile=”LinksControl.ascx.cs”
 Inherits=”LinksControl” % >
 < a href=”http://www.msn.com/” > MSN < /a >
 < br / >
 < a href=”http://www.microsoft.com/” > Microsoft < /a >
 < br / >
 < a href=”http://www.wrox.com/” > Wrox Press < /a >

 No additional markup is required to make this user control work as a Web Part. The only point to note
here is that the < uc3:LinksControl > element for the user control has a title attribute — even though
the user control doesn ’ t have a Title property. This attribute is used by the DeclarativeCatalogPart
control to infer a title to display for the Web Part (which you can edit at runtime with the
 AppearanceEditorPart).

 The connection between the Date and Events controls is achieved by passing an interface reference from
 DateSelectorControl to EventListControl (the two user control classes used by these Web Parts):

public interface IDateProvider
{
 SelectedDatesCollection SelectedDates
 {
 get;
 }
}

 DateSelectorControl supports this interface, and so can pass an instance of IDateProvider by using
 this . The reference is passed by an endpoint method in DateSelectorControl , which is decorated
with the ConnectionProvider attribute:

[ConnectionProvider(“Date Provider”, “DateProvider”)]
public IDateProvider ProvideDate()
{
 return this;
}

(continued)

c38.indd 1352c38.indd 1352 2/19/08 5:31:02 PM2/19/08 5:31:02 PM

1353

Chapter 38: ASP .NET Development

 This is all that is required to mark a Web Part as a provider control. You can then reference the provider
by its endpoint ID, in this case DateProvider .

 To consume a provider, you use the ConnectionConsumer attribute to decorate a consumer method in
 EventListControl :

[ConnectionConsumer(“Date Consumer”, “DateConsumer”)]
public void GetDate(IDateProvider provider)
{
 this.provider = provider;
 IsConnected = true;
 SetDateLabel();
}

 This method stores a reference to the IDateProvider interface passed, sets a flag, and changes the label
text in the control.

 There is not a lot more to look at in this example. There are a few minor cosmetic sections of code, and
details for the event handlers in Page_Load() , but nothing that you really need to see here. You can
investigate further by examining the downloadable code for this chapter.

 There is, however, a whole lot more to Web Parts than this. The Web Parts framework is extremely
powerful and richly featured. Whole books are devoted to the subject. Hopefully, though, this section
has enabled you to get an insight into Web Parts and has demystified some of their functionality.

 Summary
 In this chapter you looked at several more advanced techniques for creating ASP.NET pages and Web
sites, and you saw these techniques in action in a demonstration Web site called PCSDemoSite .

 First, you learned how to create reusable ASP.NET server controls by using C#. You saw how to create
simple user controls from existing ASP.NET pages, as well as how to create custom controls from scratch.
You also saw how the meeting room booker sample from the previous chapter can be reformatted as a
user control.

 Next, you looked at master pages, and how to provide a template for the pages of your Web site, which
is another way to reuse code and simplify development. In PCSDemoSite, in the downloadable code for
this chapter, you saw a master page that included navigation Web server controls to enable users to
move around the site. The PCSDemoSite sample also laid the framework for themes, which are an
excellent way to separate functionality from design and can be a powerful accessibility technique.

 You also took a brief look at security and how you can implement forms - based authentication on your
Web sites with minimal effort.

 Finally, you investigated Web Parts and how to use the Web Parts server controls to put together a basic
application that illustrated some of the possibilities that this technology offers.

 You have only scratched the surface of what is possible in ASP.NET 2.0. For example, you can do a whole
lot more with custom controls. It would have been interesting to discuss templates and data - binding,
and how to create controls with this in mind. However, with the information in this chapter, you should
be able to start building (and experimenting with) your own custom controls, as well as all the other
techniques discussed.

 In the next chapter you look at a way to make ASP.NET applications more dynamic by using Ajax
techniques.

c38.indd 1353c38.indd 1353 2/19/08 5:31:03 PM2/19/08 5:31:03 PM

c38.indd 1354c38.indd 1354 2/19/08 5:31:03 PM2/19/08 5:31:03 PM

 ASP . NET AJAX

 Web application programming is subject to continuous change and improvement. In the previous
two chapters, you learned how to use ASP.NET to create fully functional Web applications, and you
may think that you have seen all the tools that you need to create your own Web applications.
However, if you spend much time on the Internet, you may have noticed that more recent Web
sites are significantly better, in terms of usability, than older Web sites. Many of today ’ s best Web sites
provide rich user interfaces that feel almost as responsive as Windows applications. They achieve
this by using client - side processing, primarily through JavaScript code, and increasingly through a
technology known as Ajax.

 This change of direction is possible because the browsers that clients use to browse Web sites, and
the computers that clients use to run browsers, have become more powerful. The current
generation of Web browsers, such as Internet Explorer 7 and Firefox, also support a wide variety
of standards. These standards, which include JavaScript, enable Web applications to provide
functionality far in advance of what was previously possible using plain HTML. You have already
seen some of this in previous chapters — for example the use of cascading style sheets (CSS) to
style Web applications.

 Ajax — as you will discover shortly — is not a new technology. Rather, it is a combination of
standards that makes it possible to realize the rich potential functionality of current Web browsers.

 Perhaps the key defining feature of Ajax - enabled Web applications is the ability for the Web
browser to communicate with the Web server in out - of - band operations; this is known as
asynchronous, or partial - page, postbacks. In practice, this means that the user can interact with
server - side functionality and data without needing a full - page refresh. For example, when a link is
followed to move to the second page of data in a table, Ajax makes it possible to refresh just the
table ’ s content rather than the entire Web page. This means that there is less traffic required across
the Internet, which leads to a more responsive Web application. You will see this example in
practice later in this chapter, as well as many more examples that illustrate the power of Ajax in
Web applications.

 You will be using Microsoft ’ s implementation of Ajax in the code in this chapter, known as ASP.
NET AJAX. This implementation takes the Ajax model and applies it to the ASP.NET framework.
ASP.NET AJAX provides a number of server controls and client - side techniques that are
specifically targeted at ASP.NET developers and that enable you to add Ajax functionality to your
Web applications with surprisingly little effort.

c39.indd 1355c39.indd 1355 2/19/08 5:31:40 PM2/19/08 5:31:40 PM

1356

Part V: Presentation

 This chapter is organized as follows:

 First, you learn more about Ajax and the technologies that make Ajax possible.

 Next, you learn about ASP.NET AJAX and its component parts, as well as the functionality that
ASP.NET AJAX offers.

 Last, you see how to use ASP.NET AJAX in your Web applications, by using both server - side
and client - side code. This coverage forms the largest part of this chapter.

 What Is Ajax?
 Ajax enables you to enhance the user interfaces of Web applications by means of asynchronous
postbacks and dynamic client - side Web page manipulation. The term Ajax was invented by Jesse James
Garrett and is shorthand for “ Asynchronous JavaScript and XML. ”

 Note that Ajax is not an acronym, which is why it is not capitalized as AJAX. However, it is capitalized
in the product name ASP.NET AJAX, which is Microsoft ’ s implementation of Ajax, as you will see in
the next section of this chapter.

 By definition, Ajax involves both JavaScript and XML. However, the Ajax programming requires the use
of other technologies as well, which are described in the following table.

 Technology Description

 HTML/XHTML HTML (Hypertext Markup Language) is the presentation and layout lan-
guage used by Web browsers to render information in a graphical user inter-
face. In the previous two chapters, you have seen how HTML achieves this
functionality and how ASP.NET generates HTML code. Extensible HTML
(XHTML) is a stricter definition of HTML that uses XML structure.

 CSS CSS (cascading style sheets) is a means by which HTML elements can be
styled according to rules defined in a separate style sheet. This enables you to
apply styles simultaneously to multiple HTML elements and to swap styles to
change the way a Web page looks without HTML modifications. CSS includes
both layout and style information, so you can also use CSS to position HTML
elements on a page. You have seen how to do this in the examples in previous
chapters.

 DOM The DOM (Document Object Model) is a means of representing and manipu-
lating (X)HTML code in a hierarchical structure. This enables you to access,
for example, “ the second column of the third row in table x ” in a Web page,
rather than having to locate this element using more primitive text
processing.

 JavaScript JavaScript is a client - side scripting technology that enables you to execute
code inside a Web browser. The syntax of JavaScript is similar to other
C - based languages, including C#, and provides variables, functions, branch-
ing code, looping statements, event handlers, and other familiar program-
ming elements. However, unlike C#, JavaScript is not strongly typed, and
debugging JavaScript code can be notoriously difficult. In terms of Ajax pro-
gramming, JavaScript is a key technology because it allows dynamic modifi-
cations to Web pages by way of DOM manipulation — among other
functionality.

❑

❑

❑

c39.indd 1356c39.indd 1356 2/19/08 5:31:41 PM2/19/08 5:31:41 PM

1357

Chapter 39: ASP .NET AJAX

 Technology Description

 XML XML, as you have seen throughout this book, is a platform - neutral way to
mark up data and is crucial to Ajax both as a way to manipulate data and as a
language for communication between the client and the server.

 XMLHttpRequest Since Internet Explorer 5, browsers have supported the XMLHttpRequest
API as a means of performing asynchronous communication between the
client and server. This was originally introduced by Microsoft as a technology
to access email stored in an Exchange server over the Internet, in a product
known as Outlook Web Access. Since then, it has become the standard way to
perform asynchronous communications in Web applications, and is a core
technology of Ajax - enabled Web applications. Microsoft ’ s implementation of
this API is known as XMLHTTP, which communicates over what is often
called the XMLHTTP protocol.

 Ajax also requires server - side code to handle partial - page postbacks as well as full - page postbacks.
This can include both event handlers for server - control events and Web services. Figure 39 - 1 shows
how these technologies fit together in the Ajax Web browser model, in contrast to the “ traditional ”
Web browser model.

 Prior to Ajax, the first four technologies listed in the preceding table (HTML, CSS, the DOM, and
JavaScript) were used to create what was known as Dynamic HTML (DHTML) Web applications. These
applications were notable for two reasons: they provided a much better user interface, and they
generally worked on only one type of Web browser.

Web Browser Web Server HTTP Request

HTTP Response

Web Browser Web Server

XMLHttp Request Ajax
Client-Side

Code

Ajax
Server-Side

Code

“Traditional” Web Browser Model

Ajax Web Browser Model

Java Script

CSS

DOM

(X)HTML

HTML
Document

 Figure 39 - 1

c39.indd 1357c39.indd 1357 2/19/08 5:31:41 PM2/19/08 5:31:41 PM

1358

Part V: Presentation

 Since DHTML, standards have improved, along with the level of adherence to standards in Web
browsers. However, there are still differences, and an Ajax solution must take these differences into
account. This has meant that most developers have been quite slow to implement Ajax solutions. Only
with the advent of more abstracted Ajax frameworks (such as ASP.NET AJAX) has Ajax - enabled Web site
creation really become a viable option for enterprise - level development.

 What Is ASP . NET AJAX ?
 ASP.NET AJAX is Microsoft ’ s implementation of the Ajax framework and is specifically targeted
at ASP.NET developers. With the latest release of ASP.NET, ASP.NET AJAX is part of the core ASP.NET
functionality. It is also available for use with previous versions of ASP.NET from the Web site
http://ajax.asp.net . This Web site also has documentation, forums, and sample code that you
may find useful for whichever version of ASP.NET you are using.

 ASP.NET AJAX provides the following functionality:

 A server - side framework that enables ASP.NET Web pages to respond to partial - page postback
operations

 ASP.NET server controls that make the implementation of Ajax functionality easy

 An HTTP handler that enables ASP.NET Web services to communicate with client - side code by
using JavaScript Object Notation (JSON) serialization in partial - page postback operations

 Web services that enable client - side code to gain access to ASP.NET application services,
including authentication and personalization services

 A Web site template for creating ASP.NET AJAX - enabled Web applications

 A client - side JavaScript library that provides a number of enhancements to JavaScript syntax as
well as code to simplify the implementation of Ajax functionality

 These server controls and the server - side framework that makes them possible are collectively known as
the ASP.NET Extensions. The client - side part of ASP.NET AJAX is known as the AJAX Library.

 There are several additional downloads that you can obtain from http://ajax.asp.net , including the
following important ones:

 ASP.NET AJAX Control Toolkit — This download contains additional server controls that have
been created by the developer community. These controls are shared - source controls that you
can inspect and modify as you see fit.

 Microsoft AJAX Library 3.5 — This download contains the JavaScript client - side framework
that is used by ASP.NET AJAX to implement Ajax functionality. You will not need this if you are
developing ASP.NET AJAX applications. Instead, this download is intended to be used with
other languages, for example PHP, to implement Ajax functionality using the same codebase as
ASP.NET AJAX. This is beyond the scope of this chapter.

 There is also a download known as Futures, which in the past has been used to add additional,
pre - release, or legacy functionality to ASP.NET AJAX applications. However, at the time of writing it is
unclear whether this download will be supported with the RTM release of VS 2008, and so it is not
covered in this chapter.

 Together these downloads provide you with a richly featured framework that you can use to add Ajax
functionality to your ASP.NET Web applications. In the following sections, you learn more about what is
contained in the various component parts of ASP.NET AJAX.

❑

❑

❑

❑

❑

❑

❑

❑

c39.indd 1358c39.indd 1358 2/19/08 5:31:41 PM2/19/08 5:31:41 PM

1359

Chapter 39: ASP .NET AJAX

 Core Functionality
 The core functionality of ASP.NET AJAX is divided into two parts, the AJAX Extensions and the
AJAX Library.

 AJAX Extensions
 ASP.NET AJAX functionality is contained in two assemblies that are installed in the GAC:

 System.Web.Extensions.dll — This assembly contains the ASP.NET AJAX functionality,
including the AJAX Extensions and the AJAX Library JavaScript files, which are available
through the ScriptManager component (which is described shortly).

 System.Web.Extensions.Design.dll — This assembly contains ASP.NET Designer
components for the AJAX Extensions server controls. This is used by the ASP.NET Designer in
Visual Studio or Visual Web developer.

 Much of the AJAX Extensions component of ASP.NET AJAX is concerned with enabling partial - page
postbacks and JSON serialization for Web services. This includes various HTTP handler components and
extensions to the existing ASP.NET framework. All of this functionality can be configured through the
 Web.config file for a Web site. There are also classes and attributes that you can use for additional
configuration. However, most of this configuration is transparent, and you will rarely need to change
what is supplied in, for example, the ASP.NET Web Site template.

 Your main interaction with AJAX Extensions will be using server controls to add Ajax functionality
to your Web applications. There are several of these, which you can use to enhance your applications in
various ways. The following table shows a selection of the server - side components. You see these
components in action later in this chapter.

 Control Description

 ScriptManager This control is central to ASP.NET AJAX functionality and is required on
every page that uses partial - page postbacks. Its main purpose is to man-
age client - side references to the AJAX Library JavaScript files, which are
served from the ASP.NET AJAX assembly. The AJAX Library is used
extensively by the AJAX Extensions server controls, which all generate
their own client - side code.
 This control is also responsible for the configuration of Web services that
you intend to access from client - side code. By supplying Web service
information to the ScriptManager control, you can generate client - side
and server - side classes to manage asynchronous communication with
Web services transparently.
 You can also use the ScriptManager control to maintain references to
your own JavaScript files.

 UpdatePanel The UpdatePanel control is an extremely useful one and is perhaps the
ASP.NET AJAX control that you will use most often. This control acts like
a standard ASP.NET placeholder and can contain any other controls.
More important, it also marks a section of a page as a region that can be
updated independently of the rest of the page, in a partial - page postback.
 Any controls contained by an UpdatePanel control that cause
a postback (a Button control, for example) will not cause full - page post-
backs. Instead, they cause partial - page postbacks that will update only
the contents of the UpdatePanel .

❑

❑

c39.indd 1359c39.indd 1359 2/19/08 5:31:42 PM2/19/08 5:31:42 PM

1360

Part V: Presentation

 Control Description

 In many situations, this control is all you need to implement Ajax
functionality. For example, you can place a GridView control in an
 UpdatePanel control, and any pagination, sorting, and other postback
functionality of the control will take place in a partial - page postback.

 UpdateProgress This control enables you to provide feedback to users when a partial
page postback is in progress. You can supply a template for this control
that will be displayed when an UpdatePanel is updating. For example,
you could use a floating < div > control to display a message such as
 “ Updating... ” so that the user is aware that the application is busy.
Note that partial - page postbacks do not interfere with the rest of a Web
page, which will remain responsive.

 Timer The ASP.NET AJAX Timer control is a useful way to cause an
 UpdatePanel to update periodically. You can configure this control to
trigger postbacks at regular intervals. If this control is contained in an
 UpdatePanel control, then the UpdatePanel will be updated every
time the Timer control is triggered. This control also has an associated
event so that you can carry out periodic server - side processing.

 AsyncPostBackTrigger You can use this control to trigger UpdatePanel updates from controls
that aren ’ t contained in the UpdatePanel . For example, you can enable
a drop - down list elsewhere on a Web page to cause an UpdatePanel
containing a GridView control to update.

 The AJAX Extensions also include the ExtenderControl abstract base class for extending existing ASP.
NET server controls. This is used, for example, by various classes in the ASP.NET AJAX Control Toolkit,
as you will see shortly.

 AJAX Library
 The AJAX Library consists of JavaScript files that are used by client - side code in ASP.NET AJAX - enabled
Web applications. There is a lot of functionality included in these JavaScript files, some of which is general
code that enhances the JavaScript language and some of which is specific to Ajax functionality. The AJAX
Library contains layers of functionality that are built on top of each other, as shown in the following table.

 Layer Description

 Browser
compatibility

 The lowest - level code in the AJAX Library consists of code that maps various
JavaScript functionality according to the client Web browser. This is necessary
because there are differences in the implementation of JavaScript in different
browsers. By providing this layer, JavaScript code in other layers does not have
to worry about browser compatibility, and you can write browser - neutral code
that will work in all client environments.

 Core services This layer contains the enhancements to the JavaScript language, in particular
OOP functionality. By using the code in this layer you can define namespaces,
classes, derived classes, and interfaces using JavaScript script files. This is of
particular interest to C# developers, because it makes writing JavaScript code
much more like writing .NET code with using C# and encourages reusability.

c39.indd 1360c39.indd 1360 2/19/08 5:31:42 PM2/19/08 5:31:42 PM

1361

Chapter 39: ASP .NET AJAX

 Layer Description

 Base class library The client base class library (BCL) includes many JavaScript classes that provide
low - level functionality to classes further down the AJAX Library hierarchy. Most
of these classes are not intended to be used directly.

 Networking Classes in the networking layer enable client - side code to call server - side code
asynchronously. This layer includes the basic framework for making a call to a
URL and responding to the result in a callback function. For the most part, this is
also functionality that you will not use directly; instead, you will use classes that
wrap this functionality. This layer also contains classes for JSON serialization and
deserialization. You will find most of the networking classes on the client - side
 Sys.Net namespace.

 User interface This layer contains classes that abstract user interface elements such as HTML
elements and DOM events. You can use the properties and methods of this layer
to write language - neutral JavaScript code to manipulate Web pages from the
client. User interface classes are contained in the Sys.UI namespace.

 Controls The final layer of the AJAX Library contains the highest - level code, which pro-
vides Ajax behaviors and server control functionality. This includes dynamically
generated code that you can use, for example, to call Web services from client -
 side JavaScript code.

 You can use the AJAX Library to extend and customize the behavior of ASP.NET AJAX - enabled
Web applications, but it is important to note that you don ’ t have to. You can go a long way without using
any additional JavaScript in your applications — it becomes a requirement only when you require more
advanced functionality. If you do write additional client - side code, however, you will find that it is much
easier with the functionality that the AJAX Library offers.

 ASP . NET AJAX Control Toolkit
 The AJAX Control Toolkit is a collection of additional server controls, including extender controls, that
have been written by the ASP.NET AJAX community. Extender controls are controls that enable you to
add functionality to an existing ASP.NET server control, typically by associating a client - side behavior
with it. For example, one of the extenders in the AJAX Control Toolkit extends the TextBox control by
placing “ watermark ” text in the TextBox , which appears when the user hasn ’ t yet added any content to
the text box. This extender control is implemented in a server control called TextBoxWatermark .

 You can use the AJAX Control Toolkit to add quite a lot more functionality to your sites, beyond what is
in the core download. These controls are also interesting simply to browse and will probably give you
plenty of ideas about enhancing your Web applications. However, because the AJAX Control Toolkit is
separate from the core download, you should not expect the same level of support for these controls.

 Using ASP . NET AJAX
 Now that you have seen the component parts of ASP.NET AJAX, it is time to start looking at how to use
them to enhance your Web sites. In this section, you see how Web applications that use ASP.NET AJAX
work, and how to use the various aspects of functionality that ASP.NET AJAX includes. You start by
examining and dissecting a simple application, and then add additional functionality in subsequent
sections.

c39.indd 1361c39.indd 1361 2/19/08 5:31:43 PM2/19/08 5:31:43 PM

1362

Part V: Presentation

 ASP . NET AJAX Web Site Example
 The ASP.NET Web Site template includes all the ASP.NET AJAX core functionality. You can also use the
AJAX Control Toolkit Web Site template (once installed) to include controls from the AJAX Control
Toolkit. For the purposes of this example, you can create a new Web site that uses the default ASP.NET
Web Site template in the C:\ProCSharp\Chapter39 directory, called PCSAjaxWebApp1 .

 Modify the code in Default.aspx as follows:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Pro C# ASP.NET AJAX Sample < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” / >
 < div >
 < h1 > Pro C# ASP.NET AJAX Sample < /h1 >
 This sample obtains a list of primes up to a maximum value.
 < br / >
 Maximum:
 < asp:TextBox runat=”server” id=”MaxValue” Text=”2500” / >
 < br / >
 Result:
 < asp:UpdatePanel runat=”server” ID=”ResultPanel” >
 < ContentTemplate >
 < asp:Button runat=”server” ID=”GoButton” Text=”Calculate “ / >
 < br / >
 < asp:Label runat=”server” ID=”ResultLabel” / >
 < br / >
 < small >
 Panel render time: < % =DateTime.Now.ToLongTimeString() % >
 < /small >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < asp:UpdateProgress runat=”server” ID=”UpdateProgress1” >
 < ProgressTemplate >
 < div style=”position: absolute; left: 100px; top: 200px;
 padding: 40px 60px 40px 60px; background-color: lightyellow;
 border: black 1px solid; font-weight: bold; font-size: larger;
 filter: alpha(opacity=80);” > Updating... < /div >
 < /ProgressTemplate >
 < /asp:UpdateProgress >
 < small > Page render time: < % =DateTime.Now.ToLongTimeString() % > < /small >
 < /div >
 < /form >
 < /body >
 < /html >

 Switch to design view (note that the ASP.NET AJAX controls such as UpdatePanel and
 UpdateProgress have visual designer components), and double - click the Calculate button to add an
event handler. Modify the code as follows:

c39.indd 1362c39.indd 1362 2/19/08 5:31:43 PM2/19/08 5:31:43 PM

1363

Chapter 39: ASP .NET AJAX

protected void GoButton_Click(object sender, EventArgs e)
{
 int maxValue = 0;
 System.Text.StringBuilder resultText = new System.Text.StringBuilder();
 if (int.TryParse(MaxValue.Text, out maxValue))
 {
 for (int trial = 2; trial < = maxValue; trial++)
 {
 bool isPrime = true;
 for (int divisor = 2; divisor < = Math.Sqrt(trial); divisor++)
 {
 if (trial % divisor == 0)
 {
 isPrime = false;
 break;
 }
 }
 if (isPrime)
 {
 resultText.AppendFormat(“{0} “, trial);
 }
 }
 }
 else
 {
 resultText.Append(“Unable to parse maximum value.”);
 }
 ResultLabel.Text = resultText.ToString();
}

 Save your modifications and press F5 to run the project. If prompted, enable debugging in Web.config .

 When the Web page appears as shown in Figure 39 - 2 , note that the two render times shown are the same.

 Figure 39 - 2

 Click the Calculate button to display prime numbers less than or equal to 2500. Unless you are
running on a slow machine, this should be almost instantaneous. Note that the render times are now
different — only the one in the UpdatePanel has changed. This is shown in Figure 39 - 3 .

c39.indd 1363c39.indd 1363 2/19/08 5:31:43 PM2/19/08 5:31:43 PM

1364

Part V: Presentation

 Figure 39 - 3

 Figure 39 - 4

 Finally, add some zeros to the maximum value to introduce a processing delay (about three more should
be enough on a fast PC) and click the Calculate button again. This time, before the result is displayed,
note that the UpdateProgress control displays a partially transparent feedback message, as shown in
Figure 39 - 4 .

c39.indd 1364c39.indd 1364 2/19/08 5:31:44 PM2/19/08 5:31:44 PM

1365

Chapter 39: ASP .NET AJAX

 While the application updates, the page remains responsive. You can, for example, scroll through the
page.

 Note that when the update completes, the scroll position of the browser is set to the point it was at before
you clicked Calculate. In most cases, when partial - page updates are quick to execute, this is great for
usability.

 Close the browser to return to Visual Studio.

 ASP . NET AJAX - Enabled Web Site Configuration
 Now that you have seen a simple ASP.NET AJAX - enabled Web application, you can examine it more
closely to see how it works. The first thing to look at is the Web.config file for the application, in
particular the following two blocks of code in the < system.web > configuration section of
 < configuration > :

 < ?xml version=”1.0”? >
 < configuration >
 ...
 < system.web >
 < compilation debug=”true” >
 < assemblies >
 < add assembly=”System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089”/ >
 < add assembly=”System.Web.Extensions, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35”/ >
 < add assembly=”System.Data.DataSetExtensions, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=B77A5C561934E089”/ >
 < add assembly=”System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089”/ >
 < /assemblies >
 < /compilation >
 ...
 < compilation debug=”true” >
 < pages >
 < controls >
 < add tagPrefix=”asp” namespace=”System.Web.UI”
 assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/ >
 < add tagPrefix=”asp” namespace=”System.Web.UI.WebControls”
 assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/ >
 < /controls >
 < /pages >
 < /compilation >
 ...
 < /system.web >
 ...
 < /configuration >

 The code in the < assemblies > configuration section in < compilation > ensures that the ASP.NET
AJAX System.Web.Extensions.dll assembly is loaded from the GAC. The code in the < controls >
configuration element in < pages > references this assembly and associates the controls it contains (in
both the System.Web.UI and System.Web.UI.WebControls namespaces) with the tag prefix asp .
These two sections are essential for all ASP.NET AJAX - enabled Web applications.

c39.indd 1365c39.indd 1365 2/19/08 5:31:44 PM2/19/08 5:31:44 PM

1366

Part V: Presentation

 The next two sections, < httpHandlers > and < httpModules > , are also required for ASP.NET AJAX
functionality. The < httpHandlers > section defines three things. First, the handler for .asmx Web
services is replaced with a new class from the System.Web.Extensions namespace. This new class is
capable of handling requests from client - side calls from the AJAX Library, including JSON serialization
and deserialization. Second, a handler is added to enable the use of ASP.NET application services. Third,
a new handler is added for the ScriptResource.axd resource. This resource serves the AJAX Library
JavaScript files from the ASP.NET AJAX assembly, so that these files do not need to be included directly
in your applications.

 < system.web >
 ...
 < httpHandlers >
 < remove verb=”*” path=”*.asmx”/ >
 < add verb=”*” path=”*.asmx” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/ >
 < add verb=”*” path=”*_AppService.axd” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/ >
 < add verb=”GET,HEAD” path=”ScriptResource.axd”
 type=”System.Web.Handlers.ScriptResourceHandler,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35” validate=”false”/ >
 < /httpHandlers >
 ...
 < /system.web >

 The < httpModules > section adds a new HTTP module that adds additional processing for HTTP
requests in the Web application. This enables partial - page postbacks.

 < system.web >
 ...
 < httpModules >
 < add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35”/ >
 < /httpModules >
 < /system.web >

 The remaining configuration settings are configured by the < configSections > settings, which
are included as the first child element of < configuration > . This section, which is not listed here, must
be included so that you can use the < system.web.extensions > and < system.webServer > sections.

 The < system.web.extensions > section is not included in the default ASP.NET Web Site
configuration file; you look at it in the next section.

 The next configuration element, < system.webServer > , contains settings that relate to the IIS 7 Web
server; this element is not required if you are using an earlier version of IIS. This configuration section is
not listed here.

 Finally, there is a < runtime > section as follows:

 < runtime >
 < assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1” >
 < dependentAssembly >
 < assemblyIdentity name=”System.Web.Extensions”

c39.indd 1366c39.indd 1366 2/19/08 5:31:45 PM2/19/08 5:31:45 PM

1367

Chapter 39: ASP .NET AJAX

 publicKeyToken=”31bf3856ad364e35”/ >
 < bindingRedirect oldVersion=”1.0.0.0-1.1.0.0” newVersion=”3.5.0.0”/ >
 < /dependentAssembly >
 < dependentAssembly >
 < assemblyIdentity name=”System.Web.Extensions.Design”
 publicKeyToken=”31bf3856ad364e35”/ >
 < bindingRedirect oldVersion=”1.0.0.0-1.1.0.0” newVersion=”3.5.0.0”/ >
 < /dependentAssembly >
 < /assemblyBinding >
 < /runtime >

 This section is included to ensure backward compatibility with older versions of ASP.NET AJAX and
will have no effect unless you have version 1.0 of ASP.NET AJAX installed. If you do have this version
installed, this section enables third - party controls to bind to the latest version of ASP.NET AJAX.

 Additional Configuration Options
 The < system.web.extensions > section contains settings that provide additional configuration for
ASP.NET AJAX, all of which is optional. This section is not included in the default ASP.NET Web
application template, but you can add it if you need its functionality. Most of the configuration that you
can add with this section concerns Web services and is contained in an element called < webServices > ,
which in turn is placed in a < scripting > element. First, you can add a section to enable access to the
ASP.NET authentication service through a Web service (you can choose to enforce SSL here if you wish):

 < system.web.extensions >
 < scripting >
 < webServices >
 < authenticationService enabled=”true” requireSSL = “true|false”/ >

 Next, you can enable and configure access to ASP.NET personalization functionality through the profile
Web service:

 < profileService enabled=”true”
 readAccessProperties=”propertyname1,propertyname2”
 writeAccessProperties=”propertyname1,propertyname2” / >

 The last Web service - related setting is for enabling and configuring access to ASP.NET role functionality
through the role Web service:

 < roleService enabled=”true”/ >
 < /webServices >

 Finally, the < system.web.extensions > section can contain an element that enables you to configure
compression and caching for asynchronous communications:

 < scriptResourceHandler enableCompression=”true” enableCaching=”true” / >
 < /scripting >
 < /system.web.extensions >

 Additional Configuration for the AJAX Control Toolkit
 To use the controls in the AJAX Control Toolkit, you can add the following configuration to Web.config :

 < controls >
 ...
 < add namespace=”AjaxControlToolkit” assembly=”AjaxControlToolkit”
 tagPrefix=”ajaxToolkit”/ >
 < /controls >

c39.indd 1367c39.indd 1367 2/19/08 5:31:45 PM2/19/08 5:31:45 PM

1368

Part V: Presentation

 This maps the toolkit controls to the ajaxToolkit tag prefix. These controls are contained in the
 AjaxControlToolkit.dll assembly, which should be in the /bin directory for the Web application.

 Alternatively, you could register the controls individually on Web pages using the < %@ Register % >
directive:

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”ajaxToolkit” % >

 Adding ASP . NET AJAX Functionality
 The first step in adding Ajax functionality to a Web site is to add a ScriptManager control to your Web
pages. Next, you add server controls such as UpdatePanel controls to enable partial - page rendering and
dynamic controls such as those supplied in the AJAX Control Toolkit to add usability and glitz to your
application. You may also add client - side code, and you can use the AJAX Library for further assistance
in customizing and enhancing the functionality of your application.

 In this section, you learn about the functionality you can add using server controls. Later in the chapter
you look at client - side techniques.

 The ScriptManager Control
 As mentioned earlier in the chapter, the ScriptManager control must be included on all pages that use
partial - page postbacks and several other aspects of ASP.NET AJAX functionality.

 A great way to ensure that all the pages in your Web application contain the ScriptManager control
is to add this control to the master page (or master pages) that your application uses.

 As well as enabling ASP.NET AJAX functionality, you can also use properties to configure this control.
The simplest of these properties is EnablePartialRendering , which is true by default. If you set this
property to false , you will disable all asynchronous postback processing, such as that provided by
 UpdatePanel controls. This can be useful, for example, if you want to compare your AJAX - enabled Web
site with a traditional Web site, perhaps if you are giving a demonstration to a manager.

 You can use the ScriptManager control for several reasons, such as in the following common situations:

 To determine whether server - side code is being called as a result of a partial - page postback

 To add references to additional client - side JavaScript files

 To reference Web services

 To return error messages to the client

 These configuration options are covered in the following sections.

 Detect Partial - Page Postbacks
 The ScriptManager control includes a Boolean property called IsInAsyncPostBack . You can use this
property in server - side code to detect whether a partial - page postback is in progress. Note that the
 ScriptManager for a page may actually be on a master page. Rather than accessing this control through
the master page, you can obtain a reference to the current ScriptManager instance by using the static
 GetCurrent() method, for example:

ScriptManager scriptManager = ScriptManager.GetCurrent(this);
if (scriptManager != null & & scriptManager.IsInAsyncPostBack)
{
 // Code to execute for partial-page postbacks.
}

❑

❑

❑

❑

c39.indd 1368c39.indd 1368 2/19/08 5:31:45 PM2/19/08 5:31:45 PM

1369

Chapter 39: ASP .NET AJAX

 You must pass a reference to a Page control to the GetCurrent() method. For example, if you use this
method in a Page_Load() event handler for an ASP.NET Web page, you can use this as your Page
reference. Also, remember to check for a null reference to avoid exceptions.

Client - Side JavaScript References
 Rather than adding code to the HTML page header, or in < script > elements on the page, you can use
the Scripts property of the ScriptManager class. This centralizes your script references and makes it
easier to maintain them. You can do this declaratively by adding a child < Scripts > element to the
 < UpdatePanel > control element, and then adding < asp:ScriptReference > child control elements to
 < Scripts > . You use the Path property of a ScriptReference control to reference a custom script.

 The following sample shows how to add references to a custom script file called MyScript.js in the
root folder of the Web application:

 < asp:ScriptManager runat=”server” ID=”ScriptManager1” >
 < Scripts >
 < asp:ScriptReference Path=”~/MyScript.js” / >
 < /Scripts >
 < /asp:ScriptManager >

 Web Service References
 To access Web services from client - side JavaScript code, ASP.NET AJAX must generate a proxy class. To
control this behavior, you use the Services property of the ScriptManager class. As with Scripts ,
you can specify this property declaratively, this time with a < Services > element. You add
< asp:ServiceReference > controls to this element. For each ServiceReference object in the
 Services property, you specify the path to the Web service by using the Path property.

 The ServiceReference class also has a property called InlineScript , which defaults to false .
When this property is false , client - side code obtains a proxy class to call the Web service by requesting
it from the server. To enhance performance (particularly if you use a lot of Web services on a page), you
can set InlineScript to true . This causes the proxy class to be defined in the client - script for the page.

 ASP.NET Web services use a file extension of .asmx . Without wanting to get into too much detail in this
chapter, to add a reference to a Web service called MyService.asmx in the root folder of a Web
application, you would use code as follows:

 < asp:ScriptManager runat=”server” ID=”ScriptManager1” >
 < Services >
 < asp:ServiceReference Path=”~/MyService.asmx” / >
 < /Services >
 < /asp:ScriptManager >

 You can only add references to local Web services (that is, Web services in the same Web application as
the calling code) in this way. You can call remote Web services indirectly via local Web methods.

 Later in this chapter you see how to make asynchronous Web method calls from client - side JavaScript
code that uses proxy classes generated in this way.

Client - Side Error Messages
 If an exception is thrown as part of a partial - page postback, the default behavior is to place the error
message contained in the exception into a client - side JavaScript alert message box. You can customize
the message that is displayed by handling the AsyncPostBackError event of the ScriptManager
instance. In the event handler, you can use the AsyncPostBackErrorEventArgs.Exception property
to access the exception that is thrown and the ScriptManager.AsyncPostBackErrorMessage
property to set the message that is displayed to the client. You might do this to hide the exception details
from users.

c39.indd 1369c39.indd 1369 2/19/08 5:31:46 PM2/19/08 5:31:46 PM

1370

Part V: Presentation

 If you want to override the default behavior and display a message in a different way, you must handle
the endRequest event of the client - side PageRequestManager object by using JavaScript. This is
described later in this chapter.

 Using UpdatePanel Controls
 The UpdatePanel control is perhaps the control that you will use most often when you write ASP.NET
AJAX - enabled Web applications. This control, as you have seen in the simple example earlier in the
chapter, enables you to wrap a portion of a Web page so that it is capable of participating in a partial -
 page postback operation. To do this, you add an UpdatePanel control to the page and fill its child
 < ContentTemplate > element with the controls that you want it to contain.

 < asp:UpdatePanel runat=”Server” ID=”UpdatePanel1” >
 < ContentTemplate >
 ...
 < /ContentTemplate >
 < /asp:UpdatePanel >

 The contents of the < ContentTemplate > template are rendered in either a < div > or < span > element
according to the value of the RenderMode property of the UpdatePanel . The default value of this
property is Block , which will result in a < div > element. To use a < span > element, set RenderMode
to Inline .

 Multiple UpdatePanel Controls on a Single Web Page
 You can include any number of UpdatePanel controls on a page. If a postback is caused by a control
that is contained in the < ContentTemplate > of any UpdatePanel on the page, a partial - page postback
will occur instead of a full - page postback. This will cause all the UpdatePanel controls to update
according to the value of their UpdateMode property. The default value of this property is Always ,
which means that the UpdatePanel will update for a partial - page postback operation on the page, even
if this operation occurs in a different UpdatePanel control. If you set this property to Conditional , the
 UpdatePanel updates only when a control that it contains causes a partial - page postback or when a
trigger that you have defined occurs. Triggers are covered shortly.

 If you have set UpdateMode to Conditional , you can also set the ChildrenAsTriggers property to
 false to prevent controls that are contained by the UpdatePanel from triggering an update of the
panel. Note, though, that in this case these controls still trigger a partial - page update, which may result
in other UpdatePanel controls on the page being updated. For example, this will update controls that
have an UpdateMode property value of Always . This is illustrated in the following code:

 < asp:UpdatePanel runat=”Server” ID=”UpdatePanel1” UpdateMode=”Conditional”
 ChildrenAsTriggers=”false” >
 < ContentTemplate >
 < asp:Button runat=”Server” ID=”Button1” Text=”Click Me” / >
 < small > Panel 1 render time: < % =DateTime.Now.ToLongTimeString() % > < /small >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < asp:UpdatePanel runat=”Server” ID=”UpdatePanel2” >
 < ContentTemplate >
 < small > Panel 2 render time: < % =DateTime.Now.ToLongTimeString() % > < /small >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < small > Page render time: < % =DateTime.Now.ToLongTimeString() % > < /small >

 In this code, the UpdatePanel2 control has an UpdateMode property of Always ; the default value.
When the button is clicked, it will cause a partial - page postback, but only UpdatePanel2 will be
updated. Visually, you will notice that only the “ Panel 2 render time ” label is updated.

c39.indd 1370c39.indd 1370 2/19/08 5:31:46 PM2/19/08 5:31:46 PM

1371

Chapter 39: ASP .NET AJAX

Server - Side UpdatePanel Updates
 Sometimes when you have multiple UpdatePanel controls on a page, you might decide not to update
one of them unless certain conditions are met. In this case, you would configure the UpdateMode
property of the panel to Conditional as shown in the previous section and possibly also set the
 ChildrenAsTriggers property to false . Then, in your server - side event - handler code for one of the
controls on the page that causes a partial - page update, you would (conditionally) call the Update()
method of the UpdatePanel . For example:

protected void Button1_Click(object sender, EventArgs e)
{
 if (TestSomeCondition())
 {
 UpdatePanel1.Update();
 }
}

 UpdatePanel Triggers
 You can cause an UpdatePanel control to be updated by a control elsewhere on the Web page by adding
triggers to the Triggers property of the control. A trigger is an association between an event of a control
elsewhere on the page and the UpdatePanel control. All controls have default events (for example, the
default event of a Button control is Click), so specifying the name of an event is optional. There are two
types of triggers that you can add, represented by the following two classes:

 AsyncPostBackTrigger — This class causes the UpdatePanel to update when the specified
event of the specified control is triggered.

 PostBackTrigger — This class causes a full - page update to be triggered when the specified
event of the specified control is triggered.

 You will mostly use AsyncPostBackTrigger , but PostBackTrigger can be useful if you want a
control inside an UpdatePanel to trigger a full - page postback.

 Both of these trigger classes have two properties: ControlID , which specifies the control that causes the
trigger by its identifier, and EventName , which specifies the name of the event for the control that is
linked to the trigger.

 To extend an earlier example, consider the following code:

 < asp:UpdatePanel runat=”Server” ID=”UpdatePanel1” UpdateMode=”Conditional”
 ChildrenAsTriggers=”false” >
 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”Button2” / >
 < /Triggers >
 < ContentTemplate >
 < asp:Button runat=”Server” ID=”Button1” Text=”Click Me” / >
 < small > Panel 1 render time: < % =DateTime.Now.ToLongTimeString() % > < /small >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < asp:UpdatePanel runat=”Server” ID=”UpdatePanel2” >
 < ContentTemplate >
 < asp:Button runat=”Server” ID=”Button2” Text=”Click Me” / >
 < small > Panel 2 render time: < % =DateTime.Now.ToLongTimeString() % > < /small >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < small > Page render time: < % =DateTime.Now.ToLongTimeString() % > < /small >

❑

❑

c39.indd 1371c39.indd 1371 2/19/08 5:31:47 PM2/19/08 5:31:47 PM

1372

Part V: Presentation

 The new Button control, Button2 , is specified as a trigger in the UpdatePanel1 . When this button is
clicked, both UpdatePanel1 and UpdatePanel2 will be updated: UpdatePanel1 because of the trigger,
and UpdatePanel2 because it uses the default UpdateMode value of Always .

 Using UpdateProgress
 The UpdateProgress control, as you saw in the earlier example, enables you to display a progress
message to the user while a partial - page postback is in operation. You use the ProgressTemplate
property to supply an ITemplate for the progress display. You will typically use the
 < ProgressTemplate > child element of the control to do this.

 You can place multiple UpdateProgress controls on a page by using the AssociatedUpdatePanelID
property to associate the control with a specific UpdatePanel . If this is not set (the default), the
 UpdateProgress template will be displayed for any partial - page postback, regardless of which
 UpdatePanel causes it.

 When a partial - page postback occurs, there is a delay before the UpdateProgress template is displayed.
This delay is configurable through the DisplayAfter property, which is an int property that specifies
the delay in milliseconds. The default is 500 milliseconds.

 Finally, you can use the Boolean DynamicLayout property to specify whether space is allocated for the
template before it is displayed. For the default value of true for this property, space on the page is
dynamically allocated, which may result in other controls being moved out of the way for an inline progress
template display. If you set this property to false , space will be allocated for the template before it is
displayed, so the layout of other controls on the page will not change. You will set this property according to
the effect you want to achieve when displaying progress. For a progress template that is positioned by using
absolute coordinates, as in the earlier example, you should leave this property set to the default value.

 Using Extender Controls
 The core ASP.NET AJAX download includes a class called ExtenderControl . The purpose of this
control is to enable you to extend (that is, add functionality to) other ASP.NET server controls. This is
used extensively in the AJAX Control Toolkit to great effect, and you can use the ASP.NET AJAX Server
Control Extender project template to create your own extended controls. ExtenderControl controls all
work in a similar way — you place them on a page, associate them with target controls, and add further
configuration. The extender then emits client - side code to add functionality.

 To see this in action in a simple example, create a new Web site called PCSExtenderDemo in the C:\
ProCSharp\Chapter39 directory, add the AJAX Control Toolkit assembly to the bin directory of the
Web Site, and then add the following code to Default.aspx :

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”
 Inherits=”_Default” % >
 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”ajaxToolkit” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Color Selector < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” / >
 < div >
 < asp:UpdatePanel runat=”server” ID=”updatePanel1” >

c39.indd 1372c39.indd 1372 2/19/08 5:31:47 PM2/19/08 5:31:47 PM

1373

Chapter 39: ASP .NET AJAX

 < ContentTemplate >
 < span style=”display: inline-block; padding: 2px;” >
 My favorite color is:
 < /span >
 < asp:Label runat=”server” ID=”favoriteColorLabel” Text=”green”
 style=”color: #00dd00; display: inline-block; padding: 2px;
 width: 70px; font-weight: bold;” / >
 < ajaxToolkit:DropDownExtender runat=”server” ID=”dropDownExtender1”
 TargetControlID=”favoriteColorLabel”
 DropDownControlID=”colDropDown” / >
 < asp:Panel ID=”colDropDown” runat=”server”
 Style=”display: none; visibility: hidden; width: 60px;
 padding: 8px; border: double 4px black;
 background-color: #ffffdd; font-weight: bold;” >
 < asp:LinkButton runat=”server” ID=”OptionRed” Text=”red”
 OnClick=”OnSelect” style=”color: #ff0000;” / > < br / >
 < asp:LinkButton runat=”server” ID=”OptionOrange” Text=”orange”
 OnClick=”OnSelect” style=”color: #dd7700;” / > < br / >
 < asp:LinkButton runat=”server” ID=”OptionYellow” Text=”yellow”
 OnClick=”OnSelect” style=”color: #dddd00;” / > < br / >
 < asp:LinkButton runat=”server” ID=”OptionGreen” Text=”green”
 OnClick=”OnSelect” style=”color: #00dd00;” / > < br / >
 < asp:LinkButton runat=”server” ID=”OptionBlue” Text=”blue”
 OnClick=”OnSelect” style=”color: #0000dd;” / > < br / >
 < asp:LinkButton runat=”server” ID=”OptionPurple” Text=”purple”
 OnClick=”OnSelect” style=”color: #dd00ff;” / >
 < /asp:Panel >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 You also need to add the following event handler to the code behind this file:

protected void OnSelect(object sender, EventArgs e)
{
 favoriteColorLabel.Text = ((LinkButton)sender).Text;
 favoriteColorLabel.Style[“color”] = ((LinkButton)sender).Style[“color”];
}

 In the browser, not very much is visible at first, and the extender seems to have no effect. This is shown
in Figure 39 - 5 .

 Figure 39 - 5

c39.indd 1373c39.indd 1373 2/19/08 5:31:48 PM2/19/08 5:31:48 PM

1374

Part V: Presentation

 However, when you hover over the text that reads “ green, ” a drop - down dynamically appears. If you
click this drop - down, a list appears, as shown in Figure 39 - 6 .

 Figure 39 - 6

 When you click one of the links in the drop - down list, the text changes accordingly (after a partial - page
postback operation).

 There are two important points to note about this simple example. First, it was extremely easy
to associate the extender with target controls. Second, the drop - down list was styled using custom
code — meaning that you can place whatever content you like in the list. This simple extender is a great
way to add functionality to your Web applications, and it is very simple to use.

 The extenders that are contained in the AJAX Control Toolkit are continually being added to and
updated, so check http://ajax.asp.net/ajaxtoolkit regularly. This Web page includes live
demonstrations of all the current extenders so that you can see them in action.

 In addition to the extender controls that are supplied by the AJAX Control Toolkit, you can create your
own. To make this process as simple as possible, you can use the ASP.NET AJAX Control project
template. This project includes all the basic functionality that you require for an extender, including the
server - side class for the extender and the client - side JavaScript behavior file that the extender uses. To
create an effective extender, you must use the AJAX Library.

 Using the AJAX Library
 There is a great deal of functionality available in the AJAX Library that you can use to further enhance
your Web applications. However, to do this you need at least a working knowledge of JavaScript. In this
section, you see some of this functionality, although this is not an exhaustive tutorial.

 The basic principles behind the use of the AJAX Library are much the same as for adding any type of
client - side script to a Web application. You will still use the core JavaScript language, and you will still
interact with the DOM. However, there are many areas where the AJAX Library makes things easier for
you. This section explains many of these areas and provides a foundation that you can build on with
further experimentation and study of the online AJAX Library documentation.

 The techniques covered in this section are illustrated in the PCSLibraryDemo project, which is referred
to throughout the rest of this chapter.

c39.indd 1374c39.indd 1374 2/19/08 5:31:48 PM2/19/08 5:31:48 PM

1375

Chapter 39: ASP .NET AJAX

 Adding JavaScript to a Web Page
 The first thing you need to know is how to add client - side JavaScript to a Web Page. You have three
options here:

 Add JavaScript inline in ASP.NET Web pages, by using the < script > element.

 Add JavaScript to separate JavaScript files with the extension .js and reference these files from
 < script > elements or (preferably) by using the < Scripts > child element of the
 ScriptManager control.

 Generate JavaScript from server - side code, such as code behind or custom extender controls.

 Each of these techniques has its own benefits. For prototyping code, there is no substitute for inline code
because it is so quick and easy to use. You will also find it easy to associate client - side event handlers of
HTML elements and server controls with client - side functions, because everything is in the same file.

 Having separate files is good for reusability, because you may create your own library of classes much
like the existing AJAX Library JavaScript files.

 Generating code from code behind can be tricky to implement because you will not usually have access
to IntelliSense for JavaScript programming when you use C# code. However, you will be able to generate
code dynamically in response to application state, and sometimes this is the only way to do things.

 The extenders that you can create with the AJAX Control Toolkit include a separate JavaScript file that
you use to define behaviors, which gets around some of the problems of exposing client - side code from
the server.

 In this chapter, you use the inline code technique, because it is simplest and allows you to concentrate on
the JavaScript functionality.

 Global Utility Functions
 One of the features supplied by the AJAX Library that you will use most often is the set of global
functions that wrap other functionality. These include the following:

 $get() — This function enables you to get a reference to a DOM element by supplying its
client - side id value as a parameter, with an optional second parameter to specify the parent
element to search in.

 $create() — This function enables you to create objects of a specific JavaScript type and
perform initialization at the same time. You can supply between one and five parameters to this
function. The first parameter is the type you want to instantiate, which will typically be a type
defined by the AJAX Library. The other parameters enable you to specify initial property values,
event handlers, references to other components, and the DOM element that the object is attached
to, respectively.

 $addHandler() — This function provides a shorthand for adding an event handler to an object.

 There are more global functions, but these are the ones you will use most often. $create() in particular
is a very useful way to reduce the amount of code required to create and initialize an object.

 Using the AJAX Library JavaScript OOP Extensions
 The AJAX Library includes an enhanced framework for defining types that uses an OOP - based system
that maps closely to .NET Framework techniques. You can create namespaces, add types to namespaces,
add constructors, methods, properties, and events to types, and even use inheritance and interfaces in
type definitions.

 In this section, you see how to implement the basics of this functionality, but you won ’ t look at events
and interfaces here. These constructs are beyond the scope of this chapter.

❑

❑

❑

❑

❑

❑

c39.indd 1375c39.indd 1375 2/19/08 5:31:48 PM2/19/08 5:31:48 PM

1376

Part V: Presentation

Defining Namespaces
 To define a namespace, you use the Type.registerNamespace() function, for example:

Type.registerNamespace(“ProCSharp”);

 Once you have registered a namespace you can add types to it.

Defining Classes
 Defining a class is a three - stage process. First, you define the constructor. Next, you add properties and
methods. Finally, you register the class.

 To define a constructor, you define a function using a namespace and class name, for example:

ProCSharp.Shape = function(color, scaleFactor) {
 this._color = color;
 this._scaleFactor = scaleFactor;
}

 This constructor takes two parameters and uses them to set local fields (note that you do not have to
explicitly define these fields — you just have to set their values).

 To add properties and methods, you assign them to the prototype property of the class as follows:

ProCSharp.Shape.prototype = {

 getColor : function() {
 return this._color;
 },

 setColor : function(color) {
 this._color = color;
 },

 getScaleFactor : function() {
 return this._scaleFactor;
 },

 setScaleFactor : function(scaleFactor) {
 this._scaleFactor = scaleFactor;
 }

}

 This code defines two properties by their get and set accessors.

 To resister a class, you call its registerClass() function:

ProCSharp.Shape.registerClass(‘ProCSharp.Shape’);

 Inheritance
 You derive a class in much the same way as creating a class but with some slight differences. You use the
 initializeBase() function to initialize the base class in the constructor, passing parameters in the
form of an array:

ProCSharp.Circle = function(color, scaleFactor, diameter) {
 ProCSharp.Circle.initializeBase(this, [color, scaleFactor]);
 this._diameter = diameter;
}

c39.indd 1376c39.indd 1376 2/19/08 5:31:49 PM2/19/08 5:31:49 PM

1377

Chapter 39: ASP .NET AJAX

 You define properties and methods in the same way as before:

ProCSharp.Circle.prototype = {

 getDiameter : function() {
 return this._diameter;
 },

 setDiameter : function(diameter) {
 this._diameter = diameter;
 },

 getArea : function() {
 return Math.PI * Math.pow((this._diameter * this._scaleFactor) / 2, 2);
 },

 describe : function() {
 var description = “This is a “ + this._color + “ circle with an area of “
 + this.getArea();
 alert(description);
 }
}

 When you register the class, you provide the base class type as a second parameter:

ProCSharp.Circle.registerClass(‘ProCSharp.Circle’, ProCSharp.Shape);

 You can implement interfaces by passing them as additional parameters, although, to keep things
simple, you won ’ t see details of that here.

Using User - Defined Types
 Once you have defined classes in this way, you can instantiate and use them with simple syntax. For
example:

var myCircle = new ProCSharp.Circle(‘red’, 1.0, 4.4);
myCircle.describe();

 This code would result in a JavaScript alert box, as shown in Figure 39 - 7 .

 Figure 39 - 7

c39.indd 1377c39.indd 1377 2/19/08 5:31:49 PM2/19/08 5:31:49 PM

1378

Part V: Presentation

 If you want to test this, run the PCSLibraryDemo project and click the Test OOP Functionality button.

 The PageRequestManager and Application Objects
 Among the most useful classes that the AJAX Library provides are the PageRequestManager
and Application classes. You will find PageRequestManager in the Sys.WebForms namespace and
 Application in the Sys namespace. The important thing about these classes is that they expose several
events that you can attach JavaScript event handlers to. These events occur at particularly interesting
points in the life cycle of a page (for Application) or partial - page postback (for PageRequestManager)
and enable you to perform operations at these critical times.

 The AJAX Library defines event handlers in a similar way to event handlers in the .NET Framework.
Every event handler has a similar signature, with two parameters. The first parameter is a reference to
the object that generated the event. The second parameter is an instance of the Sys.EventArgs class or
an instance of a class that derives from this class. Many of the events exposed by PageRequestManager
and Application include specialized event argument classes that you can use to determine more
information about the event. The following table lists these events in the order they will occur in a page
that is loaded, triggers a partial - page postback, and is then closed.

 Event Description

 Application.init This event is the first to occur in the life cycle of a page. It is raised after
all the JavaScript files have been loaded but before any objects in the
application have been created.

 Application.load This event fires after the objects in the application have loaded and been
initialized. You will often use an event handler attached to this event to
perform actions when the page is first loaded. You can also provide an
implementation for a function called pageLoad() on a page, which
is automatically defined as an event handler for this event. It sends event
arguments by using a Sys.ApplicationLoadEventArgs object, which
includes the isPartialLoad property that you can use to determine if a
partial - page postback has occurred. Access this property with the
 get_isPartialLoad() accessor.

 PageRequestManager
.initializeRequest

 This event occurs before a partial - page postback, before the
request object is created. You can use the Sys.WebForms
.InitializeRequestEventArgs event argument properties to access
the element that triggered the postback (postBackElement) and the
underlying request object (request).

 PageRequestManager
.beginRequest

 This event occurs before a partial - page postback, after the request
object is created. You can use the Sys.WebForms.
BeginRequestEventArgs event argument properties to access the
 element that triggered the postback (postBackElement) and the
 underlying request object (request).

c39.indd 1378c39.indd 1378 2/19/08 5:31:49 PM2/19/08 5:31:49 PM

1379

Chapter 39: ASP .NET AJAX

 Event Description

 PageRequestManager
.pageLoading

 This event is raised after a partial - page postback, before any
 subsequent processing occurs. This processing can include < div >
 elements that will be deleted or updated, which you can reference
through the Sys.WebForms.PageLoadingEventArgs object by using
the panelsDeleting and panelsUpdating properties.

 PageRequestManager
.pageLoaded

 This event is raised after a partial - page postback, after UpdatePanel
controls have been processed. This processing can include < div >
 elements that have been created or updated, which you can reference
through the Sys.WebForms.PageLoadedEventArgs object by using
the panelsCreated and panelsUpdated properties.

 PageRequestManager
.endRequest

 This event occurs after processing of a partial - page postback has
 completed. The Sys.WebForms.EndRequestEventArgs object passed
to the event handler enables you to detect and process server - side errors
(by using the error and errorHandled properties) as well as to access
the response object through response .

 Application.unload This event is raised just before the objects in the application are
 disposed, which gives you a chance to perform final actions or cleanup
if necessary.

 You can add an event handler to an event of the Application object by using the static add_xxx()
functions, for example:

Sys.Application.add_load(LoadHandler);

function LoadHandler(sender, args)
{
 // Event handler code.
}

 The process is similar for PageRequestManager , but you must use the get_instance() function to
obtain an instance of the current object, for example:

Sys.WebForms.PageRequestManager.getInstance().add_beginRequest(
 BeginRequestHandler);

function BeginRequestHandler(sender, args)
{
 // Event handler code.
}

 In the PCSLibraryDemo application, an event handler is added to the PageRequestManager
.endRequest event. This event handler responds to server - side processing errors and displays an error
message in a < span > element with an id of errorDisplay . To test this method, click the Test Client -
 Side Error Display button, as shown in Figure 39 - 8 .

c39.indd 1379c39.indd 1379 2/19/08 5:31:50 PM2/19/08 5:31:50 PM

1380

Part V: Presentation

 The code that achieves this is:

Sys.WebForms.PageRequestManager.getInstance().add_endRequest(
 EndRequestHandler);

function EndRequestHandler(sender, args)
{
 if (args.get_error() != undefined)
 {
 var errorMessage = args.get_error().message;
 args.set_errorHandled(true);
 $get(‘errorDisplay’).innerHTML = errorMessage;
 }
}

 Note that the errorHandled property of the EndRequestEventArgs object is set to true . This prevents
the default behavior, which is to display the error message in a dialog box by using the JavaScript
 alert() function.

 The error itself is generated by throwing an exception on the server as follows:

protected void testErrorDisplay_Click(object sender, EventArgs e)
{
 throw new ApplicationException(
 “This is the message set in the exception on the server.”);
}

 There are many other situations when you will want to use event handling techniques to act on the
 Application and PageRequestManager events.

 JavaScript Debugging
 In the past, JavaScript has had a reputation of being difficult to debug. However, this has been
addressed in the latest version of Visual Studio. You can now add breakpoints and step through
JavaScript code just like C# code. You can also interrogate object state in break mode, change property
values, and so on. The IntelliSense that is available when you write JavaScript code is also vastly
improved in the latest version of Visual Studio.

 However, there will still be times when you will want to add debug and trace code to report information
as code is executed. For example, you might want to use the JavaScript alert() function to show
information in dialog boxes.

 Figure 39 - 8

c39.indd 1380c39.indd 1380 2/19/08 5:31:50 PM2/19/08 5:31:50 PM

1381

Chapter 39: ASP .NET AJAX

 There are also some third - party tools that you can use to add a client - side UI for debugging. These
include:

 Fiddler — This tool, which you can obtain from www.fiddlertool.com , enables you to log all
HTTP traffic between your computer and a Web application — including partial - page postbacks.
There are also additional tools that you can use to look at what occurs during the processing of
Web pages in more detail.

 Nikhil ’ s Web Development Helper — This tool, available at http://projects.nikhilk.net/
Projects/WebDevHelper.aspx , can also log HTTP traffic. In addition, this tool contains a
number of utilities specifically aimed at ASP.NET and ASP.NET AJAX development, for example,
the ability to examine view state and to execute immediate JavaScript code. This latter feature is
particularly useful to test objects that you may have created on the client. The Web Development
Helper also displays extended error information when JavaScript errors occur, which makes it
easier to track down bugs in JavaScript code.

 The AJAX Library also provides the Sys.Debug class, which you can use to add some extra debugging
features to your application. One of the most useful features of this class is the Sys.Debug.
traceDump() function, which enables you to analyze objects. One way to use this function is to place a
 textarea control on your Web page with an id attribute of TraceConsole . Then, all output from
 Debug will be sent to this control. For example, you can use the traceDump() method to output
information about the Application object to the console:

Sys.Application.add_load(LoadHandler);

function LoadHandler(sender, args)
{
 Sys.Debug.traceDump(sender);
}

 This results in output along the lines of the following:

traceDump {Sys._Application}
 _updating: false
 _id: null
 _disposing: false
 _creatingComponents: false
 _disposableObjects {Array}
 _components {Object}
 _createdComponents {Array}
 _secondPassComponents {Array}
 _loadHandlerDelegate: null
 _events {Sys.EventHandlerList}
 _list {Object}
 load {Array}
 [0] {Function}
 _initialized: true
 _initializing: true

 You can see all the properties of this object in this output. This technique can be extremely useful for
ASP.NET AJAX development.

 Making Asynchronous Web Method Calls
 One of the most powerful features of ASP.NET AJAX is the ability to call Web methods from client - side
script. This gives you access to data, server - side processing, and all manner of other functionality.

❑

❑

c39.indd 1381c39.indd 1381 2/19/08 5:31:51 PM2/19/08 5:31:51 PM

1382

Part V: Presentation

 You will not be looking at Web methods in this book until Chapter 42 , “ Windows Communication
Foundation, ” so we will save the details until then and cover the basics here. Put simply, a Web method is a
method that you can expose from a Web service that enables you to access remote resources over the Internet.
In ASP.NET AJAX, you can also expose Web methods as static methods of server - side Web page code - behind
code. You can use parameters and return values in Web methods just as you do in other method types.

 In ASP.NET AJAX, Web methods are called asynchronously. You pass parameters to a Web method and
define a callback function, which is called when the Web method call completes. You use this callback
function to process the Web method response. You can also provide an alternative callback function to
call in the event of a call failure.

 In the PCSLibraryDemo application, you can see a Web method call being performed by clicking the Call
Web Method button, as shown in Figure 39 - 9 .

 Figure 39 - 9

 Before you can use a Web method from client - side script, you must generate a client - side proxy class to
perform the communication. The easiest way to do this is simply to reference the URL of the Web service
that contains the Web method in the ScriptManager control:

 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < Services >
 < asp:ServiceReference Path=”~/SimpleService.asmx” / >
 < /Services >
 < /asp:ScriptManager >

 ASP.NET Web services use the extension .asmx , as shown in this code. To use a client - side proxy to
access a Web method in a Web service, you must apply the System.Web.Script.Services
.ScriptService attribute to the Web service.

 For Web methods in the code behind for the Web page, you do not need this attribute, or this reference in
 ScriptManager , but you must use static methods and apply the System.Web.Services.WebMethod
attribute to the methods.

 Once you have generated a client - side stub, you can access the Web method by its name, which is
defined as a function of a class with the same name as the Web service. In PCSLibraryDemo , the
 SimpleService.asmx Web service has a Web method called Multiply() , which multiplies two double
parameters. When you call this method from client - side code, you pass the two parameters required by
the method (obtained from HTML < input > elements in the example) and can pass one or two callback
function references. If you pass one reference, this is the callback function that is used when the call
returns a success result. If you pass two references, the second one is the callback function that is used
for Web method failure.

c39.indd 1382c39.indd 1382 2/19/08 5:31:51 PM2/19/08 5:31:51 PM

1383

Chapter 39: ASP .NET AJAX

 In PCSLibraryDemo , a single callback function is used, which takes the result of the Web method call
and assigns it to the < span > with the id of webMethodResult :

function callWebMethod()
{
 SimpleService.Multiply(parseFloat($get(‘xParam’).value),
 parseFloat($get(‘yParam’).value), multiplyCallBack);
}

function multiplyCallBack(result)
{
 $get(‘webMethodResult’).innerHTML = result;
}

 This method is a very simple one but illustrates the ease with which you can call Web services
asynchronously from client - side code.

 ASP . NET Application Services
 ASP.NET AJAX includes three specialized Web services that you can use to access ASP.NET application
services. These services are accessed through the following client - side classes:

 Sys.Services.AuthenticationService — This service includes methods to log in or log out
a user or determine whether a user is logged in.

 Sys.Services.ProfileService — This service enables you to get and set profile properties
for the currently logged - on user. The profile properties are configured in the Web.config file for
the application.

 Sys.Services.RoleService — This service enables you to determine role membership for the
currently logged - on user.

 Used properly, these classes enable you to implement extremely responsive user interfaces that include
authorization, profile, and membership functionality.

 These services are beyond the scope of this chapter, but you should be aware of them, and they are well
worth investigating.

 Summary
 In this chapter, you have seen how you can use ASP.NET AJAX to enhance ASP.NET Web applications.
ASP.NET AJAX contains a wealth of functionality that makes Web applications far more responsive and
dynamic and can provide a much better user experience.

 First, you learned what Ajax is, and about the separate components of ASP.NET AJAX that are available
and what they offer. You saw the difference between AJAX Extensions and the AJAX Library and how
these components work together to provide the core ASP.NET AJAX functionality. You also looked at the
AJAX Control Toolkit, which adds to this core functionality.

 Next, you looked at server - side techniques for creating ASP.NET AJAX - enabled Web applications. You
saw how ASP.NET AJAX is configured in the Web.config file of your ASP.NET Web applications and
how to use the various server controls that are part of the AJAX Extensions. Specifically, you learned
about ScriptManager , UpdatePanel (and triggers), UpdateProgress , and extender controls. You saw
how easy it is to use these controls to add a great deal of functionality to a Web application very quickly.

 You then examined the AJAX Library, which extends and enhances JavaScript and provides you with
additional functionality that you can add to applications. It does, however, require at least a working
knowledge of JavaScript programming.

❑

❑

❑

c39.indd 1383c39.indd 1383 2/19/08 5:31:52 PM2/19/08 5:31:52 PM

1384

Part V: Presentation

 You learned about the global functions that the AJAX Library adds to JavaScript and how to define
namespaces and classes by using the OOP extensions that the AJAX Library adds to JavaScript. You
learned how to interact with events that occur on the client during the life cycle of a page and partial -
 page postbacks. You saw how to use one of these events, PageRequestManager.endRequest , to
customize how server errors that occur during a partial - page postback are displayed in the Web browser.

 Finally, you looked at client - side Web method calls. You saw how an asynchronous model is used for
these and how to write the required code to call a simple Web method. You also learned about accessing
the ASP.NET application services (authorization, profile, and membership) through Web services.

 We hope that this chapter has given you an appetite for this exciting new technology. Ajax is blossoming
across the Web, and ASP.NET AJAX is an excellent way to integrate Ajax functionality with ASP.NET
applications. This product is also very well supported, and the community - based releases, such as the
AJAX Control Toolkit, provide you with even more great functionality that you are free to use in your
applications.

 Even though you may find yourself having to learn the JavaScript language you never thought you
would need, the end result is well worth the effort. By using ASP.NET AJAX you will make far better,
more functional, and more dynamic Web applications than you could with ASP.NET alone. And with the
latest release of Visual Studio you have tools that make ASP.NET AJAX much easier to use.

 In the next chapter you move away from Web development and look at how you can extend Microsoft
Office applications such as Word, Excel, and Outlook with code written in Visual Studio.

c39.indd 1384c39.indd 1384 2/19/08 5:31:52 PM2/19/08 5:31:52 PM

 Visual Studio Tools
for Office

 Visual Studio Tools for Office (VSTO) is a technology that enables you to customize and extend
Microsoft Office applications and documents by using the .NET Framework. It also includes tools
that you can use to make this customization easier in Visual Studio — for example, a visual
designer for office ribbon controls.

 VSTO is the latest in a long line of products that Microsoft has released to allow the customization
of Office applications. The object model that you use to access Office applications has evolved
over time. If you have used it in the past, then parts of it will be familiar to you. If you have
programmed VBA add - ins for Office applications, then you will be well prepared for the
techniques discussed in this chapter (and, as you will see, VSTO is capable of interoperability
with VBA). However, the classes that VSTO makes available so that you can interact with Office
through the Office Primary Interop Assemblies (PIAs) have been extended beyond the Office
object model. For example, the VSTO classes include .NET data binding functionality.

 Up until Visual Studio 2008, VSTO was a separate download that you could obtain if you wanted
to develop Office solutions. With Visual Studio 2008, VSTO is integrated with the VS IDE. This
version of VSTO, which is also known as VSTO 3, includes full support for Office 2007 and has
many new features. This includes the ability to interact with Word content controls, the visual
ribbon designer mentioned previously, VBA integration, and more.

 This chapter does not assume any prior knowledge of VSTO or its predecessors. In this chapter,
you learn the following:

❑ What types of projects you can create with VSTO and what capabilities you can include in
these projects

❑ Fundamental techniques that apply to all types of VSTO solutions

❑ How to build VSTO solutions with a custom UI, VBA interoperability, and ClickOnce
deployment

c40.indd 1385c40.indd 1385 2/19/08 5:32:04 PM2/19/08 5:32:04 PM

Part V: Presentation

1386

 VSTO Overview
 VSTO consists of the following components:

❑ A selection of project templates that you can use to create various types of Office solutions

❑ Designer support for visual layout of ribbons, action panes, and custom task panels

❑ Classes built on top of the Office Primary Interop Assemblies (PIAs) that provide extensive
capabilities

 VSTO supports both 2003 and 2007 versions of Office. The VSTO class library comes in two flavors, one
for each of these Office versions, which use different sets of assemblies. For simplicity (and because of its
richer feature set), this chapter focuses on the 2007 version.

 The general architecture of VSTO solutions is shown in Figure 40 - 1 .

.NET
Framework

VSTO Solution

VSTO

Office Application

PIA

Figure 40-1

 Project Types
 Figure 40 - 2 shows the project templates that are available in VS.

c40.indd 1386c40.indd 1386 2/19/08 5:32:05 PM2/19/08 5:32:05 PM

Chapter 40: Visual Studio Tools for Offi ce

1387

 Note that when you create a project using one of the VSTO templates you may be asked to enable access
to the VBA project system. This is necessary for VBA interoperability.

 The VSTO project templates can be divided into the following categories:

❑ Document - level customizations

❑ Application - level add - ins

❑ SharePoint workflow templates

❑ InfoPath form templates

 There are 2003 and 2007 versions of some of the project types, but as discussed earlier, you will look at
only the 2007 versions here.

 This chapter concentrates on the most commonly used project types, which are document - level
customizations and application - level add - ins.

 Document - Level Customizations
 When you create a project of this type, you will generate an assembly that will be linked to an individual
document — for example a Word document, Word template, or Excel workbook. When you load
the document, the associated Office application will detect the customization, load the assembly, and
make the VSTO customization available.

 You might use a project of this type to provide additional functionality to a particular line - of - business
document, or to a whole class of documents by adding customizations to a document template. You can
include code that manipulates the document and the content of the document, including any embedded
objects. You can also provide custom menus, including ribbon menus that you can create using the VS
Ribbon Designer.

 When you create a document - level project, you can choose to create a new document or to copy an
existing document as a starting point for your development. You can also choose the type of document
to create. For a Word document, for example, you can choose to create .docx (the default), .doc , or
 .docm documents (.docm is a macro - enabled document). The dialog box for this is shown in Figure 40 - 3 .

Figure 40-2

c40.indd 1387c40.indd 1387 2/19/08 5:32:05 PM2/19/08 5:32:05 PM

Part V: Presentation

1388

Figure 40-3

 Application - Level Add - Ins
 Application - level add - ins are different from document - level customizations in that they are available
throughout their targeted Office application. You can access add - in code, which might include menus,
document manipulations and so on, regardless of what documents are loaded.

 When you start an Office application such as Word, it will look for associated add - ins that have entries in
the registry and will load any assemblies that it needs to.

 SharePoint Workflow Templates
 These projects provide a template to create SharePoint workflow applications. These are used to manage
the flow of documents within SharePoint processes. By creating a project of this type, you can execute
custom code at key times during the document lifecycle.

 InfoPath Form Templates
 These are a form of document - level customization for InfoPath forms, although they use a slightly
different methodology for Word and Excel document customizations and, so, are usually classified
differently. You can create templates for InfoPath forms that extend the functionality of the InfoPath
designer and that provide additional functionality and business logic for designers and end - users of
InfoPath forms.

 When you create an InfoPath Form template, you are presented with a wizard to specify exactly the sort
of project you want to create, as shown in Figure 40 - 4 .

 As you can see in Figure 40 - 4 , this wizard gives you quite a lot of flexibility in the source for the form
you are creating — you can choose a variety of starting points (including forms on a SharePoint
site). You can also create complete forms or template parts and limit functionality to browser -
 compatible features if desired.

c40.indd 1388c40.indd 1388 2/19/08 5:32:05 PM2/19/08 5:32:05 PM

Chapter 40: Visual Studio Tools for Offi ce

1389

 Project Features
 There are several features that you can use in the various VSTO project types, such as interactive panes
and controls. The project type you use determines the features that are available to you. The following
tables list these features according to the projects in which they are available.

Document-Level Customization Features

 Feature Description

 Actions pane Actions panes are dialog boxes that are hosted inside the action pane
of Word or Excel. You can display whatever controls you like here,
which makes this an extremely versatile way of extending documents
and applications.

 Data cache Data caching enables you to store data that is used in your documents
externally to those documents in cached data islands. These data
islands can be updated from data sources or manually, and enable the
Office documents to access data when data sources are offline or
unavailable.

 Endpoints for VBA code As discussed earlier, VSTO enables VBA interoperability. In docu-
ment - level customizations, you can provide endpoint methods that
can be called from VBA code.

 Host controls Host controls are extended wrappers around existing controls in the
Office object model. You can manipulate and data - bind to these
objects.

 Smart tags Smart tags are objects that are embedded in Office documents and
that have typed content. They are automatically detected within the
content of Office documents; for example, a stock quote smart tag is
added automatically when the application detects appropriate text.
You can create your own smart tag types and define operations that
can be performed on them.

Figure 40-4

c40.indd 1389c40.indd 1389 2/19/08 5:32:06 PM2/19/08 5:32:06 PM

Part V: Presentation

1390

 Feature Description

 Visual document designer When you work with document customization projects, the Office
object model is used to create a visual design surface that you can
use to lay out controls interactively. The toolbars and menus shown
in the designer are, as you will see later in this chapter, fully func-
tional.

Application-Level Add-In Features

 Feature Description

 Custom task pane Task panes are typically docked to one edge of an Office application and
provide a variety of functionality. For example, Word has a task pane used
for manipulating styles. As with action panes, these give you a great deal
of flexibility.

 Cross - application
communication

 Once you have created an add - in for one Office application, you can
expose that functionality to other add - ins. You could, for example, create a
financial calculating service in Excel and then use that service from Word
— without creating a separate add - in.

 Outlook form regions You can create form regions that can be used in Outlook.

Features Usable In All Project Types

 Feature Description

 ClickOnce deployment You can distribute any VSTO project that you create to end users
through ClickOnce deployment methods. This enables users to stay
up - to - date with updates to your document - and application - level
solutions by detecting changes to the application manifest.

 Ribbon menus Ribbon menus are used in all Office applications, and VSTO includes
two ways to create your own ribbon menus. You can either use XML to
define a ribbon or use the Ribbon Designer. Typically, you will use
the Ribbon Designer as it is much easier to use, although you may
want the XML version for backwards compatibility.

 VSTO Fundamentals
 Now that you have seen what is included in VSTO, it is time to look at the more practical side of things,
and how you can build VSTO projects. The techniques demonstrated in this section are general ones that
apply to all types of VSTO projects.

c40.indd 1390c40.indd 1390 2/19/08 5:32:06 PM2/19/08 5:32:06 PM

Chapter 40: Visual Studio Tools for Offi ce

1391

 In this section, you will look at the following:

❑ Office object model

❑ VSTO namespaces

❑ Host items and host controls

❑ Basic VSTO project structure

❑ The Globals class

❑ Event handling

 Office Object Model
 The Office 2007 suite of applications exposes its functionality through a COM object model. You can
use this object model directly from VBA to control just about any aspect of Office functionality. The
Office object model was introduced in Office 97, and has evolved since then as functionality in Office
has changed.

 There are a huge number of classes in the Office object model, some of which are used across the suite of
Office applications and some of which are specific to individual applications. For example, the Word
2007 object model includes a Documents collection representing the currently loaded objects, each of
which is represented by a Document object. In VBA code, you can access documents by name or index
and call methods to perform operations on them. For example, the following VBA code closes the
document with the name My Document without saving changes:

Documents(“My Document”).Close SaveChanges:=wdDoNotSaveChanges

 The Office object model includes named constants (such as wdDoNotSaveChanges in the preceding
code) and enumerations to make it easier to use.

 VSTO Namespaces
 VSTO contains a collection of namespaces, which contain types that you can use to program against the
Office object model. Many of the classes and enumerations in these namespaces map directly to objects
and enumerations in the Office object model. These are accessed through Office PIAs. However, VSTO
also contains types that do not map directly, or are unrelated to the Office object model. For example,
there are a lot of classes that are used for designer support in VS.

 The types that do wrap or communicate with objects in the Office object model are divided into
namespaces containing types for use with Office 2003 and those for use with Office 2007. The namespaces
that you will use for Office 2007 development are summarized in the following table.

 Namespace Description

 Microsoft.Office.Core ,
 Microsoft.Office.Interop.*

 These namespaces contain thin wrappers around the PIA
classes and, so, provide the base functionality for working
with the Office classes. There are several nested namespaces
in the Microsoft.Office.Interop namespace for each of
the Office products.

c40.indd 1391c40.indd 1391 2/19/08 5:32:07 PM2/19/08 5:32:07 PM

Part V: Presentation

1392

 Namespace Description

 Microsoft.Office.Tools This namespace contains general types that provide VSTO
functionality and base classes for many of the classes in
nested namespaces. For example, this namespace includes
the classes required to implement action panes in
 document - level customizations and the base class for
application - level add - ins.

 Microsoft.Office.Tools.Excel ,
 Microsoft.Office.Tools.Excel.*

 These namespaces contain the types required to interact
with the Excel application and Excel documents.

 Microsoft.Office.Tools.Outlook These namespaces contain the types required to interact
with the Outlook application.

 Microsoft.Office.Tools.Ribbon This namespace includes the types required to work with
and create your own ribbon menus.

 Microsoft.Office.Tools.Word ,
 Microsoft.Office.Tools.Word.*

 These namespaces contain the types required to interact
with the Word application and Word documents.

 Microsoft.VisualStudio.Tools.* These namespaces provide the VSTO infrastructure
that you work with when you develop VSTO solutions
in VS.

 Host Items and Host Controls
 Host items and host controls are classes that have been extended to make it easier for document - level
customizations to interact with Office documents. These classes simplify your code as they expose
.NET - style events and are fully managed. The “ host ” part of the name of host items and host classes
references the fact that these classes wrap and extend the native Office objects that are accessed
through PIAs.

 Often when you use host items and host controls, you will find that it is necessary to use the underlying
PIA interop types as well. For example, if you create a new Word document, then you receive a reference
to the interop Word document type rather than the Word document host item. You need to be aware of
this and write your code accordingly.

 There are host items and host controls for both Word and Excel document - level customizations.

 Word
 There is a single host item for Word, Microsoft.Office.Tools.Word.Document . This represents a
Word document. As you might expect, this class has an enormous number of methods and properties
that you can use to interact with Word documents.

 There are 12 host controls for Word, as shown in the following table, all of which are found in the
 Microsoft.Office.Tools.Word namespace.

c40.indd 1392c40.indd 1392 2/19/08 5:32:07 PM2/19/08 5:32:07 PM

Chapter 40: Visual Studio Tools for Offi ce

1393

 Control Description

 Bookmark This control represents a location within the Word
document. This might be a single location or a range
of characters.

 XMLNode , XmlNodes These controls are used when the document has an
attached XML schema. They allow you to reference
document content by the XML node location of that
content. You can also manipulate the XML structure
of a document with these controls.

 ContentControl This class is the base class for the remaining eight
controls in this table, and enables you to deal with
Word content controls. A content control is a control
that presents content as a control or that enables func-
tionality above and beyond that offered by plain text
in a document.

 BuildingBlockGalleryContentControl This control enables you to add and manipulate
 document building blocks, such as formatted tables,
cover pages, and so on.

 ComboBoxContentControl This control represents content formatted as a combo
box.

 DatePickerContentControl This control represents content formatted in a
date picker.

 DropDownListContentControl This control represents content formatted as a
drop - down list.

 GroupContentControl This control represents content that is a grouped
 collection of other content items, including text and
other content controls.

 PictureContentControl This control represents an image.

 RichTextContentControl This control represents a block of rich text content.

 PlainTextContentControl This control represents a block of plain text content.

 Excel
 There are three host items and four host controls for Excel, all of which are contained in the
 Microsoft.Office.Tools.Excel namespace.

 The Excel host items are shown in the following table.

c40.indd 1393c40.indd 1393 2/19/08 5:32:07 PM2/19/08 5:32:07 PM

Part V: Presentation

1394

 Host Item Description

 Workbook This host item represents an entire Excel workbook, which may contain multiple
worksheets and chartsheets.

 Worksheet This host item is used for individual worksheets within a workbook.

 Chartsheet This host item is used for individual chartsheets within a workbook.

 The Excel host controls are shown in the following table.

 Control Description

 Chart This control represents a chart that is embedded in a worksheet.

 ListObject This control represents a list in a worksheet.

 NamedRange This control represents a named range in a worksheet.

 XmlMappedRange This control is used when an Excel spreadsheet has an attached schema, and
is used to manipulate ranges that are mapped to XML schema elements.

 Basic VSTO Project Structure
 When you first create a VSTO project, the files you start with vary according to the project type, but there
are some common features. In this section, you will see what constitutes a VSTO project.

 Document - Level Customization Project Structure
 When you create a document - level customization project, you will see an entry in Solution Explorer that
represents the document type. This may be:

❑ A .docx file for a Word document

❑ A .dotx file for a Word template

❑ A .xlsx file for an Excel workbook

❑ A .xltx file for an Excel template

 Each of these has a designer view and a code file, which you will see if you expand the item in Solution
Explorer. The Excel templates also include sub - items representing the workbook as a whole and each
spreadsheet in the workbook. This structure enables you to provide custom functionality on a per - sheet
or per - workbook basis.

 If you view the hidden files in one of these projects, you will see several designer files that you can look
at to see the template - generated code. Each Office document item has an associated class from the VSTO
namespaces, and the classes in the code files derive from these classes. These classes are defined as
partial class definitions so that your custom code is separated from the code generated by the visual
designer, similar to the structure of Windows Forms applications.

 For example, the Word document template provides a class that derives from the host item
 Microsoft.Office.Tools.Word.Document . This code is contained in ThisDocument.cs , as follows:

c40.indd 1394c40.indd 1394 2/19/08 5:32:08 PM2/19/08 5:32:08 PM

Chapter 40: Visual Studio Tools for Offi ce

1395

using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml.Linq;
using Microsoft.VisualStudio.Tools.Applications.Runtime;
using Office = Microsoft.Office.Core;
using Word = Microsoft.Office.Interop.Word;
namespace WordDocument1
{
 public partial class ThisDocument
 {
 private void ThisDocument_Startup(object sender, System.EventArgs e)
 {
 }
 private void ThisDocument_Shutdown(object sender, System.EventArgs e)
 {
 }
 #region VSTO Designer generated code
 /// < summary >
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// < /summary >
 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(ThisDocument_Startup);
 this.Shutdown += new System.EventHandler(ThisDocument_Shutdown);
 }
 #endregion
 }
}

 This template - generated code includes aliases for the two main namespaces that you will use when
creating a document - level customization for Word, Microsoft.Office.Core for the main VSTO
Office classes and Microsoft.Office.Interop.Word for Word - specific classes. Note that if
you want to use Word host controls, then you would also add a using statement for the
 Microsoft.Office.Tools.Word namespace. The template - generated code also defines two
event handler hooks that you can use to execute code when the document is loaded or unloaded,
 ThisDocument_Startup() and ThisDocument_Shutdown() .

 Every one of the document - level customization project types has a similar structure in its code file (or, in
the case of Excel, code files). There are namespace aliases defined for you and handlers for the various
 Startup and Shutdown events that the VSTO classes define. From this starting point, you add dialog
boxes, action panes, ribbon controls, event handlers, and custom code to define the behavior of your
customization.

 With document - level customizations, you can also customize the document or documents through the
document designer. Depending on the type of solution you are creating, this might involve adding
boilerplate content to templates, interactive content to documents, or something else. The designers are
effectively hosted versions of Office applications, and you can use them to enter content just as you can
in the applications themselves. However, you can also add controls such as host controls and Windows
Forms controls to documents, and code around these controls.

c40.indd 1395c40.indd 1395 2/19/08 5:32:08 PM2/19/08 5:32:08 PM

Part V: Presentation

1396

 Application - Level Add - In Project Structure
 When you create an application - level add - in, there will be no document or documents in Solution
Explorer. Instead, you will see an item representing the application that you are creating an add - in for,
and if you expand this item, you will see a file called ThisAddIn.cs . This file contains a partial class
definition for a class called ThisAddIn , which provides the entry point for your add - in. This class
derives from Microsoft.Office.Tools.AddIn , which provides code add - in functionality, and
implements the Microsoft.VisualStudio.Tools.Office.IOfficeEntryPoint interface, which
is an infrastructure interface.

 For example, the code generated by the Word add - in template is as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;
using Word = Microsoft.Office.Interop.Word;
using Office = Microsoft.Office.Core;
namespace WordAddIn1
{
 public partial class ThisAddIn
 {
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 }
 private void ThisAddIn_Shutdown(object sender, System.EventArgs e)
 {
 }
 #region VSTO generated code
 /// < summary >
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// < /summary >
 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(ThisAddIn_Startup);
 this.Shutdown += new System.EventHandler(ThisAddIn_Shutdown);
 }

 #endregion
 }
}

 As you can see, this structure is very similar to the structure used in document - level customizations. It
includes aliases for the same Microsoft.Office.Core and Microsoft.Office.Interop.Word
namespaces, and gives you event handlers for Startup and Shutdown events (ThisAddIn_Startup()
and ThisAddIn_Shutdown()). These events are slightly different from the document ones, as they are
raised when the add - in is loaded or unloaded rather than when individual documents are opened
or closed.

 You proceed to customize application - level add - ins much as you do document - level customizations: by
adding ribbon controls, task panes, and additional code.

c40.indd 1396c40.indd 1396 2/19/08 5:32:09 PM2/19/08 5:32:09 PM

Chapter 40: Visual Studio Tools for Offi ce

1397

 The Globals Class
 All VSTO project types define a class called Globals that gives you global access to the following:

❑ For document - level customizations, all documents in the solution. These are exposed through
members with names that match the document class names — for example, Globals.
ThisWorkbook and Globals.Sheet1 .

❑ For application - level add - ins, the add - in object. This is exposed through Globals.ThisAddIn .

❑ For Outlook add - in projects, all Outlook form regions.

❑ All ribbons in the solution, through the Globals.Ribbons property.

 Behind the scenes, the Globals class is created through a series of partial definitions in the various
designer - maintained code files in your solution. For example, the default Sheet1 worksheet in an Excel
Workbook project includes the following designer - generated code:

internal sealed partial class Globals
{
 private static Sheet1 _Sheet1;
 internal static Sheet1 Sheet1
 {
 get
 {
 return _Sheet1;
 }
 set
 {
 if ((_Sheet1 == null))
 {
 _Sheet1 = value;
 }
 else
 {
 throw new System.NotSupportedException();
 }
 }
 }
}

 This code adds the Sheet1 member to the Globals class.

 Event Handling
 Earlier in this chapter, you saw how the host item and host control classes expose events that you can
handle. Unfortunately, this is not the case for the interop classes. There are a few events that you can use,
but for the most part, you will find it difficult to create event - driven solutions by using these events.
Most often, to respond to events you should focus on the events exposed by host items and host controls.

 The obvious problem here is that there are no host items or host controls for application - level add - in
projects. Sadly, this is a problem that you must learn to live with when you use VSTO. However, the
most common events that you are likely to listen for in add - ins are those associated with ribbon menu
and task pane interaction. You design ribbons with the integrated ribbon designer, and you can respond
to any events generated by the ribbon to make the control interactive. Task panes are usually
implemented as Windows Forms user controls (although you can use WPF), and you can use Windows
Forms events here rather than PIA interop events. This means that you will not often encounter
situations in which there is no event available for the functionality you require.

c40.indd 1397c40.indd 1397 2/19/08 5:32:09 PM2/19/08 5:32:09 PM

Part V: Presentation

1398

 When you do need to use a PIA - exposed event, you will find that events are exposed through interfaces
on the PIA objects. Consider a Word Add - In project. The ThisAddIn class in this project exposes a
property called Application through which you can obtain a reference to the Office application.
This property is of type Microsoft.Office.Interop.Word.Application , and exposes events
through the Microsoft.Office.Interop.Word.ApplicationEvents4_Event interface. This
interface exposes a total of 29 events (which really doesn ’ t seem to be a lot for an application as complex
as Word, does it?). You can handle, for example, the DocumentBeforeClose event to respond to Word
document close requests.

 Building VSTO Solutions
 The previous sections explained what VSTO projects are, how they are structured, and the features that
you can use in the various project types. In this section, you look at implementing VSTO solutions.

 Figure 40 - 5 outlines the structure of document - level customization solutions.

VSTO Document-Level CustomizationOffice Object Model

PIA

Events

Data Binding

Ribbons

Action Panes Globals

Host Controls
Host Control

Host Item

Office Object
Wrapper

Office Object
Wrapper

Events

Figure 40-5

 For document - level customizations you will interact with at least one host item, which will typically
contain multiple host controls. You may use Office object wrappers directly, but for the most part, you
will access the Office object model and its functionality through host items and host controls.

 You will make use of host item and host control events, data binding, ribbon menus, action panes, and
global objects in your code.

 Figure 40 - 6 outlines the structure of application - level add - in solutions.

 In this slightly simpler model, you are more likely to use the thinner wrappers around Office objects
directly, or at least through the add - in class that encapsulates your solution. You will also use events
exposed by the add - in class, ribbon menus, task panes, and global objects in your code.

 In this section, you will look at both of these types of applications as appropriate, as well as the
following topics:

❑ Managing application - level add - ins

❑ Interacting with applications and documents

❑ UI customization

c40.indd 1398c40.indd 1398 2/19/08 5:32:09 PM2/19/08 5:32:09 PM

Chapter 40: Visual Studio Tools for Offi ce

1399

 Managing Application - Level Add - Ins
 One of the first things you will find when you create an application - level add - in is that VS carries out all
the steps necessary to register the add - in with the Office application. This means that registry entries are
added so that when the Office application starts, it will automatically locate and load your assembly. If
you subsequently want to add or remove add - ins, then you must either navigate through Office
application settings or manipulate the registry manually.

 For example, in Word, you must open the Office Button menu, click Word Options, and select the
Add - Ins tab, as shown in Figure 40 - 7 .

VSTO Application-Level Add-InOffice Object Model

PIA

Events Ribbons

Task Panes Globals

Add-In Class

Office Object
Wrapper

Office Object
Wrapper

Figure 40-6

Figure 40-7

c40.indd 1399c40.indd 1399 2/19/08 5:32:10 PM2/19/08 5:32:10 PM

Part V: Presentation

1400

 Figure 40 - 7 shows two add - ins that have been created with VSTO: WordAddIn1 and
 WordDocEditTimer . To add or remove add - ins, you must select COM Add - Ins in the Manage drop -
 down (the default option) and click the Go button. The dialog box that appears is shown in Figure 40 - 8 .

Figure 40-8

 You can unload add - ins by deselecting them in the COM Add - Ins dialog box (as shown in Figure 40 - 8),
and you can add new add - ins or remove old ones with the Add and Remove buttons.

 Interacting with Applications and Documents
 Whatever type of application you are creating, you will want to interact with the host application and/or
documents in the host operation. In part, this includes using UI customizations, which you learn about
in the next section. However, you may also need to monitor documents within an application, which
means that you must handle some Office object model events. For example, to monitor documents in
Word, you require event handlers for the following events of the Microsoft.Office.Interop.Word
.ApplicationEvents4_Event interface:

❑ DocumentOpen — Raised when a document is opened.

❑ NewDocument — Raised when a new document is created.

❑ DocumentBeforeClose — Raised when a document is saved.

 Also, when Word first starts, it will have a document loaded, which will either be a blank new document
or a document that was loaded.

 The downloadable code for this chapter includes an example called WordDocEditTimer , which
 maintains a list of edit times for Word documents. Part of the functionality of this application is to
 monitor the documents that are loaded, for reasons that are explained later. Because this example also
uses a custom task pane and ribbon menu, you will look at it after covering those topics.

 You can access the currently active document in Word through ThisAddIn.Application
.ActiveDocument property, and the collection of open documents through ThisAddIn.Application
.Documents . Similar properties exist for the other Office applications with a Multiple Document
Interface (MDI). You can manipulate various properties of documents through the properties exposed by,
for example, the Microsoft.Office.Interop.Word.Document class.

 One point to note here is that the amount of classes and class members you must deal with when
developing VSTO solutions is, frankly, enormous. Until you get used to it, it can be difficult to locate the
features you are after. For example, it is not obvious why in Word the current active selection is available
not through the active document, but through the application (through the ThisAddIn.Application
.Selection property).

c40.indd 1400c40.indd 1400 2/19/08 5:32:10 PM2/19/08 5:32:10 PM

Chapter 40: Visual Studio Tools for Offi ce

1401

 The selection is useful for inserting, reading, or replacing text through the Range property. For example:

ThisAddIn.Application.Selection.Range.Text = “Inserted text”;

 Unfortunately, there is not enough space in this chapter to cover the object libraries in great depth.
Instead, you will learn about the object libraries as they are relevant to the ongoing discussion.

 UI Customization
 Perhaps the most important aspect of the latest release of VSTO is the flexibility that is available for
customizing the UI of your customizations and add - ins. You can add content to any of the existing
ribbon menus, add completely new ribbon menus, customize task panes by adding action panes, add
completely new task panes, and integrate Windows Forms and WPF forms and controls.

 In this section, we look at each of these subjects.

 Ribbon Menus
 You can add ribbon menus to any of the VSTO projects that you are looking at in this chapter. When you
add a ribbon, you will see the designer window shown in Figure 40 - 9 .

Figure 40-9

 The designer allows you to customize this ribbon by adding controls to the Office button menu (shown
in the top left of Figure 40 - 9) and to groups on the ribbon. You can also add additional groups.

 The classes used in ribbons are found in the Microsoft.Office.Tools.Ribbon namespace. This
includes the ribbon class that you derive from to create a ribbon, OfficeRibbon . This class can contain
 RibbonTab objects, each of which includes content for a single tab. Tabs contain RibbonGroup objects,
like the group1 group in Figure 40 - 9 . These tabs can contain a variety of controls.

 It is possible for the groups on a tab to be positioned on a completely new tab, or on one of the existing
tabs in the Office application that you are targeting. Where the groups appear is determined by the
 RibbonTab.ControlId property. This property has a ControlIdType property, which you can set
to RibbonControlIdType.Custom or RibbonControlIdType.Office . If you use Custom , then you
must also set RibbonTab.ControlId.CustomId to a string value, which is the tab identifier. You can
use any identifier you like here. However, if you use Office for ControlIdType , then you must set
 RibbonTab.ControlId.OfficeId to a string value that matches one of the identifiers used in the
Office product you are using. For example, in Excel you could set this property to TabHome to add
groups to the Home tab, TabInsert for the Insert tab, and so on. The default for add - ins is TabAddIns ,
which will be shared by all add - ins.

 Many tabs are available, especially in Outlook; you can download a series of spreadsheets
containing the full list from: www.microsoft.com/downloads/details
.aspx?FamilyID=4329D9E9-4D11-46A5-898D-23E4F331E9AE & displaylang=en .

c40.indd 1401c40.indd 1401 2/19/08 5:32:11 PM2/19/08 5:32:11 PM

Part V: Presentation

1402

 Once you have decided where to put your ribbon groups, you can add any of the controls shown in the
following table.

 Control Description

 RibbonBox This is a container control that you can use to lay out other controls
in a group. You can lay out controls in a RibbonBox horizontally or
 vertically by changing the BoxStyle property to RibbonBoxStyle
.Horizontal or RibbonBoxStyle.Vertical .

 RibbonButton You can use this control to add a small or large button with or
without a text label to a group. Set the ControlSize property to
 RibbonControlSize.RibbonControlSizeLarge
or RibbonControlSize.RibbonControlSizeRegular to control the
size. The button has a Click event handler that you can use to
respond to interaction. You can also set the image to a custom image or
to one of the images stored in the Office system (described following
this table).

 RibbonButtonGroup This is a container control that represents a group of buttons. It can
 contain RibbonButton , RibbonGallery , RibbonMenu ,
 RibbonSplitButton , and RibbonToggleButton controls.

 RibbonCheckBox A check box control with a Click event and a Checked property.

 RibbonComboBox A combo box (combined text entry with drop - down list of items). Use
the Items property for items, the Text property for the entered text,
and the TextChanged event to respond to changed.

 RibbonDropDown A container that can contain RibbonDropDownItem and RibbonButton
items, in Items and Buttons properties respectively. The buttons
and items are formatted into a drop - down list. You use the
 SelectionChanged event to respond to interaction.

 RibbonEditBox A text box that users can use to enter or edit text in the Text property.
This control has a TextChanged event.

 RibbonGallery As with RibbonDropDown , this control can contain
 RibbonDropDownItem and RibbonButton items, in Items
and Buttons properties respectively. This control uses Click and
 ButtonClick events rather than the SelectionChanged event that
 RibbonDropDown has.

 RibbonLabel Simple text display, set with the Label property.

 RibbonMenu A pop - up menu that you can populate with other controls, such as
 RibbonButton and nested RibbonMenu controls, when it is open in
design view. Handle events for the items on the menu.

 RibbonSeparator A simple separator used to customize control layout in groups.

c40.indd 1402c40.indd 1402 2/19/08 5:32:11 PM2/19/08 5:32:11 PM

Chapter 40: Visual Studio Tools for Offi ce

1403

 Control Description

 RibbonSplitButton Control that combines a RibbonButton or RibbonToggleButton with
a RibbonMenu . Set the button style with ButtonType , which can be
 RibbonButtonType.Button or RibbonButtonType.ToggleButton .
Use the Click event for the main button or individual button Click
events in the menu to respond to interaction.

 RibbonToggleButton A button that can be in a selected or unselected state, as indicated by the
 Checked property. This control also has a Click event.

 You can also set the DialogBoxLauncher property of a group so that an icon appears in the bottom
right of the group. You can use this to display a dialog box as its name suggests, or to open a task pane,
or to perform any other action you want. You add or remove this icon through the GroupView Tasks
menu, as shown in Figure 40 - 10 , which also shows some of the other controls in the previous table as
they appear on a ribbon in design view.

Figure 40-10

 To set the image for a control, for example a RibbonButton control, you can either set the Image
property to a custom image and ImageName to a name for the image (so that you can optimize image
loading in an OfficeRibbon.LoadImage event hander), or you can use one of the built - in Office
images. To do this, you set the OfficeImageId property to the ID of the image.

 There are many images that you can use; you can download a spreadsheet that lists them from
 www.microsoft.com/downloads/details.aspx?familyid=12b99325-93e8-4ed4-8385-
74d0f7661318 & displaylang=en . Figure 40 - 11 shows a sample.

 Figure 40 - 11 shows the Developer ribbon tab, which you can enable through the Office button, in the
Excel Options dialog box, on the Popular tab.

 When you click on an image, a dialog box appears to tell you what the image ID is, as shown in
Figure 40 - 12 .

 The ribbon designer is extremely flexible, and you can provide pretty much any functionality that you
would expect to find on an Office ribbon. However, if you want to customize your UI further, then
you will want to use action and task panes, as you can create any UI and functionality you like there.

c40.indd 1403c40.indd 1403 2/19/08 5:32:12 PM2/19/08 5:32:12 PM

Part V: Presentation

1404

Figure 40-11

Figure 40-12

 Action Panes and Custom Task Panes
 You can use action and task panes to display content that is docked in the task pane area of the Office
application interface. Task panes are used in application - level add - ins, and action panes are used in
document - level customizations. Both task and action panes must inherit from UserControl objects,
which means that you create a UI by using Windows Forms. You can also use a WPF UI if you host a
WPF form in an ElementHost control on the UserControl . One difference between these controls is
that you can add action panes to a document - level customization through the Action Pane Template item
in the New Item Wizard or with a simple user control. Task panes must be added as plain user controls.

 To add an action pane to a document in a document - level customization, you add an instance of
the action pane class to the Controls collection of the ActionsPane property of the document.
For example:

c40.indd 1404c40.indd 1404 2/19/08 5:32:12 PM2/19/08 5:32:12 PM

Chapter 40: Visual Studio Tools for Offi ce

1405

public partial class ThisWorkbook
{
 Private ActionsPaneControl1 actionsPane;
 private void ThisWorkbook_Startup(object sender, System.EventArgs e)
 {
 actionsPane = new ActionsPaneControl1();
 this.ActionsPane.Controls.Add(actionsPane);
 }
 ...
}

 This code adds the actions pane when the document (in this case an Excel workbook) is loaded. You can
also do this in, for example, a ribbon button event handler.

 Custom task panes are added through the ThisAddIn.CustomTaskPanes.Add() method property in
application - level add - in projects. This method also allows you to name the task window. For example:

public partial class ThisAddIn
{
 Microsoft.Office.Tools.CustomTaskPane taskPane;
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 taskPane = this.CustomTaskPanes.Add(new UserControl1(), “My Task Pane”);
 taskPane.Visible = true;
 }
 ...
}

 Note that the Add() method returns an object of type Microsoft.Office.Tools.CustomTaskPane .
You can access the user control itself through the Control property of this object. You can also use other
properties exposed by this type — for example, the Visible property as shown in the previous code —
 to control the task pane.

 At this point, it is worth mentioning a slightly unusual feature of Office applications, and in particular,
a difference between Word and Excel. For historical reasons, although both Word and Excel are MDI
applications, the way in which these applications host documents is different. In Word, every document
has a unique parent window. In Excel, every document shares the same parent window.

 When you call the CustomTaskPanes.Add() method, the default behavior is to add the task pane to the
currently active window. In Excel, this means that every document will display the task pane, as the
same parent window is used for all of them. In Word, the situation is different. If you want the task pane
to appear for every document, then you must add it to every window that contains a document.

 To add the task pane to a specific document, you pass an instance of the Microsoft.Office.Interop
.Word.Window class to the Add() method as a third parameter. You can obtain the window associated
with a document through the Microsoft.Office.Interop.Word.Document.ActiveWindow property.

 In the next section, you will see how to do this in practice.

 Example Application
 As mentioned in previous sections, the example code for this chapter includes an application called
 WordDocEditTimer , which maintains a list of edit times for Word documents. In this section, we
examine the code for this application in detail, as it illustrates everything you ’ ve read about so far and
includes some useful tips.

c40.indd 1405c40.indd 1405 2/19/08 5:32:13 PM2/19/08 5:32:13 PM

Part V: Presentation

1406

 The general operation of this application is that whenever a document is created or loaded, a timer is
started, linked to the document name. If you close a document, then the timer for that document pauses.
If you open a document that has previously been timed, then the timer resumes. Also, if you use Save As
to save a document with a different filename, then the timer is updated to use the new filename.

 This application is a Word application - level add - in, and uses a custom task pane and a ribbon menu.
The ribbon menu contains a button that you can use to turn the task pane on and off and a check box that
enables you to pause the timer for the currently active document. The group containing these controls is
appended to the Home ribbon tab. The task pane displays a list of active timers.

 This user interface is shown in Figure 40 - 13 .

Figure 40-13

 Timers are maintained through the DocumentTimer class:

public class DocumentTimer
{
 public Word.Document Document { get; set; }
 public DateTime LastActive { get; set; }
 public bool IsActive { get; set; }
 public TimeSpan EditTime { get; set; }
}

 This keeps a reference to a Microsoft.Office.Interop.Word.Document object as well as the total
edit time, whether the timer is active, and the time it last became active. The ThisAddIn class maintains
a collection of these objects, associated with document names:

c40.indd 1406c40.indd 1406 2/19/08 5:32:13 PM2/19/08 5:32:13 PM

Chapter 40: Visual Studio Tools for Offi ce

1407

public partial class ThisAddIn
{
 private Dictionary < string, DocumentTimer > documentEditTimes;

 Each timer can therefore be located by document reference or document name. This is necessary because
document references allow you to keep track of document name changes (there is no event that you can
use to monitor this), and document names allow you to keep track of closed and reopened documents.

 The ThisAddIn class also maintains a list of CustomTaskPane objects (as noted earlier, one is required
for each window in Word):

 private List < Tools.CustomTaskPane > timerDisplayPanes;

 When the add - in starts, the ThisAddIn_Startup() method performs several tasks. First, it initializes
the two collections:

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Initialize timers and display panels
 documentEditTimes = new Dictionary < string, DocumentTimer > ();
 timerDisplayPanes = new List < Microsoft.Office.Tools.CustomTaskPane > ();

 Next, it adds several event handlers through the ApplicationEvents4_Event interface:

 // Add event handlers
 Word.ApplicationEvents4_Event eventInterface = this.Application;
 eventInterface.DocumentOpen += new Microsoft.Office.Interop.Word
 .ApplicationEvents4_DocumentOpenEventHandler(
 eventInterface_DocumentOpen);
 eventInterface.NewDocument += new Microsoft.Office.Interop.Word
 .ApplicationEvents4_NewDocumentEventHandler(
 eventInterface_NewDocument);
 eventInterface.DocumentBeforeClose += new Microsoft.Office.Interop.Word
 .ApplicationEvents4_DocumentBeforeCloseEventHandler(
 eventInterface_DocumentBeforeClose);
 eventInterface.WindowActivate += new Microsoft.Office.Interop.Word
 .ApplicationEvents4_WindowActivateEventHandler(
 eventInterface_WindowActivate);

 These event handlers are used to monitor documents as they are opened, created, and closed, and also to
ensure that the Pause check box is kept up - to - date on the ribbon. This latter functionality is achieved by
keeping track of window activations with the WindowActivate event.

 The last task performed in this event handler is to start monitoring the current document and add the
custom task panel to the window containing the document:

 // Start monitoring active document
 MonitorDocument(this.Application.ActiveDocument);
 AddTaskPaneToWindow(this.Application.ActiveDocument.ActiveWindow);
 }

 The MonitorDocument() utility method adds a timer for a document:

 internal void MonitorDocument(Word.Document Doc)
 {
 // Monitor doc
 documentEditTimes.Add(Doc.Name, new DocumentTimer

(continued)

c40.indd 1407c40.indd 1407 2/19/08 5:32:13 PM2/19/08 5:32:13 PM

Part V: Presentation

1408

 {
 Document = Doc,
 EditTime = new TimeSpan(0),
 IsActive = true,
 LastActive = DateTime.Now
 });
 }

 This method simply creates a new DocumentTimer for the document. The DocumentTimer
references the document, has zero edit time, is active, and was made active at the current time. It then
adds this timer to the documentEditTimes collection and associates it with the document name.

 The AddTaskPaneToWindow() method adds the custom task pane to a window. This method starts by
checking the existing task panes to ensure that there isn ’ t one in the window already. Also, one other
strange feature of Word is that if you immediately open an old document after loading the application,
the default Document1 document vanishes, without raising a close event. This can lead to an exception
being raised when the window for the task pane that was in the document is accessed, so the method
also checks for the ArgumentNullException that indicates this:

 private void AddTaskPaneToWindow(Word.Window Wn)
 {
 // Check for task pane in window
 Tools.CustomTaskPane docPane = null;
 Tools.CustomTaskPane paneToRemove = null;
 foreach (Tools.CustomTaskPane pane in timerDisplayPanes)
 {
 try
 {
 if (pane.Window == Wn)
 {
 docPane = pane;
 break;
 }
 }
 catch (ArgumentNullException)
 {
 // pane.Window is null, so document1 has been unloaded.
 paneToRemove = pane;
 }
 }

 If an exception is thrown, then the offending task pane is removed from the collection:

 // Remove pane if necessary
 timerDisplayPanes.Remove(paneToRemove);

 If no task pane was found for the window, then the method finishes by adding one:

 // Add task pane to doc
 if (docPane == null)
 {
 Tools.CustomTaskPane pane = this.CustomTaskPanes.Add(
 new TimerDisplayPane(documentEditTimes),
 “Document Edit Timer”,
 Wn);

(continued)

c40.indd 1408c40.indd 1408 2/19/08 5:32:14 PM2/19/08 5:32:14 PM

Chapter 40: Visual Studio Tools for Offi ce

1409

 timerDisplayPanes.Add(pane);
 pane.VisibleChanged +=
 new EventHandler(timerDisplayPane_VisibleChanged);
 }
 }

 The added task pane is an instance of the TimerDisplayPane class. You will look at this class shortly.
It is added with the name “ Document Edit Timer. ” Also, an event handler is added for the
 VisibleChanged event of the CustomTaskPane that you obtain after calling the CustomTaskPanes
.Add() method. This enables you to refresh the display when it first appears:

 private void timerDisplayPane_VisibleChanged(object sender, EventArgs e)
 {
 // Get task pane and toggle visibility
 Tools.CustomTaskPane taskPane = (Tools.CustomTaskPane)sender;
 if (taskPane.Visible)
 {
 TimerDisplayPane timerControl = (TimerDisplayPane)taskPane.Control;
 timerControl.RefreshDisplay();
 }
 }

 The TimerDisplayPane class exposes a RefreshDisplay() method that is called in the preceding
code. This method, as its name suggests, refreshes the display of the timerControl object.

 Next, there is the code that ensures that all documents are monitored. First, when a new document
is created, the eventInterface_NewDocument() event handler is called, and the document is
monitored by calling the MonitorDocument() and AddTaskPaneToWindow() methods, which
you ’ ve already seen.

 private void eventInterface_NewDocument(Word.Document Doc)
 {
 // Monitor new doc
 MonitorDocument(Doc);
 AddTaskPaneToWindow(Doc.ActiveWindow);

 This method also clears the Pause check box in the ribbon menu as new documents start with the time
running. This is achieved through a utility method, SetPauseStatus() , which is defined on the ribbon:

 // Set checkbox
 Globals.Ribbons.TimerRibbon.SetPauseStatus(false);
 }

 Just before a document is closed, the eventInterface_DocumentBeforeClose() event handler
is called. This method freezes the timer for the document, updates the total edit time, clears the
 Document reference, and removes the task pane from the document window (with
 RemoveTaskPaneFromWindow() , detailed shortly) before the document is closed.

 private void eventInterface_DocumentBeforeClose(Word.Document Doc,
 ref bool Cancel)
 {
 // Freeze timer
 documentEditTimes[Doc.Name].EditTime += DateTime.Now
 - documentEditTimes[Doc.Name].LastActive;
 documentEditTimes[Doc.Name].IsActive = false;
 documentEditTimes[Doc.Name].Document = null;
 // Remove task pane
 RemoveTaskPaneFromWindow(Doc.ActiveWindow);
 }

c40.indd 1409c40.indd 1409 2/19/08 5:32:14 PM2/19/08 5:32:14 PM

Part V: Presentation

1410

 When a document is opened, the eventInterface_DocumentOpen() method is called. There is a little
more work to be done here, as before monitoring the document, the method must determine whether a
timer already exists for the document by looking at its name:

 private void eventInterface_DocumentOpen(Word.Document Doc)
 {
 if (documentEditTimes.ContainsKey(Doc.Name))
 {
 // Monitor old doc
 documentEditTimes[Doc.Name].LastActive = DateTime.Now;
 documentEditTimes[Doc.Name].IsActive = true;
 documentEditTimes[Doc.Name].Document = Doc;
 AddTaskPaneToWindow(Doc.ActiveWindow);
 }

 If the document isn ’ t already being monitored, then a new monitor is configured as for a new document:

 else
 {
 // Monitor new doc
 MonitorDocument(Doc);
 AddTaskPaneToWindow(Doc.ActiveWindow);
 }
 }

 The RemoveTaskPaneFromWindow() method is used to remove the task pane from a window. The code
for this method first checks that a task pane exists for the specified window:

 private void RemoveTaskPaneFromWindow(Word.Window Wn)
 {
 // Check for task pane in window
 Tools.CustomTaskPane docPane = null;
 foreach (Tools.CustomTaskPane pane in timerDisplayPanes)
 {
 if (pane.Window == Wn)
 {
 docPane = pane;
 break;
 }
 }

 If a task window is found, then it is removed by calling the CustomTaskPanes.Remove() method.
It is also removed from the local collection of task pane references.

 // Remove document task pane
 if (docPane != null)
 {
 this.CustomTaskPanes.Remove(docPane);
 timerDisplayPanes.Remove(docPane);
 }
 }

 The last event handler in this class is eventInterface_WindowActivate() , called when a window is
activated. This method gets the timer for the active document and sets the check box on the ribbon menu
so that the check box is kept updated for the document:

c40.indd 1410c40.indd 1410 2/19/08 5:32:14 PM2/19/08 5:32:14 PM

Chapter 40: Visual Studio Tools for Offi ce

1411

 private void eventInterface_WindowActivate(Word.Document Doc,
 Word.Window Wn)
 {
 // Ensure pause checkbox in ribbon is accurate, start by getting timer
 DocumentTimer documentTimer =
 documentEditTimes[this.Application.ActiveDocument.Name];
 // Set checkbox
 Globals.Ribbons.TimerRibbon.SetPauseStatus(!documentTimer.IsActive);
 }

 The code for ThisAddIn also includes two utility methods. The first of these,
 ToggleTaskPaneDisplay() , is used to show or hide the display of the task pane for the currently
active document by setting the CustomTaskPane.Visible property.

 internal void ToggleTaskPaneDisplay()
 {
 // Ensure window has task window
 AddTaskPaneToWindow(this.Application.ActiveDocument.ActiveWindow);
 // toggle document task pane
 Tools.CustomTaskPane docPane = null;
 foreach (Tools.CustomTaskPane pane in timerDisplayPanes)
 {
 if (pane.Window == this.Application.ActiveDocument.ActiveWindow)
 {
 docPane = pane;
 break;
 }
 }
 docPane.Visible = !docPane.Visible;
 }

 The ToggleTaskPaneDisplay() method shown in the preceding code is called by event handlers on
the ribbon control, as you will see shortly.

 Finally, the class has another method that is called from the ribbon menu, which enables ribbon controls
to pause or resume the timer for a document:

 internal void PauseOrResumeTimer(bool pause)
 {
 // Get timer
 DocumentTimer documentTimer =
 documentEditTimes[this.Application.ActiveDocument.Name];
 if (pause & & documentTimer.IsActive)
 {
 // Freeze timer
 documentTimer.EditTime += DateTime.Now - documentTimer.LastActive;
 documentTimer.IsActive = false;
 }
 else if (!pause & & !documentTimer.IsActive)
 {
 // Resume timer
 documentTimer.IsActive = true;
 documentTimer.LastActive = DateTime.Now;
 }
 }
}

c40.indd 1411c40.indd 1411 2/19/08 5:32:15 PM2/19/08 5:32:15 PM

Part V: Presentation

1412

 The only other code in this class definition is an empty event handler for Shutdown , and the VSTO -
 generated code to hook up the Startup and Shutdown event handlers.

 Next, the ribbon in the project, TimerRibbon , is laid out, as shown in Figure 40 - 14 .

Figure 40-14

 This ribbon contains a RibbonButton , a RibbonSeparator , a RibbonCheckBox , and a
 DialogBoxLauncher . The button uses the large display style, and has an OfficeImageId of
 StartAfterPrevious , which displays the clock face shown in Figure 40 - 13 . (These images are not
visible at design time.) The ribbon uses the TabHome tab type, which causes its contents to be appended
to the Home tab.

 The ribbon has three event handlers, each of which calls on one of the utility methods in ThisAddIn
described earlier:

private void group1_DialogLauncherClick(object sender,
 RibbonControlEventArgs e)
{
 // Show or hide task pane
 Globals.ThisAddIn.ToggleTaskPaneDisplay();
}
private void pauseCheckBox_Click(object sender, RibbonControlEventArgs e)
{
 // Pause timer
 Globals.ThisAddIn.PauseOrResumeTimer(pauseCheckBox.Checked);
}
private void toggleDisplayButton_Click(object sender,
 RibbonControlEventArgs e)
{
 // Show or hide task pane
 Globals.ThisAddIn.ToggleTaskPaneDisplay();
}

 The ribbon also includes its own utility method, SetPauseStatus() , which as you saw earlier is called
by code in ThisAddIn to select or clear the check box:

internal void SetPauseStatus(bool isPaused)
{
 // Ensure checkbox is accurate
 pauseCheckBox.Checked = isPaused;
}

c40.indd 1412c40.indd 1412 2/19/08 5:32:15 PM2/19/08 5:32:15 PM

Chapter 40: Visual Studio Tools for Offi ce

1413

 The other component in this solution is the TimerDisplayPane user control that is used in the task
pane. The layout of this control is shown in Figure 40 - 15 .

Figure 40-15

 This control includes a button, a label, and a list box — not the most exciting of displays, although it
would be simple enough to replace it with, for example, a prettier WPF control.

 The code for the control keeps a local reference to the document timers, which is set in the constructor:

public partial class TimerDisplayPane : UserControl
{
 private Dictionary < string, DocumentTimer > documentEditTimes;
 public TimerDisplayPane()
 {
 InitializeComponent();
 }
 public TimerDisplayPane(Dictionary < string, DocumentTimer >
 documentEditTimes) : this()
 {
 // Store reference to edit times
 this.documentEditTimes = documentEditTimes;
 }

 The button event handler calls the RefreshDisplay() method to refresh the timer display:

 private void refreshButton_Click(object sender, EventArgs e)
 {
 RefreshDisplay();
 }

 The RefreshDisplay() method is also called from ThisAddIn , as you saw earlier. It is a surprisingly
complicated method considering what it does. It also checks the list of monitored documents against the
list of loaded documents and corrects any problems. This sort of code is often necessary in VSTO
applications, as the interface with the COM Office object model occasionally doesn ’ t work quite as it
should. The rule of thumb here is to code defensively.

 The method starts by clearing the current list of timers in the timerList list box:

 internal void RefreshDisplay()
 {
 // Clear existing list
 this.timerList.Items.Clear();

c40.indd 1413c40.indd 1413 2/19/08 5:32:15 PM2/19/08 5:32:15 PM

Part V: Presentation

1414

 Next, the monitors are checked. The method iterates through each document in the Globals
.ThisAddIn.Application.Documents collection and determines if the document is monitored,
unmonitored, or monitored but has had a name change since the last refresh.

 Finding monitored documents simply involves checking the document name against the document
names in the documentEditTimes collection of keys:

 // Ensure all docs are monitored
 foreach (Word.Document doc in Globals.ThisAddIn.Application.Documents)
 {
 bool isMonitored = false;
 bool requiresNameChange = false;
 DocumentTimer oldNameTimer = null;
 string oldName = null;
 foreach (string documentName in documentEditTimes.Keys)
 {
 if (doc.Name == documentName)
 {
 isMonitored = true;
 break;
 }

 If the names don ’ t match, then the document references are compared, which enables you to detect name
changes to documents, as shown in the following code:

 else
 {
 if (documentEditTimes[documentName].Document == doc)
 {
 // Monitored, but name changed!
 oldName = documentName;
 oldNameTimer = documentEditTimes[documentName];
 isMonitored = true;
 requiresNameChange = true;
 break;
 }
 }
 }

 For unmonitored documents, a new monitor is created:

 // Add monitor if not monitored
 if (!isMonitored)
 {
 Globals.ThisAddIn.MonitorDocument(doc);
 }

 Whereas documents with name changes are re - associated with the monitor used for the old named
document:

 // Rename if necessary
 if (requiresNameChange)
 {
 documentEditTimes.Remove(oldName);
 documentEditTimes.Add(doc.Name, oldNameTimer);
 }
 }

c40.indd 1414c40.indd 1414 2/19/08 5:32:16 PM2/19/08 5:32:16 PM

Chapter 40: Visual Studio Tools for Offi ce

1415

 After reconciling the document edit timers, a list is generated. This code also detects whether referenced
documents are still loaded, and pauses the timer for documents that aren ’ t by setting the IsActive
property to false . Again, this is defensive programming.

 // Create new list
 foreach (string documentName in documentEditTimes.Keys)
 {
 // Check to see if doc is still loaded
 bool isLoaded = false;
 foreach (Word.Document doc in
 Globals.ThisAddIn.Application.Documents)
 {
 if (doc.Name == documentName)
 {
 isLoaded = true;
 break;
 }
 }
 if (!isLoaded)
 {
 documentEditTimes[documentName].IsActive = false;
 documentEditTimes[documentName].Document = null;
 }

 For each monitor, a list item is added to the list box that includes the document name and its total edit
time:

 // Add item
 this.timerList.Items.Add(string.Format(“{0}: {1}”, documentName,
 documentEditTimes[documentName].EditTime +
 (documentEditTimes[documentName].IsActive ?
 (DateTime.Now - documentEditTimes[documentName].LastActive) :
 new TimeSpan(0))));
 }
 }
}

 This completes the code in this example. This example has shown you how to use ribbon and task pane
controls and how to maintain task panes in multiple Word documents. It has also illustrated many of the
techniques covered earlier in the chapter.

 VBA Interoperability
 Because the Office system has existed for some years now, you may well be familiar with VBA code, and
you may well have some in your existing applications. It is possible to rewrite VBA code in VSTO
solutions, but this isn ’ t always practical. However, having seen what is possible with VSTO you may
want to replace existing VBA functionality, or add new functionality, with managed VSTO code.

 VSTO makes it possible to expose VSTO functionality to VBA code to achieve just this. To do this,
however, there are a few steps that you must perform to provide VBA code with a COM interface. These
nine steps are shown here, along with example code and screenshots from the ExcelVBAInterop project
in the downloadable code:

 1. Before you start to expose VSTO code to VBA, you must have a document that includes a VBA
project. For ease of development, it is also a good idea to have macros enabled in the document
before you start. Then, when you create a document - level customization in VSTO, you use that
document as the starting point for the document in your solution.

c40.indd 1415c40.indd 1415 2/19/08 5:32:16 PM2/19/08 5:32:16 PM

Part V: Presentation

1416

 2. Once you have this starting point, you can proceed to write code that accesses the application
and/or document in the usual way. This code needn ’ t be accessible through the VSTO project, as
you will provide a VBA interface later. Instead, create methods that you want VBA to be capable
of calling. For example:

public partial class ThisWorkbook : ExcelVBAInterop.IThisWorkbook
{
 ...
 public void NameSheet()
 {
 NamingDialog dlg = new NamingDialog();
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 ((Excel.Worksheet)this.ActiveSheet).Name = dlg.SheetName;
 }
 }
}

 This code uses a simple custom dialog box that you will see shortly. This dialog box enables users to
enter a string and select whether to include the current date in the sheet name.

 3. You must override the GetAutomationObject() method to return the correct object for
 automation for VBA code as follows:

public partial class ThisWorkbook : ExcelVBAInterop.IThisWorkbook
{
 ...
 protected override object GetAutomationObject()
 {
 return this;
 }
}

 4. Because the COM system works through interfaces, you must expose the method you want to
call through an interface. The easiest way to do this is to right - click in your code and select
Refactor Extract Interface. You then select the method you want to be exposed on the
interface, and the wizard (shown in Figure 40 - 16) does the rest.

Figure 40-16

c40.indd 1416c40.indd 1416 2/19/08 5:32:17 PM2/19/08 5:32:17 PM

Chapter 40: Visual Studio Tools for Offi ce

1417

 5. You must also add attributes from the System.Runtime.InteropServices namespace to the
class to expose the class to COM (see Chapter 24 , “ Interoperability “):

using System.Runtime.InteropServices;
namespace ExcelVBAInterop
{
 [ComVisible(true)]
 [ClassInterface(ClassInterfaceType.None)]
 public partial class ThisWorkbook : ExcelVBAInterop.IThisWorkbook
 {
 ...
 }
}

 6. The generated interface also needs the ComVisible attribute, and the interface must be
made public:

using System.Runtime.InteropServices;
namespace ExcelVBAInterop
{
 [ComVisible(true)]
 public interface IThisWorkbook
 {
 void NameSheet();
 }
}

 7. You must change the ReferenceAssemblyFromVbaProject property of the document to true ,
as shown in Figure 40 - 17 . If the document doesn ’ t contain VBA code, then you will not be able
to change this property. When you change it, you will receive a warning that any VBA code you
add to the project when it is running will be lost, so you should keep a copy of any VB code
you change.

Figure 40-17

 8. The remaining changes must be made to the VBA code in the document. You can run the project
at this point, and when it is running you can access the VBA code through the Developer tab or
by pressing Alt+F11. The first thing you need to add is a property that enables VBA to access
your VSTO code, as follows (you reference the class that you have exposed by name, qualified
by namespace):

Property Get VSTOAssembly() As ExcelVBAInterop.ThisWorkbook
 Set VSTOAssembly = GetManagedClass(Me)
End Property

c40.indd 1417c40.indd 1417 2/19/08 5:32:17 PM2/19/08 5:32:17 PM

Part V: Presentation

1418

 9. You can then call the VSTO method through this property:

Public Sub RenameSheet()
 VSTOAssembly.NameSheet
End Sub

 Once you have performed these steps, you can add code that calls the method on the interface, or just
call it manually, as shown in Figure 40 - 18 .

Figure 40-18

 If your code includes a UI, as in this example, then it will display and be available to use. The UI in the
sample project is shown in Figure 40 - 19 .

Figure 40-19

 In this way, you can make any VSTO code you want available to VBA code.

 Summary
 In this chapter you have learned how to use VSTO to create managed solutions for Office products.

 In the first part of this chapter, you learned about the general structure of VSTO projects and the project
types that you can create. You also saw the features that you can use to make VSTO programming easier.

 In the next section, you looked, in great depth, at some of the features available in VSTO solutions and
you saw how communication with the Office object model is achieved. You also looked at the

c40.indd 1418c40.indd 1418 2/19/08 5:32:17 PM2/19/08 5:32:17 PM

Chapter 40: Visual Studio Tools for Offi ce

1419

namespaces and types available in VSTO and learned how to use those types to implement a variety of
functionality. Then, you explored some of the code features of VSTO projects and how to use these
features to get the effect you want.

 After this, you moved on to the more practical side of things. You learned how add - ins are managed in
Office applications and how to interact with the Office object model. You also saw how to customize the
UI of your applications with ribbon menus, task panes, and action panes.

 Next, you explored a sample application that illustrated the UI and interaction techniques that you
learned earlier. The example contained a lot of code, but it included useful techniques, including how to
manage task panes in multiple Word document windows.

 Finally, you looked at interoperability with VBA code. You saw how to expose your managed code to
VBA through COM interop, and you looked at another example to illustrate the techniques.

 This is the last chapter in Part V , “ Presentation. ” In the first chapter in Part VI , “ Communication, ” you
will learn how to access the Internet from your applications with classes in the System.Net namespace.

c40.indd 1419c40.indd 1419 2/19/08 5:32:18 PM2/19/08 5:32:18 PM

c40.indd 1420c40.indd 1420 2/19/08 5:32:18 PM2/19/08 5:32:18 PM

Part VI

Communication

Chapter 41: Accessing the Internet

Chapter 42: Windows Communication Foundation

Chapter 43: Windows Workflow Foundation

Chapter 44: Enterprise Services

Chapter 45: Message Queuing

Chapter 46: Directory Services

Chapter 47: Peer to Peer Networking

Chapter 48: Syndication

c41.indd 1421c41.indd 1421 2/19/08 5:32:32 PM2/19/08 5:32:32 PM

c41.indd 1422c41.indd 1422 2/19/08 5:32:33 PM2/19/08 5:32:33 PM

 Accessing the Internet

 Chapters 37 through 39 discuss how you can use C# to write powerful, efficient, and dynamic Web
pages using ASP.NET. For the most part, the clients accessing ASP.NET pages will be users
running Internet Explorer or other Web browsers such as Opera or Firefox. However, you might
want to add Web - browsing features to your own application, or you might need your applications
to programmatically obtain information from a Web site. In this latter case, it is usually better for
the site to implement a Web service. However, when you are accessing public Internet sites, you
might not have any control over how the site is implemented.

 This chapter covers facilities provided through the .NET base classes for using various network
protocols, particularly HTTP and TCP, to access networks and the Internet as a client. In particular,
this chapter covers:

 Downloading files from the World Wide Web

 Using the Web Browser control in a Windows Forms application

 Manipulating IP addresses and performing DNS lookups

 Socket programming with TCP, UDP, and socket classes

 This chapter covers some of the lower - level means of getting at these protocols through the .NET
Framework. You will also find other means of communicating via these items using technologies,
such as the Windows Communication Foundation (WCF), which is covered in the next chapter.

 The two namespaces of most interest for networking are System.Net and System.Net
.Sockets . The System.Net namespace is generally concerned with higher - level operations, for
example, downloading and uploading files, and making Web requests using HTTP and other
protocols, whereas System.Net.Sockets contains classes to perform lower - level operations. You
will find these classes useful when you want to work directly with sockets or protocols, such as
TCP/IP. The methods in these classes closely mimic the Windows socket (Winsock) API functions
derived from the Berkeley sockets interface. You will also find that some of the objects that this
chapter works with are found in the System.IO namespace.

 This chapter takes a fairly practical approach, mixing examples with a discussion of the relevant
theory and networking concepts as appropriate. This chapter is not a guide to computer
networking but an introduction to using the .NET Framework for network communication.

❑

❑

❑

❑

c41.indd 1423c41.indd 1423 2/19/08 5:32:33 PM2/19/08 5:32:33 PM

1424

Part VI: Communication

 You will learn how to use the WebBrowser control in a Windows Forms environment. You will also learn
how the WebBrowser control can make some specific Internet access tasks easier to accomplish.

 However, the chapter starts with the simplest case, sending a request to a server and storing the
information sent back in the response. (As with other chapters, you can download the sample code for
this chapter from the Wrox Web site at www.wrox.com .)

 The WebClient Class
 If you only want to request a file from a particular URI, then you will find that the easiest .NET class to
use is System.Net.WebClient . This is an extremely high - level class designed to perform basic
operations with only one or two commands. The .NET Framework currently supports URIs beginning
with the http: , https: , and file: identifiers.

 It is worth noting that the term URL (Uniform Resource Locator) is no longer in use in new technical
specifications, and URI (Uniform Resource Identifier) is now preferred. URI has roughly the same
meaning as URL, but is a bit more general because URI does not imply you are using one of the familiar
protocols, such as HTTP or FTP.

 Downloading Files
 Two methods are available for downloading a file using WebClient . The method you choose depends
on how you want to process the file ’ s contents. If you simply want to save the file to disk, then you use
the DownloadFile() method. This method takes two parameters: the URI of the file and a location
(path and file name) to save the requested data:

WebClient Client = new WebClient();
Client.DownloadFile(“http://www.reuters.com/”, “ReutersHomepage.htm”);

 More commonly, your application will want to process the data retrieved from the Web site. To do this,
you use the OpenRead() method, which returns a Stream reference that you can then use to retrieve the
data into memory:

WebClient Client = new WebClient();
Stream strm = Client.OpenRead(“http://www.reuters.com/”);

 Basic Web Client Example
 The first example demonstrates the WebClient.OpenRead() method. You will display the contents of the
downloaded page in a ListBox control. To begin, create a new project as a standard C# Windows Forms
application and add a ListBox called listBox1 with the docking property set to DockStyle.Fill . At
the beginning of the file, you will need to add the System.Net and System.IO namespaces references to
your list of using directives. You then make the following changes to the constructor of the main form:

public Form1()
{
 InitializeComponent();
 WebClient Client = new WebClient();
 Stream strm = Client.OpenRead(“http://www.reuters.com”);
 StreamReader sr = new StreamReader(strm);
 string line;
 while ((line=sr.ReadLine()) != null)

c41.indd 1424c41.indd 1424 2/19/08 5:32:33 PM2/19/08 5:32:33 PM

1425

Chapter 41: Accessing the Internet

 {
 listBox1.Items.Add(line);
 }

 strm.Close();
}

 In this example, you connect a StreamReader class from the System.IO namespace to the network
stream. This allows you to obtain data from the stream as text through the use of higher - level methods,
such as ReadLine() . This is an excellent example of the point made in Chapter 25 , “ Manipulating Files
and the Registry, ” about the benefits of abstracting data movement into the concept of a stream.

 Figure 41 - 1 shows the results of running this sample code.

Figure 41-1

 The WebClient class also has an OpenWrite() method. This method returns a writable stream for you to
send data to a URI. You can also specify the method used to send the data to the host; the default method
is POST . The following code snippet assumes a writable directory named accept on the local machine.
The code will create a file in the directory with the name newfile.txt and the contents Hello World :

WebClient webClient = new WebClient();
Stream stream = webClient.OpenWrite(“http://localhost/accept/newfile.txt”, “PUT”);
StreamWriter streamWriter = new StreamWriter(stream);
streamWriter.WriteLine(“Hello World”);
streamWriter.Close();

c41.indd 1425c41.indd 1425 2/19/08 5:32:34 PM2/19/08 5:32:34 PM

1426

Part VI: Communication

 Uploading Files
 The WebClient class also features UploadFile() and UploadData() methods. You use these methods
when you need to post an HTML form or to upload an entire file. UploadFile() uploads a file to a
specified location given the local file name, whereas UploadData() uploads binary data supplied as an
array of bytes to the specified URI (there is also a DownloadData() method for retrieving an array of
bytes from a URI):

WebClient client = new WebClient();
client.UploadFile(“http://www.ourwebsite.com/NewFile.htm”,
 “C:\\WebSiteFiles\\NewFile.htm”);
byte[] image;
// code to initialize image so it contains all the binary data for
// some jpg file
client.UploadData(“http://www.ourwebsite.com/NewFile.jpg”, image);

 WebRequest and WebResponse Classes
 Although the WebClient class is very simple to use, it has very limited features. In particular, you
cannot use it to supply authentication credentials — a particular problem with uploading data is that not
many sites will accept uploaded files without authentication! It is possible to add header information to
requests and to examine any headers in the response, but only in a very generic sense — there is no
specific support for any one protocol. This is because WebClient is a very general - purpose class
designed to work with any protocol for sending a request and receiving a response (such as HTTP or
FTP). It cannot handle any features specific to any one protocol, such as cookies, which are specific to
HTTP. To take advantage of these features, you need to use a family of classes based on two other classes
in the System.Net namespace: WebRequest and WebResponse .

 You start off by seeing how to download a Web page using these classes. This is the same example as
before, but using WebRequest and WebResponse . In the process, you will uncover the class hierarchy
involved, and then see how to take advantage of extra HTTP features supported by this hierarchy.

 The following code shows the modifications you need to make to the BasicWebClient sample to
use the WebRequest and WebResponse classes:

public Form1()
{
 InitializeComponent();

 WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
 WebResponse wrs = wrq.GetResponse();
 Stream strm = wrs.GetResponseStream();
 StreamReader sr = new StreamReader(strm);
 string line;
 while ((line = sr.ReadLine()) != null)
 {
 listBox1.Items.Add(line);
 }
 strm.Close();
}

 In the code example, you start by instantiating an object representing a Web request. You don ’ t do this
using a constructor, but instead call the static method WebRequest.Create() . As you will learn in more
detail later in this chapter, the WebRequest class is part of a hierarchy of classes supporting different

c41.indd 1426c41.indd 1426 2/19/08 5:32:34 PM2/19/08 5:32:34 PM

1427

Chapter 41: Accessing the Internet

network protocols. In order to receive a reference to the correct object for the request type, a factory
mechanism is in place. The WebRequest.Create() method will create the appropriate object for the
given protocol.

 The WebRequest class represents the request for information to send to a particular URI. The URI is
passed as a parameter to the Create() method. A WebResponse represents the data you retrieve from
the server. By calling the WebRequest.GetResponse() method, you actually send the request to the
Web server and create a WebResponse object to examine the return data. As with the WebClient object,
you can obtain a stream to represent the data, but in this case you use the WebResponse
.GetResponseStream() method.

 Other WebRequest and WebResponse Features
 This section briefly discusses a few of the other areas supported by WebRequest , WebResponse , and
other related classes.

 HTTP Header Information
 An important part of the HTTP protocol is the ability to send extensive header information with both
request and response streams. This information can include cookies and the details of the particular
browser sending the request (the user agent). As you would expect, the .NET Framework provides full
support for accessing the most significant data. The WebRequest and WebResponse classes provide
some support for reading the header information. However, two derived classes provide additional
HTTP - specific information: HttpWebRequest and HttpWebResponse . As you will see in more detail
later, creating a WebRequest with an HTTP URI results in an HttpWebRequest object instance. Because
 HttpWebRequest is derived from WebRequest , you can use the new instance whenever a WebRequest
is required. In addition, you can cast the instance to an HttpWebRequest reference and access properties
specific to the HTTP protocol. Likewise, the GetResponse() method call will actually return an
 HttpWebResponse instance as a WebResponse reference when dealing with HTTP. Again, you can
perform a simple cast to access the HTTP - specific features.

 You can examine a few of the header properties by adding the following code before the
 GetResponse() method call:

WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
HttpWebRequest hwrq = (HttpWebRequest)wrq;
listBox1.Items.Add(“Request Timeout (ms) = “ + wrq.Timeout);
listBox1.Items.Add(“Request Keep Alive = “ + hwrq.KeepAlive);
listBox1.Items.Add(“Request AllowAutoRedirect = “ + hwrq.AllowAutoRedirect);

 The Timeout property is specified in milliseconds, and the default value is 100,000 . You can set the
 Timeout property to control how long the WebRequest object will wait for the response before throwing a
 WebException . You can check the WebException.Status property to view the reason for an exception.
This enumeration includes status codes for timeouts, connection failures, protocol errors, and more.

 The KeepAlive property is a specific extension to the HTTP protocol, so you access this property
through an HttpWebRequest reference. KeepAlive allows multiple requests to use the same connection,
saving time in closing and reopening connections on subsequent requests. The default value for this
property is true .

 The AllowAutoRedirect property is also specific to the HttpWebRequest class. Use this property to
control whether the Web request should automatically follow redirection responses from the Web server.
Again, the default value is true . If you want to allow only a limited number of redirections, then set the
 MaximumAutomaticRedirections property of the HttpWebRequest to the desired number.

c41.indd 1427c41.indd 1427 2/19/08 5:32:35 PM2/19/08 5:32:35 PM

1428

Part VI: Communication

 Although the request and response classes expose most of the important headers as properties, you
can also use the Headers property itself to view the entire collection of headers. Add the following code
after the GetResponse() method call to place all of the headers in the ListBox control:

WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
WebResponse wrs = wrq.GetResponse();
WebHeaderCollection whc = wrs.Headers;
for(int i = 0; i < whc.Count; i++)
{
 listBox1.Items.Add(string.Format(“Header {0} : {1}”,
 whc.GetKey(i), whc[i]));
}

 This example code produces the list of headers shown in Figure 41 - 2 .

Figure 41-2

 Authentication
 Another property in the WebRequest class is the Credentials property. If you need authentication
credentials to accompany your request, then you can create an instance of the NetworkCredential class
(also from the System.Net namespace) with a username and password. You can place the following
code before the call to GetResponse() .

NetworkCredential myCred = new NetworkCredential(“myusername”, “mypassword”);
wrq.Credentials = myCred;

 Working with Proxies
 You will find in enterprises that many firms must deal with a proxy server to make any type of HTTP or
FTP request. Many times, the proxy server, which routes all of the organization ’ s requests and responses,
uses some form of security (usually a username and a password). For your applications that use the
 WebClient or the WebRequest objects, you might need to take these proxy servers into account. As with
the preceding NetworkCredential object, you are going to want to use the WebProxy object before you
make a call to make the actual request.

WebProxy wp = new WebProxy(“192.168.1.100”, true);
wp.Credentials = new NetworkCredential(“user1”, “user1Password”);
WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
wrq.Proxy = wp;
WebResponse wrs = wrq.GetResponse();

 If you also require a designation of the user ’ s domain in addition to its credentials, then you would use a
different signature on the NetworkCredential instantiation:

c41.indd 1428c41.indd 1428 2/19/08 5:32:35 PM2/19/08 5:32:35 PM

1429

Chapter 41: Accessing the Internet

WebProxy wp = new WebProxy(“192.168.1.100”, true);
wp.Credentials = new NetworkCredential(“user1”, “user1Password”, “myDomain”);
WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
wrq.Proxy = wp;
WebResponse wrs = wrq.GetResponse();

 Asynchronous Page Requests
 An additional feature of the WebRequest class is the ability to request pages asynchronously. This
feature is significant because there can be quite a long delay between sending a request to a host and
receiving the response. Methods such as WebClient.DownloadData() and WebRequest
.GetResponse() will not return until the response from the server is complete. You might not want
your application frozen due to a long period of inactivity, and in such scenarios it is better to use the
 BeginGetResponse() and EndGetResponse() methods. BeginGetResponse() works
asynchronously and returns almost immediately. Under the covers, the runtime will asynchronously
manage a background thread to retrieve the response from the server. Instead of returning a
 WebResponse object, BeginGetResponse() returns an object implementing the IAsyncResult
interface. With this interface, you can poll or wait for the response to become available and then invoke
 EndGetResponse() to gather the results.

 You can also pass a callback delegate into the BeginGetResponse() method. The target of a callback
delegate is a method returning void and accepting an IAsyncResult reference as a parameter. When
the worker thread is finished gathering the response, the runtime invokes the callback delegate to inform
you of the completed work. As shown in the following code, calling EndGetResponse() in the callback
method allows you to retrieve the WebResponse object:

public Form1()
{
 InitializeComponent();
 WebRequest wrq = WebRequest.Create(“http://www.reuters.com”);
 wrq.BeginGetResponse(new AsyncCallback(OnResponse), wrq);
}
protected static void OnResponse(IAsyncResult ar)
{
 WebRequest wrq = (WebRequest)ar.AsyncState;
 WebResponse wrs = wrq.EndGetResponse(ar);
 // read the response ...
}

 Notice that you can retrieve the original WebRequest object by passing the object as the second
parameter to BeginGetResponse() . The third parameter is an object reference known as the
state parameter. During the callback method, you can retrieve the same state object using the
 AsyncState property of IAsyncResult .

 Displaying Output as an HTML Page
 The examples show how the .NET base classes make it very easy to download and process data from the
Internet. However, so far, you have displayed files only as plain text. Quite often, you will want to view
an HTML file in an Internet Explorer – style interface in which the rendered HTML allows you to see what
the Web document actually looks like. Unfortunately, there is no .NET version of Microsoft ’ s Internet
Explorer, but that does not mean that you cannot easily accomplish this task. Before the release of the
.NET Framework 2.0, you could make reference to a COM object that was an encapsulation of Internet
Explorer and use the .NET - interop capabilities to have aspects of your application work as a browser.
Now, in the .NET Framework 2.0, as well as the .NET Framework 3.5, you can use the built - in
 WebBrowser control available for your Windows Forms applications.

c41.indd 1429c41.indd 1429 2/19/08 5:32:36 PM2/19/08 5:32:36 PM

1430

Part VI: Communication

 The WebBrowser control encapsulates the COM object even further for you making tasks that were once
more complicated even easier. In addition to the WebBrowser control, another option is to use the
programmatic ability to call up Internet Explorer instances from your code.

 When not using the new WebBrowser control, you can programmatically start an Internet Explorer
process and navigate to a Web page using the Process class in the System.Diagnostics namespace:

Process myProcess = new Process();
myProcess.StartInfo.FileName = “iexplore.exe”;
myProcess.StartInfo.Arguments = “http://www.wrox.com”;
myProcess.Start();

 However, the preceding code launches Internet Explorer as a separate window. Your application has no
connection to the new window and therefore cannot control the browser.

 Using the new WebBrowser control, however, allows you to display and control the browser as an
integrated part of your application. The new WebBrowser control is quite sophisticated, featuring a large
number of methods, properties, and events.

 Allowing Simple Web Browsing from Your Applications
 For the sake of simplicity, start by creating a Windows Form application that simply has a TextBox
control and a WebBrowser control. You will build the application so that the end user will simply enter a
URL into the text box and press Enter, and the WebBrowser control will do all the work of fetching the
Web page and displaying the resulting document.

 In Visual Studio 2008 Designer, your application should look as shown in Figure 41 - 3 .

 With this application, when the end user types a URL and presses Enter, this key press will register with
the application. Then the WebBrowser control will go off to retrieve the requested page, subsequently
displaying it in the control itself.

Figure 41-3

c41.indd 1430c41.indd 1430 2/19/08 5:32:36 PM2/19/08 5:32:36 PM

1431

Chapter 41: Accessing the Internet

 The code behind this application is illustrated here:

using System;
using System.Windows.Forms;
namespace CSharpInternet
{
 partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
 {
 if (e.KeyChar == (char)13)
 {
 webBrowser1.Navigate(textBox1.Text);
 }
 }
 }
}

 From this example, you can see that each key press that the end user makes in the text box is captured by
the textBox1_KeyPress event. If the character input is a carriage return (a press of the Enter key, which
is (char)13) , then you take action with the WebBrowser control. Using the WebBrowser control ’ s
 Navigate method, you specify the URL (as a string) using the textBox1.Text property. The end
result is shown in Figure 41 - 4 .

Figure 41-4

c41.indd 1431c41.indd 1431 2/19/08 5:32:37 PM2/19/08 5:32:37 PM

1432

Part VI: Communication

 Launching Internet Explorer Instances
 It might be that you are not interested in hosting a browser inside of your application, as shown in the
previous section, but instead are only interested in allowing the user to find your Web site in a typical
browser (for example, by clicking a link inside of your application). For an example of this task, create a
Windows Form application that has a LinkLabel control on it. For instance, you can have a form that
has a LinkLabel control on it that states “ Visit our company Web site! ”

 Once you have this control in place, use the following code to launch your company ’ s Web site in an
independent browser as opposed to directly being in the form of your application:

private void linkLabel1_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
{
 WebBrowser wb = new WebBrowser();
 wb.Navigate(“http://www.wrox.com”, true);
}

 In this example, when the LinkLabel control is clicked by the user, a new instance of the WebBrowser
class is created. Then, using the WebBrowser class ’ s Navigate() method, the code specifies the location
of the Web page as well as a Boolean value that specifies whether this endpoint should be opened within
the Windows Form application (a false value) or from within an independent browser (using a true
value). By default, this is set to false . With the preceding construct, when the end user clicks the link
found in the Windows application, a browser instance will be instantiated, and the Wrox Web site at
 www.wrox.com will be immediately launched.

 Giving Your Application More IE - Type Features
 In the previous example, in which you used the WebBrowser control directly in the Windows Form
application, you will notice that when you clicked on the links contained in the page, the text within the
 TextBox control was not updated to show the URL of the exact location where you were in the browsing
process. You can fix this by listening for events coming from the WebBrowser control and adding
handlers to the control.

 Updating the form ’ s title with the title of the HTML page is easy. You just need to use the Navigated
event and update the Text property of the form:

private void webBrowser1_Navigated(object sender, EventArgs e)
{
 this.Text = webBrowser1.DocumentTitle.ToString();
}

 In this case, when the WebBrowser control moves onto another page, the Navigated event will fire, and
this will cause the form ’ s title to change to the title of the page being viewed. In some instances when
working with pages on the Web, even though you have typed in a specific address, you are going to be
redirected to another page altogether. You are most likely going to want to reflect this in the textbox
(address bar) of the form; to do this, you change the form ’ s text box based on the complete URL of the page
being viewed. To accomplish this task, you can use the WebBrowser control ’ s Navigated event as well:

private void webBrowser1_Navigated(object sender, WebBrowserNavigatedEventArgs e)
{
 textBox1.Text = webBrowser1.Url.ToString();
 this.Text = webBrowser1.DocumentTitle.ToString();
}

 In this case, when the requested page has finished downloading in the WebBrowser control, the
 Navigated event is fired. In your case, you simply update the Text value of the textBox1 control to the

c41.indd 1432c41.indd 1432 2/19/08 5:32:37 PM2/19/08 5:32:37 PM

1433

Chapter 41: Accessing the Internet

URL of the page. This means that once a page is loaded in the WebBrowser control ’ s HTML container,
and if the URL changes in this process (for instance, if there is a redirect), then the new URL will be
shown in the text box. If you employ these steps and navigate to the Wrox Web site (www.wrox.com),
then you will notice that the page ’ s URL will immediately change to www.wrox.com/WileyCDA/ . This
process also means that if the end user clicks one of the links contained within the HTML view, then the
URL of the newly requested page will also be shown in the text box.

 Now if you run the application with the preceding changes in place, you will find that the form ’ s title
and address bar work as they do in Microsoft ’ s Internet Explorer, as demonstrated in Figure 41 - 5 .

Figure 41-5

 The next step is to create an IE - like toolbar that will allow the end user to control the WebBrowser
control a little better. This means that you will incorporate buttons such as Back, Forward, Stop, Refresh,
and Home.

 Rather than using the ToolBar control, you will just add a set of Button controls at the top of the form
where you currently have the address bar. Add five buttons to the top of the control, as illustrated in
Figure 41 - 6 .

 In this example, the text on the button face is changed to indicate the function of the button. Of course,
you can even go as far as to use a screen capture utility to “ borrow ” button images from IE and use
those. The buttons should be named buttonBack , buttonForward , buttonStop , buttonRefresh , and
 buttonHome . To get the resizing to work properly, make sure that you set the Anchor property of the
three buttons on the right to Top , Right .

 On startup, buttonBack , buttonForward , and buttonStop should be disabled because there is no
point to the buttons if there is no initial page loaded in the WebBrowser control. You will later tell the

c41.indd 1433c41.indd 1433 2/19/08 5:32:38 PM2/19/08 5:32:38 PM

1434

Part VI: Communication

application when to enable and disable the Back and Forward buttons yourself, depending on where the
user is in the page stack. In addition, when a page is being loaded, you will need to enable the Stop
button — but also, you will need to disable the Stop button once the page has finished being loaded. You
will also have a Submit button on the page that will allow for the submission of the URL being
requested.

Figure 41-6

 First, however, you will add the functionality behind the buttons. The WebBrowser class itself has all of
the methods that you need, so this is all very straightforward:

using System;
using System.Windows.Forms;
namespace CSharpInternet
{
 partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
 {
 if (e.KeyChar == (char)13)
 {
 webBrowser1.Navigate(textBox1.Text);
 }
 }
 private void webBrowser1_Navigated(object sender,
 WebBrowserNavigatedEventArgs e)
 {
 textBox1.Text = webBrowser1.Url.ToString();
 this.Text = webBrowser1.DocumentTitle.ToString();
 }

c41.indd 1434c41.indd 1434 2/19/08 5:32:38 PM2/19/08 5:32:38 PM

1435

Chapter 41: Accessing the Internet

 private void Form1_Load(object sender, EventArgs e)
 {
 buttonBack.Enabled = false;
 buttonForward.Enabled = false;
 buttonStop.Enabled = false;
 }
 private void buttonBack_Click(object sender, EventArgs e)
 {
 webBrowser1.GoBack();
 textBox1.Text = webBrowser1.Url.ToString();
 }
 private void buttonForward_Click(object sender, EventArgs e)
 {
 webBrowser1.GoForward();
 textBox1.Text = webBrowser1.Url.ToString();
 }
 private void buttonStop_Click(object sender, EventArgs e)
 {
 webBrowser1.Stop();
 }
 private void buttonHome_Click(object sender, EventArgs e)
 {
 webBrowser1.GoHome();
 textBox1.Text = webBrowser1.Url.ToString();
 }
 private void buttonRefresh_Click(object sender, EventArgs e)
 {
 webBrowser1.Refresh();
 }
 private void buttonSubmit_Click(object sender, EventArgs e)
 {
 webBrowser1.Navigate(textBox1.Text);
 }
 private void webBrowser1_Navigating(object sender,
 WebBrowserNavigatingEventArgs e)
 {
 buttonStop.Enabled = true;
 }
 private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
 {
 buttonStop.Enabled = false;
 if (webBrowser1.CanGoBack)
 {
 buttonBack.Enabled = true;
 }
 else
 {
 buttonBack.Enabled = false;
 }
 if (webBrowser1.CanGoForward)
 {
 buttonForward.Enabled = true;
 }

(continued)

c41.indd 1435c41.indd 1435 2/19/08 5:32:39 PM2/19/08 5:32:39 PM

1436

Part VI: Communication

 else
 {
 buttonForward.Enabled = false;
 }
 }
 }
}

 Many different activities are going on in this example because there are so many options for the end user
when using this application. For each of the button - click events, there is a specific WebBrowser class
method assigned as the action to initiate. For instance, for the Back button on the form, you simply use
the WebBrowser control ’ s GoBack() method; for the Forward button you have the GoForward()
method; and for the others, you have methods such as Stop() , Refresh() , and GoHome() . This makes
it fairly simple and straightforward to create a toolbar that will give you action similar to that of
Microsoft ’ s Internet Explorer.

 When the form is first loaded, the Form1_Load event disables the appropriate buttons. From there, the
end user can enter a URL into the text box and click the Submit button to have the application retrieve
the desired page.

 To manage the enabling and disabling of the buttons, you must key into a couple of events. As
mentioned before, whenever downloading begins, you need to enable the Stop button. For this, you
simply added an event handler for the Navigating event to enable the Stop button:

 private void webBrowser1_Navigating(object sender,
 WebBrowserNavigatingEventArgs e)
 {
 buttonStop.Enabled = true;
 }

 Then, the Stop button is again disabled when the document has finished loading:

 private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
 {
 buttonStop.Enabled = false;
 }

 Enabling and disabling the appropriate Back and Forward buttons really depends on the ability to go
backward or forward in the page stack. This is achieved by using both the CanGoForwardChanged()
and the CanGoBackChanged() events:

 private void webBrowser1_CanGoBackChanged(object sender, EventArgs e)
 {
 if (webBrowser1.CanGoBack == true)
 {
 buttonBack.Enabled = true;
 }
 else
 {
 buttonBack.Enabled = false;
 }
 }
 private void webBrowser1_CanGoForwardChanged(object sender, EventArgs e)
 {
 if (webBrowser1.CanGoForward == true)

(continued)

c41.indd 1436c41.indd 1436 2/19/08 5:32:39 PM2/19/08 5:32:39 PM

1437

Chapter 41: Accessing the Internet

 {
 buttonForward.Enabled = true;
 }
 else
 {
 buttonForward.Enabled = false;
 }
 }

 Run the project now, visit a Web page, and click through a few links. You should also be able to use the
toolbar to enhance your browsing experience. The end product is shown in Figure 41 - 7 .

Figure 41-7

 Printing Using the WebBrowser Control
 Not only can users use the WebBrowser control to view pages and documents, but they can also use the
control to send these pages and documents to the printer for printing. To print the page or document
being viewed in the control, simply use the following construct:

webBrowser1.Print();

 As before, you do not need to view the page or document to print it. For instance, you can use the
 WebBrowser class to load an HTML document and print it without even displaying the loaded
document. This can be accomplished as shown here:

WebBrowser wb = new WebBrowser();
wb.Navigate(“http://www.wrox.com”);
wb.Print();

c41.indd 1437c41.indd 1437 2/19/08 5:32:39 PM2/19/08 5:32:39 PM

1438

Part VI: Communication

 Displaying the Code of a Requested Page
 In the beginning of this chapter, you used the WebRequest and the Stream classes to get at a remote
page to display the code of the requested page. You used this code to accomplish this task:

public Form1()
{
 InitializeComponent();
 System.Net.WebClient Client = new WebClient();
 Stream strm = Client.OpenRead(“http://www.reuters.com”);
 StreamReader sr = new StreamReader(strm);
 string line;
 while ((line=sr.ReadLine()) != null)
 {
 listBox1.Items.Add(line);
 }

 strm.Close();
}

 Now, however, with the introduction of the WebBrowser control, it is quite easy to accomplish the same
results. To accomplish this, change the browser application that you have been working on thus far in
this chapter. To make this change, simply add a single line to the Document_Completed event, as
illustrated here:

private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
{
 buttonStop.Enabled = false;
 textBox2.Text = webBrowser1.DocumentText.ToString();
}

 In the application itself, add another TextBox control below the WebBrowser control. The idea is that
when the end user requests a page, you display not only the visual aspect of the page but also the code
for the page, in the TextBox control. The code of the page is displayed simply by using the
 DocumentText property of the WebBrowser control, which will give you the entire page ’ s content as a
 String . The other option is to get the contents of the page as a Stream using the DocumentStream
property. The end result of adding the second TextBox to display the contents of the page as a String is
shown in Figure 41 - 8 .

 The Web Request and Web Response Hierarchy
 In this section, you will take a closer look at the underlying architecture of the WebRequest and
 WebResponse classes.

 Figure 41 - 9 illustrates the inheritance hierarchy of the classes involved.

 The hierarchy contains more than just the two classes you have used in your code. You should also know
that the WebRequest and WebResponse classes are both abstract and cannot be instantiated. These base
classes provide general functionality for dealing with Web requests and responses independent of the
protocol used for a given operation. Requests are made using a particular protocol (HTTP, FTP, SMTP,
and so on), and a derived class written for the given protocol will handle the request. Microsoft refers
to this scheme as pluggable protocols . Remember in the code you examined earlier, your variables are
defined as references to the base classes. However, WebRequest.Create() actually gives you an
 HttpWebRequest object, and the GetResponse() method actually returns an HttpWebResponse object.
This factory - based mechanism hides many of the details from the client code, allowing support for a
wide variety of protocols from the same code base.

c41.indd 1438c41.indd 1438 2/19/08 5:32:40 PM2/19/08 5:32:40 PM

1439

Chapter 41: Accessing the Internet

Figure 41-8

System.Object

System.MarshalByRefObject

System.Net.WebResponseSystem.Net.WebRequest

System.Net.HttpWebRequestSystem.Net.HttpWebRequest

System.Net.FileWebRequestSystem.Net.FileWebRequest

System.Net.FtpWebRequestSystem.Net.FtpWebRequest

Third-Party Web
Request Classes

Third-Party Web
Response Classes

Figure 41-9

c41.indd 1439c41.indd 1439 2/19/08 5:32:40 PM2/19/08 5:32:40 PM

1440

Part VI: Communication

 The fact that you need an object specifically capable of dealing with the HTTP protocol is clear from the
URI that you supply to WebRequest.Create(). WebRequest.Create() examines the protocol
specifier in the URI to instantiate and return an object of the appropriate class. This keeps your code free
from having to know anything about the derived classes or specific protocol used. When you need to
access specific features of a protocol, you might need the properties and methods of the derived class, in
which case you can cast your WebRequest or WebResponse reference to the derived class.

 With this architecture, you should be able to send requests using any of the common protocols. However,
Microsoft currently provides derived classes to cover only the HTTP, HTTPS, FTP, and FILE protocols.
The FTP option is the latest option provided by the .NET Framework (since the .NET Framework 2.0). If
you want to utilize other protocols, for example, SMTP, then you will need to turn to using the Windows
Communication Foundation, revert to using the Windows API, or use the SmtpClient object.

 Utility Classes
 This section covers a couple of utility classes to make Web programming easier when dealing with URIs
and IP addresses.

 URI s
 Uri and UriBuilder are two classes in the System (not System.Net) namespace, and they are both
intended to represent a URI. UriBuilder allows you to build a URI given the strings for the component
parts, and the Uri class allows you to parse, combine, and compare URIs.

 For the Uri class, the constructor requires a completed URI string:

Uri MSPage = new

Uri(“http://www.Microsoft.com/SomeFolder/SomeFile.htm?Order=true”);

 The class exposes a large number of read - only properties. A Uri object is not intended to be modified
once it has been constructed:

string Query = MSPage.Query; // Order=true;
string AbsolutePath = MSPage.AbsolutePath; // SomeFolder/SomeFile.htm
string Scheme = MSPage.Scheme; // http
int Port = MSPage.Port; // 80 (the default for http)
string Host = MSPage.Host; // www.Microsoft.com
bool IsDefaultPort = MSPage.IsDefaultPort; // true since 80 is default

 URIBuilder , however, implements fewer properties, just enough to allow you to build up a complete
URI. These properties are read - write.

 You can supply the components to build up a URI to the constructor:

Uri MSPage = new
 UriBuilder(“http”, “www.Microsoft.com”, 80, “SomeFolder/SomeFile.htm”);

 Or, you can build the components by assigning values to the properties:

UriBuilder MSPage = new UriBuilder();
MSPage.Scheme =”http”;
MSPage.Host = “www.Microsoft.com”;
MSPage.Port = 80;
MSPage.Path = “SomeFolder/SomeFile.htm”;

c41.indd 1440c41.indd 1440 2/19/08 5:32:41 PM2/19/08 5:32:41 PM

1441

Chapter 41: Accessing the Internet

 Once you have completed initializing the UriBuilder , you can obtain the corresponding Uri object
with the Uri property:

Uri CompletedUri = MSPage.Uri;

 IP Addresses and DNS Names
 On the Internet, you identify servers as well as clients by IP address or host name (also referred to as a
DNS name). Generally speaking, the host name is the human - friendly name that you type in a Web
browser window, such as www.wrox.com or www.microsoft.com . An IP address is the identifier
computers use to identify each other. IP addresses are the identifiers used to ensure that Web requests
and responses reach the appropriate machines. It is even possible for a computer to have more than one
IP address.

 Today, IP addresses are typically a 32 - bit value. An example of a 32 - bit IP address is 192.168.1.100. This
format of IP address is referred to as Internet Protocol version 4. Because there are now so many
computers and other devices vying for a spot on the Internet, a newer type of address was developed —
 Internet Protocol version 6. IPv6 provides a 64 - bit IP address. IPv6 can potentially provide a maximum
number of about 3 × 10 28 unique addresses. You will find that the .NET Framework allows your
applications to work with both IPv4 and IPv6.

 For host names to work, you must first send a network request to translate the host name into an IP
address, a task carried out by one or more DNS servers.

 A DNS server stores a table mapping host names to IP addresses for all the computers it knows about, as
well as the IP addresses of other DNS servers to look up the host names it does not know about. Your
local computer should always know about at least one DNS server. Network administrators configure
this information when a computer is set up.

 Before sending out a request, your computer will first ask the DNS server to tell it the IP address
corresponding to the host name you have typed in. Once armed with the correct IP address, the
computer can address the request and send it over the network. All of this work normally happens
behind the scenes while the user is browsing the Web.

 . NET Classes for IP Addresses
 The .NET Framework supplies a number of classes that are able to assist with the process of looking up
IP addresses and finding information about host computers.

IPAddress
 IPAddress represents an IP address. The address itself is available as the GetAddressBytes property
and may be converted to a dotted decimal format with the ToString() method. IPAddress also
implements a static Parse() method, which effectively performs the reverse conversion of ToString()
— converting from a dotted decimal string to an IPAddress :

IPAddress ipAddress = IPAddress.Parse(“234.56.78.9”);
byte[] address = ipAddress.GetAddressBytes();
string ipString = ipAddress.ToString();

 In this example, the byte integer address is assigned a binary representation of the IP address, and the
string ipString is assigned the text “ 234.56.78.9 ” .

c41.indd 1441c41.indd 1441 2/19/08 5:32:41 PM2/19/08 5:32:41 PM

1442

Part VI: Communication

 IPAddress also provides a number of constant static fields to return special addresses. For example, the
 Loopback address allows a machine to send messages to itself, whereas the Broadcast address allows
multicasting to the local network:

// The following line will set loopback to “127.0.0.1”.
// the loopback address indicates the local host.
string loopback = IPAddress.Loopback.ToString();
// The following line will set broadcast address to “255.255.255.255”.
// the broadcast address is used to send a message to all machines on
// the local network.
string broadcast = IPAddress.Broadcast.ToString();

 IPHostEntry
 The IPHostEntry class encapsulates information relating to a particular host computer. This class
makes the host name available via the HostName property (which returns a string), and the
 AddressList property returns an array of IPAddress objects. You are going to use the IPHostEntry
class in the next example: DNSLookupResolver .

Dns
 The Dns class is able to communicate with your default DNS server to retrieve IP addresses. The two
important (static) methods are Resolve() , which uses the DNS server to obtain the details of a host
with a given host name, and GetHostByAddress() , which also returns details of the host but this time
using the IP address. Both methods return an IPHostEntry object:

IPHostEntry wroxHost = Dns.Resolve(“www.wrox.com”);
IPHostEntry wroxHostCopy = Dns.GetHostByAddress(“208.215.179.178”);

 In this code, both IPHostEntry objects will contain details of the Wrox.com servers.

 The Dns class differs from the IPAddress and IPHostEntry classes because it has the ability to actually
communicate with servers to obtain information. In contrast, IPAddress and IPHostEntry are more
along the lines of simple data structures with convenient properties to allow access to the underlying data.

 The DnsLookup Example
 The DNS and IP - related classes are illustrated with an example that looks up DNS names: DnsLookup
(see Figure 41 - 10).

Figure 41-10

c41.indd 1442c41.indd 1442 2/19/08 5:32:42 PM2/19/08 5:32:42 PM

1443

Chapter 41: Accessing the Internet

 This sample application simply invites the user to type in a DNS name using the main text box. When
the user clicks the Resolve button, the sample uses the Dns.Resolve() method to retrieve an
 IPHostEntry reference and display the host name and IP addresses. Note how the host name displayed
may be different from the name typed in. This can occur if one DNS name (www.microsoft.com)
simply acts as a proxy for another DNS name (lb1.www.ms.akadns.net).

 The DnsLookup application is a standard C# Windows application. The controls are added as shown in
Figure 41 - 10 , giving them the names txtBoxInput , btnResolve , txtBoxHostName , and listBoxIPs ,
respectively. Then, you simply add the following method to the Form1 class as the event handler for the
 buttonResolve Click event:

void btnResolve_Click (object sender, EventArgs e)
{
 try
 {
 IPHostEntry iphost = Dns.GetHostEntry(txtBoxInput.Text);
 foreach (IPAddress ip in iphost.AddressList)
 {
 string ipaddress = ip.AddressFamily.ToString();
 listBoxIPs.Items.Add(ipaddress);
 listBoxIPs.Items.Add(“ “ + ip.ToString());
 }
 txtBoxHostName.Text = iphost.HostName;
 }
 catch(Exception ex)
 {
 MessageBox.Show(“Unable to process the request because “ +
 “the following problem occurred:\n” +
 ex.Message, “Exception occurred”);
 }
}

 Notice that in this code you are careful to trap any exceptions. An exception might occur if the user types
an invalid DNS name or if the network is down.

 After retrieving the IPHostEntry instance, you use the AddressList property to obtain an array
containing the IP addresses, which you then iterate through with a foreach loop. For each entry, you
display the IP address as an integer and as a string, using the IPAddress.AddressFamily.ToString()
method.

 Lower - Level Protocols
 This section briefly discusses some of the .NET classes used to communicate at a lower level.

 Network communications work on several different levels. The classes you have seen in this chapter so
far work at the highest level: the level at which specific commands are processed. It is probably easiest to
understand this concept if you think of file transfer using FTP. Although today ’ s GUI applications hide
many of the FTP details, it was not so long ago when you executed FTP from a command - line prompt. In
this environment, you explicitly typed commands to send to the server for downloading, uploading, and
listing files.

 FTP is not the only high - level protocol relying on textual commands. HTTP, SMTP, POP, and other
protocols are based on a similar type of behavior. Again, many of the modern graphical tools hide the
transmission of commands from the user, so you are generally not aware of them. For example, when
you type a URL into a Web browser, and the Web request goes off to a server, the browser is actually

c41.indd 1443c41.indd 1443 2/19/08 5:32:42 PM2/19/08 5:32:42 PM

1444

Part VI: Communication

sending a (plain - text) GET command to the server, which fulfills a similar purpose as the FTP get
command. It can also send a POST command, which indicates that the browser has attached other data to
the request.

 These protocols, however, are not sufficient by themselves to achieve communication between
computers. Even if both the client and the server understand, for example, the HTTP protocol, it will still
not be possible for them to understand each other unless there is also agreement on exactly how to
transmit the characters: What binary format will be used? Moreover, getting down to the lowest level,
what voltages will be used to represent 0s and 1s in the binary data? Because there are so many items to
configure and agree upon, developers and hardware engineers in the networking field often refer to a
 protocol stack . When you list all of the various protocols and mechanisms required for communication
between two hosts, you create a protocol stack with high - level protocols on the top and low - level
protocols on the bottom. This approach results in a modular and layered approach to achieving efficient
communication.

 Luckily, for most development work, you do not need to go far down the stack or work with voltage
levels. If you are writing code that requires efficient communication between computers, then it ’ s not
unusual to write code that works directly at the level of sending binary data packets between computers.
This is the realm of protocols such as TCP, and Microsoft has supplied a number of classes that allow you
to conveniently work with binary data at this level.

 Lower - Level Classes
 The System.Net.Sockets namespace contains the relevant classes. These classes, for example, allow
you to directly send out TCP network requests or to listen to TCP network requests on a particular port.
The following table explains the main classes.

Class Purpose

Socket Deals with managing connections. Classes such as WebRequest, TcpClient,
and UdpClient use this class internally.

NetworkStream Derived from Stream. Represents a stream of data from the network.

SmtpClient Enables you to send messages (mail) through the Simple Mail Transfer Protocol.

TcpClient Enables you to create and use TCP connections.

TcpListener Enables you to listen for incoming TCP connection requests.

UdpClient Enables you to create connections for UDP clients. (UDP is an alternative proto-
col to TCP but is much less widely used, mostly on local networks.)

 Using SmtpClient
 The SmtpClient object allows you to send mail messages through the Simple Mail Transfer Protocol. A
simple sample of using the SmtpClient object is illustrated here:

SmtpClient sc = new SmtpClient(“mail.mySmtpHost.com”);
sc.Send(“evjen@yahoo.com”, “editor@wrox.com”,
 “The latest chapter”, “Here is the latest.”);

 In its simplest form, you work from an instance of the SmtpClient object. In this case, the instantiation
also provided the host of the SMTP server that is used to send the mail messages over the Internet. You
could have also achieved the same task by using the Host property.

c41.indd 1444c41.indd 1444 2/19/08 5:32:42 PM2/19/08 5:32:42 PM

1445

Chapter 41: Accessing the Internet

SmtpClient sc = new SmtpClient();
sc.Host = “mail.mySmtpHost.com”;
sc.Send(“evjen@yahoo.com”, “editor@wrox.com”,
 “The latest chapter”, “Here is the latest.”);

 Once you have the SmtpClient in place, it is simply a matter of calling the Send() method and
providing the From address, the To address, and the Subject, followed by the Body of the mail
message.

 In many cases, you will have mail messages that are more complex than this. To work with this
possibility, you can also pass in a MailMessage object into the Send() method.

SmtpClient sc = new SmtpClient();
sc.Host = “mail.mySmtpHost.com”;
MailMessage mm = new MailMessage();
mm.Sender = new MailAddress(“evjen@yahoo.com”, “Bill Evjen”);
mm.To.Add(new MailAddress(“editor@wrox.com”, “Katie Mohr”));
mm.To.Add(new MailAddress(“marketing@wrox.com”, “Wrox Marketing”));
mm.CC.Add(new MailAddress(“publisher@wrox.com”, “Joe Wikert”));
mm.Subject = “The latest chapter”;
mm.Body = “ < b > Here you can put a long message < /b > ”;
mm.IsBodyHtml = true;
mm.Priority = MailPriority.High;
sc.Send(mm);

 Using MailMessage allows you to really fine - tune how you build your mail messages. You are able to
send HTML messages, add as many To and CC recipients as you wish, change the message priority,
work with the message encodings, and add attachments. The ability to add attachments is defined here
in the following code snippet.

SmtpClient sc = new SmtpClient();
sc.Host = “mail.mySmtpHost.com”;
MailMessage mm = new MailMessage();
mm.Sender = new MailAddress(“evjen@yahoo.com”, “Bill Evjen”);
mm.To.Add(new MailAddress(“editor@wrox.com”, “Katie Mohr”));
mm.To.Add(new MailAddress(“marketing@wrox.com”, “Wrox Marketing”));
mm.CC.Add(new MailAddress(“publisher@wrox.com”, “Joe Wikert”));
mm.Subject = “The latest chapter”;
mm.Body = “ < b > Here you can put a long message < /b > ”;
mm.IsBodyHtml = true;
mm.Priority = MailPriority.High;
Attachment att = new Attachment(“myExcelResults.zip”,
 MediaTypeNames.Application.Zip);
mm.Attachments.Add(att);
sc.Send(mm);

 In this case, an Attachment object is created and added, using the Add() method, to the MailMessage
object before the Send() method is called.

 Using the TCP Classes
 The Transmission Control Protocol (TCP) classes offer simple methods for connecting and sending data
between two endpoints. An endpoint is the combination of an IP address and a port number. Existing
protocols have well - defined port numbers, for example, HTTP uses port 80, whereas SMTP uses port 25.
The Internet Assigned Number Authority, IANA, (www.iana.org) assigns port numbers to these well -
 known services. Unless you are implementing a well - known service, you will want to select a port
number above 1,024.

c41.indd 1445c41.indd 1445 2/19/08 5:32:43 PM2/19/08 5:32:43 PM

1446

Part VI: Communication

 TCP traffic makes up the majority of traffic on the Internet today. TCP is often the protocol of choice
because it offers guaranteed delivery, error correction, and buffering. The TcpClient class encapsulates
a TCP connection and provides a number of properties to regulate the connection, including buffering,
buffer size, and timeouts. Reading and writing is accomplished by requesting a NetworkStream object
via the GetStream() method.

 The TcpListener class listens for incoming TCP connections with the Start() method. When a
connection request arrives, you can use the AcceptSocket() method to return a socket for
communication with the remote machine, or use the AcceptTcpClient() method to use a higher - level
 TcpClient object for communication. The easiest way to see how the TcpListener and TcpClient
classes work together is to work through an example.

 The TcpSend and TcpReceive Examples
 To demonstrate how these classes work, you need to build two applications. Figure 41 - 11 shows the first
application, TcpSend . This application opens a TCP connection to a server and sends the C# source code
for itself.

Figure 41-11

 Once again, you create a C# Windows application. The form consists of two text boxes (txtHost and
 txtPort) for the host name and port, respectively, as well as a button (btnSend) to click and start a
connection. First, you ensure that you include the relevant namespaces:

using System;
using System.IO;
using System.Net.Sockets;
using System.Windows.Forms;

 The following code shows the event handler for the button ’ s Click event:

private void btnSend_Click(object sender, System.EventArgs e)
{
 TcpClient tcpClient = new TcpClient(txtHost.Text, Int32.Parse(txtPort.Text));
 NetworkStream ns = tcpClient.GetStream();
 FileStream fs = File.Open(Server.MapPath(“form1.cs”), FileMode.Open);

 int data = fs.ReadByte();
 while(data != -1)
 {
 ns.WriteByte((byte)data);
 data = fs.ReadByte();
 }
 fs.Close();
 ns.Close();
 tcpClient.Close();
}

 This example creates the TcpClient using a host name and a port number. Alternatively, if you have an
instance of the IPEndPoint class, then you can pass the instance to the TcpClient constructor. After

c41.indd 1446c41.indd 1446 2/19/08 5:32:43 PM2/19/08 5:32:43 PM

1447

Chapter 41: Accessing the Internet

retrieving an instance of the NetworkStream class, you open the source code file and begin to read
bytes. As with many of the binary streams, you need to check for the end of the stream by comparing the
return value of the ReadByte() method to - 1 . After your loop has read all of the bytes and sent them
along to the network stream, you must close all of the open files, connections, and streams.

 On the other side of the connection, the TcpReceive application displays the received file after the
transmission is finished (see Figure 41 - 12).

Figure 41-12

 The form consists of a single TextBox control, named txtDisplay . The TcpReceive application uses a
 TcpListener to wait for the incoming connection. To prevent freezing the application interface, you use
a background thread to wait for and then read from the connection. Thus, you need to include the
 System.Threading namespace as well these other namespaces:

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Windows.Forms;

 Inside the form ’ s constructor, you spin up a background thread:

public Form1()
{
 InitializeComponent();
 Thread thread = new Thread(new ThreadStart(Listen));
 thread.Start();
}

c41.indd 1447c41.indd 1447 2/19/08 5:32:44 PM2/19/08 5:32:44 PM

1448

Part VI: Communication

 The remaining important code is this:

public void Listen()
{
 IPAddress localAddr = IPAddress.Parse(“127.0.0.1”);
 Int32 port = 2112;
 TcpListener tcpListener = new TcpListener(localAddr, port);
 tcpListener.Start();

 TcpClient tcpClient = tcpListener.AcceptTcpClient();

 NetworkStream ns = tcpClient.GetStream();
 StreamReader sr = new StreamReader(ns);
 string result = sr.ReadToEnd();
 Invoke(new UpdateDisplayDelegate(UpdateDisplay),new object[] {result});
 tcpClient.Close();
 tcpListener.Stop();
}
public void UpdateDisplay(string text)
{
 txtDisplay.Text= text;
}

protected delegate void UpdateDisplayDelegate(string text);

 The thread begins execution in the Listen() method and allows you to make the blocking call to
 AcceptTcpClient() without halting the interface. Notice that the IP address (127.0.0.1) and the port
number (2112) are hard - coded into the application, so you will need to enter the same port number from
the client application.

 You use the TcpClient object returned by AcceptTcpClient() to open a new stream for reading. As
with the earlier example, you create a StreamReader to convert the incoming network data into a string.
Before you close the client and stop the listener, you update the form ’ s text box. You do not want to
access the text box directly from your background thread, so you use the form ’ s Invoke() method with
a delegate and pass the result string as the first element in an array of object parameters. Invoke()
ensures that your call is correctly marshaled into the thread that owns the control handles in the user
interface.

 TCP versus UDP
 The other protocol covered in this section is UDP (User Datagram Protocol). UDP is a simple protocol
with few features and little overhead. Developers often use UDP in applications where the speed and
performance requirements outweigh the reliability needs, for example, video streaming. In contrast, TCP
offers a number of features to confirm the delivery of data. TCP provides error correction and
retransmission in the case of lost or corrupted packets. Last, but hardly least, TCP buffers incoming and
outgoing data and also guarantees that a sequence of packets scrambled in transmission is reassembled
before delivery to the application. Even with the extra overhead, TCP is the most widely used protocol
across the Internet because of its high reliability.

 The UDP Class
 As you might expect, the UdpClient class features a smaller and simpler interface than TcpClient . This
reflects the relatively simpler nature of the protocol. Although both TCP and UDP classes use a socket
underneath the covers, the UdpClient class does not contain a method to return a network stream for
reading and writing. Instead, the member function Send() accepts an array of bytes as a parameter, and
the Receive() function returns an array of bytes. Also, because UDP is a connectionless protocol, you
can wait to specify the endpoint for the communication as a parameter to the Send() and Receive()

c41.indd 1448c41.indd 1448 2/19/08 5:32:45 PM2/19/08 5:32:45 PM

1449

Chapter 41: Accessing the Internet

methods, instead of specifying it earlier in a constructor or Connect() method. You can also change the
endpoint on each subsequent send or receive.

 The following code fragment uses the UdpClient class to send a message to an echo service. A server
with an echo service running accepts TCP or UDP connections on port 7. The echo service simply echoes
any data sent to the server back to the client. This service is useful for diagnostics and testing, although
many system administrators disable echo services for security reasons:

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;
namespace Wrox.ProCSharp.InternetAccess.UdpExample
{

 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 UdpClient udpClient = new UdpClient();
 string sendMsg = “Hello Echo Server”;
 byte [] sendBytes = Encoding.ASCII.GetBytes(sendMsg);
 udpClient.Send(sendBytes, sendBytes.Length, “SomeEchoServer.net”, 7);
 IPEndPoint endPoint = new IPEndPoint(0,0);
 byte [] rcvBytes = udpClient.Receive(ref endPoint);
 string rcvMessage = Encoding.ASCII.GetString(rcvBytes,
 0,
 rcvBytes.Length);
 // should print out “Hello Echo Server”
 Console.WriteLine(rcvMessage);
 }
 }
}

 You make heavy use of the Encoding.ASCII class to translate strings into arrays of byte and vice versa.
Also note that you pass an IPEndPoint by reference into the Receive() method. Because UDP is not a
connection - oriented protocol, each call to Receive() might pick up data from a different endpoint, so
 Receive() populates this parameter with the IP address and port of the sending host.

 Both UdpClient and TcpClient offer a layer of abstraction over the lowest of the low - level classes: the
 Socket .

 The Socket Class
 The Socket class offers the highest level of control in network programming. One of the easiest ways to
demonstrate the class is to rewrite the TcpReceive application with the Socket class. The updated
 Listen() method is listed in this example:

public void Listen()
{
 Socket listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listener.Bind(new IPEndPoint(IPAddress.Any, 2112));
 listener.Listen(0);
 Socket socket = listener.Accept();

(continued)

c41.indd 1449c41.indd 1449 2/19/08 5:32:45 PM2/19/08 5:32:45 PM

1450

Part VI: Communication

 Stream netStream = new NetworkStream(socket);
 StreamReader reader = new StreamReader(netStream);

 string result = reader.ReadToEnd();
 Invoke(new UpdateDisplayDelegate(UpdateDisplay),
 new object[] {result});
 socket.Close();
 listener.Close();
}

 The Socket class requires a few more lines of code to complete the same task. For starters, the
constructor arguments need to specify an IP addressing scheme for a streaming socket with the TCP
protocol. These arguments are just one of the many combinations available to the Socket class. The
 TcpClient class can configure these settings for you. You then bind the listener socket to a port and
begin to listen for incoming connections. When an incoming request arrives, you can use the Accept()
method to create a new socket to handle the connection. You ultimately attach a StreamReader instance
to the socket to read the incoming data, in much the same fashion as before.

 The Socket class also contains a number of methods for asynchronously accepting, connecting, sending,
and receiving. You can use these methods with callback delegates in the same way you used the
asynchronous page requests with the WebRequest class. If you really need to dig into the internals of the
socket, the GetSocketOption() and SetSocketOption() methods are available. These methods allow
you to see and configure options, including timeout, time - to - live, and other low - level options. Next, this
chapter looks at another example of using sockets.

Building a Server Console Application
 Looking further into the Socket class, this next example will create a console application that acts as a
server for incoming socket requests. From there, a second example will be created in parallel (another
console application), which sends a message to the server console application.

 The first application you will build is the console application that acts as a server. This application will
open a socket on a specific TCP port and listen for any incoming messages. The code for this console
application is presented in its entirety here:

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
namespace SocketConsole
{
 class Program
 {
 static void Main()
 {
 Console.WriteLine(“Starting: Creating Socket object”);
 Socket listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listener.Bind(new IPEndPoint(IPAddress.Any, 2112));
 listener.Listen(10);
 while (true)
 {
 Console.WriteLine(“Waiting for connection on port 2112”);
 Socket socket = listener.Accept();
 string receivedValue = string.Empty;

(continued)

c41.indd 1450c41.indd 1450 2/19/08 5:32:46 PM2/19/08 5:32:46 PM

1451

Chapter 41: Accessing the Internet

 while (true)
 {
 byte[] receivedBytes = new byte[1024];
 int numBytes = socket.Receive(receivedBytes);
 Console.WriteLine(“Receiving ...”);
 receivedValue += Encoding.ASCII.GetString(receivedBytes,
 0, numBytes);
 if (receivedValue.IndexOf(“[FINAL]”) > -1)
 {
 break;
 }
 }
 Console.WriteLine(“Received value: {0}”, receivedValue);
 string replyValue = “Message successfully received.”;
 byte[] replyMessage = Encoding.ASCII.GetBytes(replyValue);
 socket.Send(replyMessage);
 socket.Shutdown(SocketShutdown.Both);
 socket.Close();
 }
 listener.Close();
 }
 }
}

 This example sets up a socket using the Socket class. The socket created uses the TCP protocol and is set
up to receive incoming messages from any IP address using port 2112. Values that come in through the
open socket are written to the console screen. This consuming application will continue to receive bytes
until the [FINAL] string is received. This [FINAL] string signifies the end of the incoming message, and
the message can then be interpreted.

 After the end of the message is received from a client, a reply message is sent to the same client. From
there, the socket is closed using the Close() method, and the console application will continue to stay
up until a new message is received.

 Building the Client Application
 The next step is to build a client application that will send a message to the first console application. The
client will be able to send any message that it wants to the server console application as long as it follows
some rules that were established by this application. The first of these rules is that the server console
application is listening only on a particular protocol. In the case of this server application, it is listening
using the TCP protocol. The other rule is that the server application is listening only on a particular port
— in this case, port 2112. The last rule is that in any message that is being sent, the last bits of the
message need to end with the string [FINAL] .

 The following client console application follows all of these rules:

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
namespace SocketConsoleClient
{
 class Program
 {
 static void Main()
 {
 byte[] receivedBytes = new byte[1024];

(continued)

c41.indd 1451c41.indd 1451 2/19/08 5:32:46 PM2/19/08 5:32:46 PM

1452

Part VI: Communication

 IPHostEntry ipHost = Dns.Resolve(“127.0.0.1”);
 IPAddress ipAddress = ipHost.AddressList[0];
 IPEndPoint ipEndPoint = new IPEndPoint(ipAddress, 2112);
 Console.WriteLine(“Starting: Creating Socket object”);

 Socket sender = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 sender.Connect(ipEndPoint);
 Console.WriteLine(“Successfully connected to {0}”,
 sender.RemoteEndPoint);
 string sendingMessage = “Hello World Socket Test”;
 Console.WriteLine(“Creating message: Hello World Socket Test”);
 byte[] forwardMessage = Encoding.ASCII.GetBytes(sendingMessage
 + “[FINAL]”);
 sender.Send(forwardMessage);
 int totalBytesReceived = sender.Receive(receivedBytes);
 Console.WriteLine(“Message provided from server: {0}”,
 Encoding.ASCII.GetString(receivedBytes,
 0, totalBytesReceived));
 sender.Shutdown(SocketShutdown.Both);
 sender.Close();
 Console.ReadLine();
 }
 }
}

 In this example, an IPEndPoint object is created using the IP address of localhost as well as using port
2112 as required by the server console application. In this case, a socket is created and the Connect()
method is called. After the socket is opened and connected to the server console application socket
instance, a string of text is sent to the server application using the Send() method. Because the server
application is going to return a message, the Receive() method is used to grab this message (placing it
in a byte array). From there, the byte array is converted into a string and displayed in the console
application before the socket is shut down.

 Running this application will produce the results presented in Figure 41 - 13 .

Figure 41-13

(continued)

c41.indd 1452c41.indd 1452 2/19/08 5:32:47 PM2/19/08 5:32:47 PM

1453

Chapter 41: Accessing the Internet

 Reviewing the two console applications in the figure, you can see that the server application opens and
awaits incoming messages. The incoming message is sent from the client application, and the string sent
is then displayed by the server application. The server application waits for other messages to come in,
even after the first message is received and displayed. You can see this for yourself by shutting down the
client application and re - running the application. You will then see that the server application again
displays the message received.

 Summary
 In this chapter, you reviewed the .NET Framework classes available in the System.Net namespace for
communication across networks. You have seen some of the .NET base classes that deal with opening client
connections on the network and Internet, and how to send requests to and receive responses from servers
(the most obvious use of this being to receive HTML pages). By taking advantage of the WebBrowser
control in .NET 3.5, you can easily make use of Internet Explorer from your desktop applications.

 As a rule of thumb, when programming with classes in the System.Net namespace, you should always
try to use the most generic class possible. For instance, using the TCPClient class instead of the Socket
class isolates your code from many of the lower - level socket details. Moving one - step higher, the
 WebRequest class allows you to take advantage of the pluggable protocol architecture of the .NET
Framework. Your code will be ready to take advantage of new application - level protocols as Microsoft
and other third - party developers introduce new functionality.

 Finally, you learned how to use the asynchronous capabilities in the networking classes, which give a
Windows Forms application the professional touch of a responsive user interface.

 Now you move on to learning about Windows Communication Foundation.

c41.indd 1453c41.indd 1453 2/19/08 5:32:47 PM2/19/08 5:32:47 PM

c41.indd 1454c41.indd 1454 2/19/08 5:32:47 PM2/19/08 5:32:47 PM

 Windows Communication
Foundation

 Previous to .NET 3.0, several communication technologies were required in a single enterprise
solution. For platform - independent communication, ASP.NET Web services were used. For more
advanced Web services, technologies such as reliability, platform - independent security, and atomic
transactions, Web Services Enhancements added a complexity layer to ASP.NET Web services.
If the communication needed to be faster, and both the client and service were .NET applications,
.NET Remoting was the technology of choice. .NET Enterprise Services with its automatic
transaction support, by default, was using the DCOM protocol that was even faster than .NET
Remoting. DCOM was also the only protocol to allow passing transactions. All of these
technologies have different programming models that require many skills from the developer.

 .NET Framework 3.0 introduced a new communication technology that includes all the features
from the predecessors and combines them into one programming model: Windows
Communication Foundation (WCF).

 In particular, this chapter discusses the following topics:

 WCF overview

 A simple service and client

 Contracts

 Service implementation

 Binding

 Hosting

 Clients

 Duplex communication

❑

❑

❑

❑

❑

❑

❑

❑

c42.indd 1455c42.indd 1455 2/19/08 5:33:01 PM2/19/08 5:33:01 PM

Part VI: Communication

1456

 WCF Overview
 WCF combines the functionality from ASP.NET Web services, .NET Remoting, Message Queuing, and
Enterprise Services. What you get from WCF is:

 Hosting for components and services — Just as you can use custom hosts with .NET Remoting
and WSE, you can host a WCF service in the ASP.NET runtime, a Windows service, a COM+
process, or just a Windows Forms application for peer - to - peer computing.

 Declarative behavior — Instead of the requirement to derive from a base class (this requirement
exists with .NET Remoting and Enterprise Services), attributes can be used to define the
services. This is similar to Web services developed with ASP.NET.

 Communication channels — Although NET Remoting is very flexible with changing the
communication channel, WCF is a good alternative because it offers the same flexibility. WCF
offers multiple channels to communicate using HTTP, TCP, or an IPC channel. Custom channels
using different transport protocols can be created as well.

 Security infrastructure — For implementing platform - independent Web services, a
standardized security environment must be used. The proposed standards are implemented
with WSE 3.0, and this continues with WCF.

 Extensibility — .NET Remoting has a rich extensibility story. It is not only possible to create
custom channels, formatters, and proxies, but also to inject functionality inside the message flow
on the client and on the server. WCF offers similar extensibilities; however, here, the extensions
are created by using SOAP headers.

 Support of previous technologies — Instead of rewriting a distributed solution completely to
use WCF, WCF can be integrated with existing technologies. WCF offers a channel that can
communicate with serviced components using DCOM. Web services that have been developed
with ASP.NET can be integrated with WCF as well.

 The final goal is to send and receive messages from a client to a service either across processes or
different systems, across a local network, or the Internet. This should be done if required in a platform -
 independent way and as fast as possible. On a distant view, the service offers an endpoint that is
described by a contract, binding, and an address. The contract defines the operations offered by the
service, binding gives information about the protocol and encoding, and the address is the location of
the service. The client needs a compatible endpoint to access the service.

 Figure 42 - 1 shows the components that participate with a WCF communication.

❑

❑

❑

❑

❑

❑

Channel

Proxy Dispatcher

Client Code Service

Figure 42-1

c42.indd 1456c42.indd 1456 2/19/08 5:33:02 PM2/19/08 5:33:02 PM

1457

Chapter 42: Windows Communication Foundation

 The client invokes a method on the proxy. The proxy offers methods as defined by the service, but
converts the method call to a message and transfers the message to the channel. The channel has a client -
 side and a server - side part that communicate across a networking protocol. From the channel, the
message is passed to the dispatcher, which converts the message to a method call that is invoked with
the service.

 WCF supports several communication protocols. For platform - independent communication, Web
services standards are supported. For communication between .NET applications, faster communication
protocols with less overhead can be used.

 The following sections look at the functionality of core services used for platform - independent
communication.

 SOAP
 For platform - independent communication, the SOAP protocol can be used and is directly supported
from WCF. SOAP originally was shorthand for Simple Object Access Protocol, but since SOAP 1.2 this is
no longer the case. SOAP no longer is an object access protocol, because, instead, messages are sent that
can be defined by an XML schema.

 A service receives a SOAP message from a client and returns a SOAP response message. A SOAP
message consists of an envelope, which contains a header and a body:

 < s:Envelope xmlns:a=”http://www.w3.org/2005/08/addressing”
 xmlns:s=”http://www.w3.org/2003/05/soap-envelope” >
 < s:Header >
 < /s:Header >
 < s:Body >
 < ReserveRoom xmlns=”http://www.wrox.com/ProCSharp/2008” >
 < roomReservation
xmlns:d4p1=”http://schemas.datacontract.org/2004/07/Wrox.ProCSharp.WCF”
xmlns:i=”http://www.w3.org/2001/XMLSchema-instance” >
 < d4p1:RoomName > Hawelka < /d4p1:RoomName >
 < d4p1:StartDate > 2007-06-21T08:00:00 < /d4p1:StartDate >
 < d4p1:EndDate > 2007-06-21T14:00:00 < /d4p1:EndDate >
 < d4p1:Contact > Georg Danzer < /d4p1:Contact >
 < d4p1:Event > White Horses < /d4p1:Event >
 < /roomReservation >
 < /ReserveRoom >
 < /s:Body >
 < /s:Envelope >

 The header is optional and can contain information about addressing, security, and transactions. The
body contains the message data.

 WSDL
 A WSDL (Web Services Description Language) document describes the operations and messages of the
service. WSDL defines metadata of the service that can be used to create a proxy for the client
application.

 The WSDL contains this information:

 Types for the messages that are described using an XML schema.

 Messages that are sent to and from the service. Parts of the messages are the types that are
defined with an XML schema.

❑

❑

c42.indd 1457c42.indd 1457 2/19/08 5:33:02 PM2/19/08 5:33:02 PM

Part VI: Communication

1458

 Port types map to service contracts and list operations that are defined with the service contract.
Operations contain messages; for example, an input and an output message as used with a
request and response sequence.

 Binding information that contains the operations listed with the port types and that defines the
SOAP variant used.

 Service information that maps port types to endpoint addresses.

 With WCF, WSDL information is offered by MEX (Metadata Exchange) endpoints.

 JSON
 Instead of sending SOAP messages, accessing services from JavaScript can best be done using JSON
(JavaScript Object Notation). .NET 3.5 includes a data contract serializer to create objects with the JSON
notation.

 JSON has less overhead than SOAP because it is not XML, but optimized for JavaScript clients. This
makes it extremely useful from Ajax clients. Ajax is discussed in Chapter 39 , “ ASP.NET AJAX. ” JSON
does not offer reliability, security, and transaction features that can be sent with the SOAP header, but
these are features usually not needed by JavaScript clients.

 Simple Service and Client
 Before going into the details of WCF, let ’ s start with a simple service. The service is used to reserve
meeting rooms.

 For a backing store of room reservations, a simple SQL Server database with the table
 RoomReservations is used. The table and its properties are shown in Figure 42 - 2 . You can download
the database together with the sample code of this chapter.

❑

❑

❑

Figure 42-2

 Create an empty solution with the name RoomReservation and add a new Component Library project
with the name RoomReservationData to the solution. The first project that is implemented contains just
the code to access the database. Because LINQ to SQL makes the database access code much easier, this
.NET 3.5 technology is used here.

 Chapter 27 gives you the details of LINQ to SQL.

 Add a new item, LINQ to SQL Classes, and name it RoomReservation.dbml . With the LINQ to SQL
designer, open the Server Explorer to drop the RoomReservation database table onto the designer as
shown in Figure 42 - 3 . This designer creates an entity class, RoomReservation , that contains properties
for every column of the table and the class RoomReservationDataContext .
 RoomReservationDataContext connects to the database.

c42.indd 1458c42.indd 1458 2/19/08 5:33:03 PM2/19/08 5:33:03 PM

1459

Chapter 42: Windows Communication Foundation

Figure 42-3

 Change the Serialization Mode property of the LINQ to SQL designer from None to Unidirectional .
This way, the generated class RoomReservation gets a data contract that allows the entity classes to
serialize across WCF.

 To read and write data from the database using LINQ to SQL, add the class RoomReservationData . The
method ReserveRoom() writes a room reservation to the database. The method GetReservations()
returns an array of room reservations from a specified date range.

using System;
using System.Linq;

namespace Wrox.ProCSharp.WCF.Data
{
 public class RoomReservationData
 {
 public void ReserveRoom(RoomReservation roomReservation)
 {
 using (RoomReservationDataContext data =
 new RoomReservationDataContext())
 {
 data.RoomReservations.Add(roomReservation);
 data.SubmitChanges();
 }
 }

 public RoomReservation[] GetReservations(DateTime fromDate,
 DateTime toDate)
 {
 using (RoomReservationDataContext data =
 new RoomReservationDataContext())
 {
 return (from r in data.RoomReservations
 where r.StartDate > fromDate & & r.EndDate < toDate
 select r).ToArray();
 }
 }
 }
}

 Now start creating the service.

c42.indd 1459c42.indd 1459 2/19/08 5:33:03 PM2/19/08 5:33:03 PM

Part VI: Communication

1460

 Service Contract
 Add a new project of type WCF Service Library to the solution and name the project
 RoomReservationService . Rename the generated files IService1.cs to IRoomService.cs and
 Service1.cs to RoomReservationService.cs and change the namespace within the generated files
to Wrox.ProCSharp.WCF.Service . The assembly RoomReservationData needs to be referenced to
have the entity types and the RoomReservationData class available.

 The operations offered by the service can be defined by an interface. The interface IRoomService
defines the methods ReserveRoom and GetRoomReservations . The service contract is defined with the
attribute [ServiceContract] . The operations defined by the service have the attribute
 [OperationContract] applied.

using System;
using System.ServiceModel;
using Wrox.ProCSharp.WCF.Entities;

namespace Wrox.ProCSharp.WCF.Service
{
 [ServiceContract()]
 public interface IRoomService
 {
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);

 [OperationContract]
 RoomReservation[] GetRoomReservations(DateTime fromDate,
 DateTime toDate);
 }
}

 Service Implementation
 The service class RoomReservationService implements the interface IRoomService . The service is
implemented just by invoking the appropriate methods of the RoomReservationData class:

using System;
using System.ServiceModel;
using Wrox.ProCSharp.WCF.Data;
using Wrox.ProCSharp.WCF.Entities;

namespace Wrox.ProCSharp.WCF
{
 public class RoomReservationService : IRoomService
 {
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 RoomReservationData data = new RoomReservationData();
 data.ReserveRoom(roomReservation);

 return true;
 }

 public RoomReservation[] GetRoomReservations(DateTime fromDate,
 DateTime toDate)

c42.indd 1460c42.indd 1460 2/19/08 5:33:03 PM2/19/08 5:33:03 PM

1461

Chapter 42: Windows Communication Foundation

 {
 RoomReservationData data = new RoomReservationData();
 return data.GetReservations(fromDate, toDate);
 }
 }
}

 WCF Service Host and WCF Test Client
 The WCF Service Library project template creates an application configuration file named App.config
that you need to adapt to the new class and interface names. The service element references the
service type RoomReservationService including the namespace; the contract interface needs to be
defined with the endpoint element.

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < services >
 < service name=”Wrox.ProCSharp.WCF.Services.RoomReservationService”
 behaviorConfiguration=”RoomReservationsService.Service1Behavior” >
 < host >
 < baseAddresses >
 < add baseAddress =
 “http://localhost:8731/Design_Time_Addresses/RoomReservationService/” / >
 < /baseAddresses >
 < /host >
 < !-- Service Endpoints -- >
 < endpoint address =”” binding=”wsHttpBinding”
 contract=”Wrox.ProCSharp.WCF.Services.IRoomService” / >
 < !-- Metadata Endpoints -- >
 < endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” / >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”RoomReservationsService.Service1Behavior” >
 < serviceMetadata httpGetEnabled=”True”/ >

 < serviceDebug includeExceptionDetailInFaults=”False” / >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 The service address http://localhost:8731/Design_Time_Addresses has an access control
list (ACL) associated that allows the interactive user to create a listener port. By default, a
non - administrative user is not allowed to open ports in listening mode. You can view the ACLs with the
command - line utility netsh http show urlacl , and add new entries with netsh http add
url=http://+8080/MyURI user=someUser .

 Starting this library from Visual Studio 2008 starts the WCF Service Host, which appears as an icon in
the notification area of the taskbar. Clicking this icon opens the dialog (see Figure 42 - 4) of this
application where you can see the status of the service. The project properties have the command - line

c42.indd 1461c42.indd 1461 2/19/08 5:33:04 PM2/19/08 5:33:04 PM

Part VI: Communication

1462

arguments /client: “ WcfTestClient.exe ” defined. With this option, the WCF Service host starts the
WCF Test Client (see Figure 42 - 5) that you can use to test the application. When you double - click an
operation, input fields appear on the right side of the application that you can fill to send data to the
service. When you click the XML tab, you can see the SOAP messages that have been sent and received.

Figure 42-5

Figure 42-4

c42.indd 1462c42.indd 1462 2/19/08 5:33:04 PM2/19/08 5:33:04 PM

1463

Chapter 42: Windows Communication Foundation

 Custom Service Host
 WCF allows services to run in any host. You can create a Windows Forms or WPF application for peer -
 to - peer services, you can create a Windows service, or host the service with Windows Activation Services
(WAS). A console application is also good to demonstrate a simple host.

 With the service host, you must reference the library RoomReservationService . The service is started
by instantiating and opening an object of type ServiceHost . This class is defined in the namespace
 System.ServiceModel . The RoomReservationService class that implements the service is defined in
the constructor. Invoking the Open() method starts the listener channel of the service — the service is
ready to listen for requests. The Close() method stops the channel.

using System;
using System.ServiceModel;
using Wrox.ProCSharp.WCF.Services;

namespace Wrox.ProCSharp.WCF
{
 class Program
 {
 internal static ServiceHost myServiceHost = null;

 internal static void StartService()
 {
 myServiceHost = new ServiceHost(typeof(RoomReservationService));
 myServiceHost.Open();
 }

 internal static void StopService()
 {
 if (myServiceHost.State != CommunicationState.Closed)
 myServiceHost.Close();
 }

 static void Main()
 {
 StartService();

 Console.WriteLine(“Server is running. Press return to exit”);
 Console.ReadLine();

 StopService();
 }
 }
}

 For the WCF configuration, you need to copy the application configuration file that was created with the
service library to the host application. You can edit this configuration file with the WCF Service
Configuration Editor (see Figure 42 - 6).

c42.indd 1463c42.indd 1463 2/19/08 5:33:04 PM2/19/08 5:33:04 PM

Part VI: Communication

1464

Figure 42-6

 WCF Client
 For the client, WCF is flexible again in what application type can be used. The client can be a simple
console application as well. However, for reserving rooms, create a WPF application with controls, as
shown in Figure 42 - 7 .

Figure 42-7

 Because the service offers a MEX endpoint with the binding mexHttpBinding , and metadata access is
enabled with the behavior configuration, you can add a service reference from Visual Studio. When you
add a service reference, the dialog shown in Figure 42 - 8 pops up. When you click the Discover button,
you can find services within the same solution.

c42.indd 1464c42.indd 1464 2/19/08 5:33:05 PM2/19/08 5:33:05 PM

1465

Chapter 42: Windows Communication Foundation

 Enter the link to the service and set the service reference name to RoomReservationService . The
service reference name defines the namespace of the generated proxy class.

Figure 42-8

 Adding a service reference adds references to the assemblies System.Runtime.Serialization and
 System.ServiceModel and a configuration file containing the binding information and the endpoint
address to the service.

 From the data contract the class RoomReservation is generated. This class contains all [DataMember]
elements of the contract. The class RoomServiceClient is the proxy for the client that contains methods
that are defined by the service contract. Using this client you can send a room reservation to the running
service.

 private void OnReserveRoom(object sender, RoutedEventArgs e)
 {
 RoomReservation reservation = new RoomReservation()
 {
 RoomName = textRoom.Text,
 Event = textEvent.Text,
 Contact = textContact.Text,
 StartDate = DateTime.Parse(textStartTime.Text),
 EndDate = DateTime.Parse(textEndTime.Text)
 };

 RoomServiceClient client = new RoomServiceClient();
 client.ReserveRoom(reservation);
 client.Close();
 }

 By running both the service and the client, you can add room reservations to the database.

c42.indd 1465c42.indd 1465 2/19/08 5:33:05 PM2/19/08 5:33:05 PM

Part VI: Communication

1466

 Diagnostics
 When running a client and service application, it can be very helpful to know what ’ s happening behind
the scenes. For this, WCF makes use of a trace source that just needs to be configured. You can configure
tracing using the Service Configuration Editor, selecting Diagnostics, and enabling Tracing and Message
Logging. Setting the trace level of the trace sources to Verbose produces very detailed information. This
configuration change adds trace sources and listeners to the application configuration file as shown here:

 < system.diagnostics >
 < sources >
 < source name=”System.ServiceModel” switchValue=”Verbose,ActivityTracing”
 propagateActivity=”true” >
 < listeners >
 < add type=”System.Diagnostics.DefaultTraceListener” name=”Default” >
 < filter type=”” / >
 < /add >
 < add name=”ServiceModelTraceListener” >
 < filter type=”” / >
 < /add >
 < /listeners >
 < /source >
 < source name=”System.ServiceModel.MessageLogging”
 switchValue=”Verbose,ActivityTracing” >
 < listeners >
 < add type=”System.Diagnostics.DefaultTraceListener” name=”Default” >
 < filter type=”” / >
 < /add >
 < add name=”ServiceModelMessageLoggingListener” >
 < filter type=”” / >
 < /add >
 < /listeners >
 < /source >
 < /sources >
 < sharedListeners >
 < add initializeData=”c:\logs\app_tracelog.svclog”
 type=”System.Diagnostics.XmlWriterTraceListener, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 name=”ServiceModelTraceListener” traceOutputOptions=”Timestamp” >
 < filter type=”” / >
 < /add >
 < add initializeData=”c:\logs\app_messages.svclog”
 type=”System.Diagnostics.XmlWriterTraceListener, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 name=”ServiceModelMessageLoggingListener”
 traceOutputOptions=”Timestamp” >
 < filter type=”” / >
 < /add >
 < /sharedListeners >
 < /system.diagnostics >
 < system.serviceModel >
 < diagnostics >
 < messageLogging logEntireMessage=”true” logMalformedMessages=”true”
 logMessagesAtServiceLevel=”true” logMessagesAtTransportLevel=”true” / >
 < /diagnostics >
 < !-- ... -- >

c42.indd 1466c42.indd 1466 2/19/08 5:33:06 PM2/19/08 5:33:06 PM

1467

Chapter 42: Windows Communication Foundation

 The implementation of the WCF classes uses the trace sources named System.ServiceModel and
 System.ServiceModel.MessageLogging for writing trace messages. You can read more about
tracing and configuring trace sources and listeners in Chapter 18 , “ Tracing and Events. ”

 When you start the application, the trace files soon get large with verbose trace settings. To analyze the
information from the XML log file, the .NET SDK includes the Service Trace Viewer tool,
 svctraceviewer.exe . Figure 42 - 9 shows the view from this tool after selecting the trace and message
log files. With the default configuration you can see several messages exchanged; many of them are
related to security. Depending on your security needs, you can choose other configuration options.

Figure 42-9

 The following sections discuss the details and different options of WCF.

 Contracts
 A contract defines what functionality a service offers and what functionality can be used by the client.
The contract can be completely independent of the implementation of the service.

 The contracts defined by WCF can be grouped into three different contract types: data, service, and
message. The contracts can be specified by using .NET attributes:

 Data contract — The data contract defines the data received by and returned from the service.
The classes used for sending and receiving messages have data contract attributes associated.

 Service contract — The service contract is used to define the WSDL that describes the service.
This contract is defined with interfaces or classes.

 Message contract — If complete control over the SOAP message is needed, a message contract
can specify what data should go into the SOAP header, and what belongs in the SOAP body.

 The following sections explore these contract types further.

❑

❑

❑

c42.indd 1467c42.indd 1467 2/19/08 5:33:06 PM2/19/08 5:33:06 PM

Part VI: Communication

1468

 Data Contract
 With the data contract, CLR types are mapped to XML schemas. The data contract is different from other
.NET serialization mechanisms: with runtime serialization, all fields are serialized (including private
fields); with XML serialization only the public fields and properties are serialized. The data contract
requires explicit marking of the fields that should be serialized with the [DataMember] attribute. This
attribute can be used regardless of whether the field is private or public, or if it is applied to a property.

[DataContract(Namespace=”http://www.thinktecture.com/SampleServices/2008”]
public class RoomReservation
{
 [DataMember] public string Room { get; set; }
 [DataMember] public DateTime StartDate { get; set; }
 [DataMember] public DateTime EndDate { get; set; }
 [DataMember] public string ContactName { get; set; }
 [DataMember] public string EventName { get; set; }
}

 To be platform - independent, and give the option to change data with new versions without breaking
older clients and services, using data contracts is the best way to define which data should be sent.
However, you can also use XML serialization and runtime serialization. XML serialization is the
mechanism used by ASP.NET Web services; .NET Remoting uses runtime serialization.

 With the attribute [DataMember] , you can specify the properties described in the following table.

DataMember Property Description

Name By default, the serialized element has the same name as the field or prop-
erty where the [DataMember] attribute is applied. You can change the
name with the Name property.

Order The Order property defines the serialization order of the data members.

IsRequired With the IsRequired property, you can specify that the element must be
received with serialization. This property can be used for versioning.

If you add members to an existing contract, the contract is not broken
because, by default, the fields are optional (IsRequired=false). You can
break an existing contract by setting IsRequired to true.

EmitDefaultValue The property EmitDefaultValue defines whether the member should be
serialized if it has the default value. If EmitDefaultValue is set to true,
the member is not serialized if it has the default value for the type.

 Versioning
 When you create a new version of a data contract, pay attention to the kind of change and act
accordingly if old and new clients and old and new services should be supported simultaneously.

 When defining a contract, you should add XML namespace information with the Namespace property of
the DataContractAttribute . This namespace should be changed if a new version of the data contract

c42.indd 1468c42.indd 1468 2/19/08 5:33:06 PM2/19/08 5:33:06 PM

1469

Chapter 42: Windows Communication Foundation

is created that breaks compatibility. If just optional members are added, the contract is not broken —
 this is a compatible change. Old clients can still send a message to the new service because the additional
data is not needed. New clients can send messages to an old service because the old service just ignores
the additional data.

 Removing fields or adding required fields breaks the contract. Here, you should also change the XML
namespace. The name of the namespace can include the year and the month, for example http://
thinktecture.com/SampleServices/2008/02 . Every time a breaking change is done, the namespace
is changed; for example, by changing the year and month to the actual value.

 Service Contract
 The service contract defines the operations the service can perform. The attribute [ServiceContract]
is used with interfaces or classes to define a service contract. The methods that are offered by the service
have the attribute [OperationContract] applied, as you can see with the interface IRoomService :

[ServiceContract]
public interface IRoomService
{
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);
}

 The possible properties that you can set with the [ServiceContract] attribute are described in the
following table.

ServiceContract Property Description

ConfigurationName This property defines the name of the service configuration in a
configuration file.

CallbackContract When the service is used for duplex messaging, the property
CallbackContract defines the contract that is implemented in
the client.

Name The Name property defines the name for the <portType> element in the
WSDL.

Namespace The Namespace property defines the XML namespace for the
<portType> element in the WSDL.

SessionMode With the SessionMode property, you can define whether sessions are
required for calling operations of this contract. The possible values
Allowed, NotAllowed, and Required are defined with the
SessionMode enumeration.

ProtectionLevel The ProtectionLevel property defines whether the binding must
support protecting the communication. Possible values defined by the
ProtectionLevel enumeration are None, Sign, and
EncryptAndSign.

c42.indd 1469c42.indd 1469 2/19/08 5:33:07 PM2/19/08 5:33:07 PM

Part VI: Communication

1470

 With the [OperationContract] , you can specify properties as shown in the following table.

OperationContract Property Description

Action WCF uses the Action of the SOAP request to map it to the appropri-
ate method. The default value for the Action is a combination of the
contract XML namespace, the name of the contract, and the name of
the operation. If the message is a response message, Response is
added to the Action string. You can override the Action value by
specifying the Action property. If you assign the value ”*”, the
service operation handles all messages.

ReplyAction Whereas Action sets the Action name of the incoming SOAP
request, ReplyAction sets the Action name of the reply message.

AsyncPattern If the operation is implemented by using an asynchronous pattern,
set the AsyncPattern property to true. The async pattern is dis-
cussed in Chapter 19.

IsInitiating
IsTerminating

If the contract consists of a sequence of operations, the initiating
operation should have the IsInitiating property assigned to it;
the last operation of the sequence needs the IsTerminating prop-
erty assigned. The initiating operation starts a new session; the
server closes the session with the terminating operation.

IsOneWay With the IsOneWay property set, the client does not wait for a reply
message. Callers of a one-way operation have no direct way to
detect a failure after sending the request message.

Name The default name of the operation is the name of the method the
operation contract is assigned to. You can change the name of the
operation by applying the Name property.

ProtectionLevel With the ProtectionLevel property, you define whether the
message should be signed or encrypted and signed.

 With the service contract, you can also define the requirements that the service has from the
transport with the attribute [DeliveryRequirements] . The property RequireOrderedDelivery
defines that the messages sent must arrive in the same order. With the property
 QueuedDeliveryRequirements , you can define that the message is sent in a disconnected mode, for
example, by using Message Queuing (covered in Chapter 45).

 Message Contract
 A message contract is used if complete control over the SOAP message is needed. With the message
contract, you can specify what part of the message should go into the SOAP header and what belongs in
the SOAP body. The following example shows a message contract for the class
 ProcessPersonRequestMessage . The message contract is specified with the attribute
 [MessageContract] . The header and body of the SOAP message are specified with the attributes
 [MessageHeader] and [MessageBodyMember] . By specifying the Position property, you can define
the element order within the body. You can also specify the protection level for header and body fields.

c42.indd 1470c42.indd 1470 2/19/08 5:33:07 PM2/19/08 5:33:07 PM

1471

Chapter 42: Windows Communication Foundation

[MessageContract]
public class ProcessPersonRequestMessage
{
 [MessageHeader]
 public int employeeId;

 [MessageBodyMember(Position=0)]
 public Person person;
}

 The class ProcessPersonRequestMessage is used with the service contract that is defined with the
interface IProcessPerson :

[ServiceContract]
public interface IProcessPerson
{
 [OperationContract]
 public PersonResponseMessage ProcessPerson(
 ProcessPersonRequestMessage message);
}

 Service Implementation
 The implementation of the service can be marked with the attribute [ServiceBehavior] , as shown
with the class RoomReservationService :

 [ServiceBehavior]
 public class RoomReservationService : IRoomService
 {
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 // implementation
 }
 }

 The attribute [ServiceBehavior] is used to describe behavior as is offered by WCF services to
intercept the code for required functionality, as shown in the following table.

ServiceBehavior Property Description

TransactionAutoComplete
OnSessionClose

When the current session is finished without error, the transaction
is automatically committed. This is similar to the [AutoComplete]
attribute that is discussed with Enterprise Services in Chapter 44.

TransactionIsolationLevel To define the isolation level of the transaction within the service,
the property TransactionIsolationLevel can be set to one
value of the IsolationLevel enumeration. You can read
information about transaction information levels in Chapter 22.

ReleaseServiceInstanceOn
TransactionComplete

When the transaction is finished, the instance of the service is
recycled.

c42.indd 1471c42.indd 1471 2/19/08 5:33:08 PM2/19/08 5:33:08 PM

Part VI: Communication

1472

ServiceBehavior Property Description

AutomaticSessionShutdown If the session should not be closed when the client closes the
connection, you can set the property AutomaticSessionShutdown
to false. By default, the session is closed.

InstanceContextMode With the property InstanceContextMode, you can define
whether stateful or stateless objects should be used. The default
setting is InstanceContextMode.PerCall to create a new
object with every method call. You can compare this with .NET
Remoting well-known SingleCall objects. Other possible set-
tings are PerSession and Single. With both of these settings,
stateful objects are used. However, with PerSession a new
object is created for every client. Single allows sharing the same
object with multiple clients.

ConcurrencyMode Because stateful objects can be used by multiple clients (or multi-
ple threads of a single client), you must pay attention to concur-
rency issues with such object types. If the property
ConcurrencyMode is set to Multiple, multiple threads can
access the object, and you must deal with synchronization. If you
set the option to Single, only one thread accesses the object at a
time. Here, you don’t have to do synchronization; however, scal-
ability problems can occur with a higher number of clients. The
value Reentrant means that only a thread coming back from a
callout might access the object. For stateless objects, this setting
has no meaning, because new objects are instantiated with every
method call and thus no state is shared.

UseSynchronizationContext With Windows Forms and WPF, members of controls can be
invoked only from the creator thread. If the service is hosted in a
Windows application, and the service methods invoke control
members, set the UseSynchronizationContext to true. This
way, the service runs in a thread defined by the
SynchronizationContext.

IncludeExceptionDetail
InFaults

With .NET, errors show up as exceptions. SOAP defines that a
SOAP fault is returned to the client in case the server has a problem.
For security reasons, it’s not a good idea to return details of server-
side exceptions to the client. Thus, by default, exceptions are con-
verted to unknown faults. To return specific faults, throw an
exception of type FaultException. For debugging purposes, it
can be helpful to return the real exception information. This is the
case when changing the setting of IncludeExceptionDetailIn
Faults to true. Here a FaultException<TDetail> is thrown
where the original exception contains the detail information.

MaxItemsInObjectGraph With the property MaxItemsInObjectGraph, you can limit the
number of objects that are serialized.

ValidateMustUnderstand The property ValidateMustUnderstand set to true means that
the SOAP headers must be understood (which is the default).

c42.indd 1472c42.indd 1472 2/19/08 5:33:08 PM2/19/08 5:33:08 PM

1473

Chapter 42: Windows Communication Foundation

 To demonstrate a service behavior, the interface IStateService defines a service contract with two
operations to set and get state. With a stateful service contract, a session is needed. That ’ s why the
 SessionMode property of the service contract is set to SessionMode.Required . The service contract
also defines methods to initiate and close the session by applying the IsInitiating and
 IsTerminating properties to the operation contract:

 [ServiceContract(SessionMode=SessionMode.Required)]
 public interface IStateService
 {
 [OperationContract(IsInitiating=true)]
 void Init(int i);

 [OperationContract]
 void SetState(int i);

 [OperationContract]
 int GetState();

 [OperationContract(IsTerminating=true)]
 void Close();
 }

 The service contract is implemented by the class StateService . The service implementation defines the
 InstanceContextMode.PerSession to keep state with the instance:

 [ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]
 public class StateService : IStateService
 {
 int i = 0;

 public void Init(int i)
 {
 this.i = i;
 }

 public void SetState(int i)
 {
 this.i = i;
 }

 public int GetState()
 {
 return i;
 }

 public void Close()
 {
 }
 }

 Now the binding to the address and protocol must be defined. Here, the basicHttpBinding is assigned
to the endpoint of the service:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >

(continued)

c42.indd 1473c42.indd 1473 2/19/08 5:33:08 PM2/19/08 5:33:08 PM

Part VI: Communication

1474

 < services >
 < service behaviorConfiguration=”StateServiceSample.Service1Behavior”
 name=”Wrox.ProCSharp.WCF.StateService” >
 < endpoint address=”” binding=”basicHttpBinding”
 bindingConfiguration=””
 contract=”Wrox.ProCSharp.WCF.IStateService” >
 < /endpoint >
 < endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” / >
 < host >
 < baseAddresses >
 < add baseAddress=”http://localhost:8731/Design_Time_Addresses/
 StateServiceSample/Service1/” / >
 < /baseAddresses >
 < /host >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”StateServiceSample.Service1Behavior” >
 < serviceMetadata httpGetEnabled=”True”/ >
 < serviceDebug includeExceptionDetailInFaults=”False” / >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 If you start the service host with the defined configuration, an exception of type
 InvalidOperationException is thrown. The error message with the exception gives this error
message: “ Contract requires Session, but Binding ‘ BasicHttpBinding ’ doesn ’ t support it or isn ’ t
configured properly to support it. ”

 Not all bindings support all services. Because the service contract requires a session with the attribute
 [ServiceContract(SessionMode=SessionMode.Required)] , the host fails because the configured
binding does not support sessions.

 As soon as you change the configuration to a binding that supports sessions (for example, the
 wsHttpBinding), the server starts successfully:

 < endpoint address=”” binding=”wsHttpBinding”
 bindingConfiguration=””
 contract=”Wrox.ProCSharp.WCF.IStateService” >
 < /endpoint >

 Now a client application can be created. In the previous example, the client application was created by
adding a service reference. Instead of adding a service reference, you can directly access the assembly
containing the contract interface, and use the ChannelFactory < TChannel > class to instantiate the
channel to connect to the service.

 The constructor of the class ChannelFactory < TChannel > accepts the binding configuration and
endpoint address. The binding must be compatible with the binding defined with the service host, and
the address defined with the EndpointAddress class references the URI of the running service.

(continued)

c42.indd 1474c42.indd 1474 2/19/08 5:33:09 PM2/19/08 5:33:09 PM

1475

Chapter 42: Windows Communication Foundation

 The CreateChannel() method creates a channel to connect to the service. Then, you can invoke
methods of the service, and you can see that the service instance holds state until the Close() method is
invoked that has the IsTerminating operation behavior assigned:

using System;
using System.ServiceModel;

namespace Wrox.ProCSharp.WCF
{
 class Program
 {
 static void Main()
 {
 WSHttpBinding binding = new WSHttpBinding();
 EndpointAddress address =
 new EndpointAddress(“http://localhost:8731/” +
 !Design_Time_Addresses/StateServiceSample/Service1/”);

 ChannelFactory < IStateService > factory =
 new ChannelFactory < IStateService > (binding, address);

 IStateService channel = factory.CreateChannel();
 channel.Init(1);
 Console.WriteLine(channel.GetState());
 channel.SetState(2);
 Console.WriteLine(channel.GetState());
 channel.Close();

 factory.Close();
 }
 }
}

 With the implementation of the service, you can apply the properties in the following table to the service
methods, with the attribute [OperationBehavior] .

OperationBehavior Description

AutoDisposeParameters By default, all disposable parameters are automatically disposed.
If the parameters should not be disposed, you can set the prop-
erty AutoDisposeParameters to false. Then the sender is
responsible for disposing the parameters.

Impersonation With the Impersonation property, the caller can be imperson-
ated and the method runs with the identity of the caller.

ReleaseInstanceMode The InstanceContextMode defines the lifetime of the object
instance with the service behavior setting. With the operation
behavior setting, you can override the setting based on the opera-
tion. The ReleaseInstanceMode defines an instance release
mode with the enumeration ReleaseInstanceMode. The value
None uses the instance context mode setting. With the values
BeforeCall, AfterCall, and BeforeAndAfterCall you can
define recycle times with the operation.

c42.indd 1475c42.indd 1475 2/19/08 5:33:09 PM2/19/08 5:33:09 PM

Part VI: Communication

1476

OperationBehavior Description

TransactionScopeRequired With the property TransactionScopeRequired, you can spec-
ify if a transaction is required with the operation. If a transaction
is required, and the caller already flows a transaction, the same
transaction is used. If the caller doesn’t flow a transaction, a
new transaction is created.

TransactionAutoComplete The TransactionAutoComplete property specifies whether the
transaction should complete automatically. If the
TransactionAutoComplete property is set to true, the transac-
tion is aborted if an exception is thrown. The transaction is com-
mitted if it is the root transaction and no exception is thrown.

 Error Handling
 By default, the detailed exception information that occurs in the service is not returned to the client
application. The reason for this behavior is security. You wouldn ’ t want to give detailed exception
information to a third party using your service. Instead, the exception should be logged on the service
(which you can do with tracing and event logging), and an error with useful information should be
returned to the caller.

 You can return SOAP faults by throwing a FaultException . Throwing a FaultException creates an
untyped SOAP fault. The preferred way of returning errors is to generate a strongly typed SOAP fault.

 The information that should be passed with a strongly typed SOAP fault is defined with a data contract
as shown with the StateFault class:

 [DataContract]
 public class StateFault
 {
 [DataMember]
 public int BadState { get; set; }
 }

 The type of the SOAP fault must be defined using the FaultContractAttribute with the operation
contract:

 [FaultContract(typeof(StateFault))]
 [OperationContract]
 void SetState(int i);

 With the implementation, a FaultException < TDetail > is thrown. With the constructor you can assign
a new TDetail object, which is a StateFault in the example. In addition, error information within a
 FaultReason can be assigned to the constructor. FaultReason supports error information in multiple
languages.

 public void SetState(int i)
 {
 if (i == -1)
 {
 FaultReasonText[] text = new FaultReasonText[2];
 text[0] = new FaultReasonText(“Sample Error”,

c42.indd 1476c42.indd 1476 2/19/08 5:33:09 PM2/19/08 5:33:09 PM

1477

Chapter 42: Windows Communication Foundation

 new CultureInfo(“en”));
 text[1] = new FaultReasonText(“Beispiel Fehler”,
 new CultureInfo(“de”));
 FaultReason reason = new FaultReason(text);

 throw new FaultException < StateFault > (
 new StateFault() { BadState = i }, reason);
 }
 else
 {
 this.i = i;
 }
 }

 With the client application, exceptions of type FaultException < StateFault > can be caught. The
reason for the exception is defined by the Message property; the StateFault is accessed with the
 Detail property:

 try
 {
 channel.SetState(-1);
 }
 catch (FaultException < StateFault > ex)
 {
 Console.WriteLine(ex.Message);
 StateFault detail = ex.Detail;
 Console.WriteLine(detail.BadState);
 }

 In addition to catching the strongly typed SOAP faults, the client application can also catch exceptions of
the base class of FaultException < Detail > : FaultException and CommunicationException . By
catching CommunicationException , you can also catch other exceptions related to the WCF
communication.

 Binding
 A binding describes how a service wants to communicate. With binding, you can specify the following
features:

 Transport protocol

 Security

 Encoding format

 Transaction flow

 Reliability

 Shape change

 Transport upgrade

❑

❑

❑

❑

❑

❑

❑

c42.indd 1477c42.indd 1477 2/19/08 5:33:10 PM2/19/08 5:33:10 PM

Part VI: Communication

1478

 A binding is composed of multiple binding elements that describe all binding requirements. You can
create a custom binding or use one of the predefined bindings that are shown in the following table.

Standard Binding Description

BasicHttpBinding BasicHttpBinding is the binding for the broadest interoperabil-
ity, the first-generation Web services. Transport protocols used
are HTTP or HTTPS; security is available only from the transport
protocol.

WSHttpBinding WSHttpBinding is the binding for the next-generation Web services,
platforms that implement SOAP extensions for security, reliability,
and transactions. The transports used are HTTP or HTTPS; for
security the WS-Security specification is implemented; transactions
are supported, as has been described, with the WS-Coordination,
WS-AtomicTransaction, and WS-BusinessActivity specifications;
reliable messaging is supported with an implementation of
WS-ReliableMessaging. WS-Profile also supports MTOM (Message
Transmission Optimization Protocol) encoding for sending
attachments. You can find specifications for the WS-* standards at
http://www.oasis-open.org.

WS2007HttpBinding WS2007HttpBinding derives from the base class
WSHttpBinding and supports security, reliability, and transac-
tion specifications defined by OASIS (Organization for the
Advancement of Structured Information Standards). This class is
new with .NET 3.0 SP1.

WSHttpContextBinding WSHttpContextBinding derives from the base class
WSHttpBinding and adds support for a context without using
cookies. This binding adds a ContextBindingElement to
exchange context information.

WebHttpBinding This binding is used for services that are exposed through HTTP
requests instead of SOAP requests. This is useful for scripting
clients, for example, ASP.NET AJAX.

WSFederationHttpBinding WSFederationHttpBinding is a secure and interoperable bind-
ing that supports sharing identities across multiple systems for
authentication and authorization.

WSDualHttpBinding The binding WSDualHttpBinding, in contrast to
WSHttpBinding, supports duplex messaging.

NetTcpBinding All standard bindings prefixed with the name Net use a binary
encoding used for communication between .NET applications.
This encoding is faster than the text encoding with WSxxx bind-
ings. The binding NetTcpBinding uses the TCP/IP protocol.

NetTcpContextBinding Similar to WSHttpContextBinding, NetTcpContextBinding
adds a ContextBindingElement to exchange context with the
SOAP header.

c42.indd 1478c42.indd 1478 2/19/08 5:33:10 PM2/19/08 5:33:10 PM

1479

Chapter 42: Windows Communication Foundation

Standard Binding Description

NetPeerTcpBinding NetPeerTcpBinding provides a binding for peer-to-peer
 communication.

NetNamedPipeBinding NetNamedPipeBinding is optimized for communication
between different processes on the same system.

NetMsmqBinding The binding NetMsmqBinding brings queued communication to
WCF. Here, the messages are sent to the message queue.

MsmqIntegrationBinding MsmqIntegrationBinding is the binding for existing applica-
tions that uses message queuing. In contrast, the binding
NetMsmqBinding requires WCF applications both on the client
and server.

CustomBinding With a CustomBinding the transport protocol and security
requirements can be completely customized.

 Depending on the binding, different features are supported. The bindings starting with WS are platform -
 independent, supporting Web services specifications. Bindings that start with the name Net use binary
formatting for high - performance communication between .NET applications. Other features are support
of sessions, reliable sessions, transactions, and duplex communication; the following table lists the
bindings supporting these features.

Feature Binding

Sessions WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding,
NetTcpBinding, NetNamedPipeBinding

Reliable Sessions WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding,
NetTcpBinding

Transactions WSHttpBinding, WSDualHttpBinding, WSFederationHttpBinding,
NetTcpBinding, NetNamedPipeBinding, NetMsmqBinding,
MsmqIntegrationBinding

Duplex Communication WsDualHttpBinding, NetTcpBinding, NetNamedPipeBinding,
NetPeerTcpBinding

 Along with defining the binding, the service must define an endpoint. The endpoint is dependent on the
contract, the address of the service, and the binding. In the following code sample, a ServiceHost object
is instantiated, and the address http://localhost:8080/RoomReservation , a WsHttpBinding
instance, and the contract are added to an endpoint of the service:

 static ServiceHost host;

 static void StartService()
 {
 Uri baseAddress = new Uri(“http://localhost:8080/RoomReservation”);
 host = new ServiceHost(

(continued)

c42.indd 1479c42.indd 1479 2/19/08 5:33:10 PM2/19/08 5:33:10 PM

Part VI: Communication

1480

 typeof(RoomReservationService));

 WSHttpBinding binding1 = new WSHttpBinding();
 host.AddServiceEndpoint(typeof(IRoomService), binding1, baseAddress);
 host.Open();
 }

 In addition to defining the binding programmatically, you can define it with the application
configuration file. The configuration for WCF is placed inside the element < system.serviceModel > .
The < service > element defines the services offered. Similarly, as you ’ ve seen in the code, the service
needs an endpoint, and the endpoint contains address, binding, and contract information. The default
binding configuration of wsHttpBinding is modified with the bindingConfiguration XML attribute
that references the binding configuration wsHttpConfig1 . This is the binding configuration you can
find inside the < bindings > section, which is used to change the wsHttpBinding configuration to
enable reliableSession .

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < services >
 < service name=”Wrox.ProCSharp.WCF.RoomReservationService” >
 < endpoint address=” http://localhost:8080/RoomReservation”
 contract=”Wrox.ProCSharp.WCF.IRoomService”
 binding=”wsHttpBinding” bindingConfiguration=”wsHttpBinding” / >
 < /service >
 < /services >
 < bindings >
 < wsHttpBinding >
 < binding name=”wsHttpBinding” >
 < reliableSession enabled=”true” / >
 < /binding >
 < /wsHttpBinding >
 < /bindings >
 < /system.serviceModel >
 < /configuration >

 Hosting
 WCF is very flexible when choosing a host to run the service. The host can be a Windows service, a
COM+ application, WAS (Windows Activation Services) or IIS, a Windows application, or just a simple
console application. When creating a custom host with Windows Forms or WPF, you can easily create a
peer - to - peer solution.

 Custom Hosting
 Let ’ s start with a custom host. The sample code shows hosting of a service within a console application;
however, in other custom host types such as Windows services or Windows applications you can
program the service in the same way.

 In the Main() method, a ServiceHost instance is created. After the ServiceHost instance is created,
the application configuration file is read to define the bindings. You can also define the bindings
programmatically, as shown earlier. Next, the Open() method of the ServiceHost class is invoked, so
the service accepts client calls. With a console application, you need to be careful not to close the main

(continued)

c42.indd 1480c42.indd 1480 2/19/08 5:33:11 PM2/19/08 5:33:11 PM

1481

Chapter 42: Windows Communication Foundation

thread until the service should be closed. Here, the user is asked to “ press return ” to exit the service.
When the user does this, the Close() method is called to actually end the service:

using System;
using System.ServiceModel;

public class Program
{
 public static void Main()
 {
 using (ServiceHost serviceHost = new ServiceHost())
 {
 serviceHost.Open();

 Console.WriteLine(“The service started. Press return to exit”);
 Console.ReadLine();

 serviceHost.Close();
 }
 }
}

 To abort the service host, you can invoke the Abort() method of the ServiceHost class. To get the
current state of the service, the State property returns a value defined by the CommunicationState
enumeration. Possible values are Created , Opening , Opened , Closing , Closed , and Faulted .

 If you start the service from within a Windows Forms or WPF application and the
service code invokes methods of Windows controls, you must be sure that only the
control ’ s creator thread is allowed to access the methods and properties of the con-
trol. With WCF, this behavior can be achieved easily by setting the
 UseSynchronizatonContext property of the attribute [ServiceBehavior] .

 WAS Hosting
 With WAS (Windows Activation Services) hosting, you get the features from the WAS worker process
such as automatic activation of the service, health monitoring, and process recycling.

 To use WAS hosting, you just need to create a Web site and a .svc file with the ServiceHost
declaration that includes the language and the name of the service class. The code shown here is using
the class Service1 . In addition, you must specify the file that contains the service class. This class is
implemented in the same way as you saw earlier when defining a WCF service library.

 < %@ServiceHost language=”C#” Service=”Service1”
 CodeBehind=”Service1.svc.cs” % >

 If you use a WCF service library that should be available from WAS hosting, you can create a .svc file
that just contains a reference to the class:

 < %@ ServiceHost
 Service=”Wrox.ProCSharp.WCF.Services.RoomReservationService” % >

 With Windows Vista and Windows Server 2008, WAS allows defining .NET TCP and Message Queue
bindings. If you are using the previous edition, IIS 6 or IIS 5.1 that is available with Windows Server 2003
and Windows XP, activation from a .svc file can be done only with an HTTP binding.

c42.indd 1481c42.indd 1481 2/19/08 5:33:11 PM2/19/08 5:33:11 PM

Part VI: Communication

1482

 You can also add a WCF service to Enterprise Service components. This is discussed in Chapter 44 .

 Clients
 A client application needs a proxy to access a service. There are three ways to create a proxy for the
client:

 Visual Studio Add Service Reference — This utility creates a proxy class from the metadata of
the service.

 ServiceModel Metadata Utility tool (Svcutil.exe) — You can create a proxy class with the
 Svcutil utility. This utility reads metadata from the service to create the proxy class.

 ChannelFactory class — This class is used by the proxy generated from Svcutil ; however, it
can also be used to create a proxy programmatically.

 Adding a service reference from Visual Studio requires accessing a WSDL document. The WSDL
document is created by a MEX endpoint that needs to be configured with the service. With the following
configuration, the endpoint with the relative address mex is using the mexHttpBinding and implements
the contract IMetadataExchange . For accessing the metadata with an HTTP GET request, the
 behaviorConfiguration MexServiceBehavior is configured.

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < services >
 < service behaviorConfiguration=” MexServiceBehavior “
 name=”Wrox.ProCSharp.WCF.Services.RoomReservationService” >
 < endpoint address=”Test” binding=”wsHttpBinding”
 contract=”Wrox.ProCSharp.WCF.Services.IRoomService” / >
 < endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” / >
 < host >
 < baseAddresses >
 < add baseAddress=
 “http://localhost:8731/Design_Time_Addresses/RoomReservationService/” / >
 < baseAddresses >
 < /host >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”MexServiceBehavior” >
 < !-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata endpoint above
 before deployment -- >
 < serviceMetadata httpGetEnabled=”True”/ >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 Similar to the Add service reference from Visual Studio, the Svcutil utility needs metadata to create the
proxy class. The Svcutil utility can create a proxy from the MEX metadata endpoint, the metadata of
the assembly, or WSDL and XSD documentation:

❑

❑

❑

c42.indd 1482c42.indd 1482 2/19/08 5:33:11 PM2/19/08 5:33:11 PM

1483

Chapter 42: Windows Communication Foundation

svcutil http://localhost:8080/RoomReservation?wsdl /language:C# /out:proxy.cs
svcutil CourseRegistration.dll
svcutil CourseRegistration.wsdl CourseRegistration.xsd

 After the proxy class is generated, it just needs to be instantiated from the client code, the methods need
to be called, and finally the Close() method must be invoked:

RoomServiceClient client = new RoomServiceClient();
client.RegisterForCourse(roomReservation);
client.Close();

 The generated proxy class derives from the base class ClientBase < TChannel > that wraps
the ChannelFactory < TChannel > class. Instead of using a generated proxy class, you can use the
 ChannelFactory < TChannel > class directly. The constructor requires the binding and endpoint address;
next, you can create the channel and invoke methods as defined by the service contract. Finally, the
factory must be closed:

 WsHttpBinding binding = new WsHttpBinding();
 EndpointAddress address =
 new EndpointAddress(“http://localhost:8080/RoomService”);

 ChannelFactory < IRoomService > factory =
 new ChannelFactory < IStateService > (binding, address);

 IRoomService channel = factory.CreateChannel();
 channel.ReserveRoom(roomReservation);

 //...
 factory.Close();

 The ChannelFactory < TChannel > class has several properties and methods, as shown in the
following table.

ChannelFactory Members Description

Credentials Credentials is a read-only property to access the
ClientCredentials object that is assigned to the channel for authenti-
cation with the service. The credentials can be set with the endpoint.

Endpoint Endpoint is a read-only property to access the ServiceEndpoint that
is associated with the channel. The endpoint can be assigned in the
constructor.

State The State property is of type CommunicationState to return the cur-
rent state of the channel. CommunicationState is an enumeration
with the values Created, Opening, Opened, Closing, Closed, and
Faulted.

Open() The Open() method is used to open the channel.

Close() The Close() method closes the channel.

Opening
Opened
Closing
Closed
Faulted

You can assign event handlers to get informed about state changes of
the channel. Events are fired before and after the channel is opened,
before and after the channel is closed, and in case of a fault.

c42.indd 1483c42.indd 1483 2/19/08 5:33:12 PM2/19/08 5:33:12 PM

Part VI: Communication

1484

 Duplex Communication
 The next sample application shows how a duplex communication can be done between the client and
the service. The client starts the connection to the service. After the client connects to the service, the
service can call back into the client.

 For duplex communication, a contract must be specified that is implemented in the client. Here the
contract for the client is defined by the interface IMyMessageCallback . The method implemented by
the client is OnCallback() . The operation has the operation contract setting IsOneWay=true applied.
This way, the service doesn ’ t wait until the method is successfully invoked on the client. By default, the
service instance can be invoked from only one thread (see the ConcurrencyMode property of the service
behavior that is, by default, set to ConcurrencyMode.Single).

 If the service implementation now does a callback to the client and waits to get an answer from the
client, the thread getting the reply from the client must wait until it gets a lock to the service object.
Because the service object is already locked by the request to the client, a deadlock occurs. WCF detects
the deadlock and throws an exception. To avoid this situation, you can change the ConcurrencyMode
property to the value Multiple or Reentrant . With the setting Multiple , multiple threads can
access the instance concurrently. Here, you must implement locking on your own. With the setting
 Reentrant , the service instance stays single threaded, but allows answers from callback requests to
reenter the context. Instead of changing the concurrency mode, you can specify the IsOneWay property
with the operation contract. This way, the caller does not wait for a reply. Of course, this setting is
possible only if return values are not expected.

 The contract of the service is defined by the interface IMyMessage . The callback contract is mapped to
the service contract with the CallbackContract property of the service contract definition:

 public interface IMyMessageCallback
 {
 [OperationContract(IsOneWay=true)]
 void OnCallback(string message);
 }

 [ServiceContract(CallbackContract=typeof(IMyMessageCallback))]
 public interface IMyMessage
 {
 [OperationContract]
 void MessageToServer(string message);
 }

 The class MessageService implements the service contract IMyMessage . The service writes the
message from the client to the console. To access the callback contract, you can use the
 OperationContext class. OperationContext.Current returns the OperationContext that is
associated with the current request from the client. With the OperationContext , you can access session
information, message headers and properties, and, in case of a duplex communication, the callback
channel. The generic method GetCallbackChannel() returns the channel to the client instance.
This channel can then be used to send a message to the client by invoking the method OnCallback()
that is defined with the callback interface IMyMessageCallback . To demonstrate that it is also possible
to use the callback channel from the service independent of the completion of the method, a new thread
that receives the callback channel is created. The new thread sends messages to the client by using the
callback channel.

 public class MessageService : IMyMessage
 {
 public void MessageToServer(string message)

c42.indd 1484c42.indd 1484 2/19/08 5:33:12 PM2/19/08 5:33:12 PM

1485

Chapter 42: Windows Communication Foundation

 {
 Console.WriteLine(“message from the client: {0}”, message);
 IMyMessageCallback callback =
 OperationContext.Current.
 GetCallbackChannel < IMyMessageCallback > ();

 callback.OnCallback(“message from the server”);

 new Thread(ThreadCallback).Start(callback);
 }

 private void ThreadCallback(object callback)
 {
 IMyMessageCallback messageCallback = callback as IMyMessageCallback;
 for (int i = 0; i < 10; i++)
 {
 messageCallback.OnCallback(“message “ + i.ToString());
 Thread.Sleep(1000);
 }
 }
 }

 Hosting the service is the same as it was with the previous samples, so it is not shown here. However, for
duplex communication, you must configure a binding that supports a duplex channel. One of the
bindings supporting a duplex channel is wsDualHttpBinding , which is configured in the application
configuration file:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < services >
 < service name=”Wrox.ProCSharp.WCF.MessageService” >
 < endpoint contract=”Wrox.ProCSharp.WCF.IMyMessage”
 binding=”wsDualHttpBinding”/ >
 < host >
 < baseAddresses >
 < add baseAddress=”http://localhost:8731/Service1” / >
 < /baseAddresses >
 < /host >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 With the client application, the callback contract must be implemented as shown here with the class
 ClientCallback that implements the interface IMyMessageCallback :

 class ClientCallback : IMyMessageCallback
 {
 public void OnCallback(string message)
 {
 Console.WriteLine(“message from the server: {0}”, message);
 }
 }

c42.indd 1485c42.indd 1485 2/19/08 5:33:12 PM2/19/08 5:33:12 PM

Part VI: Communication

1486

 With a duplex channel, you cannot use the ChannelFactory to initiate the connection to the service as
was done previously. To create a duplex channel, you can use the DuplexChannelFactory class. This
class has a constructor with one more parameter in addition to the binding and address configuration.
This parameter specifies an InstanceContext that wraps one instance of the ClientCallback class.
When passing this instance to the factory, the service can invoke the object across the channel. The client
just needs to keep the connection open. If the connection is closed, the service cannot send messages
across it.

 WSDualHttpBinding binding = new WSDualHttpBinding();
 EndpointAddress address =
 new EndpointAddress(“http://localhost:8731/Service1”);

 ClientCallback clientCallback = new ClientCallback();
 InstanceContext context = new InstanceContext(clientCallback);

 DuplexChannelFactory < IMyMessage > factory =
 new DuplexChannelFactory < IMyMessage > (context, binding, address);

 IMyMessage messageChannel = factory.CreateChannel();

 messageChannel.MessageToServer(“From the client”);

 Duplex communication is achieved by starting the service host and the client application.

 Summary
 In this chapter, you learned how to use Windows Communication Foundation for communication
between a client and a server. WCF is platform - independent like ASP.NET Web services, but it offers
features similar to .NET Remoting, Enterprise Services, and Message Queuing.

 WCF has a heavy focus on contracts to make it easier to isolate developing clients and services, and to
support platform independence. It defines three different contract types: service contracts, data contracts,
and message contracts. You can use several attributes to define the behavior of the service and its
operations.

 You have seen how to create clients from the metadata offered by the service, but also by using the .NET
interface contract.

 You have learned the features of different binding options. WCF offers not only bindings for platform
independence but also bindings for fast communication between .NET applications.

 You ’ ve seen how to create custom hosts and also make use of the WAS host.

 You ’ ve seen how duplex communication is achieved by defining a callback interface, applying a service
contract, and implementing a callback contract in the client application.

 The next few chapters continue with WCF features. In Chapter 44 , “ Enterprise Services, ” you learn how
to integrate Enterprise Services with WCF. Chapter 45 , “ Message Queuing, ” explains how disconnected
Message Queuing features can be used with WCF bindings. And, in Chapter 43 , you learn about
Windows Workflow Foundation where WCF is used to communicate with Workflow instances.

c42.indd 1486c42.indd 1486 2/19/08 5:33:13 PM2/19/08 5:33:13 PM

 Windows Workflow
Foundation

 This chapter presents an overview of the Windows Workflow Foundation (known as WF
throughout the rest of this chapter), which provides a model to define and execute processes using
a set of building blocks called activities . WF provides a Designer that, by default, is hosted within
Visual Studio, and that allows you to drag and drop activities from the toolbox onto the design
surface to create a workflow template.

 This template can then be executed by creating a WorkflowInstance and then running that
instance. The code that executes a workflow is known as the WorkflowRuntime , and this object
can also host a number of services that the running workflows can access. At any time, there may
be several workflow instances executing, and the runtime deals with scheduling these instances
and saving and restoring state; it can also record the behavior of each workflow instance as it
executes.

 A workflow is constructed from a number of activities, and these activities are executed by the
runtime. An activity might send an email, update a row in a database, or execute a transaction on a
back - end system. There are a number of built - in activities that can be used for general - purpose
work, and you can also create your own custom activities and plug these into the workflow as
necessary. In this chapter you see the following:

 The different types of workflows that can be created

 A description of some of the built - in activities

 How to create custom activities

 We begin with the canonical example that everyone uses when faced with a new technology —
 Hello World — and also describe what you need to get workflows running on your development
machine.

❑

❑

❑

c43.indd 1487c43.indd 1487 2/19/08 5:33:24 PM2/19/08 5:33:24 PM

1488

Part VI: Communication

 Hello World
 Visual Studio 2008 contains built - in support for creating workflows, and when you open the New Project
dialog you will see a list of workflow project types as shown in Figure 43 - 1 .

Figure 43-1

 Select Sequential Workflow Console Application from the available templates (that will create a console
application that hosts the workflow runtime) and a default workflow that you can then drag and drop
activities onto.

 Next, drag a Code activity from the toolbox onto the design surface so that you have a workflow that
looks like that shown in Figure 43 - 2 .

Figure 43-2

 The exclamation mark glyph on the top right of the activity indicates that a mandatory property of that
activity has not been defined — in this case it is the ExecuteCode property, which indicates the method
that will be called when the activity executes. You learn how to mark your own properties as mandatory
in the section on activity validation. If you double - click the code activity, a method will be created for

c43.indd 1488c43.indd 1488 2/19/08 5:33:24 PM2/19/08 5:33:24 PM

1489

Chapter 43: Windows Workfl ow Foundation

you in the code - behind class, and here you can use Console.WriteLine to output the “ Hello World ”
string as shown in the following code snippet:

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine(“Hello World”);
}

 If you then build and run the program, you will see the output text on the console. When the program
executes, an instance of the WorkflowRuntime is created, and then an instance of your workflow is
constructed and executed. When the code activity executes, it calls the method defined and that outputs
the string to the console. The section entitled “ The Workflow Runtime ” later in the chapter describes in
detail how to host the runtime. The code for the preceding example is available in the 01
HelloWorkflowWorld folder.

 Activities
 Everything in a workflow is an activity, including the workflow itself. The workflow is a specific type
of activity that typically allows other activities to be defined within it — this is known as a composite
activity, and you see other composite activities later in this chapter. An activity is just a class that
ultimately derives from the Activity class.

 The Activity class defines a number of overridable methods, and arguably the most important of these
is the Execute method shown in the following snippet:

protected override ActivityExecutionStatus Execute
 (ActivityExecutionContext executionContext)
{
 return ActivityExecutionStatus.Closed;
}

 When the runtime schedules an activity for execution, the Execute method is ultimately called, and that
is where you have the opportunity to write custom code to provide the behavior of the activity. In the
simple example in the previous section, when the workflow runtime calls Execute on the
 CodeActivity , the implementation of this method on the code activity will execute the method defined
in the code - behind class, and that displays the message on the console.

 The Execute method is passed a context parameter of type ActivityExecutionContext . You will see
more about this as the chapter progresses. The method has a return value of type
 ActivityExecutionStatus , and this is used by the runtime to determine whether the activity has
completed successfully, is still processing, or is in one of several other potential states that can describe to
the workflow runtime what state the activity is in. Returning ActivityExecutionStatus.Closed
from this method indicates that the activity has completed its work and can be disposed of.

 Numerous standard activities are provided with WF, and the following sections provide examples of
some of these together with scenarios in which you might use these activities. The naming convention
for activities is to append Activity to the name; so for example, the code activity shown in Figure 43 - 2
is defined by the CodeActivity class.

 All of the standard activities are defined within the System.Workflow.Activities namespace, which
in turn forms part of the System.Workflow.Activities.dll assembly. There are two other assemblies
that make up WF — these are System.Workflow.ComponentModel.dll and System.Workflow
.Runtime.dll .

c43.indd 1489c43.indd 1489 2/19/08 5:33:25 PM2/19/08 5:33:25 PM

1490

Part VI: Communication

 IfElseActivity
 As its name implies, this activity acts like an If - Else statement in C#.

 When you drop an IfElseActivity onto the design surface, you will see an activity as displayed in
Figure 43 - 3 . The IfElseActivity is a composite activity in that it constructs two branches (which
themselves are types of activity, in this case IfElseBranchActivity). Each branch is also a composite
activity that derives from SequenceActivity — this class executes each activity in turn from top to
bottom. The Designer adds the “ Drop Activities Here ” text to indicate where child activities can be added.

Figure 43-3

 The first branch, as shown in Figure 43 - 3 , includes a glyph indicating that the Condition property
needs to be defined. A condition derives from ActivityCondition and is used to determine whether
that branch should be executed.

 When the IfElseActivity is executed, it evaluates the condition of the first branch, and if the
condition evaluates to true the branch is executed. If the condition evaluates to false the
 IfElseActivity then tries the next branch, and so on until the last branch in the activity. It is worth
noting that the IfElseActivity can have any number of branches, each with its own condition. The
last branch needs no condition because it is in effect the else part of the If - Else statement. To add a
new branch, you can display the context menu for the activity and select Add Branch from that menu —
 this is also available from the Workflow menu within Visual Studio. As you add branches, each will have
a mandatory condition except for the last one.

 Two standard condition types are defined in WF — the CodeCondition and the
 RuleConditionReference . The CodeCondition class executes a method on your code - behind class,
which can return true or false as appropriate. To create a CodeCondition , display the property grid
for the IfElseActivity and set the condition to Code Condition, then type in a name for the code to be
executed, as shown in Figure 43 - 4 .

Figure 43-4

c43.indd 1490c43.indd 1490 2/19/08 5:33:25 PM2/19/08 5:33:25 PM

1491

Chapter 43: Windows Workfl ow Foundation

 When you have typed the method name into the property grid, the Designer will construct a method on
your code - behind class, as shown in the following snippet:

private void InWorkingHours(object sender, ConditionalEventArgs e)
{
 int hour = DateTime.Now.Hour;

 e.Result = ((hour > = 9) & & (hour < = 17));
}

 This code sets the Result property of the passed ConditionalEventArgs to true if the current hour is
between 9 AM and 5 PM. Conditions can be defined in code as shown here, but another option is to
define a condition based on a rule that is evaluated in a similar manner. The Workflow Designer contains
a rule editor, which can be used to declare conditions and statements (much like the If - Else statement
shown previously). These rules are evaluated at runtime based on the current state of the workflow.

 ParallelActivity
 This activity permits you to define a set of activities that execute in parallel — or rather in a pseudo -
 parallel manner. When the workflow runtime schedules an activity, it does so on a single thread. This
thread executes the first activity, then the second, and so on until all activities have completed (or until
an activity is waiting on some form of input). When the ParallelActivity executes, it iterates through
each branch and schedules execution of each branch in turn. The workflow runtime maintains a queue of
scheduled activities for each workflow instance, and typically executes these in a FIFO (first in, first out)
manner.

 Assuming that you have a ParallelActivity , as shown in Figure 43 - 5 , this will schedule execution of
 sequenceActivity1 and then sequenceActivity2 . The SequenceActivity type works by
scheduling execution of its first activity with the runtime, and when this activity completes, it
then schedules the second activity. This schedule/wait for completion method is used to traverse
through all child activities of the sequence, until all child activities have executed, at which time the
sequence activity can complete.

Figure 43-5

 Given that the SequenceActivity schedules execution of one activity at a time, it means that the queue
maintained by the WorkflowRuntime is continually updated with schedulable activities. Assuming that
we have a parallel activity P1 that contains two sequences, S1 and S2, each with two code activities, C1
and C2, this would produce entries in the scheduler queue, as shown in the following table.

c43.indd 1491c43.indd 1491 2/19/08 5:33:26 PM2/19/08 5:33:26 PM

1492

Part VI: Communication

Workflow Queue Initially There Are No Activities in the Queue

P1 Parallel is executed when the workflow runs.

S1, S2 Added to the queue when P1 executes.

S2, S1.C1 S1 executes and adds S1.C1 to the queue.

S1.C1, S2.C1 S2 executes and adds S2.C1 to the queue.

S2.C1, S1.C2 S1.C1 completes, so S1.C2 is queued.

S1.C2, S2.C2 S2.C1 completes, so S2.C2 is queued.

S2.C2 The last entry in the queue.

 Here, the queue processes the first entry (the parallel activity P1), and this adds the sequence activities
S1 and S2 to the workflow queue. As the sequence activity S1 executes, it pushes its first child activity
(S1.C1) to the end of the queue, and when this activity is scheduled and completes, it then adds the
second child activity to the queue.

 As can be seen from the preceding example, execution of the ParallelActivity is not truly parallel —
 it effectively interleaves execution between the two sequential branches. From this, you could infer that
it ’ s best that an activity execute in a minimal amount of time because, given that there is only one thread
servicing the scheduler queue for each workflow, a long - running activity could hamper the execution of
other activities in the queue. That said, often, an activity needs to execute for an arbitrary amount of
time, so there must be some way to mark an activity as “ long - running ” so that other activities get a
chance to execute. You can do this by returning ActivityExecutionStatus.Executing from the
 Execute method, which lets the runtime know that you will call it back later when the activity has
finished. An example of this type of activity is the DelayActivity .

 CallExternalMethodActivity
 A workflow will typically need to call methods outside of the workflow, and this activity allows you to
define an interface and a method to call on that interface. The WorkflowRuntime maintains a list of
services (keyed on a System.Type value) that can be accessed using the ActivityExecutionContext
parameter passed to the Execute method.

 You can define your own services to add to this collection and then access these services from within
your own activities. You could, for example, construct a data access layer exposed as a service interface
and then provide different implementations of this service for SQL Server and Oracle. Because the
activities simply call interface methods, the swap from SQL Server to Oracle would be opaque to
the activities.

 When you add a CallExternalMethodActivity to your workflow, you then define the two
mandatory properties of InterfaceType and MethodName . The interface type defines which runtime
service will be used when the activity executes, and the method name defines which method of that
interface will be called.

 When this activity executes, it looks up the service with the defined interface by querying the execution
context for that service type, and it then calls the appropriate method on that interface. You can also pass
parameters to the method from within the workflow — this is discussed later in the section titled
 “ Binding Parameters to Activities. ”

c43.indd 1492c43.indd 1492 2/19/08 5:33:26 PM2/19/08 5:33:26 PM

1493

Chapter 43: Windows Workfl ow Foundation

 DelayActivity
 Business processes often need to wait for a period of time before completing. Consider using a workflow for
expense approval. Your workflow might send an email to your immediate manager asking him or her to
approve your expense claim. The workflow then enters a waiting state, where it either waits for approval (or,
horror of horrors, rejection), but it would also be nice to define a timeout so that if no response is returned
within, say, one day, the expense claim is then routed to the next manager up the chain of command.

 The DelayActivity can form part of this scenario (the other part is the ListenActivity defined later).
Its job is to wait for a predefined time before continuing execution of the workflow. There are two ways
to define the duration of the delay — you can either set the TimeoutDuration property of the delay to a
string such as “ 1.00:00:00 ” (1 day, no hours, minutes, or seconds), or you can provide a method that is
called when the activity is executed that sets the duration to a value from code. To do this, you need to
define a value for the InitializeTimeoutDuration property of the delay activity. This creates a
method in the code behind, as shown in the following snippet:

private void DefineTimeout(object sender, EventArgs e)
{
 DelayActivity delay = sender as DelayActivity;

 if (null != delay)
 {
 delay.TimeoutDuration = new TimeSpan(1, 0, 0, 0);
 }
}

 Here, the DefineTimeout method casts the sender to a DelayActivity and then sets the
 TimoutDuration property in code to a TimeSpan . Even though the value is hard - coded here, it is more
likely that you would construct this from some other data — maybe a parameter passed into the
workflow or a value read from the configuration file. Workflow parameters are discussed in the section
 “ Workflows ” later in the chapter.

 ListenActivity
 A common programming construct is to wait for one of a set of possible events — one example of this is
the WaitAny method of the System.Threading.WaitHandle class. The ListenActivity is the way to
do this in a workflow, because it can define any number of branches, each with an event - based activity
as that branch ’ s first activity.

 An event activity is one that implements the IEventActivity interface defined in the System
.Workflow.Activities namespace. There are currently three such activities defined as standard in WF
— DelayActivity , HandleExternalEventActivity , and the WebServiceInputActivity . Figure
 43 - 6 shows a workflow that is waiting for either external input or a delay — this is an example of the
expense approval workflow discussed earlier.

 In the example, the CallExternalMethodActivity is used as the first activity in the workflow. This
calls a method defined on a service interface that would prompt the manager for approval or rejection.
Because this is an external service, this prompt could be an email, an IM message, or any other manner
of notifying your manager that an expense claim needs to be processed. The workflow then executes the
 ListenActivity , which awaits input from this external service (either an approval or a rejection), and
also waits on a delay.

 When the listen executes, it effectively queues a wait on the first activity in each branch, and when one
event is triggered, this cancels all other waiting events and then processes the rest of the branch where
the event was raised. So, in the instance where the expense report is approved, the Approved event is
raised and the PayMe activity is then scheduled. If, however, your manager rejects the claim, the
 Rejected event is raised, and in the example you then Panic .

c43.indd 1493c43.indd 1493 2/19/08 5:33:26 PM2/19/08 5:33:26 PM

1494

Part VI: Communication

Figure 43-6

 Last, if neither the Approved nor Rejected event is raised, the DelayActivity ultimately completes
after its delay expires, and the expense report could then be routed to another manager — potentially
looking up that person in Active Directory. In the example, a dialog is displayed to the user when the
 RequestApproval activity is executed, so if the delay executes, you also need to close the dialog, which
is the purpose of the activity named HideDialog in Figure 43 - 6 .

 The code for this example is available in the 02 Listen directory. Some concepts used in that example
have not been covered yet — such as how a workflow instance is identified and how events are raised
back into the workflow runtime and ultimately delivered to the right workflow instance. These concepts
are covered in the section titled “ Workflows. ”

 Activity Execution Model
 So far, this chapter has discussed the execution of an activity only by the runtime calling the Execute
method. However, an activity may go through a number of states while it executes — these are presented
in Figure 43 - 7 .

Initialized Executing Closed

CompensatingCanceling

Faulting

Figure 43-7

c43.indd 1494c43.indd 1494 2/19/08 5:33:27 PM2/19/08 5:33:27 PM

1495

Chapter 43: Windows Workfl ow Foundation

 An activity is first initialized by the WorkflowRuntime when the runtime calls the activity ’ s
 Initialize method. This method is passed an IServiceProvider instance, which maps to the
services available within the runtime. These services are discussed in the “ Workflow Services ” section
later in the chapter. Most activities do nothing in this method, but the method is there for you to do any
setup necessary.

 The runtime then calls the Execute method, and the activity can return any one of the values from the
 ActivityExecutionStatus enum. Typically, you will return Closed from your Execute method,
which indicates that your activity has finished processing; however, if you return one of the other status
values, the runtime will use this to determine what state your activity is in.

 You can return Executing from this method to indicate to the runtime that you have extra work to
do — a typical example of this is when you have a composite activity that needs to execute its children.
In this case, your activity can schedule each child for execution and then wait for all children to complete
before notifying the runtime that your activity has completed.

 Custom Activities
 So far, you have used activities that are defined within the System.Workflow.Activities namespace.
In this section, you learn how to create custom activities and extend these activities to provide a good
user experience at both design time and runtime.

 To begin, you create a WriteLineActivity that can be used to output a line of text to the console.
Although this is a trivial example, it will be expanded to show the full gamut of options available for
custom activities using this example. When creating custom activities, you can simply construct a class
within a workflow project; however, it is preferable to construct your custom activities inside a separate
assembly, because the Visual Studio design time environment (and specifically workflow projects) will
load activities from your assemblies and can lock the assembly that you are trying to update. For this
reason, you should create a simple class library project to construct your custom activities within.

 A simple activity such as the WriteLineActivity will be derived directly from the Activity base
class. The following code shows a constructed activity class and defines a Message property that is
displayed when the Execute method is called:

using System;
using System.ComponentModel;
using System.Workflow.ComponentModel;

namespace SimpleActivity
{
 /// < summary >
 /// A simple activity that displays a message to the console when it executes
 /// < /summary >
 public class WriteLineActivity : Activity
 {
 /// < summary >
 /// Execute the activity - display the message on screen
 /// < /summary >
 /// < param name=”executionContext” > < /param >
 /// < returns > < /returns >
 protected override ActivityExecutionStatus Execute
 (ActivityExecutionContext executionContext)

(continued)

c43.indd 1495c43.indd 1495 2/19/08 5:33:27 PM2/19/08 5:33:27 PM

1496

Part VI: Communication

 {
 Console.WriteLine(Message);

 return ActivityExecutionStatus.Closed;
 }

 /// < summary >
 /// Get/Set the message displayed to the user
 /// < /summary >
 [Description(“The message to display”)]
 [Category(“Parameters”)]
 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }

 /// < summary >
 /// Store the message displayed to the user
 /// < /summary >
 private string _message;
 }
}

 Within the Execute method, you can write the message to the console and then return a status of
 Closed to notify the runtime that the activity has completed.

 You can also define attributes on the Message property so that a description and category are defined for
that property. This is used in the property grid within Visual Studio, as shown in Figure 43 - 8 .

 The code for the activities created in this section is in the 03 CustomActivities solution. If you
compile that solution, you can then add the custom activities to the toolbox within Visual Studio by
choosing the Choose Items menu item from the context menu on the toolbox and navigating to the folder
where the assembly containing the activities resides. All activities within the assembly will be added to
the toolbox.

(continued)

Figure 43-8

 As it stands, the activity is perfectly usable; however, there are several areas that should be addressed to
make this more user - friendly. As you saw with the CodeActivity earlier in the chapter, it has some
mandatory properties that, when not defined, produce an error glyph on the design surface. To get the
same behavior from your activity, you need to construct a class that derives from ActivityValidator
and associate this class with your activity.

c43.indd 1496c43.indd 1496 2/19/08 5:33:27 PM2/19/08 5:33:27 PM

1497

Chapter 43: Windows Workfl ow Foundation

 Activity Validation
 When an activity is placed onto the design surface, the Workflow Designer looks for an attribute on that
activity that defines a class that performs validation on that activity. To validate your activity, you need
to check if the Message property has been set.

 A custom validator is passed the activity instance, and from this you can then determine which
mandatory properties (if any) have not been defined and add an error to the
 ValidationErrorCollection used by the Designer. This collection is then read by the Workflow
Designer, and any errors found in the collection will cause a glyph to be added to the activity and
optionally link each error to the property that needs attention.

using System;
using System.Workflow.ComponentModel.Compiler;

namespace SimpleActivity
{
 public class WriteLineValidator : ActivityValidator
 {
 public override ValidationErrorCollection Validate
 (ValidationManager manager, object obj)
 {
 if (null == manager)
 throw new ArgumentNullException(“manager”);
 if (null == obj)
 throw new ArgumentNullException(“obj”);

 ValidationErrorCollection errors = base.Validate(manager, obj);

 // Coerce to a WriteLineActivity
 WriteLineActivity act = obj as WriteLineActivity;

 if (null != act)
 {
 if (null != act.Parent)
 {
 // Check the Message property
 if (string.IsNullOrEmpty(act.Message))
 errors.Add(ValidationError.GetNotSetValidationError(“Message”));
 }
 }

 return errors;
 }
 }
}

 The Validate method is called by the Designer when any part of the activity is updated and also when
the activity is dropped onto the design surface. The Designer calls the Validate method and passes
through the activity as the untyped obj parameter.

 In this method, first validate the arguments passed in, and then call the base class Validate method to
obtain a ValidationErrorCollection . Although this is not strictly necessary here, if you are deriving
from an activity that has a number of properties that also need to be validated, calling the base class
method will ensure that these are also checked.

c43.indd 1497c43.indd 1497 2/19/08 5:33:28 PM2/19/08 5:33:28 PM

1498

Part VI: Communication

 Coerce the passed obj parameter into a WriteLineActivity instance, and check if the activity has a
parent. This test is necessary because the Validate function is called during compilation of the activity
(if the activity is within a workflow project or activity library), and, at this point, no parent activity has
been defined. Without this check, you cannot actually build the assembly that contains the activity and
the validator. This extra step is not needed if the project type is class library.

 The last step is to check that the Message property has been set to a value other than an empty string.
This uses a static method of the ValidationError class, which constructs an error that specifies that the
property has not been defined.

 To add validation support to your WriteLineActivity , the last step is to add the
 ActivityValidation attribute to the activity, as shown in the following snippet:

 [ActivityValidator(typeof(WriteLineValidator))]
public class WriteLineActivity : Activity
{
 ...
}

 If you compile the application and then drop a WriteLineActivity onto the workflow, you should see
a validation error, as shown in Figure 43 - 9 ; clicking this error will take you to that property within the
property grid.

Figure 43-9

 If you enter some text for the Message property, the validation error will be removed, and you can then
compile and run the application.

 Now that you have completed the activity validation, the next thing to do is to change the rendering
behavior of the activity to add a fill color to that activity. To do this, you need to define both an
 ActivityDesigner class and an ActivityDesignerTheme class, as described in the next section.

 Themes and Designers
 The onscreen rendering of an activity is performed using an ActivityDesigner class, and this can also
use an ActivityDesignerTheme .

 The theme class is used to make simple changes to the rendering behavior of the activity within the
Workflow Designer:

public class WriteLineTheme : ActivityDesignerTheme
{
 /// < summary >
 /// Construct the theme and set some defaults
 /// < /summary >
 /// < param name=”theme” > < /param >
 public WriteLineTheme(WorkflowTheme theme)
 : base(theme)

c43.indd 1498c43.indd 1498 2/19/08 5:33:28 PM2/19/08 5:33:28 PM

1499

Chapter 43: Windows Workfl ow Foundation

 {
 this.BackColorStart = Color.Yellow;
 this.BackColorEnd = Color.Orange;
 this.BackgroundStyle = LinearGradientMode.ForwardDiagonal;
 }
}

 A theme is derived from ActivityDesignerTheme , which has a constructor that is passed a
 WorkflowTheme argument. Within the constructor, set the start and end colors for the activity, and then
define a linear gradient brush, which is used when painting the background.

 The Designer class is used to override the rendering behavior of the activity. In this case, no override is
necessary, so the following code will suffice:

 [ActivityDesignerTheme(typeof(WriteLineTheme))]
public class WriteLineDesigner : ActivityDesigner
{
}

 Note that the theme has been associated with the Designer by using the ActivityDesignerTheme
attribute.

 The last step is to adorn the activity with the Designer attribute:

 [ActivityValidator(typeof(WriteLineValidator))]
[Designer(typeof(WriteLineDesigner))]
public class WriteLineActivity : Activity
{
 ...
}

 With this in place, the activity is rendered as shown in Figure 43 - 10 .

Figure 43-10

 With the addition of the Designer and the theme, the activity now looks much more professional. A
number of other properties are available on the theme — such as the pen used to render the border, the
color of the border, and the border style.

 By overriding the OnPaint method of the ActivityDesigner class, you can have complete control over
the rendering of the activity. Be sure to exercise restraint here, because you could get carried away and
create an activity that doesn ’ t resemble any of the other activities in the toolbox.

 One other useful override on the ActivityDesigner class is the Verbs property. This allows you to add
menu items on the context menu for the activity. It is used by the Designer of the ParallelActivity to
insert the Add Branch menu item into the activities context menu and also the Workflow menu. You can
also alter the list of properties exposed for an activity by overriding the PreFilterProperties method
of the Designer — this is how the method parameters for the CallExternalMethodActivity are

c43.indd 1499c43.indd 1499 2/19/08 5:33:29 PM2/19/08 5:33:29 PM

1500

Part VI: Communication

surfaced into the property grid. If you need to do this type of extension to your Designer, you should run
Lutz Roeder ’ s Reflector (available from http://www.aisto.com/roeder/dotnet) and load the
workflow assemblies into it to see how Microsoft has defined some of these extended properties.

 This activity is nearly done, but now you need to define the icon used when rendering the activity and
also the toolbox item to associate with the activity.

 ActivityToolboxItem and Icons
 To complete your custom activity, you need to add an icon. You can optionally create a class deriving from
 ActivityToolboxItem that is used when displaying the activity in the toolbox within Visual Studio.

 To define an icon for an activity, create a 16 × 16 pixel image and include it into your project. When it has
been included, set the build action for the image to be Embedded Resource . This will include the image
in the manifest resources for the assembly. You can add a folder to your project called Resources, as
shown in Figure 43 - 11 .

Figure 43-11

 Once you have added the image file and set its build action to Embedded Resource , you can then
attribute the activity as shown in the following snippet:

 [ActivityValidator(typeof(WriteLineValidator))]
[Designer(typeof(WriteLineDesigner))]
[ToolboxBitmap(typeof(WriteLineActivity),”Resources.WriteLine.png”)]
public class WriteLineActivity : Activity
{
 ...
}

 The ToolboxBitmap attribute has a number of constructors defined, and the one being used here takes a
type defined in the activity assembly and the name of the resource. When you add a resource to a folder,
its name is constructed from the namespace of the assembly and the name of the folder that the image
resides within — so the fully qualified name for the resource here is CustomActivities.Resources
.WriteLine.png . The constructor used with the ToolboxBitmap attribute appends the namespace that
the type parameter resides within to the string passed as the second argument, so this will resolve to the
appropriate resource when loaded by Visual Studio.

 The last class you need to create is derived from ActivityToolboxItem . This class is used when the
activity is loaded into the Visual Studio toolbox. A typical use of this class is to change the displayed
name of the activity on the toolbox — all of the built - in activities have their names changed to remove
the word “ Activity ” from the type. In your class, you can do the same by setting the DisplayName
property to “ WriteLine. ”

c43.indd 1500c43.indd 1500 2/19/08 5:33:29 PM2/19/08 5:33:29 PM

1501

Chapter 43: Windows Workfl ow Foundation

 [Serializable]
public class WriteLineToolboxItem : ActivityToolboxItem
{
 /// < summary >
 /// Set the display name to WriteLine - i.e. trim off
 /// the ‘Activity’ string
 /// < /summary >
 /// < param name=”t” > < /param >
 public WriteLineToolboxItem(Type t)
 : base(t)
 {
 base.DisplayName = “WriteLine”;
 }

 /// < summary >
 /// Necessary for the Visual Studio design time environment
 /// < /summary >
 /// < param name=”info” > < /param >
 /// < param name=”context” > < /param >
 private WriteLineToolboxItem(SerializationInfo info,
 StreamingContext context)
 {
 this.Deserialize(info, context);
 }
}

 The class is derived from ActivityToolboxItem and overrides the constructor to change the display
name; it also provides a serialization constructor that is used by the toolbox when the item is loaded into
the toolbox. Without this constructor, you will receive an error when you attempt to add the activity
to the toolbox. Note that the class is also marked as [Serializable] .

 The toolbox item is added to the activity by using the ToolboxItem attribute as shown:

 [ActivityValidator(typeof(WriteLineValidator))]
[Designer(typeof(WriteLineDesigner))]
[ToolboxBitmap(typeof(WriteLineActivity),”Resources.WriteLine.png”)]
[ToolboxItem(typeof(WriteLineToolboxItem))]
public class WriteLineActivity : Activity
{
 ...
}

 With all of these changes in place, you can compile the assembly and then create a new workflow project.
To add the activity to the toolbox, open a workflow and then display the context menu for the toolbox
and click Choose Items .

 You can then browse for the assembly containing your activity, and once you have added it to the toolbox,
it will look something like Figure 43 - 12 . The icon is somewhat less than perfect, but it ’ s close enough.

Figure 43-12

 You revisit the ActivityToolboxItem in the next section on custom composite activities, because there
are some extra facilities available with that class that are necessary only when adding composite
activities to the design surface.

c43.indd 1501c43.indd 1501 2/19/08 5:33:29 PM2/19/08 5:33:29 PM

1502

Part VI: Communication

 Custom Composite Activities
 There are two main types of activity. Activities that derive from Activity can be thought of as callable
functions from the workflow. Activities that derive from CompositeActivity (such as
 ParallelActivity , IfElseActivity , and the ListenActivity) are containers for other activities.
Their design - time behavior is considerably different from simple activities in that they present an area on
the Designer where child activities can be dropped.

 In this section, you create an activity that you can call the DaysOfWeekActivity . This activity can be
used to execute different parts of a workflow based on the current date. You might, for instance, need to
execute a different path in the workflow for orders that arrive over the weekend than for those that
arrive during the week. In this example, you learn about a number of advanced workflow topics, and by
the end of this section, you should have a good understanding of how to extend the system with your
own composite activities. The code for this example is also available in the 03 CustomActivities
solution.

 To begin, you create a custom activity that has a property that will default to the current date/time. You
will allow that property to be set to another value that could come from another activity in the workflow
or a parameter that is passed to the workflow when it executes. This composite activity will contain a
number of branches — these will be user defined. Each of these branches will contain an enumerated
constant that defines which day(s) that branch will execute. The following example defines the activity
and two branches:

DaysOfWeekActivity
 SequenceActivty: Monday, Tuesday, Wednesday, Thursday, Friday
 < other activites as appropriate >
 SequenceActivity: Saturday, Sunday
 < other activites as appropriate >

 For this example, you need an enumeration that defines the days of the week — this will include the
 [Flags] attribute (so you can ’ t use the built - in DayOfWeek enum defined within the System namespace,
because this doesn ’ t include the [Flags] attribute).

 [Flags]
[Editor(typeof(FlagsEnumEditor), typeof(UITypeEditor))]
public enum WeekdayEnum : byte
{
 None = 0x00,
 Sunday = 0x01,
 Monday = 0x02,
 Tuesday = 0x04,
 Wednesday = 0x08,
 Thursday = 0x10,
 Friday = 0x20,
 Saturday = 0x40
}

 Also included is a custom editor for this type, which will allow you to choose enum values based on
check boxes. This code is available in the download.

 With the enumerated type defined, you can take an initial stab at the activity itself. Custom composite
activities are typically derived from the CompositeActivity class, because this defines among other
things an Activities property, which is a collection of all subordinate activities.

c43.indd 1502c43.indd 1502 2/19/08 5:33:29 PM2/19/08 5:33:29 PM

1503

Chapter 43: Windows Workfl ow Foundation

public class DaysOfWeekActivity : CompositeActivity
{
 /// < summary >
 /// Get/Set the day of week property
 /// < /summary >
 [Browsable(true)]
 [Category(“Behavior”)]
 [Description(“Bind to a DateTime property, set a specific date time,
 or leave blank for DateTime.Now”)]
 [DefaultValue(typeof(DateTime),””)]
 public DateTime Date
 {
 get { return (DateTime)
 base.GetValue(DaysOfWeekActivity.DateProperty); }
 set { base.SetValue(DaysOfWeekActivity.DateProperty, value); }
 }

 /// < summary >
 /// Register the DayOfWeek property
 /// < /summary >
 public static DependencyProperty DateProperty =
 DependencyProperty.Register(“Date”, typeof(DateTime),
 typeof(DaysOfWeekActivity));
}

 The Date property provides the regular getter and setter, and we ’ ve also added a number of standard
attributes so that it displays correctly within the property browser. The code, though, looks somewhat
different from a normal .NET property, because the getter and setter are not using a standard field to
store their values, but instead are using what ’ s called a DependencyProperty .

 The Activity class (and therefore this class, because it ’ s ultimately derived from Activity) is derived
from the DependencyObject class, and this defines a dictionary of values keyed on a
 DependencyProperty . This indirection of getting/setting property values is used by WF to support
binding; that is, linking a property of one activity to a property of another. As an example, it is common
to pass parameters around in code, sometimes by value, sometimes by reference. WF uses binding to
link property values together — so in this example, you might have a DateTime property defined on the
workflow, and this activity might need to be bound to that value at runtime. You see an example of
binding later in the chapter.

 If you build this activity, it won ’ t do much; indeed it will not even allow child activities to be dropped
into it, because you haven ’ t defined a Designer class for the activity.

 Adding a Designer
 As you saw with the WriteLineActivity earlier in the chapter, each activity can have an associated
 Designer class, which is used to change the design - time behavior of that activity. You saw a blank
 Designer in the WriteLineActivity , but for the composite activity you need to override a couple of
methods to add some special case processing:

public class DaysOfWeekDesigner : ParallelActivityDesigner
{
 public override bool CanInsertActivities
 (HitTestInfo insertLocation, ReadOnlyCollection < Activity > activities)
 {
 foreach (Activity act in activities)

(continued)

c43.indd 1503c43.indd 1503 2/19/08 5:33:30 PM2/19/08 5:33:30 PM

1504

Part VI: Communication

 {
 if (!(act is SequenceActivity))
 return false;
 }

 return base.CanInsertActivities(insertLocation, activitiesToInsert);
 }

 protected override CompositeActivity OnCreateNewBranch()
 {
 return new SequenceActivity();
 }
}

 This Designer derives from ParallalActivityDesigner , which provides you with good design - time
behavior when adding child activities. You will need to override CanInsertActivities to return
 false if any of the dropped activities is not a SequenceActivity . If all activities are of the appropriate
type, you can call the base class method, which makes some further checks on the activity types
permitted within your custom activity.

 You should also override the OnCreateNewBranch method that is called when the user chooses the Add
Branch menu item. The Designer is associated with the activity by using the [Designer] attribute, as
shown here:

 [Designer(typeof(DaysOfWeekDesigner))]
public class DaysOfWeekActivity : CompositeActivity
{
}

 The design - time behavior is nearly complete; however, you also need to add a class that is derived from
 ActivityToolboxItem to this activity, because that defines what happens when an instance of that
activity is dragged from the toolbox. The default behavior is simply to construct a new activity; however,
in the example you also want to create two default branches. The following code shows the toolbox item
class in its entirety:

 [Serializable]
public class DaysOfWeekToolboxItem : ActivityToolboxItem
{
 public DaysOfWeekToolboxItem(Type t)
 : base(t)
 {
 this.DisplayName = “DaysOfWeek”;
 }

 private DaysOfWeekToolboxItem(SerializationInfo info,
 StreamingContext context)
 {
 this.Deserialize(info, context);
 }

 protected override IComponent[] CreateComponentsCore(IDesignerHost host)
 {
 CompositeActivity parent = new DaysOfWeekActivity();
 parent.Activities.Add(new SequenceActivity());

(continued)

c43.indd 1504c43.indd 1504 2/19/08 5:33:30 PM2/19/08 5:33:30 PM

1505

Chapter 43: Windows Workfl ow Foundation

 parent.Activities.Add(new SequenceActivity());

 return new IComponent[] { parent };
 }
}

 As shown in the code, the display name of the activity was changed, a serialization constructor was
implemented, and the CreateComponentsCore method was overridden.

 This method is called at the end of the drag - and - drop operation, and it is where you construct an
instance of the DaysOfWeekActivity . In the code, you are also constructing two child sequence
activities, because this gives the user of the activity a better design - time experience. Several of the built -
 in activities do this, too — when you drop an IfElseActivity onto the design surface, its toolbox item
class adds two branches. A similar thing happens when you add a ParallelActivity to your
workflow.

 The serialization constructor and the [Serializable] attribute are necessary for all classes derived
from ActivityToolboxItem .

 The last thing to do is associate this toolbox item class with the activity:

 [Designer(typeof(DaysOfWeekDesigner))]
[ToolboxItem(typeof(DaysOfWeekToolboxItem))]
public class DaysOfWeekActivity : CompositeActivity
{
}

 With that in place, the UI of your activity is almost complete, as you can see in Figure 43 - 13 .

Figure 43-13

 Now, you need to define a property on each of the sequence activities shown in Figure 43 - 13 , so that the
user can define which day(s) the branch will execute. There are two ways to do this in Windows
Workflow: you can create a subclass of SequenceActivity and define it there, or you can use another
feature of dependency properties called Attached Properties.

 You will use the latter method, because this means that you don ’ t have to subclass but instead can
effectively extend the sequence activity without needing the source code of that activity.

c43.indd 1505c43.indd 1505 2/19/08 5:33:30 PM2/19/08 5:33:30 PM

1506

Part VI: Communication

 Attached Properties
 When registering dependency properties, you can call the RegisterAttached method to create an
attached property. An attached property is one that is defined on one class but is displayed on another.
So here, you define a property on the DaysOfWeekActivity , but that property is actually displayed in
the UI as attached to a sequential activity.

 The code in the following snippet shows a property called Weekday of type WeekdayEnum , which will be
added to the sequence activities that reside within your composite activity:

public static DependencyProperty WeekdayProperty =
 DependencyProperty.RegisterAttached(“Weekday”,
 typeof(WeekdayEnum), typeof(DaysOfWeekActivity),
 new PropertyMetadata(DependencyPropertyOptions.Metadata));

 The final line allows you to specify extra information about a property. In this instance, it is specifying
that it is a Metadata property.

 Metadata properties differ from normal properties in that they are effectively read only at runtime. You
can think of a Metadata property as similar to a constant declaration within C#. You cannot alter
constants while the program is executing, and you cannot change Metadata properties while a
workflow is executing.

 In this example, you wish to define the days that the activity will execute, so you could in the Designer
set this field to “ Saturday, Sunday ” . In the code emitted for the workflow, you would see a declaration as
follows (I have reformatted the code to fit the confines of the page):

this.sequenceActivity1.SetValue
 (DaysOfWeekActivity.WeekdayProperty,
 ((WeekdayEnum)((WeekdayEnum.Sunday | WeekdayEnum.Saturday))));

 In addition to defining the dependency property, you will need methods to get and set this value on an
arbitrary activity. These are typically defined as static methods on the composite activity and are shown
in the following code:

public static void SetWeekday(Activity activity, object value)
{
 if (null == activity)
 throw new ArgumentNullException(“activity”);
 if (null == value)
 throw new ArgumentNullException(“value”);

 activity.SetValue(DaysOfWeekActivity.WeekdayProperty, value);
}

public static object GetWeekday(Activity activity)
{
 if (null == activity)
 throw new ArgumentNullException(“activity”);

 return activity.GetValue(DaysOfWeekActivity.WeekdayProperty);
}

 You need to make two other changes in order for this extra property to show up attached to a
 SequenceActivity . The first is to create an extender provider , which tells Visual Studio to include the
extra property in the sequence activity. The second is to register this provider, which is done by
overriding the Initialize method of the Activity Designer and adding the following code to it:

c43.indd 1506c43.indd 1506 2/19/08 5:33:31 PM2/19/08 5:33:31 PM

1507

Chapter 43: Windows Workfl ow Foundation

protected override void Initialize(Activity activity)
{
 base.Initialize(activity);

 IExtenderListService iels = base.GetService(typeof(IExtenderListService))
 as IExtenderListService;

 if (null != iels)
 {
 bool extenderExists = false;

 foreach (IExtenderProvider provider in iels.GetExtenderProviders())
 {
 if (provider.GetType() == typeof(WeekdayExtenderProvider))
 {
 extenderExists = true;
 break;
 }
 }
 if (!extenderExists)
 {
 IExtenderProviderService ieps =
 base.GetService(typeof(IExtenderProviderService))
 as IExtenderProviderService;
 if (null != ieps)
 ieps.AddExtenderProvider(new WeekdayExtenderProvider());
 }
 }
}

 The calls to GetService in the preceding code allow the custom Designer to query for services proffered
by the host (in this case Visual Studio). You query Visual Studio for the IExtenderListService , which
provides a way to enumerate all available extender providers, and if no instance of the
 WeekdayExtenderProvider service is found, then query for the IExtenderProviderService and
add a new provider.

 The code for the extender provider is shown here:

 [ProvideProperty(“Weekday”, typeof(SequenceActivity))]
public class WeekdayExtenderProvider : IExtenderProvider
{
 bool IExtenderProvider.CanExtend(object extendee)
 {
 bool canExtend = false;

 if ((this != extendee) & & (extendee is SequenceActivity))
 {
 Activity parent = ((Activity)extendee).Parent;

 if (null != parent)
 canExtend = parent is DaysOfWeekActivity;
 }

 return canExtend;
 }

(continued)

c43.indd 1507c43.indd 1507 2/19/08 5:33:31 PM2/19/08 5:33:31 PM

1508

Part VI: Communication

 public WeekdayEnum GetWeekday(Activity activity)
 {
 WeekdayEnum weekday = WeekdayEnum.None;

 Activity parent = activity.Parent;

 if ((null != parent) & & (parent is DaysOfWeekActivity))
 weekday = (WeekdayEnum)DaysOfWeekActivity.GetWeekday(activity);

 return weekday;
 }

 public void SetWeekday(Activity activity, WeekdayEnum weekday)
 {
 Activity parent = activity.Parent;

 if ((null != parent) & & (parent is DaysOfWeekActivity))
 DaysOfWeekActivity.SetWeekday(activity, weekday);

 }
}

 An extender provider is attributed with the properties that it provides, and for each of these properties it
must provide a public Get < Property > and Set < Property > method. The names of these methods must
match the name of the property with the appropriate Get or Set prefix.

 With the preceding changes made to the Designer and the addition of the extender provider, when you
click a sequence activity within the Designer, you will see the properties in Figure 43 - 14 within Visual
Studio.

(continued)

Figure 43-14

 Extender providers are used for other features in .NET. One common one is to add tooltips to controls in
a Windows Forms project — this registers an extender and adds a Tooltip property to each control on
the form.

 Workflows
 Up to this point, the chapter has concentrated on activities but has not discussed workflows. A workflow
is simply a list of activities, and indeed a workflow itself is just another type of activity. Using this model
simplifies the runtime engine, because the engine just needs to know how to execute one type of
object — that being anything derived from the Activity class.

c43.indd 1508c43.indd 1508 2/19/08 5:33:31 PM2/19/08 5:33:31 PM

1509

Chapter 43: Windows Workfl ow Foundation

 Each workflow instance is uniquely identified by its InstanceId property — this is a Guid that can be
assigned by the runtime, or this Guid can be provided to the runtime by your code. A common use of
this is to correlate a running workflow instance with some other data maintained outside of the
workflow, such as a row in a database. You can access the specific workflow instance by using the
 GetWorkflow(Guid) method of the WorkflowRuntime class.

 Two types of workflows are available with WF — sequential and state machine.

 Sequential Workflows
 The root activity in a sequential workflow is the SequentialWorkflowActivity . This class is derived
from SequenceActivity , which you have already seen, and it defines two events that you can attach
handlers to as necessary. These are the Initialized and Completed events.

 A sequential workflow starts executing the first child activity within it, and typically continues until all
other activities have executed. There are a couple of instances when a workflow will not continue
through all activities — one is if an exception is raised while executing the workflow, and the other is if a
 TerminateActivity exists within the workflow.

 A workflow may not be executing at all times. For example, when a DelayActivity is encountered, the
workflow will enter a wait state and can be removed from memory if a workflow persistence service is
defined. Persistence of workflows is covered in “ The Persistence Service ” section later in this chapter.

 State Machine Workflows
 A state machine workflow is useful when you have a process that may be in one of several states, and
transitions from one state to another can be made by passing data into the workflow.

 One example is when a workflow is used for access control to a building. In this case, you may model a
door class that can be closed or open, and a lock class that can be locked or unlocked. Initially when you
boot up the system (or building!), you start at a known state — for sake of argument, assume that all
doors are closed and locked, so the state of a given door is closed locked .

 When an employee enters his or her building access code at the front door, an event is sent to the
workflow, which includes details such as the code entered and possibly the user ID. You might then need
to access a database to retrieve details such as whether that person is permitted to open the selected door
at that time of day, and assuming that access is granted, the workflow would change from its initial state
to the closed unlocked state.

 From this state, there are two potential outcomes — the employee opens the door (you know this
because the door also has an open/closed sensor), or the employee decides not to enter because he has
left something in his car, and so after a delay you relock the door. The door could revert to its closed locked
state or move to the open unlocked state.

 From here, assume that the employee enters the building and then closes the door. Again, you would
then like to transition from the open unlocked state to closed unlocked , and again, after a delay, would then
transition to the closed locked state. You might also want to raise an alarm if the door was open unlocked for
a long period.

 Modeling this scenario within Windows Workflow is fairly simple. You need to define the states that the
system can be in, and then define events that can transition the workflow from one state to the next.
The following table describes the states of the system and provides details of the transitions that are
possible from each known state and the inputs (either external or internal) that change the states.

c43.indd 1509c43.indd 1509 2/19/08 5:33:32 PM2/19/08 5:33:32 PM

1510

Part VI: Communication

State Transitions

Closed
Locked

This is the initial state of the system.

In response to the user swiping her card (and a successful access check), the state
changes to closed unlocked, and the door lock is electronically opened.

Closed
Unlocked

One of two events can occur when the door is in this state:
The user opens the door — you transition to the open unlocked state.
A timer expires, and the door reverts to the closed locked state.

Open
Unlocked

From this state, the workflow can only transition to closed unlocked.

Fire Alarm This is the final state for the workflow and can be transitioned to from any of the
other states.

 One other feature you might want to add to the system is the capability to respond to a fire alarm. When
the fire alarm goes off, you would want to unlock all of the doors so that anyone can exit the building,
and the fire service can enter the building unimpeded. You might want to model this as the final state of
the doors workflow, because from this state the full system would be reset once the fire alarm had been
canceled.

 The workflow in Figure 43 - 15 defines this state machine and shows the states that the workflow can be
in. The lines denote the state transitions that are possible within the system.

 The initial state of the workflow is modeled by the ClosedLocked activity. This consists of some
initialization code (which locks the door) and then an event - based activity that awaits an external
event — in this case, the employee entering his building access code. Each of the activities shown
within the state shapes consist of sequential workflows, so we have defined a workflow for the
initialization of the system (CLInitialize) and a workflow that responds to the external event raised
when the employee enters her PIN (RequestEntry). If you look at the RequestEntry workflow, it is
defined as shown in Figure 43 - 16 .

Figure 43-15

c43.indd 1510c43.indd 1510 2/19/08 5:33:32 PM2/19/08 5:33:32 PM

1511

Chapter 43: Windows Workfl ow Foundation

Figure 43-16

 Each state consists of a number of subworkflows, each of which has an event - driven activity at the start
and then any number of other activities that form the processing code within the state. In Figure 43 - 16 ,
there is a HandleExternalEventActivity at the start that awaits the entry of the PIN. This is then
checked, and if it is valid, the workflow transitions to the ClosedUnlocked state.

 The ClosedUnlocked state consists of two workflows — one that responds to the door open event,
which transitions the workflow to the OpenUnlocked state, and the other, which contains a delay
activity that is used to change the state to ClosedLocked . A state - driven activity works in a similar
manner to the ListenActivity shown earlier in the chapter — the state consists of a number of event -
 driven workflows, and on arrival of an event, just one of the workflows will execute.

 To support the workflow, you need to be able to raise events in the system to affect the state changes.
This is done by using an interface and an implementation of that interface; this pair of objects is termed
an external service . The interface used for this state machine is described later in the chapter.

 The code for the state machine example is available in the 04 StateMachine solution. This also
includes a user interface in which you can enter a PIN and gain access to the building through one of
two doors.

 Passing Parameters to a Workflow
 A typical workflow requires some data in order to execute. This could be an order ID for an order -
 processing workflow, a customer account ID for a payment - processing workflow, or any other items of
data necessary.

 The parameter - passing mechanism for workflows is somewhat different from that of standard .NET
classes, in which you typically pass parameters in a method call. For a workflow, you pass parameters by
storing those parameters in a dictionary of name - value pairs, and when you construct the workflow, you
pass through this dictionary.

c43.indd 1511c43.indd 1511 2/19/08 5:33:32 PM2/19/08 5:33:32 PM

1512

Part VI: Communication

 When WF schedules the workflow for execution, it uses these name - value pairs to set public properties
on the workflow instance. Each parameter name is checked against the public properties of the
workflow, and if a match is found, the property setter is called and the value of the parameter is passed
to this setter. If you add a name - value pair to the dictionary where the name does not correspond to a
property on the workflow, an exception will be thrown when you try to construct that workflow.

 As an example, consider the following workflow that defines the OrderID property as an integer:

public class OrderProcessingWorkflow: SequentialWorkflowActivity
{
 public int OrderID
 {
 get { return _orderID; }
 set { _orderID = value; }
 }

 private int _orderID;
}

 The following snippet shows how you can pass the order ID parameter into an instance of this
workflow:

WorkflowRuntime runtime = new WorkflowRuntime ();

Dictionary < string,object > parms = new Dictionary < string,object > ();
parms.Add(“OrderID”, 12345) ;

WorkflowInstance instance = runtime.CreateWorkflow(typeof(OrderProcessingWorkflow),
parms);

instance.Start();

... Other code

 In the example code, you construct a Dictionary < string, object > that will contain the parameters
you wish to pass to the workflow and then use this when the workflow is constructed. The preceding
code includes the WorkflowRuntime and WorkflowInstance classes, which haven ’ t been described yet
but are discussed in the “ Hosting Workflows ” section later in the chapter.

 Returning Results from a Workflow
 Another common requirement of a workflow is to return output parameters, which might then be used
to record data within a database or other persistent storage.

 Because a workflow is executed by the workflow runtime, you can ’ t just call a workflow using a
standard method invocation — you need to create a workflow instance, start that instance, and then
await the completion of that instance. When a workflow completes, the workflow runtime raises the
 WorkflowCompleted event. This is passed contextual information about the workflow that has just
completed and contains the output data from that workflow.

 So, to harvest the output parameters from a workflow, you need to attach an event handler to the
 WorkflowCompleted event, and the handler can then retrieve the output parameters from the workflow.
The following code shows an example of how this can be done:

c43.indd 1512c43.indd 1512 2/19/08 5:33:33 PM2/19/08 5:33:33 PM

1513

Chapter 43: Windows Workfl ow Foundation

using(WorkflowRuntime workflowRuntime = new WorkflowRuntime())
{
 AutoResetEvent waitHandle = new AutoResetEvent(false);
 workflowRuntime.WorkflowCompleted +=
 delegate(object sender, WorkflowCompletedEventArgs e)
 {
 waitHandle.Set();
 foreach (KeyValuePair < string, object > parm in e.OutputParameters)
 {
 Console.WriteLine(“{0} = {1}”, parm.Key, parm.Value);
 }
 };

 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(typeof(Workflow1));
 instance.Start();

 waitHandle.WaitOne();
}

 You have attached a delegate to the WorkflowCompleted event, and within this you iterate through the
 OutputParameters collection of the WorkflowCompletedEventArgs class passed to the delegate and
display the output parameters on the console. This collection contains all public properties of the
workflow. There is actually no notion of specific output parameters for a workflow.

 Binding Parameters to Activities
 Now that you know how to pass parameters into a workflow, you also need to know how to link these
parameters to activities. This is done via a mechanism called binding. In the DaysOfWeekActivity
defined earlier, there was a Date property that could be hard - coded or bound to another value within
the workflow. A bindable property is displayed in the property grid within Visual Studio, as shown
in Figure 43 - 17 . The icon to the right of the property name indicates that this is a bindable property — in
the image the Date property is bindable.

Figure 43-17

 Double - clicking the bind icon will display the dialog shown in Figure 43 - 18 . This dialog allows you to
select an appropriate property to link to the Date property.

 In Figure 43 - 18 , we have selected the OrderDate property of the workflow (which is defined as a regular
.NET property, as shown in an earlier code snippet). Any bindable property can be bound to either a
property of the workflow that the activity is defined within or a property of any activity that resides in
the workflow above the current activity. Note that the data type of the property being bound must
match the data type of the property you are binding to — the dialog will not permit you to bind
nonmatching types.

c43.indd 1513c43.indd 1513 2/19/08 5:33:33 PM2/19/08 5:33:33 PM

1514

Part VI: Communication

Figure 43-18

 The code for the Date property is repeated here to show how binding works and is explained in the
following paragraphs:

public DateTime Date
{
 get { return (DateTime)base.GetValue(DaysOfWeekActivity.DateProperty); }
 set { base.SetValue(DaysOfWeekActivity.DateProperty, value); }
}

 When you bind a property in the workflow, an object of type ActivityBind is constructed behind the
scenes, and it is this “ value ” that is stored within the dependency property. So, the property setter will be
passed an object of type ActivityBind , and this is stored within the dictionary of properties on this
activity. This ActivityBind object consists of data that describes the activity being bound to and the
property of that activity that is to be used at runtime.

 When reading the value of the property, the GetValue method of the DependencyObject is called, and
this method checks the underlying property value to see if it is an ActivityBind object. If so, it then
resolves the activity to which this binding is linked and then reads the real property value from that
activity. If, however, the bound value is another type, it simply returns that object from the GetValue
method.

 The Workflow Runtime
 In order to start a workflow, it is necessary to create an instance of the WorkflowRuntime class. This is
typically done once within your application, and this object is usually defined as a static member of the
application so that it can be accessed anywhere within the application.

 When you start the runtime, it can then reload any workflow instances that were executing the last time
the application was executed by reading these instances from the persistence store. This uses a service
called the persistence service , which is defined in the following section.

c43.indd 1514c43.indd 1514 2/19/08 5:33:33 PM2/19/08 5:33:33 PM

1515

Chapter 43: Windows Workfl ow Foundation

 The runtime contains six various CreateWorkflow methods that can be used to construct workflow
instances. The runtime also contains methods for reloading a workflow instance and enumerating all
running instances.

 The runtime also has a number of events that are raised while workflows are executing — such as
 WorkflowCreated (raised when a new workflow instance is constructed), WorkflowIdled (raised
when a workflow is awaiting input such as in the expense - processing example shown earlier),
and WorkflowCompleted (raised when a workflow has finished).

 Workflow Services
 A workflow doesn ’ t exist on its own. As described in the previous section, a workflow is executed within
the WorkflowRuntime , and this runtime provides services to running workflows.

 A service is any class that may be needed while executing the workflow. Some standard services are
provided to your workflow by the runtime, and you can optionally construct your own services to be
consumed by running workflows.

 This section describes two of the standard services provided by the runtime. It then shows how you can
create your own services and some instances of when this is necessary.

 When an activity runs, it is passed some contextual information via the ActivityExecutionStatus
parameter of the Execute method:

protected override ActivityExecutionStatus Execute
 (ActivityExecutionContext executionContext)
{
 ...
}

 One of the methods available on this context parameter is the GetService < T > method. This can be used
as shown in the following code to access a service attached to the workflow runtime:

protected override ActivityExecutionStatus Execute
 (ActivityExecutionContext executionContext)
{
 ICustomService myService = executionContext.GetService < ICustomService > ();
 ... Do something with the service
}

 The services hosted by the runtime are added to the runtime prior to calling the StartRuntime method.
An exception is raised if you attempt to add a service to the runtime once it has been started.

 Two methods are available for adding services to the runtime. You can construct the services in code and
then add them to the runtime by calling the AddService method. Or, you can define services within the
application configuration file, and these will be constructed for you and added to the runtime.

 The following code snippet shows how to add services to the runtime in code — the services added are
those described later in this section:

using(WorkflowRuntime workflowRuntime = new WorkflowRuntime())
{
 workflowRuntime.AddService(
 new SqlWorkflowPersistenceService(conn, true, new TimeSpan(1,0,0),
 new TimeSpan(0,10,0)));
 workflowRuntime.AddService(new SqlTrackingService(conn));
 ...
}

c43.indd 1515c43.indd 1515 2/19/08 5:33:34 PM2/19/08 5:33:34 PM

1516

Part VI: Communication

 Here are constructed instances of the SqlWorkflowPersistenceService , which is used by the runtime
to store workflow state, and an instance of the SqlTrackingService , which records the execution
events of a workflow while it runs.

 To create services using an application configuration file, you need to add a section handler for the
workflow runtime and then add services to this section as shown here:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < configSections >
 < section name=”WF”
 type=”System.Workflow.Runtime.Configuration.WorkflowRuntimeSection,
 System.Workflow.Runtime, Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” / >
 < /configSections >

 < WF Name=”Hosting” >
 < CommonParameters/ >
 < Services >
 < add type=”System.Workflow.Runtime.Hosting.SqlWorkflowPersistenceService,
 System.Workflow.Runtime, Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”
 connectionString=”Initial Catalog=WF;Data Source=.;
 Integrated Security=SSPI;”
 UnloadOnIdle=”true”
 LoadIntervalSeconds=”2”/ >
 < add type=”System.Workflow.Runtime.Tracking.SqlTrackingService,
 System.Workflow.Runtime, Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”
 connectionString=”Initial Catalog=WF;Data Source=.;
 Integrated Security=SSPI;”
 UseDefaultProfile=”true”/ >
 < /Services >
 < /WF >
 < /configuration >

 Within the configuration file, you have added the WF section handler (the name is unimportant but must
match the name given to the later configuration section) and then created the appropriate entries for this
section. The < Services > element can contain an arbitrary list of entries that consist of a .NET type and
then parameters that will be passed to that service when constructed by the runtime.

 To read the configuration settings from the application configuration file, you call another constructor on
the runtime, as shown here:

using(WorkflowRuntime workflowRuntime = new WorkflowRuntime(“WF”))
{
 ...
}

 This constructor will instantiate each service defined within the configuration file and add these to the
services collection on the runtime.

 The following sections describe some of the standard services available with WF.

c43.indd 1516c43.indd 1516 2/19/08 5:33:34 PM2/19/08 5:33:34 PM

1517

Chapter 43: Windows Workfl ow Foundation

 The Persistence Service
 When a workflow executes, it may reach a wait state. This can occur when a delay activity executes or
when you are waiting for external input within a listen activity. At this point, the workflow is said to be
 idle and as such is a candidate for persistence.

 Let ’ s assume that you begin execution of 1,000 workflows on your server, and each of these instances
becomes idle. At this point, it is unnecessary to maintain data for each of these instances in memory, so it
would be ideal if you could unload a workflow and free up the resources in use. The persistence service
is designed to accomplish this.

 When a workflow becomes idle, the workflow runtime checks for the existence of a service that derives
from the WorkflowPersistenceService class. If this service exists, it is passed the workflow instance,
and the service can then capture the current state of the workflow and store it in a persistent storage
medium. You could store the workflow state on disk in a file, or store this data within a database such as
SQL Server.

 The workflow libraries contain an implementation of the persistence service, which stores data within a
SQL Server database — this is the SqlWorkflowPersistenceService . In order to use this service, you
need to run two scripts against your SQL Server instance. One of these constructs the schema, and the
other creates the stored procedures used by the persistence service. These scripts are, by default, located
in the C:\Windows\Microsoft.NET\Framework\v3.5\Windows Workflow Foundation\SQL\EN
directory.

 The scripts to execute against the database are SqlPersistenceProviderSchema.sql and
 SqlPersistenceProviderLogic.sql . These need to be executed in order, with the schema file
first and then the logic file. The schema for the SQL persistence service contains two tables:
 InstanceState and CompletedScope . These are essentially opaque tables, and they are not intended
for use outside the SQL persistence service.

 When a workflow idles, its state is serialized using binary serialization, and this data is then inserted
into the InstanceState table. When a workflow is reactivated, the state is read from this row and used
to reconstruct the workflow instance. The row is keyed on the workflow instance ID and is deleted from
the database once the workflow has completed.

 The SQL persistence service can be used by multiple runtimes at the same time — it implements a
locking mechanism so that a workflow is accessible by only one instance of the workflow runtime at a
time. When you have multiple servers all running workflows using the same persistence store, this
locking behavior becomes invaluable.

 To see what is added to the persistence store, construct a new workflow project and add an instance of
the SqlWorkflowPersistenceService to the runtime. The following code shows an example using
declarative code:

using(WorkflowRuntime workflowRuntime = new WorkflowRuntime())
{
 workflowRuntime.AddService(
 new SqlWorkflowPersistenceService(conn, true, new TimeSpan(1,0,0),
 new TimeSpan(0,10,0)));
 // Execute a workflow here...
}

c43.indd 1517c43.indd 1517 2/19/08 5:33:34 PM2/19/08 5:33:34 PM

1518

Part VI: Communication

 If you then construct a workflow that contains a DelayActivity and set the delay to something like 10
seconds, you can then view the data stored within the InstanceState table. The 05 WorkflowPersistence
example contains the preceding code and executes a delay within a 20 - second period.

 The parameters passed to the constructor of the persistence service are shown in the following table.

Parameter Description Default

ConnectionString The database connection string used by the
persistence service.

None

UnloadOnIdle Determines whether a workflow is unloaded when
it idles. This should always be set to true;
otherwise no persistence will occur.

False

InstanceOwnershipDuration This defines the length of time that the workflow
instance will be owned by the runtime that has
loaded that workflow.

None

LoadingInterval The interval used when polling the database for
updated persistence records.

2 Minutes

 These values can also be defined within the configuration file.

 The Tracking Service
 When a workflow executes it might be necessary to record which activities have run, and in the case of
composite activities such as the IfElseActivity or the ListenActivity , which branch was executed.
This data could be used as a form of audit trail for a workflow instance, which could then be viewed at a
later date to prove which activities executed and what data was used within the workflow. The tracking
service can be used for this type of recording and can be configured to log as little or as much
information about a running workflow instance as is necessary.

 As is common with WF, the tracking service is implemented as an abstract class called TrackingService ,
so it is easy to replace the standard tracking implementation with one of your own. There is one concrete
implementation of the tracking service available within the workflow assemblies — this is the
 SqlTrackingService .

 To record data about the state of a workflow, it is necessary to define a TrackingProfile . This defines
which events should be recorded, so you could, for example, record just the start and end of a workflow
and omit all other data about the running instance. More typically, you will record all events for the
workflow and each activity in that workflow to provide a complete picture of the execution profile of
the workflow.

 When a workflow is scheduled by the runtime engine, the engine checks for the existence of a workflow
tracking service. If one is found, it asks the service for a tracking profile for the workflow being executed,
and then uses this to record workflow and activity data. You can, in addition, define user tracking
data and store this within the tracking data store without needing to change the schema.

c43.indd 1518c43.indd 1518 2/19/08 5:33:35 PM2/19/08 5:33:35 PM

1519

Chapter 43: Windows Workfl ow Foundation

Figure 43-19

 The tracking profile class is shown in Figure 43 - 19 . The class includes collection properties for activity,
user, and workflow track points . A track point is an object (such as WorkflowTrackPoint) that typically
defines a match location and some extra data to record when this track point is hit. The match location
defines where this track point is valid — so for example, you could define a WorkflowTrackPoint ,
which will record some data when the workflow is created, and another to record some data when the
workflow is completed.

 Once this data has been recorded, it may be necessary to display the execution path of a workflow, as in
Figure 43 - 20 . This shows the workflow that was executed, and each activity that ran includes a glyph to
show that it executed. This data is read from the tracking store for that workflow instance.

 To read the data stored by the SqlTrackingService , you could execute queries against the SQL
database directly; however, Microsoft has provided the SqlTrackingQuery class defined within the
 System.Workflow.Runtime.Tracking namespace for this purpose. The following example code
shows how to retrieve a list of all workflows tracked between two dates:

public IList < SqlTrackingWorkflowInstance > GetWorkflows
 (DateTime startDate, DateTime endDate, string connectionString)
{
 SqlTrackingQuery query = new SqlTrackingQuery (connectionString);

 SqlTrackingQueryOptions queryOptions = new SqlTrackingQueryOptions();
 query.StatusMinDateTime = startDate;
 query.StatusMaxDateTime = endDate;

 return (query.GetWorkflows (queryOptions));
}

 This uses the SqlTrackingQueryOptions class, which defines the query parameters. You can define
other properties of this class to further constrain the workflows retrieved.

 In Figure 43 - 20 you can see that all activities have executed. This might not be the case if the workflow
were still running or if there were some decisions made within the workflow so that different paths were
taken during execution. The tracking data contains details such as which activities have executed, and
this data can be correlated with the activities to produce the image in Figure 43 - 20 . It is also possible to
extract data from the workflow as it executes, which could be used to form an audit trail of the execution
flow of the workflow.

c43.indd 1519c43.indd 1519 2/19/08 5:33:35 PM2/19/08 5:33:35 PM

1520

Part VI: Communication

Figure 43-20

 Custom Services
 In addition to built - in services such as the persistence service and the tracking service, you can add your
own objects to the services collection maintained by the WorkflowRuntime . These services are typically
defined using an interface and an implementation, so that you can replace the service without recoding
the workflow.

 The state machine presented earlier in the chapter uses the following interface:

 [ExternalDataExchange]
public interface IDoorService
{
 void LockDoor();
 void UnlockDoor();

 event EventHandler < ExternalDataEventArgs > RequestEntry;
 event EventHandler < ExternalDataEventArgs > OpenDoor;
 event EventHandler < ExternalDataEventArgs > CloseDoor;
 event EventHandler < ExternalDataEventArgs > FireAlarm;

 void OnRequestEntry(Guid id);
 void OnOpenDoor(Guid id);
 void OnCloseDoor(Guid id);
 void OnFireAlarm();
}

 The interface consists of methods that are used by the workflow to call the service and events raised by
the service that are consumed by the workflow. The use of the ExternalDataExchange attribute
indicates to the workflow runtime that this interface is used for communication between a running
workflow and the service implementation.

 Within the state machine, there are a number of instances of the CallExternalMethodActivity that
are used to call methods on this external interface. One example is when the door is locked or

c43.indd 1520c43.indd 1520 2/19/08 5:33:35 PM2/19/08 5:33:35 PM

1521

Chapter 43: Windows Workfl ow Foundation

unlocked — the workflow needs to execute a method call to the UnlockDoor or LockDoor methods, and
the service responds by sending a command to the door lock to unlock or lock the door.

 When the service needs to communicate with the workflow, this is done by using an event, because the
workflow runtime also contains a service called the ExternalDataExchangeService , which acts as a
proxy for these events. This proxy is used when the event is raised, because the workflow may not be
loaded in memory at the time the event is delivered. So the event is first routed to the external data
exchange service, which checks to see if the workflow is loaded, and, if not, rehydrates it from the
persistence store and then passes the event on into the workflow.

 The code used to construct the ExternalDataExchangeService and to construct proxies for the events
defined by the service is shown here:

WorkflowRuntime runtime = new WorkflowRuntime();
ExternalDataExchangeService edes = new ExternalDataExchangeService();

runtime.AddService(edes);
DoorService service = new DoorService();
edes.AddService(service);

 This constructs an instance of the external data exchange service and adds it to the runtime. It then
creates an instance of the DoorService (which itself implements IDoorService) and adds this to the
external data exchange service.

 The ExternalDataExchangeService.Add method constructs a proxy for each event defined by the
custom service so that a persisted workflow can be loaded prior to delivery of the event. If you don ’ t
host your service within the external data exchange service, when you raise events there will be nothing
listening to these events, so they will not be delivered to the correct workflow.

 Events use the ExternalDataEventArgs class, because this includes the workflow instance ID that the
event is to be delivered to. If there are other values that need to be passed from an external event to a
workflow, you should derive a class from ExternalDataEventArgs and add these values as properties
to that class.

 Integration with Windows Communication
Foundation

 Two new activities are available with .NET 3.5 that support integration between workflows and WCF.
These are the SendActivity and the ReceiveActivity . The SendActivity could more aptly be called
the CallActivity , because what it does is issue a request to a WCF service and can optionally
surface the results as parameters that can be bound to within the calling workflow.

 Somewhat more interesting, however, is the new ReceiveActivity . This allows a workflow to become
the implementation of a WCF service, so now the workflow is the service. The following example
exposes a service using a workflow and also uses the new service test host tool to test the service without
having to write a separate test harness.

 From the New Project menu in Visual Studio 2008, choose the WCF node and then the Sequential
Workflow Service Library entry as shown in Figure 43 - 21 .

c43.indd 1521c43.indd 1521 2/19/08 5:33:36 PM2/19/08 5:33:36 PM

1522

Part VI: Communication

Figure 43-21

 This will create a library that contains a workflow as shown in Figure 43 - 22 , an application configuration
file, and a service interface.

Figure 43-22

 The workflow exposes the Hello operation of the contract and also defines properties for the arguments
passed to this operation, and the return value of the operation. Then, all you need to do is to add code
that provides the execution behavior of the service, and your service is complete.

 To do this for the example, drag a CodeActivity onto the ReceiveActivity as shown in Figure 43 - 23 ,
and then double - click that activity to supply the service implementation.

 The code shown in the following snippet is all that there is to this service implementation:

public sealed partial class Workflow1: SequentialWorkflowActivity
{
 public Workflow1()
 {
 InitializeComponent();
 }

c43.indd 1522c43.indd 1522 2/19/08 5:33:36 PM2/19/08 5:33:36 PM

1523

Chapter 43: Windows Workfl ow Foundation

Figure 43-23

 public String returnValue = default(System.String);
 public String inputMessage = default(System.String);

 private void codeActivity1_ExecuteCode(object sender, EventArgs e)
 {
 this.returnValue = string.Format(“You said {0}”, inputMessage);
 }
}

 Because the service contract for the Hello operation includes both a parameter (inputMessage) and a
return value, these have been exposed to the workflow as public fields. Within the code, we have set the
 returnValue to a string value, and this is what is returned from a call to the WCF service.

 If you compile this service and hit F5, you will notice another new feature of Visual Studio 2008 — the
WCF Test Client application, as shown in Figure 43 - 24 .

Figure 43-24

 Here you can browse for the operations that the service exposes, and by double - clicking an operation,
the right - hand side of the window is displayed, which lists the parameters used by that service and any
return value(s) exposed.

c43.indd 1523c43.indd 1523 2/19/08 5:33:36 PM2/19/08 5:33:36 PM

1524

Part VI: Communication

 To test the service, enter a value for the message property and click the Invoke button. This will then
make a request over WCF to the service, which will construct and execute the workflow, call the code
activity, which then runs the code - behind, and ultimately return to the WCF Test Client the result from
the workflow.

 If you wish to manually host workflows as services, you can use the new WorkflowServiceHost class
defined within the System.WorkflowServices assembly. The following snippet shows a minimal host
implementation:

using (WorkflowServiceHost host = new WorkflowServiceHost
 (typeof(YourWorkflow)))
{
 host.Open();
 Console.WriteLine (“Press [Enter] to exit”);
 Console.ReadLine();
}

 Here we have constructed an instance of WorkflowServiceHost and passed it the workflow that will
be executed. This is similar to how you would use the ServiceHost class when hosting WCF services. It
will read the configuration file to determine which endpoints the service will listen on and then await
service requests.

 The next section describes some other options you have for hosting workflows.

 Hosting Workflows
 The code to host the WorkflowRuntime in a process will vary based on the application itself.

 For a Windows Forms application or a Windows Service, it is typical to construct the runtime at the start
of the application and store this in a property of the main application class.

 In response to some input in the application (such as the user clicking a button on the user interface),
you might then construct an instance of a workflow and execute this instance locally. The workflow may
well need to communicate with the user — so, for example, you might define an external service that
prompts the user for confirmation before posting an order to a back - end server.

 When hosting workflows within ASP.NET, you would not normally prompt the user with a message box
but instead navigate to a different page on the site that requested the confirmation and then present a
confirmation page. When hosting the runtime within ASP.NET, it is typical to override the
 Application_Start event and construct an instance of the workflow runtime there so that it is
accessible within all other parts of the site. You can store the runtime instance in a static property, but it is
more usual to store this in application state and provide an accessor method that will retrieve the
workflow runtime from application state so that it can be used elsewhere in the application.

 In either scenario — Windows Forms or ASP.NET — you will construct an instance of the workflow
runtime and add services to it as shown here:

WorkflowRuntime workflowRuntime = new WorkflowRuntime();

workflowRuntime.AddService(
 new SqlWorkflowPersistenceService(conn, true, new TimeSpan(1,0,0),
 new TimeSpan(0,10,0)));
// Execute a workflow here...

 To execute a workflow, you need to create an instance of that workflow using the CreateInstance
method of the runtime. There are a number of overrides of this method that can be used to construct an
instance of a code - based workflow or a workflow defined in XML.

c43.indd 1524c43.indd 1524 2/19/08 5:33:37 PM2/19/08 5:33:37 PM

1525

Chapter 43: Windows Workfl ow Foundation

 Up to this point in the chapter, you have considered workflows as .NET classes — and indeed that is one
representation of a workflow. You can, however, define a workflow using XML, and the runtime will
construct an in - memory representation of the workflow and then execute it when you call the Start
method of the WorkflowInstance .

 Within Visual Studio, you can create an XML - based workflow by choosing the Sequential Workflow
(with code separation) or the State Machine Workflow (with code separation) items from the Add New
Item dialog. This will create an XML file with the extension .xoml and load it into the Designer.

 When you add activities to the Designer, these activities are persisted into the XML, and the structure of
elements defines the parent/child relationships between the activities. The following XML shows a
simple sequential workflow that contains an IfElseAcvtivity and two code activities, one on each
branch of the IfElseActivity :

 < SequentialWorkflowActivity x:Class=”DoorsWorkflow.Workflow1” x:Name=”Workflow1”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/workflow” >
 < IfElseActivity x:Name=”ifElseActivity1” >
 < IfElseBranchActivity x:Name=”ifElseBranchActivity1” >
 < IfElseBranchActivity.Condition >
 < CodeCondition Condition=”Test” / >
 < /IfElseBranchActivity.Condition >
 < CodeActivity x:Name=”codeActivity1” ExecuteCode=”DoSomething” / >
 < /IfElseBranchActivity >
 < IfElseBranchActivity x:Name=”ifElseBranchActivity2” >
 < CodeActivity x:Name=”codeActivity2” ExecuteCode=”DoSomethingElse” / >
 < /IfElseBranchActivity >
 < /IfElseActivity >
 < /SequentialWorkflowActivity >

 The properties defined on the activities are persisted into the XML as attributes, and each activity is
persisted as an element. As you can see from the XML, the structure defines the relationship between
parent activities (such as the SequentialWorkflowActivity and the IfElseActivity) and the child
activities.

 Executing an XML - based workflow is no different from executing a code - based workflow — you simply
use an override of the CreateWorkflow method that takes an XmlReader instance, and then start that
instance by calling the Start method.

 One benefit of using XML - based workflows over code - based workflows is that you can then easily store
the workflow definition within a database. You can load up this XML at runtime and execute the
workflow, and you can very easily make changes to the workflow definition without having to
recompile any code.

 Changing a workflow at runtime is also supported whether the workflow is defined in XML or code.
You construct a WorkflowChanges object, which contains all of the new activities to be added to the
workflow, and then call the ApplyWorkflowChanges method defined on the WorkflowInstance class
to persist these changes. This is exceptionally useful, because business needs often change and, for
example, you might want to apply changes to an insurance policy workflow so that you send an email to
the customers a month prior to the renewal date to let them know their policy is due for renewal.
Changes are made on an instance - by - instance basis, so if you had 100 policy workflows in the system,
you would need to make these changes to each individual workflow.

c43.indd 1525c43.indd 1525 2/19/08 5:33:37 PM2/19/08 5:33:37 PM

1526

Part VI: Communication

 The Workflow Designer
 To complete this chapter, we ’ ve left the best until last. The Workflow Designer that you use to design
workflows isn ’ t tied to Visual Studio — you can rehost this Designer within your own application as
necessary.

 This means that you could deliver a system containing workflows and permit end users to customize the
system without requiring them to have a copy of Visual Studio. Hosting the Designer is, however, fairly
complex, and we could devote several chapters to this one topic, but we are out of space. A number of
examples of rehosting are available on the Web — we recommend reading the MSDN article on hosting
the Designer available at http://msdn2.microsoft.com/en-us/library/aa480213.aspx for more
information.

 The traditional way of allowing users to customize a system is by defining an interface and then
allowing the customer to implement this interface to extend processing as required.

 With Windows Workflow that extension becomes a whole lot more graphical, because you can present
users with a blank workflow as a template and provide a toolbox that contains custom activities that are
appropriate for your application. They can then author their workflows and add in your activities or
custom activities they have written themselves.

 Summary
 Windows Workflow will produce a radical change in the way that applications are constructed. You can
now surface complex parts of an application as activities, and permit users to alter the processing of the
system simply by dragging and dropping activities into a workflow.

 There is almost no application that you could not apply workflow to — from the simplest command - line
tool to the most complex system containing many hundreds of modules. Although the new
communication capabilities of WCF and the new UI capabilities of Windows Presentation Foundation
are a great step forward for applications in general, the addition of Windows Workflow will produce a
seismic change in the way that applications are developed and configured.

 If you have time to invest in only one of the new facilities available with the .NET Framework 3.0, we
suggest concentrating on Windows Workflow. We expect skills in workflow to be very highly sought
after for years to come.

 Now that this chapter is complete, the next chapter goes over enterprise services in detail.

c43.indd 1526c43.indd 1526 2/19/08 5:33:37 PM2/19/08 5:33:37 PM

 Enterprise Services

 Enterprise Services is the name of the Microsoft application server technology that offers services for
distributed solutions. Enterprise Services is based on the COM+ technology that has already been
in use for many years. However, instead of wrapping .NET objects as COM objects to use these
services, .NET offers extensions for .NET components to take direct advantage of these services.
With .NET you get easy access to COM+ services for .NET components.

 Enterprise Services also has a great integration story with WCF. You can use a tool to automatically
create a WCF service front - end to a serviced component, and you can invoke a WCF service from
a COM+ client.

 This chapter covers the following topics:

 When to use Enterprise Services

 What services you get with this technology

 How to create a serviced component to use Enterprise Services

 How to deploy COM+ applications

 How to use transactions with Enterprise Services

 How to create a WCF front - end to Enterprise Services

 How to use Enterprise Services from a WCF Client

 This chapter is using the sample database Northwind, which you can download from the
Microsoft downloads page: www.microsoft.com/downloads .

 Overview
 The complexity of Enterprise Services and the different configuration options (many of them are
not needed if all the components of the solution are developed with .NET) can be more easily
understood if you know the history of Enterprise Services. This chapter starts with that history.
After that, you get an overview of the different services offered by the technology, so you know
what features could be useful for your application.

❑

❑

❑

❑

❑

❑

❑

c44.indd 1527c44.indd 1527 2/19/08 5:33:48 PM2/19/08 5:33:48 PM

Part VI: Communication

1528

 The topics covered in this section are:

 History

 Where to use Enterprise Services

 Contexts

 Automatic transactions

 Distributed transactions

 Object pooling

 Role - based security

 Queued components

 Loosely coupled events

 History
 Enterprise Services can be traced back to Microsoft Transaction Server (MTS), which was released as an
option pack for Windows NT 4.0. MTS extended COM by offering services such as transactions for COM
objects. The services could be used by configuring metadata: the configuration of the component defined
whether or not a transaction was required. With MTS it was no longer necessary to deal with
transactions programmatically. However, MTS had a big disadvantage. COM was not designed to be
extensible, so MTS made extensions by overwriting the COM component registry configuration to direct
the instantiation of the component to MTS, and some special MTS API calls have been required to
instantiate COM objects within MTS. This problem was solved with Windows 2000.

 One of the most important features of Windows 2000 was the integration of MTS and COM in a new
technology with the name COM+. In Windows 2000, COM+ base services are aware of the context that is
needed by COM+ services (previously MTS services), so the special MTS API calls are no longer needed.
With COM+ services some new service functionality is offered in addition to distributed transactions.

 Windows 2000 includes COM+ 1.0. COM+ 1.5 is available since Windows XP and Windows Server 2003.
COM+ 1.5 adds more features to increase scalability and availability, including application pooling and
recycling, and configurable isolation levels.

 .NET Enterprise Services allows you to use COM+ services from within .NET components. Support is
offered for Windows 2000 and later. When .NET components are run within COM+ applications, no
COM callable wrapper is used (see Chapter 24 , “ Interoperability ”); the application runs as a .NET
component instead. When you install the .NET runtime on an operating system, some runtime
extensions are added to COM+ Services. If two .NET components are installed with Enterprise Services,
and component A is using component B, COM marshaling is not used; instead, the .NET components
can invoke each other directly.

 Where to Use Enterprise Services
 Business applications can be logically separated into presentation, business, and data service layers. The
 presentation service layer is responsible for user interaction. Here, the user can interact with the application
to enter and view data. Technologies used with this layer are Windows Forms and ASP.NET Web Forms.
The business service layer consists of business rules and data rules. The data service layer interacts with
persistent storage. Here, you can use components that make use of ADO.NET. Enterprise Services fits
both to the business service layer and to the data service layer.

 Figure 44 - 1 shows two typical application scenarios. Enterprise Services can be used directly from a rich
client using Windows Forms or WPF or from a Web application that is running ASP.NET.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c44.indd 1528c44.indd 1528 2/19/08 5:33:49 PM2/19/08 5:33:49 PM

Chapter 44: Enterprise Services

1529

Thin Client
Internet Explorer

Web Server
ASP .NET

Database

Server
Enterprise Services

Server
Enterprise ServicesRich Client

Windows Forms
 Figure 44 - 1

 Enterprise Services is also a scalable technology. Using component load balancing makes it possible to
distribute the load of the clients across different systems.

 You can also use Enterprise Services on the client system, because this technology is included in
Windows Vista and Windows XP.

 Contexts
 The base functionality behind the services offered by Enterprise Services is the context. The context
makes it possible to intercept a method call, and some service functionality can be carried out before the
expected method call is invoked. For example, a transactional or a synchronization scope can be created
before the method implemented by the component is invoked.

 With the contexts here, a COM component and a .NET component can participate in the same
transaction. All this is done with the help of the base class ServicedComponent that itself derives from
 MarshalByRefObject to integrate .NET and COM+ contexts.

 Automatic Transactions
 The most commonly used feature of Enterprise Services is automatic transactions . With automatic
transactions, it is not necessary to start and commit a transaction in the code; an attribute can be applied
to a class instead. By using the [Transaction] attribute with the options Required , Supported ,
 RequiresNew , and NotSupported , you can mark a class with the requirements it has for transactions. If
you mark the class with the option Required , a transaction is created automatically when a method
starts and is committed to or aborted when the root component of the transaction is finished.

 Such a declarative way to program is of particular advantage when a complex object model is
developed. Here, automatic transactions have a big advantage over programming transactions manually.
Assume that you have a Person object with multiple Address and Document objects that are associated
with the Person , and you want to store the Person object together with all associated objects in a single
transaction. Doing transactions programmatically would mean passing a transaction object to all the
related objects so that they can participate in the same transaction. Using transactions declaratively
means there is no need to pass the transaction object, because this happens behind the scenes by using
the context.

c44.indd 1529c44.indd 1529 2/19/08 5:33:49 PM2/19/08 5:33:49 PM

Part VI: Communication

1530

 Distributed Transactions
 Enterprise Services not only offers automatic transactions, but the transactions can also be distributed
across multiple databases. Enterprise Services transactions are enlisted with the Distributed Transaction
Coordinator (DTC). The DTC supports databases that make use of the XA protocol, which is a two - phase
commit protocol, and is supported by SQL Server and Oracle. A single transaction can span writing data
to both a SQL Server and an Oracle database.

 Distributed transactions are not only useful with databases, but a single transaction can also span writing
data to a database and writing data to a message queue. If one of these two actions fails, a rollback is done
with the other action. You can read more about message queuing in Chapter 45 , “ Message Queuing. ”

 Enterprise Services supports promotable transactions. If SQL Server 2005 or 2008 is
used and just a single connection is active within one transaction, a local transaction
is created. If another transactional resource is active within the same transaction, the
transaction is promoted to a DTC transaction.

 Later in this chapter, you see how to create a component that requires transactions.

 Object Pooling
 Pooling is another feature offered by Enterprise Services. These services use a pool of threads to answer
requests from clients. Object pooling can be used for objects with a long initialization time. With object
pooling, objects are created in advance so that clients don ’ t have to wait until the object is initialized.

 Role - Based Security
 Using role - based security allows you to define roles declaratively and define what methods or components
can be used from what roles. The system administrator assigns users or user groups to these roles. In the
program there is no need to deal with access control lists; instead, roles that are simple strings can be used.

 Queued Components
 Queued components is an abstraction layer to message queuing. Instead of sending messages to a message
queue, the client can invoke methods with a recorder that offers the same methods as a .NET class
configured in Enterprise Services. The recorder in turn creates messages that are transferred via a
message queue to the server application.

 Queued components and message queuing are useful if the client application is running in a
disconnected environment (for example, on a laptop that does not always has a connection to the server),
or if the request that is sent to the server should be cached before it is forwarded to a different server (for
example, to a server of a partner company).

 Loosely Coupled Events
 Chapter 7 , “ Delegates and Events, ” explained the event model of .NET. Chapter 24 , “ Interoperability, ”
describes how to use events in a COM environment. With both of these event mechanisms, the client and
the server do have a tight connection. This is different with loosely coupled events (LCE). With LCE the
COM+ facility is inserted between client and server (see Figure 44 - 2). The publisher registers the events it
will offer with COM+ by defining an event class. Instead of sending the events directly to the client, the
publisher sends events to the event class that is registered with the LCE service. The LCE service forwards
the events to the subscriber, which is the client application that registered a subscription for the event.

c44.indd 1530c44.indd 1530 2/19/08 5:33:50 PM2/19/08 5:33:50 PM

Chapter 44: Enterprise Services

1531

Subscriber

Subscriber

Loosely Coupled Event
Service

Publisher Event
Class

 Figure 44 - 2

 Creating a Simple COM + Application
 To create a .NET class that can be configured with Enterprise Services, you have to reference the
assembly System.EnterpriseServices and add the namespace System.EnterpriseServices to
the using declarations. The most important class to use is ServicedComponent .

 The first example shows the basic requirements to create a serviced component. You start by creating a
C# library application. All COM+ applications must be written as library applications regardless of
whether they will run in their own process or in the process of the client. Name the library
 SimpleServer . Reference the assembly System.EnterpriseServices and add the declaration using
System.EnterpriseServices; to the assmblyinfo.cs and class1.cs files.

 The ServicedComponent Class
 Every serviced component class must derive from the base class ServicedComponent .
 ServicedComponent itself derives from the class ContextBoundObject , so an instance is bound to a
.NET Remoting context.

 The class ServicedComponent has some protected methods that can be overridden, as shown in the
following table.

 Protected Method Description

 Activate()
Deactivate()

 The Activate() and Deactivate() methods are called if the object is
configured to use object pooling. When the object is taken from the pool, the
 Activate() method is called. Before the object is returned to the pool,
 Deactivate() is called.

 CanBePooled() This is another method for object pooling. If the object is in an inconsistent
state, you can return false in your overridden implementation of
 CanBePooled() . This way the object is not put back into the pool, but
destroyed instead. A new object will be created for the pool.

 Construct() This method is called at instantiation time, where a construction string can be
passed to the object. The construction string can be modified by the system
administrator. Later in this chapter, you use the construction string to define
the database connection string.

c44.indd 1531c44.indd 1531 2/19/08 5:33:50 PM2/19/08 5:33:50 PM

Part VI: Communication

1532

 Sign the Assembly
 Libraries configured with Enterprise Services need a strong name. For some Enterprise Services features
it is also necessary to install the assembly in the global assembly cache. Strong names and the global
assembly cache are discussed in Chapter 17 , “ Assemblies. ”

 Assembly Attributes
 Some Enterprise Services attributes are also needed. The attribute ApplicationName defines the name
of the application as it will be seen in the Component Services Explorer. The value of the Description
attribute shows up as a description within the application configuration tool.

 ApplicationActivation allows you to define whether the application should be configured as a
library application or a server application, using the options ActivationOption.Library or
 ActivationOption.Server . With a library application, the application is loaded inside the process of
the client. In that case the client might be the ASP.NET runtime. With a server application, a process
for the application is started. The name of the process is dllhost.exe . With the attribute
 ApplicationAccessControl , you can turn off security so that every user is allowed to use the
component.

 Rename the file Class1.cs to SimpleComponent.cs and add these attributes outside the namespace
declaration:

[assembly: ApplicationName(“Wrox EnterpriseDemo”)]
[assembly: Description(“Wrox Sample Application for Professional C#”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl(false)]

 The following table lists the most important assembly attributes that can be defined with Enterprise
Services applications.

 Attribute Description

 [ApplicationName] The attribute [ApplicationName] defines the name for the
COM+ application that shows up in the Component Services
Explorer after the component is configured.

 [ApplicationActivation] The attribute [ApplicationActivation] defines if the
application should run as a library within the client application
or if a separate process should be started. The options to
configure are defined with the enumeration
 ActivationOption . ActivationOption.Library defines
to run the application inside the process of the client;
 ActivationOption.Server starts its own process,
 dllhost.exe .

 [ApplicationAccessControl] The attribute [ApplicationAccessControl] defines the
security configuration of the application. Using a Boolean
value you can enable or disable access control. With the
 Authentication property you can set privacy levels —
 whether the client should be authenticated with every method
call or just with the connection, and whether the data sent
should be encrypted.

c44.indd 1532c44.indd 1532 2/19/08 5:33:51 PM2/19/08 5:33:51 PM

Chapter 44: Enterprise Services

1533

 Creating the Component
 In the SimpleComponent.cs file, you can create your serviced component class. With serviced
components, it is best to define interfaces that are used as the contract between the client and
the component. This is not a strict requirement, but some of the Enterprise Services features (such as
setting role - based security on a method or interface level) do require interfaces. Create the interface
 IGreeting with the method Welcome() . The attribute [ComVisible] is required for serviced
component classes and interfaces that can be accessed from Enterprise Services features.

using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [ComVisible(true)]
 public interface IGreeting
 {
 string Welcome(string name);
 }

 The class SimpleComponent derives from the base class ServicedComponent and implements the
interface IGreeting . The class ServicedComponent acts as a base class of all serviced component
classes, and offers some methods for the activation and construction phases. Applying the attribute
 [EventTrackingEnabled] to this class makes it possible to monitor the objects with the Component
Services Explorer. By default, monitoring is disabled because using this feature reduces performance.
The [Description] attribute only specifies text that shows up in the Explorer:

 [EventTrackingEnabled(true)]
 [ComVisible(true)]
 [Description(“Simple Serviced Component Sample”)]
 public class SimpleComponent : ServicedComponent, IGreeting
 {
 public SimpleComponent()
 {
 }

 The method Welcome() returns only “ Hello, “ with the name that is passed to the argument. So that
you can see some visible result in the Component Services Explorer while the component is running,
 Thread.Sleep() simulates some processing time:

 public string Welcome(string name)
 {
 // simulate some processing time
 System.Threading.Thread.Sleep(1000);
 return “Hello, “ + name;
 }
 }
}

 Other than applying some attributes and deriving the class from ServicedComponent , there ’ s nothing
special to do with classes that should use Enterprises Services features. All that is left to do is build and
deploy a client application.

 In the first sample component, the attribute [EventTrackingEnabled] was set. Some more
commonly used attributes that influence the configuration of serviced components are described in
the following table.

c44.indd 1533c44.indd 1533 2/19/08 5:33:51 PM2/19/08 5:33:51 PM

Part VI: Communication

1534

 Attribute Class Description

 [EventTrackingEnabled] Setting the attribute [EventTrackingEnabled] allows monitoring
the component with the Component Services Explorer. Setting this
attribute to true has some additional overhead associated; that ’ s
why, by default, event tracking is turned off.

 [JustInTimeActivation] With this attribute, the component can be configured to not activate
when the caller instantiates the class, but instead when the first
method is invoked. Also, with this attribute the component can
deactivate itself.

 [ObjectPooling] If the initialization time of a component is long compared to the time
of a method call, an object pool can be configured with the attribute
 [ObjectPooling] . With this attribute, minimum and maximum
values can be defined that influence the number of objects in
the pool.

 [Transaction] The attribute [Transaction] defines transactional characteristics of
the component. Here, the component defines whether a transaction
is required, supported, or not supported.

 Deployment
 Assemblies with serviced components must be configured with COM+. This configuration can be done
automatically or by registering the assembly manually.

 Automatic Deployment
 If a .NET client application that uses the serviced component is started, the COM+ application is
configured automatically. This is true for all classes that are derived from the class ServicedComponent .
Application and class attributes such as [EventTrackingEnabled] define the characteristics of the
configuration.

 Automatic deployment has an important drawback. For automatic deployment to work, the client
application needs administrative rights. If the client application that invokes the serviced component is
ASP.NET, the ASP.NET runtime usually doesn ’ t have administrative rights. With this drawback,
automatic deployment is useful only during development time. However, during development, automatic
deployment is an extremely advantageous feature because it is not necessary to do manual deployment
after every build.

 Manual Deployment
 You can deploy the assembly manually with the command - line utility .NET Services installation tool
 regsvcs.exe . Starting the command

regsvcs SimpleServer.dll

registers the assembly SimpleServer as a COM+ application and configures the included components
according to their attributes; it also creates a type library that can be used by COM clients accessing the
.NET component.

c44.indd 1534c44.indd 1534 2/19/08 5:33:51 PM2/19/08 5:33:51 PM

Chapter 44: Enterprise Services

1535

 After you ’ ve configured the assembly, you can start the Component Services Explorer by selecting
Administrative Tools Component Services from the Windows menu on Windows XP or Windows
Server 2003. On Windows Vista you have to start the MMC and add the Component Services snap - in
to see the Component Services Explorer. In the left tree view of this application, you can select
Component Services Computers My Computer COM+ Applications to verify that the application
was configured.

 Creating an Installer Package
 With the Component Services Explorer, you can create Windows installer packages for server or client
systems. An installer package for the server includes the assemblies and configuration settings to install
the application on a different server. If the serviced component is invoked from applications running on
different systems, a proxy must be installed on the client system. The installer package for the client
includes assemblies and configuration for proxies.

 To create an installer package, you can start the Component Services Explorer, select the COM+
application, select the menu options Action Export, and click the Next button in the first dialog.
The dialog shown in Figure 44 - 3 opens. In this dialog, you can export either a Server application or
an application proxy. With the option Server application you can also configure to export user
identities with roles. This option should be selected only if the target system is in the same domain
as the system where the package is created, because the configured user identities are put into the
installer package. With the option application proxy, an installer package for the client system
is created.

 Figure 44 - 3

 The option to create an application proxy is not available if the application is configured as a library
application.

 To install the proxy, you just have to start setup.exe from the installer package. Be aware that an
application proxy cannot be installed on the same system where the application is installed. After
installation of the application proxy, you can see an entry in Component Services Explorer that
represents the application proxy. With the application proxy the only option that can be configured
is the name of the server in the Activation tab, as discussed in the next section.

c44.indd 1535c44.indd 1535 2/19/08 5:33:52 PM2/19/08 5:33:52 PM

Part VI: Communication

1536

 Component Services Explorer
 After a successful configuration, you can see Wrox EnterpriseDemo as an application name in the tree
view of the Component Services Explorer. This name was set by the attribute [ApplicationName] .
Selecting Action Properties opens the dialog box shown in Figure 44 - 4 . Both the name and the
description have been configured by using attributes. When you select the Activation tab, you can see
that the application is configured as a server application because this has been defined with the
 [ApplicationActivation] attribute, and selecting the Security tab shows that the “ Enforce access
checks for this application ” option is not selected because the attribute [ApplicationAccessControl]
was set to false .

 Figure 44 - 4

 The following is a list of some more options that can be set with this application:

 Security — With the security configuration, you can enable or disable access checks. If security
is enabled, you can set access checks to the application level, the component, the interface, and
to the method level. It is also possible to encrypt messages that are sent across the network using
packet privacy as an authentication level for calls. Of course, this also increases the overhead.

 Identity — With server applications, you can use the Identity tab to configure the user account
that will be used for the process that hosts the application. By default, this is the interactive user.
This setting is very useful while debugging the application but cannot be used on a production
system if the application is running on a server, because there might not be anybody logged on.
Before installing the application on the production system you should test the application by
using a specific user for the application.

 Activation — The Activation tab allows you to configure the application either as a library or as
a server application. Two new options with COM+ 1.5 are the option to run the application as a
Windows Service and to use SOAP to access the application. Windows Services are discussed in
Chapter 23 , “ Windows Services. ” Selecting the SOAP option uses .NET Remoting configured
within Internet Information Server to access the component. Instead of using .NET Remoting,

❑

❑

❑

c44.indd 1536c44.indd 1536 2/19/08 5:33:52 PM2/19/08 5:33:52 PM

Chapter 44: Enterprise Services

1537

later in this chapter the component will be accessed using WCF. WCF is discussed in Chapter 42 ,
 “ Windows Communication Foundation. ”

 With an application proxy, the option “ Remote server name ” is the only option that can be con-
figured. This option sets the name of the server. By default, the DCOM protocol is used as the
network protocol. However, if SOAP is selected in the server configuration, the communication
happens through .NET Remoting.

 Queuing — The Queuing configuration is required for service components that make use of
message queuing.

 Advanced — On the Advanced tab, you can specify whether the application should be shut
down after a certain period of client inactivity. You can also specify whether to lock a certain
configuration so that no one can change it accidentally.

 Dump — If the application crashes, you can specify the directory where the dumps should be
stored. This is useful for components developed with C++.

 Pooling and Recycling — Pooling and recycling is a new option with COM+ 1.5. With this
option, you can configure whether the application should be restarted (recycled) depending on
application lifetime, memory needs, number of calls, and so on.

 With the Component Services Explorer, you can also view and configure the component
itself. When opening child elements of the application, you can view the component
Wrox.ProCSharp.EnterpriseServices.SimpleComponent . Selecting Action Properties
opens the dialog box shown in Figure 44 - 5 .

 Using this dialog box, you can configure these options:

 Transactions — On the Transactions tab, you can specify whether the component requires
transactions. You use this feature in the next example.

 Security — If security is enabled for the application, with this configuration you can define
what roles are allowed to use the component.

❑

❑

❑

❑

❑

❑

 Figure 44 - 5

c44.indd 1537c44.indd 1537 2/19/08 5:33:53 PM2/19/08 5:33:53 PM

Part VI: Communication

1538

 Activation — The Activation configuration enables you to set object pooling and to assign a
construction string.

 Concurrency — If the component is not thread - safe, concurrency can be set to Required or
Requires New. This way the COM+ runtime allows only one thread at a time to access the
component.

 Client Application
 After building the serviced component library, you can create a client application. This can be as
simple as a C# console application. After you ’ ve created the project for the client, you have to
reference both the assembly from the serviced component, SimpleServer , and the assembly
 System.EnterpriseServices . Then you can write the code to instantiate a new SimpleComponent
instance and invoke the method Welcome() . In the following code, the Welcome() method is called 10
times. The using statement helps to release the resources allocated with the instance before the garbage
collector takes action. With the using statement, the Dispose() method of the serviced component is
called when the scope of the using statement ends.

using System;

namespace Wrox.ProCSharp.EnterpriseServices
{
 class Program
 {
 static void Main()
 {
 using (SimpleComponent obj = new SimpleComponent())
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(obj.Welcome(“Katie”));
 }
 }
 }
 }
}

 If you start the client application before configuring the server, the server will be configured
automatically. The automatic configuration of the server is done with the values that you ’ ve specified
using attributes. For a test you can unregister the serviced component and start the client again. If the
serviced component is configured during the start of the client application, the startup needs more time.
Remember that this feature is useful only during development time. Administrative rights are also
needed for automatic deployment. If you are starting the application from within Visual Studio, that
means you should start Visual Studio with administrative rights.

 While the application is running, you can monitor the serviced component with the Component Services
Explorer. By selecting Components in the tree view and choosing View Detail, you can view the
number of instantiated objects if the attribute [EventTrackingEnabled] is set.

 As you ’ ve seen, creating serviced components is just a matter of deriving the class from the base class
 ServicedComponent and setting some attributes to configure the application. Next, you see how
transactions can be used with serviced components.

❑

❑

c44.indd 1538c44.indd 1538 2/19/08 5:33:53 PM2/19/08 5:33:53 PM

Chapter 44: Enterprise Services

1539

 Transactions
 Automatic transactions are the most frequently used feature of Enterprise Services. Using Enterprise
Services, you can mark the components as requiring a transaction, and the transaction is then created
from the COM+ runtime. All transaction - aware objects inside the component, such as ADO.NET
connections, run inside the transaction.

 You can read more about the concepts of transactions in Chapter 22 , “ Transactions. ”

 Transaction Attributes
 Serviced components can be marked with the [Transaction] attribute to define if and how
transactions are required for the component.

 Figure 44 - 6 shows multiple components with different transactional configurations. The client invokes
component A. Because component A is configured with Transaction Required and no transaction
existed previously, the new transaction, 1 , is created. Component A invokes component B, which in turn
invokes component C. Because component B is configured with Transaction Supported , and the
configuration of component C is set to Transaction Required , all three components (A, B, and C) do
use the same transaction context. If component B were configured with the transaction setting
 NotSupported , component C would get a new transaction. Component D is configured with the setting
 New Transaction Required , so a new transaction is created when it is called by component A.

 The following table lists the different values that you can set with the TransactionOption
enumeration:

 TransactionOption Value Description

 Required Setting the [Transaction] attribute to TransactionOption
.Required means that the component runs inside a transaction. If a
transaction has been created already, the component will run in the
same transaction. If no transaction exists, a transaction will be
created.

 RequiresNew TransactionOption.RequiresNew always results in a newly
 created transaction. The component never participates in the same
transaction as the caller.

 Supported With TransactionOption.Supported , the component doesn ’ t
need transactions itself. However, the transaction will span the
caller and the called component, if these components require
transactions.

 NotSupported The option TransactionOption.NotSupported means that the
component never runs in a transaction, regardless of whether the
caller has a transaction.

 Disabled TransactionOption.Disabled means that a possible transaction
of the current context is ignored.

c44.indd 1539c44.indd 1539 2/19/08 5:33:53 PM2/19/08 5:33:53 PM

Part VI: Communication

1540

 Transaction Results
 A transaction can be influenced by setting the consistent and the done bit of the context. If the consistent bit
is set to true , the component is happy with the outcome of the transaction. The transaction can be
committed if all components participating with the transaction are similarly successful. If the consistent
bit is set to false , the component is not happy with the outcome of the transaction, and the transaction
will be aborted when the root object that started the transaction is finished. If the done bit is set, the object
can be deactivated after the method call ends. A new instance will be created with the next method call.

 The consistent and done bits can be set using four methods of the ContextUtil class with the results
that you can see in the following table.

 ContextUtil Method Consistent Bit Done Bit

 SetComplete true true

 SetAbort false true

 EnableCommit true false

 DisableCommit false false

 With .NET it is also possible to set the consistent and done bit by applying the attribute
 [AutoComplete] to the method instead of calling the ContextUtil methods. With this attribute
the method ContextUtil.SetComplete() will be called automatically if the method is successful.
If the method fails and an exception is thrown, with [AutoComplete] the method
 ContextUtil.SetAbort() will be called.

 Sample Application
 This sample application simulates a simplified scenario that writes new orders to the Northwind sample
database. As shown in Figure 44 - 7 , multiple components are used with the COM+ application. The class
 OrderControl is called from the client application to create new orders. OrderControl uses the OrderData

D
ID

New TX
Required

A
IA

TX
required

Transaction 1

Transaction 2

BIB IC

TX
Supported

C

TX
required

 Figure 44 - 6

c44.indd 1540c44.indd 1540 2/19/08 5:33:54 PM2/19/08 5:33:54 PM

Chapter 44: Enterprise Services

1541

component. OrderData has the responsibility of creating a new entry in the Order table of the Northwind
database. The OrderData component uses the OrderLineData component to write Order Detail entries to
the database. Both OrderData and OrderLineData must participate in the same transaction.

 Start by creating a C# Component library with the name NorthwindComponent . Sign the assembly with
a keyfile, and define the Enterprise Services application attributes as shown in the following code:

[assembly: ApplicationName(“Wrox.NorthwindDemo”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl(false)]

 Entity Classes
 Next add the entity classes Order and OrderLine that represent the columns in the Northwind database
tables Order and Order Details . Entity classes are just data holders representing the data that is
important for the application domain — in that case for doing orders. The class Order has a static
method Create() that creates and returns a new instance of the class Order , and initializes this instance
with the arguments passed to this method. Also, the class Order has some read - only properties OrderId ,
 CustomerId , OrderData , ShipAddress , ShipCity , and ShipCountry . The value of the OrderId
property is not known at creation time of the class Order , but because the Order table in the Northwind
database has an auto - increment attribute, the value is just known after the order is written to
the database. The method SetOrderId() is used to set the corresponding ID after the order has been
written to the database. Because this method is called by a class inside the same assembly, the access
level of this method is set to internal . The method AddOrderLine() adds order details to the order:

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [Serializable]
 public class Order
 {
 public static Order Create(string customerId, DateTime orderDate,
 string shipAddress, string shipCity, string shipCountry)
 {
 return new Order()
 {
 CustomerId = customerId,
 OrderDate = orderDate,
 ShipAddress = shipAddress,

lOrderLineDatalOrderData

OrderControl

Transaction
Supported

lOrderControl lOrderData lOrderLineData

OrderData OrderLineData

Transaction
Required

 Figure 44 - 7

(continued)

c44.indd 1541c44.indd 1541 2/19/08 5:33:54 PM2/19/08 5:33:54 PM

Part VI: Communication

1542

 ShipCity = shipCity,
 ShipCountry = shipCountry
 }
 }

 public Order()
 {
 }

 internal void SetOrderId(int orderId)
 {
 this.OrderId = orderId;
 }

 public void AddOrderLine(OrderLine orderLine)
 {
 orderLines.Add(orderLine);
 }

 private List < OrderLine > orderLines = new List < OrderLine > ();

 public int OrderId { get; private set; }
 public string CustomerId { get; private set; }
 public DateTime OrderDate { get; private set; }
 public string ShipAddress { get; private set; }
 public string ShipCity { get; private set; }
 public string ShipCountry { get; private set; }

 public OrderLine[] OrderLines
 {
 get
 {
 OrderLine[] ol = new OrderLine[orderLines.Count];
 orderLines.CopyTo(ol);
 return ol;
 }
 }
 }
}

 The second entity class is OrderLine . OrderLine has a static Create() method similar to the one of the
 Order class. Other than that, the class only has some properties for the fields productId , unitPrice ,
and quantity :

using System;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [Serializable]
 public class OrderLine
 {
 public static OrderLine Create(int productId, float unitPrice,
 int quantity)
 {
 return new OrderLine()

(continued)

c44.indd 1542c44.indd 1542 2/19/08 5:33:55 PM2/19/08 5:33:55 PM

Chapter 44: Enterprise Services

1543

 {
 ProductId = productId,
 UnitPrice = unitPrice,
 Quantity = quantity
 };
 }
 public OrderLine()
 {
 }

 public int ProductId { get; set; }
 public float UnitPrice { get; set; }
 public int Quantity { get; set; }
 }
}

 The OrderControl Component
 The class OrderControl represents a simple business services component. In this example, just one
method, NewOrder() , is defined in the interface IOrderControl . The implementation of NewOrder()
does nothing more than instantiate a new instance of the data services component OrderData and call
the method Insert() to write an Order object to the database. In a more complex scenario, this method
could be extended to write a log entry to a database or to invoke a queued component to send the Order
object to a message queue:

using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [ComVisible(true)]
 public interface IOrderControl
 {
 void NewOrder(Order order);
 }

 [Transaction(TransactionOption.Supported)]
 [EventTrackingEnabled(true)]
 [ComVisible(true)]
 public class OrderControl : ServicedComponent, IOrderControl
 {
 [AutoComplete()]
 public void NewOrder(Order order)
 {
 using (OrderData data = new OrderData())
 {
 data.Insert(order);
 }
 }
 }
}

c44.indd 1543c44.indd 1543 2/19/08 5:33:55 PM2/19/08 5:33:55 PM

Part VI: Communication

1544

 The OrderData Component
 The OrderData class is responsible for writing the values of Order objects to the database. The interface
 IOrderUpdate defines the Insert() method. You can extend this interface to also support an
 Update() method where an existing entry in the database is updated:

using System;
using System.Data.SqlClient;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [ComVisible(true)]
 public interface IOrderUpdate
 {
 void Insert(Order order);
 }

 The class OrderData has the attribute [Transaction] with the value TransactionOption.Required
applied. This means that the component will run in a transaction in any case. Either a transaction is
created by the caller and OrderData uses the same transaction, or a new transaction is created. Here a
new transaction will be created because the calling component OrderControl doesn ’ t have a
transaction.

 With serviced components, you can use only default constructors. However, you can use the
Component Services Explorer to configure a construction string that is sent to a component (see
Figure 44 - 8). Selecting the Activation tab of the component configuration enables you to change
the construction string. The option “ Enable object construction ” is turned on when the attribute
 [ConstructionEnabled] is set, as it is with the class OrderData . The Default property of the
[ConstructionEnabled] attribute defines the default connection string shown in the Activation
settings after registration of the assembly. Setting this attribute also requires you to overload the
method Construct() from the base class ServicedComponent . This method is called by the COM+
runtime at object instantiation, and the construction string is passed as an argument. The
construction string is set to the variable connectionString , which is used later to connect to the
database:

 [Transaction(TransactionOption.Required)]
 [EventTrackingEnabled(true)]
 [ConstructionEnabled(true, Default=”server=(local);” +
 “database=northwind;trusted_connection=true”)]
 [ComVisible(true)]
 public class OrderData : ServicedComponent, IOrderUpdate
 {
 private string connectionString;

 protected override void Construct(string s)
 {
 connectionString = s;
 }

c44.indd 1544c44.indd 1544 2/19/08 5:33:55 PM2/19/08 5:33:55 PM

Chapter 44: Enterprise Services

1545

 The method Insert() is at the heart of the component. Here, you use ADO.NET to write the Order
object to the database. (ADO.NET is discussed in more detail in Chapter 26 , “ Data Access. ”) In this
example, you create a SqlConnection object where the connection string that was set with the
 Construct() method is used to initialize the object.

 The attribute [AutoComplete()] is applied to the method to use automatic transaction handling as
discussed earlier:

 [AutoComplete()]
 public void Insert(Order order)
 {
 SqlConnection connection = new SqlConnection(connectionString);

 The method connection.CreateCommand() creates a SqlCommand object where the CommandText
property is set to a SQL INSERT statement to add a new record to the Orders table. The method
 ExecuteNonQuery() executes the SQL statement:

 try
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = “INSERT INTO Orders (CustomerId,” +
 “OrderDate, ShipAddress, ShipCity, ShipCountry)” +
 “VALUES(@CustomerId, @OrderDate, @ShipAddress, @ShipCity, “ +
 “@ShipCountry)”;
 command.Parameters.AddWithValue(“@CustomerId”, order.CustomerId);
 command.Parameters.AddWithValue(“@OrderDate”, order.OrderDate);
 command.Parameters.AddWithValue(“@ShipAddress”,
 order.ShipAddress);

 Figure 44 - 8

(continued)

c44.indd 1545c44.indd 1545 2/19/08 5:33:55 PM2/19/08 5:33:55 PM

Part VI: Communication

1546

 command.Parameters.AddWithValue(“@ShipCity”, order.ShipCity);
 command.Parameters.AddWithValue(“@ShipCountry”,
 order.ShipCountry);

 connection.Open();

 command.ExecuteNonQuery();

 Because OrderId is defined as an auto - increment value in the database, and this ID is needed for writing
the Order Details to the database, OrderId is read by using @@IDENTITY . Then it is set to the Order
object by calling the method SetOrderId() :

 command.CommandText = “SELECT @@IDENTITY AS ‘Identity’”;
 object identity = command.ExecuteScalar();
 order.SetOrderId(Convert.ToInt32(identity));

 After the order is written to the database, all order lines of the order are written using the
 OrderLineData component:

 using (OrderLineData updateOrderLine = new OrderLineData())
 {
 foreach (OrderLine orderLine in order.OrderLines)
 {
 updateOrderLine.Insert(order.OrderId, orderLine);
 }
 }
 }

 Finally, regardless of whether the code in the try block was successful or an exception occurred, the
connection is closed:

 finally
 {
 connection.Close();
 }
 }
 }
}

 The OrderLineData Component
 The OrderLineData component is implemented similarly to the OrderData component. You use the
attribute [ConstructionEnabled] to define the database connection string:

using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;
using System.Data;
using System.Data.SqlClient;

namespace Wrox.ProCSharp.EnterpriseServices
{
 [ComVisible(true)]
 public interface IOrderLineUpdate
 {
 void Insert(int orderId, OrderLine orderDetail);
 }

(continued)

c44.indd 1546c44.indd 1546 2/19/08 5:33:56 PM2/19/08 5:33:56 PM

Chapter 44: Enterprise Services

1547

 [Transaction(TransactionOption.Required)]
 [EventTrackingEnabled(true)]
 [ConstructionEnabled(true, Default=”server=(local);database=northwind;” +
 “trusted_connection=true”)]
 [ComVisible(true)]
 public class OrderLineData : ServicedComponent, IOrderLineUpdate
 {
 private string connectionString;

 protected override void Construct(string s)
 {
 connectionString = s;
 }

 With the Insert() method of the OrderLineData class in this example, the [AutoComplete] attribute
isn ’ t used to demonstrate a different way to define the transaction outcome. It shows how to set the
consistent and done bits with the ContextUtil class instead. The method SetComplete() is called at
the end of the method, depending on whether inserting the data in the database was successful. If there
is an error where an exception is thrown, the method SetAbort() sets the consistent bit to false
instead, so that the transaction is undone along with all components participating in the transaction:

 public void Insert(int orderId, OrderLine orderDetail)
 {
 SqlConnection connection = new SqlConnection(connectionString);
 try
 {
 SqlCommand command = connection.CreateCommand();
 command.CommandText = “INSERT INTO [Order Details] (OrderId, “ +
 “ProductId, UnitPrice, Quantity)” +
 “VALUES(@OrderId, @ProductId, @UnitPrice, @Quantity)”;
 command.Parameters.AddWithValue(“@OrderId”, orderId);
 command.Parameters.AddWithValue(“@ProductId”,
 orderDetail.ProductId);
 command.Parameters.AddWithValue(“@UnitPrice”,
 orderDetail.UnitPrice);
 command.Parameters.AddWithValue(“@Quantity”,
 orderDetail.Quantity);

 connection.Open();

 command.ExecuteNonQuery();
 }
 catch (Exception)
 {
 ContextUtil.SetAbort();
 throw;
 }
 finally
 {
 connection.Close();
 }
 ContextUtil.SetComplete();
 }
 }
}

c44.indd 1547c44.indd 1547 2/19/08 5:33:56 PM2/19/08 5:33:56 PM

Part VI: Communication

1548

 Client Application
 Having built the component, you can create a client application. For testing purposes, a console
application serves the purpose. After referencing the assembly NorthwindComponent and the assembly
 System.EnterpriseServices , you can create a new order with the static method Order.Create() .
 order.AddOrderLine() adds an order line to the order. OrderLine.Create() accepts product IDs,
the price, and quantity to create an order line. In a real application, it would be useful to add a Product
class instead of using product IDs, but the purpose of this example is to demonstrate transactions
in general.

 Finally, the serviced component class OrderControl is created to invoke the method NewOrder() :

 Order order = Order.Create(“PICCO”, DateTime.Today, “Georg Pipps”,
 “Salzburg”, “Austria”);
 order.AddOrderLine(OrderLine.Create(16, 17.45F, 2));
 order.AddOrderLine(OrderLine.Create(67, 14, 1));

 using (OrderControl orderControl = new OrderControl())
 {
 orderControl.NewOrder(order);
 }

 You can try to write products that don ’ t exist to the OrderLine (using a product ID that is not listed in
the table Products). In this case, the transaction will be aborted, and no data will be written to the
database.

 While a transaction is active, you can see the transaction in the Component Services Explorer by
selecting Distributed Transaction Coordinator in the tree view (see Figure 44 - 9).

 You might have to add a sleep time to the Insert() method of the OrderData class to see the live
transaction; otherwise, the transaction might be completed too fast to display.

 Figure 44 - 9

c44.indd 1548c44.indd 1548 2/19/08 5:33:56 PM2/19/08 5:33:56 PM

Chapter 44: Enterprise Services

1549

 If you are debugging the serviced component while it is running inside a transaction,
be aware that the default transaction timeout is 60 seconds for serviced components.
You can change the default for the complete system in the Component Services
Explorer by clicking My Computer, selecting Action Properties, and opening the
Options tab. Instead of changing the value for the complete system, the transaction
timeout can also be configured on a component - by - component level with the
Transaction options of the component.

 Integrating WCF and Enterprise Services
 Windows Communication Foundation (WCF) is a new communication technology that is part of .NET
Framework 3.0. WCF is covered in detail in Chapter 42 , “ Windows Communication Foundation .” .NET
Enterprise Services offers a great integration model with WCF.

 WCF Service Fa ç ade
 Adding a WCF fa ç ade to an Enterprise Services application allows using WCF clients to access the
serviced components. Instead of using the DCOM protocol, with WCF you can have different protocols
such as HTTP with SOAP or TCP with a binary formatting.

 You can create a WCF fa ç ade from Visual Studio 2008 by selecting Tools WCF SvcConfigEditor.
With this tool started select File Integrate COM+ Application Select the COM+ Application
Wrox.NorthwindDemo, the component Wrox.ProCSharp.EnterpriseServices.OrderControl ,
and the interface IOrderControl as shown in Figure 44 - 10 .

 Instead of using Visual Studio to create the WCF fa ç ade, you can use the command - line utility
 comsvcconfig.exe . You can find this utility in the directory < Windows > \Microsoft.NET\
Framework\v3.0\Windows Communication Foundation .

 Figure 44 - 10

c44.indd 1549c44.indd 1549 2/19/08 5:33:58 PM2/19/08 5:33:58 PM

Part VI: Communication

1550

 With the next dialog you can select all the methods from the interface IOrderControl that should be
available to WCF clients. With the interface IOrderControl just one method, NewOrder() , is shown.

 The next dialog shown in Figure 44 - 11 allows configuration of the hosting options. With
the hosting option, you can specify in which process the WCF service should run. When you
select the COM+ hosted option, the WCF fa ç ade runs within the dllhost.exe process of
COM+. This option is possible only if the application is configured as a server application:
 [ApplicationActivation(ActivationOption.Server)] . The Web hosted it is specifies that
the WCF channel is listens inside a process of the IIS or WAS (Windows Activation Services) worker
process. WAS is new with Windows Vista and Windows Server 2008. Selecting “ Web hosted in - process ”
means that the library of the Enterprise Services component runs within the IIS or WAS worker
process. This configuration is possible only if the application is configured as a library application.
[ApplicationActivation(ActivationOption.Library)] .

 Selecting the “ Add MEX endpoint ” option adds a MEX (Metadata Exchange) endpoint to the
WCF configuration file, so that the client programmer can access the metadata of the service using
WS - Metadata Exchange.

 MEX is explained in Chapter 42 , “ Windows Communication Foundation. ”

 Figure 44 - 11

 With the next dialog shown in Figure 44 - 12 you can specify the communication mode to access the WCF
fa ç ade. Depending on your requirements, if the client is accessing the service across a firewall or
platform - independent communication is required, HTTP is the best choice. TCP offers faster
communication across machines for .NET clients, and Named Pipes is the fastest option if the client
application is running on the same system as the service.

c44.indd 1550c44.indd 1550 2/19/08 5:34:00 PM2/19/08 5:34:00 PM

Chapter 44: Enterprise Services

1551

 The next dialog requests information about the base address of the service that depends on the
communication protocol selection, as shown in Figure 44 - 13 .

 Figure 44 - 12

 Figure 44 - 13

c44.indd 1551c44.indd 1551 2/19/08 5:34:01 PM2/19/08 5:34:01 PM

Part VI: Communication

1552

 The last dialog shows the location of the endpoint configuration. The base directory for the configurations
is < Program Files > \ComPlus Applications followed by the unique ID of the application. In this
directory you can find the file application.config . This configuration file lists the behaviors and
endpoints for WCF.

 The < service > element specifies the exposed WCF service with the endpoint configuration. The
binding is set to wsHttpBinding with a comTransactionalBinding configuration, so transactions can
flow from the caller to the serviced component. With other network and client requirements, you can
specify a different binding, but this is all covered in Chapter 42 .

 < ?xml version=”1.0” encoding=”utf-8”? >
 < configuration >
 < system.serviceModel >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”ComServiceMexBehavior” >
 < serviceMetadata httpGetEnabled=”false” / >
 < serviceDebug / >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < bindings >
 < netNamedPipeBinding >
 < binding name=”comNonTransactionalBinding” / >
 < binding name=”comTransactionalBinding” transactionFlow=”true” / >
 < /netNamedPipeBinding >
 < wsHttpBinding >
 < binding name=”comNonTransactionalBinding” / >
 < binding name=”comTransactionalBinding” transactionFlow=”true” / >
 < /wsHttpBinding >
 < /bindings >
 < comContracts >
 < comContract contract=”{E1B02E09-EE48-3B6B-946F-E6A8BAEC6340}”
 name=”IOrderControl”
 namespace=
 “http://tempuri.org/E1B02E09-EE48-3B6B-946F-E6A8BAEC6340”
 requiresSession=”true” >
 < exposedMethods >
 < add exposedMethod=”NewOrder” / >
 < /exposedMethods >
 < /comContract >
 < /comContracts >
 < services >
 < service behaviorConfiguration=”ComServiceMexBehavior”
 name=”{BC198295-74F7-4441-8EC1-04A174C6BA45},
 {D30F79D7-6DE7-33DE-B3FC-C21F6B02A48D}” >
 < endpoint address=”IOrderControl” binding=”wsHttpBinding”
 bindingConfiguration=”comTransactionalBinding”
 contract=”{E1B02E09-EE48-3B6B-946F-E6A8BAEC6340}” / >
 < endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” / >
 < host >
 < baseAddresses >

c44.indd 1552c44.indd 1552 2/19/08 5:34:01 PM2/19/08 5:34:01 PM

Chapter 44: Enterprise Services

1553

 < add baseAddress=
 “http://localhost:8088/NorthwindService” / >
 < /baseAddresses >
 < /host >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 Before you can start the server application you need to change the security to allow the user that runs the
application to register ports for listening. Otherwise a normal user is not allowed to register a listener
port. On Windows Vista you can do this with the netsh command as shown. The option http changes
the ACL for the HTTP protocol. The port number and the name of the service are defined with the URL,
and the user option specifies the name of the user that starts the listener service.

netsh http urlacl url=http://+:8088/NorthwindService user=username

 Client Application
 Create a new console application named WCFClientApp . Because the service offers a MEX endpoint, you can
add a service reference from Visual Studio by selecting Project Add Service Reference . . . (see Figure 44 - 14).

 If the service is COM+ hosted, you have to start the application before you can access the MEX data. If
the service is hosted inside WAS, the application is started automatically.

 Figure 44 - 14

 With the service reference a proxy class is created, the assemblies System.ServiceModel and
System.Runtime.Serialization are referenced, and an application configuration file referencing
the service is added to the client application.

c44.indd 1553c44.indd 1553 2/19/08 5:34:01 PM2/19/08 5:34:01 PM

Part VI: Communication

1554

 Now, you can use the generated entity classes and the proxy class OrderControlClient to send an
order request to the serviced component:

 static void Main()
 {
 Order order = new Order();
 order.customerId = “PICCO”;
 order.orderDate = DateTime.Today;
 order.shipAddress = “Georg Pipps”;
 order.shipCity = “Salzburg”;
 order.shipCountry = “Austria”;
 OrderLine line1 = new OrderLine();
 line1.productId = 16;
 line1.unitPrice = 17.45F;
 line1.quantity = 2;
 OrderLine line2 = new OrderLine();
 line2.productId = 67;
 line2.unitPrice = 14;
 line2.quantity = 1;
 OrderLine[] orderLines = { line1, line2 };
 order.orderLines = orderLines;

 OrderControlClient occ = new OrderControlClient();
 occ.NewOrder(order);
 }

 Summary
 This chapter discussed the rich features offered by Enterprise Services, such as automatic transactions,
object pooling, queued components, and loosely coupled events.

 To create serviced components, you have to reference the assembly System.EnterpriseServices . The
base class of all serviced components is ServicedComponent . In this class, the context makes it possible
to intercept method calls. You can use attributes to specify the interception that will be used. You also
learned how to configure an application and its components using attributes, as well as how to manage
transactions and specify the transactional requirements of components by using the [Transaction]
attribute. You ’ ve also seen how well Enterprise Services integrates with the new communication
technology Windows Communication Foundation, by creating a WCF fa ç ade.

 This chapter showed how to use Enterprise Services, a feature offered by the operating system. The next
chapter gives information on how to use another feature from the operating system that is used for
communication as well: message queuing.

c44.indd 1554c44.indd 1554 2/19/08 5:34:01 PM2/19/08 5:34:01 PM

 Message Queuing

 System.Messaging is a namespace that includes classes for reading and writing messages with
the Message Queuing facility of the Windows operating system. Messaging can be used in a
disconnected scenario where the client and server needn ’ t be running at the same time.

 This chapter looks at the following topics:

 An overview of Message Queuing

 Message Queuing architecture

 Message queue administrative tools

 Programming Message Queuing

 Course order sample application

 Message Queuing with WCF

 Overview
 Before diving into programming Message Queuing, this section discusses the basic concepts of
messaging and compares it to synchronous and asynchronous programming. With synchronous
programming, when a method is invoked, the caller has to wait until the method is completed.
With asynchronous programming, the calling thread starts the method that runs concurrently.
Asynchronous programming can be done with delegates, class libraries that already support
asynchronous methods (for example, Web service proxies, System.Net , and System.IO classes),
or by using custom threads (see Chapter 19 , “ Threading and Synchronization ”). With both
synchronous and asynchronous programming, the client and the server must be running at the
same time.

 Although Message Queuing operates asynchronously, because the client (sender) does not wait for
the server (receiver) to read the data sent to it, there is a crucial difference between Message
Queuing and asynchronous programming: Message Queuing can be done in a disconnected
environment. At the time data is sent, the receiver can be offline. Later, when the receiver goes
online, it receives the data without intervention from the sending application.

❑

❑

❑

❑

❑

❑

c45.indd 1555c45.indd 1555 2/19/08 5:34:11 PM2/19/08 5:34:11 PM

1556

Part VI: Communication

 You can compare connected and disconnected programming with talking to someone on the phone and
sending an email. When talking to someone on the phone, both participants must be connected at the
same time; the communication is synchronous. With an email, the sender isn ’ t sure when the email will
be dealt with. People using this technology are working in a disconnected mode. Of course the email
may never be dealt with — it may be ignored. That ’ s in the nature of disconnected communication. To
avoid this problem, it is possible to ask for a reply to confirm that the email has been read. If the answer
doesn ’ t arrive within a time limit, you may be required to deal with this “ exception. ” This is also
possible with Message Queuing.

 In some ways, Message Queuing is email for application - to - application communication, instead of
person - to - person communication. However, this gives you a lot of features that are not available with
mailing services, such as guaranteed delivery, transactions, confirmations, express mode using memory,
and so on. As you see in the next section, Message Queuing has a lot of features useful for
communication between applications.

 With Message Queuing, you can send, receive, and route messages in a connected or disconnected
environment. Figure 45 - 1 shows a very simple way of using messages. The sender sends messages to the
message queue, and the receiver receives messages from the queue.

Sender Receiver

Message

Message Queue

Send Receive

 Figure 45 - 1

 When to Use Message Queuing
 One case in which Message Queuing is useful is when the client application is often disconnected from
the network (for example, when a salesperson is visiting a customer onsite). The salesperson can enter
order data directly at the customer ’ s site. The application sends a message for each order to the message
queue that is located on the client ’ s system (see Figure 45 - 2). As soon as the salesperson is back in the
office, the order is automatically transferred from the message queue of the client system to the message
queue of the target system, where the message is processed.

 In addition to using a laptop, the salesperson could use a Pocket Windows device where Message
Queuing is available.

 Message Queuing can also be useful in a connected environment. Imagine an e - commerce site (see
Figure 45 - 3) where the server is fully loaded with order transactions at certain times, for example, early
evening and weekends, but the load is low at nighttime. A solution would be to buy a faster server or to
add additional servers to the system so that the peaks can be handled. But there ’ s a cheaper solution:
flatten the peak loads by moving transactions from the times with higher loads to the times with lower
loads. In this scheme, orders are sent to the message queue, and the receiving side reads the orders at the
rates that are useful for the database system. The load of the system is now flattened over time so that
the server dealing with the transactions can be less expensive than an upgrade of the database server(s).

c45.indd 1556c45.indd 1556 2/19/08 5:34:12 PM2/19/08 5:34:12 PM

Chapter 45: Message Queuing

1557

 Message Queuing Features
 Message Queuing is part of the Windows operating system. The main features of this service are:

 Messages can be sent in a disconnected environment. It is not necessary for the sending and
receiving applications to run at the same time.

 With express mode, messages can be sent very quickly. Express-mode messages are just stored
in memory.

 For a recoverable mechanism, messages can be sent using guaranteed delivery. Recoverable
messages are stored within files. They are delivered even in cases when the server reboots.

 Message queues can be secured with access-control lists to define which users can send or
receive messages from a queue. Messages can also be encrypted to avoid network sniffers
reading them. Messages can be sent with priorities so that high - priority items are handled faster.

 Message Queuing 3.0 supports sending multicast messages.

 Message Queuing 4.0 supports poison messages. A poison message is one that isn ’ t getting
resolved. You can define a poison queue where unresolved messages are moved. For example, if
the job after reading the message from the normal queue was to insert it into the database, but
the message did not get into the database and thus this job failed, it would get sent to the poison
queue. It is someone ’ s job to handle the poison queue — and that person should deal with the
message in a way that resolves it.

❑

❑

❑

❑

❑

❑

Laptop Computer,
Independent Client

Message Queue

Message Queuing
Server

Message Queue

 Figure 45 - 2

Client

Message Queuing
Server

Message Queue

Web Server,
Dependent Client

Internet
Database

 Figure 45 - 3

c45.indd 1557c45.indd 1557 2/19/08 5:34:13 PM2/19/08 5:34:13 PM

1558

Part VI: Communication

 Because Message Queuing is part of the operating system, you cannot install Message Queuing 4.0 on
a Windows XP or Windows Server 2003 system. Message Queuing 4.0 is part of Windows Server 2008
and Windows Vista.

 The remainder of this chapter discusses how these features can be used.

 Message Queuing Products
 Message Queuing 4.0 is part of Windows Vista and Windows Server 2008. Windows 2000 was delivered
with Message Queuing 2.0, which didn ’ t have support for the HTTP protocol and multicast messages.
Message Queuing 3.0 is part of Windows XP and Windows Server 2003. When you use the link “ Turn
Windows Features on or off ” in Configuring Programs and Features of Windows Vista, there is a
separate section for Message Queuing options. With this section, you can select these components:

 Microsoft Message Queue (MSMQ) Server Core — The Core subcomponent is required for
base functionality with Message Queuing.

 Active Directory Domain Services Integration — With the Active Directory Domain Services
Integration, message queue names are written to the Active Directory. With this option, it is
possible to find queues with the Active Directory integration, and to secure queues with
Windows users and groups.

 MSMQ HTTP Support — MSMQ HTTP Support allows you to send and receive messages
using the HTTP protocol.

 Triggers — With triggers, applications can be instantiated on the arrival of a new message.

 Multicast Support — With multicasting, a message can be sent to a group of servers.

 MSMQ DCOM Proxy — With the DCOM proxy, a system can connect to a remote server by
using the DCOM API.

 When Message Queuing is installed, the Message Queuing service (see Figure 45 - 4) must be started. This
service reads and writes messages and communicates with other Message Queuing servers to route
messages across the network.

❑

❑

❑

❑

❑

❑

 Figure 45 - 4

c45.indd 1558c45.indd 1558 2/19/08 5:34:13 PM2/19/08 5:34:13 PM

Chapter 45: Message Queuing

1559

 Message Queuing Architecture
 With Message Queuing, messages are written to and read from a message queue. Messages and message
queues have several attributes that must be further elaborated.

 Messages
 A message is sent to a message queue. The message includes a body containing the data that is sent
and a label that is the title of the message. Any information can be put into the body of the message.
With .NET, several formatters convert data to be put into the body. In addition to the label and the
body, the message includes more information about the sender, timeout configuration, transaction ID,
or priority.

 Message queues have several types of messages:

 A normal message is sent by an application.

 An acknowledgment message reports the status of a normal message. Acknowledgment
messages are sent to administration queues to report success or failure when sending
normal messages.

 Response messages are sent by receiving applications when the original sender requires some
special answer.

 A report message is generated by the Message Queuing system. Test messages and route - tracking
messages belong to this category.

 A message can have a priority that defines the order in which the messages will be read from the queue.
The messages are sorted in the queue according to their priority, so the next message read in the queue is
the one with the highest priority.

 Messages have two delivery modes: express and recoverable . Express messages are delivered very quickly
because memory is used only for the message store. Recoverable messages are stored in files at every
step along the route until the message is delivered. This way, delivery of the message is assured, even
with a computer reboot or network failure.

 Transactional messages are a special version of recoverable messages. With transactional messaging, it is
guaranteed that messages arrive only once and in the same order that they were sent. Priorities cannot
be used with transactional messages.

 Message Queue
 A message queue is a message store. Messages that are stored on disk can be found in the < windir >
\system32\msmq\storage directory.

 Public or private queues are usually used for sending messages, but other queue types also exist:

 A public queue is published in the Active Directory. Information about these queues is replicated
across Active Directory domains. You can use browse and search features to get information
about these queues. A public queue can be accessed without knowing the name of the computer
where it is placed. It is also possible to move such a queue from one system to another without
the client knowing it. It ’ s not possible to create public queues in a Workgroup environment
because the Active Directory is needed. The Active Directory is discussed in Chapter 46 ,
 “ Directory Services. ”

❑

❑

❑

❑

❑

c45.indd 1559c45.indd 1559 2/19/08 5:34:14 PM2/19/08 5:34:14 PM

1560

Part VI: Communication

 Private queues are not published in the Active Directory. These queues can be accessed only when
the full path name to the queue is known. Private queues can be used in a Workgroup
environment.

 Journal queues are used to keep copies of messages after they have been received or sent.
Enabling journaling for a public or private queue automatically creates a journal queue. With
journal queues, two different queue types are possible: source journaling and target journaling.
 Source journaling is turned on with the properties of a message; the journal messages are stored
with the source system. Target journaling is turned on with the properties of a queue; these
messages are stored in the journal queue of the target system.

 Dead - letter queues store messages if a message doesn ’ t arrive at the target system before a specific
timeout is reached. Contrary to synchronous programming where errors are immediately
detected, errors must be dealt with differently using Message Queuing. The dead - letter queue
can be checked for messages that didn ’ t arrive.

 Administration queues contain acknowledgments for messages sent. The sender can specify an
administration queue from which it receives notification of whether the message was sent
successfully.

 A response queue is used if more than a simple acknowledgment is needed as an answer from
the receiving side. The receiving application can send response messages back to the
original sender.

 A report queue is used for test messages. Report queues can be created by changing the type
(or category) of a public or private queue to the predefined ID {55EE8F33 - CCE9 - 11CF -
B108 - 0020AFD61CE9} . Report queues are useful as a testing tool to track messages on
their route.

 System queues are private and are used by the Message Queuing system. These queues are used
for administrative messages, storing of notification messages, and to guarantee the correct order
of transactional messages.

 Message Queuing Administrative Tools
 Before looking at how to deal with Message Queuing programmatically, this section looks at the
administrative tools that are part of the Windows operating system to create and manage queues and
messages. The tools shown here are not used only with Message Queuing. The Message Queuing
features of these tools are available only if Message Queuing is installed.

 Creating Message Queues
 Message queues can be created with the Computer Management MMC snap - in. On a Windows Vista
system, you can start the Computer Management MMC snap - in with the Start Control Panel
Administrative Tools Computer Management menu. In the tree view pane, Message Queuing is
located below the Services and Applications entry. By selecting Private Queues or Public Queues, new
queues can be created from the Action menu (see Figure 45 - 5). Public queues are available only if
Message Queuing is configured in Active Directory mode.

❑

❑

❑

❑

❑

❑

❑

c45.indd 1560c45.indd 1560 2/19/08 5:34:14 PM2/19/08 5:34:14 PM

Chapter 45: Message Queuing

1561

 Message Queue Properties
 After a queue is created, you can modify the queue ’ s properties with the Computer Management snap - in
by selecting the queue in the tree pane and selecting the Action Properties menu (see Figure 45 - 6).

Figure 45-6

Figure 45-5

 Several options can be configured:

 The label is the name of the queue that can be used to search for the queue.

 The type ID, which is, by default, set to {00000000 - 0000 - 0000 - 0000 - 000000000000} to map
multiple queues to a single category or type. Report queues use a specific type ID, as discussed
earlier. A type ID is a universal unique ID (UUID) or GUID.

❑

❑

c45.indd 1561c45.indd 1561 2/19/08 5:34:14 PM2/19/08 5:34:14 PM

1562

Part VI: Communication

 Custom type identifiers can be created with the uuidgen.exe or guidgen.exe utilities. uuidgen.
exe is a command - line utility used to create unique IDs, and guidgen.exe is a graphical version to
create UUIDs.

 The maximum size of all messages of a queue can be limited to not fill up the disk.

 When checked, the Authenticated option allows only authenticated users to write and read
messages to and from the queue.

 With the Privacy Level option, the content of the message can be encrypted. The possible values
to set are None, Optional, or Body. None means that no encrypted messages are accepted, Body
accepts only encrypted messages, and the default Optional value accepts both.

 Target journaling can be configured with the Journal settings. With this option, copies of the
messages received are stored in the journal. The maximum size of disk space that is occupied
can be configured for the journal messages of a queue. When the maximum size is reached,
target journaling is ceased.

 With the configuration option Multicast, you can define a multicast IP address for the queue. The
same multicast IP address can be used with different nodes in the network, so that a message
sent to a single address is received with multiple queues.

 Programming Message Queuing
 Now that you understand the architecture of Message Queuing, you can look into the programming.
In the next sections, you see how to create and control queues, and how to send and receive messages.

 You also build a small course order application that consists of a sending and a receiving part.

 Creating a Message Queue
 You ’ ve already seen how to create message queues with the Computer Management utility. Message
queues can be created programmatically with the Create() method of the MessageQueue class.

 With the Create() method, the path of the new queue must be passed. The path consists of the host
name where the queue is located and the name of the queue. In the example, the queue
 MyNewPublicQueue is created on the local host. To create a private queue, the path name must include
 Private $; for example, \Private $ \MyNewPrivateQueue .

 After the Create() method is invoked, properties of the queue can be changed. For example, using the
 Label property, the label of the queue is set to Demo Queue . The sample program writes the path of
the queue and the format name to the console. The format name is automatically created with a UUID
that can be used to access the queue without the name of the server:

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 using (MessageQueue queue =
 MessageQueue.Create(@”.\MyNewPublicQueue”))

❑

❑

❑

❑

❑

c45.indd 1562c45.indd 1562 2/19/08 5:34:15 PM2/19/08 5:34:15 PM

Chapter 45: Message Queuing

1563

 {
 queue.Label = “Demo Queue”;
 Console.WriteLine(“Queue created:”);
 Console.WriteLine(“Path: {0}”, queue.Path);
 Console.WriteLine(“FormatName: {0}”, queue.FormatName);
 }
 }
 }
}

 Administrative privileges are required to create a queue. Usually, you cannot expect the user of
your application to have administrative privileges. That ’ s why queues usually are created with
installation programs. Later in this chapter, you see how message queues can be created with the
MessageQueueInstaller class.

 Finding a Queue
 The path name and the format name can be used to identify queues. To find queues, you must
differentiate between public and private queues. Public queues are published in the Active Directory. For
these queues, it is not necessary to know the system where they are located. Private queues can be found
only if the name of the system where the queue is located is known.

 You can find public queues in the Active Directory domain by searching for the queue ’ s label, category,
or format name. You can also get all queues on a machine. The class MessageQueue has static methods
to search for queues: GetPublicQueuesByLabel() , GetPublicQueuesByCategory() , and
 GetPublicQueuesByMachine() . The method GetPublicQueues() returns an array of all public
queues in the domain:

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 foreach (MessageQueue queue in MessageQueue.GetPublicQueues())
 {
 Console.WriteLine(queue.Path);
 }
 }
 }
}

 The method GetPublicQueues() is overloaded. One version allows passing an instance of the
 MessageQueueCriteria class. With this class, you can search for queues created or modified before or
after a certain time, and you can also look for a category, label, or machine name.

 Private queues can be searched with the static method GetPrivateQueuesByMachine() . This method
returns all private queues from a specific system.

 Opening Known Queues
 If the name of the queue is known, it is not necessary to search for it. Queues can be opened by using the
path or format name. They both can be set in the constructor of the MessageQueue class.

c45.indd 1563c45.indd 1563 2/19/08 5:34:15 PM2/19/08 5:34:15 PM

1564

Part VI: Communication

 Path Name
 The path specifies the machine name and the queue name to open the queue. This code example opens
the queue MyPublicQueue on the local host. To be sure that the queue exists, you use the static method
 MessageQueue.Exists() :

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 if (MessageQueue.Exists(@”.\MyPublicQueue”))
 {
 MessageQueue queue = new MessageQueue(@”.\MyPublicQueue”);
 //...
 }
 else
 {
 Console.WriteLine(“Queue .\MyPublicQueue not existing”);
 }
 }
 }
}

 Depending on the queue type, different identifiers are required when queues are opened. The following
table shows the syntax of the queue name for specific types.

Queue Type Syntax

Public queue MachineName\QueueName

Private queue MachineName\Private$\QueueName

Journal queue MachineName\QueueName\Journal$

Machine journal queue MachineName\Journal$

Machine dead-letter queue MachineName\DeadLetter$

Machine transactional dead-letter queue MachineName\XactDeadLetter$

 When you use the path name to open public queues, it is necessary to pass the machine name. If the
machine name is not known, the format name can be used instead. The path name for private queues
can be used only on the local system. The format name must be used to access private queues remotely.

 Format Name
 Instead of the path name, you can use the format name to open a queue. The format name is used for
searching the queue in the Active Directory to get the host where the queue is located. In a disconnected
environment where the queue cannot be reached at the time the message is sent, it is necessary to use the
format name:

c45.indd 1564c45.indd 1564 2/19/08 5:34:15 PM2/19/08 5:34:15 PM

Chapter 45: Message Queuing

1565

 MessageQueue queue = new MessageQueue(
 @”FormatName:PUBLIC=09816AFF-3608-4c5d-B892-69754BA151FF”);

 The format name has some different uses. It can be used to open private queues and to specify a protocol
that should be used:

 To access a private queue, the string that has to be passed to the constructor is FormatName:
PRIVATE=MachineGUID\QueueNumber . The queue number for private queues is generated
when the queue is created. You can see the queue numbers in the < windows > \System32\msmq\
storage\lqs directory.

 With FormatName:DIRECT=Protocol:MachineAddress\QueueName, you can specify the
protocol that should be used to send the message. The HTTP protocol is supported since
Message Queuing 3.0.

 FormatName:DIRECT=OS:MachineName\QueueName is another way to specify a queue using
the format name. This way you don ’ t have to specify the protocol but still can use the machine
name with the format name.

 Sending a Message
 You can use the Send method of the MessageQueue class to send a message to the queue. The object
passed as an argument of the Send() method is serialized to the associated queue. The Send() method
is overloaded so that a label and a MessageQueueTransaction object can be passed. Transactional
behavior of Message Queuing is discussed later.

 The code example first checks if the queue exists. If it doesn ’ t exist, a queue is created. Then the queue is
opened and the message Sample Message is sent to the queue using the Send() method.

 The path name specifies a dot (just like a period) for the server name, which is the local system. Path
names to private queues work only locally.

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 try
 {
 if (!MessageQueue.Exists(@”.\Private$\MyPrivateQueue”))
 {
 MessageQueue.Create(@”.\Private$\MyPrivateQueue”);
 }
 MessageQueue queue =
 new MessageQueue(@”.\Private$\MyPrivateQueue”);

 queue.Send(“Sample Message”, “Label”);
 }
 catch (MessageQueueException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }
}

❑

❑

❑

c45.indd 1565c45.indd 1565 2/19/08 5:34:16 PM2/19/08 5:34:16 PM

1566

Part VI: Communication

 Figure 45 - 7 shows the Computer Management admin tool where you can see the message that arrived in
the queue.

Figure 45-7

Figure 45-8

 By opening the message and selecting the Body tab (see Figure 45 - 8) of the dialog, you can see that the
message was formatted using XML. How the message is formatted is the function of the formatter that ’ s
associated with the message queue.

 Message Formatter
 The format in which messages are transferred to the queue depends on the formatter. The MessageQueue
class has a Formatter property through which a formatter can be assigned. The default formatter,
 XmlMessageFormatter , will format the message in XML syntax as shown in the previous example.

 A message formatter implements the interface IMessageFormatter . Three message formatters are
available with the namespace System.Messaging :

c45.indd 1566c45.indd 1566 2/19/08 5:34:16 PM2/19/08 5:34:16 PM

Chapter 45: Message Queuing

1567

 The XmlMessageFormatter is the default formatter. It serializes objects using XML. See
Chapter 28 , “ Manipulating XML, ” for more on XML formatting.

 With the BinaryMessageFormatter , messages are serialized in a binary format. These
messages are shorter than the messages formatted using XML.

 The ActiveXMessageFormatter is a binary formatter, so that messages can be read or written
with COM objects. Using this formatter, it is possible to write a message to the queue with a
.NET class and to read the message from the queue with a COM object or vice versa.

 The sample message shown in Figure 45 - 8 with XML is formatted with the BinaryMessageFormatter
in Figure 45 - 9 .

❑

❑

❑

Figure 45-9

 Sending Complex Messages
 Instead of passing strings, it is possible to pass objects to the Send() method of the MessageQueue class.
The type of the class must fulfill some specific requirements, but they depend on the formatter.

 For the binary formatter, the class must be serializable with the [Serializable] attribute. With the
.NET runtime serialization, all fields are serialized (this includes private fields). Custom serialization can
be defined by implementing the interface ISerializable . You can read more about the .NET runtime
serialization in Chapter 25 , “ Manipulating Files and the Registry. ”

 XML serialization takes place with the XML formatter. With XML serialization, all public fields and
properties are serialized. The XML serialization can be influenced by using attributes from the System
.Xml.Serialization namespace. You can read more about XML serialization in Chapter 28 ,
 “ Manipulating XML. ”

 Receiving Messages
 To read messages, again, the MessageQueue class can be used. With the Receive() method, a single
message is read and removed from the queue. If messages are sent with different priorities, the message
with the highest priority is read. Reading messages with the same priority may mean that the first

c45.indd 1567c45.indd 1567 2/19/08 5:34:16 PM2/19/08 5:34:16 PM

1568

Part VI: Communication

message sent is not the first message read because the order of messages across the network is not
guaranteed. For a guaranteed order, you should use transactional message queues.

 In the following example, a message is read from the private queue MyPrivateQueue . Previously, a
simple string was passed to the message. When you read a message using the XmlMessageFormatter ,
you have to pass the types of the objects that are read to the constructor of the formatter. In the example,
the type System.String is passed to the argument array of the XmlMessageFormatter constructor. This
constructor allows either a String array that contains the types as strings to be passed or a Type array.

 The message is read with the Receive() method, and then the message body is written to the console:

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 MessageQueue queue = new MessageQueue(@”.\Private$\MyPrivateQueue”);
 queue.Formatter = new XmlMessageFormatter(
 new string[] {“System.String”});

 Message message = queue.Receive();
 Console.WriteLine(message.Body);
 }
 }
}

 The Receive() message behaves synchronously and waits until a message is in the queue if there is none.

 Enumerating Messages
 Instead of reading message by message with the Receive() method, an enumerator can be used to walk
through all messages. The MessageQueue class implements the interface IEnumerable and thus can be
used with a foreach statement. Here, the messages are not removed from the queue, but you get just a
peek at the messages to get their content:

 MessageQueue queue = new MessageQueue(@”.\Private$\MyPrivateQueue”);
 queue.Formatter = new XmlMessageFormatter(
 new string[] {“System.String”});

 foreach (Message message in queue)
 {
 Console.WriteLine(message.Body);
 }

 Instead of using the IEnumerable interface, the class MessageEnumerator can be used.
 MessageEnumerator implements the interface IEnumerator , but has some more features. With the
 IEnumerable interface, the messages are not removed from the queue. The method RemoveCurrent()
of the MessageEnumerator removes the message from the current cursor position of the enumerator.

 In the example, the MessageQueue method GetMessageEnumerator() is used to access
the MessageEnumerator . The MoveNext() method takes a peek message by message with the
 MessageEnumerator . The MoveNext() method is overloaded to allow a time span as an argument. This
is one of the big advantages when using this enumerator. Here, the thread can wait until a message
arrives in the queue, but only for the specified time span. The Current property, which is defined by the
 IEnumerator interface, returns a reference to a message:

c45.indd 1568c45.indd 1568 2/19/08 5:34:17 PM2/19/08 5:34:17 PM

Chapter 45: Message Queuing

1569

 MessageQueue queue = new MessageQueue(@”.\Private$\MyPrivateQueue”);
 queue.Formatter = new XmlMessageFormatter(
 new string[] {“System.String”});

 using (MessageEnumerator messages = queue.GetMessageEnumerator())
 {
 while (messages.MoveNext(TimeSpan.FromMinutes(30)))
 {
 Message message = messages.Current;
 Console.WriteLine(message.Body);
 }
 }

 Asynchronous Read
 The Receive method of the MessageQueue class waits until a message from the queue can be read. To
avoid blocking the thread, a timeout can be specified in an overloaded version of the Receive method.
To read the message from the queue after the timeout, Receive() must be invoked again. Instead of
polling for messages, the asynchronous method BeginReceive() can be called. Before starting the
asynchronous read with BeginReceive() , the event ReceiveCompleted should be set. The
 ReceiveCompleted event requires a ReceiveCompletedEventHandler delegate that references the
method that is invoked when a message arrives in the queue and can be read. In the example,
the method MessageArrived is passed to the ReceivedCompletedEventHandler delegate:

 MessageQueue queue = new MessageQueue(@”.\Private$\MyPrivateQueue”);
 queue.Formatter = new XmlMessageFormatter(
 new string[] {“System.String”});

 queue.ReceiveCompleted +=
 new ReceiveComletedEventHandler(MessageArrived);
 queue.BeginReceive();
 // thread does not wait

 The handler method MessageArrived requires two parameters. The first parameter is the origin of the
event, the MessageQueue . The second parameter is of type ReceiveCompletedEventArgs that contains
the message and the asynchronous result. In the example, the method EndReceive() from the queue is
invoked to get the result of the asynchronous method, the message:

 public static void MessageArrived(object source,
 ReceiveCompletedEventArgs e)
 {
 MessageQueue queue = (MessageQueue)source;
 Message message = queue.EndReceive(e.AsyncResult);
 Console.WriteLine(message.Body);
 }

 If the message should not be removed from the queue, the BeginPeek() and EndPeek() methods can
be used with asynchronous I/O.

 Course Order Application
 To demonstrate the use of Message Queuing, in this section you create a sample solution to order
courses. The sample solution is made up of three assemblies:

 A component library (CourseOrder) that includes entity classes for the messages that are sent
and received in the queue

❑

c45.indd 1569c45.indd 1569 2/19/08 5:34:17 PM2/19/08 5:34:17 PM

1570

Part VI: Communication

 A WPF application (CourseOrderSender) that sends messages to the message queue

 A WPF application (CourseOrderReceiver) that receives messages from the message queue

 Course Order Class Library
 Both the sending and the receiving application need the order information. For this reason, the entity
classes are put into a separate assembly. The CourseOrder assembly includes three entity classes:
 CourseOrder , Course , and Customer . With the sample application, not all properties are implemented
as they would be in a real application, but just enough properties to show the concept.

 In the file Course.cs , the class Course is defined. This class has just one property for the title of the
course:

namespace Wrox.ProCSharp.Messaging
{
 public class Course
 {
 public string Title { get; set; }
 }
}

 The file Customer.cs includes the class Customer , which includes properties for the company and
contact names:

namespace Wrox.ProCSharp.Messaging
{
 public class Customer
 {
 public string Company { get; set; }
 public string Contact { get; set; }
 }
}

 The class CourseOrder in the file CourseOrder.cs maps a customer and a course inside an order and
defines whether the order is high priority:

namespace Wrox.ProCSharp.Messaging
{
 public class CourseOrder
 {
 public Customer Customer { get; set; }
 public Course Course { get; set; }
 }
}

 Course Order Message Sender
 The second part of the solution is a Windows application called CourseOrderSender . With this
application, course orders are sent to the message queue. The assemblies System.Messaging and
 CourseOrder must be referenced.

 The user interface of this application is shown in Figure 45 - 10 . The items of the combo box
 comboBoxCourses include several courses such as Advanced .NET Programming, Programming with
LINQ, and Distributed Application Development using WCF.

 When the Submit the Order button is clicked, the handler method buttonSubmit_Click() is invoked.
With this method, a CourseOrder object is created and filled with the content from the TextBox and
 ComboBox controls. Then a MessageQueue instance is created to open a public queue with a format

❑

❑

c45.indd 1570c45.indd 1570 2/19/08 5:34:18 PM2/19/08 5:34:18 PM

Chapter 45: Message Queuing

1571

name. The format name is used to send the message, even if the queue cannot be reached currently. You
can get the format name by using the Computer Management snap - in to read the ID of the message
queue. With the Send() method, the CourseOrder object is passed to serialize it with the default
 XmlMessageFormatter and to write it to the queue:

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 CourseOrder order = new CourseOrder();
 order.Course = new Course()
 {
 Title = comboBoxCourses.SelectedItem.ToString()
 };
 order.Customer = new Customer()
 {
 Company = textCompany.Text,
 Contact = textContact.Text
 };

 using (MessageQueue queue = new MessageQueue(
 “FormatName:Public=D99CE5F3-4282-4a97-93EE-E9558B15EB13”)
 {
 queue.Send(order, String.Format(“Course Order {{0}}”,
 order.Customer.Company);
 }
 MessageBox.Show(“Course Order submitted”, “Course Order”,
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, “Course Order Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

Figure 45-10

 Sending Priority and Recoverable Messages
 Messages can be prioritized by setting the Priority property of the Message class. If messages are specially
configured, a Message object must be created where the body of the message is passed in the constructor.

c45.indd 1571c45.indd 1571 2/19/08 5:34:18 PM2/19/08 5:34:18 PM

1572

Part VI: Communication

 In the example, the priority is set to MessagePriority.High if the checkBoxPriority check box is
checked. MessagePriority is an enumeration that allows you to set values from Lowest (0) to Highest
(7). The default value, Normal , has a priority value of 3.

 To make the message recoverable, the property Recoverable is set to true :

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 CourseOrder order = new CourseOrder();
 order.Course = new Course()
 {
 Title = comboBoxCourses.SelectionBoxItem.ToString()
 };
 order.Customer = new Customer()
 {
 Company = textCompany.Text,
 Contact = textContact.Text
 };

 using (MessageQueue queue = new MessageQueue(
 “FormatName:Public=D99CE5F3-4282-4a97-93EE-E9558B15EB13”))
 using (Message message = new Message(order))
 {
 if (checkBoxPriority.IsChecked == true)
 {
 message.Priority = MessagePriority.High;
 }
 message.Recoverable = true;
 queue.Send(message, String.Format(“Course Order {{{0}}}”,
 order.Customer.Company);
 }
 MessageBox.Show(“Course Order submitted”);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, “Course Order Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

 By running the application, you can add course orders to the message queue (see Figure 45 - 11).

Figure 45-11

c45.indd 1572c45.indd 1572 2/19/08 5:34:18 PM2/19/08 5:34:18 PM

Chapter 45: Message Queuing

1573

 Course Order Message Receiver
 The design view of the Course Order receiving application that reads messages from the queue is shown
in Figure 45 - 12 . This application displays labels of every order in the listOrders list box. When an order
is selected, the content of the order is displayed with the controls on the right side of the application.

Figure 45-12

(continued)

 In the constructor of the Window class CourseOrderReceiverWindow , the MessageQueue object is
created that references the same queue that was used with the sending application. For reading
messages, the XmlMessageFormatter with the types that are read is associated with the queue using
the Formatter property.

 To display the available messages in the list, a new thread is created that peeks at messages in the
background. The thread ’ s main method is PeekMessages .

 You can read more about threads in Chapter 19 , “ Threading and Synchronization. ”

using System;
using System.Messaging;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Threading;

namespace Wrox.ProCSharp.Messaging
{
 public partial class CourseOrderReceiverWindow : Window
 {
 private MessageQueue orderQueue;

 public CourseOrderReceiverWindow()
 {
 InitializeComponent();

 string queueName =
 “FormatName:Public=D99CE5F3-4282-4a97-93EE-E9558B15EB13”;

 orderQueue = new MessageQueue(queueName);

c45.indd 1573c45.indd 1573 2/19/08 5:34:19 PM2/19/08 5:34:19 PM

1574

Part VI: Communication

 System.Type[] types = new Type[]
 {
 typeof(CourseOrder),
 typeof(Customer),
 typeof(Course)
 }
 orderQueue.Formatter = new XmlMessageFormatter(types);

 // start the thread that fills the ListBox with orders
 Thread t1 = new Thread(PeekMessages);
 t1.IsBackground = true;
 t1.Start();
 }

 The thread ’ s main method, PeekMessages() , uses the enumerator of the message queue to display all
messages. Within the while loop, the messagesEnumerator checks to see if there is a new message in
the queue. If there is no message in the queue, the thread waits three hours for the next message to arrive
before it exits.

 To display every message from the queue in the list box, the thread cannot directly write the text to the
list box, but needs to forward the call to the list box ’ s creator thread. Because Windows Forms controls
are bound to a single thread, only the creator thread is allowed to access methods and properties. The
 Invoke() method forwards the request to the creator thread:

 private delegate void MethodInvoker(LabelIdMapping labelIdMapping);

 private void PeekMessages()
 {
 using (MessageEnumerator messagesEnumerator =
 orderQueue.GetMessageEnumerator2())
 {
 while (messagesEnumerator.MoveNext(TimeSpan.FromHours(3)))
 {
 LabelIdMapping labelId = new LabelIdMapping()
 {
 Id = messagesEnumerator.Current.Id,
 Label = messagesEnumerator.Current.Label
 };
 Dispatcher.Invoke(DispatcherPriority.Normal,
 new MethodInvoker(AddListItem), labelId);
 }
 }
 MessageBox.Show(“No orders in the last 3 hours. Exiting thread”,
 “Course Order Receiver”, MessageBoxButton.OK,
 MessageBoxImage.Information);
 }

 private void AddListItem(LabelIdMapping labelIdMapping)
 {
 listOrders.Items.Add(labelIdMapping);
 }

(continued)

c45.indd 1574c45.indd 1574 2/19/08 5:34:19 PM2/19/08 5:34:19 PM

Chapter 45: Message Queuing

1575

 The ListBox control contains elements of the LabelIdMapping class. This class is used to display the
labels of the messages in the list box, but to keep the ID of the message hidden. The ID of the message
can be used to read the message at a later time:

 private class LabelIdMapping
 {
 private string Label { get; set; }
 private string Id { get; set; }

 public override string ToString()
 {
 return label;
 }
 }

 The ListBox control has the SelectedIndexChanged event associated with the method listOrders_
SelectionChanged() . This method gets the LabelIdMapping object from the current selection, and
uses the ID to peek at the message once more with the PeekById() method. Then the content of the
message is displayed in the TextBox control. Because by default the priority of the message is not read,
the property MessageReadPropertyFilter must be set to receive the Priority :

 private void listOrders_SelectionChanged(object sender,
 RoutedEventArgs e)
 {
 LabelIdMapping labelId = listOrders.SelectedItem as LabelIdMapping;
 if (labelId == null)
 return;

 orderQueue.MessageReadPropertyFilter.Priority = true;
 Message message = orderQueue.PeekById(labelId.Id);

 CourseOrder order = message.Body as CourseOrder;
 if (order != null)
 {
 textCourse.Text = order.Course.Title;
 textCompany.Text = order.Customer.Company;
 textContact.Text = order.Customer.Contact;
 buttonProcessOrder.IsEnabled = true;

 if (message.Priority > MessagePriority.Normal)
 {
 labelPriority.Visibility = Visibility.Visible;
 }
 else
 {
 labelPriority.Visibility = Visibility.Hidden;
 }
 }
 else
 {
 MessageBox.Show(“The selected item is not a course order”,
 “Course Order Receiver”, MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }

c45.indd 1575c45.indd 1575 2/19/08 5:34:19 PM2/19/08 5:34:19 PM

1576

Part VI: Communication

 When the Process Order button is clicked, the handler method OnProcessOrder() is invoked. Here
again, the currently selected message from the list box is referenced, and the message is removed from
the queue by calling the method ReceiveById() :

 private void buttonProcessOrder_Click(object sender, RoutedEventArgs e)
 {
 LabelIdMapping labelId = listOrders.SelectedItem as LabelIdMapping;
 Message message = orderQueue.ReceiveById(labelId.Id);

 listOrders.Items.Remove(labelId);
 listOrders.SelectedIndex = -1;
 buttonProcessOrder.Enabled = false;
 textCompany.Text = string.Empty;
 textContact.Text = string.Empty;
 textCourse.Text = string.Empty;

 MessageBox.Show(“Course order processed”, “Course Order Receiver”,
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 }
}

 Figure 45 - 13 shows the running receiving application that lists three orders in the queue, and one order
is currently selected.

Figure 45-13

 Receiving Results
 With the current version of the sample application, the sending application never knows if the message is
ever dealt with. To get results from the receiver, acknowledgment queues or response queues can be used.

 Acknowledgment Queues
 With an acknowledgment queue, the sending application can get information about the status of the
message. With the acknowledgments, you can define if you would like to receive an answer, if
everything went OK, or if something went wrong. For example, acknowledgments can be sent when the
message reaches the destination queue or when the message is read, or if it didn ’ t reach the destination
queue or was not read before a timeout elapsed.

c45.indd 1576c45.indd 1576 2/19/08 5:34:19 PM2/19/08 5:34:19 PM

Chapter 45: Message Queuing

1577

 In the example, the AdministrationQueue of the Message class is set to the CourseOrderAck queue.
This queue must be created similar to a normal queue. This queue is just used the other way around: the
original sender receives acknowledgments. The AcknowledgeType property is set to
 AcknowledgeTypes.FullReceive to get an acknowledgment when the message is read:

 Message message = new Message(order);

 message.AdministrationQueue =
 new MessageQueue(@”.\CourseOrderAck”);
 message.AcknowledgeType = AcknowledgeTypes.FullReceive;

 queue.Send(message, String.Format(“Course Order {{0}}”,
 order.Customer.Company);

 string id = message.Id;

 The correlation ID is used to determine what acknowledgment message belongs to which message sent.
Every message that is sent has an ID, and the acknowledgment message that is sent in response to that
message holds the ID of the originating message as its correlation ID. The messages from the
acknowledgment queue can be read using MessageQueue.ReceiveByCorrelationId() to receive the
associated acknowledgment.

 Instead of using acknowledgments, the dead - letter queue can be used for messages that didn ’ t arrive at
their destination. By setting the UseDeadLetterQueue property of the Message class to true , the
message is copied to the dead - letter queue if it didn ’ t arrive at the target queue before the timeout was
reached.

 Timeouts can be set with the Message properties TimeToReachQueue and TimeToBeReceived .

 Response Queues
 If more information than an acknowledgment is needed from the receiving application, a response queue
can be used. A response queue is like a normal queue, but the original sender uses the queue as a
receiver and the original receiver uses the response queue as a sender.

 The sender must assign the response queue with the ResponseQueue property of the Message class. The
sample code here shows how the receiver uses the response queue to return a response message. With
the response message responseMessage, the property CorrelationId is set to the ID of the original
message. This way the client application knows to which message the answer belongs. This is similar to
acknowledgment queues. The response message is sent with the Send() method of the MessageQueue
object that is returned from the ResponseQueue property:

 public void ReceiveMessage(Message message)
 {
 Message responseMessage = new Message(“response”);
 responseMessage.CorrelationId = message.Id;

 message.ReesponseQueue.Send(responseMessage);
 }

 Transactional Queues
 With recoverable messages, it is not guaranteed that the messages will arrive in order and just once.
Failures on the network can cause messages to arrive multiple times; this happens also if both the sender
and receiver have multiple network protocols installed that are used by Message Queuing.

c45.indd 1577c45.indd 1577 2/19/08 5:34:20 PM2/19/08 5:34:20 PM

1578

Part VI: Communication

 Transactional queues can be used when these guarantees are required:

 Messages arrive in the same order they have been sent.

 Messages arrive only once.

 With transactional queues, a single transaction doesn ’ t span the sending and receiving of messages.
The nature of Message Queuing is that the time between send and receive can be quite long. In contrast,
transactions should be short. With Message Queuing, the first transaction is used to send the message
into the queue, the second transaction forwards the message on the network, and the third transaction is
used to receive the messages.

 The next example shows how to create a transactional message queue and how to send messages using a
transaction.

 A transactional message queue is created by passing true with the second parameter of the
 MessageQueue.Create() method.

 If you would like to write multiple messages to a queue within a single transaction, you have to
instantiate a MessageQueueTransaction object and invoke the Begin() method. When you are
finished with sending all messages that belong to the transaction, the Commit() method of the
 MessageQueueTransaction object must be called. To cancel a transaction (and have no messages
written to the queue), the Abort() method must be called, as you can see within the catch block:

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 if (!MessageQueue.Exists(@”.\MyTransactionalQueue”))
 {
 MessageQueue.Create(@”.\MyTransactionalQueue”, true);
 }
 MessageQueue queue = new MessageQueue(@”.\MyTransactionalQueue”);
 MessageQueueTransaction transaction =
 new MessageQueueTransaction();
 try
 {
 transaction.Begin();
 queue.Send(“a”, transaction);
 queue.Send(“b”, transaction);
 queue.Send(“c”, transaction);
 transaction.Commit();
 }
 catch
 {
 transaction.Abort();
 }
 }
 }
}

❑

❑

c45.indd 1578c45.indd 1578 2/19/08 5:34:20 PM2/19/08 5:34:20 PM

Chapter 45: Message Queuing

1579

 Message Queuing with WCF
 Chapter 42 covered the architecture and core features of Windows Communication Foundation. With
WCF, you can configure a Message Queuing binding that makes use of the Windows Message Queuing
architecture. With this, WCF offers an abstraction layer to Message Queuing. Figure 45 - 14 explains
the architecture in a simple picture. The client application invokes a method of a WCF proxy to send a
message to the queue. The message is created by the proxy. For the client developer, there ’ s no need to
know that a message is sent to the queue. The client developer just invokes a method of the proxy. The
proxy abstracts dealing with the classes from the System.Messaging namespace and sends a message
to the queue. The MSMQ listener channel on the service side reads messages from the queue, converts
them to method calls, and invokes the method calls with the service.

Figure 45-14

Sender

Proxy
MSMQ
Channel
Listener

Service
(Receiver)

 Next, the Course Ordering application gets converted to make use of Message Queuing from a WCF
viewpoint. With this solution, the three projects done earlier are modified, and one more assembly is
added that includes the contract of the WCF service:

 The component library (CourseOrder) includes entity classes for the messages that are sent
across the wire. These entity classes are modified to fulfill the data contract for serialization with
WCF.

 A new library is added (CourseOrderService) that defines the contract offered by the service.

 The WPF sender application (CourseOrderSender) is modified to not send messages but
instead invoke methods of a WCF proxy.

 The WPF receiving application (CourseOrderReceiver) is modified to make use of the WCF
service that implements the contract.

 Entity Classes with a Data Contract
 In the library CourseOrder, the classes Course , Customer , and CourseOrder are modified to apply the
data contract with the attributes [DataContract] and [DataMember] . For using these attributes, you
have to reference the assembly System.Runtime.Serialization and import the namespace System
.Runtime.Serialization :

using System.Runtime.Serialization;

namespace Wrox.ProCSharp.Messaging

❑

❑

❑

❑

(continued)

c45.indd 1579c45.indd 1579 2/19/08 5:34:20 PM2/19/08 5:34:20 PM

1580

Part VI: Communication

{
 [DataContract]
 public class Course
 {
 [DataMember]
 public string Title { get; set; }
 }
}

 The Customer class requires the data contract attributes as well:

 [DataContract]
 public class Customer
 {
 [DataMember]
 public string Company { get; set; }

 [DataMember]
 public string Contact { get; set; }
 }

 With the class CourseOrder, not only the data contract attributes are added, but an override of the
 ToString() method as well to have a default string representation of these objects:

 [DataContract]
 public class CourseOrder
 {
 [DataMember]
 public Customer Customer { get; set; }

 [DataMember]
 public Course Course { get; set; }

 public override string ToString()
 {
 return String.Format(“Course Order {{{0}}}”, Customer.Company);
 }
 }

 WCF Service Contract
 For offering the service with a WCF service contract, add a WCF service library with the name
 CourseOrderServiceContract . The contract is defined by the interface ICourseOrderService .
This contract needs the attribute [ServiceContract] . If you want to restrict using this interface only
with message queues, you can apply the [DeliveryRequirements] attribute and assign the
property QueuedDeliveryRequirements . Possible values of the enumeration
 QueuedDeliveryRequirementsMode are Required , Allowed , and NotAllowed . The method
 AddCourseOrder() is offered by the service. Methods used by Message Queuing can only have input
parameters. Because the sender and receiver can run independent of each other, the sender cannot expect
an immediate result. With the attribute [OperationContract] , the IsOneWay property is set. The caller
of this operation does not wait for an answer from the service:

using System.ServiceModel;

namespace Wrox.ProCSharp.Messaging

(continued)

c45.indd 1580c45.indd 1580 2/19/08 5:34:21 PM2/19/08 5:34:21 PM

Chapter 45: Message Queuing

1581

{
 [ServiceContract]
 [DeliveryRequirements(
 QueuedDeliveryRequirements=QueuedDeliveryRequirementsMode.Required)]
 public interface ICourseOrderService
 {
 [OperationContract(IsOneWay = true)]
 void AddCourseOrder(CourseOrder courseOrder);
 }
}

 You can use acknowledgment and response queues to get answers to the client.

 WCF Message Receiver Application
 The WPF application CourseOrderReceiver is now modified to implement the WCF service and
receive the messages. References to the assembly System.ServiceModel and the WCF contract
assembly CourseOrderServiceContract are required.

 The class CourseOrderService implements the interface ICourseOrderService . With the
implementation, the event CourseOrderAdded is fired. The WPF application will register to this event to
receive CourseOrder objects.

 Because WPF controls are bound to a single thread, the property UseSynchronizationContext is set
with the [ServiceBehavior] attribute. This is a feature of the WCF runtime to pass the method call
invocation to the thread that is defined by the synchronization context of the WPF application:

using System.ServiceModel;

namespace Wrox.ProCSharp.Messaging
{
 public delegate void CourseOrderInfoHandler(CourseOrder courseOrder);

 [ServiceBehavior(UseSynchronizationContext=true)]
 public class CourseOrderService : ICourseOrderService
 {
 public static event CourseOrderInfoHandler CourseOrderAdded;

 public void AddCourseOrder(CourseOrder courseOrder)
 {
 if (CourseOrderAdded != null)
 CourseOrderAdded(courseOrder);
 }
 }
}

 Chapter 19 , “ Threading and Synchronization, ” explains the synchronization context.

 With the constructor of the class CourseReceiverWindow , a ServiceHost object is instantiated and
opened to start the listener. The binding of the listener will be done in the application configuration file.

 In the constructor, the event CourseOrderAdded of the CourseOrderService is subscribed. Because
the only thing that happens here is adding the received CourseOrder object to a collection, a simple
Lambda expression is used.

 Lambda expressions are explained in Chapter 7 , “ Delegates and Events. ”

c45.indd 1581c45.indd 1581 2/19/08 5:34:21 PM2/19/08 5:34:21 PM

1582

Part VI: Communication

 The collection class that is used here is ObservableCollection < T > from the namespace
System.Collections.ObjectModel . This collection class implements the interface
 INotifyCollectionChanged , and thus the WPF controls bound to the collection are informed about
dynamic changes to the list:

using System;
using System.Collections.ObjectModel;
using System.ServiceModel;
using System.Windows;

namespace Wrox.ProCSharp.Messaging
{
 public partial class CourseOrderReceiverWindow : Window
 {
 private ObservableCollection < CourseOrder > courseOrders =
 new ObservableCollection < CourseOrder > ();

 public CourseOrderReceiverWindow()
 {
 InitializeComponent();

 CourseOrderService.CourseOrderAdded +=
 courseOrder = > courseOrders.Add(courseOrder);

 ServiceHost host = new ServiceHost(typeof(CourseOrderService));
 try
 {
 host.Open();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 this.DataContext = courseOrders;
 }

 The WPF elements in the XAML code now make use of data binding. The ListBox is bound to the data
context, and the single - item controls are bound to properties of the current item of the data context:

 < ListBox Grid.Row=”1” x:Name=”listOrders” ItemsSource=”{Binding}”
 IsSynchronizedWithCurrentItem=”true” / >

 < !-- ... -- >

 < TextBox x:Name=”textCourse” Grid.Row=”0” Grid.Column=”1”
 Text=”{Binding Path=Course.Title}” / >
 < TextBox x:Name=”textCompany” Grid.Row=”1” Grid.Column=”1”
 Text=”{Binding Path=Customer.Company}” / >
 < TextBox x:Name=”textContact” Grid.Row=”2” Grid.Column=”1”
 Text=”{Binding Path=Customer.Contact}” / >

 The application configuration file defines the netMsmqBinding . For reliable messaging, transactional
queues are required. To receive and send messages to non - transactional queues, the exactlyOnce
property must be set to false .

c45.indd 1582c45.indd 1582 2/19/08 5:34:21 PM2/19/08 5:34:21 PM

Chapter 45: Message Queuing

1583

 netMsmqBinding is the binding to be used if both the receiver and the sender application are WCF
applications. If one of these applications is using the System.Messaging API to send or receive
messages, or is an older COM application, you can use the msmqIntegrationBinding .

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < bindings >
 < netMsmqBinding >
 < binding name=”NonTransactionalQueueBinding” exactlyOnce=”false” >
 < security mode=”None” / >
 < /binding >
 < /netMsmqBinding >
 < /bindings >
 < services >
 < service name=”Wrox.ProCSharp.Messaging.CourseOrderService” >
 < endpoint address=”net.msmq://localhost/private/courseorder”
 binding=”netMsmqBinding”
 bindingConfiguration=”NonTransactionalQueueBinding”
 name=”OrderQueueEP”
 contract=”Wrox.ProCSharp.Messaging.ICourseOrderService” / >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 The Click event handler of the buttonProcessOrder button removes the selected course order
from the collection class:

 private void buttonProcessOrder_Click(object sender, RoutedEventArgs e)
 {
 CourseOrder courseOrder = listOrders.SelectedItem as CourseOrder;
 courseOrders.Remove(courseOrder);
 listOrders.SelectedIndex = -1;
 buttonProcessOrder.IsEnabled = false;

 MessageBox.Show(“Course order processed”, “Course Order Receiver”,
 MessageBoxButton.OK, MessageBoxImage.Information);

 }

 WCF Message Sender Application
 The sending application is modified to make use of a WCF proxy class. For the contract of the
service, the assembly CourseOrderServiceContract is referenced, and the assembly
System.ServiceModel is required for use of the WCF classes.

 In the Click event handler of the buttonSubmit control, the ChannelFactory class returns a proxy.
The proxy sends a message to the queue by invoking the method AddCourseOrder() :

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 CourseOrder order = new CourseOrder();
 order.Course = new Course()
 {

(continued)

c45.indd 1583c45.indd 1583 2/19/08 5:34:22 PM2/19/08 5:34:22 PM

1584

Part VI: Communication

 Title = comboCourses.SelectionBoxItem.ToString()
 };
 order.Customer = new Customer()
 {
 Company = textCompany.Text,
 Contact = textContact.Text
 };

 ChannelFactory < ICourseOrderService > factory =
 new ChannelFactory < ICourseOrderService > (“queueEndpoint”);
 ICourseOrderService proxy = factory.CreateChannel();
 proxy.AddCourseOrder(order);
 factory.Close();

 MessageBox.Show(“Course order submitted”, “Course Order”,
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, “Course Order Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

 The application configuration file defines the client part of the WCF connection. Again, the
 netMsmqBinding is used:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < bindings >
 < netMsmqBinding >
 < binding name=”nonTransactionalQueueBinding”
 exactlyOnce=”false” >
 < security mode=”None” / >
 < /binding >
 < /netMsmqBinding >
 < /bindings >
 < client >
 < endpoint address=”net.msmq://localhost/private/courseorder”
 binding=”netMsmqBinding”
 bindingConfiguration=”nonTransactionalQueueBinding”
 contract=”Wrox.ProCSharp.Messaging.ICourseOrderService”
 name=”queueEndpoint” / >
 < /client >
 < /system.serviceModel >
 < /configuration >

 When you start the application now, it works in a similar way as before. There is no longer a need to use
classes of the System.Messaging namespace to send and receive messages. Instead, you write the
application in a similar way as using TCP or HTTP channels with WCF.

 However, to create message queues and to purge messages, you still need the MessageQueue class. WCF
is only an abstraction to send and receive messages.

(continued)

c45.indd 1584c45.indd 1584 2/19/08 5:34:22 PM2/19/08 5:34:22 PM

Chapter 45: Message Queuing

1585

 If you need to have a System.Messaging application to communicate with a WCF application, you
can do this by using the msmqIntegrationBinding instead of the netMsmqBinding . This binding
uses the message format that is used with COM and System.Messaging .

 Message Queue Installation
 Message queues can be created with the MessageQueue.Create() method. However, the user running
an application usually doesn ’ t have the administrative privileges that are required to create message
queues.

 Usually, message queues are created with an installation program. For installation programs, the class
 MessageQueueInstaller can be used. If an installer class is part of an application, the command - line
utility installutil.exe (or a Windows Installation Package) invokes the Install() method of the
installer.

 Visual Studio has a special support for using the MessageQueueInstaller with Windows Forms
applications. If a MessageQueue component is dropped from the toolbox onto the form, the smart tag of
the component allows you to add an installer with the menu entry Add Installer. The
 MessageQueueInstaller object can be configured with the properties editor to define transactional
queues, journal queues, the type of the formatter, the base priority, and so on.

 Installers are discussed in Chapter 16 , “ Deployment. ”

 Summary
 In this chapter, you ’ ve seen how Message Queuing can be used. Message Queuing is an important
technology that offers not only asynchronous, but also disconnected communication. The sender and
receiver can be running at different times, which makes Message Queuing an option for smart clients
and also useful to distribute the load on the server over time.

 The most important classes with Message Queuing are Message and MessageQueue . The
 MessageQueue class allows sending, receiving, and peeking at messages, and the Message class defines
the content that is sent.

 WCF offers an abstraction to message queuing. You can use the concepts offered by WCF to send
messages by calling methods of a proxy and to receive messages by implementing a service.

 The next chapter dives into Directory Services, how and when to use these hierarchical data stores, and
different ways to connect to this service.

c45.indd 1585c45.indd 1585 2/19/08 5:34:22 PM2/19/08 5:34:22 PM

c45.indd 1586c45.indd 1586 2/19/08 5:34:23 PM2/19/08 5:34:23 PM

 Directory Services

 Microsoft ’ s Active Directory is a directory service that provides a central, hierarchical store for user
information, network resources, services, and so on. The information in this directory service can
be extended to also store custom data that is of interest for the enterprise. For example, Microsoft
Exchange Server and Microsoft Dynamics use Active Directory intensively to store public folders
and other items.

 Before the release of Active Directory, Exchange Server used its own private store for its objects.
It was necessary for a system administrator to configure two user IDs for a single person: a user
account in the Windows NT domain to enable a logon and a user in Exchange Directory. This was
necessary because of the additional information required by users (such as email addresses, phone
numbers, and so on), and the user information for the NT domain was not extensible to add the
required information. Now, the system administrator has to configure just a single user for a
person in Active Directory; the information for a user object can be extended so that it fits the
requirements of Exchange Server. You can also extend this information. For example, you can
extend user information in Active Directory with a skills list. Then it would easily be possible to
track down a C# developer by searching for the required C# skill.

 This chapter shows how you can use the .NET Framework to access and manipulate the
data in a directory service using classes from the System.DirectoryServices , System
.DirectoryServices.AccountManagement , and System.DirectoryServices.Protocols
namespaces.

 This chapter uses Windows Server 2008 with Active Directory configured. You can also use
 Windows 2003 Server or other directory services.

 This chapter covers the following:

 The architecture of Active Directory, including features and basic concepts

 Some of the tools available for administration of Active Directory and their benefit to
programming

 How to read and modify data in Active Directory

 Searching for objects in Active Directory

 Account management

 Accessing a DSML Web service to search for objects

❑

❑

❑

❑

❑

❑

c46.indd 1587c46.indd 1587 2/19/08 5:34:33 PM2/19/08 5:34:33 PM

Part VI: Communication

1588

 After discussing the architecture and how to program Active Directory, you create a Windows
application in which you can specify properties and a filter to search for user objects. Similar to other
chapters, you can also download the code for the examples in this chapter from the Wrox Web site at
 www.wrox.com .

 The Architecture of Active Directory
 Before starting to program Active Directory, you need to know how it works, what it is used for, and
what data can be stored there.

 Features
 The features of Active Directory can be summarized as follows:

 The data in Active Directory is grouped hierarchically . Objects can be stored inside other
container objects. Instead of having a single, large list of users, you can group users inside
organizational units. An organizational unit can contain other organizational units, so you can
build a tree.

 Active Directory uses a multimaster replication . With Active Directory, every domain controller
(DC) is a master. With multiple masters, updates can be applied to any DC. This model is much
more scalable than a single - master model because updates can be made to different servers
concurrently. The disadvantage of this model is more complex replication, which is discussed
later in this chapter.

 The replication topology is flexible, to support replications across slow links in WANs. How often
data should be replicated is configurable by the domain administrators.

 Active Directory supports open standards. The Lightweight Directory Access Protocol (LDAP) is an
Internet standard that can be used to access many different directory services, including the data
in Active Directory. With LDAP, a programming interface, LDAP API, is also defined. The LDAP
API can be used to access Active Directory with the C language. Another standard used within
Active Directory is Kerberos , which is used for authentication. The Windows Server Kerberos
service can also be used to authenticate UNIX clients.

 Active Directory Service Interface (ADSI) defines COM interfaces to access directory services.
ADSI makes it possible to access all features of Active Directory. Classes from the namespace
 System.DirectoryServices wrap ADSI COM objects to make directory services accessible
from .NET applications.

 Directory Service Markup Language (DSML) is another standard to access directory services.
DSML is a platform - independent approach and is supported by the OASIS group.

 With Active Directory, a fine - grained security is available. Every object stored in Active
Directory can have an associated access - control list that defines who can do what with
that object.

 The objects in the directory are strongly typed , which means that the type of an object is exactly defined;
no attributes that are not specified may be added to an object. In the schema , the object types as well as
the parts of an object (attributes) are defined. Attributes can be mandatory or optional.

 Active Directory Concepts
 Before programming Active Directory, you need to know some basic terms and definitions.

❑

❑

❑

❑

❑

❑

❑

c46.indd 1588c46.indd 1588 2/19/08 5:34:34 PM2/19/08 5:34:34 PM

Chapter 46: Directory Services

1589

 Objects
 Active Directory stores objects. An object refers to something concrete such as a user, a printer, or a
network share. Objects have mandatory and optional attributes that describe them. Some examples of
the attributes of a user object are the first name, last name, email address, phone number, and so on.

 Figure 46 - 1 shows a container object called Wrox Press that contains some other objects: two user
objects, a contact object, a printer object, and a user group object.

Wrox
Press

Katie Mohr Adaobi
Obi Tulton

Contact Printer Editors

 Figure 46 - 1

 Schema
 Every object is an instance of a class defined in the schema . The schema defines the types and is itself stored
in objects in Active Directory. You must differentiate between classSchema and attributeSchema :
 classSchema defines the types of objects and details what mandatory and optional attributes an object
has. attributeSchema defines what an attribute looks like and the allowed syntax for a specific
attribute.

 You can define custom types and attributes and add these to the schema. Be aware, however, that a new
schema type cannot be removed from Active Directory. You can mark it as inactive so that new objects
cannot be created, but there can be existing objects of that type, so it is not possible to remove classes or
attributes defined in the schema.

 The user group Administrator doesn ’ t have enough rights to create new schema entries; the group
Enterprise Admins is needed for that.

 Configuration
 In addition to objects and class definitions stored as objects, the configuration of Active Directory itself is
stored in Active Directory. It stores the information about all sites, such as the replication interval, which
is set up by the system administrator. Because the configuration itself is stored in Active Directory, you
can access the configuration information like all other objects in Active Directory.

 The Active Directory Domain
 A domain is a security boundary of a Windows network. In the Active Directory domain, the objects are
stored in a hierarchical order. Active Directory itself is made up of one or more domains. Figure 46 - 2
shows the hierarchical order of objects in a domain; the domain is represented by a triangle. Container
objects such as Users , Computers , and Books can store other objects. Each oval in the picture represents
an object, with the lines between the objects representing parent - child relationships. For example, Books
is the parent of .NET and Java , and Pro C# , Beg C# , and ASP.NET are child objects of the .NET object.

c46.indd 1589c46.indd 1589 2/19/08 5:34:35 PM2/19/08 5:34:35 PM

Part VI: Communication

1590

 Domain Controller
 A single domain can have multiple domain controllers, each of which stores all of the objects in the
domain. There is no master server, and all DCs are treated equally; you have a multimaster model.
The objects are replicated across the servers inside the domain.

 Site
 A site is a location in the network that holds at least one DC. If you have multiple locations in the
enterprise, which are connected with slow network links, you can use multiple sites for a single
domain. For backup or scalability reasons, each site can have one or more DCs running. Replication
between servers in a site can happen at shorter intervals due to the faster network connection.
Replication is configured to occur at larger time intervals between servers across sites, depending
on the speed of the network. Of course, replication intervals can be configured by the domain
administrator.

 Domain Tree
 Multiple domains can be connected by trust relationships. These domains share a common schema ,
a common configuration , and a global catalog (more on global catalogs shortly). A common schema and
a common configuration imply that this data is replicated across domains. Domain trees share the same
class and attribute schema. The objects themselves are not replicated across domains.

 Domains connected in such a way form a domain tree. Domains in a domain tree have a contiguous,
hierarchical namespace. This means that the domain name of the child domain is the name of that child
domain appended to the name of the parent domain. Between domains, trusts using the Kerberos
protocol are established.

 For example, you have the root domain wrox.com , which is the parent domain of the child domains
 india.wrox.com and uk.wrox.com . A trust is set up between the parent and the child domains, so that
accounts from one domain can be authenticated by another domain.

com

wrox

Users Books

.NET

Beg C#Pro C#

Java

ASP.NET

Computers

 Figure 46 - 2

c46.indd 1590c46.indd 1590 2/19/08 5:34:35 PM2/19/08 5:34:35 PM

Chapter 46: Directory Services

1591

 Forest
 Multiple domain trees that are connected by using a common schema, a common configuration, and a
global catalog without a contiguous namespace are called a forest . A forest is a set of domain trees; it can
be used if the company has a subcompany for which a different domain name should be used. Here is
one example: wrox.com should be relatively independent of the domain wiley.com , but it should be
possible to have a common management, and be possible for users from wrox.com to access resources
from the wiley.com domain and vice versa. With a forest, you can have trusts between multiple
domain trees.

 Global Catalog
 A search for an object can span multiple domains. If you look for a specific user object with
some attributes, you must search every domain. Starting with wrox.com , the search continues to
 uk.wrox.com and india.wrox.com ; across slow links such a search could take a while.

 To make searches faster, all objects are copied to the global catalog (GC). The GC is replicated in every
domain of a forest. There is at least one server in every domain holding a GC. For performance and
scalability reasons, you can have more than one GC server in a domain. Using a GC, a search through all
the objects can happen on a single server.

 The GC is a read - only cache of all the objects that can be used only for searches; the domain controllers
must be used to do updates.

 Not all attributes of an object are stored in the GC. You can define whether an attribute should be stored
with an object. The decision whether to store an attribute in the GC depends on how the attribute is
used. If the attribute is frequently used in searches, putting it into the GC makes the search faster.
A picture of a user isn ’ t useful in the GC because you would never search for a picture. Conversely, a
phone number would be a useful addition to the store. You can also define that an attribute should be
indexed so that a query for it is faster.

 Replication
 As a programmer, you are unlikely ever to configure replication, but because it affects the data you store
in Active Directory, you need to know how it works. Active Directory uses a multimaster server
architecture. Updates happen to every domain controller in the domain. The replication latency defines
how long it takes until an update starts:

 The configurable change notification happens, by default, every 5 minutes inside a site if some
attributes change. The DC where a change occurred informs one server after the other with
30 - second intervals, so the fourth DC can get the change notification after 7 minutes. The default
change notification across sites is set to 180 minutes. Intra - and intersite replication can each be
configured to other values.

 If no changes have occurred, the scheduled replication occurs every 60 minutes inside a site. This
is to ensure that a change notification wasn ’ t missed.

 For security - sensitive information, such as account lockout, immediate notification can occur.

 With a replication, only the changes are copied to the DCs. With every change of an attribute, a version
number (update sequence number or USN) and a time stamp are recorded. These are used to help
resolve conflicts if updates happened to the same attribute on different servers.

 Here ’ s an example. The mobile phone attribute of the user John Doe has the USN number 47. This value
is already replicated to all DCs. One system administrator changes the phone number. The change occurs
on the server DC1; the new USN of this attribute on the server DC1 is now 48, whereas the other DCs
still have the USN 47. For someone still reading the attribute, the old value can be read until the
replication to all domain controllers has occurred.

❑

❑

❑

c46.indd 1591c46.indd 1591 2/19/08 5:34:36 PM2/19/08 5:34:36 PM

Part VI: Communication

1592

 The rare case can happen that another administrator changes the phone number attribute, and a different
DC is selected because this administrator received a faster response from the server DC2. The USN of
this attribute on the server DC2 is also changed to 48.

 At the notification intervals, notification happens because the USN for the attribute changed, and the last
time replication occurred was with a USN value of 47. The replication mechanism now detects that the
servers DC1 and DC2 both have a USN of 48 for the phone number attribute. Which server is the winner
is not really important, but one server must definitely win. To resolve this conflict, the time stamp of the
change is used. Because the change happened later on DC2, the value stored in the DC2 domain
controller is replicated.

 When reading objects, you must be aware that the data is not necessarily current.
The currency of the data depends on replication latencies. When updating objects,
another user can still read some old values after the update. It ’ s also possible that
different updates can happen at the same time.

 Characteristics of Active Directory Data
 Active Directory doesn ’ t replace a relational database or the registry, so what kind of data would you
store in it?

 With Active Directory you get hierarchical data . You can have containers that store further
containers and objects, too. Containers themselves are objects as well.

 The data should be used for read - mostly . Because of replication occurring at certain time
intervals, you cannot be sure that you will read up - to - date data. You must be aware that
in applications, the information you read is possibly not the current up - to - date information.

 Data should be of global interest to the enterprise, because adding a new data type to the
schema replicates it to all the servers in the enterprise. For data types of interest to only a
small number of users, the domain enterprise administrator normally wouldn ’ t install
new schema types.

 The data stored should be of reasonable size because of replication issues. It is fine to store
data with a size of 100K in the directory, if the data changes only once a week. However, if
the data changes every hour, data of this size is too large. Always think about replicating the
data to different servers: where the data gets transferred to and at what intervals. If you have
larger data, it ’ s possible to put a link into Active Directory and store the data itself in a
different place.

 To summarize, the data you store in Active Directory should be hierarchically organized, of reasonable
size, and of importance to the enterprise.

 Schema
 Active Directory objects are strongly typed. The schema defines the types of the objects, mandatory and
optional attributes, and the syntax and constraints of these attributes. As mentioned earlier, in the
schema, it is necessary to differentiate between class - schema and attribute - schema objects. A class is a
collection of attributes. With the classes, single inheritance is supported. As you can see in Figure 46 - 3 ,
the user class derives from the organizationalPerson class, organizationalPerson is a subclass of

❑

❑

❑

❑

c46.indd 1592c46.indd 1592 2/19/08 5:34:36 PM2/19/08 5:34:36 PM

Chapter 46: Directory Services

1593

 person , and the base class is top . The classSchema that defines a class describes the attributes with the
 systemMayContain attribute.

 Figure 46 - 3 shows only a few of all the systemMayContain values. Using the ADSI Edit tool, you can
easily see all the values; you look at this tool in the next section. In the root class top you can see that
every object can have common name (cn), displayName , objectGUID , whenChanged , and
 whenCreated attributes. The person class derives from top . A person object also has a userPassword
and a telephoneNumber . organizationalPerson is derived from person . In addition to the
attributes of person , it has a manager , department , and company , and a user has extra attributes
needed to log on to a system.

top

cn
displayName
distinguishedName
objectGUID
whenChanged
whenCreated
mayContain
mustContain

organizationalPerson

title
street
postalAddress
mobile
manager
givenName
employeeID
department
company
assistant

user

userCertificate
userWorkstations
userSharedfolder
logonWorkstation
logonHours
lastLogon
homeDirectory
accountExpires

person

userPassword
telephoneNumber
sn
seeAlso

 Figure 46 - 3

c46.indd 1593c46.indd 1593 2/19/08 5:34:36 PM2/19/08 5:34:36 PM

Part VI: Communication

1594

 Administration Tools for Active Directory
 Looking into some of the Active Directory administration tools can help to give you an idea of Active
Directory, what data is in there, and what can be done programmatically.

 The system administrator has many tools to enter new data, update data, and configure Active
Directory:

 The Active Directory Users and Computers MMC snap - in is used to enter new users and update
user data.

 The Active Directory Sites and Services MMC snap - in is used to configure sites in a domain and
for replication between these sites.

 The Active Directory Domains and Trusts MMC snap - in can be used to build up a trust
relationship between domains in a tree.

 ADSI Edit is the editor for Active Directory, where every object can be viewed and edited.

 To run these tools on Windows Vista or Windows XP, you need to install Windows Server 2003 Admin
Pack. ADSI Edit is available with the Windows Server 2003 Support tools.

 The following sections get into the functionality of the tools Active Directory Users and Computers and
ADSI Edit because these tools are important in regard to creating applications using Active Directory.

 Active Directory Users and Computers
 The Active Directory Users and Computers snap - in is the tool that system administrators use to manage
users. Select Start Programs Administrative Tools Active Directory Users and Computers to start
this program (see Figure 46 - 4).

❑

❑

❑

❑

 Figure 46 - 4

c46.indd 1594c46.indd 1594 2/19/08 5:34:37 PM2/19/08 5:34:37 PM

Chapter 46: Directory Services

1595

 With this tool you can add new users, groups, contacts, organizational units, printers, shared folders, or
computers, and modify existing ones. Figure 46 - 5 shows the attributes that can be entered for a user
object: office, phone numbers, email addresses, Web pages, organization information, addresses, groups,
and so on.

 Figure 46 - 5

 Active Directory Users and Computers can also be used in big enterprises with millions of objects. It ’ s
not necessary to look through a list with a thousand objects, because you can select a custom filter to
display only some of the objects. You can also perform an LDAP query to search for the objects in the
enterprise. You explore these possibilities later in this chapter.

 ADSI Edit
 ADSI Edit is the editor of Active Directory. This tool is not installed automatically; on the Windows
Server 2003 CD, you can find a directory named Support Tools. When the support tools are installed, you
can access ADSI Edit by invoking the program adsiedit.msc .

 ADSI Edit offers greater control than the Active Directory Users and Computers tool (see Figure 46 - 6);
with ADSI Edit, everything can be configured, and you can also look at the schema and the
configuration. This tool is not very intuitive to use, however, and it is very easy to enter wrong data.

 By opening the properties window of an object, you can view and change every attribute of an object in
Active Directory. With this tool, you can see mandatory and optional attributes, with their types and
values (see Figure 46 - 7).

c46.indd 1595c46.indd 1595 2/19/08 5:34:37 PM2/19/08 5:34:37 PM

Part VI: Communication

1596

 Programming Active Directory
 To develop programs for Active Directory, you can use the classes from either the
 System.DirectoryServices or the System.DirectoryServices.Protocols namespaces.
In the namespace System.DirectoryServices , you can find classes that wrap Active Directory
Service Interfaces (ADSI) COM objects to access Active Directory.

 ADSI is a programmatic interface to directory services. It defines some COM interfaces that are
implemented by ADSI providers. This means that the client can use different directory services with the

 Figure 46 - 6

 Figure 46 - 7

c46.indd 1596c46.indd 1596 2/19/08 5:34:37 PM2/19/08 5:34:37 PM

Chapter 46: Directory Services

1597

same programmatic interfaces. The .NET Framework classes in the System.DirectoryServices
namespace make use of ADSI.

 Figure 46 - 8 shows some ADSI Providers (LDAP, IIS, and NDS) that implement COM interfaces such as
 IADs and IUnknown . The assembly System.DirectoryServices makes use of the ADSI providers.

LDAP
Provider

IUnknown

Active Directory

IADs

IIS
Provider

IUnknown

IIS

IADs

NDS
Provider

IUnknown

Novell

IADs

Assembly
System Directory Services

 Figure 46 - 8

 Classes from the namespace System.DirectoryServices.Protocols make use of Directory Services
Markup Language (DSML) Services for Windows. With DSML, standardized Web service interfaces are
defined by the OASIS group (www.oasis-open.org/committees/dsml).

 To use the classes from the System.DirectoryServices namespace, you need to reference the
 System.DirectoryServices assembly. With the classes in this assembly, you can query objects, view
and update properties, search for objects, and move objects to other container objects. In the code
segments that follow later in this section, you use a simple C# console application that demonstrates the
functionality of the classes in the System.DirectoryServices namespace.

 This section covers the following:

 Classes in the System.DirectoryServices namespace

 The process of connecting to Active Directory (binding)

 Getting directory entries, creating new objects, and updating existing entries

 Searching Active Directory

❑

❑

❑

❑

c46.indd 1597c46.indd 1597 2/19/08 5:34:38 PM2/19/08 5:34:38 PM

Part VI: Communication

1598

 Classes in System.DirectoryServices
 The following table shows the major classes in the System.DirectoryServices namespace.

 Class Description

 DirectoryEntry This is the main class of the System.DirectoryServices namespace. An
object of this class represents an object in the Active Directory store. This
class is used to bind to an object and to view and update properties. The
properties of the object are represented in a PropertyCollection . Every
item in the PropertyCollection has a PropertyValueCollection .

 DirectoryEntries DirectoryEntries is a collection of DirectoryEntry objects. The
 Children property of a DirectoryEntry object returns a list of objects in
a DirectoryEntries collection.

 DirectorySearcher This is the main class used for searching for objects with specific attributes.
To define the search, the SortOption class and the enumerations
 SearchScope , SortDirection , and ReferralChasingOption can be
used. The search results in a SearchResult or a
 SearchResultCollection . You also get ResultPropertyCollection
and ResultPropertyValueCollection objects.

 Binding
 To get the values of an object in Active Directory, you need to connect to the Active Directory service.
This connecting process is called binding . The binding path can look like this:

LDAP://dc01.thinktecture.com/OU=Development, DC=thinktecture, DC=Com

 With the binding process, you can specify these items:

 The protocol ; this specifies the provider to be used.

 The server name of the domain controller.

 The port number of the server process.

 The distinguished name of the object; this identifies the object you want to access.

 The username and password , if the user who is allowed to access Active Directory is different from
the current logged - on user.

 An authentication type, if encryption is needed.

 The following subsections discuss these options in more detail.

 Protocol
 The first part of a binding path specifies the ADSI provider. The provider is implemented as a COM
server; for identification, a progID can be found in the registry directly under HKEY_CLASSES_ROOT .
The providers that are available with Windows Vista are listed in the following table.

❑

❑

❑

❑

❑

❑

c46.indd 1598c46.indd 1598 2/19/08 5:34:38 PM2/19/08 5:34:38 PM

Chapter 46: Directory Services

1599

 Provider Description

 LDAP LDAP Server, such as the Exchange directory and Windows 2000 Server or Windows
Server 2003 Active Directory Server.

 GC GC is used to access the global catalog in Active Directory. It can be used for fast
 queries.

 IIS With the ADSI provider for IIS, it ’ s possible to create new Web sites and to administer
them in the IIS catalog.

 NDS This progID is used to communicate with Novell Directory Services.

 NWCOMPAT With NWCOMPAT , you can access old Novell directories, such as Novell Netware 3.x.

 Server Name
 The server name follows the protocol in the binding path. The server name is optional if you are logged
on to an Active Directory domain. Without a server name, serverless binding occurs; this means that
Windows Server 2008 tries to get the “ best ” domain controller in the domain that ’ s associated with the
user doing the bind. If there is no server inside a site, the first domain controller that can be found will
be used.

 A serverless binding might look like this: LDAP://OU=Sales, DC=Thinktecture, DC=Local .

 Port Number
 After the server name, you can specify the port number of the server process by using the syntax :xxx .
The default port number for the LDAP server is port 389: LDAP://dc01.sentinel.net:389 . The
Exchange server uses the same port number as the LDAP server. If the Exchange server is installed on
the same system — for example, as a domain controller of Active Directory — a different port can be
configured.

 Distinguished Name
 The fourth part that you can specify in the path is the distinguished name (DN) . The distinguished name is
a unique name that identifies the object you want to access. With Active Directory, you can use LDAP
syntax that is based on X.500 to specify the name of the object.

 This is an example of a distinguished name:

CN=Christian Nagel, OU=Consultants, DC=thinktecture, DC=local

 This distinguished name specifies the common name (CN) of Christian Nagel in the organizational
unit (OU) called Consultants in the domain component (DC) called thinktecture of the domain
 thinktecture.local . The part specified to the right is the root object of the domain. The name must
follow the hierarchy in the object tree.

 You can find the LDAP specification for the string representation of distinguished names in RFC 2253 at
 www.ietf.org/rfc/rfc2253.txt .

Relative Distinguished Name
 A relative distinguished name (RDN) is used to reference objects within a container object. With an RDN,
the specification of OU and DC is not needed because a common name is enough. CN=Christian Nagel
is the relative distinguished name inside the organizational unit. A relative distinguished name can be
used if you already have a reference to a container object and if you want to access child objects.

c46.indd 1599c46.indd 1599 2/19/08 5:34:39 PM2/19/08 5:34:39 PM

Part VI: Communication

1600

Default Naming Context
 If a distinguished name is not specified in the path, the binding process will be made to the default
naming context. You can read the default naming context with the help of rootDSE . LDAP 3.0 defines
 rootDSE as the root of a directory tree on a directory server. For example:

LDAP://rootDSE

or

LDAP://servername/rootDSE

 By enumerating all properties of the rootDSE , you can get the information about the
 defaultNamingContext that will be used when no name is specified. schemaNamingContext
and configurationNamingContext specify the required names to be used to access the schema and
the configuration in the Active Directory store.

 The following code is used to get all properties of rootDSE :

try
{
 using (DirectoryEntry de = new DirectoryEntry())
 {
 de.Path = “LDAP://treslunas/rootDSE”;
 de.Username = @”explorer\christian”;
 de.Password = “password”;

 PropertyCollection props = de.Properties;
 foreach (string prop in props.PropertyNames)
 {
 PropertyValueCollection values = props[prop];
 foreach (string val in values)
 {
 Console.Write(“{0}: “, prop);
 Console.WriteLine(val);
 }
 }
 }
}
catch (COMException ex)
{
 Console.WriteLine(ex.Message);
}

 This program shows the default naming context (defaultNamingContext DC=explorer, DC=local),
the context that can be used to access the schema (CN=Schema, CN=Configuration, DC=explorer,
DC=local), and the naming context of the configuration (CN=Configuration, DC=explorer,
DC=local), as you can see here:

currentTime: 20071012063000.0Z
subschemaSubentry: CN=Aggregate,CN=Schema,CN=Configuration,DC=explorer,DC=local
dsServiceName: CN=NTDS Settings,CN=TRESLUNAS,CN=Servers,
CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=explorer,DC=local
namingContexts: DC=explorer,DC=local
namingContexts: CN=Configuration,DC=explorer,DC=local
namingContexts: CN=Schema,CN=Configuration,DC=explorer,DC=local
namingContexts: DC=DomainDnsZones,DC=explorer,DC=local
namingContexts: DC=ForestDnsZones,DC=explorer,DC=local

c46.indd 1600c46.indd 1600 2/19/08 5:34:39 PM2/19/08 5:34:39 PM

Chapter 46: Directory Services

1601

defaultNamingContext: DC=explorer,DC=local
schemaNamingContext: CN=Schema,CN=Configuration,DC=explorer,DC=local
configurationNamingContext: CN=Configuration,DC=explorer,DC=local
rootDomainNamingContext: DC=explorer,DC=local
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.2.840.113556.1.4.801

 Object Identifier
 Every object has a globally unique identifier (GUID). A GUID is a unique 128 - bit number as you may
already know from COM development. You can bind to an object using the GUID. This way, you always
get to the same object, regardless of whether the object was moved to a different container. The GUID is
generated at object creation and always remains the same.

 You can get to a GUID string representation with DirectoryEntry.NativeGuid . This string
representation can then be used to bind to the object.

 This example shows the path name for a serverless binding to bind to a specific object represented by a
GUID:

LDAP:// < GUID=14abbd652aae1a47abc60782dcfc78ea >

 Username
 If a different user from the one of the current process must be used for accessing the directory (maybe
this user doesn ’ t have the required permissions to access Active Directory), explicit user credentials must
be specified for the binding process. Active Directory has multiple ways to specify the username.

Downlevel Logon
 With a downlevel logon, the username can be specified with the pre - Windows 2000 domain name:

domain\username

 Distinguished Name
 The user can also be specified by a distinguished name of a user object, for example:

CN=Administrator, CN=Users, DC=thinktecture, DC=local

 User Principal Name
 The user principal name (UPN) of an object is defined with the userPrincipalName attribute. The system
administrator specifies this with the logon information in the Account tab of the User properties with the
Active Directory Users and Computers tool. Note that this is not the email address of the user.

 This information also uniquely identifies a user and can be used for a logon:

Nagel@thinktecture.local

 Authentication
 For secure encrypted authentication, the authentication type can also be specified. The authentication can
be set with the AuthenticationType property of the DirectoryEntry class. The value that can be
assigned is one of the AuthenticationTypes enumeration values. Because the enumeration is marked
with the [Flags] attribute, multiple values can be specified. Some of the possible values are where the
data sent is encrypted; ReadonlyServer , where you specify that you need only read access; and
 Secure for secure authentication.

c46.indd 1601c46.indd 1601 2/19/08 5:34:39 PM2/19/08 5:34:39 PM

Part VI: Communication

1602

 Binding with the DirectoryEntry Class
 The System.DirectoryServices.DirectoryEntry class can be used to specify all the binding
information. You can use the default constructor and define the binding information with the properties
 Path , Username , Password , and AuthenticationType , or pass all the information in the constructor:

DirectoryEntry de = new DirectoryEntry();
de.Path = “LDAP://platinum/DC=thinktecture, DC=local”;
de.Username = “nagel@thinktecture.local”;
de.Password = “password”;

// use the current user credentials
DirectoryEntry de2 = new DirectoryEntry(
 “LDAP://DC=thinktecture, DC=local”);

 Even if the construction of the DirectoryEntry object is successful, this doesn ’ t mean that the binding
was a success. Binding will happen the first time a property is read to avoid unnecessary network
traffic. At the first access of the object, you can see if the object exists and if the specified user credentials
are correct.

 Getting Directory Entries
 Now that you know how to specify the binding attributes to an object in Active Directory, you can move
on to read the attributes of an object. In the following example, you read the properties of user objects.

 The DirectoryEntry class has some properties to get information about the object: the Name , Guid ,
and SchemaClassName properties. The first time a property of the DirectoryEntry object is accessed,
the binding occurs, and the cache of the underlying ADSI object is filled. (This is discussed in more detail
shortly.) Additional properties are read from the cache, and communication with the server isn ’ t
necessary for data from the same object.

 In the following example, the user object with the common name Christian Nagel in the
organizational unit thinktecture is accessed:

using (DirectoryEntry de = new DirectoryEntry())
{
 de.Path = “LDAP://treslunas/CN=Christian Nagel, “ +
 “OU=thinktecture, DC=explorer, DC=local”;

 Console.WriteLine(“Name: {0}”, de.Name);
 Console.WriteLine(“GUID: {0}”, de.Guid);
 Console.WriteLine(“Type: {0}”, de.SchemaClassName);
 Console.WriteLine();

 //...
}

 To have this code running on your machine, you must change the path to the object to access including
the server name.

 An Active Directory object holds much more information, with the information available depending on
the type of the object; the Properties property returns a PropertyCollection . Each property is a
collection itself, because a single property can have multiple values; for example, the user object can
have multiple phone numbers. In this case, you go through the values with an inner foreach loop.
The collection returned from properties[name] is an object array. The attribute values can be strings,
numbers, or other types. Here, just the ToString() method is used to display the values:

 Console.WriteLine(“Properties: “);
 PropertyCollection properties = de.Properties;

c46.indd 1602c46.indd 1602 2/19/08 5:34:40 PM2/19/08 5:34:40 PM

Chapter 46: Directory Services

1603

 foreach (string name in properties.PropertyNames)
 {
 foreach (object o in properties[name])
 {
 Console.WriteLine(“{0}: {1}”, name, o.ToString());
 }
 }

 In the resulting output, you can see all attributes of the specified user object. Some properties such
as otherTelephone have multiple values. With this property, many phone numbers can be defined.
Some of the property values just display the type of the object, System.__ComObject ; for example,
 lastLogoff , lastLogon , and nTSecurityDescriptor . To get the values of these attributes, you
must use the ADSI COM interfaces directly from the classes in the System.DirectoryServices
namespace.

Name: CN=Christian Nagel
GUID: 7705eb3c-d5aa-40a4-97f9-2649c7693f39
Type: user

Properties:
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: Christian Nagel
sn: Nagel
description: Author
givenName: Christian
distinguishedName: CN=Christian Nagel,OU=thinktecture,DC=explorer,DC=local
instanceType: 4
whenCreated: 22.08.2004 13:31:10
whenChanged: 24.05.2005 12:26:05
displayName: Christian Nagel
uSNCreated: System.__ComObject
uSNChanged: System.__ComObject
company: Thinktecture
extensionName: 5717D53E-DD6D-4d1e-8A1F-C7BE620F65AA:L
wWWHomePage: http://www.christiannagel.com
name: Christian Nagel
objectGUID: System.Byte[]
userAccountControl: 514
badPwdCount: 0

 Access a Property Directly by Name
 With DirectoryEntry.Properties , you can access all properties. If a property name is known,
you can access the values directly:

foreach (string homePage in de.Properties[“wWWHomePage”])
 Console.WriteLine(“Home page: “ + homePage);

 Object Collections
 Objects are stored hierarchically in Active Directory. Container objects contain children. You can
enumerate these child objects with the Children property of the class DirectoryEntry . In the other
direction, you can get the container of an object with the Parent property.

c46.indd 1603c46.indd 1603 2/19/08 5:34:40 PM2/19/08 5:34:40 PM

Part VI: Communication

1604

 A user object doesn ’ t have children, so you use an organizational unit in the following example.
Non - container objects return an empty collection with the Children property. Get all user objects from
the organizational unit thinktecture in the domain explorer.local . The Children property returns
a DirectoryEntries collection that collects DirectoryEntry objects. You iterate through all
 DirectoryEntry objects to display the name of the child objects:

using (DirectoryEntry de = new DirectoryEntry())
{
 de.Path = “LDAP://treslunas/OU=thinktecture, “ +
 “DC=explorer, DC=local”;

 Console.WriteLine(“Children of {0}”, de.Name);
 foreach (DirectoryEntry obj in de.Children)
 {
 Console.WriteLine(obj.Name);
 }
}

 When you run the program, the common names of the objects are displayed:

Children of OU=thinktecture
OU=Admin
CN=Buddhike de Silva
CN=Christian Nagel
CN=Christian Weyer
CN=Consultants
CN=demos
CN=Dominick Baier
CN=Ingo Rammer
CN=Neno Loye

 In this example, you see all the objects in the organizational unit: users , contacts , printers , shares ,
and others. If you want to display only some object types, you can use the SchemaFilter property of
the DirectoryEntries class. The SchemaFilter property returns a SchemaNameCollection . With
this SchemaNameCollection , you can use the Add() method to define the object types you want to see.
Here, you are just interested in seeing the user objects, so user is added to this collection:

using (DirectoryEntry de = new DirectoryEntry())
{
 de.Path = “LDAP://treslunas/OU=thinktecture, “ +
 “DC=explorer, DC=local”;

 Console.WriteLine(“Children of {0}”, de.Name);
 de.Children.SchemaFilter.Add(“user”);
 foreach (DirectoryEntry obj in de.Children)
 {
 Console.WriteLine(obj.Name);
 }
}

 As a result, you see only the user objects in the organizational unit:

Children of OU=thinktecture
CN=Buddhike de Silva
CN=Christian Nagel
CN=Christian Weyer
CN=Dominick Baier
CN=Ingo Rammer
CN=Neno Loye

c46.indd 1604c46.indd 1604 2/19/08 5:34:40 PM2/19/08 5:34:40 PM

Chapter 46: Directory Services

1605

 Cache
 To reduce the network transfers, ADSI uses a cache for the object properties. As mentioned earlier, the
server isn ’ t accessed when a DirectoryEntry object is created; instead, with the first reading of a value
from the directory store, all the properties are written into the cache so that a round trip to the server
isn ’ t necessary when the next property is accessed.

 Writing any changes to objects changes only the cached object; setting properties doesn ’ t generate
network traffic. You must use DirectoryEntry.CommitChanges() to flush the cache and to transfer
any changed data to the server. To get the newly written data from the directory store, you can use
 DirectoryEntry.RefreshCache() to read the properties. Of course, if you change some properties
without calling CommitChanges() and do a RefreshCache() , all your changes will be lost, because
you read the values from the directory service again using RefreshCache() .

 It is possible to turn off this property cache by setting the DirectoryEntry.UsePropertyCache
property to false . However, unless you are debugging your code, it ’ s better not to turn off the cache
because of the extra round trips to the server that will be generated.

 Creating New Objects
 When you want to create new Active Directory objects — such as users, computers, printers, contacts,
and so on — you can do this programmatically with the DirectoryEntries class.

 To add new objects to the directory, first you have to bind to a container object, such as an organizational
unit, where new objects can be inserted — you cannot use objects that are not able to contain other
objects. The following example uses the container object with the distinguished name CN=Users,
DC=thinktecture, DC=local :

DirectoryEntry de = new DirectoryEntry();
de.Path = “LDAP://treslunas/CN=Users, DC=explorer, DC=local”;

 You can get to the DirectoryEntries object with the Children property of a DirectoryEntry :

DirectoryEntries users = de.Children;

 The class DirectoryEntries offers methods to add, remove, and find objects in the collection. Here,
a new user object is created. With the Add() method, the name of the object and a type name are
required. You can get to the type names directly using ADSI Edit.

DirectoryEntry user = users.Add(“CN=John Doe”, “user”);

 The object now has the default property values. To assign specific property values, you can add
properties with the Add() method of the Properties property. Of course, all of the properties must
exist in the schema for the user object. If a specified property doesn ’ t exist, you ’ ll get a COMException:
 “ The specified directory service attribute or value doesn ’ t exist “ :

user.Properties[“company”].Add(“Some Company”);
user.Properties[“department”].Add(“Sales”);
user.Properties[“employeeID”].Add(“4711”);
user.Properties[“samAccountName”].Add(“JDoe”);
user.Properties[“userPrincipalName”].Add(“JDoe@explorer.local”);
user.Properties[“givenName”].Add(“John”);
user.Properties[“sn”].Add(“Doe”);
user.Properties[“userPassword”].Add(“someSecret”);

c46.indd 1605c46.indd 1605 2/19/08 5:34:41 PM2/19/08 5:34:41 PM

Part VI: Communication

1606

 Finally, to write the data to Active Directory, you must flush the cache:

user.CommitChanges();

 Updating Directory Entries
 Objects in the Active Directory service can be updated as easily as they can be read. After reading the
object, you can change the values. To remove all values of a single property, you can call the method
 PropertyValueCollection.Clear() . You can add new values to a property with Add() . Remove()
and RemoveAt() remove specific values from a property collection.

 You can change a value simply by setting it to the specified value. The following example uses an
indexer for PropertyValueCollection to set the mobile phone number to a new value. With
the indexer a value can be changed only if it exists. Therefore, you should always check
with DirectoryEntry.Properties.Contains() to see if the attribute is available:

using (DirectoryEntry de = new DirectoryEntry())
{
 de.Path = “LDAP://treslunas/CN=Christian Nagel, “ +
 “OU=thinktecture, DC=explorer, DC=local”;

 if (de.Properties.Contains(“mobile”))
 {
 de.Properties[“mobile”][0] = “+43(664)3434343434”;
 }
 else
 {
 de.Properties[“mobile”].Add(“+43(664)3434343434”);
 }

 de.CommitChanges();
}

 The else part in this example uses the method PropertyValueCollection.Add() to add a new
property for the mobile phone number, if it doesn ’ t exist already. If you use the Add() method with
already existing properties, the resulting effect would depend on the type of the property (single - value
or multivalue property). Using the Add() method with a single - value property that already exists results
in a COMException: “ A constraint violation occurred. ” Using Add() with a multivalue
property, however, succeeds, and an additional value is added to the property.

 The mobile property for a user object is defined as a single - value property, so additional mobile phone
numbers cannot be added. However, a user can have more than one mobile phone number. For multiple
mobile phone numbers, the otherMobile property is available. otherMobile is a multivalue property
that allows setting multiple phone numbers, and so calling Add() multiple times is allowed. Note that
multivalue properties are checked for uniqueness. If the second phone number is added to the same
 user object again, you get a COMException: “ The specified directory service attribute or
value already exists. ”

 Remember to call DirectoryEntry.CommitChanges() after creating or updating
new directory objects. Otherwise, only the cache gets updated, and the changes are
not sent to the directory service.

c46.indd 1606c46.indd 1606 2/19/08 5:34:41 PM2/19/08 5:34:41 PM

Chapter 46: Directory Services

1607

 Accessing Native ADSI Objects
 Often, it is much easier to call methods of predefined ADSI interfaces instead of searching for the names
of object properties. Some ADSI objects also support methods that cannot be used directly from the
 DirectoryEntry class. One example of a practical use is the IADsServiceOperations interface, which
has methods to start and stop Windows services. (For more details on Windows services see Chapter 23 ,
 “ Windows Services. ”)

 The classes of the System.DirectoryServices namespace use the underlying ADSI COM objects as
mentioned earlier. The DirectoryEntry class supports calling methods of the underlying objects
directly by using the Invoke() method.

 The first parameter of Invoke() requires the method name that should be called in the ADSI object; the
 params keyword of the second parameter allows a flexible number of additional arguments that can be
passed to the ADSI method:

public object Invoke(string methodName, params object[] args);

 You can find the methods that can be called with the Invoke() method in the ADSI documentation.
Every object in the domain supports the methods of the IADs interface. The user object that you created
previously also supports the methods of the IADsUser interface.

 In the following example, the method IADsUser.SetPassword() changes the password of the
previously created user object:

using (DirectoryEntry de = new DirectoryEntry())
{
 de.Path = “LDAP://treslunas/CN=John Doe, “ +
 “CN=Users, DC=explorer, DC=local”;

 de.Invoke(“SetPassword”, “anotherSecret”);
 de.CommitChanges();
}

 It is also possible to use the underlying ADSI object directly instead of using Invoke() . To use
these objects, choose Project Add Reference to add a reference to the Active DS Type Library
(see Figure 46 - 9). This creates a wrapper class where you can access these objects in the namespace
 ActiveDs .

 Figure 46 - 9

c46.indd 1607c46.indd 1607 2/19/08 5:34:41 PM2/19/08 5:34:41 PM

Part VI: Communication

1608

 The native object can be accessed with the NativeObject property of the DirectoryEntry class.
In the following example, the object de is a user object, so it can be cast to ActiveDs.IADsUser
. SetPassword() is a method documented in the IADsUser interface, so you can call it directly instead
of using the Invoke() method. By setting the AccountDisabled property of IADsUser to false ,
you can enable the account. As in the previous examples, the changes are written to the directory service
by calling CommitChanges() with the DirectoryEntry object:

ActiveDs.IADsUser user = (ActiveDs.IADsUser)de.NativeObject;
user.SetPassword(“someSecret”);
user.AccountDisabled = false;
de.CommitChanges();

 .NET 3.5 reduces the need to invoke the native objects behind the .NET class DirectoryEntry .
.NET 3.5 gives you new classes to manage users in the namespace System.DirectoryServices.
AccountManagement . The classes from this namespace are explained later in this chapter.

 Searching in Active Directory
 Because Active Directory is a data store optimized for read - mostly access, you will generally search for
values. To search in Active Directory, the .NET Framework provides the DirectorySearcher class.

 You can use DirectorySearcher only with the LDAP provider; it doesn ’ t work with the other
 providers such as NDS or IIS.

 In the constructor of the DirectorySearcher class, you can define four important parts for the search.
You can also use a default constructor and define the search options with properties.

 SearchRoot
 The search root specifies where the search should start. The default of SearchRoot is the root of the
domain you are currently using. SearchRoot is specified with the Path of a DirectoryEntry object.

 Filter
 The filter defines the values where you want to get hits. The filter is a string that must be enclosed in
parentheses.

 Relational operators such as < = , = , and > = are allowed in expressions. (objectClass=contact)
searches all objects of type contact ; (lastName > =Nagel) searches all objects alphabetically where the
 lastName property is equal to or larger than Nagel .

 Expressions can be combined with the & and | prefix operators. For example,
 (& (objectClass=user)(description=Auth*)) searches all objects of type user where the
property description starts with the string Auth . Because the & and | operators are at the beginning of
the expressions, it is possible to combine more than two expressions with a single prefix operator.

 The default filter is (objectClass=*) so all objects are valid.

 The filter syntax is defined in RFC 2254, “ The String Representation of LDAP Search Filters. ” You can
find this RFC at www.ietf.org/rfc/rfc2254.txt .

 PropertiesToLoad
 With PropertiesToLoad , you can define a StringCollection of all the properties in which you are
interested. Objects can have a lot of properties, most of which will not be important for your search
request. You define the properties that should be loaded into the cache. The default properties that are
returned if nothing is specified are the path and the name of the object.

c46.indd 1608c46.indd 1608 2/19/08 5:34:42 PM2/19/08 5:34:42 PM

Chapter 46: Directory Services

1609

 SearchScope
 SearchScope is an enumeration that defines how deep the search should extend:

 SearchScope.Base searches only the attributes in the object where the search started, so at
most one object is found.

 With SearchScope.OneLevel, the search continues in the child collection of the base object.
The base object itself is not searched for a hit.

 SearchScope.Subtree defines that the search should go down the complete tree.

 The default value of the SearchScope property is SearchScope.Subtree .

 Search Limits
 A search for specific objects in a directory service can span multiple domains. To limit the search to the number
of objects or the time taken, you have some additional properties to define, as shown in the following table.

 Property Description

 ClientTimeout The maximum time the client waits for the server to return a result. If the
server does not respond, no records are returned.

 PageSize With a paged search , the server returns a number of objects defined with
the PageSize instead of the complete result. This reduces the time for the
client to get a first answer and the memory needed. The server sends a
cookie to the client, which is sent back to the server with the next search
request so that the search can continue at the point where it finished.

 ServerPageTimeLimit For paged searches, this value defines the time a search should continue
to return a number of objects that are defined with the PageSize value. If
the time is reached before the PageSize value, the objects that were
found up to that point are returned to the client. The default value is – 1 ,
which means infinite.

 SizeLimit Defines the maximum number of objects that should be returned by the
search. If you set the limit to a value larger than defined by the server
(which is 1000), the server limit is used.

 ServerTimeLimit Defines the maximum time the server will search for objects. When this time
is reached, all objects that are found up to this point are returned to the client.
The default is 120 seconds, and you cannot set the search to a higher value.

 ReferralChasing A search can cross multiple domains. If the root that ’ s specified with
 SearchRoot is a parent domain or no root was specified, the search can
continue to child domains. With this property, you can specify if the
search should continue on different servers.
ReferralChasingOption.None means that the search does not continue
on other servers.
The value ReferralChasingOption.Subordinate specifies that the
search should go on to child domains. When the search starts at DC=Wrox,
DC=com the server can return a result set and the referral to DC=France,
DC=Wrox, DC=COM . The client can continue the search in the subdomain.

❑

❑

❑

c46.indd 1609c46.indd 1609 2/19/08 5:34:42 PM2/19/08 5:34:42 PM

Part VI: Communication

1610

 Property Description

 ReferralChasingOption.External means that the server can refer the
client to an independent server that is not in the subdomain. This is the
default option.
 With ReferralChasingOption.All , both external and subordinate
referrals are returned.

 Tombstone If the property Tombstone is set to true , all deleted objects that match
the search are returned, too.

 VirtualListView If large results are expected with the search, the property
 VirtualListView can be used to define a subset that should be returned
from the search. The subset is defined with the class DirectoryVirtual
ListView .

 In the search example, all user objects with a property description value of Author are searched in
the organizational unit thinktecture .

 First, bind to the organizational unit thinktecture . This is where the search should
start. Create a DirectorySearcher object where the SearchRoot is set. The filter is defined as
(& (objectClass=user)(description=Auth*)) , so that the search spans all objects of type user
with a description of Auth followed by something else. The scope of the search should be a subtree so
that child organizational units within thinktecture are searched, too:

using (DirectoryEntry de =
 new DirectoryEntry(“LDAP://OU=thinktecture, DC=explorer, DC=local”))
using (DirectorySearcher searcher = new DirectorySearcher())
{
 searcher.SearchRoot = de;
 searcher.Filter = “(& (objectClass=user)(description=Auth*))”;
 searcher.SearchScope = SearchScope.Subtree;

 The properties that should be in the result of the search are name , description , givenName , and
 wWWHomePage :

 searcher.PropertiesToLoad.Add(“name”);
 searcher.PropertiesToLoad.Add(“description”);
 searcher.PropertiesToLoad.Add(“givenName”);
 searcher.PropertiesToLoad.Add(“wWWHomePage”);

 You are ready to do the search. However, the result should also be sorted. DirectorySearcher has a
 Sort property, where you can set a SortOption . The first argument in the constructor of the
 SortOption class defines the property that will be used for a sort; the second argument defines the
direction of the sort. The SortDirection enumeration has Ascending and Descending values.

 To start the search, you can use the FindOne() method to find the first object, or FindAll() .
 FindOne() returns a simple SearchResult , whereas FindAll() returns a SearchResultCollection .
Here, all authors should be returned, so FindAll() is used:

 searcher.Sort = new SortOption(“givenName”, SortDirection.Ascending);

 SearchResultCollection results = searcher.FindAll();

c46.indd 1610c46.indd 1610 2/19/08 5:34:42 PM2/19/08 5:34:42 PM

Chapter 46: Directory Services

1611

 With a foreach loop, every SearchResult in the SearchResultCollection is accessed. A
 SearchResult represents a single object in the search cache. The Properties property returns a
 ResultPropertyCollection , where you access all properties and values with the property name and
the indexer:

 SearchResultCollection results = searcher.FindAll();

 foreach (SearchResult result in results)
 {
 ResultPropertyCollection props = result.Properties;
 foreach (string propName in props.PropertyNames)
 {
 Console.Write(“{0}: “, propName);
 Console.WriteLine(props[propName][0]);
 }
 Console.WriteLine();
 }
}

 It is also possible to get the complete object after a search: SearchResult has a GetDirectoryEntry()
method that returns the corresponding DirectoryEntry of the found object.

 The resulting output shows the beginning of the list of all thinktecture associates with the properties
that have been chosen:

name: Christian Nagel
wwwhomepage: http://www.christiannagel.com
description: Author
givenname: Christian
adspath: LDAP://treslunas/CN=Christian Nagel,OU=thinktecture,DC=explorer,DC=local

name: Christian Weyer
description: Author
givenname: Christian
adspath: LDAP://treslunas/CN=Christian Weyer,OU=thinktecture,DC=explorer,DC=local

name: Ingo Rammer
wwwhomepage: http://www.thinktecture.com
description: Author
givenname: Ingo
adspath: LDAP://treslunas/CN=Ingo Rammer,OU=thinktecture,DC=explorer,DC=local

 Searching for User Objects
 In this section, you build a Windows Forms application called UserSearch . This application is flexible
insofar as a specific domain controller, username, and password to access Active Directory can be
entered; otherwise, the user of the running process is used. In this application, you access the schema of
the Active Directory service to get the properties of a user object. The user can enter a filter string to
search all user objects of a domain. It ’ s also possible to set the properties of the user objects that should
be displayed.

 User Interface
 The user interface shows numbered steps to indicate how to use the application (see Figure 46 - 10):

c46.indd 1611c46.indd 1611 2/19/08 5:34:43 PM2/19/08 5:34:43 PM

Part VI: Communication

1612

 1. In the first step, Username , Password , and the Domain Controller can be entered. All this
information is optional. If no domain controller is entered, the connection works with serverless
binding. If the username is missing, the security context of the current user is taken.

 2. A button allows all the property names of the user object to be loaded dynamically in the
 listBoxProperties list box.

 3. After the property names are loaded, the properties to be displayed can be selected.
The SelectionMode of the list box is set to MultiSimple .

 4. The filter to limit the search can be entered. The default value set in this dialog box searches for
all user objects: (objectClass=user) .

 5. Now the search can start.

 Figure 46 - 10

 Get the Schema Naming Context
 This application has only two handler methods: one method for the button to load the properties and
one to start the search in the domain. First, you read the properties of the user class dynamically from
the schema to display it in the user interface.

 In the handler buttonLoadProperties_Click() method, SetLogonInformation() reads the username,
password, and host name from the dialog box and stores them in members of the class. Next, the method
 SetNamingContext() sets the LDAP name of the schema and the LDAP name of the default context. This
schema LDAP name is used in the call to set the properties in the list box: SetUserProperties() .

private void OnLoadProperties(object sender, System.EventArgs e)
{
 try
 {
 SetLogonInformation();

c46.indd 1612c46.indd 1612 2/19/08 5:34:43 PM2/19/08 5:34:43 PM

Chapter 46: Directory Services

1613

 SetNamingContext();

 SetUserProperties(schemaNamingContext);
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Check your inputs! “ + ex.Message);
 }
}
protected void SetLogonInformation()
{
 username = (textBoxUsername.Text == “” ? null : textBoxUsername.Text);
 password = (textBoxPassword.Text == “” ? null : textBoxPassword.Text);
 hostname = textBoxHostname.Text;

 if (hostname != “”)
 {
 hostname += “/”;
 }
}

 In the helper method SetNamingContext() , you are using the root of the directory tree to get the
properties of the server. You are interested in the value of only two properties: schemaNamingContext
and defaultNamingContext .

protected void SetNamingContext()
{
 using (DirectoryEntry de = new DirectoryEntry())
 {
 string path = “LDAP://” + hostname + “rootDSE”;
 de.Username = username;
 de.Password = password;
 de.Path = path;
 schemaNamingContext =
 de.Properties[“schemaNamingContext”][0].ToString();
 defaultNamingContext =
 de.Properties[“defaultNamingContext”][0].ToString();
 }
}

 Get the Property Names of the User Class
 You have the LDAP name to access the schema. You can use this to access the directory and read the
properties. You are interested in not only the properties of the user class, but also those of the base
classes of user : Organizational - Person , Person , and Top . In this program, the names of the base
classes are hard - coded. You could also read the base class dynamically with the subClassOf attribute.

 GetSchemaProperties() returns IEnumerable < string > with all property names of the specific object
type. All the property names are added to the list box:

protected void SetUserProperties(string schemaNamingContext)
{
 var properties =
 from p in
 GetSchemaProperties(schemaNamingContext, “User”).Concat(
 GetSchemaProperties(schemaNamingContext,

(continued)

c46.indd 1613c46.indd 1613 2/19/08 5:34:44 PM2/19/08 5:34:44 PM

Part VI: Communication

1614

 “Organizational-Person”)).Concat(
 GetSchemaProperties(schemaNamingContext, “Person”)).Concat(
 GetSchemaProperties(schemaNamingContext, “Top”))
 orderby p
 select p;

 listBoxProperties.Items.Clear();
 foreach (string s in properties)
 {
 listBoxProperties.Items.Add(s);
 }
}

 In GetSchemaProperties() , you are accessing the Active Directory service again. This time, rootDSE
is not used but rather the LDAP name to the schema that you discovered earlier. The property
 systemMayContain holds a collection of all attributes that are allowed in the class objectType :

protected IEnumerable < string > GetSchemaProperties(string schemaNamingContext,
 string objectType)
{
 IEnumerable < string > data;
 using (DirectoryEntry de = new DirectoryEntry())
 {
 de.Username = username;
 de.Password = password;

 de.Path = String.Format(“LDAP://{0}CN={1},{2}”, hostname, objectType,
 schemaNamingContext);

 PropertyValueCollection values = de.Properties[“systemMayContain”];
 data = from s in values.Cast < string > ()
 orderby s
 select s;
 }
 return data;
}

 Step 2 in the application is completed. The ListBox control has all the property names of the
 user objects.

 Search for User Objects
 The handler for the search button calls only the helper method FillResult() :

private void OnSearch(object sender, System.EventArgs e)
{
 try
 {
 FillResult();
 }
 catch (Exception ex)
 {
 MessageBox.Show(String.Format(“Check your input: {0}”, ex.Message));
 }
}

(continued)

c46.indd 1614c46.indd 1614 2/19/08 5:34:44 PM2/19/08 5:34:44 PM

Chapter 46: Directory Services

1615

 In FillResult() , you do a normal search in the complete Active Directory Domain as you saw earlier.
 SearchScope is set to Subtree , the Filter to the string you get from a TextBox object, and the
properties that should be loaded into the cache are set by the values the user selected in the list box.
The PropertiesToLoad property of the DirectorySearcher is of type StringCollection where the
properties that should be loaded can be added using the AddRange() method that requires a string
array. The properties that should be loaded are read from the ListBox listBoxProperties with
the property SelectedItems . After setting the properties of the DirectorySearcher object, the
properties are searched by calling the SearchAll() method. The result of the search inside
the SearchResultCollection is used to generate summary information that is written to the text
box textBoxResults :

protected void FillResult()
{
 using (DirectoryEntry root = new DirectoryEntry())
 {
 root.Username = username;
 root.Password = password;
 root.Path = String.Format(“LDAP://{0}{1}”, hostname,
 defaultNamingContext);

 using (DirectorySearcher searcher = new DirectorySearcher())
 {
 searcher.SearchRoot = root;
 searcher.SearchScope = SearchScope.Subtree;
 searcher.Filter = textBoxFilter.Text;
 searcher.PropertiesToLoad.AddRange(
 listBoxProperties.SelectedItems.Cast < string > ().ToArray());

 SearchResultCollection results = searcher.FindAll();
 StringBuilder summary = new StringBuilder();
 foreach (SearchResult result in results)
 {
 foreach (string propName in result.Properties.PropertyNames)
 {
 foreach (string s in result.Properties[propName])
 {
 summary.AppendFormat(“ {0}: {1}\r\n”, propName, s);
 }
 }
 summary.Append(“\r\n”);
 }
 textBoxResults.Text = summary.ToString();
 }
 }
}

 Starting the application gives you a list of all objects where the filter is valid (see Figure 46 - 11).

c46.indd 1615c46.indd 1615 2/19/08 5:34:44 PM2/19/08 5:34:44 PM

Part VI: Communication

1616

 Account Management
 Previous to .NET 3.5, it was difficult to create and modify user and group accounts. One way to do that
was by using the classes from the System.DirectoryServices namespace, or by using the strongly
typed native COM interfaces. New with .NET 3.5 is the assembly System.DirectoryServices
.AccountManagement that offers an abstraction to the System.DirectoryServices classes by
offering specific methods and properties to search, modify, create, and update users and groups.

 The classes and their functionality are explained in the following table.

 Class Description

 PrincipalContext With the PrincipalContext , you configure the context of the
account management. Here you can define if an Active Directory
Domain, the accounts from the local system, or an application
directory should be used. You set this by setting the ContextType
enumeration to one of the values Domain , Machine , or
 ApplicationDirectory . Depending on the context type, you
can also define the name of the domain and specify a username
and password that are used for access.

 Figure 46 - 11

c46.indd 1616c46.indd 1616 2/19/08 5:34:44 PM2/19/08 5:34:44 PM

Chapter 46: Directory Services

1617

 Class Description

 Principal Principal is the base class of all principals. With the static
method FindByIdentity() , you can get a Principal identity
object. With a principal object, you have access to various proper-
ties such as name, description, distinguished name, and also the
object type from the schema. In case you need more control about
the principal than is available from the properties and methods of
this class, the method GetUnderlyingType() returns the under-
lying DirectoryEntry object.

 AuthenticablePrincipal AuthenticablePrincipal derives from Principal and is the
base class for all principals that can be authenticated. There are
several static methods to find principals, such as by logon or lock-
out times, by incorrect password attempts, or by password set
time. Using instance methods, you can change the password and
unlock an account.

 UserPrincipal

ComputerPrincipal

 UserPrincipal and ComputerPrincipal derive from the base
class AuthenticablePrincipal and thus have all properties
and methods the base class has. UserPrincipal is the object that
maps to a user account, and ComputerPrincipal maps to a com-
puter account. With UserPrincipal , you have many properties
to get and set information about the user, for example,
 EmployeeId , EmailAddress , GivenName ,
 VoiceTelephoneNumber .

 GroupPrincipal Groups cannot authenticate; that ’ s why GroupPrincipal derives
directly from the Principal class. With GroupPrincipal , you
can get members of the group with the Members property and the
 GetMembers() method.

 PrincipalCollection The PrincipalCollection contains a group of Principal
objects; for example, the Members property from the
 GroupPrincipal class returns a PrincipalCollection object.

 PrincipalSearcher PrincipalSearcher is an abstraction of the
 DirectorySearcher class with special use for account manage-
ment. With PrincipalSearcher, there ’ s no need to know about
the LDAP query syntax because this is created automatically.

 PrincipalSearchResult < T > Search methods from the PrincipalSearcher and Principal
classes return a PrincipalSearchResult < T > .

 The following sections look at some scenarios in which you can use the classes from the System
.DirectoryServices.AccountManagement namespace.

c46.indd 1617c46.indd 1617 2/19/08 5:34:45 PM2/19/08 5:34:45 PM

Part VI: Communication

1618

 Display User Information
 The static property Current of the UserPrincipal class returns a UserPrincipal object with
information about the currently logged - on user:

 using (UserPrincipal user = UserPrincipal.Current)
 {
 Console.WriteLine(“Context Server: {0}”,
 user.Context.ConnectedServer);
 Console.WriteLine(user.Description);
 Console.WriteLine(user.DisplayName);
 Console.WriteLine(user.EmailAddress);
 Console.WriteLine(user.GivenName);
 Console.WriteLine(“{0:d}”, user.LastLogon);
 Console.WriteLine(user.ScriptPath);
 }

 Running the application displays information about the user:

Context Server: treslunas.explorer.local
Power User
Christian Nagel
Christian.Nagel@thinktecture.com
Christian
2007/10/14
SBS_LOGIN_SCRIPT.bat

 Create a User
 You can use the UserPrincipal class to create a new user. First a PrincipalContext is required to
define where the user should be created. With the PrincipalContext , you set the ContextType to an
enumeration value of Domain , Machine , or ApplicationDirectory depending on whether the
directory service, the local accounts of the machine, or an application directory should be used. If the
current user does not have access to add accounts to Active Directory, you can also set a user and
password with the PrincipalContext that is used to access the server.

 Next, you can create an instance of UserPrincipal passing the principal context, and setting all
required properties. Here, the GivenName and EmailAddress properties are set. Finally, you must
invoke the Save() method of the UserPrincipal to write the new user to the store:

 using (PrincipalContext context =
 new PrincipalContext(ContextType.Domain, “explorer”))
 using (UserPrincipal user = new UserPrincipal(context, “Tom”,
 “P@ssw0rd”, true)
 {
 GivenName = “Tom”,
 EmailAddress = “test@test.com”
 })
 {
 user.Save();
 }

 Reset a Password
 To reset a password from an existing user, you can use the SetPassword() method from a
 UserPrincipal object:

c46.indd 1618c46.indd 1618 2/19/08 5:34:45 PM2/19/08 5:34:45 PM

Chapter 46: Directory Services

1619

 using (PrincipalContext context =
 new PrincipalContext(ContextType.Domain, “explorer”))
 using (UserPrincipal user = UserPrincipal.FindByIdentity(
 context, IdentityType.Name, “Tom”))
 {
 user.SetPassword(“Pa$$w0rd”);
 user.Save();
 }

 The user running this code needs to have the privilege to reset a password. To change the password
from an old one to a new one, you can use the method ChangePassword() .

 Create a Group
 A new group can be created in a similar way to creating a new user. Here, just the class GroupPrincipal
is used instead of the class UserPrincipal . As in creating a new user, the properties are set, and the
 Save() method is invoked:

 using (PrincipalContext ctx =
 new PrincipalContext(ContextType.Domain, “explorer”))
 using (GroupPrincipal group = new GroupPrincipal(ctx)
 {
 Description = “Sample group”,
 DisplayName = “Wrox Authors”,
 Name = “WroxAuthors”
 })
 {
 group.Save();
 }

 Add a User to a Group
 To add a user to a group, you can use a GroupPrincipal and add a UserPrincipal to the Members
property of the group. To get an existing user and group, you can use the static method
 FindByIdentity() :

 using (PrincipalContext context =
 new PrincipalContext(ContextType.Domain))
 using (GroupPrincipal group = GroupPrincipal.FindByIdentity(
 context, IdentityType.Name, “WroxAuthors”))
 using (UserPrincipal user = UserPrincipal.FindByIdentity(
 context, IdentityType.Name, “Verena Oslzly”))
 {
 group.Members.Add(user);
 group.Save();
 }

 Finding Users
 Static methods of the UserPrincipal object allow finding users based on some predefined
criteria. The sample here shows finding users who didn ’ t change their passwords within the
last 30 days by using the method FindPasswordSetTime() . This method returns a

c46.indd 1619c46.indd 1619 2/19/08 5:34:46 PM2/19/08 5:34:46 PM

Part VI: Communication

1620

 PrincipalSearchResult < UserPrincipal > collection that is iterated to display the
user name, the last logon time, and the time when the password was reset:

 using (PrincipalContext context =
 new PrincipalContext(ContextType.Domain, “explorer”))
 using (PrincipalSearchResult < UserPrincipal > users =
 UserPrincipal.FindByPasswordSetTime(context,
 DateTime.Today - TimeSpan.FromDays(30), MatchType.LessThan))
 {
 foreach (var user in users)
 {
 Console.WriteLine(“{0}, last logon: {1}, “ +
 “last password change: {2}”, user.Name, user.LastLogon,
 user.LastPasswordSet);
 }
 }

 Other methods offered by the UserPrincipal class to find users are FindByBadPasswordAttempt() ,
 FindByExpirationTime() , FindByLockoutTime() , and FindByLogonTime() .

 You can get more flexibility in finding users by using the PrincipalSearcher class. This class is an
abstraction of the DirectorySearcher class and uses this class behind the scenes. With the
 PrincipalSearcher class, you can assign any Principal object to the QueryFilter property. In the
example here, a UserPrincipal object with the properties Surname and Enabled is set to the
 QueryFilter . This way, all user objects starting with the surname Nag and which are enabled are
returned with the PrincipalSearchResult collection. The PrincipalSearcher class creates an LDAP
query string to do the search.

 PrincipalContext context = new PrincipalContext(ContextType.Domain);

 UserPrincipal userFilter = new UserPrincipal(context);
 userFilter.Surname = “Nag*”;
 userFilter.Enabled = true;

 using (PrincipalSearcher searcher = new PrincipalSearcher())
 {
 searcher.QueryFilter = userFilter;
 PrincipalSearchResult < Principal > searchResult =
 searcher.FindAll();
 foreach (var user in searchResult)
 {
 Console.WriteLine(user.Name);
 }
 }

 DSML
 With the namespace System.DirectoryServices.Protocols , you can access Active Directory
through DSML (Directory Services Markup Language). DSML is a standard defined by the OASIS group
(www.oasis-open.org) that allows you to access directory services through a Web service.

 To make Active Directory available through DSML, you must have at least Windows Server 2003 R2 or
you must install DSML Services for Windows. You can download DSML Services for Windows from the
Microsoft Web site: www.microsoft.com/windowsserver2003/downloads/featurepacks/
default.mspx .

c46.indd 1620c46.indd 1620 2/19/08 5:34:46 PM2/19/08 5:34:46 PM

Chapter 46: Directory Services

1621

 Figure 46 - 12 shows a configuration scenario with DSML. A system that offers DSML services accesses
Active Directory via LDAP. On the client system, the DSML classes from the namespace System.
DirectoryServices.Protocols are used to make SOAP requests to the DSML service.

Client System
System.DirectoryServices.Protocols

Web service
DSML

Active
Directory

 Figure 46 - 12

 Classes in System.DirectoryServices.Protocols
 The following table shows the major classes in the System.DirectoryServices.Protocols
namespace.

 Class Description

 DirectoryConnection DirectoryConnection is the base class of all the connection classes
that can be used to define the connection to the directory service. The
classes that derive from DirectoryConnection are LdapConnection
(for using the LDAP protocol), DsmlSoapConnection , and
 DsmlSoapHttpConnection . With the method SendRequest , a message
is sent to the directory service.

 DirectoryRequest A request that can be sent to the directory service is defined by a class
that derives from the base class DirectoryRequest . Depending on the
request type, classes such as SearchRequest , AddRequest ,
 DeleteRequest , and ModifyRequest can be used to send a request.

 DirectoryResponse The result that is returned with a SendRequest is of a type that derives
from the base class DirectoryResponse . Examples for derived classes
are SearchResponse , AddResponse , DeleteResponse , and
 ModifyResponse .

 Searching for Active Directory Objects with DSML
 This section looks at an example of how a search for directory services objects can be performed. As you
can see in the code that follows, first a DsmlSoapHttpConnection object is instantiated that defines the
connection to the DSML service. The connection is defined with the class DsmlDirectoryIdentifier
that contains an Uri object. Optionally, the user credentials can be set with the connection:

 Uri uri = new Uri(“http://dsmlserver/dsml”);
 DsmlDirectoryIdentifier identifier = new DsmlDirectoryIdentifier(uri);

 NetworkCredential credentials = new NetworkCredential();
 credentials.UserName = “cnagel”;
 credentials.Password = “password”;

(continued)

c46.indd 1621c46.indd 1621 2/19/08 5:34:46 PM2/19/08 5:34:46 PM

Part VI: Communication

1622

 credentials.Domain = “explorer”;

 DsmlSoapHttpConnection dsmlConnection =
 new DsmlSoapHttpConnection(identifier, credentials);

 After the connection is defined, the search request can be configured. The search request consists of
the directory entry where the search should start, an LDAP search filter, and the definition of what
property values should be returned from the search. Here, the filter is set to (objectClass=user) ,
so that all user objects are returned from the search. attributesToReturn is set to null , and you
can read all attributes that have values. SearchScope is an enumeration in the namespace
 System.DirectoryServices.Protocols that is similar to the SearchScope enumeration in the
namespace System.DirectoryServices used to define how deep the search should go. Here,
the SearchScope is set to Subtree to walk through the complete Active Directory tree.

 The search filter can be defined with an LDAP string or by using an XML document contained in the
 XmlDocument class:

 string distinguishedName = null;
 string ldapFilter = “(objectClass=user)”;
 string[] attributesToReturn = null;// return all attributes

 SearchRequest searchRequest = new SearchRequest(distinguishedName,
 ldapFilter, SearchScope.Subtree, attributesToReturn);

 After the search is defined with the SearchRequest object, the search is sent to the Web service by
calling the method SendRequest . SendRequest is a method of the DsmlSoapHttpConnection class.
 SendRequest returns a SearchResponse object where the returned objects can be read.

 Instead of invoking the synchronous SendRequest method, the DsmlSoapHttpConnection class also
offers the asynchronous methods BeginSendRequest and EndSendRequest that conform to the
asynchronous .NET pattern.

 The asynchronous pattern is explained in Chapter 19 , “ Threading and Synchronization. ”

 SearchResponse searchResponse =
 (SearchResponse)dsmlConnection.SendRequest(searchRequest);

 The returned Active Directory objects can be read within the SearchResponse . SearchResponse
.Entries contains a collection of all entries that are wrapped with the type SearchResultEntry .
The SearchResultEntry class has the Attributes property that contains all attributes. Each attribute
can be read with help of the DirectoryAttribute class.

 In the code example, the distinguished name of each object is written to the console. Next, the attribute
values for the organizational unit (OU) are accessed, and the name of the organizational unit is written
to the console. After this, all values of the DirectoryAttribute objects are written to the console:

 Console.WriteLine(“\r\nSearch matched {0} entries:”,
 searchResponse.Entries.Count);
 foreach (SearchResultEntry entry in searchResponse.Entries)
 {
 Console.WriteLine(entry.DistinguishedName);

 // retrieve a specific attribute
 DirectoryAttribute attribute = entry.Attributes[“ou”];
 Console.WriteLine(“{0} = {1}”, attribute.Name, attribute[0]);

 // retrieve all attributes

(continued)

c46.indd 1622c46.indd 1622 2/19/08 5:34:47 PM2/19/08 5:34:47 PM

Chapter 46: Directory Services

1623

 foreach (DirectoryAttribute attr in entry.Attributes.Values)
 {
 Console.Write(“{0}=”, attr.Name);

 // retrieve all values for the attribute
 // the type of the value can be one of string, byte[] or Uri
 foreach (object value in attr)
 {
 Console.Write(“{0} “, value);
 }
 Console.WriteLine();
 }
 }

 Adding, modifying, and deleting objects can be done similarly to searching objects. Depending on the
action you want to perform, you can use the corresponding classes.

 Summary
 This chapter discussed the architecture of Active Directory: the important concepts of domains, trees,
and forests. You can access information in the complete enterprise. When writing applications that access
Active Directory services, you must be aware that the data you read might not be up to date because of
the replication latency.

 The classes in the System.DirectoryServices namespaces give you easy ways to access Active
Directory services by wrapping to the ADSI providers. The DirectoryEntry class makes it possible to
read and write objects directly in the data store.

 With the DirectorySearcher class, you can perform complex searches and define filters, timeouts,
properties to load, and a scope. By using the global catalog, you can speed up the search for objects in
the complete enterprise, because it stores a read - only version of all objects in the forest.

 DSML is another API that allows accessing the Active Directory through a Web service interface.

 Classes in System.DirectoryServices.AccountManagement offer an abstraction to make it easier to
create and modify user, group, and computer accounts.

 The next chapter gives you another view on networking with peer - to - peer communication.

c46.indd 1623c46.indd 1623 2/19/08 5:34:47 PM2/19/08 5:34:47 PM

c46.indd 1624c46.indd 1624 2/19/08 5:34:47 PM2/19/08 5:34:47 PM

 Peer - to - Peer Networking

 Peer - to - peer networking, often referred to as P2P, is perhaps one of the most useful and yet
misunderstood technologies to emerge in recent years. When people think of P2P they usually think of
one thing: sharing music files, often illegally. This is because file - sharing applications such as BitTorrent
have risen in popularity at a staggering rate, and these applications use P2P technology to work.

 However, though P2P is used in file - sharing applications, that isn ’ t to say that it doesn ’ t have
other applications. Indeed, as you see in this chapter, P2P can be used for a vast array of applications,
and is becoming more and more important in the interconnected world in which we live. You learn
about this in the first part of this chapter, when you look at an overview of P2P technologies.

 Microsoft has not been oblivious to the emergence of P2P, and has been developing its own tools
and technologies to use it. You can use the Microsoft Windows Peer - to - Peer Networking platform
as a communication framework for P2P applications. This platform includes the important
components Peer Name Resolution Protocol (PNRP) and People Near Me (PNM). Also, version 3.5
of the .NET Framework includes a new namespace, System.Net.PeerToPeer , and several new
types and features that you can use to build P2P applications yourself with a minimum of effort.

 In this chapter you look at:

❑ An overview of P2P

❑ The Microsoft Windows Peer - to - Peer Networking platform, including PNRP and PNM

❑ How to build P2P applications with the .NET Framework

❑ An example P2P application built using the .NET Framework

 Peer - to - Peer Networking Overview
 Peer - to - peer networking is an alternative approach to network communication. In order to
understand how P2P differs from the “ standard ” approach to network communication it is
necessary to take a step backward and look at client - server communications. Client - server
communications are ubiquitous in networked applications today.

c47.indd 1625c47.indd 1625 2/19/08 5:34:58 PM2/19/08 5:34:58 PM

Part VI: Communication

1626

 Client - Server Architecture
 Traditionally, you interact with applications over a network (including the Internet) using a client - server
architecture. Web sites are a great example of this. When you look at a Web site you send a request over
the Internet to a Web server, which then returns the information that you require. If you want to
download a file, you do so directly from the Web server.

 Similarly, desktop applications that include local or wide area network connectivity will typically
connect to a single server, for example, a database server or a server that hosts other services.

 This simple form of client - server architecture is illustrated in Figure 47 - 1 .

Clients

Server

Figure 47-2

Server

Client

Request Response

Figure 47-1

 There is nothing inherently wrong with the client - server architecture, and indeed in many cases it will be
exactly what you want. However, there is a scalability problem. Figure 47 - 2 shows how the client - server
architecture scales with additional clients.

 With every client that is added an increased load is placed on the server, which must communicate with
each client. To return to the Web site example, this is how Web sites collapse. When there is too much
traffic the server simply becomes unresponsive.

 There are of course scaling options that you can implement to mitigate this situation. You can scale up by
increasing the power and resources available to the server, or you can scale out by adding additional
servers. Scaling up is of course limited by the technology available and the cost of better hardware.
Scaling out is potentially more flexible, but requires an additional infrastructure layer to ensure that
clients either communicate with individual servers or that clients can maintain session state independent
of the server with which they are communicating. Plenty of solutions are available for this, such as Web
or server farm products.

c47.indd 1626c47.indd 1626 2/19/08 5:34:59 PM2/19/08 5:34:59 PM

1627

Chapter 47: Peer-to-Peer Networking

 P2P Architecture
 The peer - to - peer approach is completely different from either the scaling up or scaling out approach.
With P2P, instead of focusing on and attempting to streamline the communication between the server
and its clients, you instead look at ways in which clients can communicate with each other.

 Say, for example, that the Web site that clients are communicating with is wrox.com . In our imaginary
scenario, Wrox has announced that a new version of this book is to be released on the wrox.com web site and
will be free to download to anyone who wants it, but that it will be removed after one day. Before the book is
available on the Web site you might imagine that an awful lot of people will be looking at the Web site and
refreshing their browsers, waiting for the file to appear. Once the file is available, everyone will try to
download it at the same time, and more than likely the wrox.com Web server will collapse under the strain.

 You could use P2P technology to prevent this Web server collapse from occurring. Instead of sending the
file directly from the server to all the clients, you send the file to just a few clients. A few of the remaining
clients then download the file from the clients that already have it, a few more clients download it from
those second - level clients, and so on. In fact, this process is made even faster by splitting the file into
chunks and dividing these chunks between clients, some of whom download it directly from the server,
and some of whom download chunks from other clients. This is how file - sharing technologies such as
BitTorrent work, and is illustrated in Figure 47 - 3 .

Server

Clients

Figure 47-3

 P2P Architectural Challenges
 There are still problems to solve in the file - sharing architecture discussed here. For a start, how do clients
detect that other clients exist, and how do they locate chunks of the file that other clients might have?
Also, how can you ensure optimal communication between clients that may be separated by entire
continents?

c47.indd 1627c47.indd 1627 2/19/08 5:35:00 PM2/19/08 5:35:00 PM

Part VI: Communication

1628

 Every client participating in a P2P network application must be able to perform the following operations
to overcome these problems:

❑ It must be able to discover other clients.

❑ It must be able to connect to other clients.

❑ It must be able to communicate with other clients.

 The discovery problem has two obvious solutions. You can either keep a list of the clients on the server
so clients can obtain this list and contact other clients (known as peers), or you can use an infrastructure
(for example PNRP, covered in the next section) that enables clients to find each other directly. Most file -
 sharing systems use the “ list on a server ” solution, by using servers know as trackers. Also, in file -
 sharing systems any client may act as a server as shown in Figure 47 - 3 , by declaring that it has a file
available and registering it with a tracker. In fact, a pure P2P network needs no servers at all, just peers.

 The connection problem is a more subtle one, and concerns the overall structure of the networks used by
a P2P application. If you have one group of clients, all of which can communicate with one another, the
topology of the connections between these clients can become extremely complex. You can often improve
performance by having more than one group of clients, each of which consists of connections between
clients in that group, but not to clients in other groups. If you can make these groups locale - based you
will get an additional performance boost, because clients can communicate with each other with fewer
hops between networked computers.

 Communication is perhaps a problem of lesser importance, because communication protocols such as
TCP/IP are well established and can be reused here. There is, however, scope for improvement in both
high - level technologies (for example, you can use WCF services and therefore all the functionality that
WCF offers) and low - level protocols (such as multicast protocols to send data to multiple endpoints
simultaneously).

 Discovery, connection, and communication are central to any P2P implementation. The implementation
you look at in this chapter is to use the System.Net.PeerToPeer types with PNM for discovery and
PNRP for connection. As you see in subsequent sections, these technologies cover all three of these
operations.

 P2P Terminology
 In the previous sections you were introduced to the concept of a peer , which is how clients are referred to
in a P2P network. The word “ client ” makes no sense in a P2P network because there is not necessarily a
server to be a client of.

 Groups of peers that are connected to each other are known by the interchangeable terms meshes , clouds ,
or graphs . A given group can be said to be well - connected if:

❑ There is a connection path between every pair of peers, so that every peer can connect to any
other peer as required.

❑ There are a relatively small number of connections to traverse between any pair of peers.

❑ Removing a peer will not prevent other peers from connecting to each other.

 Note that this does not mean that every peer must be able to connect to every other peer. In fact, if you
analyze a network mathematically you will find that peers need to connect only to a relatively small
number of other peers in order for these conditions to be met.

 Another P2P concept to be aware of is that of flooding . Flooding is the way in which a single piece of data
may be propagated through a network to all peers, or of querying other nodes in a network to locate a
specific piece of data. In unstructured P2P networks this is a fairly random process of contacting nearest

c47.indd 1628c47.indd 1628 2/19/08 5:35:00 PM2/19/08 5:35:00 PM

1629

Chapter 47: Peer-to-Peer Networking

neighbor peers, which in turn contact their nearest neighbors, and so on until every peer in the network
is contacted. It is also possible to create structured P2P networks such that there are well - defined
pathways for queries and data flow among peers.

 P2P Solutions
 Once you have an infrastructure for P2P you can start to develop not just improved versions of
client - server applications, but entirely new applications. P2P is particularly suited to the following
classes of applications:

❑ Content distribution applications, including the file - sharing applications discussed earlier.

❑ Collaboration applications, such as desktop sharing and shared whiteboard applications.

❑ Multi - user communication applications that allow users to communicate and exchange data
directly rather than through a server.

❑ Distributed processing applications, as an alternative to supercomputing applications that
process enormous amounts of data.

❑ Web 2.0 applications that combine some or all of the above in dynamic next - generation Web
applications.

 Microsoft Windows Peer - to - Peer Networking
 The Microsoft Windows Peer - to - Peer Networking platform is Microsoft ’ s implementation of P2P
technology. It is part of Windows XP SP2 and Windows Vista, and is also available as an add - on for
Windows XP SP1. It includes two technologies that you can use when creating .NET P2P applications:

❑ The Peer Name Resolution Protocol (PNRP), which is used to publish and resolve peer
addresses

❑ The People Near Me server, which is used to locate local peers (currently Vista only)

 In this section you learn about both of these.

 Peer Name Resolution Protocol (PNRP)
 You can of course use any protocol at your disposal to implement a P2P application, but if you are
working in a Microsoft Windows environment (and, let ’ s face it, if you ’ re reading this book you probably
are) it makes sense to at least consider PNRP. There have been two versions of PNRP released to date.
PNRP version 1 was included in Windows XP SP2, Windows XP Professional x64 Edition, and Windows
XP SP1 with the Advanced Networking Pack for Windows XP. PNRP version 2 was released with
Windows Vista, and was made available to Windows XP SP2 users through a separate download
(see KB920342 at support.microsoft.com/kb/920342). Version 1 and version 2 of PNRP are not
compatible, and this chapter covers only version 2.

 In itself, PNRP doesn ’ t give you everything you need to create a P2P application. Rather, it is one of the
underlying technologies that you use to resolve peer addresses. PNRP enables a client to register an
endpoint (known as a peer name) that is automatically circulated among peers in a cloud. This peer name
is encapsulated in a PNRP ID . A peer that discovers the PNRP ID is able to use PNRP to resolve it to the
actual peer name, and can then communicate directly with it.

 For example, you might define a peer name that represents a WCF service endpoint. You could use
PNRP to register this peer name in a cloud as a PNRP ID. A peer running a suitable client application
that uses a discovery mechanism that can identify peer names for the service you are exposing might

c47.indd 1629c47.indd 1629 2/19/08 5:35:00 PM2/19/08 5:35:00 PM

Part VI: Communication

1630

then discover this PNRP ID. Once discovered, the peer would use PNRP to locate the endpoint of the
WCF service and then use that service.

 An important point is that PNRP makes no assumptions about what a peer name actually represents. It
is up to peers to decide how to use them once discovered. The information a peer receives from PNRP
when resolving a PNRP ID includes the IPv6 (and usually also the IPv4) address of the publisher of the
ID, along with a port number and optionally a small amount of additional data. Unless the peer knows
what the peer name means it is unlikely to be able to do anything useful with this information.

 PNRP IDs
 PNRP IDs are 256 - bit identifiers. The low - order 128 bits are used to uniquely identify a particular peer,
and the high - order 128 bits identify a peer name. The high - order 128 bits are a hashed combination of a
hashed public key from the publishing peer and a string of up to 149 characters that identifies the peer
name. The hashed public key (known as the authority) combined with this string (the classifier) are together
referred to as the P2P ID. It is also possible to use a value of 0 instead of a hashed public key, in which case
the peer name is said to be unsecured (as opposed to secured peer names, which use a public key).

 The structure of a PNRP ID is illustrated in Figure 47 - 4 .

PNRP ID

128-bit hashed P2P 128-bit service location

P2P ID

Authority (hashed public key) Classifier (peer name identifier)

Figure 47-4

 The PNRP service on a peer is responsible for maintaining a list of PNRP IDs, including the ones that it
publishes as well as a cached list of those it has obtained by PNRP service instances elsewhere in
the cloud. When a peer attempts to resolve a PNRP ID, the PNRP service either uses a cached copy of the
endpoint to resolve the peer that published the PNRP or it asks its neighbors if they can resolve it.
Eventually a connection to the publishing peer is made and the PNRP service can resolve the PNRP ID.

 Note that all of this happens without you having to intervene in any way. All you have to do is ensure that
peers know what to do with peer names once they have resolved them using their local PNRP service.

 Peers can use PNRP to locate PNRP IDs that match a particular P2P ID. You can use this to implement a
very basic form of discovery for unsecured peer names. This is because if several peers expose an
unsecured peer name that uses the same classifier, the P2P ID will be the same. Of course, because any
peer can use an unsecured peer name you have no guarantee that the endpoint you connect to will be
the sort of endpoint you expect, so this is only really a viable solution for discovery over a local network.

 PNRP Clouds
 In the preceding discussion you learned how PNRP registers and resolves peer names in clouds. A cloud
is maintained by a seed server , which can be any server running the PNRP service that maintains a record
of at least one peer. Two types of cloud are available to the PNRP service:

c47.indd 1630c47.indd 1630 2/19/08 5:35:01 PM2/19/08 5:35:01 PM

1631

Chapter 47: Peer-to-Peer Networking

❑ Link local — These clouds consist of the computers attached to a local network. A PC may be
connected to more than one link local cloud if it has multiple network adapters.

❑ Global — This cloud consists of computers connected to the Internet by default, although it is
also possible to define a private global cloud. The difference is that Microsoft maintains the seed
server for the global Internet cloud, whereas if you define a private global cloud you must use
your own. If you use your own seed server you must ensure that all peers connect to it by
configuring policy settings.

 In past releases of PNRP there was a third type of cloud, site local. This is no longer used and you won ’ t
look at it in this chapter.

 You can discover what clouds you are connected to with the following command:

netsh p2p pnrp cloud show list

 A typical result is shown in Figure 47 - 5 .

Figure 47-5

 Figure 47 - 5 shows that a single cloud is available, and that it is a link local cloud. You can tell this from
both the name and the Scope value, which is 3 for link local clouds and 1 for global clouds. In order to
connect to a global cloud you must have a global IPv6 address. The computer used to generate Figure
 47 - 5 does not have one, which is why only a local cloud is available.

 Clouds may be in one of the following states:

❑ Active — If the state of a cloud is active, you can use it to publish and resolve peer names.

❑ Alone — If the peer you are querying the cloud from is not connected to any other peers, it will
have a state of alone.

❑ No Net — If the peer is not connected to a network, the cloud state may change from active to
no net.

❑ Synchronizing — Clouds will be in the synchronizing state when the peer is connecting to
them. This state will change to another state extremely quickly because this connection does not
take long, so you will probably never see a cloud in this state.

❑ Virtual — The PNRP service connects to clouds only as required by peer name registration and
resolution. If a cloud connection has been inactive for more than 15 minutes it may enter the
virtual state.

 If you experience network connectivity problems you should check your firewall in case it is preventing
local network traffic over the UDP ports 3540 or 1900. UDP port 3540 is used by PNRP, and UDP port
1900 is used by the Simple Service Discovery Protocol (SSDP), which in turn is used by the PNRP service
(as well as UPnP devices).

c47.indd 1631c47.indd 1631 2/19/08 5:35:01 PM2/19/08 5:35:01 PM

Part VI: Communication

1632

 People Near Me
 PNRP, as you saw in the previous section, is used to locate peers. This is obviously important as an
enabling technology when you consider the discovery/connection/communication process of a P2P
application, but in itself is not a complete implementation of any of these stages. The People Near Me
service is an implementation of the discovery stage, and enables you to locate peers that are signed into
the Window People Near Me service in your local area (that is, in a link local cloud that you are
connected to).

 You may have come across this service because it is built into Vista, and is used in the Windows Meeting
Space application, which you can use for sharing applications among peers. You can configure this
service through the Start menu with the dialog shown in Figure 47 - 6 .

Figure 47-6

 Once signed in the service is available to any application that is built to use the PNM service.

 At the time of writing, PNM is available only on the Windows Vista family of operating systems.
However, it is possible that future service packs or additional downloads may make it available on
Windows XP.

 Building P2P Applications
 Now that you have learned what P2P networking is and what technologies are available to .NET
developers to implement P2P applications, it is time to look at how you can build them. From the
previous discussion you know that you will be using PNRP to publish, distribute, and resolve peer
names, so the first thing you look at here is how to achieve that using .NET. Next you look at how to use
PNM as a framework for a P2P application. This can be advantageous because you do not have to
implement your own discovery mechanisms.

c47.indd 1632c47.indd 1632 2/19/08 5:35:01 PM2/19/08 5:35:01 PM

1633

Chapter 47: Peer-to-Peer Networking

 To examine these subjects you need to learn about the classes in the following namespaces:

❑ System.Net.PeerToPeer

❑ System.Net.PeerToPeer.Collaboration

 To use these classes you must have a reference to the System.Net.dll assembly.

 System.Net.PeerToPeer
 The classes in the System.Net.PeerToPeer namespace encapsulate the API for PNRP and enable you
to interact with the PNRP service. You will use these classes for two main tasks:

❑ Registering peer names

❑ Resolving peer names

 In the following sections, all the types referred to come from the System.Net.PeerToPeer namespace
unless otherwise specified.

 Registering Peer Names
 To register a peer name you must carry out the following steps:

 1. Create a secured or unsecured peer name with a specified classifier.

 2. Configure a registration for the peer name, specifying some or none of the following optional
information:

❑ A TCP port number

❑ The cloud or clouds to register the peer name with (if unspecified, PNRP will register the
peer name in all available clouds)

❑ A comment of up to 39 characters

❑ Up to 4096 bytes of additional data

❑ Whether to generate endpoints for the peer name automatically (the default behavior,
where endpoints will be generated from the IP address or addresses of the peer and, if
specified, the port number)

❑ A collection of endpoints

 3. Use the peer name registration to register the peer name with the local PNRP service.

 After Step 3 the peer name will be available to all peers in the selected cloud (or clouds). Peer registration
continues until it is explicitly stopped, or until the process that registered the peer name is terminated.

 To create a peer name you use the PeerName class. You create an instance of this class from a string
representation of a P2P ID in the form authority.classifier or from a classifier string and a
 PeerNameType . You can use PeerNameType.Secured or PeerNameType.Unsecured . For example:

PeerName pn = new PeerName(“Peer classifier”, PeerNameType.Secured);

 Because an unsecured peer name uses an authority value of 0, the following lines of code are equivalent:

PeerName pn = new PeerName(“Peer classifier”, PeerNameType.Unsecured);

PeerName pn = new PeerName(“0.Peer classifier”);

c47.indd 1633c47.indd 1633 2/19/08 5:35:02 PM2/19/08 5:35:02 PM

Part VI: Communication

1634

 Once you have a PeerName instance you can use it along with a port number to initialize a
 PeerNameRegistration object:

PeerNameRegistration pnr = new PeerNameRegistration(pn, 8080);

 Alternatively, you can set the PeerName and (optionally) the Port properties on a
 PeerNameRegistration object created using its default parameter. You can also specify a Cloud
instance as a third parameter of the PeerNameRegistration constructor, or through the Cloud
property. You can obtain a Cloud instance from the cloud name or by using one of the following static
members of Cloud :

❑ Cloud.Global — This static property obtains a reference to the global cloud. This may be a
private global cloud depending on peer policy configuration.

❑ Cloud.AllLinkLocal — This static field gets a cloud that contains all the link local clouds
available to the peer.

❑ Cloud.Available — This static field gets a cloud that contains all the clouds that are available
to the peer, which includes link local clouds and (if available) the global cloud.

 Once created, you can set the Comment and Data properties if you want to. Be aware of the limitations of
these properties, though. You will receive a PeerToPeerException if you try to set Comment to a string
of greater than 39 Unicode characters or an ArgumentOutOfRangeException if you try to set Data to a
 byte[] of greater than 4096 bytes. You can also add endpoints by using the EndPointCollection
property. This property is a System.Net.IPEndPointCollection collection of System.Net.
IPEndPoint objects. If you use the EndPointCollection property you might also want to set the
 UseAutoEndPointSelection property to false to prevent automatic generation of endpoints.

 When you are ready to register the peer name you can call the PeerNameRegistration.Start()
method. To remove a peer name registration from the PNRP service you use the
 PeerNameRegistration.Stop() method.

 The following code registers a secured peer name with a comment:

PeerName pn = new PeerName(“Peer classifier”, PeerNameType.Unsecured);
PeerNameRegistration pnr = new PeerNameRegistration(pn, 8080);
pnr.Comment = “Get pizza here”;
pnr.Start();

 Resolving Peer Names
 To resolve a peer name you must carry out the following steps:

 1. Generate a peer name from a known P2P ID or a P2P ID obtained through a discovery
technique.

 2. Use a resolver to resolve the peer name and obtain a collection of peer name records. You can
limit the resolver to a particular cloud and/or a maximum number of results to return.

 3. For any peer name records that you obtain, obtain peer name, endpoint, comment, and
additional data information as required.

 This process starts with a PeerName object just like peer name registration. The difference here is that
you use a peer name that is registered by one or more remote peers. The simplest way to get a list of
active peers in your link local cloud is for each peer to register an unsecured peer name with the same
classifier and to use the same peer name in the resolving phase. However, this is not a recommended
strategy for global clouds because unsecured peer names are easily spoofed.

 To resolve peer names you use the PeerNameResolver class. Once you have an instance of this class
you can choose to resolve peer names synchronously by using the Resolve() method, or
asynchronously using the ResolveAsync() method.

c47.indd 1634c47.indd 1634 2/19/08 5:35:02 PM2/19/08 5:35:02 PM

1635

Chapter 47: Peer-to-Peer Networking

 You can call the Resolve() method with a single PeerName parameter, but you can also pass an
optional Cloud instance to resolve in, an int maximum number of peers to return, or both. This method
returns a PeerNameRecordCollection instance, which is a collection of PeerNameRecord objects. For
example, the following code resolves an unsecured peer name in all link local clouds and returns a
maximum of 5 results:

PeerName pn = new PeerName(“0.Peer classifier”);
PeerNameResolver pnres = new PeerNameResolver();
PeerNameRecordCollection pnrc = pnres.Resolve(pn, Cloud.AllLinkLocal, 5);

 The ResolveAsync() method uses a standard asynchronous method call pattern. You pass a unique
 userState object to the method, and listen for ResolveProgressChanged events for peers being found
and the ResolveCompleted event when the method terminates. You can cancel a pending asynchronous
request with the ResolveAsyncCancel() method.

 Event handlers for the ResolveProgressChanged event use the ResolveProgressChangedEventArgs
event arguments parameter, which derives from the standard System.ComponentModel
.ProgressChangedEventArgs class. You can use the PeerNameRecord property of the event argument
object you receive in the event handler to get a reference to the peer name record that was found.

 Similarly, the ResolveCompleted event requires an event handler that uses a parameter of type
 ResolveCompletedEventArgs , which derives from AsyncCompletedEventArgs . This type includes a
 PeerNameRecordCollection parameter you can use to obtain a complete list of the peer name records
that were found.

 The following code shows an implementation of event handlers for these events:

private pnres_ResolveProgressChanged(object sender,
 ResolveProgressChangedEventArgs e)
{
 // Use e.ProgressPercentage (inherited from base event args)
 // Process PeerNameRecord from e.PeerNameRecord
}

private pnres_ResolveCompleted(object sender,
 ResolveCompletedEventArgs e)
{
 // Test for e.IsCancelled and e.Error (inherited from base event args)
 // Process PeerNameRecordCollection from e.PeerNameRecordCollection
}

 Once you have one or more PeerNameRecord objects you can proceed to process them. This
 PeerNameRecord class exposes Comment and Data properties to examine the comment and data set in
the peer name registration (if any), a PeerName property to get the PeerName object for the peer name
record, and, most importantly, an EndPointCollection property. As with PeerNameRegistration ,
this property is a System.Net.IPEndPointCollection collection of System.Net.IPEndPoint
objects. You can use these objects to connect to end points exposed by the peer in any way you want.

 Code Access Security in System.Net.PeerToPeer
 The System.Net.PeerToPeer namespace also includes the following two classes that you can use with
CAS (see Chapter 20):

❑ PnrpPermission , which inherits from CodeAccessPermission

❑ PnrpPermissionAttribute , which inherits from CodeAccessSecurityAttribute

 You can use these classes to provide permissions functionality for PNRP access in the usual CAS way.

c47.indd 1635c47.indd 1635 2/19/08 5:35:02 PM2/19/08 5:35:02 PM

Part VI: Communication

1636

 Sample Application
 The downloadable code for this chapter includes a sample P2P application (P2PSample) that uses the
concepts and namespace introduced in this section. It is a WPF application that uses a WCF service for a
peer endpoint.

 The application is configured with an application configuration file, in which you can specify the name
of the peer and a port to listen on as follows:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < appSettings >
 < add key=”username” value=”Karli” / >
 < add key=”port” value=”8731” / >
 < /appSettings >
 < /configuration >

 Once you have built the application you can test it either by copying it to other computers in your local
network and running all instances, or by running multiple instances on one computer. If you choose the
latter option you must remember to change the port used for each instance by changing individual
config files (copy the contents of the Debug directory on your local computer and edit each config file in
turn). Things will be clearer in both ways of testing this application if you also change the username for
each instance.

 Once the peer applications are running, you can use the Refresh button to obtain a list of peers
asynchronously. When you have located a peer you can send a default message by clicking the Message
button for the peer.

 Figure 47 - 7 shows this application in action with three instances running on one machine. In the figure,
one peer has just messaged another and this has resulted in a dialog box.

Figure 47-7

 Most of the work in this application takes place in the Window_Loaded() event handler for the Window1
window. This method starts by loading configuration information and setting the window title with the
username:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Get configuration from app.config
 string port = ConfigurationManager.AppSettings[“port”];

c47.indd 1636c47.indd 1636 2/19/08 5:35:03 PM2/19/08 5:35:03 PM

1637

Chapter 47: Peer-to-Peer Networking

 string username = ConfigurationManager.AppSettings[“username”];
 string machineName = Environment.MachineName;
 string serviceUrl = null;

 // Set window title
 this.Title = string.Format(“P2P example - {0}”, username);

 Next the peer host address is used along with the configured port to determine the endpoint on which to
host the WCF service. The service will use NetTcpBinding binding, so the URL of the endpoint uses the
 net.tcp protocol:

 // Get service url using IPv4 address and port from config file
 foreach (IPAddress address in Dns.GetHostAddresses(Dns.GetHostName()))
 {
 if (address.AddressFamily ==
 System.Net.Sockets.AddressFamily.InterNetwork)
 {
 serviceUrl = string.Format(“net.tcp://{0}:{1}/P2PService”,
 address, port);
 break;
 }
 }

 The endpoint URL is validated, and then the WCF service is registered and started:

 // Check for null address
 if (serviceUrl == null)
 {
 // Display error and shutdown
 MessageBox.Show(this, “Unable to determine WCF endpoint.”,
 “Networking Error”, MessageBoxButton.OK, MessageBoxImage.Stop);
 Application.Current.Shutdown();
 }

 // Register and start WCF service.
 localService = new P2PService(this, username);
 host = new ServiceHost(localService, new Uri(serviceUrl));
 NetTcpBinding binding = new NetTcpBinding();
 binding.Security.Mode = SecurityMode.None;
 host.AddServiceEndpoint(typeof(IP2PService), binding, serviceUrl);
 try
 {
 host.Open();
 }
 catch (AddressAlreadyInUseException)
 {
 // Display error and shutdown
 MessageBox.Show(this, “Cannot start listening, port in use.”,
 “WCF Error”, MessageBoxButton.OK, MessageBoxImage.Stop);
 Application.Current.Shutdown();
 }

 A singleton instance of the service class is used to enable easy communication between the host app and
the service (for sending and receiving messages). Also, note that security is disabled in the binding
configuration for simplicity.

c47.indd 1637c47.indd 1637 2/19/08 5:35:03 PM2/19/08 5:35:03 PM

Part VI: Communication

1638

 Next, the System.Net.PeerToPeer namespace classes are used to register a peer name:

 // Create peer name
 peerName = new PeerName(“P2P Sample”, PeerNameType.Unsecured);

 // Prepare peer name registration in link local clouds
 peerNameRegistration = new PeerNameRegistration(peerName, int.Parse(port));
 peerNameRegistration.Cloud = Cloud.AllLinkLocal;

 // Start registration
 peerNameRegistration.Start();
}

 When the Refresh button is clicked the RefreshButton_Click() event handler uses
 PeerNameResolver.ResolveAsync() to get peers asynchronously:

private void RefreshButton_Click(object sender, RoutedEventArgs e)
{
 // Create resolver and add event handlers
 PeerNameResolver resolver = new PeerNameResolver();
 resolver.ResolveProgressChanged +=
 new EventHandler < ResolveProgressChangedEventArgs > (
 resolver_ResolveProgressChanged);
 resolver.ResolveCompleted +=
 new EventHandler < ResolveCompletedEventArgs > (
 resolver_ResolveCompleted);

 // Prepare for new peers
 PeerList.Items.Clear();
 RefreshButton.IsEnabled = false;

 // Resolve unsecured peers asynchronously
 resolver.ResolveAsync(new PeerName(“0.P2P Sample”), 1);
}

 The remainder of the code is responsible for displaying and communicating with peers, and you can
explore it at your leisure.

 Exposing WCF endpoints through P2P clouds is a great way of locating services within an enterprise, as
well as being an excellent way to communicate between peers as in this example.

 System.Net.PeerToPeer.Collaboration
 The classes in the System.Net.PeerToPeer.Collaboration namespace provide a framework you can
use to create applications that use the People Near Me service and the P2P collaboration API. As
mentioned earlier, this is possible only if you are using Windows Vista at the moment.

 You can use the classes in this namespace to interact with peers and applications in a number of
ways, including:

❑ Signing in and signing out

❑ Discovering peers

❑ Managing contacts and detecting peer presence

 You can also use the classes in this namespace to invite other users to join an application, and to
exchange data between users and applications. However, in order to do this you need to create your own
PNM - capable applications, which is beyond the scope of this chapter.

c47.indd 1638c47.indd 1638 2/19/08 5:35:03 PM2/19/08 5:35:03 PM

1639

Chapter 47: Peer-to-Peer Networking

 In the following sections, all the types referred to come from the System.Net.PeerToPeer.
Collaboration namespace unless otherwise specified.

 Signing In and Signing Out
 One of the most important classes in the System.Net.PeerToPeer.Collaboration namespace is the
 PeerCollaboration class. This is a static class that exposes numerous static methods that you can use
for various purposes, as you will see in this and subsequent sections. You can use two of the methods it
exposes, SignIn() and SignOut() , to (unsurprisingly) sign in and sign out of the People Near Me
service. Both of these methods take a single parameter of type PeerScope , which can be one of the
following values:

❑ PeerScope.None — If you use this value, SignIn() and SignOut() will have no effect.

❑ PeerScope.NearMe — This will sign you in to or out of the link local clouds.

❑ PeerScope.Internet — This will sign you in to or out of the global cloud (which may be
necessary to connect to a contact who is not currently on your local subnet).

❑ PeerScope.All — This will sign you in to or out of all available clouds.

 If necessary, calling SignIn() will cause the People Near Me configuration dialog to be displayed.

 When a peer is signed in you can use the PeerCollaboration.LocalPresenceInfo property to a
value of type PeerPresenceInfo . This enables standard IM functionality, such as setting your status to
away. You can set the PeerPresenceInfo.DescriptiveText property to a Unicode string of up to 255
characters, and the PeerPresenceInfo.PresenceStatus property to a value from the
 PeerPresenceStatus enumeration. The values that you can use for this enumeration are as follows:

❑ PeerPresenceStatus.Away — The peer is away.

❑ PeerPresenceStatus.BeRightBack — The peer is away, but will be back soon.

❑ PeerPresenceStatus.Busy — The peer is busy.

❑ PeerPresenceStatus.Idle — The peer isn ’ t active.

❑ PeerPresenceStatus.Offline — The peer is offline.

❑ PeerPresenceStatus.Online — The peer is online and available.

❑ PeerPresenceStatus.OnThePhone — The peer is busy with a phone call.

❑ PeerPresenceStatus.OutToLunch — The peer is away, but will be back after lunch.

 Discovering Peers
 You can obtain a list of peers near you if you are logged in to the link local cloud. You do this by using
the PeerCollaboration.GetPeersNearMe() method. This returns a PeerNearMeCollection object
containing PeerNearMe objects.

 You can use the Nickname property of PeerNearMe to obtain the name of a peer, IsOnline to determine
whether the peer is online, and (for lower - level operations) the PeerEndpoints property to determine
endpoints related to the peer. PeerEndPoints is also necessary if you want to find out the online status
of a PeerNearMe . You can pass an endpoint to the GetPresenceInfo() method to obtain a
 PeerPresenceInfo object, as described in the previous section.

 Managing Contacts and Detecting Peer Presence
 Contacts are a way in which you can remember peers. You can add a peer discovered through the People
Near Me service and from then onward you can connect to them whenever you are both online. You can

c47.indd 1639c47.indd 1639 2/19/08 5:35:04 PM2/19/08 5:35:04 PM

Part VI: Communication

1640

connect to a contact through link local or global clouds (assuming you have IPv6 connectivity to the
Internet).

 You can add a contact from a peer that you have discovered, by calling the PeerNearMe
.AddToContactManager() method. When you call this method you can choose to associate a display
name, nickname, and email address with the contact. Typically, though, you will manage contacts by
using the ContactManager class.

 However you manipulate contacts, you will be dealing with PeerContact objects. PeerContact , like
 PeerNearMe , inherits from the abstract Peer base class. PeerContact has more properties and methods
than PeerNearMe . PeerContact includes DisplayName and EmailAddress properties that further
describe a PNM peer, for example. Another difference between these two types is that PeerContact has
a more explicit relationship with the System.Net.PeerToPeer.PeerName class. You can get a
 PeerName from a PeerContact through the PeerContact.PeerName property. Once you have done
this you can proceed to use techniques you looked at earlier to communicate with any endpoints the
 PeerName exposes.

 Information about the local peer is also accessible through the ContactManager class, through the static
 ContactManager.LocalContact property. This gets you a PeerContact property with details of the
local peer.

 You can add PeerNearMe objects to the local list of contacts by using either the ContactManager
.CreateContact() or CreateContactAsync() method, or PeerName objects by using the
 GetContact() method. You can remove contacts represented by a PeerNearMe or PeerName object
with the DeleteContact() method.

 Finally, there are events that you can handle to respond to changes to contacts. For example, you can use
the PresenceChanged event to respond to changes of presence for any of the contacts known by the
 ContactManager .

 Sample Application
 There is a second sample application in the downloadable code for this chapter that illustrates the use of
classes in the System.Net.PeerToPeer.Collaboration namespace. This application is similar to the
other sample, but much simpler. You will need two computers that can both sign in to the PNM server in
order to see this application in action, because it enumerates and displays PNM peers from the local subnet.

 When you run the application with at least one peer available for discovery the display will be similar to
Figure 47 - 8 .

Figure 47-8

 The code is structured in the same way as the previous example, so if you ’ ve read through that code you
should be familiar with this code. This time there is not much work to do in the Window_Loaded()
event handler except sign in, because there is no WCF service to initialize or peer name registration to
achieve:

c47.indd 1640c47.indd 1640 2/19/08 5:35:04 PM2/19/08 5:35:04 PM

1641

Chapter 47: Peer-to-Peer Networking

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Sign in to PNM
 PeerCollaboration.SignIn(PeerScope.NearMe);

 To make things look a little nicer, though, ContactManager.LocalContact.Nickname is used to
format the window title:

 // Get local peer name to display
 this.Title = string.Format(“PNMSample - {0}”,
 ContactManager.LocalContact.Nickname);
}

 In Window_Closing() the local peer is automatically signed out of PNM:

private void Window_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Sign out of PNM
 PeerCollaboration.SignOut(PeerScope.NearMe);
}

 Most of the work is done in the RefreshButton_Click() event handler. This uses the
 PeerCollaboration.GetPeersNearMe() method to obtain a list of peers, and add those peers to the
display using the PeerEntry class defined in the project, or a failure message if none are found.

private void RefreshButton_Click(object sender, RoutedEventArgs e)
{
 // Get local peers
 PeerNearMeCollection peersNearMe = PeerCollaboration.GetPeersNearMe();

 // Prepare for new peers
 PeerList.Items.Clear();

 // Examine peers
 foreach (PeerNearMe peerNearMe in peersNearMe)
 {
 PeerList.Items.Add(
 new PeerEntry
 {
 PeerNearMe = peerNearMe,
 PresenceStatus = peerNearMe.GetPresenceInfo(
 peerNearMe.PeerEndPoints[0]).PresenceStatus,
 DisplayString = peerNearMe.Nickname
 });
 }

 // Add failure message if necessary
 if (PeerList.Items.Count == 0)
 {
 PeerList.Items.Add(
 new PeerEntry
 {
 DisplayString = “No peers found.”
 });
 }
}

c47.indd 1641c47.indd 1641 2/19/08 5:35:05 PM2/19/08 5:35:05 PM

Part VI: Communication

1642

 As you can see from this example, interacting with the PNM service is made very simple by the classes
you have learned about.

 Summary
 This chapter demonstrated how to implement peer - to - peer (P2P) functionality in your applications by
using the new P2P classes in .NET 3.5.

 You have looked at the types of solutions that P2P makes possible and how these solutions are
structured, how to use PNRP and PNM, and how to use the types in the System.Net.PeerToPeer and
 System.Net.PeerToPeer.Collaboration namespace. You also saw the extremely useful technique of
exposing WCF services as P2P endpoints.

 If you are interested in developing P2P applications it is well worth investigating PNM further. It is also
worth looking at the peer channel, by which WCF services can broadcast communications among
multiple clients simultaneously.

 In the next chapter you look at syndication, and you see how you can expose data in RSS and Atom feeds.

c47.indd 1642c47.indd 1642 2/19/08 5:35:05 PM2/19/08 5:35:05 PM

 Syndication

 Do you have some structured data to offer, data that changes from time to time? With many web
sites, RSS or Atom symbols allow you to subscribe with feed readers. Really Simple Syndication
(RSS) is an XML format that allows syndicate information. RSS became very popular with blogs.
This XML information makes it easy to subscribe to using RSS readers.

 Nowadays, RSS is not only used with blogs but with many different data sources, such as online
news magazines. Any data that changes from time to time is offered by RSS or by its successor
protocol Atom. Internet Explorer 7 and Outlook 2007 offer RSS and Atom readers that are
integrated into the product.

 .NET 3.5 extends Windows Communication Foundation (WCF) with syndication features.
Syndication classes are defined within the namespace System.ServiceModel.Syndication .
This namespace provides classes that can be used to both read and write RSS and Atom feeds.

 This chapter shows you how to create syndication readers, as well as how data can be offered. This
chapter offers the following:

 An overview of System.ServiceModel.Syndication

 Information about Syndication Reader

 Information about Syndication Feeds

 Overview of System.Servicemodel.
Syndication

 System.ServiceModel.Syndication is a new namespace with .NET 3.5 that allows you to offer
data in the RSS or Atom format.

 With the release of RSS version 2.0, RSS is now the shorthand notation for Really Simple
Syndication. In earlier versions, it had the name RDF Site Summary and Rich Site Summary. RDF
is the abbreviation for Resource Description Framework. The first version was created by Netscape
to describe content of its portal site. It became successful when the New York Times began offering
its readers subscriptions to RSS news feeds in 2002. Figure 48 - 1 shows the RSS logo. If a site shows
this logo, then an RSS feed is offered.

❑

❑

❑

c48.indd 1643c48.indd 1643 2/19/08 5:35:13 PM2/19/08 5:35:13 PM

1644

Part VI: Communication

 Atom was designed to be the successor for RSS and is a proposed standard with RFC 4287:
www.ietf.org/rfc/rfc4287.txt . The major difference between RSS and Atom is in the content that can
be defined with an item. With RSS, the description element can contain simple text or HTML content in
which the reading application does not care about this content. Atom requires that you define a specific type
for the content with a type attribute, and it also allows you to have XML content with defined namespaces.

 The following table lists classes from .NET 3.5 that allow you to create a syndication feed. These classes
are independent of the syndication type, RSS or Atom.

 Figure 48 - 1

Class Description

SyndicationFeed SyndicationFeed represents the top-level element of a feed. With Atom,
the top-level element is <feed>; RSS defines <rss> as the top-level element.
With the static method Load(), a feed can be read using an XmlReader.
Properties of this class such as Authors, Categories, Contributors,
Copyright, Description, ImageUrl, Links, Title, and Items allow you
to define child elements.

SyndicationPerson SyndicationPerson represents a person with Name, Email, and Uri that
can be assigned to the Authors and Contributors collection.

SyndicationItem A feed consists of multiple items. Some of the properties of an item are
Authors, Contributors, Copyright, and Content.

SyndicationLink SyndicationLink represents a link within a feed or an item. This class
defines the properties Title and Uri.

SyndicationCategory A feed can group items into categories. The keyword of a category can be
set to the Name and Label properties of SyndicationCategory.

SyndicationContent SyndicationContent is an abstract base class that describes the content
of an item. Content can be of type HTML, plain text, XHTML, XML, or a
URL, described with the concrete classes TextSyndicationContent,
UrlSyndicationContent, and XmlSyndicationContent.

SyndicationElement-
Extension

With an extension element, you can add additional content.
The SyndicationElementExtension can be used to add information to a
feed, a category, a person, a link, and an item.

c48.indd 1644c48.indd 1644 2/19/08 5:35:14 PM2/19/08 5:35:14 PM

Chapter 48: Syndication

1645

 To format a feed to the RSS and Atom formats, you can use classes from the following table.

Class Description

Atom10FeedFormatter
Rss20FeedFormatter

Atom10FeedFormatter and Rss20FeedFormatter derive from the
abstract base class SyndicationFeedFormatter.
Atom10FeedFormatter serializes a SyndicationFeed to the Atom 1.0
format, the Rss20FeedFormatter to the RSS 2.0 format.

Atom10ItemFormatter
Rss20ItemFormatter

Atom10ItemFormatter and Rss20ItemFormatter derive from the
abstract base class SyndicationItemFormatter.
Atom10ItemFormatter serializes a SyndicationItem to the Atom 1.0
format, the Rss20ItemFormatter to the RSS 2.0 format.

 Syndication Reader
 Our first example is a Syndication Reader application with a user interface developed with WPF.
The user interface of the WPF application is shown in Figure 48 - 2 .

Figure 48-2

 To use the Syndication API, the assembly System.ServiceModel.Web is referenced with the
application. The OnGetFeed() event handler method is set to the Click event of the button showing the
Get Feed text. The code needed to read the application is really simple. First, the XML content from
the RSS feed is read into the XmlReader class from the System.Xml namespace. Rss20FeedFormatter
accepts an XmlReader with the ReadFrom() method. For data - binding, the Feed property that returns a
 SyndicationFeed is assigned to the DataContext of the Window, and the Feed.Items property that
returns IEnumerable < SyndicationItem > is assigned to the DataContext of a DockPanel container.

c48.indd 1645c48.indd 1645 2/19/08 5:35:15 PM2/19/08 5:35:15 PM

1646

Part VI: Communication

 private void OnGetFeed(object sender, RoutedEventArgs e)
 {
 XmlReader reader = XmlReader.Create(textUrl.Text);
 Rss20FeedFormatter formatter = new Rss20FeedFormatter();
 formatter.ReadFrom(reader);
 reader.Close();
 this.DataContext = formatter.Feed;
 this.feedContent.DataContext = formatter.Feed.Items;
 }

 The XAML code that defines the user interface is shown next. The Title property of the Window class is
bound to the Title.Text property of the SyndicationFeed to display the title of the feed.

 In the XAML code, a DockPanel named heading , which contains a Label bound to Title.Text and a
 Label bound to Description.Text , is defined. Because these labels are contained within the
 DockPanel named feedContent , and feedContent is bound to the Feed.Items property, these labels
give title and description information about the current selected item.

 A list of items is displayed in a ListBox that uses an ItemTemplate to bind a label to the Title .

 The DockPanel named content contains a Frame element that binds the Source property to the first link
of an item. With that setting, the Frame control uses the web browser control to display the content from
the link, as shown in Figure 48 - 2 .

 < Window x:Class=”RSSReader.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”{Binding Path=Title.Text}” Height=”300” Width=”345” >
 < Window.Resources >
 < Style x:Key=”listTitleStyle” TargetType=”{x:Type ListBox}” >
 < Setter Property=”ItemTemplate” >
 < Setter.Value >
 < DataTemplate >
 < Label Content=”{Binding Title.Text}” / >
 < /DataTemplate >
 < /Setter.Value >
 < /Setter >
 < /Style >
 < /Window.Resources >
 < DockPanel x:Name=”feedContent” >
 < Grid DockPanel.Dock=”Top” >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”50” / >
 < ColumnDefinition Width=”*” / >
 < ColumnDefinition Width=”90” / >
 < /Grid.ColumnDefinitions >
 < Label Grid.Column=”0” Margin=”5” > URL: < /Label >
 < TextBox Grid.Column=”1” x:Name=”textUrl” MinWidth=”150”
 Margin=”5” > http://blogs.thinktecture.com/cnagel/rss.aspx
 < /TextBox >
 < Button Grid.Column=”2” Margin=”5” MinWidth=”80”
 Click=”OnGetFeed” > Get Feed < /Button >
 < /Grid >
 < DockPanel DockPanel.Dock=”Top” x:Name=”heading” >
 < Label DockPanel.Dock=”Top” Content=”{Binding Path=Title.Text}”
 FontSize=”16” / >

c48.indd 1646c48.indd 1646 2/19/08 5:35:15 PM2/19/08 5:35:15 PM

Chapter 48: Syndication

1647

 < Label DockPanel.Dock=”Top”
 Content=”{Binding Path=Description.Text}” / >
 < /DockPanel >
 < ListBox DockPanel.Dock=”Left” ItemsSource=”{Binding}”
 Style=”{StaticResource listTitleStyle}”
 IsSynchronizedWithCurrentItem=”True” / >
 < DockPanel x:Name=”content” >
 < Label DockPanel.Dock=”Top”
 Content=”{Binding Path=Description.Text}” > < /Label >
 < Frame Source=”{Binding Path=Links[0].Uri}” >
 < /Frame >
 < /DockPanel >
 < /DockPanel >
 < /Window >

 Offering Syndication Feeds
 Reading syndication feeds is one scenario in which the Syndication API can be used. Another is to offer a
syndication feed to RSS and Atom clients.

 For this, Visual Studio 2008 offers the Syndication Service Library template, which you can use to start
with. This template defines a reference to the System.ServiceModel.Web library, and adds an
application configuration file to define a WCF endpoint.

 To offer data for the syndication feed, the LINQ provider LINQ to SQL is helpful. In the sample
application, the Formula 1 database is used, which you can download from the Wrox web site at
www.wrox.com with the sample applications for the book. The “ LINQ to SQL Classes ” item with the
name Formula1 is added to the project. Here, the tables Racers, RaceResults, Races, and Circuits are
mapped to entity classes Racer , RaceResult , Race , and Circuit , as shown in Figure 48 - 3 .

 LINQ to SQL is discussed in Chapter 27 .

 The project template creates a file IService1.cs that contains the contract of the WCF service. The
interface contains the CreateFeed() method, which returns a SyndicationFeedFormatter . Because
 SyndicationFeedFormatter is an abstract class, and the real types returned are either
 Atom10FeedFormatter or Rss20FeedFormatter , these types are listed with the
 ServiceKnownTypeAttribute , so that the type is known for serialization.

 The attribute WebGet defines that the operation can be called from a simple HTTP GET request that can
be used to request syndication feeds. WebMessageBodyStyle.Bare defines that the result (the XML
from the syndication feed) is sent as it is without adding an XML wrapper element around it.

using System.ServiceModel;
using System.ServiceModel.Syndication;
using System.ServiceModel.Web;
namespace Wrox.ProCSharp.Syndication
{
 [ServiceContract]
 [ServiceKnownType(typeof(Atom10FeedFormatter))]
 [ServiceKnownType(typeof(Rss20FeedFormatter))]
 public interface IFormula1Feed
 {
 [OperationContract]
 [WebGet(UriTemplate = “*”, BodyStyle = WebMessageBodyStyle.Bare)]
 SyndicationFeedFormatter CreateFeed();
 }
}

c48.indd 1647c48.indd 1647 2/19/08 5:35:15 PM2/19/08 5:35:15 PM

1648

Part VI: Communication

Figure 48-3

 The implementation of the service is done in the class Formula1Feed . Here, a SyndicationFeed item is
created, and various properties of this class such as Generator , Language , Title , Categories , and
 Authors are assigned. The Items property is filled from a LINQ to SQL query that requests the winners
of Formula 1 races of the year 2007. With the select c lause of this query, a SyndicationItem is
created for every winner. With the SyndicationItem , the Title property is assigned to plain text
containing the country of the race. The Content property is filled with the help of LINQ to XML.
 XElement classes are used to create XHTML code that can be interpreted by the browser. This content
shows the date of the race, the country, and the name of the winner.

 Depending on the query string to request the syndication, the SyndicationFeed is formatted with the
 Atom10FeedFormatter or the Rss20FeedFormatter .

using System;
using System.Linq;
using System.ServiceModel.Syndication;
using System.ServiceModel.Web;
using System.Xml.Linq;
namespace Wrox.ProCSharp.Syndication
{
 public class Formula1Feed : IFormula1Feed
 {
 public SyndicationFeedFormatter CreateFeed()
 {
 // Create a new Syndication Feed.
 SyndicationFeed feed = new SyndicationFeed();
 feed.Generator = “Pro C# 2008 Sample Feed Generator”;
 feed.Language = “en-us”;
 feed.LastUpdatedTime = new DateTimeOffset(DateTime.Now);

c48.indd 1648c48.indd 1648 2/19/08 5:35:16 PM2/19/08 5:35:16 PM

Chapter 48: Syndication

1649

 feed.Title = SyndicationContent.CreatePlaintextContent(
 “Formula1 results”);
 feed.Categories.Add(new SyndicationCategory(“Formula1”));
 feed.Authors.Add(new SyndicationPerson(“web@christiannagel.com”,
 “Christian Nagel”, “http://www.christiannagel.com”));
 feed.Description = SyndicationContent.CreatePlaintextContent(
 “Sample Formula 1”);
 Formula1DataContext data = new Formula1DataContext();
 feed.Items = from racer in data.Racers
 from raceResult in racer.RaceResults
 where raceResult.Race.Date >
 new DateTime(2007, 1, 1) & &
 raceResult.Position == 1
 orderby raceResult.Race.Date
 select new SyndicationItem()
 {
 Title =
 SyndicationContent.CreatePlaintextContent(
 String.Format(“G.P. {0}”,
 raceResult.Race.Circuit.Country)),
 Content = SyndicationContent.CreateXhtmlContent(
 new XElement(“p”,
 new XElement(“h3”, String.Format(“{0}, {1}”,
 raceResult.Race.Circuit.Country,
 raceResult.Race.Date.
 ToShortDateString())),
 new XElement(“b”, String.Format(
 “Winner: {0} {1}”,
 racer.Firstname,
 racer.Lastname))).ToString())
 };
 // Return ATOM or RSS based on query string
 // rss - >
 // http://localhost:8731/Design_Time_Addresses/SyndicationService/Feed1/
 // atom - >
 // http://localhost:8731/Design_Time_Addresses/SyndicationService/
 // Feed1/?format=atom
 string query =
 WebOperationContext.Current.IncomingRequest.UriTemplateMatch.
 QueryParameters[“format”];
 SyndicationFeedFormatter formatter = null;
 if (query == “atom”)
 {
 formatter = new Atom10FeedFormatter(feed);
 }
 else
 {
 formatter = new Rss20FeedFormatter(feed);
 }
 return formatter;
 }
 }
}

c48.indd 1649c48.indd 1649 2/19/08 5:35:16 PM2/19/08 5:35:16 PM

1650

Part VI: Communication

 When you start the service from within Visual Studio 2008, the WCF Service Host starts up to host the
service, and you can see the feed result formatted in Internet Explorer, as shown in Figure 48 - 4 .

Figure 48-4

 With the default request to the service, the RSS feed is returned. An extract of the RSS feed with the rss
root element follows. With RSS, the Title property is translated to the title element, and the
 Description property goes to the description element. The Authors property of the
 SyndicationFeed that contains SyndicationPerson just uses the e - mail address to create the
 managingEditor element. To add more information to the feed, the formatter also places some Atom
elements in the RSS feed. Placing Atom elements in an RSS feed is a common practice that provides
information that is not defined by RSS.

 < ?xml version=”1.0” encoding=”utf-8”? >
 < rss version=”2.0” xmlns:atom=”http://www.w3.org/2005/Atom”
 xmlns:cf=”http://www.microsoft.com/schemas/rss/core/2005”
 xmlns:a10=”http://www.w3.org/2005/Atom” >
 < channel
 xmlns:cfi=”http://www.microsoft.com/schemas/rss/core/2005/internal”
 cfi:lastdownloaderror=”None” >
 < title cf:type=”text” > Formula1 results < /title >
 < description cf:type=”text” > Sample Formula 1 < /description >
 < language > en-us < /language >
 < managingEditor > web@christiannagel.com < /managingEditor >
 < atom:author >
 < atom:email > web@christiannagel.com < /atom:email >
 < /atom:author >
 < lastBuildDate > Tue, 04 Dec 2007 21:07:48 GMT < /lastBuildDate >
 < atom:updated > 2007-12-04T21:07:48Z < /atom:updated >
 < category > Formula1 < /category >

c48.indd 1650c48.indd 1650 2/19/08 5:35:16 PM2/19/08 5:35:16 PM

Chapter 48: Syndication

1651

 < generator > Pro C# 2008 Sample Feed Generator < /generator >
 < item >
 < title xmlns:cf=”http://www.microsoft.com/schemas/rss/core/2005”
 cf:type=”text” > G.P. Australia < /title >
 < description xmlns:cf=”http://www.microsoft.com/schemas/rss/core/2005”
 cf:type=”html” > & lt;p & gt; & lt;h3 & gt;Australia, 18.03.2007 & lt;/h3 & gt;
 & lt;b & gt;Winner: Kimi Raikkonen & lt;/b & gt; & lt;/p & gt;
 < /description >
 < cfi:id > 47 < /cfi:id > < cfi:read > true < /cfi:read >
 < cfi:downloadurl >
 http://localhost:8731/Design_Time_Addresses/SyndicationService/Feed1/
 < /cfi:downloadurl >
 < cfi:lastdownloadtime > 2007-12-04T21:05:16.486Z < /cfi:lastdownloadtime >
 < /item >
 < item >
 < !-- ... -- >
 < /channel >
 < /rss >

 An Atom formatted feed is returned with the query ?format=atom with the result shown. The root
element now is the feed element; the Description property turns into a subtitle element; and the
values for the Author property are now shown completely differently from the RSS feed shown earlier.
Atom allows the content to be unencoded. You can easily find the XHTML elements.

 < feed xml:lang=”en-us” xmlns=”http://www.w3.org/2005/Atom” >
 < title type=”text” > Formula1 results < /title >
 < subtitle type=”text” > Sample Formula 1 < /subtitle >
 < id > uuid:c19284e7-aa40-4bc2-9be8-f1960b0f747e;id=1 < /id >
 < updated > 2007-12-05T00:46:35+01:00 < /updated >
 < category term=”Formula1”/ >
 < author >
 < name > Christian Nagel < /name >
 < uri > http://www.christiannagel.com < /uri >
 < email > web@christiannagel.com < /email >
 < /author >
 < generator > Pro C# 2008 Sample Feed Generator < /generator >
 < entry >
 < id > uuid:c19284e7-aa40-4bc2-9be8-f1960b0f747e;id=2 < /id >
 < title type=”text” > G.P. Australia < /title >
 < updated > 2007-12-04T23:46:43Z < /updated >
 < content type=”xhtml” >
 < p > < h3 > Australia, 18.03.2007 < /h3 > < b > Winner: Kimi Raikkonen < /b > < /p >
 < /content >
 < /entry >
 < entry >
 < id > uuid:c19284e7-aa40-4bc2-9be8-f1960b0f747e;id=3 < /id >
 < title type=”text” > G.P. Malaysia < /title >
 < updated > 2007-12-04T23:46:43Z < /updated >
 < content type=”xhtml” >
 < p > < h3 > Malaysia, 08.04.2007 < /h3 > < b > Winner: Fernando Alonso < /b > < /p >
 < /content >
 < /entry >
 < !-- ... -- >
 < /feed >

c48.indd 1651c48.indd 1651 2/19/08 5:35:17 PM2/19/08 5:35:17 PM

1652

Part VI: Communication

 Summary
 In this chapter, you have seen how the classes from the System.ServiceModel.Syndication
namespace, which is new in .NET 3.5, can be used to create an application that receives a feed, as well as
an application that offers a feed. The syndication API supports RSS 2.0 and Atom 1.0. As these standards
emerge, new formatters will be available. You have seen that the SyndicationXXX classes are
independent of the format that is generated. The concrete implementation of the abstract class
 SyndicationFeedFormatter defines what properties are used and how they are translated to the
specific format.

 This chapter concludes the communication part of the book. You ’ ve read about communication
technologies to directly use sockets, and abstraction layers that are offered. Windows Communication
Foundation is a technology that has been discussed in several chapters. With message queuing
(Chapter 45), WCF offers a disconnected communication model. In Chapter 44 , “ Enterprise Services, ”
you have seen WCF integration with existing COM+ applications.

 Throughout this book, you ’ ve seen the language features of C#, including the features that are new with
C# 3.0, such as extension methods and LINQ queries. C# 3.0 features have been used throughout the
book, where you ’ ve read about core .NET Framework features, data access to databases and XML, user
interfaces with Windows Forms, Windows Presentation Foundation, ASP.NET, and Microsoft Office.

 There ’ s still more to read. The appendices cover ADO.NET Entities, a mapping technology to map
objects to relational databases, applications for Windows Vista and Windows Server 2008, and a
language comparison of C#, Visual Basic, and C++/CLI.

c48.indd 1652c48.indd 1652 2/19/08 5:35:17 PM2/19/08 5:35:17 PM

Part VII

Appendices

Appendix A: ADO . NET Entity Framework

Appendix B: C #, Visual Basic, and C ++/CLI

Appendix C: Windows Vista and Windows Server 2008

bapp01.indd 1653bapp01.indd 1653 2/19/08 5:36:28 PM2/19/08 5:36:28 PM

bapp01.indd 1654bapp01.indd 1654 2/19/08 5:36:29 PM2/19/08 5:36:29 PM

 ADO . NET Entity Framework

 The ADO.NET Entity Framework is an object - relational mapping framework that is based on .NET
3.5. Chapter 27 demonstrated object - relational mapping with LINQ to SQL. LINQ to SQL offers
simple mapping features for associations and inheritance. The ADO.NET Entity Framework gives
you many more options for associations and inheritance. Another difference between LINQ to SQL
and the ADO.NET Entity Framework is that the ADO.NET Entity Framework is a provider - based
model that allows other database vendors to plug into it.

 This appendix covers the following:

 The ADO.NET Entity Framework

 Entity Framework layers

 Entities

 Object contexts

 Relationships

 Object queries

 Updates

 LINQ to Entities

 This appendix is based on the Beta 3 version of this framework, which is due to be released some
months after the .NET 3.5 product, so some class or method names may be different than what
you read here.

 This appendix uses the Books, Formula1, and Northwind databases. You can download the
Northwind database from msdn.microsoft.com ; the Books and Formula1 databases are
included with the download of the code samples.

❑

❑

❑

❑

❑

❑

❑

❑

bapp01.indd 1655bapp01.indd 1655 2/19/08 5:36:29 PM2/19/08 5:36:29 PM

1656

Part VII: Appendices

 Overview of the ADO . NET Entity Framework
 The ADO.NET Entity Framework provides a mapping from the relational database schema to objects.
Relational databases and object - oriented languages define associations differently. For example, the
Microsoft sample database Northwind contains the Customers and Orders tables. To access all
the Orders rows for a customer, you need to do a SQL join statement. With object - oriented languages,
it is more common to define a Customer and an Order class and access the orders of a customer by
using an Orders property from the Customer class.

 For object - relational mapping since .NET 1.0, it was possible to use the DataSet class and typed datasets.
Datasets are very similar to the structure of a database containing DataTable , DataRow , DataColumn , and
 DataRelation classes. The ADO.NET Entity Framework gives support to directly define entity classes
that are completely independent of a database structure and map them to tables and associations of the
database. Using objects with the application, the application is shielded from changes in the database.

 The ADO.NET Entity Framework makes use of Entity SQL to define entity - based queries to the store.
LINQ to Entities makes it possible to use the LINQ syntax to query data.

 An object context keeps knowledge about entities that are changed, to have information when the
entities should be written back to the store.

 The namespaces that contain classes from the ADO.NET Entity Framework are listed in the following table.

Namespace Description

System.Data This is a main namespace for ADO.NET. With the ADO.NET Entity
Framework, this namespace contains exception classes related to
entities — for example MappingException and QueryException.

System.Data.Common This namespace contains classes shared by .NET data providers.
The class DbProviderServices is an abstract base class that must
be implemented by an ADO.NET Entity Framework provider.

System.Data.Common
.CommandTrees

This namespace contains classes to build an expression tree.

System.Data.Entity.Design This namespace contains classed used by the designer to create
Entity Data Model (EDM) files.

System.Data.EntityClient This namespace specifies classes for the .NET Framework Data
Provider to access the Entity Framework. EntityConnection,
EntityCommand, and EntityDataReader can be used to access
the Entity Framework.

System.Data.Objects This namespace contains classes to query and update databases.
The class ObjectContext encapsulates the connection to the data-
base and serves as a gateway for create, read, update, and delete
methods. The class ObjectQuery represents a query against the
store. CompiledQuery is a cached query.

System.Data.Objects
.DataClasses

This namespace contains classes and interfaces required for
entities.

bapp01.indd 1656bapp01.indd 1656 2/19/08 5:36:29 PM2/19/08 5:36:29 PM

1657

Appendix A: ADO.NET Entity Framework

 Entity Framework Layers
 The ADO.NET Entity Framework offers several layers to map database tables to objects. You can start
with a database schema and use a Visual Studio item template to create the complete mapping. You can
also start designing entity classes with the designer and map it to the database where the tables and
associations between the tables can have a very different structure.

 The layers that need to be defined are as follows:

 Logical — This layer defines the relational data.

 Conceptual — This layer defines the .NET classes.

 Mapping — This layer defines the mapping from .NET classes to relational tables and
associations.

 Let ’ s start with a simple database schema, as shown in Figure A - 1 with the tables Books and Authors ,
and an association table BookAuthors that maps the authors to books.

❑

❑

❑

Figure A-1

(continued)

 Logical
 The logical layer is defined by the Store Schema Definition Language (SSDL) and describes the structure
of the database tables and their relations.

 The following code uses SSDL to describe the three tables: Books , Authors , and BookAuthors . The
 EntityContainer element describes all the tables with EntitySet elements, and associations with
 AssociationSet elements. The parts of a table are defined with the EntityType element. With
 EntityType Books you can see the columns Id , Title , and Publisher defined by the Property
element. The Property element contains XML attributes to define the data type. The Key element
defines the key of the table.

 < Schema Namespace=”BookEntities.Store” Alias=”Self”
 ProviderManifestToken=”09.00.3054”
 xmlns=”http://schemas.microsoft.com/ado/2006/04/edm/ssdl” >
 < EntityContainer Name=”dbo” >
 < EntitySet Name=”Authors” EntityType=”Wrox.ProCSharp.Entities.Store.Authors” / >
 < EntitySet Name=”BookAuthors”
 EntityType=” Wrox.ProCSharp.Entities.Store.BookAuthors” / >
 < EntitySet Name=”Books” EntityType=” Wrox.ProCSharp.Entities.Store.Books” / >
 < AssociationSet Name=”FK_BookAuthors_Authors”

bapp01.indd 1657bapp01.indd 1657 2/19/08 5:36:30 PM2/19/08 5:36:30 PM

1658

Part VII: Appendices

 Association=” Wrox.ProCSharp.Entities.Store.FK_BookAuthors_Authors” >
 < End Role=”Authors” EntitySet=”Authors” / >
 < End Role=”BookAuthors” EntitySet=”BookAuthors” / >
 < /AssociationSet >
 < AssociationSet Name=”FK_BookAuthors_Books”
 Association=”BookDemoEntities.Store.FK_BookAuthors_Books” >
 < End Role=”Books” EntitySet=”Books” / >
 < End Role=”BookAuthors” EntitySet=”BookAuthors” / >
 < /AssociationSet >
 < /EntityContainer >
 < EntityType Name=”Authors” >
 < Key > < PropertyRef Name=”Id” / > < /Key >
 < Property Name=”Id” Type=”int” Nullable=”false” StoreGeneratedPattern=”Identity” / >
 < Property Name=”FirstName” Type=”nvarchar” Nullable=”false” MaxLength=”50” / >
 < Property Name=”LastName” Type=”nvarchar” Nullable=”false” MaxLength=”50” / >
 < /EntityType >
 < EntityType Name=”BookAuthors” >
 < Key > < PropertyRef Name=”BookId” / > < PropertyRef Name=”AuthorId” / > < /Key >
 < Property Name=”BookId” Type=”int” Nullable=”false” / >
 < Property Name=”AuthorId” Type=”int” Nullable=”false” / >
 < /EntityType >
 < EntityType Name=”Books” >
 < Key > < PropertyRef Name=”Id” / > < /Key >
 < Property Name=”Id” Type=”int” Nullable=”false” StoreGeneratedPattern=”Identity” / >
 < Property Name=”Title” Type=”nvarchar” Nullable=”false” MaxLength=”50” / >
 < Property Name=”Publisher” Type=”nvarchar” Nullable=”false” MaxLength=”50” / >
 < /EntityType >
 < Association Name=”FK_BookAuthors_Authors” >
 < End Role=”Authors”
 Type=” Wrox.ProCSharp.Entities.Store.Authors” Multiplicity=”1” / >
 < End Role=”BookAuthors”
 Type=” Wrox.ProCSharp.Entities.Store.BookAuthors”
 Multiplicity=”*” / >
 < ReferentialConstraint >
 < Principal Role=”Authors” > < PropertyRef Name=”Id” / > < /Principal >
 < Dependent Role=”BookAuthors” > < PropertyRef Name=”AuthorId” / > < /Dependent >
 < /ReferentialConstraint >
 < /Association >
 < Association Name=”FK_BookAuthors_Books” >
 < End Role=”Books” Type=” Wrox.ProCSharp.Entities.Store.Books” Multiplicity=”1” / >
 < End Role=”BookAuthors” Type=” Wrox.ProCSharp.Entities.Store.BookAuthors”
 Multiplicity=”*” / >
 < ReferentialConstraint >
 < Principal Role=”Books” > < PropertyRef Name=”Id” / > < /Principal >
 < Dependent Role=”BookAuthors” > < PropertyRef Name=”BookId” / > < /Dependent >
 < /ReferentialConstraint >
 < /Association >
 < /Schema >

(continued)

bapp01.indd 1658bapp01.indd 1658 2/19/08 5:36:30 PM2/19/08 5:36:30 PM

1659

Appendix A: ADO.NET Entity Framework

 Conceptual
 The conceptual layer defines .NET classes. This layer is created with the Conceptual Schema Definition
Language (CSDL).

 Figure A - 2 shows the entities Author and Book defined with the ADO.NET Entity Data Model Designer.

 The following is the CSDL content to define the entity types Book and Author . This was created
from the Books database.

 < Schema Namespace=”BookEntities” Alias=”Self”
 xmlns=”http://schemas.microsoft.com/ado/2006/04/edm” >
 < EntityContainer Name=”BookEntities” >
 < EntitySet Name=”Authors” EntityType=”Wrox.ProCSharp.Entities.Author” / >
 < EntitySet Name=”Books” EntityType=”Wrox.ProCSharp.Entities.Book” / >
 < AssociationSet Name=”BookAuthors”
 Association=” Wrox.ProCSharp.Entities.BookAuthors” >
 < End Role=”Authors” EntitySet=”Authors” / >
 < End Role=”Books” EntitySet=”Books” / >
 < /AssociationSet >
 < /EntityContainer >
 < EntityType Name=”Author” >
 < Key >
 < PropertyRef Name=”Id” / >
 < /Key >
 < Property Name=”Id” Type=”Int32” Nullable=”false” / >
 < Property Name=”FirstName” Type=”String” Nullable=”false” MaxLength=”50” / >
 < Property Name=”LastName” Type=”String” Nullable=”false” MaxLength=”50” / >
 < NavigationProperty Name=”Books” Relationship=”BookDemoEntities
 .BookAuthors” FromRole=”Authors” ToRole=”Books” / >
 < /EntityType >

 < EntityType Name=”Book” >
 < Key >
 < PropertyRef Name=”Id” / >
 < /Key >
 < Property Name=”Id” Type=”Int32” Nullable=”false” / >
 < Property Name=”Title” Type=”String” Nullable=”false” MaxLength=”50” / >
 < Property Name=”Publisher” Type=”String” Nullable=”false” MaxLength=”50” / >
 < NavigationProperty Name=”Authors”
 Relationship=” Wrox.ProCSharp.Entities.BookAuthors” FromRole=”Books”
 ToRole=”Authors” / >
 < /EntityType >

 < Association Name=”BookAuthors” >

(continued)

Figure A-2

bapp01.indd 1659bapp01.indd 1659 2/19/08 5:36:31 PM2/19/08 5:36:31 PM

1660

Part VII: Appendices

 < End Type=” Wrox.ProCSharp.Entities.Author” Role=”Authors” Multiplicity=”*” / >
 < End Type=” Wrox.ProCSharp.Entities.Book” Role=”Books” Multiplicity=”*” / >
 < /Association >
 < /Schema >

 The entity is defined by an EntityType element that contains Key , Property , and NavigationProperty
elements to describe the properties of the created class. The Property element contains attributes to
describe the name and type of the .NET properties of the classes that are generated by the designer. The
 Association element connects the types Author and Book . Multiplicity= “ * ” means that one Author
can write multiple Book s, and one Book can be written by multiple Author s.

 Mapping
 The mapping layer maps the entity type definition from the CSDL to the SSDL by using the Mapping
Specification Language (MSL). The following specification includes a Mapping element that contains the
 EntityTypeMapping element to reference the Book type of the CSDL and defines the
 MappingFragment to reference the Authors table from the SSDL. The ScalarProperty maps the
property of the .NET class with the Name attribute to the column of the database table with the
 ColumnName attribute.

 < Mapping Space=”C-S” xmlns=”urn:schemas-microsoft-com:windows:storage:mapping:CS” >
 < EntityContainerMapping StorageEntityContainer=”dbo”
 CdmEntityContainer=”BookEntities” >
 < EntitySetMapping Name=”Authors” >
 < EntityTypeMapping TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.Author)” >
 < MappingFragment StoreEntitySet=”Authors” >
 < ScalarProperty Name=”LastName” ColumnName=”LastName” / >
 < ScalarProperty Name=”FirstName” ColumnName=”FirstName” / >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >
 < /MappingFragment >
 < /EntityTypeMapping >
 < /EntitySetMapping >
 < EntitySetMapping Name=”Books” >
 < EntityTypeMapping TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.Book)” >
 < MappingFragment StoreEntitySet=”Books” >
 < ScalarProperty Name=”Publisher” ColumnName=”Publisher” / >
 < ScalarProperty Name=”Title” ColumnName=”Title” / >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >
 < /MappingFragment >
 < /EntityTypeMapping >
 < /EntitySetMapping >
 < AssociationSetMapping Name=”AuthorBook”
 TypeName=” Wrox.ProCSharp.Entities.AuthorBook”
 StoreEntitySet=”BookAuthors” >
 < EndProperty Name=”Book” >
 < ScalarProperty Name=”Id” ColumnName=”BookId” / >
 < /EndProperty >
 < EndProperty Name=”Author” >
 < ScalarProperty Name=”Id” ColumnName=”AuthorId” / >
 < /EndProperty >
 < /AssociationSetMapping >
 < /EntityContainerMapping >
 < /Mapping >

(continued)

bapp01.indd 1660bapp01.indd 1660 2/19/08 5:36:31 PM2/19/08 5:36:31 PM

1661

Appendix A: ADO.NET Entity Framework

 Entities
 Entity classes that are created with the designer and are created by CSDL typically derive from the base
class EntityObject , as shown with the Book class in the code that follows.

 This class derives from the base class EntityObject and defines properties that fire change information
in the set accessor. The created class Book is a partial class that can be extended in a new source file
defining the same class in the same namespace. Methods that are called within the set accessor such as
 OnTitleChanging() and OnTitleChanged() are partial as well, so it is possible to implement these
methods in the custom extension of the class. The Authors property uses the RelationshipManager
class to return the Book s for an author.

 [EdmEntityTypeAttribute(NamespaceName=”Wrox.ProCSharp.Entities”, Name=”Book”)]
 [DataContractAttribute()]
 [Serializable()]
 public partial class Book : global::System.Data.Objects.DataClasses.EntityObject
 {
 public static Book CreateBook(int ID, string title, string publisher)
 {
 Book book = new Book();
 book.Id = ID;
 book.Title = title;
 book.Publisher = publisher;
 return book;
 }
 [EdmScalarPropertyAttribute(EntityKeyProperty=true, IsNullable=false)]
 [DataMemberAttribute()]
 public int Id
 {
 get
 {
 return this._Id;
 }
 set
 {
 this.OnIdChanging(value);
 this.ReportPropertyChanging(“Id”);
 this._Id = StructuralObject.SetValidValue(value);
 this.ReportPropertyChanged(“Id”);
 this.OnIdChanged();
 }
 }
 private int _Id;
 partial void OnIdChanging(int value);
 partial void OnIdChanged();
 [EdmScalarPropertyAttribute(IsNullable=false)]
 [DataMemberAttribute()]
 public string Title
 {
 get
 {
 return this._Title;
 }
 set

(continued)

bapp01.indd 1661bapp01.indd 1661 2/19/08 5:36:31 PM2/19/08 5:36:31 PM

1662

Part VII: Appendices

 {
 this.OnTitleChanging(value);
 this.ReportPropertyChanging(“Title”);
 this._Title = StructuralObject.SetValidValue(value, false, 50);
 this.ReportPropertyChanged(“Title”);
 this.OnTitleChanged();
 }
 }
 private string _Title;
 partial void OnTitleChanging(string value);
 partial void OnTitleChanged();
 [EdmScalarPropertyAttribute(IsNullable=false)]
 [DataMemberAttribute()]
 public string Publisher
 {
 get
 {
 return this._Publisher;
 }
 set
 {
 this.OnPublisherChanging(value);
 this.ReportPropertyChanging(“Publisher”);
 this._Publisher = StructuralObject.SetValidValue(value, false, 50);
 this.ReportPropertyChanged(“Publisher”);
 this.OnPublisherChanged();
 }
 }
 private string _Publisher;
 partial void OnPublisherChanging(string value);
 partial void OnPublisherChanged();
 [EdmRelationshipNavigationPropertyAttribute(“BookDemoEntities”, “AuthorBook”,
 “Author”)]
 [XmlIgnoreAttribute()]
 [SoapIgnoreAttribute()]
 [BrowsableAttribute(false)]
 public EntityCollection < Author > Authors
 {
 get
 {
 return ((IEntityWithRelationships)(this)).RelationshipManager.
 GetRelatedCollection < Author > (“WroxProCSharp.Entities.AuthorBook”,
 “Author”);
 }
 }
 }

 The classes and interfaces important in regard to entity classes are explained in the following table.
With the exception of INotifyPropertyChanging and INotifyPropertyChanged , the types are
defined in the namespace System.Data.Objects.DataClasses .

(continued)

bapp01.indd 1662bapp01.indd 1662 2/19/08 5:36:32 PM2/19/08 5:36:32 PM

1663

Appendix A: ADO.NET Entity Framework

Class or Interface Description

StructuralObject StructuralObject is the base class of the classes EntityObject
and ComplexObject. This class implements the interfaces
INotifyPropertyChanging and INotifyPropertyChanged.

INotifyPropertyChanging
INotifyPropertyChanged

These interfaces define the PropertyChanging and
PropertyChanged events to allow subscribing to information
when the state of the object changes. Different from the other
classes and interfaces here, these interfaces are defined in the
namespace System.ComponentModel.

EntityObject This class derives from StructuralObject and implements the
interfaces IEntityWithKey, IEntityWithChangeTracker, and
IEntityWithRelationships. EntityObject is a commonly
used base class for objects mapped to database tables that contain a
key and relationships to other objects.

ComplexObject This class can be used as a base class for entity objects that do not
have a key. It derives from StructuralObject but does not
implement other interfaces as the EntityObject class does.

IEntityWithKey This interface defines an EntityKey property that allows fast
access to the object.

IEntityWithChangeTracker This interface defines the method SetChangeTracker() where a
change tracker that implements the interface IChangeTracker can
be assigned to get information about state change from the object.

IEntityWithRelationships This interface defines the read-only property
RelationshipManager, which returns a RelationshipManager
object that can be used to navigate between objects.

 For an entity class, it ’ s not necessary to derive from the base classes EntityObject or ComplexObject .
Instead, an entity class can implement the required interfaces.

 The Book entity class can easily be accessed by using the object context class BookEntities . The Books
property returns a collection of Book objects that can be iterated:

 BookEntities data = new BookEntities();

 foreach (var book in data.Books)
 {
 Console.WriteLine(“{0}, {1}”, book.Title, book.Publisher);
 }

 Running the program, books queried from the database are shown at the console:

Professional C# 2008, Wrox Press
Beginning Visual C# 2008, Wrox Press
Working with Animation in Silverlight 1.0, Wrox Press
Professional WPF Programming, Wrox Press

bapp01.indd 1663bapp01.indd 1663 2/19/08 5:36:32 PM2/19/08 5:36:32 PM

1664

Part VII: Appendices

 Object Context
 To retrieve data from the database, the ObjectContext class is needed. This class defines the mapping
from the entity objects to the database. With ADO.NET, you can compare this class to the data adapter
that fills a DataSet .

 The BookEntities class created by the designer derives from the base class ObjectContext . This class
adds constructors to pass a connection string. With the default constructor, the connection string is read
from the configuration file. It is also possible to pass an already opened connection to the constructor in
the form of an EntityConnection instance. If you pass a connection to the constructor that is not
opened, the object context opens and closes the connection; if you pass an opened connection you also
need to close it.

 The created class defines Books and Authors properties, which return an ObjectQuery , and methods
to add authors and books — AddToAuthors() and AddToBooks() .

 public partial class BookEntities : ObjectContext
 {
 public BookEntities() :
 base(“name=BookEntities”, “BookEntities”) { }
 public BookEntities(string connectionString) :
 base(connectionString, “BookEntities”) { }
 public BookEntities(EntityConnection connection) :
 base(connection, “BookEntities”) { }
 [BrowsableAttribute(false)]
 public ObjectQuery < Author > Authors
 {
 get
 {
 if ((this._Authors == null))
 {
 this._Authors = base.CreateQuery < Author > (“[Authors]”);
 }
 return this._Authors;
 }
 }
 private ObjectQuery < Author > _Authors;
 [BrowsableAttribute(false)]
 public ObjectQuery < Book > Books
 {
 get
 {
 if ((this._Books == null))
 {
 this._Books = base.CreateQuery < Book > (“[Books]”);
 }
 return this._Books;
 }
 }
 private ObjectQuery < Book > _Books;
 public void AddToAuthors(Author author)
 {
 base.AddObject(“Authors”, author);
 }

bapp01.indd 1664bapp01.indd 1664 2/19/08 5:36:32 PM2/19/08 5:36:32 PM

1665

Appendix A: ADO.NET Entity Framework

 public void AddToBooks(Book book)
 {
 base.AddObject(“Books”, book);
 }
 }

 In case you pass a connection string to the constructor of the BookEntities class, the connection string
of type EntityConnection defines the keyword Metadata , which requires three things: a delimited
list of mapping files, Provider for the invariant provider name to access the data source, and Provider
connection string to assign the provider - dependent connection string.

 EntityConnection conn = new EntityConnection(
 “Metadata=./BookModel.csdl|./BookModel.ssdl|./BookModel.msl;” +
 “Provider=System.Data.SqlClient;” +
 “Provider connection string=\”Data Source=(local);” +
 “Initial Catalog=EntitiesDemo;Integrated Security=True\””);

 The ObjectContext class provides several services to the caller:

 It keeps track of entity objects that are already retrieved. If the object is queried again, it is taken
from the object context.

 It keeps state information about the entities. You can get information about added, modified,
and deleted objects.

 You can update the entities from the object context to write the changes to the underlying store.

 Methods and properties of the ObjectContext class are listed in the following table.

❑

❑

❑

ObjectContext Methods
and Properties Description

Connection Returns a DbConnection object that is associated with the object
context.

MetadataWorkspace Returns a MetadataWorkspace object that can be used to read the
metadata and mapping information.

QueryTimeout With this property you can get and set the timeout value for the que-
ries of the object context.

ObjectStateManager This property returns an ObjectStateManager. The
ObjectStateManager keeps track of entity objects retrieved and
object changes in the object context.

CreateQuery() This method returns an ObjectQuery to get data from the store. The
Books and Authors properties shown earlier use this method to
return an ObjectQuery.

GetObjectByKey()
TryGetObjectByKey()

These methods return the object by the key either from the object
state manager or the underlying store. GetObjectByKey() throws
an exception of type ObjectNotFoundException if the key does not
exist. TryGetObjectByKey() returns false.

AddObject() This method adds a new entity object to the object context. This method
is invoked by the AddToAuthors() and AddToBooks() methods.

bapp01.indd 1665bapp01.indd 1665 2/19/08 5:36:33 PM2/19/08 5:36:33 PM

1666

Part VII: Appendices

ObjectContext Methods
and Properties Description

DeleteObject() This method deletes an object from the object context.

Detach() This method detaches an entity object from the object context, so it is
no longer tracked if changes occur.

Attach()
AttachTo()

The Attach() method attaches a detached object to the store. Attaching
objects back to the object context requires that the entity object imple-
ments the interface IEntityWithKey. The AttachTo() method does
not have the requirement for a key with the object, but it requires the
entity set name where the entity object needs to be attached.

ApplyPropertyChanges() If an object was detached from the object context, then the detached
object is modified, and afterwards the changes should be applied to
the object within the object context, you can invoke the
ApplyPropertyChanges() method to apply the changes. This is
useful in a scenario where a detached object was returned from a
Web service, changed from a client, and passed to the Web service in
a modified way.

Refresh() The data in the store can change while entity objects are stored inside
the object context. To make a refresh from the store, the Refresh()
method can be used. With this method you can pass a RefreshMode
enumeration value. If the values for the objects are not the same
between the store and the object context, passing the value
ClientWins changes the data in the store. The value StoreWins
changes the data in the object context.

SaveChanges() Adding, modifying, and deleting objects from the object context does
not change the object from the underlying store. Use the
SaveChanges() method to persist the changes to the store.

AcceptAllChanges() This method changes the state of the objects in the context to unmod-
ified. SaveChanges() invokes this method implicitly.

 Relationships
 The entity types Book and Author are related to each other. A book is written by one or more authors,
and an author can write one or more books. Relationships are based on the count of types they relate and
the multiplicity. The first version of the ADO.NET Entity Framework supports a Table per Type (TPT)
and Table per Hierarchy (TPH). Multiplicity can be one - to - one, one - to - many, or many - to - many.

 Table per Hierarchy
 With TPH, there ’ s one table in the database that corresponds to a hierarchy of entity classes. The
database table Payments (see Figure A - 3) contains columns for a hierarchy of entity types. Some of the
columns are common to all entities in the hierarchy, such as Id and Amount . The CreditCard column is
only used by a credit card payment.

bapp01.indd 1666bapp01.indd 1666 2/19/08 5:36:33 PM2/19/08 5:36:33 PM

1667

Appendix A: ADO.NET Entity Framework

 The entity classes that all map to the same Payments table are shown in Figure A - 4 . Payment is an
abstract base class to contain properties common for all types in the hierarchy. Concrete classes that
derive from Payment are CreditCardPayment , CashPayment , and ChequePayment .
 CreditCardPayment has a CreditCard property in addition to the properties of the base class;
 ChequePayment has a BankName property.

Figure A-4

 The selection of the type of the concrete class is done based on a Condition element as you can see with
the MSL file. Here, the type is selected based on the value of the Type column. Other options to select the
type are also possible; for example, you can verify if a column is not null.

 < Mapping Space=”C-S”
 xmlns=”urn:schemas-microsoft-com:windows:storage:mapping:CS” >
 < EntityContainerMapping StorageEntityContainer=”dbo”
 CdmEntityContainer=”EntitiesDemoEntities” >
 < EntitySetMapping Name=”Payments” >
 < EntityTypeMapping TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.Payment)” >
 < MappingFragment StoreEntitySet=”Payments” >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >
 < ScalarProperty Name=”Amount” ColumnName=”Amount” / >
 < ScalarProperty Name=”Name” ColumnName=”Name” / >
 < /MappingFragment >
 < /EntityTypeMapping >
 < EntityTypeMapping
 TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.CashPayment)” >
 < MappingFragment StoreEntitySet=”Payments” >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >

Figure A-3

(continued)

bapp01.indd 1667bapp01.indd 1667 2/19/08 5:36:33 PM2/19/08 5:36:33 PM

1668

Part VII: Appendices

 < Condition ColumnName=”Type” Value=”CASH” / >

 < /MappingFragment >
 < /EntityTypeMapping >
 < EntityTypeMapping
 TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.CreditCardPayment)” >
 < MappingFragment StoreEntitySet=”Payments” >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >
 < ScalarProperty Name=”CreditCard” ColumnName=”CreditCard” / >

 < Condition ColumnName=”Type” Value=”CREDIT” / >

 < /MappingFragment >
 < /EntityTypeMapping >
 < EntityTypeMapping
 TypeName=”IsTypeOf(Wrox.ProCSharp.Entities.ChequePayment)” >
 < MappingFragment StoreEntitySet=”Payments” >
 < ScalarProperty Name=”Id” ColumnName=”Id” / >
 < ScalarProperty Name=”BankName” ColumnName=”BankName” / >

 < Condition ColumnName=”Type” Value=”CHEQUE” / >

 < /MappingFragment >
 < /EntityTypeMapping >
 < /EntitySetMapping >
 < /EntityContainerMapping >
 < /Mapping >

 Now it ’ s possible to iterate the data from the Payments table, and different types are returned based on
the mapping:

 PaymentEntities data = new PaymentEntities();
 foreach (var p in data.Payments)
 {
 Console.WriteLine(“{0}, {1} - {2:C}”, p.GetType().Name,
 p.Name, p.Amount);
 }

 Running the application returns two CashPayment and one CreditCardPayment object from the
database:

CreditCardPayment, Gustav - $22.00
CashPayment, Donald - $0.50
CashPayment, Dagobert - $80,000.00

 Table per Type
 With TPT, one table maps to one type. The Northwind database has a schema with the tables
 Customers , Orders , and Order Details (see Figure A - 5). The Orders table maps to the Customers
table with the foreign key CustomerId ; the Order Details table maps to the Orders table with the
foreign key OrderID .

 Figure A - 6 shows the entity types Customer , Order , and OrderDetail . Customer and Order have a
zero or one - to - many relationship; Order to OrderDetail has a one - to - many relationship. There is a zero
or one - to - many relationship with Customer and Order because the CustomerID with the Order table is
defined as Nullable in the database schema.

(continued)

bapp01.indd 1668bapp01.indd 1668 2/19/08 5:36:34 PM2/19/08 5:36:34 PM

1669

Appendix A: ADO.NET Entity Framework

Figure A-5

Figure A-6

 You access the customers and their orders with two iterations shown here. First the Customer objects are
accessed, and the value of the CompanyName property is written to the console. Then all orders are
accessed by using the Orders property of the Customer class. Because the related orders are not loaded
to the object context by default, the Load() method of the EntityCollection < Order > object is
returned from the Orders property.

 NorthwindEntities data = new NorthwindEntities();
 foreach (Customer customer in data.Customers)
 {
 Console.WriteLine(“{0}”, customer.CompanyName);
 if (!customer.Orders.IsLoaded)
 customer.Orders.Load();
 foreach (Order order in customer.Orders)
 {
 Console.WriteLine(“{0} {1:d}”, order.OrderID, order.OrderDate);
 }
 }

bapp01.indd 1669bapp01.indd 1669 2/19/08 5:36:34 PM2/19/08 5:36:34 PM

1670

Part VII: Appendices

 Behind the scenes, the RelationshipManager class is used to access the relationship. The
 RelationShipManager instance can be accessed by casting the entity object to the interface
 IEntityWithRelationships . This interface is explicitly implemented by the class EntityObject .
The RelationshipManager property returns a RelationshipManager that is associated with the
entity object at one end. The other end is defined by invoking the method GetRelatedCollection() .
The first parameter NorthwindModel.FK_Orders_Customers is the name of the relationship: the
second parameter Orders defines the name of the target role.

 RelationshipManager rm =
 ((IEntityWithRelationships)customer).RelationshipManager;
 EntityCollection < Order > orders =
 rm.GetRelatedCollection < Order > (
 “NorthwindModel.FK_Orders_Customers”, “Orders”);

 Relationships are delayed loaded. The Load() method of the EntityCollection class gets the data
from the store. One overload of the Load() method accepts a MergeOption enumeration. The possible
values are explained in the following table.

 By default, relationships are delayed loaded . For example, if you define a relation with the Customers
and Orders table and query for customers, the Orders records of the customers are not loaded. The term
used here is delayed loaded as the orders can be loaded afterwards as needed. Contrary to delay loading
you have the option to eager fetch records. Eager fetching means that as you access a customer record,
orders for the customer are loaded as well.

 MergeOption Value Description

 AppendOnly This is the default value. New entities are appended; existing entities in
the object context are not modified.

 NoTracking The ObjectStateManager that tracks changes to entity objects is not
modified.

 OverwriteChanges The current values of the entity objects are replaced with the values from
the store.

 PreserveChanges The original values of the entity objects in the object context are replaced
with the values from the store.

 Object Query
 Querying objects is one of the services offered by the ADO.NET Entity Framework. Queries can be done
using LINQ to Entities, Entity SQL, and Query Builder methods that create Entity SQL. LINQ to Entities
is covered in the last section of this appendix; let ’ s get into the other two options first.

 The following sections of this book make use of a Formula 1 database where you can see the entities
created from the designer in Figure A - 7 .

bapp01.indd 1670bapp01.indd 1670 2/19/08 5:36:35 PM2/19/08 5:36:35 PM

1671

Appendix A: ADO.NET Entity Framework

 Queries can be defined with the ObjectQuery < T > class. Let ’ s start with a simple query to access all
Racer entities. With this example, the connection is already opened, passing it to the object context
 Formula1Entities . This way it is possible to retrieve the generated SQL statement of the
 ObjectQuery < Racer > class with the ToTraceString() method. This method requires an open connection.

 ConnectionStringSettings connSettings =
 ConfigurationManager.ConnectionStrings[“Formula1Entities”];
 EntityConnection connection =
 new EntityConnection(connSettings.ConnectionString);
 connection.Open();
 using (Formula1Entities data = new Formula1Entities(connection))
 {

 ObjectQuery < Racer > racers = data.Racers;
 Console.WriteLine(racers.CommandText);
 Console.WriteLine(racers.ToTraceString());

 connection.Close();
 }

 The Entity SQL statement that is returned from the CommandText property is shown here:

[Racers]

Figure A-7

bapp01.indd 1671bapp01.indd 1671 2/19/08 5:36:35 PM2/19/08 5:36:35 PM

1672

Part VII: Appendices

 And this is the generated SELECT statement to retrieve the records from the database that is shown by
the ToTraceString() method:

SELECT
[Extent1].[Id] AS [Id],
[Extent1].[Firstname] AS [Firstname],
[Extent1].[Lastname] AS [Lastname],
[Extent1].[Country] AS [Country],
[Extent1].[Starts] AS [Starts],
[Extent1].[Wins] AS [Wins]
FROM [dbo].[Racers] AS [Extent1]

 Instead of accessing the Racers property from the object context, you can also create a query with the
 CreateQuery() method:

 ObjectQuery < Racer > racers = data.CreateQuery < Racer > (“[Racers]”);

 This is similar to using the Racers property and, in fact, the implementation of the Racers property
creates a query this way.

 Now it would be interesting to filter the racers based on a condition. This can be done by using the Where()
method of the ObjectQuery < T > class. Where() is one of the Query Builder methods that create Entity SQL.
This method requires a predicate as a string, and optional parameters of type ObjectParameter . The
predicate shown here specifies that only the racers from Brazil are returned. it specifies the item of the
result, and Country is the column Country . The first parameter of the ObjectParameter constructor
references the @Country parameter of the predicate, but doesn ’ t list the @ sign.

 string country = “Brazil”;
 ObjectQuery < Racer > racers = data.Racers.Where(
 “it.Country = @Country”,
 new ObjectParameter(“Country”, country));

 The magic behind it can be seen immediately by accessing the CommandText property of the query.
With Entity SQL, SELECT VALUE it declares it to access the columns.

SELECT VALUE it
FROM (
[Racers]
) AS it
WHERE
it.Country = @Country

 The method ToTraceString() shows the generated SQL statement:

SELECT
[Extent1].[Id] AS [Id],
[Extent1].[Firstname] AS [Firstname],
[Extent1].[Lastname] AS [Lastname],
[Extent1].[Country] AS [Country],
[Extent1].[Starts] AS [Starts],
[Extent1].[Wins] AS [Wins]
FROM [dbo].[Racers] AS [Extent1]
WHERE [Extent1].[Country] = @Country

 Of course you can also specify the complete Entity SQL:

 string country = “Brazil”;
 ObjectQuery < Racer > racers = data.CreateQuery < Racer > (
 “SELECT VALUE it FROM ([Racers]) AS it WHERE it.Country = @Country”,
 new ObjectParameter(“Country”, country));

bapp01.indd 1672bapp01.indd 1672 2/19/08 5:36:35 PM2/19/08 5:36:35 PM

1673

Appendix A: ADO.NET Entity Framework

ObjectQuery<T> Query
Builder Methods Description

Where() This method allows you to filter the results based on a condition.

Distinct() This method creates a query with unique results.

Except() This method returns the result without the items that meet the
condition with the except filter.

GroupBy() This method creates a new query to group entities based on a speci-
fied criteria.

Include() With relations you’ve seen earlier that related items are delay loaded,
it was required to invoke the Load()method of the
EntityCollection<T> class to get related entities into the object
context. Instead of using the Load()method, you can specify a query
with the Include()method to eager fetch related entities.

OfType() This method specifies to return only those entities of a specific type.
This is very helpful with TPH relations.

OrderBy() This method is for defining the sort order of the entities.

Select()SelectValue() These methods return a projection of the results. Select() returns the
result items in the form of a DbDataRecord; SelectValue() returns
the values as scalars or complex types as defined by the generic
parameter TResultType.

Skip()
Top()

These methods are useful for paging. Skip a number of items with the
Skip() method and take a specified number as defined by the Top()
method.

Intersect()
Union()
UnionAll()

These methods are used to combine two queries. Intersect()
returns a query containing only the results that are available in both of
the queries. Union() combines the queries and returns the complete
result without duplicates. UnionAll() also includes duplicates.

 The class ObjectQuery < T > offers several Query Builder methods as explained in the following table.
Many of these methods are very similar to the LINQ extension methods that you learned about in
Chapter 11 , “ Language Integrated Query. ”

(continued)

 Let ’ s get into one example on how to use these Query Builder methods. Here, the racers are filtered with
the Where() method to return only racers from the USA; the OrderBy() method specifies descending
sort order first based on the number of wins, next the number of starts. Finally, only the first three racers
are in the result using the Top() method.

 using (Formula1Entities data = new Formula1Entities())
 {
 string country = “USA”;

 ObjectQuery < Racer > racers = data.Racers.Where(“it.Country = @Country”,
 new ObjectParameter(“Country”, country))

 .OrderBy(“it.Wins DESC, it.Starts DESC”)
 .Top(“3”);

bapp01.indd 1673bapp01.indd 1673 2/19/08 5:36:36 PM2/19/08 5:36:36 PM

1674

Part VII: Appendices

 foreach (var racer in racers)
 {
 Console.WriteLine(“{0} {1}, wins: {2}, starts: {3}”,
 racer.Firstname, racer.Lastname, racer.Wins, racer.Starts);
 }
 }

 This is the result from this query:

Mario Andretti, wins: 12, starts: 128
Dan Gurney, wins: 4, starts: 87
Phil Hill, wins: 3, starts: 48

 Updates
 Reading, searching, and filtering data from the store are just one part of the work that usually needs to
be done with data - intensive applications. Writing changed data back to the store is the other part you
need to know.

 The sections that follow cover these topics:

 Object tracking

 Change information

 Attaching and detaching entities

 Storing entity changes

 Object Tracking
 To allow data read from the store to be modified and saved, the entities must be tracked after they are
loaded. This also requires that the object context be aware if an entity has already been loaded from the
store. If multiple queries are accessing the same records, the object context needs to return already
loaded entities.

 The ObjectStateManager is used by the object context to keep track of entities that are loaded into the
context.

 The following sample demonstrates that indeed if two different queries are done that return the same
record from the database, the state manager is aware of that and does not create a new entity. Instead,
the same entity is returned. The ObjectStateManager instance that is associated with the object context
can be accessed with the ObjectStateManager property. The ObjectStateManager class defines an
event named ObjectStateManagerChanged that is invoked every time a new object is added or
removed from the object context. Here, the method ObjectStateManager_
ObjectStateManagerChanged is assigned to the event to get information about changes.

 Two different queries are used to return an entity object. The first query gets the first racer from the
country Austria with the last name Lauda. The second query asks for the racers from Austria, sorts the
racers by the number of races won, and gets the first result. As a matter of fact, that ’ s the same racer. To
verify that the same entity object is returned, the method Object.ReferenceEquals() is used to verify
if the two object references indeed reference the same instance.

❑

❑

❑

❑

(continued)

bapp01.indd 1674bapp01.indd 1674 2/19/08 5:36:36 PM2/19/08 5:36:36 PM

1675

Appendix A: ADO.NET Entity Framework

 static void Tracking()
 {
 using (Formula1Entities data = new Formula1Entities())
 {

 data.ObjectStateManager.ObjectStateManagerChanged +=
 ObjectStateManager_ObjectStateManagerChanged;
 Racer niki1 = data.Racers.Where(
 “it.Country=’Austria’ & & it.Lastname=’Lauda’”).First();
 Racer niki2 = data.Racers.Where(“it.Country=’Austria’”).
 OrderBy(“it.Wins DESC”).First();
 if (Object.ReferenceEquals(niki1, niki2))

 {
 Console.WriteLine(“the same object”);
 }
 }
 }
 static void ObjectStateManager_ObjectStateManagerChanged(object sender,
 CollectionChangeEventArgs e)
 {
 Console.WriteLine(“Object State change - action: {0}”, e.Action);
 Racer r = e.Element as Racer;
 if (r != null)
 Console.WriteLine(“Racer {0}”, r.Lastname);
 }

 Running the application you can see that the event of the ObjectStateManagerChanged of the
 ObjectStateManager occurs only once, and the references niki1 and niki2 are indeed the same:

Object state change - action: Add
Racer Lauda
The same object

 Change Information
 The object context is also aware of changes with the entities. The following sample adds and modifies a
racer from the object context and gets information about the change. First, a new racer is added with the
 AddToRacers() method of the Formula1Entities class. This designer - generated method invokes the
 AddObject() method of the base class ObjectContext . This method adds a new entity with the
 EntityState.Added information. Next, a racer with the Lastname Alonso is queried. With this entity
class, the Starts property is incremented and thus the entity is marked with the information
 EntityState.Modified . Behind the scenes, the ObjectStateManager is informed about a state
change in the object based on the interface implementations INotifyPropertyChanged . This interface
is implemented in the entity base class StructuralObject . The ObjectStateManager is attached to
the PropertyChanged event, and this event is fired with every property change.

 To get all added or modified entity objects, you can invoke the GetObjectStateEntries() method of
the ObjectStateManager and pass an EntityState enumeration value as it is done here. This method
returns a collection of ObjectStateEntry objects that keep information about the entities. The helper
method DisplayState iterates through this collection to give detail information.

 You can also get state information about a single entity passing the EntityKey to the
 GetObjectStateEntry() method. The EntityKey property is available with entity objects
implementing the interface IEntityWithKey , which is the case with the base class EntityObject . The
 ObjectStateEntry object returned offers the method GetModifiedProperties() where you can read
all property values that have been changed, and also access the original and the current information
about the properties with the OriginalValues and CurrentValues indexers.

bapp01.indd 1675bapp01.indd 1675 2/19/08 5:36:37 PM2/19/08 5:36:37 PM

1676

Part VII: Appendices

 static void ChangeInformation()
 {
 using (Formula1Entities data = new Formula1Entities())
 {
 Racer sebastien = new Racer()
 {
 Firstname = “S é bastien”,
 Lastname = “Bourdais”,
 Country = “France”,
 Starts = 0
 };

 data.AddToRacers(sebastien);
 Racer fernando = data.Racers.Where(“it.Lastname=’Alonso’”).First();
 fernando.Starts++;
 DisplayState(EntityState.Added.ToString(),

 data.ObjectStateManager.GetObjectStateEntries(
 EntityState.Added));
 DisplayState(EntityState.Modified.ToString(),
 data.ObjectStateManager.GetObjectStateEntries(
 EntityState.Modified));
 ObjectStateEntry stateOfFernando =
 data.ObjectStateManager.GetObjectStateEntry(fernando.EntityKey);

 Console.WriteLine(“state of Fernando: {0}”,
 stateOfFernando.State.ToString());
 foreach (string modifiedProp in
 stateOfFernando.GetModifiedProperties())
 {
 Console.WriteLine(“modified: {0}”, modifiedProp);
 Console.WriteLine(“original: {0}”,
 stateOfFernando.OriginalValues[modifiedProp]);
 Console.WriteLine(“current: {0}”,
 stateOfFernando.CurrentValues[modifiedProp]);
 }
 }
 static void DisplayState(string state, IEnumerable < ObjectStateEntry > entries)
 {
 foreach (var entry in entries)
 {
 Racer r = entry.Entity as Racer;
 if (r != null)
 {
 Console.WriteLine(“{0}: {1}”, state, r.Lastname);
 }
 }
 }

 When you run the application, the added and modified racers are displayed, and the properties changed
with their original and current values are shown.

Added: Bourdais
Modified: Alonso
state of Fernando: Modified
modified: Starts
original: 95
current: 96

bapp01.indd 1676bapp01.indd 1676 2/19/08 5:36:37 PM2/19/08 5:36:37 PM

1677

Appendix A: ADO.NET Entity Framework

 Attaching and Detaching Entities
 Returning entity data to the caller it might be important to detach the objects from the object context.
This is necessary, for example, if an entity object is returned from a Web service. Here, if the entity object
is changed on the client, the object context is not aware of the change.

 With the sample code, the Detach() method of the ObjectContext detaches the entity named
 fernando and thus the object context is not aware of any change done on this entity. If a changed entity
object is passed from the client application to the service, it can be attached again. Just attaching it to the
object context might not be enough because this doesn ’ t give the information that the object was
modified. Instead, the original object must be available inside the object context. The original object can
be accessed from the store by using the key with the method GetObjectByKey() . If the entity object is
already inside the object context, the existing one is used; otherwise it is fetched newly from the
database. Invoking the method ApplyPropertyChanges() passes the modified entity object to the
object context, and if there are changes, the changes are done within the existing entity with the same
key inside the object context, and the EntityState is set to Modified . Remember that the method
 ApplyPropertyChanges() requires the object to exist within the object context; otherwise the new
entity object is added with EntityState Added .

 using (Formula1Entities data = new Formula1Entities())
 {
 data.ObjectStateManager.ObjectStateManagerChanged +=
 ObjectStateManager_ObjectStateManagerChanged;
 ObjectResult < Racer > racers = data.Racers.Where(“it.Lastname=’Alonso’”);
 Racer fernando = racers.First();
 EntityKey key = fernando.EntityKey;

 data.Detach(fernando);

 // Racer is now detached and can be changed independent of the
 // object context
 fernando.Starts++;

 Racer originalObject = (Racer)data.GetObjectByKey(key);
 data.ApplyPropertyChanges(key.EntitySetName, fernando);

 }

 Storing Entity Changes
 Based on all the change information with the help of the ObjectStateManager , the added, deleted, and
modified entity objects can be written to the store with the SaveChanges() method of the
 ObjectContext class. To verify changes within the object context, you can assign a handler method to
the SavingChanges event of the ObjectContext class. This event is fired before the data is written to
the store, so you can add some verification logic to see if the changes should be really done.
 SaveChanges() returns the number of entity objects that have been written.

 What happens if the records in the database that are represented by the entity classes have been changed
after reading the record? The answer depends on the ConcurrencyMode property that is set with the
model. With every property of an entity object, you can configure the ConcurrencyMode to Fixed or
 None . The value Fixed means that the property is validated at write time to determine if the value was
not changed in the meantime. None — which is the default — ignores any change. If some properties are
configured to the Fixed mode, and data changed between reading and writing the entity objects, an
 OptimisticConcurrencyException occurs. You can deal with this exception by invoking the
 Refresh() method to read the actual information from the database into the object context. This method
accepts two refresh modes configured by a RefreshMode enumeration value: ClientWins or
 StoreWins . StoreWins means that the actual information is taken from the database and set to the

bapp01.indd 1677bapp01.indd 1677 2/19/08 5:36:37 PM2/19/08 5:36:37 PM

1678

Part VII: Appendices

current values of the entity objects. ClientWins means that the database information is set to the original
values of the entity objects, and thus the database values will be overwritten with the next SaveChanges .
The second parameter of the Refresh() method is either a collection of entity objects or a single entity
object. You can decide the refresh behavior on entity by entity.

 static void ChangeInformation()
 {
 //...
 int changes = 0;
 try
 {

 changes = data.SaveChanges();

 }
 catch (OptimisticConcurrencyException ex)
 {
 data.Refresh(RefreshMode.ClientWins, ex.StateEntries);
 changes = data.SaveChanges();
 }
 Console.WriteLine(“{0} entities changed”, changes);

 LINQ to Entities
 In several chapters of this book you ’ ve seen LINQ to Query objects, databases, and XML. Of course,
LINQ is also available to query entities.

 With LINQ to Entities, the source for the LINQ query is ObjectQuery < T > . Because ObjectQuery < T >
implements the interface IQueryable , the extension methods selected for the query are defined with the
class Queryable from the namespace System.Linq . The extension methods defined with this class have
a parameter Expression < T > ; that ’ s why the compiler writes an expression tree to the assembly. You can
read more about expression trees in Chapter 11 , “ Language Integrated Query. ” The expression tree is
then resolved from the ObjectQuery < T > class to the SQL query.

 You can use a simple LINQ query as shown here to return the racers that won more than 40 races:

 using (Formula1Entities data = new Formula1Entities())
 {
 var racers = from r in data.Racers
 where r.Wins > 40
 orderby r.Wins descending
 select r;
 foreach (Racer r in racers)
 {
 Console.WriteLine(“{0} {1}”, r.Firstname, r.Lastname);
 }
 }

 This is the result of accessing the Formula 1 database:

Michael Schumacher
Alain Prost
Ayrton Senna

 You can also define a LINQ query to access relations as shown here. Variable r references racers, variable
 rr references all race results. The filter is defined with the where clause to retrieve only racers from

bapp01.indd 1678bapp01.indd 1678 2/19/08 5:36:38 PM2/19/08 5:36:38 PM

1679

Appendix A: ADO.NET Entity Framework

Switzerland who had a race position on the podium. To get the podium finishes, the result is grouped,
and the podium count calculated. Sorting is done based on the podium finishes.

 using (Formula1Entities data = new Formula1Entities())
 {
 var query = from r in data.Racers
 from rr in r.RaceResults
 where rr.Position < = 3 & & rr.Position > = 1 & &
 r.Country == “Switzerland”
 group r by r.Id into g
 let podium = g.Count()
 orderby podium descending
 select new { Racer = g.FirstOrDefault(), Podiums = podium };
 foreach (var r in query)
 {
 Console.WriteLine(“{0} {1} {2}”, r.Racer.Firstname,
 r.Racer.Lastname,r.Podiums);
 }
 }

 The names of three racers from Switzerland are returned when you run the application:

Clay Regazzoni 28
Jo Siffert 6
Rudi Fischer 2

 Summary
 In this chapter, you ’ ve seen the features of the ADO.NET Entity Framework. Unlike LINQ to SQL, which
is covered in Chapter 27 , this framework offers a provider - based mapping, and other database vendors
can implement their own providers.

 The ADO.NET Entity Framework is based on mapping that is defined by CSDL, MSL, and SSDL — XML
information to describe the entities, the mapping, and the database schema. Using this mapping
technique, you can create different relation types to map entity classes to database tables.

 You ’ ve seen how the object context keeps knowledge about entities retrieved and updated, and how the
changes can be written to the store.

 LINQ to Entities is just a facet of the ADO.NET Entity Framework that allows you to use the new query
syntax to access entities.

bapp01.indd 1679bapp01.indd 1679 2/19/08 5:36:38 PM2/19/08 5:36:38 PM

bapp01.indd 1680bapp01.indd 1680 2/19/08 5:36:38 PM2/19/08 5:36:38 PM

 C #, Visual Basic,
and C ++/ CLI

 C# is the programming language designed for .NET. More than 50 languages exist for writing .NET
applications — for example, Eiffel, Smalltalk, COBOL, Haskell, Pizza, Pascal, Delphi, Oberon,
Prolog, and Ruby. Microsoft alone delivers the languages C#, Visual Basic, C++/CLI, J#, and
JScript.NET.

 Every language has advantages and disadvantages; some things can be done easily with one
language but are complicated with another one. The classes from the .NET Framework are always
the same, but the syntax of the language abstracts various features from the Framework. For
example, the C# using statement makes it easy to use the objects implementing the IDisposable
interface. Other languages need more code for the same functionality.

 The most commonly used .NET languages from Microsoft are C# and Visual Basic. C# was newly
designed for .NET with ideas from C++, Java, Pascal, and other languages. Visual Basic has its
roots in Visual Basic 6 and was extended with object - oriented features for .NET.

 C++/CLI is an extension to C++ that is an ECMA standard (ECMA 372). The big advantage
of C++/CLI is the ability to mix native code with managed code. You can extend existing native
C++ applications and add .NET functionality, and you can add .NET classes to native libraries so
that they can be used from other .NET languages such as C#. It is also possible to write completely
managed applications with C++/CLI.

 This chapter shows you how to convert .NET applications from one language to another. If you see
sample code with Visual Basic or C++/CLI, you can easily map this to C#, and the other way
around.

 The following topics are covered in this chapter:

 Namespaces

 Defining types

 Methods

 Arrays

❑

❑

❑

❑

bapp02.indd 1681bapp02.indd 1681 2/19/08 5:36:48 PM2/19/08 5:36:48 PM

Part VII: Appendices

1682

 Control statements

 Loops

 Exception handling

 Inheritance

 Resource management

 Delegates

 Events

 Generics

 LINQ Queries

 C++/CLI mixing native and managed code

 For this chapter, I assume that you know C# and have read the first few chapters of this book. It is not
necessary to know Visual Basic and C++/CLI.

 Namespaces
 .NET types are organized into namespaces. The syntax for defining and using namespaces is quite
different between the three languages.

 To import namespaces, C# uses the using keyword. C++/CLI is fully based on the C++ syntax with the
 using namespace statement. Visual Basic defines the Imports keyword to import namespaces.

 With C#, you can define an alias to classes or other namespaces. With C++/CLI and Visual Basic
namespace, an alias can reference other namespaces, but not classes. C++ requires the namespace
keyword to define an alias — the same keyword is used to define a namespace. Visual Basic uses the
 Imports keyword again.

 For defining namespaces, all three languages use the namespace keyword, but there ’ s still a difference.
With C++/CLI, you can ’ t define hierarchical namespaces with one namespace statement; instead
the namespaces must be nested. There ’ s one important difference with the project settings: defining a
namespace in the project settings of C# defines a default namespace that shows up in the code of all new
items that you add to the project. With Visual Basic project settings, you define the root namespace that
is used by all items in the project. Namespaces declared in the source code define only the sub -
 namespace inside the root namespace.

// C#
using System;
using System.Collections.Generic;
using Assm = Wrox.ProCSharp.Assemblies;
namespace Wrox.ProCSharp.Languages
{
}
// C++/CLI
using namespace System;
using namespace System::Collections::Generic;
namespace Assm = Wrox.ProCSharp.Assemblies;
namespace Wrox
{
 namespace ProCSharp

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 1682bapp02.indd 1682 2/19/08 5:36:49 PM2/19/08 5:36:49 PM

1683

Appendix B: C #, Visual Basic, and C ++/ CLI

 {
 namespace Languages
 {
 }
 }
}
‘’ Visual Basic
Imports System
Imports System.Collections.Generic
Imports Assm = Wrox.ProCSharp.Assemblies
Namespace Wrox.ProCSharp.Languages
End Namespace

 Defining Types
 .NET differentiates between reference types and value types. With C#, reference types are defined with
classes, and value types with structs. In addition to reference and value types, this section also shows
you how to define an interface (a reference type) and an enumeration (a value type).

 Reference Types
 To declare a reference type, C# and Visual Basic use the class keyword. In C++/CLI, a class and a struct
are nearly the same; you don ’ t have the separation between a reference type and a value type as you do
with C# and Visual Basic. C++/CLI has a ref keyword to define a managed class. You can create a
reference type by defining ref class or ref struct .

 Both with C# and C++/CLI the class is surrounded by curly brackets. With C++/CLI don ’ t forget the
semicolon at the end of the class declaration. Visual Basic uses the End Class statement at the end of
the class.

// C#
public class MyClass
{
}
// C++/CLI
public ref class MyClass
{
};
public ref struct MyClass2
{
};
‘ Visual Basic
Public Class MyClass
End Class

 When using a reference type, a variable needs to be declared, and the object must be allocated on the
managed heap. When declaring a handle to a reference type, C++/CLI defines the handle operator ̂ ,
which is somewhat similar to the C++ pointer * . The gcnew operator allocates the memory on the
managed heap. With C++/CLI, it is also possible to declare a variable locally, but for reference types, the
object is still allocated on the managed heap. With Visual Basic, the variable declaration starts with the
statement Dim followed by the name of the variable. With new and the object type, memory is allocated
on the managed heap.

bapp02.indd 1683bapp02.indd 1683 2/19/08 5:36:49 PM2/19/08 5:36:49 PM

Part VII: Appendices

1684

// C#
MyClass obj = new MyClass();
// C++/CLI
MyClass^ obj = gcnew MyClass();
MyClass obj2;
‘ Visual Basic
Dim obj as New MyClass()

 If a reference type does not reference memory, all three languages use different keywords: C# defines the
 null literal, C++/CLI defines nullptr (NULL is valid only for native objects), and Visual Basic defines
 Nothing .

 Predefined reference types are listed in the following table. C++/CLI does not define the object and
string type as is done with the other languages. Of course, you can use the classes defined by the
Framework.

 .NET Type C# C++/CLI Visual Basic

 System.Object object Not defined Object

 System.String string Not defined String

 Value Types
 To declare a value type, C# uses the struct keyword; C++/CLI, the keyword value ; and Visual Basic,
 Structure .

// C#
public struct MyStruct
{
}
// C++/CLI
public value class MyStruct
{
};
‘ Visual Basic
Public Structure MyStruct
End Structure

 With C++/CLI, you can allocate a value type on the stack, on the native heap by using the new operator,
and on the managed heap by using the gcnew operator. C# and Visual Basic do not have these options,
but these options become important when native and managed code is mixed with C++/CLI.

// C#
MyStruct ms;
// C++/CLI
MyStruct ms1;
MyStruct* pms2 = new MyStruct();
MyStruct^ hms3 = gcnew MyStruct();
‘ Visual Basic
Dim ms as MyStruct

 Predefined value types for the different languages are listed in the following table. In C++/CLI, the char
type has a size of just 1 byte for an ASCII character. In C#, char has a size of 2 bytes for Unicode

bapp02.indd 1684bapp02.indd 1684 2/19/08 5:36:49 PM2/19/08 5:36:49 PM

1685

Appendix B: C #, Visual Basic, and C ++/ CLI

characters; that ’ s a wchar_t in C++/CLI. The ANSI standard for C++ just defines short < = int < =
long . With 32 - bit machines, int and long both have a size of 32 bits. To define a 64 - bit variable in C++,
you need long long .

 .NET Type C# C++/CLI Visual Basic Size

 Char char wchar_t Char 2 bytes

 Boolean bool bool Boolean 1 byte, contains true or false

 Int16 short short Short 2 bytes

 UInt16 ushort unsigned short UShort 2 bytes with no sign

 Int32 int int Integer 4 bytes

 UInt32 uint unsigned int UInteger 4 bytes with no sign

 Int64 long long long Long 8 bytes

 UInt64 ulong unsigned long
long

 ULong 8 bytes with no sign

 Type Inference
 C# 3.0 allows you to define a local variable without an explicit data type declaration with the var
keyword. The type is inferred from the initial value that is assigned. Visual Basic offers the same feature
using the Dim keyword as long as Option infer is turned on. This can be done with the compiler setting /
optioninfer+ or by using the project configuration page with Visual Studio.

// C#
var x = 3;
‘ Visual Basic
Dim x = 3

 Interfaces
 Defining interfaces is very similar for all three languages. All languages use the keyword interface :

// C#
public interface IDisplay
{
 void Display();
}
// C++/CLI
public interface class IDisplay
{
 void Display();
};
‘ Visual Basic
Public Interface IDisplay
 Sub Display
End Interface

bapp02.indd 1685bapp02.indd 1685 2/19/08 5:36:50 PM2/19/08 5:36:50 PM

Part VII: Appendices

1686

 Implementing interfaces is different. C# and C++/CLI use a colon after the class name followed by the
interface name. The methods defined with the interface are implemented. With C++/CLI, the methods
must be declared virtual . Visual Basic uses the Implements keyword to implement an interface, and
the methods that are defined by the interface also need the Implements keyword attached.

// C#
public class Person : IDisplay
{
 public void Display()
 {
 }
}
// C# explicit interface implementation
public class Person : IDisplay
{
 void IDisplay.Display()
 {
 }
}
// C++/CLI
public ref class Person : IDisplay
{
public:
 virtual void Display();
};
‘ Visual Basic
Public Class Person
 Implements IDisplay
 Public Sub Display Implements IDisplay.Display
 End Sub
End Class

 Enumerations
 Enumerations are defined similarly in all three languages with the enum keyword (only Visual Basic uses
a new line instead of a comma to separate the elements):

// C#
public enum Color
{
 Red, Green, Blue
}
// C++/CLI
public enum class Color
{
 Red, Green, Blue
};
‘ Visual Basic
Public Enum Color
 Red
 Green
 Blue
End Enum

bapp02.indd 1686bapp02.indd 1686 2/19/08 5:36:50 PM2/19/08 5:36:50 PM

1687

Appendix B: C #, Visual Basic, and C ++/ CLI

 Methods
 Methods are always declared within a class. The syntax from C++/CLI is very similar to C# except that
the access modifier is not part of the method declaration but is written before that. The access modifier
must end with a colon. With Visual Basic, the Sub keyword is used to define a method.

// C#
public class MyClass
{
 public void Foo()
 {
 }
}
// C++/CLI
public ref class MyClass
{
public:
 void Foo()
 {
 }
};
‘ Visual Basic
Public Class MyClass
 Public Sub Foo
 End Sub
End Class

 Method Parameters and Return Types
 With C# and C++/CLI, parameters that are passed to methods are defined inside a bracket. The type of
the parameter is declared before the variable name. If a value is returned from a method, the method is
defined with the type to return instead of void.

 Visual Basic uses Sub statements to declare a method without returning a value, and the Function
statement with a method that does have a return type. The return type is followed after the method
name and the brackets. Visual Basic also has a different order with variable declaration and type in the
parameter. The type follows the variable, which is the reverse direction from C# and C++/CLI.

// C#
public class MyClass
{
 public int Foo(int i)
 {
 return 2 * i;
 }
}
// C++/CLI
public ref class MyClass
{
public:
 int Foo(int i)
 {
 return 2 * i;
 }
};

(continued)

bapp02.indd 1687bapp02.indd 1687 2/19/08 5:36:50 PM2/19/08 5:36:50 PM

Part VII: Appendices

1688

‘ Visual Basic
Public Class MyClass
 Public Sub Foo1(ByVal i as Integer)
 End Sub
 Public Function Foo(ByVal i As Integer) As Integer
 Return 2 * i
 End Sub
End Class

 Parameter Modifiers
 By default, value types are passed by value, and reference types are passed by reference. If a value type
that is passed as a parameter should be changed within a calling method, with C# you can use the
parameter modifier ref .

 C++/CLI defines a managed reference operator % . This operator is similar to the C++ reference operator
 & except that % can be used with managed types and the garbage collector can keep track of these objects
in case they are moved within the managed heap.

 With Visual Basic, the keyword ByRef is used for passing parameters by reference:

// C#
public class ParameterPassing
{
 public void ChangeVal(ref int i)
 {
 i = 3;
 }
}
// C++/CLI
public ref class ParameterPassing
{
public:
 int ChangeVal(int% i)
 {
 i = 3;
 }
};
‘ Visual Basic
Public Class ParameterPassing
 Public Sub ChangeVal(ByRef i as Integer)
 i = 3
 End Sub
End Class

 When invoking a method with reference parameters, only the C# language requires you to apply
a parameter modifier. C++/CLI and Visual Basic don ’ t differentiate calling a method with or without the
parameter modifier. C# has the advantage here because you can immediately see in the calling method
the parameter values can be changed.

 Because of the caller syntax, which is not differentiated, Visual Basic does not allow you to overload
methods just by changing the modifier. The C++/CLI compiler allows you to overload the method just
by changing the modifier, but you cannot compile the caller because the resolved method is ambiguous.
With C# it is possible to overload and use methods with just the parameter modifier, but it ’ s not a good
programming practice.

(continued)

bapp02.indd 1688bapp02.indd 1688 2/19/08 5:36:51 PM2/19/08 5:36:51 PM

1689

Appendix B: C #, Visual Basic, and C ++/ CLI

// C#
 ParameterPassing obj = new ParameterPassing();
 int a = 1;
 obj.ChangeVal(ref a);
 Console.WriteLine(a); // writes 3
// C++/CLI
 ParameterPassing obj;
 int a = 1;
 obj.ChangeVal(a);
 Console.WriteLine(a); // writes 3
‘ Visual Basic
 Dim obj as new ParameterPassing()
 Dim i as Integer = 1
 obj.ChangeVal(i)
 Console.WriteLine(i) // writes 3

 C# also defines the out keyword when a parameter is just returned from a method. This option is not
available from C++/CLI and Visual Basic. As long as the caller and callee are in the same application
domain, there ’ s really no difference between out and ref behind the scenes, and you can use a method
declared with the C# out parameter modifier from Visual Basic and C++/CLI in the same way as ref
parameter modifiers. If the method is used across application domains or processes, the attribute [out]
can be used with Visual Basic and C++/CLI.

 Constructors
 With both C# and C++/CLI, the constructor has the same name as the class. Visual Basic uses a
procedure named New . The this and Me keywords are used to access a member of this instance. When
invoking another constructor within a constructor, a member initializion is required with C#. With C++/
CLI and Visual Basic, it is possible to invoke the constructor as a method.

// C#
public class Person
{
 public Person()
 : this(“unknown”, “unknown”)
 { }
 public Person(string firstName, string lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 private string firstName;
 private string lastName;
}
// C++/CLI
public ref class Person
{
public:
 Person()
 {
 Person(“unknown”, “unknown”);
 }
 Person(String^ firstName, String^ lastName)

(continued)

bapp02.indd 1689bapp02.indd 1689 2/19/08 5:36:51 PM2/19/08 5:36:51 PM

Part VII: Appendices

1690

 {
 this- > firstName = firstName;
 this- > lastName = lastName;
 }
private:
 String^ firstName;
 String^ lastName;
};
‘ Visual Basic
Public Class Person
 Public Sub New()
 Me.New(“unknown”, “unknown”)
 End Sub
 Public Sub New(ByVal firstName As String, ByVal lastName As String)
 Me.MyFirstName = firstName
 Me.MyLastName = lastName
 End Sub
 Private MyFirstName As String
 Private MyLastName As String
End Class

 Properties
 To define a property, C# just requires a get and set accessor within a property block. With the set
accessor, the variable value is automatically created by the C# compiler. C# 3.0 also has a new shorthand
notation where an implementation is not needed if just a simple variable is returned or set by the get and
set accessors. The syntax is different both with C++/CLI and Visual Basic. Both of these languages have
a property keyword, and it is necessary to define a variable value with the set accessor. C++/CLI also
requires a return type with the get accessor and a parameter type with the set accessor.

 C++/CLI also has a short version of writing a property. Using the property keyword, you just have to
define the type and the name of the property; the get and set accessors are created automatically by the
compiler. If there ’ s nothing else needed than setting and returning a variable, the short version is good
enough. If the implementation of the accessors requires more — for example, checking the value or
doing a refresh — you must write the full syntax for properties. The designers of C# 3.0 learned from
C++/CLI to offer a short notation as well.

// C#
public class Person
{
 private string firstName;
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }
 public string LastName { get; set; }
}
// C++/CLI
public ref class Person
{
private:
 String^ firstName;
public:
 property String^ FirstName

(continued)

bapp02.indd 1690bapp02.indd 1690 2/19/08 5:36:51 PM2/19/08 5:36:51 PM

1691

Appendix B: C #, Visual Basic, and C ++/ CLI

 {
 String^ get()
 {
 return firstName;
 }
 void set(String^ value)
 {
 firstName = value;
 }
 }
 property String^ LastName;
};
‘ Visual Basic
Public Class Person
 Private myFirstname As String
 Public Property FirstName()
 Get
 Return myFirstName
 End Get
 Set(ByVal value)
 myFirstName = value
 End Set
 End Property
 Private myLastName As String
 Public Property LastName()
 Get
 Return myLastName
 End Get
 Set(ByVal value)
 myLastName = value
 End Set
 End Property
End Class

 With C# and C++/CLI, read - only properties just have a get accessor. With Visual Basic, you must also
specify the ReadOnly modifier. Write - only properties must be defined with the WriteOnly modifier and
a set accessor.

‘ Visual Basic
 Public ReadOnly Property Name()
 Get
 Return myFirstName & “ “ & myLastName
 End Get
 End Property

 Object Initializers
 With C# 3.0 and Visual Basic, properties can be initialized using an object initializer. The properties can
be initialized using curly brackets similar to an array initializer. The syntax from C# and Visual Basic is
very similar; Visual Basic just uses the With keyword.

// C#
Person p = new Person() { FirstName = “Tom”, LastName = “Turbo” };
‘ Visual Basic
Dim p As New Person With { .FirstName = “Tom”, .LastName = “Turbo” }

bapp02.indd 1691bapp02.indd 1691 2/19/08 5:36:52 PM2/19/08 5:36:52 PM

Part VII: Appendices

1692

 Extension Methods
 Extension methods are the foundation of LINQ. With both C# and Visual Basic, it is possible to
create extension methods. However, the syntax is different. C# marks an extension method with the
 this keyword in the first parameter, Visual Basic marks an extension method with the attribute
 < Extension > .

// C#
public static class StringExtension
{
 public static void Foo(this string s)
 {
 Console.WriteLine(“Foo {0}”, s);
 }
}
‘ Visual Basic
Public Module StringExtension
 < Extension() > _
 Public Sub Foo(ByVal s As String)
 Console.WriteLine(“Foo {0}”, s)
 End Sub
End Module

 Static Members
 A static field is instantiated only once for all objects of the type. C# and C++/CLI both use the static
keyword; Visual Basic offers the same functionality with the Shared keyword.

 To use static members, you use the name of the class followed by the . operator and the name of the
static member. C++/CLI uses the :: operator for accessing static members.

// C#
public class Singleton
{
 private static SomeData data = null;
 public static SomeData GetData()
 {
 if (data == null)
 {
 data = new SomeData();
 }
 return data;
 }
}
// use:
SomeData d = Singleton.GetData();
// C++/CLI
public ref class Singleton
{
private:
 static SomeData^ hData;
public:
 static SomeData^ GetData()
 {
 if (hData == nullptr)

bapp02.indd 1692bapp02.indd 1692 2/19/08 5:36:52 PM2/19/08 5:36:52 PM

1693

Appendix B: C #, Visual Basic, and C ++/ CLI

 {
 hData = gcnew SomeData();
 }
 return hData;
 }
};
// use:
SomeData^ d = Singleton::GetData();
‘ Visual Basic
Public Class Singleton
 Private Shared data As SomeData
 Public Shared Function GetData() As SomeData
 If data is Nothing Then
 data = new SomeData()
 End If
 Return data
 End Function
End Class
‘ Use:
Dim d as SomeData = Singleton.GetData()

 Arrays
 Arrays are discussed in Chapter 5 , “ Arrays. ” The Array class is always behind the scenes of .NET arrays;
declaring an array, the compiler creates a class that derives from the Array base class. When C# was
designed, the designers of the C# language took the bracket syntax for arrays from C++ and extended it
with array initializers.

// C#
int[] arr1 = new int[3] {1, 2, 3};
int[] arr2 = {1, 2, 3};

 If you use brackets with C++/CLI, you create a native C++ array but not an array that is based on the
 Array class. To create .NET arrays, C++/CLI introduced the array keyword. This keyword uses a
generic - like syntax with angle brackets. Within the angle brackets, the type of the elements is defined.
C++/CLI supports array initializers with the same syntax as C#.

// C++/CLI
array < int > ̂ arr1 = gcnew array < int > (3) {1, 2, 3};
array < int > ̂ arr2 = {1, 2, 3};

 Visual Basic uses braces for arrays. It requires the last element number instead of the number of elements
with the array declaration. With every .NET language, arrays begin with element number 0. This is also
the same for Visual Basic. To make that clearer, Visual Basic 9 introduced the 0 To number expression
with the array declaration. It always starts with 0; 0 To just makes this more readable.

 Visual Basic also supports array initializers if the array is initialized with the New operator:

‘ Visual Basic
Dim arr1(0 To 2) As Integer()
Dim arr2 As Integer() = New Integer(0 To 2) {1, 2, 3};

bapp02.indd 1693bapp02.indd 1693 2/19/08 5:36:52 PM2/19/08 5:36:52 PM

Part VII: Appendices

1694

 Control Statements
 Control statements define what code should run. C# defines the if and switch statements, and the
conditional operator.

 if Statement
 The C# if statement is the same as the C++/CLI version. Visual Basic uses If - Then / Else / End If
instead of curly brackets.

// C# and C++/CLI
if (a == 3)
{
 // do this
}
else
{
 // do that
}
‘ Visual Basic
If a = 3 Then
 ‘ do this
Else
 ‘ do that
End If

 Conditional Operator
 C# and C++/CLI support the conditional operator, a lightweight version of the if statement. In C++/
CLI, this operator is known as a ternary operator. The first argument has a Boolean result. If the result is
true, the first expression is evaluated; otherwise, the second one is. Visual Basic has the IIf function in
the Visual Basic Runtime Library, which offers the same functionality.

// C#
string s = a > 3 ? “one” : “two”;
// C++/CLI
String^ s = a > 3 ? “one” : “two”;
‘ Visual Basic
Dim s As String = IIf(a > 3, “one”, “two”)

 switch Statement
 The switch statement looks very similar in C# and C++/CLI, but there are important differences. C#
supports strings with the case selection. This is not possible with C++. With C++ you have to use if -
 else instead. C++/CLI does support an implicit fall - through from one case to the next. With C#, the
compiler complains if there ’ s not a break or a goto statement. C# has only implicit fall - through if there ’ s
not a statement for the case.

 Visual Basic has a Select / Case statement instead of switch / case . A break is not only not needed but
also not possible. An implicit fall - through from one case to the next is not possible, even if there ’ s not a
single statement following Case ; instead, Case can be combined with And , Or , and To — for example,
 3 To 5 .

bapp02.indd 1694bapp02.indd 1694 2/19/08 5:36:52 PM2/19/08 5:36:52 PM

1695

Appendix B: C #, Visual Basic, and C ++/ CLI

// C#
string GetColor(Suit s)
{
 string color;
 switch (s)
 {
 case Suit.Heart:
 case Suit.Diamond:
 color = “Red”;
 break;
 case Suit.Spade:
 case Suit.Club:
 color = “Black”;
 break;
 default:
 color = “Unknown”;
 break;
 }
 return color;
}
// C++/CLI
String^ GetColor(Suit s)
{
 String^ color;
 switch (s)
 {
 case Suit::Heart:
 case Suit::Diamond:
 color = “Red”;
 break;
 case Suit::Spade:
 case Suit::Club:
 color = “Black”;
 break;
 default:
 color = “Unknown”;
 break;
 }
 return color;
}
‘ Visual Basic
Function GetColor(ByVal s As Suit) As String
 Dim color As String = Nothing
 Select Case s
 Case Suit.Heart And Suit.Diamond
 color = “Red”
 Case Suit.Spade And Suit.Club
 color = “Black”
 Case Else
 color = “Unknown”
 End Select

 Return color
End Function

bapp02.indd 1695bapp02.indd 1695 2/19/08 5:36:53 PM2/19/08 5:36:53 PM

Part VII: Appendices

1696

 Loops
 With loops, code is executed repeatedly until a condition is met. Loops with C# are discussed in Chapter
 2 , “ C# Basics, ” including: for , while , do...while , and foreach . C# and C++/CLI are very similar
with the looping statements; Visual Basic defines different statements.

 for Statement
 The for statement is similar with C# and C++/CLI. With Visual Basic, you can ’ t initialize a variable
inside the For/To statement; you must initialize the variable beforehand. For/To doesn ’ t require a Step
to follow — Step 1 is the default. Just in case you don ’ t want to increment by 1, the Step keyword is
required with For/To .

// C#
for (int i = 0; i < 100; i++)
{
 Console.WriteLine(i);
}
// C++/CLI
for (int i = 0; i < 100; i++)
{
 Console::WriteLine(i);
}
‘ Visual Basic
Dim count as Integer
For count = 0 To 99 Step 1
 Console.WriteLine(count)
Next

 while and do . . . while Statements
 The while and do...while statements are the same in C# and C++/CLI. Visual Basic has very similar
constructs with Do While/Loop and Do/Loop While .

// C#
int i = 0;
while (i < 3)
{
 Console.WriteLine(i++);
}
i = 0;
do
{
 Console.WriteLine(i++);
} while (i < 3);
// C++/CLI
int i = 0;
while (i < 3)
{
 Console::WriteLine(i++);
}
i = 0;
do
{
 Console::WriteLine(i++);
} while (i < 3);

bapp02.indd 1696bapp02.indd 1696 2/19/08 5:36:53 PM2/19/08 5:36:53 PM

1697

Appendix B: C #, Visual Basic, and C ++/ CLI

‘ Visual Basic
Dim num as Integer = 0
Do While (num < 3)
 Console.WriteLine(num)
 num += 1
Loop
num = 0
Do
 Console.WriteLine(num)
 num += 1
Loop While (num < 3)

 foreach Statement
 The foreach statement makes use of the interface IEnumerable . foreach doesn ’ t exist with ANSI C++
but is an extension of ANSI C++/CLI. Unlike the C# foreach , in C++/CLI there ’ s a blank space
between for and each . The For Each statement of Visual Basic doesn ’ t allow you to declare the type of
the iterating type inside the loop; the type must be declared beforehand.

// C#
int[] arr = {1, 2, 3};
foreach (int i in arr)
{
 Console.WriteLine(i);
}
// C++/CLI
array < int > ̂ arr = {1, 2, 3};
for each (int i in arr)
{
 Console::WriteLine(i);
}
‘ Visual Basic
Dim arr() As Integer = New Integer() {1, 2, 3}
Dim num As Integer
For Each num In arr
 Console.WriteLine(num)

Next

 While foreach makes it easy to iterate through a collection, C# supports creating enumerations by
using the yield statement. With Visual Basic and C++/CLI, the yield statement is not available.
 Instead, with these languages it is necessary to implement the interfaces IEnumerable and
 IEnumerator manually. The yield statement is explained in Chapter 5 , “ Arrays. ”

 Exception Handling
 Exception handling is discussed in Chapter 14 , “ Errors and Exceptions. ” This is extremely similar among
all three languages. All these languages use try / catch / finally for handling exceptions, and the
 throw keyword to create an exception:

// C#
public void Method(Object o)
{
 if (o == null)
 throw new ArgumentException(“Error”);
}

(continued)

bapp02.indd 1697bapp02.indd 1697 2/19/08 5:36:53 PM2/19/08 5:36:53 PM

Part VII: Appendices

1698

public void Foo()
{
 try
 {
 Method(null);
 }
 catch (ArgumentException ex)
 { }
 catch (Exception ex)
 { }
 finally
 { }
}
// C++/CLI
public:
 void Method(Object^ o)
 {
 if (o == nullptr)
 throw gcnew ArgumentException(“Error”);
 }
 void Foo()
 {
 try
 {
 Method(nullptr);
 }
 catch (ArgumentException^ ex)
 { }
 catch (Exception^ ex)
 { }
 finally
 { }
 }
‘ Visual Basic
Public Sub Method(ByVal o As Object)
 If o = Nothing Then
 Throw New ArgumentException(“Error”)
End Sub
Public Sub Foo()
 Try
 Method(Nothing)
 Catch ex As ArgumentException
 ‘
 Catch ex As Exception
 ‘
 Finally
 ‘
 End Try
End Sub

(continued)

bapp02.indd 1698bapp02.indd 1698 2/19/08 5:36:53 PM2/19/08 5:36:53 PM

1699

Appendix B: C #, Visual Basic, and C ++/ CLI

 Inheritance
 .NET languages offer many keywords to define polymorphic behavior, to override or hide methods,
access modifiers to allow or not allow member access. For C#, this functionality is discussed in Chapter 4 ,
 “ Inheritance. ” The functionality of C#, C++/CLI and Visual Basic is very similar, but the keywords are
different.

 Access Modifiers
 The access modifiers of C++/CLI and Visual Basic are very similar to C#, with some notable differences.
Visual Basic uses the Friend access modifier instead of internal for accessing the types in the same
assembly. C++/CLI has one more access modifier: protected private . internal protected allows
accessing the members from within the same assembly, and also from other assemblies if the type is
derived from the base type. C# and Visual Basic don ’ t have a way to allow only derived types within the
same assembly. This is possible with protected private from C++/CLI. Here private means that
outside the assembly there ’ s no access, but from inside the assembly protected access is possible. The
order — whether you write protected private or private protected — does not matter. The
access modifier allowing more is always located within the assembly, and the access modifier allowing
less is always outside of the assembly.

 C# C++/CLI Visual Basic

 public public Public

 protected protected Protected

 private private Private

 internal internal Friend

 internal protected internal protected Protected Friend

 not possible protected private not possible

 Keywords
 Keywords important for inheritance are mapped in the following table.

 C# C++/CLI Visual Basic Functionality

 : : Implements Implement an interface

 : : Inherits Inherits from a base class

 virtual virtual Overridable Declare a method to support polymorphism

 overrides override Overrides Override a virtual method

 new new Shadows Hide a method from a base class

 abstract abstract MustInherit Abstract class

bapp02.indd 1699bapp02.indd 1699 2/19/08 5:36:54 PM2/19/08 5:36:54 PM

Part VII: Appendices

1700

 The order in which you place the keywords is important in the languages. In the code sample, an
abstract base class Base with one abstract method and one implemented method that is virtual are
defined. The class Base is derived from the class Derived , where the abstract method is implemented,
and the virtual method is overridden:

// C#
public abstract class Base
{
 public virtual void Foo()
 {
 }
 public abstract void Bar();
}
public class Derived : Base
{
 public override void Foo()
 {
 base.Foo();
 }
 public override void Bar()
 {
 }
}
// C++/CLI
public ref class Base abstract
{
public:
 virtual void Foo()
 {
 }
 virtual void Bar() abstract;
};
public ref class Derived : public Base
{
public:
 virtual void Foo() override
 {
 Base::Foo();
 }
 virtual void Bar() override

 C# C++/CLI Visual Basic Functionality

 sealed sealed NotInheritable Sealed class

 abstract abstract MustOverride Abstract method

 sealed sealed NotOverridable Sealed method

 this this Me Reference the current object

 base Classname:: MyBase Reference the base class

bapp02.indd 1700bapp02.indd 1700 2/19/08 5:36:54 PM2/19/08 5:36:54 PM

1701

Appendix B: C #, Visual Basic, and C ++/ CLI

 {
 }
};
‘ Visual Basic
Public MustInherit Class Base
 Public Overridable Sub Foo()
 End Sub
 Public MustOverride Sub Bar()
End Class
Public class Derived
 Inherits Base
 Public Overrides Sub Foo()
 MyBase.Foo()
 End Sub
 Public Overrides Sub Bar()
 End Sub
End Class

 Resource Management
 Working with resources is covered in Chapter 12 , “ Memory Management and Pointers, ” both
implementing the IDisposable interface and implementing a finalizer. How this looks in C++/CLI and
Visual Basic is covered in this section.

 IDisposable Interface Implementation
 For freeing resources, the interface IDisposable defines the Dispose() method. Using C# and Visual
Basic, you have to implement the interface IDisposable . With C++/CLI the interface IDisposable is
implemented as well, but this is done by the compiler if you just write a destructor.

// C#
public class Resource : IDisposable
{
 public void Dispose()
 {
 // release resource
 }
}
// C++/CLI
public ref class Resource
{
public:
 ~Resource()
 {
 // release resource
 }
};
‘ Visual Basic
Public Class Resource
 Implements IDisposable
 Public Sub Dispose() Implements IDisposable.Dispose
 ‘ release resource
 End Sub
End Class

bapp02.indd 1701bapp02.indd 1701 2/19/08 5:36:54 PM2/19/08 5:36:54 PM

Part VII: Appendices

1702

 With C++/CLI, the Dispose() method is invoked by using the delete statement.

 Using Statement
 The C# using statement implements an acquire/use/release pattern to release a resource as soon as it is
no longer used, even in the case of an exception. The compiler creates a try / finally statement and
invokes the Dispose method inside the finally . Version 9 of Visual Basic supports the using
statement just as C# does. C++/CLI has an even more elegant approach to this problem. If a reference
type is declared locally, the compiler creates a try / finally statement to invoke the Dispose() method
at the end of the block.

// C#
using (Resource r = new Resource())
{
 r.Foo();
}
// C++/CLI
{
 Resource r;
 r.Foo();
}
‘ Visual Basic
Using r As New Resource
 r.Foo()
End Using

 Override Finalize
 If a class contains native resources that must be freed, the class must override the Finalize() method
from the Object class. With C#, this is done by writing a destructor. C++/CLI has a special syntax with
the ! prefix to define a finalizer. Within a finalizer, you cannot dispose contained objects that have a
finalizer as well because the order of finalization is not guaranteed. That ’ s why the Dispose pattern
defines an additional Dispose() method with a Boolean parameter. With C++/CLI, it is not necessary
to implement this pattern in the code because this is done by the compiler. The C++/CLI destructor
implements both Dispose() methods. With Visual Basic, both Dispose() and the finalizer must be
implemented manually. However, most Visual Basic classes do not use native resources directly, just
with the help of other classes. With Visual Basic, usually it is not necessary to override the Finalize()
method, but an implementation of the Dispose() method is often required.

 Writing a destructor with C# overrides the Finalize() method of the base class. A C++/CLI destruc-
tor implements the IDisposable interface.

// C#
public class Resource : IDisposable
{
 ~Resource // override Finalize
 {
 Dispose(false);
 }
 protected virtual void Dispose(bool disposing)
 {
 if (disposing) // dispose embedded members
 {
 }

bapp02.indd 1702bapp02.indd 1702 2/19/08 5:36:55 PM2/19/08 5:36:55 PM

1703

Appendix B: C #, Visual Basic, and C ++/ CLI

 // release resources of this class
 GC.SuppressFinalize(this);
 }
 public void Dispose()
 {
 Dispose(true);
 }
}
// C++/CLI
public ref class Resource
{
public:
 ~Resource() // implement IDisposable
 {
 this- > !Resource();
 }
 !Resource() // override Finalize
 {
 // release resource
 }
};
‘ Visual Basic
Public Class Resource
 Implements IDisposable
 Public Sub Dispose() Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
 Protected Overridable Sub Dispose(ByVal disposing)
 If disposing Then
 ‘ Release embedded resources
 End If
 ‘ Release resources of this class
 End Sub
 Protected Overrides Sub Finalize()
 Try
 Dispose(False)
 Finally
 MyBase.Finalize()
 End Try
 End Sub
End Class

 Delegates
 Delegates — type - safe pointers to methods — are discussed in Chapter 7 , “ Delegates and Events. ” In all
three languages, the keyword delegate can be used to define a delegate. The difference is with using
the delegate.

 The sample code shows a class Demo with a static method Foo() and an instance method Bar() . Both of
these methods are invoked by delegate instances of type DemoDelegate . DemoDelegate is declared to
invoke a method with void return type and an int parameter.

 When using the delegate, C# supports delegate inference, where the compiler creates a delegate instance
and passes the address of the method.

bapp02.indd 1703bapp02.indd 1703 2/19/08 5:36:55 PM2/19/08 5:36:55 PM

Part VII: Appendices

1704

 With C# and C++/CLI, two delegates can be combined into one by using the + operator:

// C#
public delegate void DemoDelegate(int x);
public class Demo
{
 public static void Foo(int x) { }
 public void Bar(int x) { }
}
Demo d = new Demo();
DemoDelegate d1 = Demo.Foo;
DemoDelegate d2 = d.Bar;
DemoDelegate d3 = d1 + d2;
d3(11);

 Delegate inference is not possible with C++/CLI. With C++/CLI, you must create a new instance of the
delegate type and pass the address of the method to the constructor:

// C++/CLI
public delegate void DemoDelegate(int x);
public ref class Demo
{
public:
 static void Foo(int x) { }
 void Bar(int x) { }
};
Demo^ d = gcnew Demo();
DemoDelegate^ d1 = gcnew DemoDelegate(& Demo::Foo);
DemoDelegate^ d2 = gcnew DemoDelegate(d, & Demo::Bar);
DemoDelegate^ d3 = d1 + d2;
d3(11);

 Similarly to C++/CLI, Visual Basic does not support delegate inference. You have to create a new
instance of the delegate type and pass the address of a method. Visual Basic has the AddressOf operator
to pass the address of a method.

 Visual Basic doesn ’ t overload the + operator for delegates, so it is necessary to invoke the Combine()
method from the Delegate class. The Delegate class is written inside brackets because Delegate is a
Visual Basic keyword, and thus it is not possible to use a class with the same name. Putting brackets
around Delegate ensures that the class is used instead of the Delegate keyword.

‘ Visual Basic
Public Delegate Sub DemoDelegate(ByVal x As Integer)
Public Class Demo
 Public Shared Sub Foo(ByVal x As Integer)
 ‘
 End Sub
 Public Sub Bar(ByVal x As Integer)
 ‘
 End Sub
End Class
Dim d As New Demo()
Dim d1 As New DemoDelegate(AddressOf Demo.Foo)
Dim d2 As New DemoDelegate(AddressOf d.Bar)
Dim d3 As DemoDelegate = [Delegate].Combine(d1, d2)
d3(11)

bapp02.indd 1704bapp02.indd 1704 2/19/08 5:36:55 PM2/19/08 5:36:55 PM

1705

Appendix B: C #, Visual Basic, and C ++/ CLI

 Events
 With the event keyword, a subscription mechanism can be done that is based on delegates. Again, all
languages define an event keyword for offering events from a class. The class EventDemo fires events
with the name DemoEvent of type DemoDelegate .

 In C#, the syntax for firing the event looks like a method call of the event. The event variable is null as
long as nobody registered to the event, so a check for not null must be done before firing the event. The
handler method is registered by using the += operator and passing the address of the handler method
with the help of delegate inference:

// C#
 public class EventDemo
 {
 public event DemoDelegate DemoEvent;
 public void FireEvent()
 {
 if (DemoEvent != null)
 DemoEvent(44);
 }
 }
 public class Subscriber
 {
 public void Handler(int x)
 {
 // handler implementation
 }
 }
//...
EventDemo evd = new EventDemo();
Subscriber subscr = new Subscriber();
evd.DemoEvent += subscr.Handler;
evd.FireEvent();

 C++/CLI is very similar to C# except that when you fire the event, you do not first need to see that the
event variable is not null . This is automatically done by the IL code created from the compiler.

 Both C# and C++/CLI use the + = operator to unregister from an event.

// C++/CLI
 public ref class EventDemo
 {
 public:
 event DemoDelegate^ DemoEvent;
 public void FireEvent()
 {
 DemoEvent(44);
 }
 }
 public class Subscriber
 {
 public:
 void Handler(int x)

(continued)

bapp02.indd 1705bapp02.indd 1705 2/19/08 5:36:56 PM2/19/08 5:36:56 PM

Part VII: Appendices

1706

 {
 // handler implementation
 }
 }
//...
EventDemo^ evd = gcnew EventDemo();
Subscriber^ subscr = gcnew Subscriber();
evd- > DemoEvent += gcnew DemoDelegate(subscr, & Subscriber::Handler);
evd- > FireEvent();

 Visual Basic has a different syntax. The event is declared with the Event keyword, which is the same as
in C# and C++/CLI. However, the event is raised with the RaiseEvent statement. The RaiseEvent
statement checks if the event variable is initialized by a subscriber. To register a handler, the
 AddHandler statement has the same functionality as the += operator in C#. AddHandler requires two
parameters: the first defines the event, the second the address of the handler. The RemoveHandler
statement is used to unregister a handler from the event.

‘ Visual Basic
 Public Class EventDemo
 Public Event DemoEvent As DemoDelegate
 public Sub FireEvent()
 RaiseEvent DemoEvent(44);
 End Sub
 End Class
 Public Class Subscriber
 Public Sub Handler(ByVal x As Integer)
 ‘ handler implementation
 End Sub
 End Class
‘...
Dim evd As New EventDemo()
Dim subscr As New Subscriber()
AddHandler evd.DemoEvent, AddressOf subscr.Handler
evd.FireEvent()

 Visual Basic offers another syntax that is not available with the other languages: you can also use the
 Handles keyword with the method that subscribes to the event. The requirement for this is to define a
variable with the WithEvents keyword:

Public Class Subscriber
 Public WithEvents evd As EventDemo
 Public Sub Handler(ByVal x As Integer) Handles evd.DemoEvent
 ‘ Handler implementation
 End Sub
 Public Sub Action()
 evd = New EventDemo()
 evd.FireEvent()
 End Sub
End Class

(continued)

bapp02.indd 1706bapp02.indd 1706 2/19/08 5:36:56 PM2/19/08 5:36:56 PM

1707

Appendix B: C #, Visual Basic, and C ++/ CLI

 Generics
 All three languages support the creation and use of generics. Generics are discussed in Chapter 9 ,
 “ Generics. ”

 To use generics, C# borrowed the syntax from C++ templates to define the generic type with angle
brackets. C++/CLI uses the same syntax. In Visual Basic, the generic type is defined with the Of
keyword in braces.

// C#
List < int > intList = new List < int > ();
intList.Add(1);
intList.Add(2);
intList.Add(3);
// C++/CLI
List < int > ̂ intList = gcnew List < int > ();
intList- > Add(1);
intList- > Add(2);
intList- > Add(3);
‘ Visual Basic
Dim intList As List(Of Integer) = New List(Of Integer)()
intList.Add(1)
intList.Add(2)
intList.Add(3)

 Because you use angle brackets with the class declaration, the compiler knows to create a generic type.
Constraints are defined with the where clause.

 public class MyGeneric < T >
 where T : IComparable < T >
 {
 private List < T > list = new List < T > ();
 public void Add(T item)
 {
 list.Add(item);
 }
 public void Sort()
 {
 list.Sort();
 }
 }

 Defining a generic type with C++/CLI is similar to defining a template with C++. Instead of the
 template keyword, with generics the generic keyword is used. The where clause is similar to that in
C#; however, C++/CLI does not support a constructor constraint.

generic < typename T >
where T : IComparable < T >
ref class MyGeneric
{
private:
 List < T > ̂ list;
public:
 MyGeneric()
 {
 list = gcnew List < T > ();
 }

(continued)

bapp02.indd 1707bapp02.indd 1707 2/19/08 5:36:56 PM2/19/08 5:36:56 PM

Part VII: Appendices

1708

 void Add(T item)
 {
 list- > Add(item);
 }
 void Sort()
 {
 list- > Sort();
 }
};

 Visual Basic defines a generic class with the Of keyword. Constraints can be defined with As :

Public Class MyGeneric(Of T As IComparable(Of T))
 Private myList = New List(Of T)
 Public Sub Add(ByVal item As T)
 myList.Add(item)
 End Sub
 Public Sub Sort()
 myList.Sort()
 End Sub
End Class

 LINQ Queries
 Language - integrated queries are a feature of C# 3.0 and Visual Basic 9.0. The syntax is very similar
between these two languages.

 LINQ is discussed in Chapter 11 , “ Language Integrated Query. ”

// C#
var query = from r in racers
 where r.Country == “Brazil”
 orderby r.Wins descending
 select r;
‘ Visual Basic
Dim query = From r in racers _
 Where r.Country = “Brazil” _
 Order By r.Wins Descending _

 Select r

C++/CLI does not support LINQ queries.

 C ++/ CLI Mixing Native and Managed Code
 One of the big advantages of C++/CLI is the capability to mix native and managed code. You use native
code from C# through a mechanism known as platform invoke , which is discussed in Chapter 24 ,
 “ Interoperability. ” Using native code from C++/CLI is known as It just works .

 In a managed class, you can use both native and managed code, as you can see here. The same is true for
a native class. You can mix native and managed code as well within a method.

#pragma once
#include < iostream > // include this header file for cout
using namespace std; // the iostream header defines the namespace std
using namespace System;
public ref class Managed

(continued)

bapp02.indd 1708bapp02.indd 1708 2/19/08 5:36:56 PM2/19/08 5:36:56 PM

1709

Appendix B: C #, Visual Basic, and C ++/ CLI

{
public:
 void MixNativeAndManaged()
 {
 cout < < “Native Code” < < endl;
 Console::WriteLine(“Managed Code”);
 }
};

 In a managed class, you can also declare a field of a native type or a pointer to a native type. Doing the
same the other way around is not possible to accomplish directly. You must take care that an instance of
a managed type can be moved by the garbage collector when cleaning up memory.

 To use managed classes as a member within native classes, C++/CLI defines the keyword gcroot ,
which is defined in the header file gcroot.h . gcroot wraps a GCHandle that keeps track of a CLR
object from a native reference.

#pragma once
#include “gcroot.h”
using namespace System;
public ref class Managed
{
public:
 Managed() { }
 void Foo()
 {
 Console::WriteLine(“Foo”);
 }
};
public class Native
{
private:
 gcroot < Managed^ > m_p;
public:
 Native()
 {
 m_p = gcnew Managed();
 }
 void Foo()
 {
 m_p- > Foo();
 }
};

 C# Specifics
 Some C# syntax features were not covered in this appendix. C# defines the yield statement, which makes
it easy to create enumerators. This statement is not available with C++/CLI and Visual Basic; with these
languages an enumerator must be implemented manually. Also, C# defines a special syntax for nullable
types, whereas with the other languages you have to use the generic struct Nullable < T > instead.

 C# allows for unsafe code blocks where you can use pointers and pointer arithmetic. This feature can be
extremely helpful for invoking methods from native libraries. Visual Basic does not have this capability;
this is a real advantage of C#. C++/CLI does not need the unsafe keyword to define unsafe code blocks.
It ’ s very natural with C++/CLI to mix native and managed code.

bapp02.indd 1709bapp02.indd 1709 2/19/08 5:36:57 PM2/19/08 5:36:57 PM

Part VII: Appendices

1710

 Summary
 In this chapter, you ’ ve learned how to map the syntax from C# to Visual Basic and C++/CLI. C++/CLI
defines extensions to C++ for writing .NET applications and draws on C# for the syntax extensions.
Although C# and C++/CLI have the same roots, there are many important differences. Visual Basic does
not use curly brackets, but is chattier instead.

 With the syntax mapping, you ’ ve seen how to map the C# syntax to C++/CLI and Visual Basic; how the
other two languages look, with defining types, methods, and properties; what keywords are used for OO
features; how resource management is done; and how delegates, events and generics are implemented
with the three languages.

 While it is possible to map most of the syntax, the languages are still different in their functionality.

bapp02.indd 1710bapp02.indd 1710 2/19/08 5:36:57 PM2/19/08 5:36:57 PM

 Windows Vista and Windows
Server 2008

 This appendix gives you the information you need to know about developing applications for
Windows Vista and Windows Server 2008, and how you can use new Windows features from .NET
applications. This chapter does not cover features useful for a Windows Vista user or a Windows
Server 2008 administrator, but features important for developers.

 If your applications are not targeting Windows Vista alone, you should be aware that while WPF,
WCF, WF, and LINQ are also available for Windows XP, this is not the case with the topics covered
here. If you ’ re still targeting Windows XP, you still should be aware of issues running your
applications on Windows Vista and what you should pay attention to. In that case, you should
have a special focus on user account control and directory changes.

 The topics covered in this appendix are:

 Vista Bridge

 User account control

 Directory structure

 New controls and dialogs

 Search

 Vista Bridge
 With the release of .NET 3.5, many new Windows API calls available with Windows Vista and
Windows Server 2008 are not available from the .NET Framework. However, the Windows SDK
contains a sample with the name Vista Bridge that wraps native API calls to make them available
from a .NET library. You can use this library within your Windows Forms or WPF applications.

 After installing the Windows SDK, you can find the Vista Bridge sample in the .zip file < program
files > \Microsoft SDKs\Windows\v6.0\Samples\CrossTechnologySamples.zip . Extract
the .zip file to get three projects: VistaBridgeLibrary , VistaBridgeControls , and
 VistaBridgeDemoApp . The VistaBridgeLibrary project contains several classes and controls.

❑

❑

❑

❑

❑

bapp03.indd 1711bapp03.indd 1711 2/19/08 5:37:06 PM2/19/08 5:37:06 PM

1712

Part VII: Appendices

 User Account Control
 As a developer, user account control (UAC) is one of the features you can see immediately with Windows
Vista and Windows Server 2008. Although Windows guidelines have always mentioned this issue, many
applications still need to run with the administrator account. For example, a normal user is not allowed
to write data to the program files directory; administrative privileges are required. Because many
applications don ’ t run without administrative privileges (although from the functionality that is offered
by the program this wouldn ’ t be required, the developer just didn ’ t follow the guidelines), many users
log in to the system with an Administrator account. In doing so, you can unintentionally install Trojan
horse programs.

 Windows Vista avoids this problem because the Administrator, by default, doesn ’ t have administrative
privileges. The process has two security tokens associated with it, one with normal user privileges
and one with admin privileges (in the case where the login is done to the Administrator account).
With applications that require administrative privileges, the user can elevate the application to
run with Administrator rights. This is either done from the context menu “ Run as Administrator, ”
or an application can be configured to always require administrator privileges in the Compatibility
properties of the application, as shown in Figure C - 1 . This setting adds application compatibility flags
to the registry at HKCU\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\
Layers with a value for RUNASADMIN .

Figure C-1

 Applications Requiring Admin Privileges
 For applications that require administrative privileges, you can also add an application manifest. Visual
Studio 2008 has a new item template to add an application manifest to an application. Such a manifest
can either be done by adding a manifest file to an existing application or by embedding a Win32 resource

bapp03.indd 1712bapp03.indd 1712 2/19/08 5:37:07 PM2/19/08 5:37:07 PM

1713

Appendix C: Windows Vista and Windows Server 2008

file within the assembly. After adding a manifest file to a Visual Studio project, the manifest file is added
to the resources of the project, as you can see with the project properties, selecting the Application tab, in
the Resources category. Having the entry here embeds the manifest as a Win32 resource to the assembly.
An application manifest is an XML file similar to the application configuration file. While the application
configuration file has the file extension .config , the manifest ends with .manifest . The name of the
file must be set to the name of the application, including the exe file extension followed by .manifest .
Visual Studio renames and copies the app.manifest file just as it does with an application
configuration file. The manifest file contains XML data as shown here. The root element is < assembly > ,
which contains the child element < trustInfo > . The administrator requirement is defined with the
 level attribute of the < requestedExecutionLevel > element.

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < asmv1:assembly manifestVersion=”1.0” xmlns=”urn:schemas-microsoft-com:asm.v1”
 xmlns:asmv1=”urn:schemas-microsoft-com:asm.v1
 xmlns:asmv2=”urn:schemas-microsoft-com:asmv2
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 < assemblyIdentity version=”1.0.0.0” name=”MyApplication.app” / >
 < trustInfo xmlns=”urn:schemas-microsoft-com:asm.v2” >
 < security >
 < requestedPrivileges xmlns=”urn:schemas-microsoft-com:asm.v3” >
 < requestedExecutionLevel level=”requireAdministrator”
 uiAccess=”false”/ >
 < /requestedPrivileges >
 < /security >
 < /trustInfo >
 < /asmv1:assembly >

 When starting the application this way, you get an elevation prompt where the user is asked if he or she
trusts the application to run with administrative privileges.

 With the requestedExecutionLevel setting, you can specify the values requireAdministrator ,
 highestAvailable , and asInvoker . The value highestAvailable means that the application gets
the privileges the user has — but only after getting the consent from the user. The value
 requireAdministrator requires Administrator privileges. If the user is not logged on to the system as
Administrator, a login dialog appears where the user can log in as Administrator for the application. The
value asInvoker means that the application is running with the security token of the user.

 The uiAccess attribute specifies if the application requires input to a higher - privilege - level window on
the desktop. For example, an onscreen keyboard needs to drive input to other windows on the desktop,
so the setting should be set to true for the application ’ s displaying the onscreen keyboard. Non – UI -
 accessibility applications should set this attribute to false .

 Another way to get admin privileges to an application is to write a Windows service. Because UAC
applies to interactive processes only, a Windows service can get admin privileges. You can also write an
unprivileged Windows application to communicate with the privileged Windows service by using WCF
or another communication technology.

 Windows services are covered in Chapter 23 , “ Windows Services. ” WCF is covered in Chapter 42 ,
 “ Windows Communication Foundation. ”

 Shield Icon
 If an application or a task from an application requires administrative privileges, the user is informed by
an easily recognizable shield icon. The shield icon is attached to the controls that require elevation. The
user expects to see an elevation prompt when clicking on an item with a shield. Figures C - 2 and C - 3
show the shield in use. The Task Manager requires elevation to see processes from all users. With User
Accounts, changing the account type and giving other users access to the computer requires elevation.

bapp03.indd 1713bapp03.indd 1713 2/19/08 5:37:07 PM2/19/08 5:37:07 PM

1714

Part VII: Appendices

Figure C-3

Figure C-2

 You can create shield icons in your application by using the new command link control that is shown
later in this appendix.

 When the user clicks a control with a shield icon, an elevation prompt is shown. Elevation prompts are
different, depending on the type of application that is elevated:

bapp03.indd 1714bapp03.indd 1714 2/19/08 5:37:08 PM2/19/08 5:37:08 PM

1715

Appendix C: Windows Vista and Windows Server 2008

 Windows needs your permission to continue. This elevation prompt is shown for applications
that are delivered with Windows.

 A program needs your permission to continue. This elevation prompt is shown with
applications that contain a certificate to provide information about the publisher.

 An unidentified program wants access to your computer. This elevation prompt is shown with
applications that don ’ t contain a certificate.

 Directory Structure
 The directory structure of Windows has changed in Windows Vista. There ’ s no longer a directory c:\
Documents and Settings\ < username > . It has been replaced by the new folder c:\Users\
 < username > . Windows XP defines the subdirectory My Documents for storing user - specific data.
Windows Vista defines c:\Users\ < username > \Documents .

 If you follow just the simple rule not to use hard - coded path values with the program, it doesn ’ t matter
where the real folders are located. The folders differ with different Windows languages anyway. For
special folders, use the Environment class and the SpecialFolder enumeration:

string folder = Environment.GetFolderPath(
 Environment.SpecialFolder.Personal);

 Some of the folders defined by the SpecialFolder enumeration are described in the following table.

❑

❑

❑

Content SpecialFolder Enumeration
Windows Vista default
directory

User-specific documents Personal c:\Users\<User>\Documents

User-specific data for roaming
users

ApplicationData c:\Users\<User>\AppData\
Roaming

User-specific data that is local to
a system

LocalApplicationData c:\Users\<User>\AppData\
Local

Program files ProgramFiles c:\Program Files

Program files that are shared
among different programs

CommonProgramFiles c:\Program Files\Common
Files

Application data common to all
users

CommonApplicationData c:\ProgramData

 At logoff, the content of roaming directories is copied to the server, so if the user logs on to a different
system, the same content is copied and is thus available on all systems accessed by the user.

 With the special folders, you must be careful that a normal user doesn ’ t have write access to the program
files directory. You can write user - specific data from the application to LocalApplicationData , or with
roaming users to ApplicationData . Data that should be shared among different users can be written to
 CommonApplicationData .

 Because many applications write content to the program files directory, they won ’ t run on
Win dows Vista without administrative privileges. Windows Vista has a solution for dealing with

bapp03.indd 1715bapp03.indd 1715 2/19/08 5:37:08 PM2/19/08 5:37:08 PM

1716

Part VII: Appendices

these programs — redirecting the folder to a virtual store that the applications can read from and write
to without generating errors. This technique is called file virtualization .

 Let ’ s verify this by writing a simple program that writes a file to the subdirectory WroxSampleApp in the
Program Files folder. Using Environment.GetFolderPath() with the SpecialFolder enumeration
value ProgramFiles returns the Program Files folder; this folder is different depending on the
Windows language used. The Program Files folder is combined with the directory WroxSampleApp , and
in this directory the file samplefile.txt is written.

 string programFiles = Environment.GetFolderPath(
 Environment.SpecialFolder.ProgramFiles);
 string appDir = Path.Combine(programFiles,
 “WroxSampleApp”);
 if (!Directory.Exists(appDir))
 {
 Directory.CreateDirectory(appDir);
 }
 string demoFile = Path.Combine(appDir,
 “samplefile.txt”);
 File.WriteAllText(demoFile, “test content”);

 When running the application without elevation, the file is not written to the directory c:\Program
Files\WroxSampleApp . Instead, you can find the file in c:\Users\ < username > \AppData\Local\
Virtual Store\Program Files\WroxSampleApp .

 As you can see, the data is stored in a user - specific directory and is not shared between different users on
the same system. If this is a requirement, you have to start the application in elevated mode. When you
run the application from an elevated Visual Studio process, the file is written to the Program Files folder
instead of the virtual store, as an application started from an elevated process is elevated as well.

 For reading files, a different mechanism is needed. Because an installation program is allowed to write
content to the Program Files folder, it is valid for a program to read data from the Program Files folder.
As soon as the program writes to this folder without being elevated, the redirection occurs. When it
reads the written content again, the redirection is done with the read as well.

 Virtualization is not only done with folders but also with registry entries. If the application writes to the registry
key Software in the HKEY_LOCAL_MACHINE hive, it is redirected to the HKEY_CURRENT_USER hive. Instead of
writing to HKLM_Software\{Manufacturer} , it writes to HKCU\Software\Classes\VirtualStore\
MACHINE\SOFTWARE\{Manufacturer} .

 File and registry virtualization is available only for 32 - bit applications. This feature is not available for
64 - bit applications on Windows Vista.

 Don ’ t use file and registry virtualization as a feature of your application. It is better to fix the
application than to write to the Program Files folder and the HKLM registry hive without elevated user
privileges. Redirection is only a temporary means to fix broken applications.

 New Controls and Dialogs
 Windows Vista delivers several new controls. The command link control is an extension to the Button
control and is used in combination with several other controls. The task dialog is a next - generation
 MessageBox , and for opening and saving files new dialogs are available as well.

bapp03.indd 1716bapp03.indd 1716 2/19/08 5:37:08 PM2/19/08 5:37:08 PM

1717

Appendix C: Windows Vista and Windows Server 2008

 Command Link
 Command link controls are an extension to the Windows Button control. Command links contain an
optional icon and note text. This control is often used in task dialogs and wizards. Figure C - 4 shows two
command link controls that give much more information than Button controls with OK and Cancel
content.

Figure C-4

 With .NET applications, you can create command link controls by using the Vista Bridge sample library.
If you add the project VistaBridgeLibrary to your solution, you can add CommandLinkWinForms
controls from the toolbox to your Windows Forms application. The class CommandLinkWinForms derives
from the System.Windows.Forms.Button class. A command link is an extension to the native
Windows Button and defines additional Windows messages and a new style to configure the Button .
The wrapper class CommandLinkWinForms sends the Windows messages BCM_SETNOTE and BCM_
SETSHIELD and sets the style BS_COMMANDLINK . The public methods and properties offered in addition
to the members of the Button class are NoteText and ShieldIcon .

 The following code segment creates a new command link control that sets the NoteText and
 ShieldIcon . Figure C - 5 shows the configured command link during runtime.

 this.commandLinkDemo = new
 Microsoft.SDK.Samples.VistaBridge.Library.
 CommandLinkWinForms();
 this.commandLinkDemo.NoteText =
 “The application deletes important files on “ +
 “your system”;
 this.commandLinkDemo.ShieldIcon = true;
 this.commandLinkDemo.Size = new System.Drawing.Size(
 275, 68);
 this.commandLinkDemo.Text = “Give access to this “ +
 “computer”;
 this.commandLinkDemo.UseVisualStyleBackColor = true;
 this.Controls.Add(commandLinkDemo);

Figure C-5

bapp03.indd 1717bapp03.indd 1717 2/19/08 5:37:09 PM2/19/08 5:37:09 PM

1718

Part VII: Appendices

 Task Dialog
 The task dialog is a next - generation dialog that replaces the old message box. The task dialog is part
of the new common controls. The Windows API defines the functions TaskDialog and
 TaskDialogIndirect to create task dialogs. TaskDialog allows you to create simple dialogs;
 TaskDialogIndirect is used to create more complex dialogs that contain command link controls and
expanded content.

 With the Vista Bridge library, the native API call to TaskDialogIndirect() is wrapped with PInvoke :

 [DllImport(ExternDll.ComCtl32, CharSet = CharSet.Auto,
 SetLastError = true)]
 internal static extern HRESULT TaskDialogIndirect(
 [In] NativeMethods.TASKDIALOGCONFIG pTaskConfig,
 [Out] out int pnButton,
 [Out] out int pnRadioButton,
 [Out] out bool pVerificationFlagChecked);

 The first parameter of TaskDialogIndirect() is defined as a TASKDIALOGCONFIG class that maps
to the same structure of the native API call:

 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto, Pack = 4)]
 internal class TASKDIALOGCONFIG
 {
 internal uint cbSize;
 internal IntPtr hwndParent;
 internal IntPtr hInstance;
 internal TASKDIALOG_FLAGS dwFlags;
 internal TASKDIALOG_COMMON_BUTTON_FLAGS dwCommonButtons;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszWindowTitle;
 internal TASKDIALOGCONFIG_ICON_UNION MainIcon;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszMainInstruction;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszContent;
 internal uint cButtons;
 internal IntPtr pButtons;
 // Ptr to TASKDIALOG_BUTTON structs
 internal int nDefaultButton;
 internal uint cRadioButtons;
 internal IntPtr pRadioButtons;
 // Ptr to TASKDIALOG_BUTTON structs
 internal int nDefaultRadioButton;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszVerificationText;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszExpandedInformation;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszExpandedControlText;
 [MarshalAs(UnmanagedType.LPWStr)]
 internal string pszCollapsedControlText;
 internal TASKDIALOGCONFIG_ICON_UNION FooterIcon;
 [MarshalAs(UnmanagedType.LPWStr)]

bapp03.indd 1718bapp03.indd 1718 2/19/08 5:37:09 PM2/19/08 5:37:09 PM

1719

Appendix C: Windows Vista and Windows Server 2008

 internal string pszFooter;
 internal PFTASKDIALOGCALLBACK pfCallback;
 internal IntPtr lpCallbackData;
 internal uint cxWidth;
 }

 The public class from Vista Bridge used to show task dialogs is TaskDialog . To display a simple dialog,
only the static method Show() must be invoked. The simple dialog is shown in Figure C - 6 .

 TaskDialog.Show(“Simple Task Dialog”);

Figure C-6

Figure C-7

 For more features of the TaskDialog class, you can set the Caption , Content , StandardButtons , and
 MainIcon properties. You can see the result in Figure C - 7 .

 TaskDialog dlg1 = new TaskDialog();
 dlg1.Caption = “Title”;
 dlg1.Content = “Some Information”;
 dlg1.StandardButtons =
 TaskDialogStandardButtons.OkCancel;
 dlg1.MainIcon = TaskDialogStandardIcon.Information;
 dlg1.Show();

 With the task dialog, you can set the shield icon that was first shown with command links. Also, you can
expand it by setting the ExpansionMode property. With the enumeration
 TaskDialogExpandedInformationLocation , you can specify that either the content or the footer
should be expanded. Figure C - 8 shows the task dialog in collapsed mode; Figure C - 9 shows it in
expanded mode.

 TaskDialog dlg2 = new TaskDialog();
 dlg2.Caption = “Title”;
 dlg2.Content = “Some Information”;
 dlg2.StandardButtons = TaskDialogStandardButtons.YesNo;
 dlg2.MainIcon = TaskDialogStandardIcon.Shield;
 dlg2.ExpandedText = “Additional Text”;
 dlg2.ExpandedControlText = “More information”;
 dlg2.CollapsedControlText = “Less information”;

(continued)

bapp03.indd 1719bapp03.indd 1719 2/19/08 5:37:10 PM2/19/08 5:37:10 PM

1720

Part VII: Appendices

 dlg2.ExpansionMode =
 TaskDialogExpandedInformationLocation.
 ExpandContent;
 dlg2.FooterText = “Footer Information”;
 dlg2.FooterIcon = TaskDialogStandardIcon.Information;
 dlg2.Show();

(continued)

Figure C-8

Figure C-9

 A task dialog can also contain other controls. In the following code snippet, a task dialog is created that
contains two radio buttons, a command link, and a marquee control. You ’ ve already seen command links
in the previous section, and indeed command links are used very frequently within task dialogs. Figure
 C - 10 shows the task dialog with the controls in the content area. Of course, you can also combine the
expansion mode with controls.

 TaskDialogRadioButton radio1 =
 new TaskDialogRadioButton();
 radio1.Name = “radio1”;
 radio1.Text = “One”;
 TaskDialogRadioButton radio2 =
 new TaskDialogRadioButton();
 radio2.Name = “radio2”;
 radio2.Text = “Two”;
 TaskDialogCommandLink commandLink =
 new TaskDialogCommandLink();
 commandLink.Name = “link1”;
 commandLink.ShowElevationIcon = true;
 commandLink.Text = “Information”;
 commandLink.Instruction = “Sample Command Link”;
 TaskDialogMarquee marquee = new TaskDialogMarquee();
 marquee.Name = “marquee”;
 marquee.State = TaskDialogProgressBarState.Normal;
 TaskDialog dlg3 = new TaskDialog();
 dlg3.Caption = “Title”;

bapp03.indd 1720bapp03.indd 1720 2/19/08 5:37:10 PM2/19/08 5:37:10 PM

1721

Appendix C: Windows Vista and Windows Server 2008

 dlg3.Instruction = “Sample Task Dialog”;
 dlg3.Controls.Add(radio1);
 dlg3.Controls.Add(radio2);
 dlg3.Controls.Add(commandLink);
 dlg3.Controls.Add(marquee);
 dlg3.Show();

Figure C-10

 File Dialogs
 Dialogs to open and save files have changed. Figure C - 11 shows the traditional file open dialog that
is wrapped both from the Windows Forms class System.Windows.Forms.OpenFileDialog and the
wrapper class for WPF in the assembly PresentationFramework: Microsoft.Win32.OpenFileDialog .

 The new Windows Vista dialog is shown in Figure C - 12 . This dialog has Navigation, Details, and
Preview panes that can be configured from the Organize Layout menu. This dialog also contains
search functionality and is completely customizable. In the Vista Bridge library, this dialog is wrapped
from the CommonOpenFileDialog class.

 CommonOpenFileDialog dlg = new CommonOpenFileDialog();
 dlg.ShowDialog();

Figure C-11

bapp03.indd 1721bapp03.indd 1721 2/19/08 5:37:10 PM2/19/08 5:37:10 PM

1722

Part VII: Appendices

Figure C-12

 The new Windows Vista dialog for saving files is customizable as well. By default, it defines a collapsed
(see Figure C - 13) and an expanded mode (see Figure C - 14). This dialog is wrapped in the class
 CommonSaveDialog .

Figure C-13

 Search
 Search is an important feature that you can find in many applications, tools, and utilities with Windows
Vista. The Windows Start menu offers a search capability. Here, you can search for programs to start.
After using this search for some time I wouldn ’ t want to live without it. With Windows XP it was hard to
find programs from the Start button if many applications were installed. Now, the search function makes
it really easy.

 By selecting the Search menu, you can find items such as e - mails, documents, pictures, music, and more.
With the simple search, you just enter a search phrase in the search box to find items in indexed
locations. The advanced search (see Figure C - 15) allows you to enter a name, tags, or an author, and to
define the locations where to search. Figure C - 16 shows the details view of the search page where you
can select all the properties of items that can be shown with the searched items.

bapp03.indd 1722bapp03.indd 1722 2/19/08 5:37:11 PM2/19/08 5:37:11 PM

1723

Appendix C: Windows Vista and Windows Server 2008

Figure C-14

Figure C-15

bapp03.indd 1723bapp03.indd 1723 2/19/08 5:37:11 PM2/19/08 5:37:11 PM

1724

Part VII: Appendices

Figure C-16

 The Windows Vista File Open and File Save dialogs have the search capability integrated as well. The
search function can be integrated into your applications, and your applications can take full advantage of
the Windows search functionality. To understand the architecture of the Windows search capability,
examine Figure C - 17 . The heart of the search functionality is the indexer, which examines content and
writes it to the content index. For each store (file system, MAPI), a protocol handler is responsible for
getting data to the indexer. Protocol handlers implement the interface Ifilter , which is used by the
indexer to analyze content for indexing. The property system describes the properties that can be searched.
Properties are described by property schemas. If an application has a custom file format, it can implement
a property handler for the file format. If an application has custom properties that can be searched, it can
add properties to the property system. Properties are defined for the generic files, Office documents,
pictures, and videos. Property handlers are invoked when content is indexed to analyze the properties of
the content.

 Let ’ s make use of the query system by building search functionality into an application.

 OLE DB Provider
 You can integrate search functionality into your application by using an OLE DB provider to search for
items in the index. Create a simple Windows Forms application with a TextBox to allow the user to
input a query, a Button control to start the query, and a ListView control to display the result, as
shown in Figure C - 18 . Change the View property of the ListView control to Details to display all the
information the user enters with the query.

bapp03.indd 1724bapp03.indd 1724 2/19/08 5:37:11 PM2/19/08 5:37:11 PM

1725

Appendix C: Windows Vista and Windows Server 2008

Application

Query System

Content Index
and

Property Cache
Indexer Property Handlers

Property System

Protocol Handlers

Figure C-17

(continued)

 Import the namespace System.Data.OleDb and add the following code to the Click event of the
Search button.

 private void buttonSearch_Click(object sender, EventArgs e)
 {
 try
 {
 listViewResult.Clear();

Figure C-18

bapp03.indd 1725bapp03.indd 1725 2/19/08 5:37:12 PM2/19/08 5:37:12 PM

1726

Part VII: Appendices

 string indexerConnectionString =
 “provider=Search.CollatorDSO.1;” +
 “EXTENDED PROPERTIES=’Application=Windows’”;
 OleDbConnection connection = new OleDbConnection(
 indexerConnectionString);
 connection.Open();
 OleDbCommand command = connection.CreateCommand();
 command.CommandText = textBoxQuery.Text;
 OleDbDataReader reader = command.ExecuteReader();
 DataTable schemaTable = reader.GetSchemaTable();
 foreach (DataRow row in schemaTable.Rows)
 {
 listViewResult.Columns.Add(row[0].ToString());
 }

 while (reader.Read())
 {
 ListViewItem item =
 new ListViewItem(reader[0].ToString());
 for (int i = 1; i < reader.FieldCount; i++)
 {
 item.SubItems.Add(reader[i].ToString());
 }
 listViewResult.Items.Add(item);
 }
 connection.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 Let ’ s get into the code details. The indexer offers the OLE DB provider Search.CollatorDSO . With the
OLE DB connection string, you can pass this provider information and open the connection to the
indexer.

 string indexerConnectionString =
 “provider=Search.CollatorDSO.1;” +
 “EXTENDED PROPERTIES=’Application=Windows’”;
 OleDbConnection connection = new OleDbConnection(
 indexerConnectionString);
 connection.Open();

 The query that is used with the indexer is read from the TextBox control textBoxQuery . Because
during compile time it is not known which properties will be selected by the user, the columns in the
 ListView control must be added dynamically. The method GetSchemaTable() of the
 OleDbDataReader returns the dynamically created schema information that relates to the query. Every
row describes an item in the SELECT statement, and the first column inside this item gives the name of
the item. By iterating through every row of the returned schema, a new column is added to the
 ListView control, and the heading of this column is set to the item name.

 OleDbCommand command = connection.CreateCommand();
 command.CommandText = textBoxQuery.Text;
 OleDbDataReader reader = command.ExecuteReader();

(continued)

bapp03.indd 1726bapp03.indd 1726 2/19/08 5:37:12 PM2/19/08 5:37:12 PM

1727

Appendix C: Windows Vista and Windows Server 2008

 DataTable schemaTable = reader.GetSchemaTable();
 foreach (DataRow row in schemaTable.Rows)
 {
 listViewResult.Columns.Add(row[0].ToString());
 }

 Next, every row from the OleDbDataReader is read. The first column creates a new ListViewItem , and
every further column in the result set adds a subitem that is shown with the detail information of the
list view.

 while (reader.Read())
 {
 ListViewItem item =
 new ListViewItem(reader[0].ToString());
 for (int i = 1; i < reader.FieldCount; i++)
 {
 item.SubItems.Add(reader[i].ToString());
 }
 listViewResult.Items.Add(item);
 }

 Now, you can start the application, enter a query and get the result, as shown in Figure C - 19 .

SELECT System.ItemName, System.ItemTitle, System.Size FROM SYSTEMINDEX
 WHERE System.Size > 1024

 In the SELECT statement of the query, you specify the properties that should be returned. System
.ItemName , System.ItemTitle , and System.Size are predefined properties. You can find other
predefined properties in the MSDN and TechNet documentation for the Windows Desktop Search 3.0
properties. Some of the generic file properties are System.Author , System.Category , System
.Company , System.DateCreated , System.DateModified , System.FileName , System.ItemName ,
 System.ItemUrl , and System.Keywords . For audio files, digital photos, graphics files, media files,
Office documents, music files, and Outlook calendar items, additional properties are defined — for
example, System.Photo.Orientation , System.Photo.DateTaken , System.Music.Artist ,
 System.Music.BeatsPerMinute , System.Music.Mood , System.Calendar.Location , System
.Calendar.Duration , and System.Calendar.Location .

 With the WHERE clause, you can define predicates such as literal value comparisons < , > , =, and LIKE ;
full - text searches such as CONTAINS and FREETEXT ; and also the search depth predicates SCOPE and
 DIRECTORY .

Figure C-19

bapp03.indd 1727bapp03.indd 1727 2/19/08 5:37:12 PM2/19/08 5:37:12 PM

1728

Part VII: Appendices

 Advanced Query Syntax
 You wouldn ’ t want to let a user search by specifying a SELECT statement such as the ones used in the
previous example. You can create a user interface to ask for specific items and build the SELECT
statement programmatically. Another way to let users do their own searching is by using Advanced
Query Syntax (AQS).

 The Advanced Query Syntax enables you to specify search terms and restrict a search based on
properties. For example, the query Wrox date:past week searches all the items that contain the string
 Wrox that changed in the last week. Wrox date:past week kind:documents restricts the search
further by accepting documents only.

 The following are examples of how you can restrict a search:

 You can restrict the search by defining the store. For example, store:outlook gets items just
from Outlook. store:file gets items from the file system.

 With the search functionality, you can specify what kind of items should be in the result — for
example, kind:text , kind:tasks , kind:contacts , kind:emails , and kind:folders .

 Boolean operators can be used to restrict the search. For example, the OR operator used in Wrox
OR Wiley. date: > 11/25/07 gets items dated after November 11, 2007. For items between two
dates, you can use 11/25/06..11/27/07 .

 You can use some item properties to search for items — for example, webpage: www.wrox.com ,
birthday:2/14/65, firstname:Christian .

 You don ’ t have to manually translate the AQS to the SELECT query; there ’ s a COM object that does it
for you. In the Windows SDK Lib directory, you can find the file SearchAPI.tlb . This is a type library
that describes the COM object used to do the AQS translation. By using COM Interop, you can use a
COM object from .NET.

 Create a .NET callable wrapper by using the tlbimp utility to import the type library SearchAPI.tlb :

tlbimp c:\Program Files\Microsoft SDKs\Windows\v6.0\Lib\SearchAPI.tlb
 /out:Interop.SearchAPI.dll

 COM Interop is described in Chapter 24 , “ Interoperability. ”

 Referencing the generated interop assembly from the Windows Forms project created previously allows
you to use the SearchAPI from the .NET application. Because the type library importer defined the
namespace Interop.SearchAPI with the generated assembly, import this namespace from the
application and add the GetSql() method to the Windows Forms class.

 The classes CSearchManager , CsearchCatalogManager , and CSearchQueryHelper are generated
from the tlbimp utility to invoke the COM objects. The GetCatalog() method defines the catalog that
is queried and returns the catalogManager . With the catalogManager instance, the query helper
object is returned from the method GetQueryHelper() . Passing an AQS string to the method
 GenerateSQLFromUserQuery() returns a SELECT query that then can be used with the OLE DB
provider to perform the query.

 private string GetSql(string aqs)
 {
 CSearchManager searchManager = new CSearchManager();
 CSearchCatalogManager catalogManager =
 searchManager.GetCatalog(“”SystemIndex””);
 CSearchQueryHelper queryHelper =
 catalogManager.GetQueryHelper();
 return queryHelper.GenerateSQLFromUserQuery(aqs);
 }

❑

❑

❑

❑

bapp03.indd 1728bapp03.indd 1728 2/19/08 5:37:13 PM2/19/08 5:37:13 PM

1729

Appendix C: Windows Vista and Windows Server 2008

 Now, you just have to change the implementation from the Click handler of the Button control. With
the implementation the AQS needs to be converted to the SELECT query, which is done by the GetSql()
method.

 private void buttonSearch_Click(object sender, EventArgs e)
 {
 try
 {
 listViewResult.Clear();
 string indexerConnectionString =
 “provider=Search.CollatorDSO.1;” +
 “EXTENDED PROPERTIES=’Application=Windows’”;
 OleDbConnection connection =
 new OleDbConnection(indexerConnectionString);
 connection.Open();
 OleDbCommand command = connection.CreateCommand();
 command.CommandText = GetSql(textBoxQuery.Text);
 OleDbDataReader reader = command.ExecuteReader();
 //...

 You can start the application and pass an AQS query, as shown in Figure C - 20 .

Figure C-20

 Summary
 In this chapter, you ’ ve seen various features available only in Windows Vista and Windows Server 2008
and important for development of applications.

 Microsoft has defined guidelines for many years that state that non - administrative applications should
not require administrative privileges. Because many applications have failed to comply with that
requirement, the operating system is now strict about UAC. The user must explicitly elevate admin
rights to applications. You ’ ve seen how this, and folder and registry virtualization, affect applications.

 This chapter covered several new dialogs available only with Windows Vista for better user interaction.
These include new File Open and File Save dialogs, the new task dialog that replaces the message box,
and the command link extension to the Button control.

 You ’ ve also seen the Windows query system with the new Advanced Query Syntax and extendable
property system to integrate search into your applications.

bapp03.indd 1729bapp03.indd 1729 2/19/08 5:37:13 PM2/19/08 5:37:13 PM

1730

Part VII: Appendices

 Some more features that are available only with Windows Vista and Windows Server 2008 are covered in
other chapters:

 Chapter 18 , “ Tracing and Events ” discusses the new event logging facility, Event Tracing for
Windows (ETW).

 Chapter 20 , “ Security ” gives information about Cryptography Next Generation (CNG), the new
Crypto API.

 Chapter 22 , “ Transactions ” gives information about file - based and registry - based transactions.

 Chapter 42 , “ Windows Communication Foundation ” uses Windows Activation Services (WAS)
to host a WCF service.

❑

❑

❑

❑

bapp03.indd 1730bapp03.indd 1730 2/19/08 5:37:13 PM2/19/08 5:37:13 PM

Index

bindex.indd 1731bindex.indd 1731 2/19/08 9:31:05 PM2/19/08 9:31:05 PM

bindex.indd 1732bindex.indd 1732 2/19/08 9:31:06 PM2/19/08 9:31:06 PM

In
de

x

Symbols and Numerics
& (ampersand) for pointers, 341–342
! (exclamation mark) in WF, 1488
(pound sign) in preprocessor directives, 63
() parentheses in regular expressions, 220
* (asterisk)

in regular expressions, 218
for pointers, 341–342

// (forward slashes) in comments, 27, 60–61
/* (slash-asterisk) in comments, 27
; (semicolons) in statements, 27
[] (square brackets)

in Array class, 127
in regular expressions, 218

\ (backslash) in regular expressions, 217
{ } (curly braces)

in C#, xlviii
in if statements, 42–43
initializing arrays and, 122
statements and, 27

~ (tilde)
in controls, 1314
in destructors, 335

+ (plus sign) in DataGridView control, 1069
< % @ Register % > directive, 1318–1320, 1324
1-dimensional arrays, defined, 125
3-D features in WPF

basics, 1237–1238
triangles. See triangle models (WPF)

A
abstract classes/functions, 106–107
access control lists (ACLs), 599–601, 825–828
access modifiers

in .Net languages, 1699
for properties, 84–85

Account class example (generic methods),
236–238

account management (Active Directory),
1616–1620

Accumulate() method, 237–239
ACID properties, transactions, 681
acknowledgement queues, 1576–1577
acknowledgment messages, 1559
AcquireLifetimeToken() method,

1258–1259
action panes (VSTO), 1404–1405
Activate() method (add-ins), 1255–1256
Activator class (add-ins), 1252, 1255–1256
Active Directory

administrative tools, 1594–1596
characteristics of data, 1592
configuration, 1589
domain, 1589–1590
domain controller, 1590
Domain Services Integration, 1558
domain tree, 1590
Domains and Trusts MMC snap-in, 1594
features, 1588
forest, 1591
global catalog, 1591
objects and, 1589
programming. See Active Directory,

programming
replication, 1591–1592
schema, 1589, 1592–1593
site, 1590
Sites and Services MMC snap-in, 1594

Active Directory, programming,
1596–1611

ADSI, 1596–1597
binding. See binding, Active Directory
cache, 1605
directory entries, updating, 1606
new objects, creating, 1605–1606
searching, 1608–1611
System.DirectoryServices namespace

classes, 1598

Index

bindex.indd 1733bindex.indd 1733 2/19/08 9:31:06 PM2/19/08 9:31:06 PM

1734

Active Directory Service Interface (ADSI)
ADSI Edit, 1594–1595
basics, 1588
native ADSI objects, 1607–1608

Active Server Pages (ASP), 19
Active Template Library (ATL), 756–757
active transaction phase, 680
ActiveX controls in Windows Forms,

768–770
activities (WF), 1489–1495. See also

custom activities (WF); custom
composite activities (WF)

Activity class, 1489, 1503, 1508
activity execution model, 1494–1495
basics, 1487, 1489
binding parameters to, 1513–1514
CallExternalMethodActivity, 1492
composite activities, defined, 1489
defined, 1487, 1489
DelayActivity, 1493
IfElseActivity, 1490–1491
ListenActivity, 1493–1494
ParallelActivity, 1491–1492
types of, 1502

adapters
calculator add-in, 1262–1264
calculator host, 1265–1267

add-ins, 1251–1271
activation, 1255–1256
adapter, 1262–1264
AddInStore class, 1254
AddInToken class, 1255–1256, 1264, 1270
AddInToken.Activate(), 1255–1256
Advanced Calculator, 1271
application-level (VSTO), 1388, 1390, 1396,

1399–1400
basics, 1251
calculator example, 1259–1260
contract assembly, 1261
contracts, 1257–1258
finding, 1252, 1254
host adapter, 1265–1267
host application, 1267–1271
host view, 1265
implementation, 1264–1265
issues with, 1251–1253
pipeline architecture of, 1253–1254

versioning, 1259
view, 1261–1262
when to unload, 1258–1259

add-ons. See add-ins
address operators, 341
admin privileges in applications, 1712–1713
administration queues, defined, 1559
ADO (Active Data Objects), history of, 846
ADO.NET

assigning transactions to DataContext
object, 905

converting data to XML, 948–954
converting XML to ADO.NET data,

954–956
data binding. See data binding and ADO.NET
database connections. See database

connections
database-specific classes, 847–849
key generation with SQL Server, 890–892
namespaces for .NET data access, 846
overview, 846
shared classes in System.Data

namespace, 847
tiered development, 889–890
transactions, 683–684

ADO.NET Entity Framework
changing information, 1675–1676
conceptual layer, 1659–1660
Data Model Designer, 1659
entities, attaching/detaching, 1677
entity classes, 1661–1663
LINQ to Entities, 1678–1679
logical layer, 1657–1658
mapping layer, 1660
object queries, 1670–1674
object tracking, 1674–1675
ObjectContext class, 1664–1666
overview, 1656
relationships, 1666–1670
storing entity changes, 1677–1678
Table per Hierarchy (TPH), 1666–1668
Table per Type (TPT), 1668–1670
updates, 1674–1678

ADSI. See Active Directory Service
Interface (ADSI)

Advanced Query Syntax (AQS),
1728–1729

Active Directory Service Interface (ADSI)

bindex.indd 1734bindex.indd 1734 2/19/08 9:31:06 PM2/19/08 9:31:06 PM

1735

In
de

x

aggregate operators, 311, 321–322
aggregates

Aggregate template, 997
defined, 995
user-defined, 995–997

Ajax. See also ASP.NET Ajax
basics, 1356–1358
defined, 1355

Ajax Library, 1374–1383
Application class, 1378–1380
ASP.NET application services, 1383
asynchronous Web method calls,

1381–1382
basics, 1360–1361, 1374–1383
global utility functions, 1375
JavaScript, adding to Web pages, 1375
JavaScript debugging, 1380–1381
JavaScript OOP extensions,

1375–1378
PageRequestManager class,

1378–1380
algorithms, encryption/decryption,

592–594
aliases, namespace, 54–55
All Code membership condition, 614
ambient transactions

basics, 694–695
multithreading with, 697–701
nested scopes with, 695–697

animations, 1228–1236
basics, 1228–1229
storyboard, 1235–1236
timeline, 1229–1232
triggers and, 1233–1235

anonymous methods (delegates),
190–191

anonymous types, 91–92
ApartmentState property, 765
AppDomain class, 482
Application class

Ajax Library, 1378–1380
methods and properties,

1018–1019
application domains

CLR code and, 986
fundamentals, 481–485
.NET, 12–14

applications
application configuration (ASP.NET pages),

1308–1309
application-level add-ins (VSTO), 1388,

1390, 1396, 1399–1400
basics, 1308
cache (ClickOnce), 460
configuration files, 496, 500–503
defined, 1308
interacting with (VSTO), 1400–1401
objects, 1308
publishing, 459
requiring admin privileges, 1712–1713
services (ASP.NET), 1383
streamlining, 1308
Web Parts applications components,

1344–1345
Windows Forms, creating, 1018–1023

architecture
ASP.NET, 1274
client-server communications,

1625–1626
of event logging, 518–519
of message queuing, 1559–1560
P2P, 1627–1628
pipeline (add-ins), 1253–1254
solutions (VSTO), 1386
WebRequest/WebResponse classes,

1438–1440
arguments, passing to Main() method,

56–57
arithmetic operators. See operators, C#
Array class

basics, 127–131
generic delegates with, 240–243

arrays. See also bit arrays (collections)
Array class, 127–131
ArrayList class, 224, 255
ArraySegment <T> struct, 245
basics, 51–52
collection interfaces and, 132–133
collections and, 247
copying, 128–129
creating, 127–128
creating with .Net languages, 1693
declaring, 121
defined, 121

arrays. See also bit arrays (collections)

bindex.indd 1735bindex.indd 1735 2/19/08 9:31:06 PM2/19/08 9:31:06 PM

1736

arrays. See also bit arrays (continued)
displaying data from, 1063–1064
elements, accessing, 123
enumerations. See enumerations
initializing, 122
jagged, 126
multidimensional, 125
properties, 127
QuickArray example, 354–355
simple, 121–124
sorting, 129–131
stack-based, creating, 352–354

as operator, 146
.ascx files, 1313–1314
.asmx extensions (ASP.NET), 1369, 1382
ASP (Active Server Pages). See Active

Server Pages (ASP)
ASP.NET

features of, 19–20
localization with, 667–669
overview, 19
using COM objects from within, 771

ASP.NET Ajax, 1355–1384
Ajax extensions, 1359–1360
Ajax Library. See Ajax Library
basics, 1356–1358
Control Toolkit, 1361, 1367–1368
ExtenderControl class, 1372–1374
overview, 1355
ScriptManager control, 1368–1370
support for Web pages, xlvi–xlvii
UpdatePanel controls, 1370–1372
UpdateProgress control, 1372
Web site configuration example, 1365–1368
Web site simple example, 1362–1364

ASP.NET development, 1311–1353
basics, 1311–1312
controls. See custom controls (ASP.NET); user

controls (ASP.NET)
master pages. See master pages (ASP.NET)
site navigation, 1328–1331
themes. See themes (ASP.NET)
Web parts. See Web parts (ASP.NET)

ASP.NET pages, 1273–1310
ADO.NET and data binding. See data binding

and ADO.NET
application configuration, 1308–1309

basics, 1273
overview, 1274
state management in, 1274–1275
Web Forms. See server controls (ASP.NET);

Web Forms (ASP.NET)
.aspx files, 1274–1275, 1277–1278, 1314
assemblies

add-ins example, 1260
application domains and, 481–485
Assembly Cache Viewer, 487–488, 491
attributes, 475–478, 1532
class, 370–371
code groups, viewing, 616–618
dynamic loading and, 478–481
features of, 470
fundamentals, xlv, 15–16, 469–470
manifests, 472
metadata, 470–471
modules and assemblies, creating,

474–475
namespaces and, 472
private, 16, 472–473
publisher policy, creating, 504–505
reflection and, 17
satellite, 473
shared. See shared assemblies
structure of, 470–471
types defined in, 370
VectorClass assembly example, 364–365
viewing, 473
WhatsNewAttributes library assembly, 362–363

asserts, tracing and, 516–517
asymmetric encryption keys, 591–594
AsyncCallback delegate, 537
asynchronous callback, 537–538
asynchronous delegates, 535–538
Asynchronous JavaScript and XML. See Ajax
asynchronous page requests, 1429
asynchronous patterns. See

BackgroundWorker class; event-based
asynchronous pattern

asynchronous postbacks, 1355
asynchronous programming, 1555
asynchronous reads (messages), 1569
asynchronous Web method calls, 1381–1382
AsyncPostBackTrigger control

(ASP.NET Ajax), 1360

arrays. See also bit arrays (continued)

bindex.indd 1736bindex.indd 1736 2/19/08 9:31:07 PM2/19/08 9:31:07 PM

1737

In
de

x

ATL (Active Template Library), 756–757
Atom readers, 1643–1645, 1650
atomicity, transaction, 681
attached property (WPF), 1153–1154
Attendees table (Event-Booking example),

1295–1296
attributes

assembly, 475–478
AttributeTargets enumeration, 359
AttributeUsage attribute, 359–360
COM Interop, 774–777
custom. See custom attributes
custom controls (Windows Forms), 1049
Enterprise Services, 1532–1533
in .NET, 15
parameters, specifying, 361–362
properties as XML attributes, 1152
retrieving attribute data, 927–928
<siteMapNode> element, 1329
System.Runtime.InteropServices namespace,

774–775
transactions (Enterprise Services),

1539–1540
XAttribute object, 974

authentication and authorization
Active Directory, 1601
ASP.NET, 1331
client application services, 586–591
declarative role-based security, 585–586
of forms, 1331–1334
identities and principals, 583–585
role-based security, 585
WebRequest class and, 1428

Authenticode signatures, 486
authority (PNRP IDs), defined, 1630
authorization and authentication. See

authentication and authorization
auto-implemented properties, 85
automatic transactions (Enterprise Services),

1529, 1539
Autos window (Visual Studio), 432

B
background threads

basics, 541–542
thread pools and, 545

BackgroundWorker class
basics, 571–574
cancel functionality, 574–575
progress information, 575–576

backward compatibility, 339
BareTheme directory, 1341–1342
Base class library (BCL), 17, 807, 1361
base keyword, 109
BasicForm Windows project, 413–415
BeginInvoke() method (threading), 535,

537–538, 558, 570
Beginning Regular Expressions

(Wrox Press), 215
Beginning XML (Wiley), 921
big-O notation, 294–295
binary code reuse, 225
binary files, reading/writing to,

810–815
BinaryFileReader example, 812–815
BinaryReader/Writer classes, 809–810
binding

Binding class, 1064–1065, 1078
BindingContext property, 1077–1078
early, 752
late, 752
method, 752
WCF, 1477–1480
WSDL and, 1458

binding, Active Directory, 1598–1604
authentication, 1601
directory entries, getting, 1602–1603
with DirectoryEntry class, 1602
distinguished name, 1599–1601
object collections, 1603–1604
port number, 1599
protocol, 1598–1599
server name, 1599
serverless, 1599
username, 1601

bit arrays (collections)
BitArray class, 289–291
BitVector32, 291–294

bitmap block transfer (BitBlt), 1123
BitTorrent, 1625, 1627
BitVector32 structure, 291–294
blittable data types, 755, 990
bool value type, 35

bool value type

bindex.indd 1737bindex.indd 1737 2/19/08 9:31:07 PM2/19/08 9:31:07 PM

1738

boolean types, 38–39
box, 3-dimensional, 1242–1245
boxing and unboxing

casts, 170–171
for converting types, 152–153
defined, 224

break statements, 49
breakpoints, debugging, 431–432
browsers

application, creating, 768–770
Browsable attribute, 1072
Browser Application (WPF), 1249
compatibility (ASP.NET Ajax), 1360
Web browsing, 1430–1431

brushes
GDI+, 1116–1117
WPF, 1163–1167

BubbleSorter example (delegates), 184–187
bubbling events, 1177
buffered streams, 810
buffers, defined, 810
building code, defined, 427
business service layer (Enterprise

Services), 1528
buttons

Button class (Windows Forms), 1026–1027
pin, 426

byte code markers, defined, 816
byte types in C#, 37

C
C ++/CLI language

mapping syntax from C#, 1681–1709
mixing native and managed code,

1708–1709
C# language

basic features, xlviii–xlix
declaring delegates in, 178–179
limitations of, xlix
mapping syntax to VB and C ++/ CLI,

1681–1709
.NET framework and, xliii–xliv, xlviii, 4
programming languages and, xlviii–xlix
significance of, xliii

C# language basics, 25–73
arrays, 51–52
comments, adding, 60–62

compiling, 57–58
console I/O, 58–60
enumerations, 50–51
flow control. See flow control
Main() method, 55–57
namespaces, 52–55
as object-oriented program, 25–26
predefined data types. See data types,

predefined
preprocessor directives, 63–66
programming guidelines. See programming

guidelines (C#)
simple example, 26–29
variables in. See variables

Cab installer Project, 448
cache

Active Directory, 1605
application, 460

calculator example (add-ins), 1260–1271
calendars

control, customizing, 1297–1300
information, 647–648

callback
asynchronous, 537–538
functions, 177

calls
asynchronous Web method (ASP.NET Ajax),

1381–1383
CallExternalMethodActivity (WF), 1492–1493,

1499, 1520
camel casing, 69
cancel functionality (BackgroundWorker

class), 574–575
Canvas panel container (WPF), 1173–1174
CapsEditor example (GDI+), 1129–1133
captures in regular expressions, 220–222
Cascading Style Sheets (CSS)

Ajax and, 1356–1357
ASP.NET themes and, 1339
master pages and, 1327–1328
site navigation and, 1331

casing for names, 68–69
caspol.exe (Code Access Security Policy),

614–618
casting

multiple, 171–175
between pointer types, 343–344
pointers to integer types, 343

boolean types

bindex.indd 1738bindex.indd 1738 2/19/08 9:31:07 PM2/19/08 9:31:07 PM

1739

In
de

x

casts
QueryInterface() method and, 752
user-defined. See user-defined casts

catalogs, global (Active Directory), 1591
catch blocks

defined, 379–380
examples, 382–386
multiple, 382–385

catching exceptions, 379–381, 385
catching user-defined exceptions, 390–391
CCW (COM callable wrapper), 771
certificates, distributing code with, 631–637
ChangeState() method (threading), 545–547
ChannelFactory class, 1482–1483
character types

basics, 39
in C#, 37
Unicode characters and, 641

characters
grouping with regular expressions, 220
in regular expressions, 217–218

CheckBox control (Windows Forms), 1028
checked/unchecked operator, 145
CheckedListBox control (Windows Forms),

1029–1031
child domains (Active Directory), 1590, 1609
child elements, properties as (XAML), 1152
ChildrenAsTriggers property, 1370, 1371
classes. See also derived classes

3-D (WPF), 1237–1238
abstract, 106–107
account management (Active Directory),

1616–1617
adapter, 1262–1264
calculator add-in, 1264
casts between base and derived, 169–170
class hierarchy (Windows Forms), 1023
class library using sockets, 719–722
class members, pointers to, 346–347
Class View window, VS 2008, 424
collections, 250
commands classes, 1224
converting casts between, 168–169
Course Order application, 1570
for creating syndication feeds,

1644–1645
data members, 77
database, 681–683

database-specific (ADO.NET), 847–849
defining Ajax Library, 1376
dictionaries, 284–285
entity, 681–683, 1579–1580, 1661–1663
event logging, 519–520
exception, 378–379
for file system management, 791–792
function members, 77–78
generic, creating, 226–230
generic, features, 231–235
generic library, 178
host adapter (add-ins), 1265–1266
inheritance and, 102
to integrate Windows Forms and WPF, 1245
Internet protocols, lower level, 1444
for IP addresses, 1441–1443
LINQ to SQL (example), 898–899
members, 76
Microsoft.SqlServer.Server namespace,

987–988
.NET, and file/folder management,

792–794
.NET base classes, 28
.NET data access, 846–847
.NET Framework, 17–18
.NET Registry, 830–833
partial, 95–96
performance monitoring, 528
principal, 583–585
sealed, 107
shape (WPF), 1162
shared in System.Data namespace, 847
static, 96–97
stream-related, 809
vs. structs, 76, 102
System.Data.Common namespace, 847
System.DirectoryServices namespace,

1597, 1598
System.DirectoryServices.Protocols

namespace, 1597, 1621
System.Net.Sockets namespace, 3
System.Windows.Forms namespace, 1076
System.Xml.Serialization, 957
System.Xml.XPath namespace, 936–942
timer, 568
for tracing, 510–511. See also tracing
TriggerAction, 1236
UpdatePanel control, 1371

classes. See also derived classes

bindex.indd 1739bindex.indd 1739 2/19/08 9:31:07 PM2/19/08 9:31:07 PM

1740

classes. See also derived classes (continued)
user-defined exception, 394–396
utility (Web programming), 1440–1443
VSTO, 1385, 1392, 1400
WPF hierarchy, 1155–1156
XML, 922–923
XmlCharacterData, 932
XmlLinkedNode, 932
XmlNode, 931–932

clickCountPerSec field, 530
ClickOnce deployment

application cache, 460
defined, 444
File System editor, 460–461
fundamentals, 458–459
publishing applications, 459
security, 460
settings, 459
vs. Windows installer, 458

client applications
building, 1450–1451
creating with sink object, 781–782
Enterprise Services, 1432, 1442–1443,

1548–1549, 1553–1554
integrating WCF with Enterprise Services,

1447–1448
services, 586–591

clients
client from Web server installation, 457
client-server communications, 1625–1626
client-side code, UDTs from, 994–996
WCF, 1464–1465, 1482–1483

clipping regions (GDI+), 1100–1102
closed locked/unlocked state (WF),

1509–1511
clouds (P2P)

defined, 1628
PNRP, 1630–1631

CLR (Common Language Runtime)
deploying, 446
installing/using multiple versions, 506
overview, 4
permissions provided by, 603–605

CLS (Common Language Specification). See
Common Language Specification (CLS)

Cng (Cryptography Next Generation)
API, 593

code
accessing resources from (WPF), 1180–1181
ASP.NET model, 1278–1279
binary reuse (generics), 225
code-based security, defined, 12
code-behind feature (ASP.NET), 19
code bloat (generics), 226
compiling, 26–27
displaying from Web pages, 1438
distributing with certificates, 631–637
distributing with strong names, 630–631
downloading source, li
examples, C#, 26
generating with XSD, 877–883
managed, defined, 4
memory type safe, 14
mixing native and managed in C ++/ CLI,

1708–1709
optimization of, 427–428
sharing, xlv
syntax basics, 27–29
UDTs from client-side code, 994–996
unsafe, and memory management, 339
unsafe code blocks, 1709

code access security
basics, 602–603
code groups. See code groups
permissions. See permissions
policy levels, 621–622
Policy tool, 614–616
in System.Net.PeerToPeer, 1635

code groups
changing group permissions, 627–628
Code Access Security Policy tool, 614–616
creating, 626–627
defined, 602
deleting, 627
managing, 626
membership conditions in .NET, 613–614
viewing assembly, 616–618

<codeBase> element, 497–498
collections, 247–296

bit arrays. See bit arrays (collections)
collections initializers (.NET), xlvi, 253
dictionaries. See dictionaries
generic, 1071–1072
HashSet, 286–289

classes. See also derived classes (continued)

bindex.indd 1740bindex.indd 1740 2/19/08 9:31:08 PM2/19/08 9:31:08 PM

1741

In
de

x

interfaces and types, 247–250
interfaces, arrays and, 132–133
linked lists, 268–275
lists. See lists
object (Active Directory), 1603–1604
performance, 294–296
queues, 261–266
sorted lists, 275–278
stacks, 266–268
type conversion, 260–261

colors
background, 833–839
in GDI+, 1114–1116

columns
binding to TextBox, 1075–1076
constructing, 1072–1074
custom, 1074–1075
data, 867–868
foreign language messages and, 674
limiting called with query, 910
naming, 910–911

COM (Component Object Model). See also
.NET and COM; .NET Framework

ActiveX controls in Windows Forms, 768–770
apartments, and threading, 545, 569–570
vs. C# interfaces, 114
COM callable wrapper (CCW), 771
COM client, creating, 778–779, 781–782
COM client, using .NET component from, 771
COM+ history, 1528
COM+ simple application, 1531–1534
connection points, 765–767, 780–781
creating component, 756–762
history of, xliii
Interop attributes, 774–777
.NET component, creating, 772
.NET Framework and, 6
objects from ASP.NET, using, 771
primary interop assembly, 764
registration, 777–778
runtime callable wrapper (RCW), 762–764
threading issues, 764–765
type library, creating, 772–774

ComboBox control (Windows Forms),
1029–1031

command bindings (WPF), 1224–1228
command-line compiler (csc.exe), 26

command link controls (Vista), 1716
Command pattern (data binding), 1090
commands, ADO.NET

CommandType enumeration, 856
execute methods, 856–860
overview, 855–856
stored procedures, calling, 860–863

comments
within source files, 60
XComment object, 973
XML documentation and, 61–62

committable transactions, 687–690
committing transaction phase, 680–681
Common Language Runtime (CLR). See CLR

(Common Language Runtime)
Common Language Specification (CLS)

basics, 11
CLSID, 753

Common Type System (CTS)
basics, 9–11, 36
predefined value types, 37–39

communications. See also message queues;
peer-to-peer (P2P) networking; WCF
(Windows Communication Foundation)

channels (WCF), 1456
client-server, 1625–1626
duplex communication (WCF), 1484–1486
history of technologies, 1455
WCF and other technologies, 1455–1456

comparison operators (= =)
defined, 154
overloading, 161–163

compiling
C# files, 57–58
code, defined, 427
conditional compilation, 64, 428

components
component load balancing (Enterprise

Services), 1529
Component Services Explorer, 1536–1538
Component Services MMC snap-in, 691–692
creating (COM+ application), 1533–1534
defined, 420
event-based asynchronous, creating,

576–581
queued (Enterprise Services), 1530
WCF and, 1456–1457

components

bindex.indd 1741bindex.indd 1741 2/19/08 9:31:08 PM2/19/08 9:31:08 PM

1742

compound from filter (LINQ), 313–314
Computer Management MMC snap-in,

1560, 1566
comsvcconfig.exe, 1549
conceptual layer (ADO.NET Entity Framework),

1659–1660
Conceptual Schema Definition Language

(CSDL), 1659
conditional compilation, 64, 428
conditional operator

fundamentals, 144–145
and .NET languages, 1694

conditional statements
if statement, 42–44
switch statement, 44–45

configuration
Active Directory, 1589
application configuration files, 496,

500–503
/Configuration/Themes/Default.aspx page,

1340–1342
Configuration Wizard, 1296–1297
machine configuration files, 496
VS 2008 configurations, 429–430
Web site example, 1365–1368

Connection property (DataContext
objects), 904

connection strings
adding events and, 1300
managing, 850–852

consistency, transaction, 681
consistent bit, setting, 1540
console application

building, 1450–1453
VS 2008 example, 410–412

console I/O, 58–60
constants

basics, 34
classes and, 77
const keyword, 34, 77

constraints
data, 874–876
generics and, 232–234
naming conventions for, 893
setting update/delete, 876

constructors
calling from other constructors, 89–90
defined, 77

defining classes and, 1376
fundamentals, 86–87
in .Net languages, 1689–1690
static, 87–89
for structs, 94–95

constructors of derived classes, 107–112
adding in hierarchies, 109–110
adding to hierarchies, 110–112
defining, 107–109

contacts (P2), 1639–1640
content controls (WPF), 1168–1169
ContentPlaceHolder control (ASP.NET), 1324
<ContentTemplate> element, 1370
ContextMenu attribute, 1089–1090
ContextMenuStrip class (Windows

Forms), 1042
continue statements, 49
contract assembly (add-ins), 1261
ContractHandle class, 1259
contracts

add-ins, 1257–1258
WCF, 1467–1471

control class (Windows Forms)
appearance properties, 1024
functionality supported, 1026
size/location properties, 1023–1024
user interaction events, 1024–1025
Windows support, 1025–1026

control statements (C#), 1694–1695
Control Toolkit (Ajax), 1361, 1367–1368
controls

ASP.NET Ajax, 1368–1372
binding to forms, 1077–1078
extender (ASP.NET Ajax), 1372–1374
host (VSTO), 1389, 1392–1394
ribbon menus (VSTO), 1402–1403
Windows Forms. See Windows Forms
WPF. See WPF (Windows Presentation

Foundation)
controls (ASP.NET). See also custom controls

(ASP.NET); user controls (ASP.NET); Web
Parts (ASP.NET)

building custom, 1311
defining default state for, 1314
Login Web server, 1336
navigation, 1328–1329
security, 1337, 1338
WPF, within Windows Forms, 1245–1248

compound from fi lter (LINQ)

bindex.indd 1742bindex.indd 1742 2/19/08 9:31:08 PM2/19/08 9:31:08 PM

1743

In
de

x

ControlToValidate property, 1288
conventions

naming, 68–72
usage basics, 67–68
used in this book, l–li

conversions
conversion operators, 311, 322–323
ConvertAll() method, 240, 242
type, 149–152

coordinates
and areas, measuring (GDI+), 1102
transforms (GDI+), 1137–1138

copying
arrays, 128–129
Copy Web tool, 444, 447
files, 800–805

correlation ID, defined, 1577
Count() extension method, 321
Course Order application example,

1569–1576
class library, 1570
message receiver, 1573–1576
message sender, 1570–1571
priority/recoverable messages, sending,

1571–1572
CourseManagement sample database,

681–683
covariance/contra-variance, 193–194
CPUs

lock statement and, 551
race conditions and, 546
threading and, 533, 542–543

Create() method (MessageQueue
class), 1562

CreateInstance() method (arrays),
127–128

Credentials property (WebRequest
class), 1428

.cs extensions in C#, 26
CSharpCodeProvider class, 478
CSS (Cascading Style Sheets). See Cascading

Style Sheets (CSS)
CTS (Common Type System). See Common Type

System (CTS)
CultureAndRegionInfoBuilder class, 677–678
CultureInfo class, 641
cultures, world

basics, 641

changing programmatically, 663–665
creating custom, 677–678
CurrentCulture/CurrentUICulture, 642–643
date formatting and, 644–645
number formatting and, 643–644
types of, 641–642
viewing all, 645–649

CurrencyManager object, 1078–1080
CurrentCulture/CurrentUICulture properties,

642–643, 650, 664
Custom Actions editor (VS 2008),

463–465
custom activities (WF), 1495–1508

activity validation, 1497–1498
ActivityToolboxItem and icons, 1500–1501
basics, 1495–1496
custom composite activities. See custom

composite activities (WF)
themes and designs, 1498–1500

custom attributes
AttributeUsage attribute, 359–360
GetCustomAttributes() method, 371
overview, 358
parameters, specifying, 361–362
WhatsNewAttributes example, 362–365,

371–375
writing, 358–362

custom composite activities (WF)
attached properties, 1506–1508
basics, 1502–1503
composite activities, defined, 1489
Designer class, adding, 1503–1505

custom controls (ASP.NET)
.aspx files, 1314
basics, 1312, 1318–1320
example, 1320–1323
vs. user controls, 1318

custom controls (Windows Forms)
attributes, 1049
overview, 1048–1049
TreeView control-based, 1049–1055
user controls, 1055–1059

custom hosting (WCF), 1480–1481
custom interfaces, 751
custom objects (Northwind database)

creating (Customer table), 908
and LINQ, 908–910
O/R Designer and, 912–914

custom objects (Northwind database)

bindex.indd 1743bindex.indd 1743 2/19/08 9:31:08 PM2/19/08 9:31:08 PM

1744

custom resource managers, 703–709
customizing Office applications. See Visual

Studio Tools for Office (VSTO)

D
data

accessing (.NET), xliv
classes, defined, 420
columns, 867–868
constraints, 874–876
contracts (WCF), 1467–1468, 1579–1580
Data Model Designer (ADO.NET Entity

Framework), 1659
display controls (ASP.NET), 1287–1288
displaying. See DataGridView control
members (classes), 77
passing to threads, 540–541
querying (XQuery), 1008–1010
readers, 863–865
relational, and XML data type, 1003
relationships, 873–874
rows, 868–871
service layer, 1528
sets, populating, 883–884
templates and WPF binding, 1214–1217
triggers and data integrity, 1002
XML, and tables, 1003–1005

data access (Visual Studio .NET),
1080–1092

data, selecting, 1084
data source, updating, 1084
database connections, creating,

1080–1084
pop-up menu for rows example.

See pop-up menu for rows
data access with ADO.NET. See also ADO.NET

commands. See commands, ADO.NET
data adapters, updating with, 885–887
data reader, 863–865
data sets, populating, 883–884
database connections. See database

connections
DataSet class. See DataSet class
overview, 845
persisting DataSet changes, 884–888
XML output, writing, 887–889
XML schema definitions (XSD), 877–883

data adapters
populating DataSet class with, 883–884
updating with, 885–887

data binding
ADO.NET, 1295–1307
DataBindings property, 1076
DataGridView control, 1061
defined, 1075
objects, 1076–1080
simple, 1075–1076

data binding and ADO.NET
basics, 1295, 1302–1303
event-booking application. See event-booking

application
templates, data display with, 1303–1304
templates, using, 1305–1307

data binding and WPF
binding modes, 1200
data templates, 1214–1217
list binding, 1208–1211
list items, adding dynamically, 1213–1214
object data provider, 1206–1207
overview, 1199–1200
simple object binding, 1203–1206
strings for list binding, 1212–1213
validation. See validation, binding
with XAML, 1200–1203
to XML, 1217–1219

data sources
Data source controls (ASP.NET), 1287
overview, 1063
updating, 1084

data tables
basics, 866–867
data columns, 867–868
data rows, 868–871
deleting rows, 887
inserting rows, 885–886
schema generation, 871–873
updating existing rows, 887

data types. See also XML data type
blittable, 755, 990
COM and .NET related, 756
immutable, 205
nonblittable, 756
reference for memory management,

331–333
registry entries, 830

custom resource managers

bindex.indd 1744bindex.indd 1744 2/19/08 9:31:09 PM2/19/08 9:31:09 PM

1745

In
de

x

value for memory management, 330–331
VARIANT, 753

data types, predefined, 34–42
boolean types, 38–39
character types, 39
CTS types, 36
decimal types, 38
floating-point types, 38
integer types, 37
object types, 40
reference types, 35–36, 40–42
string types, 40–42
value types, 35–39

database connections
connection strings, 850–852
efficient use of, 852–854
overview, 849–850
transactions and, 854–855
try . . . catch . . . finally blocks, 852
using block statement, 852–854

databases
classes, 681–683
column naming conventions for, 893
connections, creating (Visual Studio .NET),

1080–1084
database-specific classes, 847–849
event-booking application, 1295–1307
querying with LINQ, 914–920
table naming conventions, 892

DataContext object
assigning ADO.NET transactions to, 905
creating, 911–912
LINQ to SQL and, 903–906

DataContext property, 1205
DataGrid control, 1061
DataGridView control, 1061–1072

arrays, displaying data from, 1063–1064
basics, 1061
class hierarchy, 1072–1075
DataSource property overview, 1063
DataTable, displaying, 1065
displaying DataSet class data, 1068–1070
displaying DataView data, 1065–1068
displaying DataView Manager data, 1070
displaying generic collections, 1071–1072
displaying tabular data, 1062–1063
IListSource/IList interfaces and, 1071

[DataMember] attribute, 1468

DataRow version values, 869
DataRowState enumeration, 870
DataSet class

data constraints, 874–876
data relationships, 873–874
data tables. See data tables
displaying data from, 1068–1070
overview, 865–866
populating from XML, 884
populating with data adapter, 883–884

DataSource property. See also
DataGridView control

DataTable and, 1065
overview, 1063

DataTable, displaying in DataGridView
control, 1065

DataView, displaying data from, 1065–1068
DataView Manager, displaying data in, 1070
DataViewRowState, 1066–1067
DateTimePicker control (Windows

Forms), 1031
DCOM Proxy, MSMQ, 1558
DDX (Dialog Data Exchange), 1075
dead-letter queues (messages), 1559
deadlocks (threading)

basics, 548–549
ReaderWriterLockSlim, 564

debugging
in C#, overview, 430–434
debug and release builds, 427
Debug configuration (Visual Studio), 429
Debug Location toolbar, 540
debugger symbols, 428
design-time, 418
drawing routines, 1106–1107
JavaScript, 1380–1381
ServicedComponent class, 1549
threads, 540
tracing and, 509–510
XSLT, 947–948

decimal types, 38
declarative behavior (WCF), 1456
declarative permissions, 606
declarative role-based security, 585–586
declaring

arrays, 121–122
methods, 78
variables, 29

declaring

bindex.indd 1745bindex.indd 1745 2/19/08 9:31:09 PM2/19/08 9:31:09 PM

1746

deep comparisons, 162
default keyword (generic classes), 231–232
default values (generic classes), 231–232
#define/#undef preprocessor directives, 63
DelayActivity (WF), 1493
delaying assembly signing, 492–493
delegates

anonymous methods, 190–191
asynchronous, and threading, 535–538
BubbleSorter example, 184–187
covariance/contravariance, 193–194
declaring in C#, 178–179
defined, 238
fundamentals, 177–178
GetAString example, 179–182
Lambda expressions, 191–193
MathOperations class example, 182–184
multicast, 187–190
in .Net languages, 1703–1704

delegates, generic
defined, 238
methods called by, 238–240
setting delete constraints, 238–243
using with Array class, 240–243

deleting
ACLs from files, 827–828
code groups, 627
delete constraints, setting, 876
Delete() method (files), 794, 800–801
delete/update constraints, setting, 876
event logs, 525
files, 800–805
records, 861
rows in data tables, 887

Demo class, lock statement and, 552
dependencies

dependency property (WPF), 1152–1153
dependent transactions, 692–693
version, 470

deployment
ClickOnce. See ClickOnce deployment
COM+ assemblies, 1534–1535
deploying .NET runtime, 446
deployment projects, 444
designing for, 443
installer project types. See installer

project types
no-touch deployment (NTD), 457–458

options overview, 444
requirements, 444–445
simple examples, 446

dereference operators, 341
derived classes

calling base versions of, 107
constructors of. See constructors of

derived classes
design-time debugging, 418
design view editor (VS 2008), 402
Design View window (VS 2008), 419–422
designer/developer cooperation (WPF),

1154–1155
Designer, WF

adding, 1503–1505
basics, 1487, 1526
themes and designs, 1498–1500

destructors
for freeing unmanaged resources,

335–336
implementing, 337–339

developer/designer cooperation (WPF),
1154–1155

device context (DC) objects (GDI+),
1095–1096

device coordinates (GDI+), 1113–1114
DHTML (Dynamic HTML), 1357–1358
diagnostics, WCF example, 1466–1467
dialog boxes, installation, 462–463
Dialog Data Exchange (DDX), 1075
dictionaries

basics, 278
big-O notation and, 295
classes, 284–285
example of, 280–283
key types, 278–280
lookup, 283–284

Diffie Hellman algorithm, 594–598
directories. See also Active Directory

add-in discovery, 1254
defined, 792
Directory/DirectoryInfo classes, 792–793
reading ACLs from, 825–826
securing, 1336–1339
structure in Vista, 1715–1716
themes and, 1340

directory services
account management, 1616–1620

deep comparisons

bindex.indd 1746bindex.indd 1746 2/19/08 9:31:09 PM2/19/08 9:31:09 PM

1747

In
de

x

architecture of Active Directory. See Active
Directory

basics, 1587
Markup Language (DSML), 1620–1623
programming Active Directory. See Active

Directory, programming
user objects, searching for, 1611–1616

dirty reads, transaction, 701
discovery

add-ins, 1252, 1254
of clients (P2P network apps), 1628, 1639

discretionary access-control list (DACL), 599
dispatch interfaces, 751–752
DisplayFile() method, 814–815
DisplayTabularData example, 1062–1063
DisplayText example (GDI+), 1124–1125
DisplayTree() method, 325–327
Dispose() method

IDisposable interface, 336–338, 1701
SelfPlacing Window example and, 836

distinguished name (Active Directory),
1599–1601

distributed solutions. See Enterprise Services
distributed transactions

Distributed Transaction Coordinator (DTC),
686, 691, 1530, 1548

Enterprise Services, 1530
DllImport properties, 784–785
DNS

class, 1442–1443
names, 1441
servers, 1441

do . . . while loops, 48
DockPanel container (WPF), 1174–1175
Document Object Model (DOM). See DOM

(Document Object Model)
documents

calculating sizes of (GDI+), 1134–1135
document-level customizations (VSTO),

1387–1390, 1394–1395
Document Manager Console project, 231–234
DocumentManager<T> class, 231–234
interacting with (VSTO), 1400–1401
XDocument object, 969
XML. See XML documents

DOM (Document Object Model)
Ajax and, 1356–1357
implementation in .NET, 931–932

domains
Active Directory and, 1589–1590
controllers, 1588, 1590
defined, 1589
trees, 1590

done bit, setting, 1540
DoTheTask, 550–551, 554
DoubleAnimation class, 1228, 1229
downlevel logon (Active Directory), 1601
downloading, 1424. See also Web sites,

for downloading
files, with WebClient class, 1424
Web pages (example), 1426

drawing (GDI+)
DrawingBrush (WPF), 1165
scrollable windows, 1107–1113
shapes and lines, 1096–1099,

1118–1120
text, 1123–1125

drive information, reading, 822–824
DriveInfo class, 822
DSA (Digital Signature Algorithm), 594
DSML (Directory Services Markup Language),

1620–1623
dual interfaces, 752
duplex communication (WCF), 1484–1486
durability, transaction, 681
Dynamic HTML (DHTML), 1357–1358
dynamic loading (assemblies), 478–481
dynamic resources (WPF), 1181–1182
dynamic XML documents, querying, 976–978
DynamicResource markup extension,

1181–1182

E
early binding, 752
ECDiffieHellman algorithm, 594–598
ECDSA algorithm, 594
elements

operators, 311
XElement object, 969–970

elements, lists
accessing, 254–256
adding, 253–254
inserting, 254
removing, 256–257

#elif preprocessor directives, 64

#elif preprocessor directives

bindex.indd 1747bindex.indd 1747 2/19/08 9:31:10 PM2/19/08 9:31:10 PM

1748

Ellipse class (animations), 1229
#else preprocessor directives, 64
EmployeeId struct, 280
encryption

fundamentals, 591–594
key exchange/secure transfer, 596–599
signatures, 594–596

#endif preprocessor directives, 64
EndOfStreamException class, 379
endpoints. See also MEX (Metadata Exchange)

endpoints
for VBA code (VSTO), 1389
WCF binding, 1479

#endregion preprocessor directives, 65
Enterprise architecture and C#, 22–23
enterprise policy levels (security), 621–623
Enterprise Services, 1527–1554

automatic transactions, 1529
client application, 1538
Component Services Explorer, 1536–1538
contexts, 1529
deployment, 1534–1535
distributed transactions, 1530
example application. See Enterprise Services

application
history of, 1528
integrating WCF with. See WCF, integrating with

Enterprise Services
loosely coupled events, 1530–1531
.NET, 684–685
object pooling, 1530
overview, 1527–1531
queued components, 1530
role-based security, 1530
simple COM+ application, 1531–1534
transactions, 1539–1540
where to use, 1528–1529

Enterprise Services application, 1540–1549
client application, 1548–1549
entity classes, 1541–1543
OrderControl component, 1543
OrderData component, 1544–1546
OrderLineData component, 1546–1547

entities (ADO.NET Entity Framework)
attaching/detaching, 1677
classes, 681–683, 1661–1663
LINQ to Entities, 1678–1679
storing changes, 1677–1678

Enumerable class, 305, 323
enumerations

basics, 50–51, 133
defining with .NET languages, 1686
enumerating font families example,

1126–1128
enumerating messages, 1568–1569
foreach statements and, 134
IEnumerator interface, 134
yield statements and, 134–139

Equals() method
key types, 279–281
purpose of, 97
static Equals() method, 154

errors and exceptions
catching exceptions, 379–381, 385
client-side error messages, 1369–1370
in data binding, 1219–1222
#error preprocessor directives, 65
ErrorMessage property, 1288
ErrorProvider component (Windows Forms),

1031–1032
exception classes, 378–379
handling exceptions, 389
handling in VB 6, 377
handling in WCF, 1476–1477
handling in .NET and COM, 754
handling with exceptions, overview,

14–15
modifying exception types, 388–389
multiple catch blocks, 382–385
nested try blocks, 387–389
overview, 377
SimpleExceptions example, 382–385
System.Exception properties, 386
unhandled exceptions, 386–387
user-defined exceptions. See user-defined

exceptions
escape codes, regular expressions, 215
escape sequences

of chars, 39
regular expressions, 217–218

event-based asynchronous pattern
BackgroundWorker class. See

BackgroundWorker class
basics, 570–571
component, creating, 576–581

event-booking application

Ellipse class (animations)

bindex.indd 1748bindex.indd 1748 2/19/08 9:31:10 PM2/19/08 9:31:10 PM

1749

In
de

x

adding events to database, 1300–1301
binding to database, 1296–1297
calendar control, customizing,

1297–1300
database, 1295–1296

event handling
delegates and, 195–197, 244
FileProperties example, 797–800
.NET and COM, 754–755
simple controls, 1316–1318
VSTO, 1397–1398, 1400
WPF, 1176–1177

event logging
architecture of, 518–519
basics, 509
classes, 519–520
event log listeners, 526–527
event logs, writing, 522
event sources, creating, 521–522
Event Viewer, 509, 517–519, 522
log entry example, 517–518
resource files, 522–526
Windows Services, 746

events
adding to event-booking application,

1300–1301
Ajax Library, 1378–1379
BackgroundWorker class, 571, 572
bubbling, 1177
defined, 77
defining, 197–201
defining in .NET languages, 1705–1706
event keyword, 562
event triggers (animations), 1229,

1233–1236
EventArgs-based object, 198–201
EventHandler delegate, 196
EventHandler <TEventArgs>, 244–245
EventLog class, 520, 522
EventSourceCreationData, 521–522
fundamentals, 194–195
loosely coupled (LCE), 1530–1531
receiver view of, 195–197
synchronization and, 562–564
table (MeetingRoomBooker example), 1296
tunneling, 1177
user interaction (Control class), 1024–1025
Web server controls (ASP.NET) and, 1284

Excel
host items/controls for (VSTO),

1393–1394
XML data type and, 1003

exceptions
catching, 379–381, 385
classes, 378–379
debugging and, 433–434
error handling with, 14–15
handling for binding validation,

1219–1221
handling in different places, 389
handling in .Net languages,

1697–1998
modifying types, 388–389
throwing, 380
unhandled, 386–387
user-defined. See user-defined exceptions

Execute method (WF), 1489, 1492,
1494–1496

execute methods
ADO.NET commands, 856–860
ExecuteNonQuery() method, 857
ExecuteQuery<T>() method, 903–904
ExecuteReader() method, 857–858
ExecuteScalar() method, 858–859
ExecuteXmlReader() method, 859–860

explicit type conversions, 150–152
express messages, defined, 1559
Expression Blend, 1154
expressions

Expression classes, 325
expression placeholder, 1303
expression trees (LINQ), 324–327
Lambda. See Lambda expressions
query, 914–916
regular. See regular expressions

extender providers
.NET, 1508
WF, 1506, 1508

ExtenderControl class (ASP.NET Ajax),
1372–1374

extensibility, WCF and, 1456
Extensible Application Markup Language

(XAML). See XAML (XML for
Applications Markup Language)

Extensible Markup Language (XML). See
XML (Extensible Markup Language)

Extensible Markup Language (XML)

bindex.indd 1749bindex.indd 1749 2/19/08 9:31:10 PM2/19/08 9:31:10 PM

1750

extension methods
creating with C# and VB, 1692
fundamentals, 99–100, 304–306

extensions
Ajax extensions, 1359–1360
document-level customizations

(VSTO), 1394
class, 327
JavaScript OOP, 1375–1378
markup (XAML) and, 1362

external safety level, 986
external service, defined (WF), 1511

F
families, font (GDI+), 1125–1126
fat-client applications, 21
feeds, syndication, 1647–1651
Fiddler tool, 1381
fields

basics, 73
defined, 77
read-only, 90–91
scope clashes for, 33–34

file dialogs (Vista), 1721–1722
files

File/FileInfo classes, 792–794
File Search (Launch Conditions

editor), 465
file-sharing communications

technologies, 1627
File System editor (VS 2008), 460–461
File Transfer Protocol (FTP), 1428–1429
File Types editor (VS 2008), 461–462
FileMode/FileAccess/FileShare

enumerations, 810–811
FileStream class, 809, 810–815
FileStream instances, 810
opening in WPF, 1226
resource files (event logging), 522–526
resource files (localization), 651,

653–658
security of, 825–828
/target switches for specifying, 57

files, managing, 791–805
basics, 791–792
file browser example, 796–800

FilePropertiesAndMovement example,
801–805

manipulating files, 800–805
.NET classes and, 792–794
Path class and, 794–795

files, reading and writing to, 805–821
binary files, 810–815
reading, 805–807
streams and, 808–810
text files, 815–821
writing to, 807–808

filtering
Active Directory searching and, 1608
compound from filter, 313–314
Filter property, 515
LINQ queries, 311–314
operators, 310
with query expressions, 916
rows, 1065–1067
tracing and, 510, 515–516

Finalize() method
destructors and, 335–336
overriding, 1702–1703
purpose of, 97

finalizers, defined, 77
finally blocks

defined, 379–380
examples, 382–386

FindAll() method, 240, 242
first in, first out (FIFO) (queues), 261
fixed keyword (pointers), 346–347, 351
flags, localization and, 659–660, 663
floating-point types, 38
floats values, 166
flooding, defined (P2P), 1628
flow control

conditional statements, 42–45
jump statements, 49–50
loops, 45–49

FlowLayoutPanel container (Windows Forms),
1037–1038

folders
defined, 792
.NET classes and managing, 792–794
SpecialFolder enumeration (Vista), 1715

folding editor (VS 2008), 416–418
fonts and families (GDI+), 1125–1128

extension methods

bindex.indd 1750bindex.indd 1750 2/19/08 9:31:10 PM2/19/08 9:31:10 PM

1751

In
de

x

for loops
basics, 45–47
jagged arrays and, 126

for statement in .Net languages, 1696
foreach loops

basics, 48–49
interfaces and, 115

ForEach() method, 240–241
foreach statements

accessing array elements and, 123
enumerations and, 133
IEnumerable interface and, 134
iterating through collections with, 135
in .Net languages, 1697

foreground threads, 541–542
foreign keys, setting, 875–876
forests (Active Directory), 1591
format names (message queues),

1564–1565
format strings

fundamentals, 209–214
for predefined types, 59

FormattableVector example, 212–214
formatting messages

message formatter, 1566–1567
names for opening message queues,

1564–1565
forms

ActiveX controls in Windows Forms,
768–770

controls, binding to, 1077–1078
Forms Authentication (ASP.NET), 1331–1334
Windows. See Windows Forms

Formula-1 racer example. See LINQ
(Language Integrated Query)

FormView control (Web server controls),
1305–1306

FrameworkTemplate base class, 1184
FTP (File Transfer Protocol), 1428–1429
functions

abstract, 106–107
base versions, calling, 106
function calls, avoiding, 70–72
function members, 77–78
user-defined (SQL), 1000–1001
virtual base class, 104

Futures (ASP.NET Ajax), 1358

G
GAC (global assembly cache). See global

assembly cache (GAC)
garbage collection

basics, 11–12
memory management and, 333–334

Garrett, Jesse James, 1356
GDI+ (graphical device interface)

brushes, 1116–1117
CapsEditor example, 1129–1133
clipping regions, 1100–1102
colors, 1114–1116
coordinate transforms, 1137–1138
coordinates and areas, measuring, 1102
debugging, 1106–1107
device context (DC) objects, 1095–1096
device coordinates, 1113–1114
drawing scrollable windows, 1107–1113
drawing shapes and lines, 1096–1099,

1118–1120
drawing text, 1123–1125
fonts and families, 1125–1128
GDI+ namespaces, 1095
graphics display modes, 1115–1116
GraphicsUnit enumeration, 1114
images, displaying, 1120–1122
images, manipulating, 1123
Invalidate() method, 1133–1134
item and document sizes, calculating,

1134–1135
OnPaint() method, 1099–1100, 1135–1137
overview, 1094
page coordinates, 1113–1114
painting shapes, 1099–1100
pens, 1116–1118
Point/PointF structs, 1102–1103
printing/print previewing, 1141–1146
Rectangle/RectangleF structs, 1105
red-green-blue values, 1114–1115
Region class, 1106
safety palette, 1116
Size/SizeF structs, 1103–1104
user input, responding to, 1138–1141
world coordinates, 1113–1114

generation operators, 311, 323–324
generic library classes, 178

generic library classes

bindex.indd 1751bindex.indd 1751 2/19/08 9:31:11 PM2/19/08 9:31:11 PM

1752

generics
ArraySegment <T> struct, 244–245
classes, creating, 226–230
collections, displaying, 1071–1072
constraints and, 232–234
default values and, 231–232
delegates. See delegates, generic
Document Manager Console project,

231–234
EventHandler <TEventArgs>, 244–245
inheritance and, 234–235
interfaces, 235–236
keywords and, 231
methods, 236–238
Nullable<T> type, 243–244
overview, 223–226
static members and, 235
supported in .NET languages,

1707–1708
GetAString example (delegates), 179–182
GetCurrent() method, 1368–1369
GetCustomAttributes() method, 370–371
GetEnumerator() method

enumerations and, 133–135
generic classes and, 227

GetHashCode() method
key types, 278–280
purpose of, 97

GetMethods() (System.Type), 367
GetType() method, 98, 365
global assembly cache (GAC)

adding publisher policy assemblies to, 505
fundamentals, 487–489

global catalogs (GC) (Active Directory), 1591
global clouds, 1631
global utility functions (Ajax Library), 1375
globalization

basics, 639–640
cultures and regions, 641–645
cultures in action, 645–649
defined, 639
sorting, 650–651
Unicode issues, 640–641

globally unique identifiers (GUID) (Active
Directory), 1601

Globals class (VSTO), 1397
Go To Definition option (VS 2008), 424
goto statements, 49

graphics
class, 1096. See also GDI+ (graphical device

interface)
display modes, 1115–1116
GraphicsUnit enumeration (GDI+), 1114

graphs, defined (P2P), 1628
Grid container (WPF), 1175–1176
grouping

database items with queries, 918–919
GroupBy() method, 315
operators, 310
query results (LINQ), 315–317

groups
account management, 1619
in regular expressions, 220–222

GUIDs (Active Directory), 1601

H
hand-coded schema, 871–873
handler function (Windows Services), 717–718
handler methods (Windows Services),

728–729
handling exceptions. See exceptions
hash algorithms, 593
hash tables. See dictionaries
hashing, 1000–1001
HashSet<T> collection class, 286–289, 295
hatch brushes (GDI+), 1117
headers

headered content controls (WPF),
1170–1171

headered items controls (WPF),
1171–1172

HTTP, 1427–1428
Hello World application (WF), 1488–1489
HelpProvider component (Windows

Forms), 1032
hiding methods, 104–105
hierarchy

data binding objects, 1076–1077
of data in Active Directory, 1588
DataGridView class, 1072–1075
pop-up menu classes, 1085
XML data, 1081

hives. See registry
host classes/controls (VSTO), 1389,

1392–1394

generics

bindex.indd 1752bindex.indd 1752 2/19/08 9:31:11 PM2/19/08 9:31:11 PM

1753

In
de

x

hosting applications (add-ins)
host adapter, 1265–1267
host application, 1267–1271
host view, 1265

hosting workflows (WF), 1524–1525
hosts

basics in WCF, 1480–1482
for components and services (WCF), 1456,

1463–1464
HTML (HyperText Markup Language)

Ajax and, 1356, 1357
server controls (ASP.NET pages), 1279–1280

HTML pages, displaying output as
basics, 1429–1430
Internet Explorer instances, 1432
Internet Explorer-type features, 1432–1437
requested-page code, displaying, 1438
simple Web browsing, 1430–1431
WebBrowser control for printing, 1437
WebRequest/WebResponse hierarchy,

1438–1440
HTTP (HyperText Transfer Protocol)

headers, 1427–1428
<httpHandlers> (ASP.NET Ajax), 1366
<httpModules> (ASP.NET Ajax), 1366
MSMQ, 1558

Hungarian notation, defined, 68
HyperText Transfer Protocol (HTTP). See HTTP

(HyperText Transfer Protocol)

I
ICompletedEvents interface, 755
IAsyncResult interface

asynchronous callbacks and, 537–538
BackgroundWorker class and, 571
polling and, 535–536
wait handles and, 536, 558

ICollection interface
arrays and, 132
collections and, 248, 250

IComparable interface, 129–130
ICompletedEvents interface, 755
IConnectionPointContainer interface, 755
icons

custom activities (WF), 1500–1501
ribbon menus (VSTO), 1403–1404

IContract interface, 1257

IDataErrorInfo interface, 1221–1222
identifiers

of controls, 1280
rules governing, 66–67

identities, user, 583–585
IDictionary interface, 249
IDispatch interface, 751
IDisposable interface

basics, 114–115
for freeing unmanaged resources, 336–339
implementation, 1701

idle workflows (WF), 1517
IDs, PNRP, 1630
IEnlistmentNotification interface, 704
IEnumerable interface

arrays and, 132, 133
basics, 133
collections, 248
generic classes, and, 229

IEnumerator interface, 133–134
IEquality.Equals() method, 279
#if preprocessor directives, 64
if statement

basics, 42–44
in .NET languages, 1694

IfElseActivity (WF), 1490–1491
IList

arrays and, 132–133
interface, 249, 1701

IListSource interface, 1071
ILookup<TKey interface, 249
ImageBrush (WPF), 1165
ImageList component (Windows Forms), 1033
images (GDI+)

displaying, 1120–1122
manipulating, 1123

immutable data types, 205
implementation inheritance

abstract classes and functions, 106–107
base versions of functions, 106
basics, 101–102, 103
constructors of derived classes. See

constructors of derived classes
hiding methods, 104–106
vs. interface inheritance, 101–102
sealed classes and methods, 107
virtual methods, 104

implicit permissions, 610

implicit permissions

bindex.indd 1753bindex.indd 1753 2/19/08 9:31:11 PM2/19/08 9:31:11 PM

1754

implicit type conversions, 149–150
importing

imports keyword, 1682
Windows Forms ActiveX Control Importer, 768

Increment() method, 530
indexers

accessing array elements and, 123
accessing collection classes and, 255
accessing list elements and, 254–255
BitArray class, 290
defined, 78
IDataErrorInfo interface and, 1222
searching lists and, 257–258

indexes
filtering with, 312
XML, 1010–1011
XML queries and, 1009

indexing arrays, 125
indirection operators, 341
InfoPath form templates (VSTO), 1388
Information Server (IIS), 1274
inheritance, 101–120

Ajax Library, 1376–1377
generics and, 234–235
implementation. See implementation

inheritance
interfaces. See interfaces
modifiers, 112–114
in .Net languages, 1699–1701
structs and, 94
types of, 101–102

initializing
arrays, 122
collection initializers, 253
InitializeComponent() method, 422
initializers, object (C# and VB), 1691
variables, 29–30

inlining, 85
input strings (regular expressions), 216
insertion, record, 862–863
installer project types

client from Web server, 457
creating installers, 449
no-touch deployment (NTD), 457–458
overview, 448
SimpleAppSolutionSetup example, 454–455
SimpleClientApp example, 449–454

SimpleWebApp example, 455–456
Windows installer, 449

installing
installer classes (Windows Services), 730–734
installer packages (Component Services

Explorer), 1535
installutil.exe utility (Windows Services), 734
message queues, 1585
shared assemblies, 491

instances
defined, 76
Internet Explorer, launching, 1432
WF, 1487

int variable, 36–37
Int32 number type, 280
integer types

basics, 37
casting pointers to, 343
user-defined. See enumerations

integers, pointer arithmetic and, 344–345
interactive services (Windows Services),

745–746
interfaces

basics, 114–115
collections, 132–133, 247–250
COM and, 114
custom, 751
defining and implementing, 115–118
defining with .NET languages, 1685–1686
derived, 118–120
dispatch, 751–752
dual, 752
generic, 235–236
interface inheritance, 101–102
support in .NET, 7–8
used with contracts, 1257–1258

Interlocked class (synchronization), 555–556
Intermediate Language (IL)

application domains, 12–14
assemblies, 15–17
attributes, 15
Common Language Specification (CLS), 11
Common Type System (CTS), 9–11
error handling with exceptions, 14–15
garbage collection, 11–12
object orientation/interface support, 7–8
security, 12

implicit type conversions

bindex.indd 1754bindex.indd 1754 2/19/08 9:31:11 PM2/19/08 9:31:11 PM

1755

In
de

x

strong data typing, 8–11
value/reference types, distinguishing, 8

internal modifier, 112, 114
Internet, accessing, 1423–1453

lower-level protocols. See lower level protocols
(network communications)

output as HTML pages. See HTML pages,
displaying output as

utility classes, 1440–1443
WebClient class, 1424–1426
WebRequest/WebResponse classes,

1426–1429
Internet browser application, creating, 768–770
Internet Explorer

as hosting application, 1251
IE-type features, creating, 1432–1437
launching instances of, 1432
running Windows Forms controls in, 782–783
toolbars, creating, 1433–1437
Web browser control and, 1430

Interop attributes, COM, 774–777
interoperability. See also .NET and COM

language, 5, 9–11
VBA, 1415–1418

Invalidate() method (GDI�), 1133–1134
invariant cultures, 641–642, 648
invoking methods, 79–80
IP addresses

basics, 1441
classes for, 1441–1442

IPHostEntry class, 1442
IResourceReader interface, 659, 674–676
is operator, 146
IsBackground property (threads), 541–542
isolated storage

reading/writing to, 839–844
SelfPlacingWindow example and, 834

isolation of add-ins, 1252
isolation (transactions)

defined, 681
IsolationLevel enumeration, 702–703
levels, 701–703, 855

ISupportErrorInfo interface, 754
items controls (WPF), 1171
<ItemTemplate> for data display, 1303
iterator blocks, 135
IUnknown interface, 751

J
jagged arrays, 126
JavaScript

adding to Web pages, 1375
Ajax programming and, 1356, 1357
client-side references, 1369
debugging, 1380–1381
JavaScript Object Notation (JSON),

1458, 1460
OOP extensions, 1375–1378
references, 1369

joins
clauses, LINQ and, 317–318
operators, 310
performing with queries, 916–918

journal queues, defined (messages), 1559
JSON (JavaScript Object Notation). See

JavaScript Object Notation (JSON)
jump statements, 49–50

K
Kerberos standard, 1588
key generation with SQL Server, 890–892
keys, registry, 830–831
keywords

to avoid, 70–72
C# reserved keywords, 66–67
generics and, 231
inheritance, 1699–1700
names of, 70–72
.NET classes and, 28

L
labels

control (Windows Forms), 1033
defined, 49

Lambda expressions
accessing list elements and, 256
delegates types and, 191–193
LINQ and, 306–307
threading and, 538, 539

Language Integrated Query Framework
(LINQ). See LINQ (Language
Integrated Query)

Language Integrated Query Framework (LINQ)

bindex.indd 1755bindex.indd 1755 2/19/08 9:31:12 PM2/19/08 9:31:12 PM

1756

language interoperability
IL and, 5
strong data typing and, 9–11

languages
custom cultures and, 677
Intermediate Language, xliv
interoperability of, xliv
multiple, 641
outsourcing translations, 666–667
programming with ASP.NET and, 668
resource files and, 653
resource messages and, 665–666
table for storing messages and, 674
Unicode issues and, 640
Visual Studio 2008 and, 663

last in, first out (LIFO) containers, 266
late binding, 752
Launch Conditions editor (VS 2008),

465–466
layers of functionality (Ajax Library),

1360–1361
layout containers (WPF), 1172–1176
LCE (loosely couple events), 1530–1531
Length property, array class, 127
licenses, trust, 460
lights in 3-D sample, 1240
Lightweight Directory Access Protocol

(LDAP), 1588
#line preprocessor directives, 65
LinearGradientBrush (WPF), 1164,

1240–1242
lines, drawing (GDI+), 1118
link local clouds, 1631
LinkedList/LinkedListNode classes

generic classes and, 226–230
linked lists and, 268–269
LinkedList<T> class, 268–269, 295

LINQ (Language Integrated Query)
aggregate operators, 321–322
conversion operator, 322–323
deferred query execution, 307–309
expression trees, 324–327
extension methods, 304–306
filtering, 311–314
generation operators, 323–324
grouping query results, 315–316
grouping with nested objects, 316–317
join clauses, 317–318

Lambda expressions, 306–307
LINQ query notation, 307
.NET and, xlvi–xlvii
partitioning operations, 319–321
providers, 327–328
queries in C# and VB, 1708
set operations, 318–319
sorting, 314–315
to SQL and syndication feeds, 1647
to SQL and WCF, 1458–1459
to SQL and XML, 1007–1008
standard query operators, 309–311
using List<T>, 298–304

LINQ to Entities, 1678–1679
LINQ to SQL

adding LINQ to SQL class, 898–899
calling products table (Northwind), 897
column names, 910–911
custom object, creating, 908
DataContext object, 903–906
DataContext object, creating, 911–912
filtering with query expressions, 916
grouping items with queries, 918–919
joins, performing with queries, 916–918
limiting called columns with query, 910
mapping database objects to LINQ objects,

902–907
O/R Designer, 899, 912–914
overview, 895–896
products object, creating, 900–902
query expressions, 914–915
querying with custom object and LINQ,

908–910
stored procedures and, 919–920
Table<TEntity> object, 907
using with LINQ to XML, 981–983
working without O/R Designer, 907–912

LINQ to XML
.NET 3.5 and, 968
overview, 967–968
querying XML documents, 974–978
reading from XML documents, 978–979
using with LINQ to SQL, 981–983
writing to XML documents, 979–981
XAttribute object, 974
XComment object, 973
XDocument object, 969
XElement object, 969–970

language interoperability

bindex.indd 1756bindex.indd 1756 2/19/08 9:31:12 PM2/19/08 9:31:12 PM

1757

In
de

x

XML objects from .NET 3.5, 969–973
XNamespace object, 971–972

ListBox control (Windows Forms), 1029–1031
ListBox style, 1209–1210
ListBox, styling (WPF), 1192–1197
ListControl class (Windows Forms),

1029–1031
ListenActivity (WF), 1493–1494
listener ports (WCF example), 1461
listeners

event log listeners, 526–527
tracing and, 510, 512–515

lists, 250–266
adding items dynamically, 1213–1214
basics, 250–252
binding to database (ADO.NET), 1296–1297
interfaces, 249
linked lists, 268–275
list binding, 1208–1211
read-only collections, 261
sorted lists, 275–278

lists, creating
basics, 252–253
collection initializers, 253
elements, accessing, 254–256
elements, adding, 253–254
elements, inserting, 254
elements, removing, 256–257
searching, 257–258
sorting, 258–260
type conversion, 260–261

List<T> class. See also lists, creating
access to collection classes and, 255
big-O notation, 295
collections and, 250–253
generics and, 224, 225
LINQ query using, 298–304

ListView control
Web server controls, 1288, 1303, 1305–1307
Windows Forms, 1033–1035

local variables, scope clashes for, 32–34
localization, 651–678. See also globalization

with ASP.NET, 667–669
cultures, creating custom, 677–678
custom resource reader, 673–677
defined, 639
resource dictionary, 669, 671–673
using resources for. See resources

Visual Studio 2008 for. See Visual Studio
2008 for localization

with WPF, 669–673
with XAML, 671–673

lock statement
Interlocked class and, 556
Monitor class and, 557
thread safety and, 550–555

logging, event. See event logging
logical layer (ADO.NET Entity Framework),

1657–1658
login

implementing system, 1334–1336
Web server controls, 1336

logo, RSS, 1643–1644
long value type, 35
LongLength property, array class, 127
Lookup<TKey, TElement> class, 283–284
loops

basics, 45–49
in .Net languages, 1695–1696

loosely coupled events (LCE), 1530–1531
lower level protocols (network communications)

basics, 1443–1444
classes, 1444
SmtpClient object, 1444–1445
Socket class, 1449–1452
TCP classes, 1445–1446
TCP vs. UDP, 1448
TcpSend/TcpReceive examples, 1446–1448
UDP class, 1448–1449

LuridTheme theme, 1342

M
machine configuration files, 496
machine policy levels (security), 621–622
main function (Windows Services), 717–718,

727–728
Main() method

in C#, 55
example of, 26
multiple, 55–56
passing arguments to, 56–57

making code, defined, 427
Managed AddIn Framework (MAF). See

add-ins
managed code, defined, 4

managed code, defi ned

bindex.indd 1757bindex.indd 1757 2/19/08 9:31:12 PM2/19/08 9:31:12 PM

1758

managed heaps
array initialization and, 122
defined, 8, 35
garbage collection and, 333–334
memory and, 331–333
reference types and, 124

managed types, defined, 343
manifests, assembly, 472
mapping layer (ADO.NET Entity

Framework), 1660
Mapping Specification Language (MSL), 1660
maps. See dictionaries
markup extensions

binding and (XAML), 1206
WPF and, 1154

marshaling, 755–756
MaskedTextBox control (Windows Forms),

1036–1037
.master extension (ASP.NET), 1323
master pages (ASP.NET)

accessing content from Web pages,
1325–1326

basics, 1311, 1323–1325
MasterPage.FindControl() method, 1326
MasterPage.master, 1326–1327, 1330
nested, 1326
in PCSDemoSite, 1326–1328

matches
locations (WF), 1519
Matches() static method (Regex class), 216
in regular expressions, 216–217, 220–222

MathOperations class example (delegates),
182–184

MathTest example (invoking methods),
79–80

MD5 (Message Digest Algorithm 5), 593
MDI (Multiple Document Interface)

applications, 1047–1048
members, class, 76
membership conditions (code groups),

613–614
MemberwiseClone() method, 98
memory

blittable data types and, 990
clean-up (C#), xlix
memory type safe code, 14
.NET and COM, 750

memory management
automatic handling of, 329
direct access to. See pointers
garbage collection, 333–334
reference data types, 331–333
unmanaged resources, freeing. See

unmanaged resources, freeing
unsafe code, 339
value data types, 330–331

menus, ribbon (VSTO), 1401–1404
MenuStrip control (Windows Forms),

1041–1042
Merge Module installer Project, 448
meshes, defined (P2P), 1628
message queues, 1555–1585

administrative tools, 1560–1562
architecture of, 1559–1560
Course Order application. See Course Order

application example
creating, 1560–1563
features of, 1557–1558
finding, 1563
installation, 1585
opening, 1563–1565
overview, 1555–1556
products for, 1558
queuing with WCF. See message queuing

with WCF
receiving messages, 1567–1569, 1573–1576,

1581–1583
receiving results, 1576–1577
sending messages, 1565–1567, 1583–1585
transactional queues, 1577–1578
types of, 1559
when to use, 1556–1557

message queuing with WCF, 1579–1585
entity classes with data contract, 1579–1580
message receiver application, 1581–1583
message sender application, 1583–1585
overview, 1579
service contract, 1580–1581

messages
contracts (WCF), 1467, 1470–1471
custom resource, 665–666
for event logs, 522
receiving, 1567–1569, 1573–1576,

1581–1583

managed heaps

bindex.indd 1758bindex.indd 1758 2/19/08 9:31:13 PM2/19/08 9:31:13 PM

1759

In
de

x

recoverable, defined, 1559
meta-characters (regular expressions), 217
metadata

assembly, 470–471
.NET and COM, 750
properties (WF), 1506
type, 470–471

methods
AddInStore class, 1254
AddInToken class, 1255
anonymous, 190–191
Application class, 1018–1019
asynchronous page requests and, 1429
BackgroundWorker class, 571
base versions, calling, 106
BitArray class, 289
BitVector32, 291
in C#, 78
C# rules for use of, 72–73
called by generic delegates, 238–240
calling outside workflow (WF), 1492
calling Web methods (ASP.NET Ajax),

1381–1383
collections interfaces, 248–249
connecting menu choices to code and,

1090–1091
ContextUtil class, 1540
ContractHandle class, 1259
DataContext object, 905–906
DataTable, 1088–1089
declaring, 78
defined, 77
entity classes, 1541–1542
EventLog class, 520
extension, 99–100, 304–306
for file system management, 794
generic, 236–238
handler (Windows Services), 728–729
HashSet<T> collection class, 286–287
hiding, 104–106
ICollection interface, 132
IDispatch interface, 751–752
IEnlistmentNotification interface, 704
IEnumerator interface, 134
IList interface, 132–133
Interlocked class, 555–556
invoking, 79–80

IUnknown interface, 751
LinkedList<T> class, 269–270
Lookup <TKey, TElement >, 283–284
method binding, 752
method overloading in C#, 82–83
method parameters and return types,

1687–1688
ObjectContext class, 1664–1665
ObjectQuery<T> Query Builder, 1673
overriding for user input response, 1138–1140
passing parameters to, 80–82
<provider>Command classes, 856–860
Queue and Queue<T> classes, 262–263
ReaderWriterLockSlim, 565
reading/writing to files, 807
RegistryKey class, 833
ResourceManager class, 676
sealed, 107
Select (XPathNavigator), 938
ServiceController class, 743
ServicedComponent class (Enterprise

Services), 1531
SortedList<TKey, TValue> class, 277
Stack and Stack<T> classes, 267
static, and Path class, 795
Storyboard class, 1235–1236
stream objects and, 794
String class, 1212
StringBuilder, 208
StringInfo class, 640
System.Drawing.Graphics, 1118–1119
System.Object, 97–98
System.string class, 204–205
Table<TEntity> object, 907
Transaction class, 686–687
Type class, 366–367
user controls and, 1313
user-defined aggregates and, 996
using generic delegate types, 240–241
virtual, 104
WaitHandle class, 558
Web methods, 1381–1383
XPathNavigator, 937–938
XPathNodeIterator, 939
yield statements and, 135

MEX (Metadata Exchange) endpoints,
1458, 1553

MEX (Metadata Exchange) endpoints

bindex.indd 1759bindex.indd 1759 2/19/08 9:31:13 PM2/19/08 9:31:13 PM

1760

MFC containers, 783
Microsoft

Active Directory. See Active Directory;
directory services

Foundation Class library, 1075
Intermediate Language (IL). See Intermediate

Language (IL)
Message Queue (MSMQ) Server Core, 1558
Microsoft.Office.Tools.Excel namespace,

1392–1394
Microsoft.Office.Tools.Word namespace,

1392–1393
Microsoft.SqlServer.Server namespace

classes, 987–988
Microsoft.Win32 namespace, 791, 830
Windows history, xliii–xliv
Windows Peer-to-Peer Networking platform,

1625, 1629–1632
MMC (Microsoft Management Console)

snap-ins
.NET Framework Configuration tool, 501
Services snap-in, 735–736

modifier keywords, 112–114
modules, creating, 473–474
Money example (ToString() method), 98–100
Monitor class (synchronization), 557
MoveTo() method (files), 794, 800–801
moving files, 800–805
MSMQ (Microsoft Message Queue) Server

Core, 1558
MTA (multithreaded apartment), 753–754
multi-targeting .NET Framework, 436–438
multicasting

messaging queuing support, 1558
multicast delegates, 187–190
MulticastIteration example, 189–190

multidimensional arrays, 125
multimaster replication (Active

Directory), 1588
multiple casting, 171–175
multiple catch blocks, 382–385
multiple inheritance, 102
multithreading

with ambient transactions, 697–701
multithreaded apartments (MTAs), 569–570,

753–754
Mutex class (synchronization), 558, 559–560
myArray variable, 122

N
naked type constraints, defined, 233
Name properties (Windows Forms

elements), 660
named colors (GDI+), 1115
names. See also naming conventions;

peer names
casing of, 68–69
distinguished (Active Directory), 1599–1601
relative distinguished names (Active

Directory), 1599
server name (Active Directory), 1599
styles of, 69
user class properties, 1613–1614
user principal name (Active Directory), 1601

namespaces
ADO.NET Entity Framework, 1656
aliases, 54–55
assemblies and, 472
basics, 52–55
defined, 27, 52
defining (Ajax Library), 1376
defining with .Net languages, 1682–1683
GDI�, 1095
names of, 70
.NET, 18–19
for .NET data access, 846
using directive, 53–54
VSTO, 1391–1392
WPF, 1156–1159
XNamespace object, 971–972

naming conventions
basics, 68–72
constraints, 893
database tables, 892–893
default naming context (Active Directory),

1600–1601
for generic types, 226
stored procedures, 893
threads, 540
trace sources, 511

native image generator, 494–495
Native Image Service, 495
NativeMethods class, 711
navigating Web sites (ASP.NET), 1311,

1328–1331
nested master pages (ASP.NET), 1326

MFC containers

bindex.indd 1760bindex.indd 1760 2/19/08 9:31:13 PM2/19/08 9:31:13 PM

1761

In
de

x

nested objects, grouping queries with, 316–317
nested partial classes, 96
nested scopes, 695–697
nested try blocks, 387–389
.NET and COM. See also COM (Component

Object Model)
client application, creating with sink object,

781–782
COM callable wrapper (CCW), 771
COM client, creating, 778–779
COM client, using .NET component from, 771
COM component, creating, 756–762
COM Interop attributes, 774–777
COM registration, 777–778
connection points, adding, 780–781
error handling, 754
event handling, 754–755
fundamentals, 750
interfaces, 751–752
marshaling, 755–756
memory, 750–751
metadata, 750
method binding, 752
.NET component, 771–772
registration, 753
runtime callable wrapper (RCW), 762–764
threading, 753–754
type library, creating, 772–774

.NET applications
<codeBase> element, 497–498
configuration categories, 496
configuring directories for assembly searches,

497–499
hardware and software requirements, 445
<probing> element, 498–499

.NET architecture
ASP.NET applications, creating, 19–20
C# relationship to .NET, 4
CLR, 4
COM/COM�, 6
enterprise applications and C#, 22–23
language interoperability, 5
Microsoft Intermediate Language (IL). See

Intermediate Language (IL)
namespaces, 18–19
.NET Framework classes, 17–18
overview, 3
performance improvement, 4–5

platform independence, 4
Visual Basic 2008, 5–6
Visual C�� 2008, 6
Windows Communication Foundation

(WCF), 22
Windows Controls, 21
Windows Forms, creating, 21
Windows Presentation Foundation (WPF), 21
Windows Services, 21–22

.NET Framework
advantages of, xliv–xlv
base classes, 28
basics, xliii
C# and, xlviii
classes, 17–18
classes and file management, 792–794
code group membership conditions,

613–614
Configuration tool, 501, 505
Enterprise Services, 684–685, 1528
globalization/localization and, 639
multi-targeting with VS 2008, 436–438
.NET 3.5, xlv–xlvii
.NET runtime (CLR). See CLR (Common

Language Runtime)
programming with SQL Server. See SQL Server
registry and, 828, 830–833
significance of, xliii
W3C standards supported in, 922
XML and, 921

net.exe command-line utility (Windows
Services), 734–736

neutral cultures, 641–642
new keyword, 76, 105, 120
new operator (arrays), 122
news feeds, 1643–1644
Ngen.exe (native image generator), 494–495
Nikhil’s Web Development Helper, 1381
no-touch deployment (NTD), 457–458
nodes, inserting with XmlDocument class,

934–936
nonblittable data types, 756
nonrepeatable reads (transactions), 701
Not() method, 290
null coalescing operator (??), 147
nullable types

basics, 243–244
operators and, 147

nullable types

bindex.indd 1761bindex.indd 1761 2/19/08 9:31:13 PM2/19/08 9:31:13 PM

1762

numbers
rounding, 168
truncating, 168
version, 499–500

numeric types, 209–210
numerical conversions. See SimpleCurrency

example (user-defined casts)

O
O/R Designer

basics, 899
and custom objects, 912–914

objects
Active Directory, 1589, 1621–1623
Application objects basics, 1308
C# object-orientation, 25–26
comparing for equality, 153–154
defining instances with XAML, 1206–1207
keyword, 103
LINQ to objects provider, 327
mapping database to LINQ objects, 902–907
native ADSI objects, accessing, 1607–1608
new objects, creating (Active Directory),

1605–1606
Object Browser window (VS 2008), 425–426
Object class, 97, 223, 231
object collections (Active Directory), 1603–1604
object initializers, xlvi, 1691
object-type collections, 247–248
ObjectContext class, 1664–1666
performance objects, 527
pooling (Enterprise Services), 1530
queries, 1670–1674
simple binding CLR objects, 1203–1206
strongly typed, 1588
support in .NET, 7–8
tracking, 1674–1675
types, 40, 223, 230
used in data binding, 1076–1080
user objects, searching for (Active Directory),

1611–1616
Office 2007 object model, 1391
Office applications, 1385. See also Visual Studio

Tools for Office (VSTO)
OfType() extension method, 312
OLE DB provider, 1724–1727
one-time binding, 1200

one-way binding, 1200
OnPaint() method

CapsEditor example, 1135–1137
painting shapes with, 1099–1100

OnTimer() method, 530
OOP extensions, JavaScript, 1375–1378
open unlocked state (WF), 1509–1511
OpenFileDialog class, 1226
operating systems and .NET-based

applications, 445
[OperationBehavior] attribute (WCF),

1475–1476
OperationContract properties (WCF), 1470
operators

aggregate, 321–322
available for overloading, 163–164
conversion, 322–323
defined, 78
generation, 323–324
pointer member access, 346
standard query (LINQ), 309–311
using with pointers, 341, 344–346

operators, C#
checked and unchecked, 145
comparison operator, 154
compiler processing of, 156–157
conditional, 144–145
is operator, 146
null coalescing operator (??), 147
nullable types and, 147
as operator, 146
operator overloading. See overloading,

operator
overview, 141–143
precedence of, 147–148
shortcuts, 143–144
sizeof operator, 146
typeof operator, 146

optimization of code, 427–428
out parameters, 82
output parameters, 861–863
outsourcing translations, 666–667
OverflowException class, 379
overloading, method, 82–83
overloading, operator

comparison operator, 161–163
compiler processing and, 156–157
fundamentals, 156–157

numbers

bindex.indd 1762bindex.indd 1762 2/19/08 9:31:14 PM2/19/08 9:31:14 PM

1763

In
de

x

operators available for, 163–164
Vector struct example, 157–163

overriding
defined, 40
override keyword, 104, 120
publisher policies, 505–506

P
P2P. See peer-to-peer (P2P) networking
page coordinates (GDI+), 1113–1114
Page Setup, printing (GDI+), 1142
Page_Load() event handler

ASP.NET code model, 1279, 1313
calendar controls, customizing, 1297, 1299
server controls (ASP.NET), 1292

Page_PreInit() event handler (ASP.NET), 1343
PageRequestManager class (Ajax Library),

1378–1380
painting shapes (GDI+), 1099–1100
Panel control (Windows Forms), 1037
panes (VSTO project types), 1388–1390,

1404–1405
ParallelActivity (WF), 1491–1492
parameters

Activate() method, 1255–1256
adding constructors with, 110–112
AttributeUsage attribute, 360–361
binding to activities, 1513–1514
methods using generic delegates as,

240–241
modifiers, 1688–1689
out, 82
parameter type contra-variance, 194
ParameterizedThreadStart delegate,

540–541
passed to constructor of persistence

service, 1518
passing to methods, 80–82
passing to workflows, 1511–1512
ref, 81–82
returning to workflows, 1511–1512
specifying custom attribute, 361–362
stored procedures returning output,

861–863
partial classes/keyword, 95–96
partial-page postbacks, 1355, 1368–1369
partitioning operators, 310, 319–321

Pascal casing, 68–69
Passport Authentication (ASP.NET), 1331
passwords, resetting (Active Directory),

1618–1619
paths

for opening message queues, 1564
Path class and file management, 794–795
PATH index, 1011

pattern search strings (regular expressions),
216–217

PCSDemoSite
master pages in, 1326–1328
navigating, 1330–1331
security, 1336–1339
themes in, 1340–1344

PCSLibraryDemo project, 1374
peer names

defined, 1629
defining, 1629
Peer Name Resolution Protocol (PNRP),

1625, 1629–1631
registering, 1633–1634
resolving, 1634–1635

peer-to-peer (P2P) networking, 1625–1642
applications, building, 1632–1642
client-server architecture, 1626
forums, lii
Microsoft Windows platform, 1625,

1629–1632
overview, 1625–1629
P2P architecture, 1627–1628
Peer Name Resolution Protocol (PNRP), 1625,

1629–1631
PeerCollaboration class, 1639
People Near Me (PNM), 1625, 1632
System.Net.PeerToPeer namespace. See

System.Net.PeerToPeer namespace
System.Net.PeerToPeer.Collaboration

namespace. See System.Net.PeerToPeer.
Collaboration namespace

terminology, 1628–1629
pens (GDI�), 1116–1118
People Near Me (PNM), 1625, 1632
perfmon.exe, 531–532
performance

collections, 294–296
generics and, 224–225
pointers and, 339–340, 352–355

performance

bindex.indd 1763bindex.indd 1763 2/19/08 9:31:14 PM2/19/08 9:31:14 PM

1764

performance monitoring
basics, 527
classes, 528
perfmon.exe, 531–532
Performance Counter Builder, 528–529
performance counts, 509
Performance Monitor, 531–532, 745
PerformanceCounter components, 529–531

permissions
asserting, 611–613
changing code group, 627–628
code access security and, 618–621
declarative, 606
defined, 602
demanding programmatically, 605–606
denying, 610–611
implicit, 610
managing, 626
provided by CLR, 603–605
requesting, 606–610
sets, creating/applying, 628–630
sets, defined, 602
SQL Server levels, 986–987

persistence service (WF), 1514, 1517–1518
persisting DataSet changes, 884–888
phantom reads (transactions), 701
phases, transaction, 680–681
PictureBox control (Windows Forms), 1035
pinning windows, 426
pipeline architecture (add-ins), 1253–1254
platform independence (IL), 4
platform invoke services, 783–787
Playground example (regular expressions),

216–220
plug-ins. See add-ins
PNM (People Near Me), 1625, 1632
PNRP (Peer Name Resolution Protocol), 1625,

1629–1631
Point/PointF structs (GDI+), 1102–1103
pointer member access operators, 346
pointers, 339–355

advantages/disadvantages of, 340
arithmetic of, 344–345, 349–350
casting between pointer types, 343–344
casting to integer types, 343
to class members, 346–347
optimizing performance with, 352–355
PointerPlayaround example, 347–352

reasons for using, 339–340
sizeof operator, 345
to structs, 345–346
syntax, 341–343
unsafe keyword, 340–341
void pointers, 344

poison queues, defined, 1557
policies, security

levels, 621–622
managing, 622–626

polling (asynchronous delegates), 535–536
pooling, object (Enterprise Services), 1530
pools, thread, 543–545
pop-up menu for rows

attributes, 1089–1090
code, 1085–1088
dispatching methods, 1090–1091
manufactured tables and rows, 1088–1089
selected rows, 1091–1092

populating data sets
with data adapters, 883–884
from XML, 884

ports
listener (WCF example), 1461
number (Active Directory), 1599
types (WSDL), 1458

postbacks
Ajax and, 1357
asynchronous, 1355
defined, 1275
partial-page, 1368–1369

postfixes, expression, 144
power events (Windows Services), 746–747
#pragma preprocessor directives, 66
prefixes, expression, 144
preparing transaction phase, 680
preprocessor directives, 63–66
presentation service layer, 1528
previewing, print (GDI+), 1142–1146
primary interop assembly (COM), 764
primary keys, setting, 874–875
principal classes, 583–585
printable characters, defined, 815
printing

and previewing in GDI+, 1141–1146
WebBrowser control for, 1437

priority nodes, 270, 273–274
Priority property (Message class), 1571–1572

performance monitoring

bindex.indd 1764bindex.indd 1764 2/19/08 9:31:14 PM2/19/08 9:31:14 PM

1765

In
de

x

PriorityDocumentManager class, 272
private assemblies, 16, 472–473
private keys, strong names and, 486–487
private queues, defined, 1559
<probing> element, 496, 498–499
products object, creating (Northwind), 900–902
products table, calling (Northwind), 897
Professional ASP.NET 2.0 (Wiley), 1308
Professional ASP.NET 3.5: in C# and VB (Wrox

Press), 216
programming

Active Directory. See Active Directory,
programming

object-oriented, xliv, xlviii
programming guidelines (C#)

fields, 73
identifiers, rules for, 66–67
naming conventions, 68–72
properties/methods, rules for using, 72–73
usage conventions, 67–68

ProgressBar control (Windows Forms),
1035–1036

ProjectInstaller class, 730–731
projection operators, 310
projects

deployment, 444
vs. solutions, 412–415

projects, Visual Studio 2008
creating new, 406–407
selecting type, 407–410
startup, setting, 415

projects, VSTO
features, 1389–1390
structure of, 1394–1396
types, 1386–1389

promotable transactions, 690–692
properties

access modifiers for, 84–85
accessing by name (Active Directory), 1603
ACID (transactions), 681
AddInToken class, 1255
appearance (Control class), 1024
Application class, 1018–1019
application setup (Solution Explorer), 450–452
array class, 127
attached (WF), 1506–1508
auto-implemented, xlvi, 85
BackgroundWorker class, 571–572

Binding class, 1202–1203
BitVector32, 291
C#, rules for use of, 72–73
ChannelFactory class, 1483
as child elements (XAML), 1152
collections interfaces, 248–249
Custom Actions editor, 464–465
DataColumn object, 868
DataContext object, 905–906
DataMember properties (WCF), 1468
defined, 77
defining in .NET languages, 1690–1691
deployment projects, 453–454
DllImport, 784–785
DoubleAnimation, 1232
entity classes, 1541, 1542
EventLog class, 520
EventSourceCreationData, 521–522
EventTrigger class, 1236
FileInfo/DirectoryInfo class, 793–794
fundamentals, 83–84
header properties, 1427–1428
ICollection interface, 132
IEnumerator interface, 134
IList interface, 132–133
to limit searches (Active Directory),

1609–1610
LinkedList <T> class, 269–270
LinkedListNode class, 269
Lookup<TKey, TValue>, 283–284
message queuing, 1561–1562
Name/Text (Windows Forms elements), 660
names, user class (Active Directory),

1613–1614
ObjectContext class, 1664–1665
ObjectDataProvider class, 1207
OperationBehavior (WCF), 1475–1476
OperationContract properties (WCF), 1470
Path class, 795
Properties window, VS 2008, 422–424
PROPERTY index, 1011
property triggers (timeline), 1229–1233
PropertyManager object, 1078–1080
Queue and Queue<T> classes, 262–263
read-only/write-only, 84
ReaderWriterLockSlim, 565
Rectangle struct, 1105
RegistryKey class, 832

properties

bindex.indd 1765bindex.indd 1765 2/19/08 9:31:14 PM2/19/08 9:31:14 PM

1766

properties (continued)
search limits and (Active Directory),

1609–1610
ServiceContract (WCF), 1469
ServiceController class, 738–739
services, 725–726, 732–733
size/location (Control class), 1023–1024
SortedList<TKey, TValue> class, 277
[SqlUserDefinedType] attribute, 990
Stack and Stack<T> classes, 267
stream objects and, 794
StreamReader class, 817
Syndication Reader, 1646
System.Exception, 385
Timeline, 1232
Transaction class, 686–687
Trigger class, 1184
Type class, 365–366
user controls and, 1313
validation controls and, 1289
virtual, 104
Web application installer, 455–456
as XML attributes, 1152
XPathNodeIterator, 939
yield statements and, 135

protected internal modifier, 112, 114
protocols, Active Directory binding, 1598–1599
providers

ADSI, 1598–1599
LINQ, 327–328
<provider>Command classes, 856–860

proxies
creating for clients (WCF), 1482–1483
HTTP/FTP requests and, 1428–1429

public keys, strong names and, 486–487
public modifier, 112, 114
public queues, defined, 1559
publisher policy files, 496, 504–506
publishing

applications, 459
Web sites, 444, 447–448

Q
quantifier operators, 310
queries. See also LINQ (Language

Integrated Query)
object, 1670–1674

Query Builder methods, 1673–1674
query expressions, 914–916
QueryInterface() method, 752

querying SQL Server database (LINQ)
custom objects, 908–910
grouping items with queries, 918–919
limiting called columns, 910
outputting XML, 982–983
performing joins, 916–918
query expressions, 914–915

querying XML documents, 974–978
queues

basics, 261–266
configuring with Component Services

Explorer, 1537
queued components (Enterprise

Services), 1530
Stack<T> big-O notation, 295
workflows (WF), 1492

QuickArray example (pointers), 354–355

R
race conditions (threading), 545–548
Racer class (lists), 251–261
RadialGradientBrush (WPF), 1164–1165
radio button control (Windows

Forms), 1028
Range() method, 324
Rank property (Array class), 127
RCW (runtime callable wrapper), 762–764
read methods (XmlReader class), 925–927
read-only collections, 261
read-only fields/keyword, 90–91
read-only properties, 84
ReaderWriterLockSlim class (synchronization),

564–568
reading

ACLs from files/directories, 824–825
to files, 805–807
to files with FileStream class, 810–812
to isolated storage, 839–844
to the registry. See registry
to text files, 815–821

ReadWriteText example, 819–821
Really Simple Syndication (RSS), 1643
receiving messages, 1567–1569, 1573–1576,

1581–1583

properties (continued)

bindex.indd 1766bindex.indd 1766 2/19/08 9:31:15 PM2/19/08 9:31:15 PM

1767

In
de

x

records
deleting, 861
inserting, 862–863
updating, 860–861

recoverable messages, defined, 1559
Recoverable property (Message class), 1572
Rectangle/RectangleF structs (GDI+), 1105
red-green-blue color values, 1114–1115
ref parameters, 81–82
refactoring applications, 434–436
reference types. See also arrays

basics, 35–36, 40–42
comparing for equality, 153–154
declaring arrays of, 123–124
declaring with .NET languages,

1683–1684
generics and, 224
reference data types, 331–333
and value types, 8

references
JavaScript client-side, 1369
ReferenceEquals() method, 97, 153
referents, defined, 339
service (WCF), 1464–1465
to shared assemblies, 493–494
Web service, 1369

reflection
assembly class, 370–371
custom attributes. See custom attributes
defined, 17, 357
System.Type class. See System.Type class

Reflector software tool, 853, 1500
regasm utility, 778
regedit, 829–830
Region class (GDI+), 1106
#region preprocessor directives, 65
regions

date formatting and, 644–645
number formatting and, 643–644

registration
COM, 777–778
.NET and COM, 753

registry
basics, 828
.NET Registry classes, 830–833
overview, 829–830
Registry editor (VS 2008), 461
registry hives, 829–830

Registry Search (Launch Conditions
editor), 465

RegistryKey class, 830–834
SelfPlacingWindow example, 833–839

regular expressions
asterisk (*) as quantifier in, 218
backslash (\) in, 217
Beginning Regular Expressions (Wrox

Press), 215
escape codes in, 215
escape sequences, 217–218
fundamentals, 214–216
input strings, 216
matches/groups/captures, 220–222
Matches() static method (Regex class), 216
meta-characters, 217
parentheses () in, 220
pattern search strings, 216–217
RegexOptions enumerations, 217
RegularExpressionsPlayground example,

216–220
special characters in, 218
square brackets ([]) in, 218

relational data
converting to XML, 952–954
XML data type and, 1003

relationships
ADO.NET Entity Framework and,

1666–1670
data, 873–874

relative distinguished names (Active
Directory), 1599

release and debug builds, 427
Release configuration (Visual Studio), 429
Replace() method (System.String), 206
replication (Active Directory), 1588,

1591–1592
report queues, defined, 1559
requests. See also WebRequest/WebResponse

classes
asynchronous page, 1429
TCP network, 1444

Resgen.exe, 651–652
resource files

event logging, 522–526
localization and, 651, 653–658
Resource File Generator, 651–652
ResourceManager, 654–659

resource fi les

bindex.indd 1767bindex.indd 1767 2/19/08 9:31:15 PM2/19/08 9:31:15 PM

1768

resource readers, custom
application example, 677
basics, 672
DatabaseResourceManager class, 676–677
DatabaseResourceReader class, 674–675, 677
DatabaseResourceSet class, 676

resources
automatic fallback for, 666
custom resource messages, 665–666
management in .Net languages, 1701–1703
managers, custom, 703–709
resource dictionary (XAML), 669, 671–673
ResourceWriter, 652–653
System.Resources namespace, 659
transactional, 704–709
WPF, 1178–1181

response queues, 1559, 1577
resultLabel control Text property, 1293–1294
return statements, 49
return type covariance, 193
RevokeLifetimeToken() method, 1258–1259
ribbon menus (VSTO), 1390, 1401–1404
RichTextBox control (Windows Forms),

1036–1037
Roeder, Lutz, 1500, 4500
role-based security

defined, 12
Enterprise Services and, 1530
fundamentals, 585

Rooms table (MeetingRoomBooker
example), 1296

RotateTransform element (WPF), 1162
round-robin scheduling (threads), 543
rounding numbers, 168
rows. See also pop-up menu for rows

data, 868–871
deleting in data tables, 887
filtering, 1065–1067
filtering by data, 1066
filtering on state, 1066–1067
inserting in data tables, 885–886
sorting, 1068
updating existing (data tables), 887

RSS (Really Simple Syndication),
1643–1645

rules, custom validation, 1223–1224
runat�“server” attribute, 1275

runtime. See also CLR (Common Language
Runtime)

callable wrapper (RCW), 762–764
schema generation, 871
settings, configuring, 496, 503
versions, 506–507
workflow runtime (WF), 1514–1515

S
SafeHandle type, 710
safety palette (GDI+), 1116
safety permission levels (SQL Server),

986–987
SampleClientSetupSolution example, 460
sans-serif font families, 1126
satellite assemblies

defined, 473
for languages, 663
localization with XAML, 671, 673

saving
files with Unicode characters, 651
SaveFile() method, 819–820
SaveSettings() method, 840–842

ScaleTransform element (WPF), 1162
scaling, client-server architecture, 1626
sc.exe command-line utility (Windows Services),

734–737
schemas. See also XML schemas

Active Directory, 1589, 1592–1593
defined, 866
generation (data tables), 871–873
naming context (Active Directory), 1612–1613

SCM (Service Control Manager), 717
scopes. See also variable scope

clashes, 32–34
nested (transactions), 695–697
rules for determining, 31

<script> tags (ASP.NET Web Forms), 1275
ScriptManager control (ASP.NET Ajax), 1359,

1368–1370
scrollable windows, drawing, 1107–1113
scrolling, 1079–1080
sealed classes/methods, 107
sealed keyword, 107
searching. See also regular expressions

in Active Directory, 1608–1611

resource readers, custom

bindex.indd 1768bindex.indd 1768 2/19/08 9:31:15 PM2/19/08 9:31:15 PM

1769

In
de

x

Advanced Query Syntax (AQS), 1728–1729
with DSML, 1621–1623
lists, 257–258
in Vista, 1722–1729

security
access control to resources, 599–601
application deployment and, 460
assemblies and, xlv
authentication and authorization. See

authentication and authorization
code access security. See code access security
configuring with Component Services

Explorer, 1536
distributing code with certificates, 631–637
distributing code with strong names, 630–631
encryption. See encryption
of files, 825–828
managing code groups/permissions, 626
managing security policies, 622–626
.NET overview, 12
role-based (Enterprise Services), 1530
secure transfers and key exchanges,

596–599
SecurityAction enumeration values,

608–609
settings, configuring, 496
SQL Server and, 986–987
turning on and off, 626
WCF and, 1456

security (ASP.NET), 1331–1339
directories, securing, 1337–1339
forms authentication, 1331–1334
login system, 1334–1336
login Web server controls, 1336
PCSDemoSite, 1336–1339
security Setup Wizard, 1332–1334
Web Forms, 1276

SELECT statement
combining with XQuery, 1008–1009
UDTs and, 988, 994–995, 997

SelfPlacingWindow example (registry),
833–839

Semaphore class (synchronization), 558,
560–562

Send() method (queues), 1565
sending messages, 1565–1567, 1570–1572,

1583–1585

sentinel values, defined, 1074
sequential workflows (WF), 1509
serialization

data contracts (WCF), 1468
serializing objects in XML, 956–965
in XML, 963–965

serif font families, 1125
server console application, building,

1450–1451
server controls (ASP.NET)

control palette, 1283
data Web server controls, 1287–1288
example, 1289–1294
overview, 1279–1283
standard Web server controls, 1283–1286
validation Web server controls, 1288–1289

Server Explorer
controlling Windows Services with, 737
window (VS 2008), 426

server names (Active Directory), 1599
service configuration

programs (Windows Services), 718
Service Configuration Editor (WCF),

1463, 1466
service contracts (WCF), 1467–1470,

1580–1581
service façade (WCF), 1549–1553
Service Host (WCF example), 1461–1464
service-main function (Windows Services),

717–718
service programs (Windows Services),

716–718
Service Trace Viewer tool (WCF), 1467
ServiceBase class (Windows Services),

726–727
ServiceBehavior property (WCF),

1471–1472
[ServiceContract] attribute, 1469
ServiceController class

application (Windows Services), 737–745
defined, 719

ServicedComponent class (Enterprise
Services), 1531

ServiceInstaller class, 731–734
ServiceInstallerDialog class, 734
ServiceModel Metadata Utility tool (Svcutil.exe),

1482–1483

ServiceModel Metadata Utility tool (Svcutil.exe)

bindex.indd 1769bindex.indd 1769 2/19/08 9:31:15 PM2/19/08 9:31:15 PM

1770

ServiceProcessInstaller class, 731–734
services, workflow (WF)

basics, 1515–1516
custom services, 1520–1521
persistence services, 1517–1518
tracking service, 1518–1520

set operations, LINQ and, 318–319
set operators, 310
Setup installer Project, 448
SetValue() method, 127–128
shallow comparisons, 162
shapes

drawing, 1096–1099
painting, 1099–1100
in WPF, 1159–1162

shared assemblies
basics, 472–473
creating, 489
defined, 16–17
delayed signing of, 492–493
global assembly cache (GAC), 487–489
installing, 491
native image generator, 494–495
.NET applications, configuring. See .NET

applications
references to, 493–494
strong names and, 486–487, 489–490
using, 491–492
versioning and. See versioning

shared classes in System.Data namespace, 847
SharePoint workflow templates(VSTO), 1388
shield icons (Vista), 1713–1715
shortcuts, operator, 143–144
signatures, encrypted, 594–596
SignIn()/SignOut() methods (PeerCollaboration

class), 1639
signing shared assemblies, 492–493
Silverlight applications, 1249
simple controls (WPF), 1167–1168
SimpleAppSolutionSetup example (deployment),

454–455
SimpleClientApp example (deployment),

449–454
SimpleCurrency example (user-defined casts),

165–174
SimpleExceptions example (catch blocks),

382–385
SimpleWebApp example (deployment), 455–456

single-threaded apartments (STAs),
569–570, 753

sink objects, creating client applications with,
781–782

<siteMapNode> element attributes, 1329
sites, domain controller, 1590
Size/SizeF structs (GDI+), 1103–1104
sizeof operator, 146, 345
SkewTransform element (WPF), 1162
Smart Device CAB installer Project, 448
smart tags (VSTO), 1389
SmtpClient object, 1444–1445
SOAP (Simple Object Access Protocol)

faults, 1476–1477
WCF and, 1457

Socket class, 1449–1452
SolicitColdCall example (user-defined

exceptions), 389–390
solid brushes, 1117
SolidColorBrush (WPF), 1163–1164
solutions vs. projects, 412–415
solutions, VSTO

application-level add-ins, 1398–1400
architecture of, 1386
basics, 1398–1399
document-level customization, 1398
interacting with applications/documents,

1400–1401
UI customization, 1401–1405

Sort() method (generic delegates),
240–241

SortedDictionary<TKey, TValue> class, 285
SortedList<TKey, TValue> class, 275–278,

285, 295
arrays, 129–131
cultures and, 650–651
data within DataView, 1068
LINQ, 314–315
lists, 258–260
operators, 310

source files, comments within, 60
sources

event sources, 521–522, 525
tracing architecture, 510–511

SpecialFolder enumeration (Vista), 1715
specifiers, numeric type format, 209–210
SplitContainer control (Windows

Forms), 1038

ServiceProcessInstaller class

bindex.indd 1770bindex.indd 1770 2/19/08 9:31:16 PM2/19/08 9:31:16 PM

1771

In
de

x

SQL (Structured Query Language)
LINQ to SQL. See LINQ to SQL
SqlCoordinate struct, 988–989, 991
[SqlUserDefinedType] attribute, 990

SQL Server, 985–1013
key generation with, 890–892
Microsoft.SqlServer.Server namespace

classes, 987–988
.NET runtime and, 985, 986–987
SQL Server 2005 Express Edition Starter Kit

(Wiley), 985
stored procedures and, 998–1000
triggers, 1001–1003
user-defined functions, 1000–1001
user-defined types. See user-defined types

(UDTs)
XML data type and. See XML data type

SQL Server Management Studio
binding columns and, 1076
XML schemas and, 1012–1013

STA (single-threaded apartment)
basics, 753
COM objects, 771

stacks
basics, 266–268
defined, 35
memory and, 330–333
pointers, defined, 330
Stack<T> big-O notation, 295
stack-based Arrays, creating, 352–354
stackalloc keyword, 352–354
StackOverflowException class, 379
StackPanel container (WPF), 1172–1173
and value types, 8

startup settings, configuration, 496
state machine workflows (WF), 1509–1511
state management (ASP.NET), 1274–1275
static classes/keyword, 96–97
static constructors, 87–89
static Equals() method, 154
static members

generics and, 235
and .NET languages, 1692–1693

static methods, Path class and, 795
static XML documents, querying, 975–976
StaticResource markup extension,

1181–1182
storage, isolated, 839–844

Store Schema Definition Language (SSDL),
1657–1658

stored procedures. See also triggers
calling with command objects, 860–863
LINQ to SQL and, 919–920
naming conventions for, 893
SQL Server and, 998–1000
using in data adapters, 883–884

storing entity changes, 1677–1678
storyboards, 1229, 1235–1236
streams

basics, 808–810
BinaryFileReader example, 812–815
buffered, 810
FileStream class, 810–812
streamed XML, reading/writing, 924
StreamReader class, 809, 816–818
StreamWriter class, 809, 818–819

strings
building, 205–208
connection strings for adding events, 1300
creating UDTs and, 992
displaying, 1063–1064
format strings, 59–60, 209–214
FormattableVector example, 212–214
for list binding, 1212–1213
managing connection, 850–852
StringArrayConverter class, 1212–1213
StringBuilder members, 208–214
StringCollection class, 820
StringInfo class, 640
System.string class methods, 204–205
types, 40–42

strong data typing
IL and, 8–9
language interoperability and, 9–11
strongly typed XML, 1011–1013

strong names
creating, 489–490
defined, 17
distributing code with, 630–631
integrity using, 486–487

structs
vs. classes, 76, 102
constructors for, 94–95
fundamentals, 92–93
inheritance and, 94, 102
pointers to, 345–346

structs

bindex.indd 1771bindex.indd 1771 2/19/08 9:31:16 PM2/19/08 9:31:16 PM

1772

structs (continued)
System.Drawing namespace, 1102
as value types, 93–94
Vector struct example (operator overloading),

157–163
Structured Query Language (SQL). See SQL

(Structured Query Language)
styles, defining (WPF), 1177–1178
SubordinateTransaction class, 686
Sum() method, 321–322
super keyword, 106
SuppressFinalize() method, 339
.svc files, 1481
switch statement (.NET languages),

1694–1695
switch . . . case statements, 44–45
switches, trace. See tracing
symbols, debugger, 428
symmetric encryption keys, 591–594
symmetric key exchange, 596–599
synchronization, 549–568

basics, 549–550
events and, 562–564
Interlocked class, 555–556
lock statement, 550–555
Monitor class, 557
Mutex class, 559–560
ReaderWriterLockSlim class, 564–568
Semaphore class, 560–562
WaitHandle class, 557–558

synchronous programming, 1555
SyncRoot pattern, 552, 554
syndication

Really Simple Syndication (RSS), 1643
syndication feeds, 1647–1651
Syndication Reader application, 1644–1647
Syndication Service Library template, 1647
System.ServiceModel.Syndication namespace,

1643–1644
Sys.Debug class, 1381
system access-control list (SACL), 599
system queues, defined, 1559
system resources, WPF and, 1180
System.AddIn assembly. See add-ins
System.ApplicationException class, 378
System.Convert object, 168
System.Data namespace, 847
System.Data.Common namespace, 847

System.Data.OleDb namespace, 749, 1725
System.DirectoryServices namespace, 749,

1597–1598
System.DirectoryServices.Protocols

namespace, 1587, 1596–1597, 1621
System.Drawing namespace, 1095, 1102
System.Drawing.Brush class, 1117
System.Drawing.Font class, 1126
System.Drawing.Graphics class, 1118–1119
System.Drawing.Pen class, 1117–1118
System.EnterpriseServices, 684–685
System.Exception properties, 386
System.GC class, 334
System.Globalization namespace. See

globalization
System.IO namespace, 378, 791
System.Linq namespace, 305
System.Messaging namespace, 1555
System.Net namespace, 3
System.Net.PeerToPeer namespace

code access security, 1635
example application, 1636–1638
registering peer names, 1633–1634
resolving peer names, 1634–1635

System.Net.PeerToPeer.Collaboration
namespace

detecting peer presence, 1639–1640
example application, 1640–1642
managing contacts, 1639–1640
overview, 1638–1639
peers, discovering, 1639
signing in/out, 1639

System.Net.Sockets namespace, 3
System.Net.WebClient class, 4
System.Object base class, 108–109, 112
System.Object methods, 97–98
System.Object.ValueType, 94
System.Reflection namespace, 370, 476
System.Resources namespace (localization),

639, 659
System.Runtime.InteropServices namespace,

774–775
System.Security.AccessControl

namespace, 599
System.Security.Cryptography

namespace, 592
System.Security.Principal

namespace, 584

structs (continued)

bindex.indd 1772bindex.indd 1772 2/19/08 9:31:16 PM2/19/08 9:31:16 PM

1773

In
de

x

System.ServiceModel.Syndication
namespace, 1643–1644

System.ServiceProcess namespace,
718–719

System.String class methods, 204–205
System.SystemException class, 378
System.Text.RegularExpressions, 203
System.Text.RegularExpressions

namespace, 215
System.Text.StringBuilder class, 206
System.Threading namespace, 584
System.Threading.Timer class, 568
System.Transactions namespace, 685–687
System.Type class

properties and methods, 365–367
TypeView example, 367–370

System.ValueType, 102
System.Web.Extensions.Design.dll, 1359
System.Web.Extensions.dll, 1359
System.Web.UI.WebControls.WebControl, 1319
System.Windows namespace, 1154
System.Windows.Forms namespace, 1023,

1025, 1076
System.Windows.Forms.Control class, 21
System.Windows.Media.Animation

namespace, 1229
System.Windows.Shapes namespace, 1161
System.Workflow.Activities namespace, 1489
System.Xml classes, 923–924
System.Xml namespace, 922–923
System.Xml.Linq namespace, 327, 969
System.Xml.Serialization namespace,

956–957
System.Xml.XPath namespace, 937–942
System.Xml.Xsl namespace, 942–947

T
T-SQL stored procedures, 998–1000
TabControl/TabPages controls (Windows Forms),

1038–1039
tables

creating with XML data, 1003–1005
manufactured, 1088–1089
Table per Hierarchy (TPH), 1666–1668
Table per Type (TPT), 1668–1670
TableLayoutPanel container (Windows Forms),

1037–1038

Table<TEntity> object, 907
temporary, accessing with triggers, 1002

tabular data, displaying, 1062–1063. See also
DataGridView control

tags for XML documentation, 61
TakesAWhileCompleted() method, 537
/target switches, 57
task dialogs (Vista), 1718–1721
task panes (VSTO), 1404–1405
TCP (Transmission Control Protocol)

classes, 1445–1446
network requests, 1444
TcpClient example (Windows Services),

722–725
TcpSend/Receive examples, 1446–1449
vs. UDP, 1448

templates
for data display, 1303–1307
data templates and WPF binding,

1214–1217
FrameworkTemplate class (WPF), 1184–1192
InfoPath form templates (VSTO), 1388–1389
project templates (VSTO), 1386–1387
SharePoint workflow templates (VSTO), 1388

ternary operator (C��/CLI), 1694
Test Client (WCF), 1461–1462
text

drawing (GDI�), 1123–1125
editor, VS Studio 2008, 402
files, reading/writing to, 815–818
properties (Windows Forms elements), 660
text boxes, binding columns to, 1075–1076
TextBox controls (Windows Forms),

1036–1037
textures, adding to triangles, 1241–1242
themes (ASP.NET)

applying to pages, 1339–1340
defining, 1340
in PCSDemoSite, 1340–1344

themes in Workflow Designer, 1498–1500
this keyword, 110
Thread class

background threads, 541–542
basics, 535, 538–540
controlling threads, 543
creating threads, 535, 538–540
passing data to threads, 540–541
thread priority, 542–543

Thread class

bindex.indd 1773bindex.indd 1773 2/19/08 9:31:16 PM2/19/08 9:31:16 PM

1774

threading
asynchronous delegates, 535–538
COM and, 753–754
COM apartments, 569–570
COM components, 764–765
deadlock, 548–549
event-based asynchronous pattern. See

BackgroundWorker class; event-based
asynchronous pattern

issues, 533, 545
messages and, 1573–1574, 1581
overview, 533–535
race conditions, 545–548
reasons for using, 533
synchronization. See synchronization
thread class. See thread class
thread, defined, 534
thread pools, 543–545
threads, starting, 178
timers, 568–569
Windows Services and, 730

throwing exceptions, 380
throwing user-defined exceptions,

391–394
tiered development (ADO.NET), 889–890
time quantum (threads), 542
timelines, 1228–1232
Timer control (ASP.NET Ajax), 1360
timers, 568–569
tlbimp utility, 762
toolbars, creating (WebBrowser control),

1433–1437
toolbox, Visual Studio 2008, 420–421
ToolboxBitmap attribute (WF), 1500
ToolStrip control (Windows Forms),

1039–1041
ToolStripContainer control (Windows

Forms), 1042
ToolStripManager class (Windows

Forms), 1042
ToolStripMenuItem class (Windows

Forms), 1042
ToString() method

date formatting and, 644–645
dictionary example, 280–281
fundamentals/examples, 98–99
number formatting and, 643–644
purpose of, 97

tracing
architecture of, 510
asserts, 516–517
basics, 509–510
defined, 509
filters, 515–516
trace listeners, 510, 512–515
trace sources, 510–511, 1466–1467
trace switches, 512

tracking
object, 1674–1675
service (WF), 1518–1520
track points (WF), 1519

transactions
ACID properties, 681
ADO.NET, 683–684, 905
ambient, 694–701
committable, 687–690
CourseManagement sample database,

681–683
custom resource managers, 703–709
database and entity classes, 681–683
database connections and, 854–855
dependent, 692–693
Enterprise Services, 684–685
isolation levels and, 701–703
overview, 679–680
phases, 680–681
promotable, 690–692
System.Transactions namespace, 685–687
transactional messages, 1559
transactional queues, 1577–1578
transactional resources, 704–709
TransactionOption values, 1539
TransactionScope class members, 694
TransactionScopeOption enumeration, 696
with Windows Vista/Windows Server 2008,

710–713
transactions, Enterprise Services

automatic, 1529, 1539
basics, 1539–1540
configuring with Component Services

Explorer, 1537
distributed, 1530
promotable, 1530

transformation elements (WPF), 1162–1163
transforms, coordinate (GDI�), 1137–1138
translations, outsourcing, 666–667

threading

bindex.indd 1774bindex.indd 1774 2/19/08 9:31:17 PM2/19/08 9:31:17 PM

1775

In
de

x

Transmission Control Protocol (TCP). See TCP
(Transmission Control Protocol)

TreeView-based custom control (Windows
Forms), 1049–1055

triangle models (WPF)
3-D objects and, 1242–1245
basics, 1238–1240
lights, changing, 1240
textures, adding, 1241–1242

triggers
defined, 1001
event triggers (animations), 1233–1235
messaging queuing and, 1558
property in WF, 1182–1184
SQL Server and, 1001–1003
TriggerAction classes, 1236
UpdatePanel triggers, 1371–1372

troubleshooting Windows Services, 745–746
True Type font families, 1126
truncating numbers, 168
trust licenses, 460
Trusted Application Deployment, 460
try blocks

defined, 379–380
examples, 382–386
nested, 387–389
try . . . catch . . . finally blocks, 852

TryGetValue() method, 282
tunneling events, 1177
two-way binding, 1200, 1204
type class

properties and methods, 365–367
types defined in assemblies, 370
TypeView example, 367–370

type safety
boxing and unboxing, 152–153
overview, 148
type conversions, 149–151

types
anonymous, 91–92
basics, 224
collections, 247–250
condition types (WF), 1490
constraint types (generics), 233
conversion (lists), 260–261
filtering, 312–314
generic type names, 226
integer types, and pointers, 343

key types (dictionaries), 278–280
library, creating, 772–774
managed/unmanaged, 343
metadata, 470–471
modifying exception, 387–389
passed with contracts, 1257
safety and generics, 223, 225
typeof operator, 146
TypeView example, 367–370
user-defined. See user-defined types (UDTs)

types, defining in .NET languages
enumerations, 1686
interfaces, 1685–1686
reference types, 1683–1684
type inference, 30–31, 1685
value types, 1684–1685

U
UAC (user account control), 1712–1715
UDP (User Datagram Protocol)

class, 1448–1449
vs. TCP, 1448

UDTs (user-defined types). See user-defined
types (UDTs)

UI customization (VSTO), 1401–1405
unboxing, defined, 224
unhandled exceptions, 386–387
Unicode

globalization and, 640–641
text files with, 651

unmanaged resources, freeing, 334–339
destructors, 335–339
IDisposable interface, 336–339

unmanaged types, defined, 343
unsafe code blocks (C#), 1709
unsafe keyword, 340–341
unsafe methods, 340–341
unsafe safety level, 986
updating

ADO.NET Entity Framework, 1674–1678
records, 860–861
update and delete constraints, setting, 876
UpdatePanel control (ASP.NET Ajax), 1360,

1370–1372
UpdateProgress control (ASP.NET Ajax),

1360, 1372
UpdateRowSource values, 886

updating

bindex.indd 1775bindex.indd 1775 2/19/08 9:31:17 PM2/19/08 9:31:17 PM

1776

uploading files with WebClient class, 1426
URIs (Uniform Resource Identifiers)

classes, 1440–1441
vs. URLs, 1424

user account control (UAC), 1712–1715
user controls (ASP.NET)

basics, 1312–1313
in PCSDemoSite, 1318
simple, 1313–1318

user controls (Windows Forms), 1055–1059
User Datagram Protocol (UDP). See UDP (User

Datagram Protocol)
user-defined casts

between base and derived classes, 169–170
boxing/unboxing casts, 170–171
converting between classes, 168–169
fundamentals, 164–165
multiple casting, 171–175
SimpleCurrency example, 165–168

user-defined exceptions
catching, 390–391
defining classes, 394–396
SolicitColdCall example, 389–390
throwing, 391–394

user-defined functions (SQL Server),
1000–1001

user-defined types (UDTs), 988–997
Ajax Library, 1377–1378
basics, 988
creating, 988–993
user-defined aggregates, 996–997
using, 993–996

users
account management, 1619–1620
input, responding to (GDI+), 1138–1141
interaction events (Control class), 1024–1025
interface (Active Directory), 1611–1612
interface customization (VSTO), 1401–1405
User Interface editor (VS 2008), 462–463
user objects, searching for, 1614–1616
user policy level (security), 621–623
user principal name (UPN) (Active

Directory), 1601
usernames (Active Directory), 1601
Users and Computers snap-in (Active

Directory), 1594–1595
using block statement, 852–854
using directive, 53–54

using keyword, 54, 1682
using statement in .Net languages, 1702

V
validation

activity validation (WF), 1497–1498
validation Web server controls (ASP.NET),

1288–1289
with XmlReader, 928–930

validation, binding
custom validation rules, 1223–1224
data error information, 1221–1222
handling exceptions, 1219–1221
Validation class, 1221

value types
basics, 35–39, 224
comparing for equality, 154
declaring with .NET languages, 1684–1685
memory management and, 330–331
and reference types, 8
structs as, 93–94

values. See also default values (generic
classes)

BitVector32, 291
Name/Text (Windows Forms elements), 660
row state, 1066–1067
VALUE index, 1011
Value property (WPF binding), 1201
XML, reading, 1005–1008

var keyword, 30, 91, 1685, xlv
variables. See also constants

constant variables, 34
declaring, 29
implicitly typed (.NET 3.5), xlv–xlvi
initialization of, 29–30
monitoring with Autos window, 432–433
type inference, 30–31
variable scope, 31–34

VARIANT data types, 753
VBA interoperability (VSTO), 1415–1418
Vector struct example (operator overloading),

157–163
VectorClass assembly example, 362, 364–365
versioning

add-ins, 1252, 1259
application configuration files, 500–503
obtaining versions programmatically, 500

uploading fi les with WebClient class

bindex.indd 1776bindex.indd 1776 2/19/08 9:31:17 PM2/19/08 9:31:17 PM

1777

In
de

x

overview, 499
publisher policy files, 504–506
runtime version, 506–507
version dependencies, 470
version numbers, 499–500
WCF, 1468–1469

viewing assemblies, 473
viewstate fields (ASP.NET), 1275
virtual addressing, defined, 330
virtual Equals() method, 153
virtual keyword, 104, 106
virtual memory, defined, 330
virtual methods, 104
VirtualizingStackPanel (WPF), 1172
visibility modifiers, 112–113
Vista, Windows

Advanced Query Syntax (AQS), 1728–1729
command link controls, 1716
directory structure, 1715–1716
file dialogs, 1721–1722
OLE DB provider, 1724–1727
searching in, 1722–1729
task dialog, 1718–1721
transactions with, 710–713
user account control (UAC), 1712–1715
Vista Bridge, 1711, 1717

Visual Basic 2008
COM components, building with VB 9, 756
error handling in VB 6, 377
LINQ to SQL and, 967–968
mapping syntax from C#, 1681–1709
.NET Framework and, 5–6
Visual Studio 2008 and, 416

Visual C��

.NET Framework and, 6
Visual Studio 2008 and, 416

Visual Studio 2008
BasicForm Windows project, 413–415
breakpoints, 431–432
building/compiling/making, defined, 427
C# code/compilation options, 408–410
Class View window, 424
code optimization, 427–428
conditional compilation, 428
configurations, editing, 429–430
configurations, selecting, 429
Console Application, 410–412
Conversion Wizard, 404–405

Custom Actions editor, 463–465
debug and release builds, 427
debugger symbols, 428
debugging, 430–434
deployment projects. See deployment
Design View window, 419–422
exceptions, 433–434
extra source code debugging commands,

428–429
features and overview, 401–406
File Types editor, 461–462
folding editor, 416–418
installer project types. See installer

project types
languages and, 663
Launch Conditions editor, 465–466
LINQ to SQL and, 897–902
multi-targeting .NET Framework, xlvii,

436–438
.NET environment and, xlv
new project, creating, 406–407
O/R Designer. See O/R Designer
Object Browser window, 425–426
pin buttons, 426
project type, selecting, 407–410
Properties window, 422–424
refactoring applications, 434–436
Registry editor, 461
Server Explorer window, 426
solutions and projects, 412–415
Start Page, 407
startup project, setting, 415
toolbox, 420–421
User Interface editor, 462–463
Visual Studio Add Service Reference, 1482
VS 6 projects, reading in, 416
watches, 432–433
WF applications, building in, 439–441
Windows application code, 415
WPF applications, building in, 438–439
XML schemas and, 1012

Visual Studio 2008 for localization
automatic fallback for resources, 666
basics, 659–663
culture, changing programmatically,

663–665
custom resource messages, 665–666
outsourcing translations, 666–667

Visual Studio 2008 for localization

bindex.indd 1777bindex.indd 1777 2/19/08 9:31:18 PM2/19/08 9:31:18 PM

1778

Visual Studio Tools for Office (VSTO),
1385–1419

application example, 1405–1415
building solutions. See solutions, VSTO
event handling, 1397–1398
Globals class, 1397
host items/host controls, 1392–1394
namespaces, 1391–1392
Office object model, 1391
overview, 1386–1390
project features, 1389–1390
project structure, 1394–1396
project types, 1386–1389
VBA interoperability, 1415–1418

visual styles (Windows XP), 1047
VisualBrush (WPF), 1166–1167, 1242
void pointers, 344
vtable (virtual table), 751

W
W3C standards supported in .NET, 922
wait handles

asynchronous delegates and, 536–537
mutex and, 559
synchronization and, 557–558

#warning preprocessor directives, 65
WAS (Windows Activation Services) hosting,

1481–1482
watches (debugging), 432–433
WCF (Windows Communication Foundation),

1455–1486
binding, 1477–1480
clients, 1482–1483
contracts, 1467–1471
duplex communication, 1484–1486
error handling, 1476–1477
hosting, 1480–1482
integration with WF, 1521–1524
JSON, 1458
message queuing. See message queuing

with WCF
overview, 22, 1456–1458
service implementation, 1471–1477
settings, 496
SOAP, 1457
WSDL, 1457–1458

WCF, integrating with Enterprise Services
client application, 1553–1554
WCF service façade, 1549–1553

WCF, service example
custom Service Host, 1463–1464
diagnostics, 1466–1467
getting started, 1458–1459
implementation, 1460–1461
service contract, 1460
Service Host and Test Client, 1461–1462
WCF client, 1464–1465

Web applications
configuring with Web.config files,

1308–1309
Xcopy and, 447

Web browsing from applications, 1430–1431
Web Forms (ASP.NET), 1275–1294

code model, 1278–1279
controls, defined, 420
defined, 1273
overview, 20, 1275–1278
server controls. See server controls (ASP.NET)

Web method calls (ASP.NET AJAX),
1381–1383

Web pages
accessing master pages from, 1325–1326
applying themes to, 1339–1340
ASP.NET support for, xliv

Web Parts (ASP.NET), 1344–1353
basics, 1344
controls, 1344–1346
example, 1346–1353

Web server controls (ASP.NET)
basics, 20, 1279
data, 1287–1288
data binding and, 1302–1303
example, 1289–1294
standard controls, 1283–1286
validation controls, 1288–1289

Web services
ASP.NET application services, 1383
Web Services Description Language (WSDL),

1457–1458
Web Setup installer Project, 448
Web sites

configuration example (ASP.NET Ajax),
1365–1368

Visual Studio Tools for Offi ce (VSTO)

bindex.indd 1778bindex.indd 1778 2/19/08 9:31:18 PM2/19/08 9:31:18 PM

1779

In
de

x

publishing, 444, 447–448
simple example (ASP.NET Ajax), 1362–1364

Web sites, for downloading
Ajax Library, 1358
ASP.NET, 1358
ASP.NET Ajax Control Toolkit, 1358
DSML, 1620
Nikhil’s Web Development Helper, 1381
PNRP, 1629
Reflector software, 853, 1500
source code for this book, li
Unicode example, 821

Web sites, for further information
ASP.NET, 1358
culture name definitions, 641
database connection strings, 850
P2P forums, lii
Workflow Designer, 1526

WebBrowser control
HTML pages and, 1429–1430
Internet Explorer features and, 1432–1433
for printing, 1437
requested-page code, displaying, 1438
Web browsing from applications, 1430–1431

WebClient class, 1424–1426
Web.config files, 1308–1309
WebRequest/WebResponse classes

basics, 1426–1429
hierarchy, 1438–1440

WelcomeMessage() method, 660–661, 665
WF (Windows Workflow Foundation),

1487–1526
activities. See activities (WF)
applications, building in VS, 439–441
basics, 1487
Designer, 1487, 1526
Hello World example, 1488–1489
hosting workflows, 1524–1525
integration with WCF, 1521–1524
workflow runtime, 1514–1515
workflow services. See services,

workflow (WF)
workflows. See workflows (WF)

WhatsNewAttributes example, 362–365,
371–375

Where() extension method, 305–308, 312
while/do . . . while Statements, 1696–1697

while loops, 48
WinCV utility, 18
windows

drawing scrollable, 1107–1113
pinning, 426

Windows, Microsoft
Activation Services (WAS) hosting,

1481–1482
application code, 415
Authentication (ASP.NET), 1331
Communication Foundation (WCF). See WCF

(Windows Communication Foundation)
Controls, defined, 21
Forms. See Windows Forms
history of, xliii
Installer. See Windows Installer
Presentation Foundation (WPF). See WPF

(Windows Presentation Foundation)
Resource Localization Editor, 667
Server 2008. See Windows Server 2008
Services. See Windows Services
Task Manager, 534
Vista. See Vista, Windows
WindowsIdentity class, 583

Windows Forms
ActiveX Control Importer, 768
ActiveX controls in, 768–770
application, creating, 768–770, 1018–1023
Button class, 1026–1027
CheckBox control, 1028
CheckedListBox control, 1029–1031
class hierarchy, 1023
ComboBox control, 1029–1031
ContextMenuStrip class, 1042
control class. See control class (Windows

Forms)
controls, defined, 420
controls in Internet Explorer, 782–783
creating, 21
custom controls. See custom controls

(Windows Forms)
DateTimePicker control, 1031
Designer, 661, 667, 769
ErrorProvider component, 1031–1032
FlowLayoutPanel container, 1037–1038
form appearance, 1046–1047
Form class, 1043

Windows Forms

bindex.indd 1779bindex.indd 1779 2/19/08 9:31:18 PM2/19/08 9:31:18 PM

1780

Windows Forms (continued)
form instantiation and destruction,

1043–1046
HelpProvider component, 1032
ImageList component, 1033
labels control, 1033
ListBox control, 1029–1031
ListView control, 1033–1035
localization and. See Visual Studio 2008 for

localization
MDI-type applications, 1047–1048
MenuStrip control, 1041–1042
overview, 1017
Panel control, 1037
PictureBox control, 1035
ProgressBar control, 1035–1036
radio button control, 1028
SplitContainer control, 1038
TabControl/TabPages controls, 1038–1039
TableLayoutPanel container, 1037–1038
TextBox controls, 1036–1037
ToolStrip control, 1039–1041
ToolStripContainer control, 1042
ToolStripManager class, 1042
ToolStripMenuItem class, 1042
WPF and, 1245–1248

Windows Installer
vs. ClickOnce, 458
fundamentals, 449
Windows Installer Search, 465

Windows Server 2008
transactions with, 710–713
user account control and, 1712–1715

Windows Services
application, creating, 725–729
class library using sockets, 719–722
controlling with Server Explorer, 737
defined, 21–22
event logging and, 746
fundamentals, 715–716
handler methods, 728–729
installer classes, 730–734
installutil.exe utility, 734
interactive services, 745–746
main function, 727–728
MMC Services snap-in, 735–736
net.exe command-line utility, 734–736
power events and, 746–747

sc.exe command-line utility, 734–737
service programs, 716–718
ServiceBase class, 726–727
ServiceController class application, 737–745
System.ServiceProcess namespace, 718–719
TcpClient example, 722–725
threading and, 730
troubleshooting, 745–746

Windows Workflow Foundation (WF). See WF
(Windows Workflow Foundation)

Word documents
vs. Excel document hosting, 1405
host items/controls for (VSTO), 1392–1393
storing as XML, 1003
template example (VSTO), 1394–1395
WordDocEditTimer, 1405–1415

workflows (WF)
binding parameters to activities, 1513–1514
defined, 1489, 1508
passing parameters to, 1511–1512
queue, 1492
returning results from, 1512–1513
runtime, 1514–1515
sequential, 1509
services. See services, workflow (WF)
state machine, 1509–1511
support for, 1488
template, 1487
Windows Workflow Foundation (WF). See WF

(Windows Workflow Foundation)
WorkflowInstance, 1487
WorkflowRuntime code, 1487
XML-based, 1525

world coordinates (GDI+), 1113–1114
WPF (Windows Presentation Foundation),

1199–1249
3-D features in. See 3-D features in WPF;

triangle models (WPF)
animations. See animations
applications, building in VS, 438–439
attached property, 1153–1154
basics, 21
brushes, 1163–1167
class hierarchy, 1155–1156
command bindings, 1224–1228
content controls, 1168–1169
data binding. See data binding and WPF
dependency property, 1152–1153

Windows Forms (continued)

bindex.indd 1780bindex.indd 1780 2/19/08 9:31:18 PM2/19/08 9:31:18 PM

1781

In
de

x

designer/developer cooperation, 1154–1155
event handling, 1176–1177
headered content controls, 1170–1171
headered items controls, 1171–1172
items controls, 1171
layout containers, 1172–1176
ListBox, styling, 1192–1197
localization with, 669–673
markup extensions, 1154
namespaces, 1156–1159
resources, 1178–1181
shapes, 1159–1162
simple controls, 1167–1168
styles, defining, 1177–1178
Syndication Reader and, 1645
templates, 1184–1192
transformation elements, 1162–1163
triggers, 1182–1184
Windows Forms and, 1245–1248
WPF Browser Application, 1249
WrapPanel container, 1173
XAML. See XAML (XML for Applications Markup

Language)
write-only properties, creating, 84
WriteAllBytes() method, 806–807
WriteAllLines() method, 806–807
WriteAllText() method, 807
WriteEntry() method, 520, 522, 525
WriteEvent() method, 520, 522, 525
writing

to files, 805, 807–808
to files using FileStream class, 810–812
to isolated storage, 839–844
to registry. See registry
to text files, 815, 818–819

WSDL (Web Services Description Language),
1457–1458

X
XAML (XML for Applications Markup

Language)
code for WPF application example, 670
data binding with, 1200–1203
defining instances with, 1206–1207
fundamentals, 1150–1152
localization with, 671–673
properties as attributes, 1152

properties as elements, 1152
XAttribute object, 974
XBAP files, defined, 1249
XComment object, 973
Xcopy deployment, 444, 447
XDocument object, 969
XElement object, 969–970
XML (Extensible Markup Language)

Ajax and, 1357
automatic documentation in, 61–62
Beginning XML (Wiley), 921
converting ADO.NET data to, 948–954
converting to ADO.NET, 954–956
data binding to, 1217–1219
DML (XML Data lModification Language), 1010
DOM implementation in .NET, 931–932
LINQ to XML. See LINQ to XML
namespaces and prefixes, 968
.NET Framework and, 921
output, writing, 887–889
outputting from database query, 982–983
populating DataSets from, 884
serializing objects in, 956–965
site maps, 1328–1329
streamed XML, reading/writing, 924
System.Xml classes, 923–924
System.Xml namespace, 922–923
System.Xml.Xsl namespace, 942
transforming, 943–947
W3C standards supported in .NET, 922
workflows and, 1525
XML Web services, overview, 20
XmlCharacterData classes, 932
XmlDocument class, 933–936, 1006–1007
XMLHttpRequest (Ajax), 1357
XmlLinkedNode classes, 932
XmlNode classes, 931–932
XmlReader class, 924–928, 1005–1007
XmlReader, validating with, 928–930
XmlWriter Class, 930–931

XML data type
overview, 1003
query of data, 1008–1010
strongly typed XML, 1011–1013
tables with XML data, 1003–1005
XML DML, 1010
XML indexes, 1010–1011
XML values, reading, 1005–1008

XML data type

bindex.indd 1781bindex.indd 1781 2/19/08 9:31:19 PM2/19/08 9:31:19 PM

1782

XML documents
querying dynamic, 976–978
querying static, 975–976
reading from, 978–979
writing to, 979–981

XML schemas
strongly typed XML and, 1011–1013
Word/Excel support, 1003
XML schema definitions (XSD), 877–883

XNamespace object, 971–972
XPath

reading XML values and, 1006
XML indexes and, 1011
XML queries and, 1009

XPathNavigators
System.Xml.XPath namespace, 937–942
XPathDocument class, 937
XPathNavigator class, 937–939
XPathNodeIterator class, 939

XQuery
basics, 1008–1010

XML data type and, 1003
XSD (XML schema definitions), 877–883
XSL (Extensible Stylesheet Language),

942–947
XSLT (Extensible Stylesheet Language

Transformation)
debugging, 947–948
XsltArgumentList, 944–946

x:Uid attribute, 671–673

Y
yield statements

defined in C#, 1709
enumerations and, 134–139

Z
Zone membership condition, 614

XML documents

bindex.indd 1782bindex.indd 1782 2/19/08 9:31:19 PM2/19/08 9:31:19 PM

badvert.indd 1783badvert.indd 1783 2/19/08 5:36:13 PM2/19/08 5:36:13 PM

badvert.indd 1784badvert.indd 1784 2/19/08 5:36:13 PM2/19/08 5:36:13 PM

Get more
fromWrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

badvert.indd 1789badvert.indd 1789 2/19/08 5:36:13 PM2/19/08 5:36:13 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 1790badvert.indd 1790 2/19/08 5:36:14 PM2/19/08 5:36:14 PM

	Professional C# 2008
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	The Significance of .NET and C#
	Looking at What’s New in the .NET Framework 3.5
	Where C# Fits In
	What You Need to Write and Run C# Code
	What This Book Covers
	Conventions
	Source Code and Appendices
	Errata
	p2p.wrox.com

	Part I: The C# Language
	Chapter 1: .NET Architecture
	The Relationship of C# to .NET
	The Common Language Runtime
	A Closer Look at Intermediate Language
	Assemblies
	.NET Framework Classes
	Namespaces
	Creating .NET Applications Using C#
	The Role of C# in the .NET Enterprise Architecture
	Summary

	Chapter 2: C# Basics
	Before We Start
	Your First C# Program
	Variables
	Predefined Data Types
	Flow Control
	Enumerations
	Arrays
	Namespaces
	The Main() Method
	More on Compiling C# Files
	Console I/O
	Using Comments
	The C# Preprocessor Directives
	C# Programming Guidelines
	Summary

	Chapter 3: Objects and Types
	Classes and Structs
	Class Members
	Anonymous Types
	Structs
	Partial Classes
	Static Classes
	The Object Class
	Extension Methods
	Summary

	Chapter 4: Inheritance
	Types of Inheritance
	Implementation Inheritance
	Modifiers
	Interfaces
	Summary

	Chapter 5: Arrays
	Simple Arrays
	Multidimensional Arrays
	Jagged Arrays
	Array Class
	Array and Collection Interfaces
	Enumerations
	Summary

	Chapter 6: Operators and Casts
	Operators
	Type Safety
	Comparing Objects for Equality
	Operator Overloading
	User-Defined Casts
	Summary

	Chapter 7: Delegates and Events
	Delegates
	Events
	Summary

	Chapter 8: Strings and Regular Expressions
	System.String
	Regular Expressions
	Summary

	Chapter 9: Generics
	Overview
	Creating Generic Classes
	Generic Classes’ Features
	Generic Interfaces
	Generic Methods
	Generic Delegates
	Other Generic Framework Types
	Summary

	Chapter 10: Collections
	Collection Interfaces and Types
	Lists
	Queues
	Stacks
	Linked Lists
	Sorted Lists
	Dictionaries
	HashSet
	Bit Arrays
	Performance
	Summary

	Chapter 11: Language Integrated Query
	LINQ Overview
	Standard Query Operators
	Expression Trees
	LINQ Providers
	Summary

	Chapter 12: Memory Management and Pointers
	Memory Management Under the Hood
	Freeing Unmanaged Resources
	Unsafe Code
	Summary

	Chapter 13: Reflection
	Custom Attributes
	Reflection
	Summary

	Chapter 14: Errors and Exceptions
	Exception Classes
	Catching Exceptions
	User-Defined Exception Classes
	Summary

	Part II: Visual Studio
	Chapter 15: Visual Studio 2008
	Working with Visual Studio 2008
	Refactoring
	Multi-Targeting
	WPF, WCF, WF, and More
	Summary

	Chapter 16: Deployment
	Designing for Deployment
	Deployment Options
	Deployment Requirements
	Deploying the .NET Runtime
	Simple Deployment
	Installer Projects
	ClickOnce
	Summary

	Part III: Base Class Libraries
	Chapter 17: Assemblies
	What Are Assemblies?
	Creating Assemblies
	Dynamic Loading and Creating Assemblies
	Application Domains
	Shared Assemblies
	Configuring .NET Applications
	Versioning
	Summary

	Chapter 18: Tracing and Events
	Tracing
	Event Logging
	Performance Monitoring
	Summary

	Chapter 19: Threading and Synchronization
	Overview
	Asynchronous Delegates
	The Thread Class
	Thread Pools
	Threading Issues
	Synchronization
	Timers
	COM Apartments
	Event-Based Asynchronous Pattern
	Summary

	Chapter 20: Security
	Authentication and Authorization
	Encryption
	Access Control to Resources
	Code Access Security
	Managing Security Policies
	Summary

	Chapter 21: Localization
	Namespace System.Globalization
	Resources
	Windows Forms Localization Using Visual Studio
	Localization with ASP.NET
	Localization with WPF
	A Custom Resource Reader
	Creating Custom Cultures
	Summary

	Chapter 22: Transactions
	Overview
	Database and Entity Classes
	Traditional Transactions
	System. Transactions
	Isolation Level
	Custom Resource Managers
	Transactions with Windows Vista and Windows Server 2008
	Summary

	Chapter 23: Windows Services
	What Is a Windows Service?
	Windows Services Architecture
	System.ServiceProcess Namespace
	Creating a Windows Service
	Monitoring and Controlling the Service
	Troubleshooting
	Power Events
	Summary

	Chapter 24: Interoperability
	.NET and COM
	Marshaling
	Using a COM Component from a .NET Client
	Using a .NET Component from a COM Client
	Platform Invoke
	Summary

	Part IV: Data
	Chapter 25: Manipulating Files and the Registry
	Managing the File System
	Moving, Copying, and Deleting Files
	Reading and Writing to Files
	Reading Drive Information
	File Security
	Reading and Writing to the Registry
	Reading and Writing to Isolated Storage
	Summary

	Chapter 26: Data Access
	ADO.NET Overview
	Using Database Connections
	Commands
	Fast Data Access: The Data Reader
	Managing Data and Relationships: The DataSet Class
	XML Schemas: Generating Code with XSD
	Populating a DataSet
	Persisting DataSet Changes
	Working with ADO.NET
	Summary

	Chapter 27: LINQ to SQL
	LINQ to SQL and Visual Studio 2008
	How Objects Map to LINQ Objects
	Working Without the O/R Designer
	Custom Objects and the O/R Designer
	Querying the Database
	Stored Procedures
	Summary

	Chapter 28: Manipulating XML
	XML Standards Support in .NET
	Introducing the System.Xml Namespace
	Using System.Xml Classes
	Reading and Writing Streamed XML
	Using the DOM in .NET
	Using XPathNavigators
	XML and ADO.NET
	Serializing Objects in XML
	Summary

	Chapter 29: LINQ to XML
	LINQ to XML and .NET 3.5
	New XML Objects from the .NET Framework 3.5
	Using LINQ to Query XML Documents
	Working Around the XML Document
	Using LINQ to SQL with LINQ to XML
	Summary

	Chapter 30: .NET Programming with SQL Server
	.NET Runtime Host
	Microsoft.SqlServer.Server
	User-Defined Types
	Stored Procedures
	User-Defined Functions
	Triggers
	XML Data Type
	Summary

	Part V: Presentation
	Chapter 31: Windows Forms
	Creating a Windows Form Application
	Control Class
	Standard Controls and Components
	Forms
	Summary

	Chapter 32: Data Binding
	The DataGridView Control
	DataGridView Class Hierarchy
	Data Binding
	Visual Studio .NET and Data Access
	Summary

	Chapter 33: Graphics with GDI+
	Understanding Drawing Principles
	Measuring Coordinates and Areas
	A Note About Debugging
	Drawing Scrollable Windows
	World, Page, and Device Coordinates
	Colors
	The Safety Palette
	Pens and Brushes
	Drawing Shapes and Lines
	Displaying Images
	Issues When Manipulating Images
	Drawing Text
	Simple Text Example
	Fonts and Font Families
	Example: Enumerating Font Families
	Editing a Text Document: The CapsEditor Sample
	Printing
	Summary

	Chapter 34: Windows Presentation Foundation
	Overview
	Shapes
	Transformation
	Brushes
	Controls
	Layout
	Event Handling
	Styles, Templates, and Resources
	Summary

	Chapter 35: Advanced WPF
	Data Binding
	Command Bindings
	Animations
	Adding 3-D Features in WPF
	Windows Forms Integration
	WPF Browser Application
	Summary

	Chapter 36: Add-Ins
	System.AddIn Architecture
	Add-In Sample
	Summary

	Chapter 37: ASP.NET Pages
	ASP.NET Introduction
	ASP.NET Web Forms
	ADO.NET and Data Binding
	Application Configuration
	Summary

	Chapter 38: ASP.NET Development
	User and Custom Controls
	Master Pages
	Site Navigation
	Security
	Themes
	Web Parts
	Summary

	Chapter 39: ASP.NET AJAX
	What Is Ajax?
	What Is ASP.NET AJAX ?
	Using ASP.NET AJAX
	Summary

	Chapter 40: Visual Studio Tools for Office
	VSTO Overview
	VSTO Fundamentals
	Building VSTO Solutions
	Example Application
	VBA Interoperability
	Summary

	Part VI: Communication
	Chapter 41: Accessing the Internet
	The WebClient Class
	WebRequest and WebResponse Classes
	Displaying Output as an HTML Page
	Utility Classes
	Lower-Level Protocols
	Summary

	Chapter 42: Windows Communication Foundation
	WCF Overview
	Simple Service and Client
	Contracts
	Service Implementation
	Binding
	Hosting
	Clients
	Duplex Communication
	Summary

	Chapter 43: Windows Workflow Foundation
	Hello World
	Activities
	Custom Activities
	Workflows
	The Workflow Runtime
	Workflow Services
	Integration with Windows Communication Foundation
	Hosting Workflows
	The Workflow Designer
	Summary

	Chapter 44: Enterprise Services
	Overview
	Creating a Simple COM+ Application
	Deployment
	Component Services Explorer
	Client Application
	Transactions
	Sample Application
	Integrating WCF and Enterprise Services
	Summary

	Chapter 45: Message Queuing
	Overview
	Message Queuing Products
	Message Queuing Architecture
	Message Queuing Administrative Tools
	Programming Message Queuing
	Course Order Application
	Receiving Results
	Transactional Queues
	Message Queuing with WCF
	Message Queue Installation
	Summary

	Chapter 46: Directory Services
	The Architecture of Active Directory
	Administration Tools for Active Directory
	Programming Active Directory
	Searching for User Objects
	Account Management
	DSML
	Summary

	Chapter 47: Peer-to-Peer Networking
	Peer-to-Peer Networking Overview
	Microsoft Windows Peer-to-Peer Networking
	Building P2P Applications
	Summary

	Chapter 48: Syndication
	Overview of System.Servicemodel.Syndication
	Syndication Reader
	Offering Syndication Feeds
	Summary

	Part VII: Appendices
	Appendix A: ADO.NET Entity Framework
	Overview of the ADO.NET Entity Framework
	Entity Framework Layers
	Entities
	Object Context
	Relationships
	Object Query
	Updates
	LINQ to Entities
	Summary

	Appendix B: C#, Visual Basic, and C++/CLI
	Namespaces
	Defining Types
	Methods
	Static Members
	Arrays
	Control Statements
	Loops
	Exception Handling
	Inheritance
	Resource Management
	Delegates
	Events
	Generics
	LINQ Queries
	C++/CLI Mixing Native and Managed Code
	C# Specifics
	Summary

	Appendix C: Windows Vista and Windows Server 2008
	Vista Bridge
	User Account Control
	Directory Structure
	New Controls and Dialogs
	Search
	Summary

	Index

